OPTIMAL PAIR-TRADING DECISION RULES FOR A CLASS OF NON-LINEAR
BOUNDARY CROSSINGS BY ORNSTEIN-UHLENBECK PROCESSES

Emmanuel Edem Kwaku Tamakloe, BEd., MS

Dissertation Prepared for the Degree of

DOCTOR OF PHILOSOPHY

UNIVERSITY OF NORTH TEXAS

December 2021

APPROVED:

Kai-Sheng Song, Major Professor

Joseph lTaia, Committee Member

Nam Trang, Committee Member

Ralf Schmidt, Chair of the Department of
Mathematics

Pamela Padilla, Dean of the College of
Science

Victor Prybutok, Dean of the Toulouse
Graduate School



Tamakloe, Emmanuel Edem Kwaku. Optimal Pair-Trading Decision Rules for a
Class of Non-Linear Boundary Crossings by Ornstein-Uhlenbeck Processes. Doctor of
Philosophy (Mathematics), December 2021, 147 pp., 51 tables, 83 figures, 1 appendix, 40
numbered references.

The most useful feature used in finance of the Ornstein-Uhlenbeck (OU) stochastic
process is its mean-reverting property: the OU process tends to drift towards its long-
term mean (its equilibrium state) over time. This important feature makes the OU process
arguably the most popular statistical model for developing best pair-trading strategies.
However, optimal strategies depend crucially on the first passage time (FPT) of the OU
process to a suitably chosen boundary and its probability density is not analytically
available in general. Even for crossing a simple constant boundary, the FPT of the OU
process would lead to crossing a square root boundary by a Brownian motion process
whose FPT density involves the complicated parabolic cylinder function. To overcome the
limitations of the existing methods, we propose a novel class of non-linear boundaries for
obtaining optimal decision thresholds. We prove the existence and uniqueness of the
maximizer of our decision rules. We also derive simple formulas for some FPT moments
without analytical expressions of its density functions. We conduct some Monte Carlo
simulations and analyze several pairs of stocks including Coca-Cola and Pepsi, Target and
Walmart, Chevron and Exxon Mobil. The results demonstrate that our method

outperforms the existing procedures.



Copyright 2021
by

Emmanuel Edem Kwaku Tamakloe

i



ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my major professor, Dr. Kai-Sheng
Song, for his patience and unrelenting support that has brought me this far. I appreciate
the wealth of knowledge and experience with which he guided this research. He indeed went
out of his way to make sure this project was successful and I cannot thank him enough.

I would also like to thank my committee members, Dr. Joseph laia and Dr. Nam
Trang, for their various contributions to my learning process. In addition, I would like to
again thank Dr. Nam Trang and the Department of Mathematics of the University of North
Texas for providing me with a high-performing laptop when I needed one to perform my
research.

My gratitude also goes out to my entire family back home in Ghana for their support
and motivation in my academic pursuit.

I am thankful to my wife, Patience Tamakloe, for her support in this journey and I

dedicate this work to our first son, Paul Elikplim Kojo Tamakloe.

1l



TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS iii
LIST OF TABLES viii
LIST OF FIGURES xiii
CHAPTER 1 INTRODUCTION 1
1.1.  Pairs Trading 1

1.2. Cointegration 2

1.3. Mean Reversion Models 2

1.4. Ornstein-Uhlenbeck Processes 4

1.5.  The Generalized Ornstein-Uhlenbeck Process )

1.6.  The Problem Statement 6
CHAPTER 2 OVERVIEW AND LIMITATIONS OF EXISTING METHODS 7
2.1.  First Passage Time 7

2.2.  Pairs Trading Strategies 9

2.2.1. Conventional Method 9

2.2.2. Continuous Time Trading 9

2.2.3. Zeng and Lee’s Strategy 10

2.2.4. Goncu and Akyildirim’s Strategy 10

2.3.  Limitations of Existing Methods 10

2.3.1. The Cointegration Drift Rate 10

2.3.2. Constant Boundary 12

2.3.3. Zeng and Leng’s Strategy and Transaction Cost 13

2.3.4. A Discussion on the Method of Goncu and Akyildirim 13

iv



CHAPTER 3 METHODOLOGY

3.1.
3.2.
3.3.
3.4.

The Drift Rate Treatment
New Pair Trading Strategy
Performance

Result on Certain Moments of First Passage Time

CHAPTER 4 THEORETICAL RESULTS

4.1.

4.2.

4.3.

4.4.

4.5.

4.6.

4.7.

Relationship between Boundary Crossing Probabilities of Ornstein-

Uhlenbeck Processes and Brownian Motion

Boundary Crossing Probabilities and First Passage Time Probabilities of

the Standardized Ornstein-Uhlenbeck Process

New Class of Non-Linear Boundaries and New Thresholds

The Ornstein-Uhlenbeck Process First Passage Time Densities

4.4.1. Case1: v=0

4.4.2. Case2: y>0and p=1

The Optimization Problem

4.5.1. Case 1l: v=0

4.5.2. Case2: y>0and p=1

Certain Moments of First Passage Time of Brownian Motions to Some
Class of Boundaries

4.6.1. Example 1

4.6.2. Example 2

Expectation of a Functional of the First Passage Time of Ornstein

Uhlenbeck Processes to Some Class of Boundaries

CHAPTER 5 SIMULATIONS

5.1

Zero Trend Ornstein-Uhlenbeck Process
5.1.1. The Process

5.1.2. Parameter Estimation

19
19
19
19
20

21

21

22
25
28
28
28
29
30
37

38
44
45

46

48
48
48
20



D.2.

5.1.3.
5.1.4.
5.1.5.
5.1.6.

Long Path

Short Path
Artificial Stocks
Optimal Threshold

Nonzero Trend Generalized Ornstein-Uhlenbeck Process

5.2.1.
5.2.2.
5.2.3.
5.2.4.
5.2.5.
5.2.6.

The Process
Parameter Estimation
Long Path

Short Path

Artificial Stocks
Optimal Threshold

CHAPTER 6 APPLICATIONS

6.1.

6.2.

6.3.

Thresholds

6.1.1.
6.1.2.
6.1.3.
6.1.4.

Zeng and Lee’s Threshold
Goncu and Akyildirim’s Threshold
New Thresholds

Time Scaling

Short-Term Trades

6.2.1.
6.2.2.
6.2.3.
6.2.4.
6.2.5.

Pepsi(PEP) and Coca-Cola(KO)

52
o6
58
69
78
78
81
84
86
90
103

111
111
111
111
112
112
112
113

E.OnSe (EOAN) and RWE AG(RWE) (German Utility Companies) 116

Exxon Mobil(XOM) and Chevron(CVX)
Walmart(WMT) and Target(TGT)

Performance Comparison

Long-Term Trades

6.3.1.
6.3.2.
6.3.3.
6.3.4.

Pepsi(PEP) and Coca-Cola(KO)

119
122
125
125
126

E.OnSe (EOAN) and RWE AG(RWE) (German Utility Companies) 129

Exxon Mobil(XOM) and Chevron(CVX)
Walmart(WMT) and Target(TGT)

vi

132
135



6.3.5. Performance Comparison

CHAPTER 7 CONCLUSION

APPENDIX: SOME RELEVANT THEOREMS

REFERENCES

vii

138

139

141

144



Table 2.1.

Table 5.1.

Table 5.2.

Table 5.3.

Table 5.4.

Table 5.5.

Table 5.6.

Table 5.7.

Table 5.8.

LIST OF TABLES

Page
Augmented Dickey-Fulller test for stationarity of the cointegration
between Pepsi and Coca Cola log-returns.
Note 1: Alternate hypothesis: Stationary 12
Parameter estimation for the discretized OU process of length 1260 by
maximum likelihood and method of least squares, with true parameter
values = 2.3, A = 0.08 and o = 0.005 54

Performance of Maximum Likelihood and Least Squares methods for
estimating the OU parameters, by 10,000 Monte Carlo simulations, using
a path of length 1260

Parameter estimation for the discretized OU process of length 126 by
maximum likelihood and method of least squares, with true parameter
values = 2.3, A = 0.08 and o = 0.005

Performance of Maximum Likelihood and Least Squares methods for
estimating the OU parameters, by 10,000 Monte Carlo simulations, using
a path of length 126

Augmented Dickey-Fulller test for stationarity of the cointegration
between logarithmic returns of the artificial pair P, and Q).

Note 1: Alternate hypothesis: Stationary

Parameter estimation for the OU process representing the spread between
InP, and In@);, by maximum likelihood and method of least squares.
Maximum Likelihood and Least Squares estimates of the OU parameters
for the path of length 1260, by 10,000 Monte Carlo simulations
Augmented Dickey-Fulller test for stationarity of the cointegration

between logarithmic returns of the artificial pair P, and Q.

viil

25

57

o8

64

65

66



Table 5.9.

Table 5.10.

Table 5.11.

Table 5.12.

Table 5.13.

Table 5.14.

Table 5.15.

Table 5.16.

Table 5.17.

Table 5.18.

Note 1: Alternate hypothesis: Stationary

Parameter estimates by one realization, for the OU representation of the
spread between InP; and InQ); for 126 steps, by maximum likelihood and
method of least squares.

Parameter estimates by Maximum Likelihood and Least Squares methods
the 126 steps OU process, by Monte Carlo simulations

One realization of parameter estimates by maximum likelihood and least
squares methods, for the OU representation of the spread of length 1260
between In(Q:) and In(F;)

One realization of parameter estimates by maximum likelihood and least
squares methods, for the OU representation of the spread of length 126
between In(Q;) and In(P;)

Parameter estimation for the discretized trend-stationary OU process of
length 1260 by maximum likelihood and method of least squares, with
true parameter values a = 0.0002, b = 0.02, A = 0.08 and o = 0.005
Performance of Maximum Likelihood and Least Squares methods for
estimating the trend-stationary OU parameters, by 10,000 Monte Carlo
simulations, using a path of length 1260

Parameter estimation for the discretized trend-stationary OU process of
length 126 by maximum likelihood and method of least squares, with
actual parameters a = 0.0002, = 0.02, A = 0.08 and o = 0.005
Performance of Maximum Likelihood and Least Squares methods for
estimating the trend-stationary OU parameters, by 10,000 Monte Carlo
simulations, using a path of length 126

Augmented Dickey-Fulller test for stationarity of the cointegration
between logarithmic returns of the artificial pair P, and Q).

Note 1: Alternate hypothesis: Stationary

Parameter estimation for the trend-stationary OU process representing

1X

68

69

70

71

75

85

86

88

89

95



Table 5.19.

Table 5.20.

Table 5.21.

Table 5.22.

Table 5.23.

Table 5.24.

Table 6.1.

Table 6.2.

Table 6.3.

Table 6.4.

the spread between [nP; and In@;, by maximum likelihood and method

of least squares. 96
Maximum Likelihood and Least Squares estimates of the trend-stationary
OU process parameters for the path of length 1260, by 10,000 Monte

Carlo simulations 98
Augmented Dickey-Fulller test for stationarity of the cointegration
between logarithmic returns of the artificial pair P, and Q).

Note 1: Alternate hypothesis: Stationary 100
Parameter estimates by one realization, for the trend-stationary OU
representation of the spread between InP; and [n(@); for 126 steps, by
maximum likelihood and method of least squares. 100
Parameter estimates by Maximum Likelihood and Least Squares methods

for the 126 steps OU process, by Monte Carlo simulations 102
One realization of parameter estimates by maximum likelihood and least
squares methods, for the trend-stationary OU process representation

of the spread of length 1260 between In(Q;) and In(P;), with actual
parameters a = 0.0002, b = 0.8, A = 0.08 and o = 0.005 103
One realization of parameter estimates by maximum likelihood and least
squares methods, for the OU representation of the spread of length 126
between In(Q;) and In(P;), with true parameters a = 0.0002, = 0.08,

A =0.08 and o = 0.005 107
Parameter estimates for OU process representation of spread between

PEP and KO for first half of 2021 113
Parameter estimates for the trend-stationary OU process representation

of spread between PEP and KO for first half of 2021 114
Thresholds for the various trading strategies for the spread between PEP
and KO for first half of 2021 114

Parameter estimates for OU process representation of spread between



Table 6.5.

Table 6.6.

Table 6.7.

Table 6.8.

Table 6.9.

Table 6.10.

Table 6.11.

Table 6.12.

Table 6.13.
Table 6.14.

Table 6.15.

Table 6.16.

Table 6.17.

Table 6.18.

EOAN and RWE for first half of 2021 116
Parameter estimates for the trend-stationary OU process representation

of spread between EOAN and RWE for first half of 2021 117
Thresholds for the various trading strategies for the spread between

EOAN and RWE for first half of 2021 117
Parameter estimates for OU process representation of spread between

XOM and CVX for first half of 2021 119
Parameter estimates for the trend-stationary OU process representation

of spread between XOM and CVX for first half of 2021 120
Thresholds for the various trading strategies for the spread between XOM
and CVX for first half of 2021 120
Parameter estimates for OU process representation of spread between
WMT and TGT for first half of 2021 122
Parameter estimates for the trend-stationary OU process representation

of spread between WMT and TGT for first half of 2021 123
Thresholds for the various trading strategies for the spread between WMT
and TGT for first half of 2021 123
Performance comparison of the strategies, by profits, for first half of 2021 125
Parameter estimates for OU process representation of spread between

PEP and KO from July, 2016 to June, 2021 126
Parameter estimates for the trend-stationary OU process representation

of spread between PEP and KO from July, 2016 to June, 2021 127
Thresholds for the various trading strategies for the spread between PEP
and KO from July, 2016 to June, 2021 127
Parameter estimates for OU process representation of spread between
EOAN and RWE from July, 2016 to June, 2021 129
Parameter estimates for the trend-stationary OU process representation

of spread between EOAN and RWE from July, 2016 to June, 2021 130

x1



Table 6.19.

Table 6.20.

Table 6.21.

Table 6.22.

Table 6.23.

Table 6.24.

Table 6.25.

Table 6.26.

Thresholds for the various trading strategies for the spread between

EOAN and RWE from July, 2016 to June, 2021 130
Parameter estimates for OU process representation of spread between

XOM and CVX from July, 2016 to June, 2021 132
Parameter estimates for the trend-stationary OU process representation

of spread between XOM and CVX from July, 2016 to June, 2021 133
Thresholds for the various trading strategies for the spread between XOM
and CVX from July, 2016 to June, 2021 133
Parameter estimates for OU process representation of spread between
WMT and TGT from July, 2016 to June, 2021 135
Parameter estimates for the trend-stationary OU process representation

of spread between WMT and TGT from July, 2016 to June, 2021 136
Thresholds for the various trading strategies for the spread between WMT
and TGT from July, 2016 to June, 2021 136
Performance comparison of the strategies, by profits, from July, 2016 to

June, 2021 138

xii



Figure 2.1.

Figure 2.6.
Figure 2.7.

Figure 2.2.

Figure 2.3.

Figure 2.4.

Figure 2.5.

Figure 4.1.

Figure 4.2.

Figure 4.3.

Figure 4.4.

Figure 5.1.

Figure 5.2.

Figure 5.3.

LIST OF FIGURES

Page

Cointegration between logarithmic returns of Pepsi and Coca Cola stock
prices from September 16, 2008 to July 7, 2009

Objective function of Goncu and Akyildirim for time horizon T"= 0.5
Goncu and Akyildirim’s threshold for 2 year time horizon pairs trading of
EOAN.DE and RWE.DE

Spreads between logarithmic returns of PEP and KO stock prices for
various half year periods

Spreads between logarithmic returns of EOAN and RWE stock prices for
various half year periods

Spreads between logarithmic returns of XOM and CVX stock prices for
various half year periods

Spreads between logarithmic returns of WMT and TGT stock prices for
various half year periods

Spread and threshold.

Graph of &7, 7(8)(Yellow) and Iz, 7(8)(Blue), with T, = 1.25 and 7' =5
Graph of h(B,v) for T' = 0.5, with maximum value h(B,’y) = 0.3632 at
£ =2.2621 and 7 = 0.6944

Graph of h(f,v) for T'= 5, with maximum value h(ﬁN,’y) = 0.006564 at
5 =1.3351 and 7 = 0.1856

Discretized Ornstein-Uhlenbeck Process of length 10000, with parameter
values = 2.3, A = 0.08 and o = 0.005, starting from zy = 2.4
Discretized Ornstein-Uhlenbeck Process of length 1260, with parameter
values = 2.3, A = 0.08 and o = 0.005

Paths of length 1260, generated from one realization of parameter

xiil

11

14

15

16

17

18

29

35

38

39

50

53



Figure 5.4.

Figure 5.5.

Figure 5.6.

Figure 5.7.

Figure 5.8.

Figure 5.9.

Figure 5.10.

Figure 5.11.

Figure 5.12.
Figure 5.13.

Figure 5.14.

estimates from maximum likelihood and least squares methods, with true

parameter values p = 2.3, A = 0.08 and o = 0.005.

Paths generated from parameter estimates by Maximum Likelihood
and Method of Least Squares, using Monte Carlo averages with 10,000
replications of paths of length 1260. True parameter values are y = 2.3,
A =0.08 and ¢ = 0.005

Discretized Ornstein-Uhlenbeck Process of length 126, with parameter
values p = 2.3, A = 0.08 and o = 0.005

Paths of length 126, generated from one realization of estimates from
maximum likelihood and least squares methods, with true parameter
values = 2.3, A = 0.08 and o = 0.005.

OU paths from parameter estimation by Maximum Likelihood and

Method of Least Squares, using Monte Carlo averages with 10,000

replications of paths of length 126. The true parameter values are u = 2.3,

A =0.08 and o = 0.005

In(Q;) generated from Geometric Brownian Motion of length 10,000, with

parameters x = 0.001 and o = 0.02, starting at 1.5

Spread of length 10,000 from an OU process, with parameters y = 2.5,
A =0.09 and o = 0.013, start at o = 2.35

In(P;) obtained from In(Q;) and the OU process spread by the
cointegration equation.

Last 1,260 steps of the OU process in figure 5.9

Last 1,260 steps of In(FP;) vs. In(Q;) from figures 5.8 and 5.10

Spreads of length 1260 each, generated from one realization of parameter

estimates for the OU process, from maximum likelihood and least squares

methods, using In(Q;) and In(F,).
Spreads of length 1260 each, generated from parameter estimates by

maximum likelihood and least squares methods from (n(Q;) and In(P;),

Xiv

54

95

o6

57

29

62

62

63

63
64

66



Figure 5.15.

Figure 5.16.

Figure 5.17.

Figure 5.18.

Figure 5.19.

Figure 5.20.

Figure 5.21.

Figure 5.22.

Figure 5.23.

Figure 5.24.

Figure 5.25.

Figure 5.26.

based on Monte Carlo averages.

Last 126 steps of the OU process, with parameter values = 2.5, A = 0.09
and o = 0.013

Last 126 steps of In(P;) vs. In(Q;) from figures 5.8 and 5.10

Spreads of length 126 each, generated from one realization of parameter
estimates from maximum likelihood and least squares methods, using
In(Q;) and In(P;)

Spreads of length 126 each, generated from parameter estimates by
maximum likelihood and least squares methods from (n(Q;) and In(P,),
based on Monte Carlo averages.

Paths generated from one realization of parameter estimates by maximum
likelihood and least squares methods, for the OU representation of the
spread of length 1260 between In(Q;) and (n(F;)

New threshold case 1 on the OU representation of the spread of length
1260 between In(Q¢) and In(P;)

New threshold case 2 on the OU representation of the spread of length
1260 between In(Q;) and In(P;)

Paths generated from one realization of parameter estimates by maximum
likelihood and least squares methods, for the OU representation of the
spread of length 126 between In(Q;) and In(P;) based on equation ...
New threshold case 1 on the OU representation of the spread of length
126 between In(Q;) and In(P;)

New threshold case 2 on the OU representation of the spread of length
126 between In(Q;) and In(P;)

Discretized trend-stationary Ornstein-Uhlenbeck Process of length 10000,
with parameters a = 0.0002, b = 0.02, A = 0.08 and ¢ = 0.005, starting
from 2o = 0.4

Discretized trend-stationary Ornstein-Uhlenbeck Process of length 1260,

XV

67

67

68

70

71

72

73

74

76

7

78

82



with parameter values a = 0.0002, b = 0.02, A = 0.08 and ¢ = 0.005

Figure 5.27. Paths of length 1260, generated from one realization of parameter
estimates from maximum likelihood and least squares methods, with true
parameter values a = 0.0002, b = 0.02, A = 0.08 and o = 0.005, for the
trend-stationary OU process.

Figure 5.28. Paths generated from parameter estimates by Maximum Likelihood
and Method of Least Squares, using Monte Carlo averages with 10,000
replications of paths of length 1260. True parameter values are a = 0.0002,
b=0.02, A =0.08 and o = 0.005

Figure 5.29. Discretized trend-stationary Ornstein-Uhlenbeck Process of length 126,
with parameter values a = 0.0002, b = 0.02, A = 0.08 and ¢ = 0.005

Figure 5.30. Paths of length 126 for the trend-stationary OU process, generated from
one realization of estimates from maximum likelihood and least squares
methods, with true parameter values a = 0.0002, = 0.02, A = 0.08 and
o = 0.005

Figure 5.31. Trend-stationary OU paths from parameter estimation by Maximum
Likelihood and Method of Least Squares, using Monte Carlo averages
with 10,000 replications of paths of length 126. The true parameter values
are

Figure 5.32. In(Q;) generated from Geometric Brownian Motion of length 10,000, with
parameters £ = 0.001 and ¢ = 0.02), starting at 1.5

Figure 5.33. Spread of length 10,000 from a trend-stationary OU process, with
parameters a = 0.0002, b = 0.8, A = 0.08 and ¢ = 0.005

Figure 5.34. In(P,) obtained from In(Q;) and the trend-stationary OU process spread
by the cointegration equation.

Figure 5.35. Last 1,260 steps of the trend-stationary OU process in figure 5.33

Figure 5.36. Last 1,260 steps of In(P;) vs. In(Q;) from figures 5.32 and 5.34

Figure 5.37. Spreads of length 1260 each, generated from one realization of parameter

Xvi



Figure 5.38.

Figure 5.39.
Figure 5.40.
Figure 5.41.

Figure 5.42.

Figure 5.43.

Figure 5.44.

Figure 5.45.

Figure 5.46.

Figure 5.47.

Figure 5.48.

Figure 6.1.

estimates for the trend-stationary OU process, from maximum likelihood
and least squares methods, using (n(Q;) and In(P;). 97
Spreads of length 1,260 each, generated from parameter estimates by

maximum likelihood and least squares methods from In(Q;) and In(F;),

based on Monte Carlo averages. See table 5.19 98
Last 126 steps of the trend-stationary OU process in figure 5.33 99
Last 126 steps of In(P;) vs. In(Q;) from figures 5.32 and 5.34 99

Trend-stationary OU process representation of spreads of length 126 each,

generated from one realization of parameter estimates from maximum

likelihood and least squares methods, using In(Q;) and In(P;) 101
Spreads of length 126 each, generated from parameter estimates by
maximum likelihood and least squares methods from n(Q;) and In(P;),
based on Monte Carlo averages. See table 5.22 102

Paths generated from one realization of parameter estimates by maximum
likelihood and least squares methods, for the trend-stationary OU process
representation of the spread of length 1260 between In(Q;) and In(P;) 104
New threshold case 1 on the trend-stationary OU process representation
of the spread of length 1260 between In(Q;) and In(P;) 105
New threshold case 2 on the trend-stationary OU process representation
of the spread of length 1260 between In(Q;) and In(P;) 106

Paths generated from one realization of parameter estimates by maximum

likelihood and least squares methods, for the trend-stationary OU process

representation of the spread of length 126 between In(Q;) and In(FP;) 107
New threshold case 1 on the trend-stationary OU representation of the
spread of length 126 between In(Q;) and In(P;) 109
New threshold case 2 on the trend-stationary OU representation of the
spread of length 126 between In(Q;) and In(F;) 109
Logarithmic returns of PEP and KO for first half of 2021 113

XVvil



Figure 6.2.
Figure 6.3.
Figure 6.4.
Figure 6.5.
Figure 6.6.
Figure 6.7.
Figure 6.8.
Figure 6.9.

Figure 6.10.
Figure 6.11.
Figure 6.12.
Figure 6.13.
Figure 6.14.
Figure 6.15.
Figure 6.16.
Figure 6.17.
Figure 6.18.
Figure 6.19.
Figure 6.20.
Figure 6.21.
Figure 6.22.
Figure 6.23.
Figure 6.24.

Zero trend new thresholds against Old thresholds for PEP and KO 115
Nonzero trend new thresholds against Old thresholds for PEP and KO 115
Logarithmic returns of EOAN and RWE for first half of 2021 116
Zero trend new thresholds against Old thresholds for EOAN and RWE 118

Nonzero trend new thresholds against Old thresholds for EOAN and RWE 118
Logarithmic returns of XOM and CVX for first half of 2021 119
Zero trend new thresholds against Old thresholds for XOM and CVX 121
Nonzero trend new thresholds against Old thresholds for XOM and CVX 121
Logarithmic returns of WMT and TGT for first half of 2021 122
Zero trend new thresholds against Old thresholds for WMT and TGT 124

Nonzero trend new thresholds against Old thresholds for WMT and TGT 124

Logarithmic returns of PEP and KO from July, 2016 to June, 2021 126
Zero trend new thresholds against Old thresholds for PEP and KO 128
Nonzero trend new thresholds against Old thresholds for PEP and KO 128
Logarithmic returns of EOAN and RWE from July, 2016 to June, 2021 129
Zero trend new thresholds against Old thresholds for EOAN and RWE 131

Nonzero trend new thresholds against Old thresholds for EOAN and RWE 131
Logarithmic returns of XOM and CVX from July, 2016 to June, 2021 132
Zero trend new thresholds against Old thresholds for XOM and CVX 134
Nonzero trend new thresholds against Old thresholds for XOM and CVX 134
Logarithmic returns of WMT and TGT from July, 2016 to June, 2021 135
Zero trend new thresholds against Old thresholds for WMT and TGT 137

Nonzero trend new thresholds against Old thresholds for WMT and TGT 137

xXviil



CHAPTER 1

INTRODUCTION

With the introduction of algorithmic trading and high frequency trading in the late
1980s, trading in the financial market has transformed over the years, and this is true for all

forms of trading strategies, including arbitrage.

1.1. Pairs Trading

Various trading strategies are employed in financial markets, one of which is arbitrage.
Billingsley defined arbitrage as ”the process of buying assets in one market and selling them
in another to profit from unjustifiable price differences” [6]. While this is true, the assets
need not be in different markets. An arbitrage exists as long as there is a deviation in price,
which is expected to close up over time. There are various forms of arbitrage, some of which
have been identified in [6]. One form of arbitrage is the statistical arbitrage. Goncu and
Akyildirim defined a statistical arbitrage as follow:

A statistical arbitrage is a zero initial cost, self-financing trading strategy {v(t) : ¢ > 0} with

cumulative discounted value v(t) such that

limi o P(v(t) <0) =0, and
4) limy_oo 20 — 0/if P(v(t) < 0) > 0,Vt < oo [17]

t

7 A statistical arbitrage refers to trading strategies that generate almost sure profits
asymptotically via trading signals generated from quantitative models” [17]. These models
are usually mean-reversion models. and the assets are usually short-term financial instru-
ments. Pairs trading is a form of statistical arbitrage. It is widely assumed to be the
7ancestor” of statistical arbitrage [4].

In its most common form, pairs trading involves forming a portfolio of two related
stocks whose relative pricing departs from its ”equilibrium” [20]. The idea of pairs trading

is based on the assumption that if the prices of a pair of financial instruments, for instance



stocks, moved together in the past, then this behavior is likely to continue in the future [40].

The strategy employs a lot of quantitative and computational techniques to realize results.

1.2. Cointegration

It is well known that asset price time series are generally nonstationary. In conformity
with the efficient market hypothesis, they exhibit unit-root property. Thus the current price
is the best predictor of the next price [15]. However, there exists co-movements among prices
of different assets. As a result, one may find a linear combination of the asset prices, which
is stationary. This idea lends itself to the concept of cointegration, which was documented
in [7]. The term cointegration was later coined by Granger in [18].

Let X; be an asset price. It is said to be of integration order zero if it is stationary,
and we denote that by X; ~ I(0). If X, is nonstationary but VX, := X, — X ; is stationary,
then X, is said to be of integration order 1. In this case, we say that X; has a unit root and
is denoted by X; ~ I(1). Now, suppose we have two related stocks P and Q). Let P, and @
be the time series of their prices. Suppose they both have integration order 1. If there exists
a non-zero constant 7 such that P, —n@Q; ~ 1(0), then P, and @, are said to be cointegrated
[15]. Thus there exist a linear combination of the two time series whose integration order is
zero. In other words this linear combination is stationary.

We can model the cointegration of P, and @ as:

(1.1) In(Py) — In(Py) = at —to) + n[in(Q) — In(Qy,)] + €, >0,

where « is the drift rate, n is some constant and ¢, is a stationary or mean-reverting process
[4].
1.3. Mean Reversion Models

As stated in the previous section, the random variable ¢, in equation (1.1) is assumed
to be stationary, or mean reverting. A mean-reversion process is a stochastic process that

tends to revert toward its equilibrium position or long-term mean, or a long-term trend,

whenever there is a deviation from this position or trend. Thus the long-term mean or trend



acts as an attractor and together with the random component makes the process oscillate
around this mean or trend [26].

The long-term trend may be deterministic or stochastic. A one-dimensional mean
reversion process with deterministic long-term trend and constant parameters can be modeled

as:

where Xy = x is the initial position, the constant A > 0 is the reversion rate, the constant
o > 0 is the scale parameter for the volatility and the constant v € [0,3/2] is the sensitivity
parameter of the variance of the process to the level of X;. The deterministic function pu(t)
is the long-term trend, and {B;};>¢ is a one-dimensional standard Brownian motion defined
on a complete probability space (2, F,P) [26].

Some examples of the above model with constant long-term mean include:

(1) Vasicek / Ornstein-Uhlenbeck Process (OU)

(1.3) dX, = My — X,)dt + odB,
(2) Cox-Ingersoll-Ross Square Root model (CIR SR)
(1.4) dX, = Mp — X,)dt + o/ X,dB,

(3) Brennan-Schwartz model
(1.5) dX: = Mp — X3)dt + 0 X,dBy

Some examples with time-dependent long-term trend

(4) Hull-White model

For (1), see [35]. (2) can be found in [12]. Michael Brennan and Eduardo Schwartz

constructed (3) in [9]. Also, a summary of these can be found in [11] and [34].



1.4. Ornstein-Uhlenbeck Processes

Given two stocks P and () and their price time series P, and @); as defined in section
1.2, we model the spread of their log-returns by the cointegration model (1.1), where the
random component ¢; is assumed to follow an Ornstein-Uhlenbeck process [4, 40, 17].

We may or may not ignore the drift rate a. Both [17] and [40] suggest that it is
usually ignorable compared to the fluctuations of the residual ¢;, and indeed did not include
it in their models. Following their approach, we define X; := ¢; + In(Py) — nin(Qo).

Thus the cointegration model can therefore be represented as:

(1.7) Xy = In(F;) — nin(Q:)

We note that since In(FPy)—nin(Qo) is constant, then X, is also an Ornstein-Uhlenbeck(OU)

process. Thus it satisfies equation (1.3), which is stated again here for completeness.

The interpretation of equation (1.7) together with the above equation is that at some

time t, > 0 where X, # p, the trader may initiate a trade by doing one of the following:

(I) If Xy, > 0, then at time ¢, asset P is relatively overvalued in comparison with asset @
and hence its current price is relatively above the long-term equilibrium price. Thus the
return on asset P as the values of both assets shift towards the long-term equilibrium
is expected to decrease while the return on asset () will increase since it is relatively
undervalued. In this case, at time t,, the trader will short 1 dollar of asset P and long
71 dollars of asset (), and then clear position when X, reaches the long-term mean .

(II) If X;, < 0, then at time t,, asset P is relatively undervalued in comparison with
asset () and hence its current price is relatively below the long-term equilibrium price.
Thus the return on asset P as the values of both assets shift towards the long-term
equilibrium is expected to increase while the return on asset () will decrease since it is

relatively overvalued. For this case, at time t,, the trader will long 1 dollar of asset P



and short 7 dollars of asset (), and then clear position when X; reaches the long-term

mean .
There are various ways of deciding a value for . Some common ones are as follows:

(1) As a linear regression coefficient of the logarithm of one asset price time series
against the other [40].

(2) n = log(P,,/Q:,), also known as the no borrowing/lending case, since the amount
for the long and short positions offset each other [17].

(3) n = Bp/Bq, where the 3’s are obtained from the market at the beginning of each
trade cycle [17].

1.5. The Generalized Ornstein-Uhlenbeck Process

Suppose we choose to maintain the drift rate « in the cointegration. Then we will
define X; by X; := a(t — to) + € + In(Fy) — nin(Qo), where the residual ¢; follows a mean
reverting OU process as before. In this case, the long-term equilibrium behavior of X; has a
linear trend coming from the term a(t — to).

The cointegration model again becomes

Xy = In(Py) — nin(Qy),

—aty + In(FPy) — nin(Qy) is constant, but X; follows a trending Ornstein-Uhlenbeck
process (Also called the trend-stationary Ornstein-Uhlenbeck process). The stochastic dif-

ferential equation for this model is represented as:

or

(1.9) dX; = (p— MNX; — pt))dt + odB;  [34]



Similar to the OU process case, at some time ¢, > 0 where X;, # ut., the trader takes
position as discussed in I and II above, and clears position when X;, crosses the long-term

equilibrium trend.

1.6. The Problem Statement

At this point, the question that comes to mind is how does one determine the time ¢,
at which to take position? This is among the questions we seek to address in this dissertation.
In general, the way this is done is to find an ”appropriate” level of the spread X; to start the
trade cycle and the first time this level is crossed will be our choice for ¢,. We first explore

various literature on this problem in the next chapter.



CHAPTER 2

OVERVIEW AND LIMITATIONS OF EXISTING METHODS

As explained in the statement of the problem, pairs trading strategy is about choosing
the appropriate time to enter a trade position and when to exit, according to the procedure
explained in section 1.4. The question of choosing the appropriate time to enter trade
position also corresponds to that of choosing an appropriate spread level at which to enter
the trade position. Thus we initiate trade the first time the level is crossed. So the problem
can be framed in the context of first passage time (FPT), which is discussed in the next

section.

2.1. First Passage Time

The first passage time (FPT) of a stochastic process to a boundary is the amount
of time it takes the process to reach the boundary for the first time, given its initial value.
Formally defined as follows:

Given a stochastic process {X;};>0 with Xy = x¢, and a real-valued function b(t)
defined on ¢ > 0, such that b(0) > xy, we define the first passage time (FPT) of X; to b(¢)
by,

T, = inf{t > 0: X; > b(t)| X9 = zo}

The probability distribution and density functions of the first passage time of various
stochastic processes are very much studied because of their wide range of applications in

various fields. A few of these applications besides pairs trading are listed below;

i In biology, first passage time densities are used in the study of stochastic birth-death
model for cell populations [21].

ii In chemical physics, it is used for instance in studying models for the dissociation of
diatomic molecules in which dissociation occurs when the molecules acquire a certain

critical energy E. through collisions [37].



iii The most prevalent use is found in quantitative finance, where first passage times are
used in credit risk analysis (times of default) as well as in defining exotic contingent

claims ( so-called barrier options) [14].

Despite the numerous applications, expressions of first passage time densities are
known only in very few specific cases. These include Brownian motions to constant bound-
aries, linear boundaries, square root boundaries [8, 29] and square boundaries [19], and
Ornstein-Uhlenbeck (OU) processes to constant boundaries [3]. There are also results for
certain transformations of these boundaries. See for instance [2]. However, with the excep-
tion of the constant and the linear Brownian motion boundaries, the rest are all in terms
of infinite series of some advanced mathematical functions, such as the parabolic cylinder
function, the Hermite polynomial and the Airy function [1], which makes them unwieldy.
In the case of Brownian motions, one common method by which results are obtained involves
solving Kolmogorov’s differential equation to obtain the transition density of the Brownian
motion and using the result to find the first passage time density [13]. Another approach
is through what is known as the method of images. It involves solving an implicit equation
that involves the integral of some exponential function with respect to a positive o-finite

measure, and then the first passage time density is defined as some function of the solution

25, 23)].

For Ornstein-Uhlenbeck processes, the case of the constant boundary corresponds to
the square root boundary of the Brownian motion [3]. Alili et al showed how this is achieved

via Doob’s transform [36].

In the absence of general analytic expressions for the first passage time density or
distribution, one has to resort to computational methods, which is a common practice.
Some numeral methods used are based on integral equations, such as the Volterra integral

equations [31, 10] and the Fredholm equations [23, 33].

There are also other numerical methods that rely on Monte Carlo simulations [22].



2.2. Pairs Trading Strategies

The random component of the cointegration model for pairs trading follows an Ornstein-
Uhlenbeck process. Hence in deciding the optimal level for taking position, most of the
strategies rely on the first passage time of the Ornstein-Uhlenbeck process to a one-sided or
two-sided boundary, and/or the first passage time of the Ornstein-Unlenbeck process from
a boundary to the long term mean. We look into some of these methods next. The meth-
ods differ in two ways: how the optimal level or boundary is chosen and how the trade is

implemented.

2.2.1. Conventional Method

In the conventional method of pairs trading, the spread between the log-returns of
the prices of the pair of assets is modeled with the cointegration relation. The random
part is assumed to follow a mean-reverting stochastic process, such as the OU process. The
optimal buy /sell thresholds are determined with the appropriate mathematical and statistical
technique and a buy or sell position is taken when the set threshold is reached and the trader
waits for the process to return to the long-term mean in order to clear position, and this cycle
is repeated throughout the trading time horizon. The optimal levels are usually determined
by the two standard deviation rule [5]. However, other levels of standard deviation may be

used, see for instance [4].

2.2.2. Continuous Time Trading

A continuous trading strategy comprises a sequence of individual trades

performed on a continuous time stochastic process [5].

Bertram also added that ”a continuous time trading strategy is defined by entering a trade
when X; = a, exiting the trade at X; = m, and waiting until the process returns to X; = a,
to complete the trading cycle”. The difference here is that the exit level is not necessarily
the long-term mean. Bertram expressed the return as a function of the entry level a, exit
level b and the transaction cost. The optimal thresholds are found by solving for the entry

and exit levels that maximize the expected return as well as the Sharpe ratio.



2.2.3. Zeng and Lee’s Strategy

Zeng and Lee presented an alternative method in which they sought to find optimal
entry and exit thresholds that maximize the expected profit per unit time in the long run [40].
Similar to [5], the exit level is not necessarily the long term mean. Using the elementary
renewal theorem, they were able to obtain an expression for the expected profit per unit
time in terms of the entry level, the exit level, and the transaction cost. Then applying
the relevant optimization techniques, they obtained implicit expressions for the thresholds.
One of the cases they considered reduced to the conventional method, in that the exit level
matched with the long term mean, while the other two cases they considered resulted in
their "New Optimal Rule”. They noted that when there is no transaction cost, the maximal
return of the new rule is the same as the maximal return of the conventional method. But

the new rule outperforms the conventional rule if the transaction cost is greater than zero.

2.2.4. Goncu and Akyildirim’s Strategy

Another strategy, which is more like the conventional method in terms of exit level,
is presented by [17]. The objective is to find the optimal threshold that maximizes the
probability of successful trade within a given time horizon. Successful trade in this context
is defined as successful mean reversion and closing of spread position with the given time.
They used the first passage time density of the Ornstein-Uhlenbeck process from a position
above the long term mean to the long term mean in deriving the optimal threshold for
the strategy. Although transaction cost was considered in the paper, it does not affect the

optimization technique use in this strategy.

2.3. Limitations of Existing Methods

We have seen some useful pairs trading strategies in the previous section. As useful

as they are, they do have some limitations which we discuss in this section.

2.3.1. The Cointegration Drift Rate

As pointed out earlier on, a common assumption of the strategies discussed in the

previous section is that the drift rate o in the cointegration model (1.1) is often negligible
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and therefore ignored. While this is true, there are several empirical cases where we found
out that maintaining the drift rate was necessary to ensure that the pair of asset price
time series were cointegrated, thus (1.7) represents a stationary process. We present some
examples below. As we see in figure 2.1, the residual plot for the cointegration between
logarithmic returns of Pepsi stock price time series and Coca Cola stock price time series
from September 16th, 2008 to July 7th, 2009 shows that a trend is present. This shows time
dependency, hence nonstationarity in the spread, and therefore suggests that the logarithmic
returns of the two stock prices over the given period may not be really cointegrated. In this
example, 7 is taken to be the coefficient of linear regression. On the other hand, considering
a stationarity test, such as the augmented Dickey-Fuller test, for the same data set, as
presented in table 2.1, the p-values suggest stationarity in the residuals with or without
trend. The ”drift” used in the table refers to the vertical intercept of the line, while the

"trend” refers to the rate of change of the line [30].

0.6

0.5+

Residual

0.4+

Oct-01-2008 Jan-01-2009 Apr-01-2009 Jul-01-2009
Date

FiGUre 2.1. Cointegration between logarithmic returns of Pepsi and Coca

Cola stock prices from September 16, 2008 to July 7, 2009
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Linear model type Lag ADF p-value

Type 1: no drift, no trend 0 -26 <0.01
Type 2: with drift, no trend 0 -2.6 0.0977

Type 3: with drift and trend 0 -439 <0.01
TABLE 2.1. Augmented Dickey-Fulller test for stationarity of the cointegra-

tion between Pepsi and Coca Cola log-returns.

Note 1: Alternate hypothesis: Stationary

Notwithstanding, if we consider the augmented Dickey-Fuller test statistic presented
in the table, we notice that the model with drift and trend (Type 3) has significantly lower
test statistic than the model with no drift nor trend. This may be worth considering in
choosing whether or not to maintain the drift rate o in the cointegration model. We will
explore this further in chapter 3.

Additionally, we also noticed that out of sample prediction was better in some cases
when we involve the drift rate. It also provides more crossings and thus has the potential to

generate more trade opportunities.

2.3.2. Constant Boundary

The strategies we have discussed so far all employ a constant (non-time-dependent)
threshold. To the best of our knowledge, no literature on pairs trading strategies employs
any form of time dependent threshold.

Since the residual in the cointegration model is assumed to follow a mean-reverting
process, one would expect that over time there would be a reduction in the deviation from
the long term mean or trend. This is particularly true for short-term trades as evidenced in
the examples to follow. We pick four pairs of stocks that are considered to exhibit similar
patterns and were used by [40]; [17] in their papers.

Thus with a constant threshold, there is a high chance that at the early part of the
time horizon, the trader may enter trade position at a level too close to the long term mean

and hence miss some profit and/or miss trade opportunities toward the end of the time
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horizon due to reduction in deviation from the long term mean over time. It is worth noting
that this phenomenon is very common, but we only picked a few instances for each of the

four pairs to make our point as shown in figures 2.2, 2.3, 2.4 and 2.5.

2.3.3. Zeng and Leng’s Strategy and Transaction Cost

Except for Goncu and Akyildirim’s strategy, most known pairs trading strategies de-
pend on transaction cost. In fact Zeng and Lee stated in their paper that at zero transaction
cost their result yield the same maximal return as the conventional method [40]. On top of
this we found out that a zero transaction cost would mean a threshold of zero for Zeng and
Lee’s method. This can be checked by solving equation 80. However, trades nowadays have
either zero or close to zero transaction cost, which means Zeng and Lee’s strategy would not

be applicable in such circumstances.

2.3.4. A Discussion on the Method of Goncu and Akyildirim

As stated earlier Goncu and Akyildirim’s method is based on the investment time

horizon, T'. The function they sought to maximize is:

T 2 |C|e—t C2€_2t
P T = - = -
(r<T) / ﬁ(l—e%wﬂp( 2<1—e2t>>dt

We show a plot of this function for the case of T" = 0.5 in figure 2.6. It is clear from
this plot that the optimal value of the function is obtained when c is approximately equal
to zero, which makes intuitive sense, in that the closer the threshold is to the long term
mean, the higher the chance of reaching it within the time horizon 7. But this would
mean their threshold is essentially zero, hence provides no trade opportunity in the given
time horizon. So, the strategy fails. Besides this, we also have concerns regarding the
optimization technique employed by the authors in arriving at the optimal expression for
level ¢. The approach does not guarantee in general that P(7) is a probability function for
the resulting value of ¢. We also note that for large time horizon T, say T' = 2, the resulting
thresholds for their strategy are too far from the spread to yield any trades at all. We show
an example in figure 2.7 for 2-year time horizon for the German utility companies EOAN

and RWE.
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CHAPTER 3

METHODOLOGY

From the literature reviewed in chapter 2, it is clear that the application of first pas-
sage time density in deriving optimal thresholds for pairs trading strategies is not completely
new. However, existing strategies only consider constant thresholds and also overlook trend

in the data by ignoring the drift rate in the cointegration model.

3.1. The Drift Rate Treatment

Our study will be in two folds; one in which we will consider the drift rate o and
another in which we follow existing methods and ignore the drift rate. In the performance
analyses, we will be comparing the returns in both cases against the some recent pairs trading

strategies.

3.2. New Pair Trading Strategy

From figures 2.2, 2.3, 2.4 and 2.5, we see that constant boundaries are not always
appropriate, if one wants to make maximum returns from pairs trading, especially for pairs
for which the deviations reduce over the time horizon.

To address this issue, we present a new boundary that takes into account the mean-
reversion rate of the Ornstein-Uhlenbeck process and as such drifts toward the long-term
mean or trend over time.

We will study two cases of this threshold and come up with objective functions that
we will use to obtain our optimal thresholds for the pairs trading strategy. We will show
the existence and uniqueness of optimizers. This will be done by exploiting the association
between OU processes and the standard Brownian motion, as well as their boundary crossing

probabilities.

3.3. Performance

We will first test our strategy on an artificial pair of stocks, which we denote by P

and @, in chapter 5. We will then proceed in chapter 6 to recent real data collected for the
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four pairs of stocks, Coca-Cola (KO)/Pepsi (PEP), (CVX)/(XOM), Target (TGT)/Walmart
(WMT), and RWE AG (RWE.DE)/E.OnSe (EOAN.DE). We will consider both long-term
and short-term performance of our optimal thresholds, both with and without trend and
compare the returns against those obtained from two recent strategies from [40] and [17]

discussed in Chapter 2.

3.4. Result on Certain Moments of First Passage Time

Another result that we present in this dissertation is about certain moments of the
first passage time of the standard Brownian motion to some class of boundaries. First passage
time probabilities and densities for Brownian motions are not known in most cases. But it
is possible to obtain certain moments of the first passage time without knowing explicitly
the corresponding probabilities or densities. We derive a simple formula that provides these
moments for several cases of the standard Brownian motion boundaries. We will also show

how this formula extends to the OU process.
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CHAPTER 4
THEORETICAL RESULTS

4.1. Relationship between Boundary Crossing Probabilities of Ornstein-Uhlenbeck Processes

and Brownian Motion

From previous chapters, it is apparent that Ornstein-Uhlenbeck processes, as well as

other diffusion processes are related to Brownian motions.

We consider the Ornstein-Uhlenbeck process,
(1) dXt = )\(ﬂ — Xt)dt + O'dBt, X(] = 2y

This process can be standardized as follows:

Let t = M and Zy=(Xy—p)/ a2

2X
Thus,
t— U= \/%—)\Zf
dX, = \/%dz
and,

1 -
dt = —dt
A

and by the scaling property of Brownian motion, B; = v/AB,.
Thus dB; = vV AdB,. Hence,

ag
I A= — AT d +o—dB;
NN \/ Y \/X

(2) dZ; = — Zid; + V/2dB;,

which is the standardized OU process, and is also called the dimensionless OU process, since

Z7 is not dependent on the parameters of the original OU process.
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Similarly, for the generalized (trend-stationary) OU process with linear trend, which satisfies

the SDE
(3) d(X; — (at +0)) = =\ Xy — (at + b))dt + 0dB;, t>0

Xo=x9, A>0, o>0.

let # = M and Z; = (X, — (at +b))/+\/ S
Thus,

dZ; = @d(Xt — (at + 1))

and

1 .
dt = —dt
A

and by the scaling property of Brownian motion, B; = v/AB,.
Thus dB; = v/ AdB;. Hence,

g
——dl; = —\—==17; d dB;
Jnii= =yl +Uﬁ t

dZ; = — Zid; + V/2dB;.

4.2. Boundary Crossing Probabilities and First Passage Time Probabilities of the Standard-

ized Ornstein-Uhlenbeck Process

Consider the standardized OU process
(4) dZ; = —Zid; +V2dB;,  Zy = .

Let Y; = el Z;

Then by Ito’s lemma, appendix A.3,
dY; = (' Z; + (= Z)e! + 0)di + v2¢'dB;,

- \/§6£ng
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Thus Y7 is Martingale.
¢ t
/ dY; =2 / e'dB;
0 0
t ~
(5) Yt:YO+\/§/ e'dB;
0
It also follows that
(6) EY] =Y,
t 2
VarlV;] = 2F (/ etng)
0
t rd ~
=2 / e?dt, by isometry of Ito integral
0
At
-
0

(7) =e? -1

Thus Y; is a continuous Gaussian process with E[Y;] = Yy and Var[V;] = e* — 1. For
t > 0, we define s(t) := e* — 1. s(t) is a strictly increasing function of ¢, and hence admits
an inverse t(s) = 3in(1+s), s > 0.

Define W, := Yisy — Yo, s2>0.
Then

and

So {W,, s > 0} is a standard Brownian motion.
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Now,

Zt = e_tY;g
= ' (Yo + W)

(8) = e (Zo + W)

Let b(t) be some continuous function of ¢ such that b(0) > Z.

Then,
P(Z; < b(t),¥t € [0,T]) = P(e™" (20 + Wy) < b(t),Vt € [0,T7])
= P(Wyuy < —2 + €'b(t), ¥t € [0,T))
— P(W, < —z0 + '@b(t(s)), Vs € [0, 5])
(where S = s(T) = 27 — 1)
(9) = P(W, <~z + (V1 + 5)b(t(s)), ¥s € [0, 5])

Similarly, let a(t) be some continuous function of ¢ such that a(0) < Zj.

Thus,
P(Z; > a(t),vt € [0,T)) = P(e™" (20 + W) > al(t),vt € [0,T))
= P(Wyy > —2 + ela(t), vt € [0,T))
= P(W, > —z + ¢!®a(t(s)),Vs € [0, 9)])
(where S = s(T) = e*' — 1)
(10) = P(W, > —z9 4+ (V1 + s)a(t(s)),Vs € [0, 5])

Under some assumptions, Wang and Potzelberger proved a general form of this result

for two-sided boundaries [36]. See appendix A.1.

The above results imply that one can obtain the first passage time probability of the

standardized OU process Z; to either the lower boundary a(t) or the upper boundary b(t)
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from the corresponding first passage time probability of the standard Brownian motion W,

to the boundaries —zo + (v/1 + s)a(t(s)) or —zo + (V1 + s)b(t(s)), respectively.

4.3. New Class of Non-Linear Boundaries and New Thresholds

In this section, we introduce a new class of boundaries for the OU process. Given the

Ornstein-Uhlenbeck process X; satisfying the SDE
dX; = Mp — Xy)dt + 0dBy,  Xo = o,
we study the first passage time to the boundaries

(11) g(t) = p £ —=(Be™ — ye),

o
V2
where, A > 0,0 >0, >~ >0 and p > —1. We also assume pu + \/Lf\(ﬁ—’y) > o and
= \/LT,\(B — ) < xy. As we will soon see, these boundaries are almost straight lines for

small intervals of £. Nonetheless, they are not linear boundaries.

The equivalent of this in the trend-stationary OU process is

(12) g(t) = att + b+ L(Be’” — yePM),

V2A
where ¢ is an appropriate scaling of ¢, depending on the context of application (see sub-
sections 5.2.6 and 6.1.4), with a,b € R and other parameters satisfying same conditions as
above, and here we assume b + \/Lﬁ(ﬁ — ) >z and b — (B =) <o
Our interest is in the one sided boundary and as such it is sufficient to consider only

the upper boundary;

(13) 9(0) = = (B =)
or
(14) g(t) = at' + b+ ——(Be ™ — yerM).

V2

We define the first passage time of X; to g(t) by:
(15) Toyas i= f{t > 0: X; > g(t)|Xo = 20}
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We will consider two cases of this threshold (boundary), as listed in the subsequent subsec-
tions.

Let us first consider the standardized OU process Z; satisfying the SDE
dZ; = —Zid; + V2dW;,  Zy = 2.

The above boundary for the OU process is equivalent to the boundary

(16) §(f) = Be™" —ye”,

of the standardized OU process.

THEOREM 4.1. Let 753 7, = inf{t > 0:Z; > §(t)|Zo = 2} be the first passage time of Z;

)

to the boundary §(t) = Be~'. Then the density of a0 18 given by

o (B (=2t B)
Tatiy20(t) = V(e — 1)3/265”9( 2(e? — 1)

(17)

PROOF. By equation 9,

P(Z; < (1), ¥t € [0,T]) = P(W,

< =29+ (V1+5)g(t(s)),Vs €]0,5])
< —z0+ (VI+35)Be® Vs €0, 9)])

< =24 (VI+5)Be 2059 ys € [0, 9))

< =2+ (VT¥3)B(1+5)72,¥s€[0,5))

< —zp+ fB,Vs €[0,5])

Thus the boundary crossing probability of the standardized OU process to the boundary
3(t)

W, to the constant boundary g(s)

Be~t is equal to the boundary crossing probability of the standard Brownian motion

—20 —f- ﬂ

Let us define the first passage time of the standard Brownian motion to the boundary

g(s) = =20 + B by Ty(s),2, := inf{s > 0: W, > —2 + BIVVO = 0}, and let fy(s)0 denote its

density function. It is well known that fy( o follows the Levy distribution and has density

fo()0(8)
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Hence,

o (a4p) 2+ A 0
fg(t),zo(t)_ \/5(625—1)3/2%13( 2(e2 — 1) )(26 )

O

THEOREM 4.2. Let 7y 5 = inf{t > 0: Z; > §(£)|Zy = 20} be the first passage time of Z;

to the boundary §(t) = fe~t — ~el.

A 2| — 20 + B — 7|(e¥) —(—z + B — ye¥)?
. o= ey ( (et — 1) )

Then the density of T4 is given by

PRrOOF. By equation 9,

P(Z; < §(f),¥t € [0,T]) = P(W, < —z + (V1 + 5)3(i(s)),¥s € [0, 9])
= P(W, < —z + (VI T 8)(Be @ — ~4¢!®) ¥s € [0, 5))
= P(W, < =z + (VI F8)(Be 2" —5e319) s € [0, 5))
= P(W, < =20+ (VIF9)(B(1+5)"2 —y(1+5)2),Vs € [0, 5])

:P(Ws<_zo+ﬁ_7_737vse [075])

Here the boundary crossing probability of the standardized OU process to the boundary
g(t) = Be"? — ’yet~ is equal to the boundary crossing probability of the standard Brownian
motion W, to the linear boundary g(s) = —zy +  — v — 7s.

Let us define the first passage time of the standard Brownian motion to the boundary
g(s) = =20+ B —7 —ys by Tys).z, :=inf{s > 0: W, > —25+  — v — 75| = 0}, and let
Jq(s),0 denote its density function.

Following Karatzas and Shreve [24], we have that fy) o follows an inverse gaussian

distribution and has density

fot0(s) =

\<—Zo+5—7)|exp <—(—Zo+ﬁ —7—75)2>
V2rs3 2s

Hence,

fg(i),zo(g) _ ’(_;;(tzf:lf;yexp <_(_ZO + 62@23__1'};@ t_ 1)) ) (2625)
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4.4. The Ornstein-Uhlenbeck Process First Passage Time Densities
4.4.1. Case 1: v=0

Let v = 0, then the boundary 13 becomes
(19) g(t) = —=(Be™) + p.

COROLLARY 4.3. The density of the first passage time Ty), of the OU process X, to the

above boundary, g(t), is given by

(20) fo)20 =

(P (wo+p)+8) (P (=z0+p) +5)? (20e)
\/ﬁ(ew\t —1)3/2 2(e2M — 1) €

To see this, notice that in the transformation of the OU process X; to the standard OU
process Z;, we set t = M\ and Z; = (X, — p)/ %
Thus zo = @(xo — ). So the result follows from theorem 4.1 after changing the time

variable from # to ¢, and replacing z, with @(mo — 1).

442 Case2: y>0and p=1

Now, let v > 0 and p = 1. Then the boundary 13 becomes

o

Vax

COROLLARY 4.4. The density of the first passage time Ty), of the OU process X; to the

g(t) = —=(Be ™ —veM) + p.

above boundary, g(t), is given by

‘@(—xo—iﬂu)—l—ﬁ_’ﬂ —(@(—xo+u)+ﬁ_7€2m)2 t
(21) fg(t),xo - 27r(e2/\t — 1)3 ex ( 2(62)\15 — 1) (2)\62)\ )

This result also follows from theorem 4.2, by a similar argument as in case 1.
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4.5. The Optimization Problem

o 0
Key
- = Long-term mean
0.54 — Spread
— Threshold
3
o
& 0.0+ -Hf---------- e T
-0.51
-1.0
0 100 200
Time

FIGURE 4.1. Spread and threshold.

Given the spread between the logarithmic returns of the pair of stocks, our objective
is to find thresholds that maximize the expected return of a complete trade cycle. The trade
cycle involves two stages. The first stage is the movement from the long-term mean or long-
term trend to crossing either the upper or lower threshold, while the second stage involves
the movement back to the long-term mean or long-term trend. Since the thresholds we are
considering are symmetric 11, we will focus on a one-sided threshold for our optimization
problem. The return on the trade cycle corresponds to the height of the spread at the time
of crossing the threshold. We demonstrated this in figure 4.1 for the constant threshold for
simplicity. Since we are considering a time-dependent threshold this height will vary over
time.

In section 4.1, we showed that the OU process 1 and the trend-stationary OU process
3 can be converted to the standardized (dimensionless)OU process. Thus we will undertake
the optimization in the dimensionless system, and then the optimal thresholds in the original

process can be obtained by translation and scaling, as shown in section 4.3, equations 14, 15

29



and 16.

In our study, it came to light that although theoretically we can always find values
for our parameters 8 and v that maximize the expected return, practically, this can only be
done for a reasonable time horizon, which usually should not be more than 1}1 years. As a
result, our objective function will entail two pieces, the first piece focuses on time horizon
T < 1.25 where we optimize the expected return, while the second piece focuses on 7' > 1.25
where we optimize a scaled form of the probability that the first passage time is greater
than 1.25 but less than the time horizon. This is to ensure that 5 does not blow out, nor
~v become too small such that we do not obtain any trades. In fact this second piece of the

objective function is a nice behaved function that maximizes our return.

4.5.1. Case 1: v=0

The dimensionless system threshold for this case is

The objective function is

E[Beloer<ry],  0<T <125
h(B) =
e PP(125<7<T), 1.25<T <

THEOREM 4.5. For any 0 < T < oo, there exists some [ € (0,00) which mazimizes h(f3)

and it is unique.

LEMMA 4.6. There exists some B € (0,00) which mazimizes E [ﬁe_TI((KTST)] and it is

UNIQUE.

PROOF. Let Il (B) = F [Be”](ongp)}, where 8 > 0.

By theorem 4.1, the pdf of 7 is given by

f’(f):\/gﬁ“p(%eﬁ 1>)’ [0
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By change of variable, with v = (3 2t 1, we have,
I 28¢5 [ e Fav, where C il
= 2Be 2 e zdv, where =
) =256 [ |
Thus
82
(22) I (B) = 2Be = [1 — (CB)],

where ¢ denotes the standard normal cumulative distribution function(CDF).

By the Mills ratio inequality, see appendix A.2, [32] and [39], it follows that

$(CB) <1 B(CP) < ! 6(CPH)

2
V(CB2+1+CB V(CAZ+8+3C8

where ¢ is the standard normal density function.

Hence,
49:59(08) g o 807 0(CB)
VCRE+d+cp = T (OB +8+3C8
(c?-1)p? 1

The right hand side of the above inequality is equivalent to N P W T

Since C? — 1 = r— > 0, it follows that,
lim P 86 <02—21>52 1 B
B%wyﬂﬂ V(CB)?2+843Cp
Also,

_(c?-1p? 1
im — 2 —
6%0M2W V(CB)2+843Cp

Which proves that 5 = maxgsg II7(3) exists and is achieved in (0, c0).

We now show that 5 is unique. We do this by contradiction.

From equation 21, we have that,

dll 2 2
jﬁ(ﬁ )= 2014 46 1 - @(CB)] - 2080(CH) T
Suppose there are two maximizers, namely 3; and (5. Then they both satisfy the equation:
~®(C) _ O
o(CP) 1+ 52
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Thus,
(23) log[l — ®(CB;)] = logd(CB;) + log(Bi) + log(C) — log(1 + B7), fori=1,2.

Since both f; and (5 are maximizers of I11(f3), then Il (5;) = lp(5y) with 81 # Bs.

Then from equation 22, we have

(24) gl B(CP)] ~ fog1 ~ @(C)] = log () + 5(6% — 5.

Equations 23 and 24 together implies:

o(Cp1) 1+ 5 1 B\
o (S ) + oo (1) + 308~ 0+ 2w () =0

This is equivalent to

B e 3(C?-1)BF _ B e 3(C?-1)53
1+ B2 14 B2
Consider the function:
1?1z
Te 2
() = ————1 >0
(x) T, o @

The derivative of [(x) is given by:

l,(x) _ [1 — %(02 — 1)$($ + 1)]6_%(02_1)36

(z+1)?

We note that the equation 1 —2(C? —1)z(z 4 1) = 0 has two roots: One is negative and the

other is positive, which is given by

8
—1+\/1+m

2

T =

When = > Z,l'(x) < 0, which implies [(z) is strictly decreasing on (Z,00). When 0 <
r < Z,I'(z) > 0, which implies [(z) is strictly increasing on (0, ). Since I(3?) = I(83) and
B1 # B2, by Rolle’s theorem, there exists at least one r between SZandf3 such that ’(r) = 0.
W.L.O.G., we assume 3; < (5. Then r € (8%, 33). Using the fact that I'(x) = 0 has only one

positive root , we conclude that » = Z. Since (35 is a maximizer of II1 (), we obtain

2C

ml(ﬁg)-

7 (B2) =
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But 32 > r and [(z) is a strictly decreasing function of  on z > r. Thus we conclude that

2C
\ 2T

Which contradicts the assumption that £ is a maximizer of II7(/). Thus it follows that the

7 (B2) <

[(r) =r(r).

maximizer of II7(/3) is unique, which completes the proof. O

LEMMA 4.7. Gwen 0 < T, < T < oo, there exists some 5 € (0,00) which mazimizes

e PP(T, <7 <T), and it is unique for sufficiently large T.

PROOF. To show the existence, let Iz, 7(8) = ¢’ P(T, < 7 < T), where 8 > 0.
Thus
T 2t 2
2 Be __ 8
Il =¢’ \/j— 2T (It
TS,T(B) e /S T \/me
By change of variable with u = ﬁ, we obtain

-8 pleTs-1)7! 2
e
= b u_%e_%“du.
V2 J(e2r 1)1

By another change of variable with y = \/u, we get

7, 7(8)

28e=F (2 (sy? 1 1
= \/% o e 2 dy, where 01: = €2Ts—_1

=27 [2(BC,) — ®(BCY)],

I, 7(8)

where @ is the standard normal CDF.

It follows from the above equation that

limﬁ—)OHTS,T(ﬁ) =0 and limﬁﬁooHTs,T(ﬁ) =0

To show uniqueness, we consider the function,

I(B) = lOQ(HTS7T(5))

Thus,

P(BCa)Cy — ¢(BC)Ch
D(BCy) — @(BCY)

'p)y=—1+ ,where ¢ is the standard normal PDF
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and

(26)

/(8) = [=BC20(BC2)CE + BC1o(BCy)CRI[R(BCa) — D(BCy)] — [6(BC2)C — G(BCHCI.

[@(6C,) — @(BC)?

Since Cg > Cl, @(602) — @(501) >0
For sufficiently large T', C; — 0, which implies ¢(3C,)C; — ¢(8C5)Cs < 0

Thus I"”(8) < 0 Hence for sufficiently large 7', the maximizer of I(/3) is unique. O

To cover uniqueness for small values of T, a more delicate mathematical analysis is
needed. This has been a challenge. However, let us consider the function &7, 7(3), defined

by:

Er,7(B) =277 [BA - %53C1A2] ¢(BCh), whereA = Cy — C)

This function is an accurate approximation of IIz, (/). More importantly, their maximizers
are approximately the same. We show in figure 4.2 a plot of these two functions for the
case of Ty, = 1.25 and T' = 5. In fact for smaller values of T', it is impossible to distinguish

between the two curves as they overlay each other perfectly.
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-0.2°"
FIGURE 4.2. Graph of &, r(5)(Yellow) and Iy, 7(8)(Blue), with T, = 1.25
and T'= 5

Note that at this point, we only need to show uniqueness of the maximizer of Iz, r(5)
for small values of T' (i.e. when T is close to T}), in order to obtain a complete proof of

theorem 4.5. Nonetheless, we will prove a general statement for &7, r(5).

LEMMA 4.8. For all 0 < T, < T < oo, there exists some 3 € (0,00) which mazimizes

¢r,r(B), and it is unique.

PROOF. Let &p, 7(8) = 2¢7 [BA — $83C1A?] ¢(BC)), where A = Cy — C).
Now,

€7B¢(Clﬂ) = 65—\/1276 =

1 @ip?+es
—= e 2
\ 2T
02<[32+25+ 11 )
1 ! cf"of of
= [ 2
\ 2T
1
201 (i)
= e*“1 e 2



Hence,
gTs:T(ﬁ) =2A {6 - %Bgcﬁﬁ} €ﬁ¢ (015 + —)

Let x7,,7(8) = logér, r(5).

Thus,
1 1 1
. (8) = log(2) + fog(1— 35°CA) + 505 + 1oy [0 (1 + )|
So,
_ 301B2A
/ . 2 . 2
xr.r' (8) = TGN (C26 4+ 1)
and
nig — T3CBAB - 3CEA) — (1 - 5C1B2A)
xr.r" (B) = B %Olﬁ?’A)? —C]
Now,
30, 8A(6 — %ClﬁSA) - gClﬁQA)Q
= —3G1B(C: — C1)(B - %Oﬁg(@ ~C)) - (1~ 20162(02 — )
= —35°C1C + 25401203 - 25405’02 +33°CF — 25401302 - 254014

- (1 + 25401203 + gﬁ”‘cf —36°C1Cy +33°CF — 2 (;520102> (252012 ))
= —1-3p%C%C? - Zﬁ”‘c’f
<0,

which implies that x7, r"(8) < 0.
Also, we may rewrite &7, 7(8) as &n,7(8) = 2778 [A — 1 32C1A%] ¢(BCh).
Then, it is then clear that limg_o&r, 7(8) = 0, and limg_ér, 7(8) = 0.

Thus we have proven both the existence and uniqueness of a maximizer. O

Theorem 4.5 thus follows from lemma 4.6, lemma 4.7 and lemma 4.8.
By setting the first derivative of the objective function equal to zero, we find that for

0 < T <1.25, the unique B can be found by solving the equation
(1+6%)[1 = (CB)] = CRH(CB)
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and for 1.25 < T < o0, it can be found by solving the equation

02¢(C25) - Cl¢(015) = (I)<C25) - (I)(Clﬁ)a

where @, ¢, C, C; and C5 are as defined above.

4.5.2. Case 2: y>0and p=1

The dimensionless system threshold for this case is

g(f) = et — yert

The objective function is

E[(Be™™ —~ve ) o<r<r)], 0<T < 1.25
h(B,7) =
ve PP(1.25 <7 <T), 1.25 < T < 0

We claim that for any 0 < T’ < 0o, there exists some 0 < 4 < 3 < oo which maximizes
h(f,~) and (f,7) is unique.

The mathematical proof of the above claim is part of an ongoing project and is not
yet complete. However this claim is backed by several numerical examples that we performed
with the numerical maximization function in Mathematica [38]. An example of the first piece
with 7= 0.5 is shown in figure 4.3, where the maximum is h(5,4) = 0.3632 and occurs at
(B ,7) = (2.2621,0.6944). Also, an example of the second piece with T' = 5 is shown in figure
4.4, where the maximum is 2(3,7) = 0.006564 and occurs at (3,7) = (1.3351,0.1856)
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Out[«]=

FIGURE 4.3. Graph of h(8,v) for T = 0.5, with maximum value h(BN,’y) =
0.3632 at B = 2.2621 and v = 0.6944

4.6. Certain Moments of First Passage Time of Brownian Motions to Some Class of Bound-

aries

THEOREM 4.9. Let ((s) = —a+b(s+c)%, where a > 0,b>0,d > 0, be? < a and (Wy)s>0 be
a standard Brownian motion. We define the first passage time (from above) of Wy to ((s) by
Ti=inf{s >0: W, < ((s)}. Let F(s) = P(r <s) be its distribution function, and f(s) be

the probability density function. Then E [(7’ + c)d} =2, if (s+ )4 is defined on 0 < s < c0.
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FIGURE 4.4. Graph of h(83,7) for T = 5, with maximum value h(3,7) =
0.006564 at B = 1.3351 and ¥ = 0.1856

PROOF. Let 7, =inf{s > 0: Wy < ((s) +as}, «a€]0,00).
Let F, be the distribution function of 7,

Then,

C(s)+as= —a+bs+c)+as
> —a+b(s+c)

> —a+min{bc®, 0}

Let | = —a + min{bc?,0}

Since 7 :=inf{s > 0: Wy <[} is almost surely finite, then so is 7,.
Thus F,(c0) = 1.

Now, let B, = W, — as

Thus 7, = inf{s > 0: Bs < ((s)}

a2s

Define 7 := e~ 2

"FQWS
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Define a probability measure Q(A) := [, z(w)dP(w).

By Girsanov’s theorem, A.4, B, = W, — as is a standard Brownian motion under Q.

Thus 7, has the distribution F' under Q).

So, EQ [17—a§5] =Ep [lTaStZ]'

Il
S— S— —

S

Ep

25

-6_ o’ +Q(WS_WM+WTQ)|7—Q = ]/] Fa(dl/)

a25

_@* p) Jro‘(WS7VV")€OZWT‘x ‘Ta = V:| Fa<dy)'

Since W, = ((74) + a1, almost surely,

This implies,

6a(§(u)+au)EP [6_ a;s+a(W5—Wv)|,7—a _ 1/} Fa(dl/)

ea((y)—i-a?y)EP |:6_a23+a(WS_WU)i| Fa(dl/>

25

2 F,(ds)

[e3

F(ds) = e+
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We differentiate both sides with respect to «

i/oo —al(s)—
da J,

“d
e~ P(ds) = 0
| i (ds) =

/0"0(_<(8) — s)eo)=

F(ds) 0

(ds) =0

Let o — 0.
Then,
| —ceris =0
/OOO ~(—a+b(s + )Y F(ds) = 0
b/ooo(s +¢)?F(ds) = /OOO alF(ds)
/0 (s 4 )P (ds) = %
Thus E [(T +¢)?] = ¢ O

THEOREM 4.10. Let ((s) = a—b(s+c)?, where a > 0,b>0,d > 0, bc? < a and (W) be
a standard Brownian motion. We define the first passage time (from below) of Wy to ((s) by
=inf{s>0: W;>((s)}. Let F(s) = P(t < s) be its distribution function, and f(s) be

the probability density function. Then E [(T + c)d} =2, if (s+ c)? is defined on 0 < s < o0.
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PROOF. Let 7, = inf{s > 0: W, > ((s) —as}, «a€]0,00).
Let F, be the distribution function of 7,

Then,
((s) —as=a—b(s+c) —as
<a—b(s+c)

< a — min{bc?, 0}

Let [ = a — min{bc?,0}

Since 7 :=inf{s > 0: W, > [} is almost surely finite, then so is 7,.
Thus F,(c0) = 1.

Now, let B, = W, + as

Thus 7, = inf{s > 0: Bs > ((s)}

Define Z := e~ o3t -,

Define a probability measure Q(A4) := [, z PR

By Girsanov’s theorem, A.4, By = W, + as is a standard Brownian motion under Q).
Thus 7, has the distribution F' under Q).

So, Eq [1r,<s| = Ep [, <tZ].

Thus,
= Ep[l7,<s7]

_ais oW
=Fp 1Ta§56 2 s

QQS
= Ep [EP [17 <se” 7 oW

o)

To = 1/] F,(dv)

Ep

Nc\

EP WTa+WTa)|Ta — Vi| Fa(dy)
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s a25
= / Ep [e_ 7 oWerWo)p=aWra |7 — | F (dv).
0

Since W, = ((7a) — a1, almost surely,

o2

e~ g [e— 7 e WarWo) o y] Fu(dv)

0423

e~ ta®) B [e’ S ﬂ(wsfwu)] Fo(dv)

ool (v)+atr) ,— ajsEP [e_a(ws—wu)} F,(dv)
e aCWIam) (=32 T (I ()
6-a<(u)+a2y_%Fa<dy>

e’aC(”)*aT%Fa(du)

This implies,

F(ds) = e+ F (ds)

25

=5 P (ds) = F,(ds)
/ w%%fﬁm@yz/ Fo(ds)
0 0

= Fo(00)

=1

We differentiate both sides with respect to «

d o (128
da Jy ) =
e d a23
— )= P(ds) =
/0 da” T Flds) =0

/0 T (C(s) — as)e™ =5 pds) = 0
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Let a — 0.

Then,
| coras -
| @t +opias -
b/ooo(s—i—ch (ds) /Ooan
/0 (s 4 o)LF(ds) = ‘-;
Thus E [(T+¢)?] = ¢ O

Let us now consider some examples.

4.6.1. Example 1

Let us consider the linear boundary ((s) = —a + bs, where a > 0, b > 0 and (Wj)s>0
be a standard Brownian motion.

We define the first passage time (from above) of Wy to ((s) by 7 :=inf{s > 0: W, <

C(s)}-

Then by theorem 4.9, we have:

| —_ CL| 7(a—b7’)2
e 27

a (- )?
27 7) = e T
27) R —
2 &S Laverse Gaussion(2, %)
= ——¢ ~ lnverse Gaussian\ -+, a
V2mT3 b
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Thus, if follows that
Blr] =1,
which matches our result.
Similarly, for the boundary ((s) = a — bs, where a > 0, b > 0 and the standard
Brownian motion (Wj)s>0, we consider the first passage time (from below) of W to ((s),
Ti=inf{s>0: W, >((s)}.

It follows from theorem 4.10 that

Elr] =7,

and one can verify this similarly as shown above, due to symmetry of Brownian motions.
4.6.2. Example 2

Let us consider the square root boundary ((s) = —a + by/(s + ¢), where a > 0, b >
0, by/c < a and (Wy)s> be a standard Brownian motion. We define the first passage time,r,

(from above) of Wy to ((s) as before. Then by theorem 4.9, we have:

-4

To check this claim, let us consider the following result, which is due to Novikov.

N|=

E [(T +¢)

Let 7 =inf{s > 0: W, < —a+ b\/s+c}, where a > 0,¢ > 0 and by/c < a. Let
D, (z) be the parabolic cylinder function of the parameter v, and let z, be the largest root

of the equation D, (z) =0 (If » <0, then D,(z) > 0 and z, = —o0).

THEOREM 4.11. [28], Let —oco < v < 00. Then,

v/2 a2 /4c—b2 J4c
cv/Ze - Dy (a/+/c) h>
v(b) ’

2z
E [(7’ + c)%} =
0, b<z,

Forv=n=1,2,... and ¢ =0, this formula becomes




where He,(2) = /4D, (z) is the Hermite polynomial of order n.

Our case corresponds to ¥ = 1 in Novikov’s formula. This gives the value of largest
root as Z; = —58.446, which is less than zero. Since we are only considering b > 0, our
result should match Novikov’s formula.

Now, by Novikov’s formula,

01/26a2/4cfb2/4cD1 ((I/\/E)
D (b)

E [(7’ + c)%} =

Since v = 1 is a nonnegative integer, then e*/*D;(z) = He;(z), the Hermite polynomial of

order 1.
Thus,
c!2He(a/\/c)
E [ T+c %] =
(T +¢) 0

1/2 (F)?/2 o~ (V)2

_ P e

- (—=1e b2/2d e—b%/2

2

(262 2

eb2/267b2/2(_2§b)

_a_
3)

which matches our result.

In the special case where ¢ = 0, we simply have:

4.7. Expectation of a Functional of the First Passage Time of Ornstein Uhlenbeck Processes

to Some Class of Boundaries

We now extend our results in section 4.6 to the OU process.

THEOREM 4.12. Given the boundary



of the OU process X;, where, A >0, o0 > 0, § > @(mo —u)+y>0,v>0andp> —1,
and the first passage time T of X; from xq to the g(t),

(29) B [e¢+)] = @(—“’0; w+B

PROOF. The equivalent boundary to g(t) for the standardized OU process is §(f) = Be M —
~ePM . The condition that 8 > ‘/727’\(350 — p) + v implies g(0) > 0.

By 9, the equivalent boundary for the standard Brownian motion is {(s) = @(—xo + ) +
B—~(1+s)%, where s(t) = 2 — 1.

The conditions 3 > @(wo — u) + v and v > 0 implies ((s) > 0 and @(—xo +p) + 58> 0.
Let @ be the first passage time of the standard Brownian motion to the boundary ¢(s). Then
P(r <t)=P(0 < s).

Therefore,

=2 , by theorem 4.10

U

By a similar argument as above, an application of theorem 4.9 here, can be use to

show that for the boundary

g(t) = (—Be™ ™ + yeP ) +

o
V2A
oth,Where)\>0,0>0,5>@(wo—u)+720,’y>0andp>—1,

oY
(30) B[] = (w9 . 1)+
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CHAPTER 5

SIMULATIONS

5.1. Zero Trend Ornstein-Uhlenbeck Process
5.1.1. The Process

The zero trend mean-reverting Ornstein-Uhlenbeck process satisfies the following sys-

tem:

Xo=x9, A>0, 0>0

The solution to the above system can be obtained using Ito’s lemma. The lemma can
be found in various literature. See for instance [27].
Let Y, = eMX,

Then by Ito’s lemma A.3,

dY; = AeMX, + XeM(p — X,))dt + oeMdB,

= \uedt + oeMdB,
Integrating both sides on the interval 0 <t < s, we get,
/ dY; = )\u/ Mdt + a/ MdB,
0 0 0
1]’  x
Y, =Yy = |Au—e +0o edB,
A 0
Thus,
t
eMX, — X = peM — i+ a/ eMdB,

0
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We may similarly integrate over the time interval t — 1 < v <t, where At =t —(t —1) is a

unit change in time, to obtain:

t t t
/ dY, = \u / eNdv + o / eMdB,
t—1 t—1 t—1

t

1 t
Y,—-Y, ;= [)\uxe’\l’] + a/ edB,
t—1 t—1

t
e/\tXt . e)\(t—l)Xt_l _ ,ue)‘t . Iue)\(t—l) + 0_/ eAVdB,/
t—1
t

X, = 6—A(t—(t—1))Xt_1 + - Me—A(t—(t—l)) + 0/ 6—,\(t—y)dBV

-1
t
(32) = e MY, |+ p(l — e M) 4 0/ e MN=qB,
t—1

We consider the Ito integral ftt_l e MM dB, in equation 32 above. Since e %) is
a deterministic function of v which does not depend on B,, it follows that the Ito integral,

ftil e A=) 4B, follows a normal distribution with zero mean and variance obtained as follow:

t t 2
Var {/ e_’\(t_")dBl,] =F </ e_’\(t_”)dBy)
t—1 t—1

rprt
(33) = / e—wt—”)dy]
LJt—1

— ie—Z)\(t—V) '
2\ i1
1
4 — (] _ 2t
(34) (L= e,

where we have used the isometry property of Ito integral in equation 33.

It then follows from equations 32 and 34 that:
2
(35) Xi|X; 1~ N (6—AAtXt_1 + (1= e, ;7_)\(1 _ 6—2>\At)> ‘

A discretized form of the OU process X; can be obtain from the distribution in 35 above.
We consider an example of this process with parameters p = 2.3, A = 0.08 and

o = 0.005. We also pick an initial value of Xy = 2.4, which is not too far from the long term
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mean of 2.3. Using the discretized solution above, we form a path of length ten thousand.
A plot of this path is presented in figure (5.1). As one would notice, the initial value of
X, thus Xy = 2.4, deviates from the long term mean of the process, u = 2.3. As such the
process quickly reverts to the long term mean. There are also instances along the path that

the process deviates from the long term mean, and whenever this happens, we see a reversion

back to p.
2.404 Key
— Spread
— Long-term mean
2.354
he]
©
o
S
»n

2.304 w ! [ AR 1IN i h.l .l J‘l.ll |||| y It IlIJ“||I \ |l
]l ! (11T Pl | ” I P |

0 2500 5000 7500 10000
time

F1GURE 5.1. Discretized Ornstein-Uhlenbeck Process of length 10000, with

parameter values p = 2.3, A = 0.08 and o = 0.005, starting from xq = 2.4

5.1.2. Parameter Estimation

In this subsection, we consider how to estimate the parameters of the model from
a given data set. We will use two methods, namely the maximum likelihood and the least

squares methods.

5.1.2.1. Maximum Likelihood Estimator

The likelihood function can be obtained from 35 as follows:

20



(X=X pp(1—e A2
2(g5 (1-e—2XAt))

I-NI 1
t=1 \/QW%(l — e~ 24t

We then obtain the log-likelihood as:

L(p, A 0| X,) =

e

N 1 _ (X=X g u(1—em A2
o2 —2)2A
(A ol X;) = log [ ] e 2Agx (e PA)
o? —2)At
t=1 \/QWﬁ(l —e )

(36)
Z(Xt _e My, (11— e—)\At))Q

t=1

2
g —2\A A
ﬁ(l_e t» B o2(1 — efZAAt)

N N
= —5l0g(27r) - Elog(

The maximum likelihood estimates for u, A and o will be the values f, A and 6 respectively,
that maximize the above expression. We will solve this numerically from equation 36, using

the maxLik package in R.

5.1.2.2. Method of Least Squares

While we acknowledge that this is a nonlinear least squares problem, from several
numerical examples, we observed that the linear least squares estimate approximate the
nonlinear least squares estimates up to eight decimal places. Thus we will approximate the
optimization solution with linear least squares method throughout this work. This also saves
us from having to deal with complicated hessian matrices that result from the nonlinear least
squares optimization problem, particularly in proving its positive definiteness.

We formulate the least squares regression equation from equation 32 as follows:

(37) X, = (49X +e, €~iidN(0,o,)
where

(38) ¢ =p(l—e2)

(39) = e

o1



(40) 0_2 — U_ . 6—2)\At)

Substituting the least squares estimates of equation 37, é , 1& and d., into equations 38, 39
and 40, and solving the system gives the least squares parameter estimates for the OU model

as:

3 logi)
A= —
At
l[)/: CA
1—9
V26,
PO

5.1.3. Long Path

In this subsection, we will look into estimating the OU process parameters from a
long dicretized path. We also perform parameter estimation using both maximum likelihood
estimation and the method of least squares. We then perform Monte Carlo simulations to

test the robustness of the estimation methods discussed in the previous subsection.

5.1.3.1. Generating the Spread

We use the last 1260 points of the example presented at the beginning of the section
and in figure 5.1 in our study. This corresponds to 5 years of trading data in the US financial
market, if we consider each time step as a day. A graph of this path can be found in figure
5.2. We observe that the process always oscillates around the long term mean, and whenever

there is a deviation, it reverts back to the mean.
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F1GURE 5.2. Discretized Ornstein-Uhlenbeck Process of length 1260, with

parameter values ;= 2.3, A = 0.08 and ¢ = 0.005

5.1.3.2. Parameter Estimation

From the path generated above, we can estimate the parameters of the OU process to
see how good the model performs. The result of this is shown in table 5.1. We see that given
enough data points, both the maximum likelihood and the least squares methods return
good estimates for all three parameters.

Figure 5.3 presents a comparison of the true path of the OU process with the pa-
rameters 4 = 2.3, A = 0.08 and ¢ = 0.005, with the paths produced from the estimates of
the maximum likelihood and least squares methods. One can hardly distinguish among the

paths, which shows how well the estimates perform.

5.1.3.3. Monte Carlo Simulation

We perform a Monte Carlo simulation with of the OU process with the parameters
= 2.3, A = 0.08 and ¢ = 0.005, using both the maximum likelihood estimator and the
method of least squares. The result of this simulation can be seen in table 5.2. Both methods

estimate all three parameters very well, and are robust.
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True Value Method Estimate Bias Standard Error RMSE

MLE 2.30048740 0.00048740 0.00155000 0.00000264
| 2.30000000
LS 2.30048494 0.00048494

MLE 0.09484300 0.01484300 0.01288570 0.00038636
A | 0.08000000
LS 0.09486643 0.01486643

MLE 0.00521410 0.00021410 0.00010890 0.00000006
o | 0.00500000
LS 0.00521647 0.00021647

TABLE 5.1. Parameter estimation for the discretized OU process of length
1260 by maximum likelihood and method of least squares, with true parameter

values = 2.3, A = 0.08 and o = 0.005

Comparison between estimated and actual path

2.350 1 Key
— True path

= = Long-term mean

— Least Squares Estimated

2.3254

Spread

2.300 + - - - -I- Ak - --
!

2.2754

9000 9500 10000
time

F1GURE 5.3. Paths of length 1260, generated from one realization of parame-
ter estimates from maximum likelihood and least squares methods, with true

parameter values p = 2.3, A = 0.08 and o = 0.005.
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True Value Method Estimate Bias Standard Error RMSE

MLE 2.30021012 0.00021012 0.00144191  0.0000021

2.30000000
LS 2.30000084 0.00000084 0.00178205 0.00000318
MLE 0.08256713 0.00256713 0.01220114 0.00015546

0.08000000
LS 0.08349471 0.00349471 0.01231287 0.00016382
MLE 0.00500196 0.00000196 0.00010335 0.00000001

0.00500000
LS 0.00500611 0.00000611 0.00010417 0.00000001

TABLE 5.2. Performance of Maximum Likelihood and Least Squares methods
for estimating the OU parameters, by 10,000 Monte Carlo simulations, using

a path of length 1260

Comparison between Monte Carlo estimates and actual path

2.350 1 Key

— True path

= = Long-term mean

— Least Squares Estimated

—— Maxjfnum Likelihood Estimated
2.3254

Spread

2300+ - - - - - -

2.2754

9000 9500 10000
time

FIGURE 5.4. Paths generated from parameter estimates by Maximum Likeli-
hood and Method of Least Squares, using Monte Carlo averages with 10,000
replications of paths of length 1260. True parameter values are y = 2.3,

A =0.08 and ¢ = 0.005
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5.1.4. Short Path

We also consider a short path. Similar to subsection 5.1.3, we look into the parameter
estimation of the OU process from such paths, using both the maximum likelihood and

the least squares methods, and then perform Monte Carlo simulations to determine the

robustness of the estimators.

5.1.4.1. Generating the Spread

In this case, we consider the last 126 steps of the path generated at the beginning of

the section. A graph of this path is provided in figure 5.5. Again we see that the process

oscillates around the long term mean.
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2.281

9880 9920 9960 10000

time

F1GURE 5.5. Discretized Ornstein-Uhlenbeck Process of length 126, with pa-
rameter values p = 2.3, A = 0.08 and o = 0.005

5.1.4.2. Parameter Estimation

Both the maximum likelihood estimators and the method of least squares are em-
ployed to estimate the parameters p, A and o of the OU process. From table 5.3, we see that
both methods give good estimates of the u and o, but do not do very well for A\. A graphical

comparison of the true path and the paths produced from the estimates is shown in figure
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5.6. While one can hardly distinguish between the estimated paths, we notice however that

they both differ slightly from the true path of the process.

True Value Method Estimate Bias Standard Error RMSE

MLE 2.30049290 0.00049290 0.00329950 0.00001113
| 2.30000000
LS 2.30048086 0.00048086

MLE 0.15094150 0.07094150 0.04952930 0.00748585
A | 0.08000000
LS 0.15091469 0.07091469

MLE 0.00554470 0.00054470 0.00037440 0.00000044
o | 0.00500000
LS 0.00556660 0.00056660

TABLE 5.3. Parameter estimation for the discretized OU process of length

126 by maximum likelihood and method of least squares, with true parameter

values © = 2.3, A = 0.08 and o = 0.005

Comparison between estimated and actual path

Key
— True path
= = Long-term mean

— Least Squares Estimated
2.324

— Maximum Likelihood Estimated

Spread

2.284

9880 9920 9960 10000
time

FI1GURE 5.6. Paths of length 126, generated from one realization of estimates

from maximum likelihood and least squares methods, with true parameter

values = 2.3, A = 0.08 and o = 0.005.
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5.1.4.3. Monte Carlo Simulation

Like we did with the long path, we similarly perform Monte Carlo simulations for the
short path using both the maximum likelihood estimator and the least squares method. The
results are presented in table 5.4. We notice here that both methods are robust in estimating
the parameters p and o, but on the other hand, they do not perform very well in estimating
A. However, this does not pose much of a problem, since our goal is not to predict the path

perfectly, but rather obtain good enough estimates to determine an optimal threshold.

5.1.5. Artificial Stocks

In this subsection, we will test our methods on an artificial pair. In finance, stock
price processes are often assumed to follow a geometric Brownian motion (GBM), [34]. So, to
test the performance of our model and parameter estimation techniques in a pseudo-practical
situation, we will assume we have a stock price time series ); that follows the GBM, and
then assuming X; is an OU process, we will derive the appropriate time series P, for the
price of a second stock P, such that P, and @); are cointegrated. We will then perform our
parameter estimation on the resulting data sets and also employ Monte Carlo simulation to

assess the average performance of our estimators.

True Value Method Estimate Bias Standard Error RMSE

MLE 2.30020981 0.00020981 0.01982779 0.00039319
1| 2.30000000
LS 2.29999153 -0.00000847 0.00562541 0.00003165

MLE 0.11421728 0.03421728 0.05234302 0.00391061
A | 0.08000000
LS 0.11714017 0.03714017 0.05267428 0.00415397

MLE 0.00503053 0.00003053 0.00033744 0.00000011
o | 0.00500000
LS 0.00505308 0.00005308 0.00033910 0.00000012

TABLE 5.4. Performance of Maximum Likelihood and Least Squares methods
for estimating the OU parameters, by 10,000 Monte Carlo simulations, using
a path of length 126
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Comparison between Monte Carlo estimates and actual path

— True path
- - Long-term mean

Least Squares Estimated
2.324

—— Maximum Likelihood Estimated

Spread

2.28 1

9880 9920 9960 10000
time

FiGurEe 5.7. OU paths from parameter estimation by Maximum Likelihood
and Method of Least Squares, using Monte Carlo averages with 10,000 replica-

tions of paths of length 126. The true parameter values are u = 2.3, A\ = 0.08
and o = 0.005

First, (), satisfies the following stochastic differential equation.
(41) th = /{/Qtdt + UQtdBt,
where k is the percentage drift and o is the percentage volatility.
Let Y; = InQ;.
By Ito’s lemma A.3,

2
dY, = (/@Qt& + 02§t (—é)) dt + aQtédBt

Thus,



2 t
Vi-Yia=|(k=Z)v| +0(B,—Bi1)
2 t—1

2

Qs — InQy_y = (/{ - %) (t— (t—1)) + o(B; — Bi_y)

2

InQ, = InQ,_1 + (n — %) (t—(t—1)) + (B — Biy),

5.1.5.1. Generating the Pair

A discretized form of the the GBM can be obtained from equation 42. In our example,
we use the parameters k = 0.001 and ¢ = 0.02 to generate a logarithm of the price time
series (Q; starting at (n(Qo) = 1.5 and including 10,000 steps. The plot is shown in figure
5.8. We also use relation 35 to generate a 10,000-step OU process that starts at zg = 2.35,
with parameters p = 2.5, A = 0.09 and ¢ = 0.013. The graph can be found in figure 5.9. We
then combine these two processes using equation 1.7, with n = 0.3, to obtain the logarithm
of the prices time series P, of a second stock P, such that In(P,) and In(Q;) are cointegrated.
In(P,) is shown in figure 5.10. We will take the time unit At to be a day.

We know from equation 32 that:

t
Xt — e—)\AtXt_l + #(1 . e—)\At) + O_/ 6_)\(t_y)dBV,
t—1

and by equation 1.7, it follows that:

In(F) = nin(Q) = e (In(Piy) = nln(Qe-1)) + pl(1 — e *2) + 0 / | g,
t—1

t
(43) In(P) = p(1—e ) +nin(Q;) + e *n(Pr_y) — ne 2 n(Qr1) + 0‘/ e N=gB,
t—1

Thus,
(44)

2
In(P)|In(Pi_y) ~ N (u(l — e L in(Qy) + e MUn(P_y) — ne Mn(Qu_y), %(1 - 62/\At)) ;
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which gives the following log-likelihood:

l(TI) H, Av 0-|lnPta anta lnPt—la ant—l)

7Un(Pt)—u(l—e*AAt)—nln(Qw e MR (Py_ 1) +ne” M n(Qs_1)))?

1
= log H e 2(G5 (1-c—2NAL)) :
t=1 \/271'%(1 — e 24t
N N o2
(45) = ——log(27r) — —log(2)\(1 — o7 PAA)
N
YY) > (In(P) = p(1 = e ) = nin(Qy) — e M n(Pr_y) +ne n(Qu-1)))?
=1

The maxLik package in R will be used to numerically solve for optimal values of the
parameters 7, u, A and o for a given data set.
We may also obtain the least squares estimates as follows:

First, we formulate the least squares regression equation from equation 43

(46) In(P) =C+0In(P—y +nin(Qr) + Qi1 + &, € ~1.i.d.N(0,0.)
where

(47) ¢ =p(l—e)

(48) 0 = e M

(49) ol = %(1 — e IAAh

Substituting the least squares estimates of equation 46, (A , Q, é, Q/AJ and J., into equations 47,
48 and 49, and solving the system gives the least squares parameter estimates for the OU

model as:

_ logé
At

ps
I
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To see the performance of our parameter estimation methods, we will apply them to

both a long path and a short one.

84
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FIGURE 5.8. In(Q:) generated from Geometric Brownian Motion of length

10,000, with parameters x = 0.001 and o = 0.02, starting at 1.5

2.1+

spread

1.54

0 2500 5000 7500 10000
time

F1GURE 5.9. Spread of length 10,000 from an OU process, with parameters
=25 A=0.09 and o = 0.013, start at xo = 2.35
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FIGURE 5.10. In(P;) obtained from In(Q);) and the OU process spread by the

cointegration equation.

5.1.5.2. Long Path

Let us first consider the last 1260 days of the process generated in subsection 5.1.5.1.

The OU process and the logarithm of the price time series are presented in figures 5.11 and

5.12 respectively.
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F1GURE 5.11. Last 1,260 steps of the OU process in figure 5.9
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Comparing In(P_t) and In(Q_t)

- 61 Key

®©

g — In(Q_Y)
o
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time

FIGURE 5.12. Last 1,260 steps of in(P,) vs. In(Q;) from figures 5.8 and 5.10

Linear model type Lag ADF p-value

Type 1: no drift, no trend 0 -5.81 <0.01
Type 2: with drift, no trend 0 -5.81 <0.01
Type 3: with drift and trend 0 -591 <0.01

TABLE 5.5. Augmented Dickey-Fulller test for stationarity of the cointegra-
tion between logarithmic returns of the artificial pair P, and Q).

Note 1: Alternate hypothesis: Stationary

5.1.5.3. Parameter Estimation

By the augmented Dickey-Fuller test result presented in table 5.5, it is reasonable to
assume the processes In(P;) and (n(Q;) are cointegrated. Thus X; = In(P;) — nin(Q;) is a
stationary process. So we estimate the parameters 7, g, A and ¢ by maximum likelihood
method based on equation 45 and also by the method of least squares. A comparison of the
outputs is presented in table 5.6. Based on these parameter values, we reproduce the OU

process and plot them in figure 5.13. We observe here that both the maximum likelihood and
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least squares methods overestimate the u, the level of the long term mean, but the maximum
likelihood method performed better. This is not very surprising, given that we only picked
one instance of the process. To better understand the performance of the model, we perform
Monte Carlo simulations with 10,000 sample paths and obtain the average estimates for the
parameters, using both maximum likelihood and least squares methods. Table 5.7 shows the
result. We again reproduce the paths based on these averages, and they are plotted in figure
5.14. We observe here that the estimates perform very well and it is almost impossible to
distinguish among the true path, the path from the maximum likelihood estimates and the

path from the least squares estimates.

5.1.5.4. Short Path

We now turn our attention to the last 126 days of the processes discussed in 5.1.5.1.
Similar to subsection 5.1.5.2, we show the OU process and the logarithm of the price time

series of the two artificial stocks in figures 5.15 and 5.16 respectively.

True Value Method Estimate Bias Standard Error RMSE

MLE 0.28454530 -0.01545470 0.01557660 0.00048148
n | 0.30000000
LS 0.29773916 -0.00226084

MLE 1.61252270 0.11252270 0.11299430 0.02542907
w1 | 1.50000000
LS 1.82803207 0.32803207

MLE 0.05121930 0.00121930 0.00966090 0.00009482
A | 0.05000000
LS 0.05324758 0.00324758

MLE 0.01318950 0.00018950 0.00027020 0.00000011
o | 0.01300000

LS 0.01319774 0.00019774

TABLE 5.6. Parameter estimation for the OU process representing the spread

between InP; and [nQ);, by maximum likelihood and method of least squares.
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Comparison between estimated and actual path
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FIGURE 5.13. Spreads of length 1260 each, generated from one realization of
parameter estimates for the OU process, from maximum likelihood and least

squares methods, using In(Q;) and In(P;).

True Value Method Estimate Bias Standard Error RMSE
MLE 0.30009965 0.00009965 0.01477949 0.00021844

0.30000000
LS 0.29997765 -0.00002235 0.01752722 0.00030720
MLE 1.49889455 -0.00110545 0.10779558 0.01162111

2.50000000
LS 1.50040114 0.00040114 0.18946277 0.03589630
MLE 0.05400583 0.00400583 0.01032903 0.00012274

0.09000000
LS 0.05508819 0.00508819 0.01011371 0.00012818
MLE 0.01299313 -0.00000687 0.00026786 0.00000007

0.01300000
LS 0.01301512 0.00001512 0.00026522 0.00000007

TABLE 5.7. Maximum Likelihood and Least Squares estimates of the OU

parameters for the path of length 1260, by 10,000 Monte Carlo simulations
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FIGURE 5.14. Spreads of length 1260 each, generated from parameter esti-

mates by maximum likelihood and least squares methods from In(Q;) and

In(P;), based on Monte Carlo averages.
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F1GURE 5.15. Last 126 steps of the OU process, with parameter values p =
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Comparing In(P_t) and In(Q_t)
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FIGURE 5.16. Last 126 steps of In(P,) vs. In(Q;) from figures 5.8 and 5.10

Linear model type Lag ADF p-value

Type 1: no drift, no trend 0 -2.32 0.0218
Type 2: with drift, no trend 0 -2.30 0.21
Type 3: with drift and trend 0 -2.35 0428

TABLE 5.8. Augmented Dickey-Fulller test for stationarity of the cointegra-
tion between logarithmic returns of the artificial pair P, and Q.

Note 1: Alternate hypothesis: Stationary

5.1.5.5. Parameter Estimation

The augmented Dickey-Fuller test result for the process X; = In(P;) — nin(Qy) is
shown in 5.8. It is reasonable to assume (n(F;) and In(Q;) are cointegrated.

Thus we estimate the parameters 7, u, A and ¢ by maximum likelihood method
based on equation 45 and also by the method of least squares. A comparison of the outputs
is presented in table 5.9. Although both methods do not perform well in this case, the

maximum likelihood estimates are better than the method of least squares estimates. A
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visualization of this is also shown in figure 5.17.

To better understand the performance of the model, we perform Monte Carlo sim-

ulations with 10,000 sample paths and obtain the average estimates for the parameters,

using both maximum likelihood and least squares methods. The results are shown in table

5.10. We again reproduce the paths based on these averages, and they are plotted in figure

5.18. We observe here that the estimates do not perform very well. However, the maximum

likelihood estimate is closer to the true path than the path from the least squares estimates.

5.1.6. Optimal Threshold

In this subsection, we obtain optimal thresholds for the process discussed in subsection

5.1.5. We will let At correspond to a day. Thus the 126 trading days correspond to half of

a year of trading days and 1260 corresponds to five years of trade data in the US financial

market.

True Value Method Estimate Bias Standard Error RMSE
MLE 0.26151180 -0.03848820 0.05445690 0.00444670
n | 0.30000000
LS 0.26272021 -0.03727979
MLE 1.75560820 0.25560820 0.41761910 0.23974127
1| 2.50000000
LS 2.66869415 1.16869142
MLE 0.04647160 -0.00352840 0.02996400 0.00091029
A | 0.09000000
LS 0.05683273 0.00683273
MLE 0.01272400 -0.00027600 0.00082630 0.00000076
o | 0.01300000
LS 0.01282800 -0.00017200

TABLE 5.9. Parameter estimates by one realization, for the OU representation

of the spread between [nP; and InQ); for 126 steps, by maximum likelihood and

method of least squares.
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Comparison between estimated and actual path
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FIGURE 5.17. Spreads of length 126 each, generated from one realization of

parameter estimates from maximum likelihood and least squares methods,

using (n(Q;) and In(F;)

True Value Method Estimate Bias Standard Error RMSE
MLE 0.29927062 -0.00072938 0.05609920 0.00314765

0.30000000
LS 0.29571629 -0.00428371 0.04870552 0.00239058
MLE 1.54209289 0.04209289 0.51689144 0.26894857

1.50000000
LS 1.43436118 -0.06563882 1.46113841 2.13923392
MLE 0.08370286 0.03370286 0.05781343 0.00447828

0.05000000
LS 0.10151337 0.05151337 0.04976264 0.00512995
MLE 0.01303405 0.00003405 0.00088106 0.00000078

0.01300000
LS 0.01321786 0.00021786 0.00092366 0.00000090

TABLE 5.10. Parameter estimates by Maximum Likelihood and Least Squares

methods the 126 steps OU process, by Monte Carlo simulations
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Comparison between Monte Carlo estimates and actual path
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FIGURE 5.18. Spreads of length 126 each, generated from parameter estimates
by maximum likelihood and least squares methods from In(Q;) and In(P,),

based on Monte Carlo averages.

True Value Method Estimate Bias Standard Error RMSE

MLE 1.50195030 0.00195030 0.00633370 0.00004392
1.50000000
LS 1.50197867 0.00197867

MLE 0.06021400 0.01021400 0.01006890 0.00020571
0.05000000
LS 0.06025913 0.01025913
MLE 0.01352990 0.00052990 0.00027780 0.00000039
0.01300000

LS 0.01353488 0.00053488

TABLE 5.11. One realization of parameter estimates by maximum likelihood
and least squares methods, for the OU representation of the spread of length

1260 between In(Q;) and In(P;)

Ideally, it is best to estimate all the four parameters n, p, A and o together. But, con-
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sidering how the one realization estimates perform, particularly in estimating the long-term
mean p when all four parameters are estimated together, and the standard error obtained
for p, we recommend estimating 7 separately by simple linear regression of P, on (); and
then estimate the remaining three parameters using maximum likelihood estimates as shown

in subsections 5.1.3 and 5.1.4. This is in line with the methods used by [40] and [17].
5.1.6.1. Long Path

Comparison between estimated and actual path
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F1GURE 5.19. Paths generated from one realization of parameter estimates
by maximum likelihood and least squares methods, for the OU representation

of the spread of length 1260 between In(Q;) and In(P;)

5.1.6.2. Case 1: v=10

The thresholds for this case are given by

(50) g(t) = p £ %5

Substituting the time horizon 7' = 5 into the corresponding h(/3) in chapter 4 and solving
gives the optimizer as B ~ 0.9715, approximated to four decimal places. Thus the optimal

thresholds for this case are:
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9(t) ~ 1 + ——
g(t) ~ fi o

From maximum likelihood estimates in table 5.11, we take the values of the parameters as

(0.9715)e .

= 1.5020, A = 0.0602 and & = 0.0135. Hence we approximate the optimal thresholds as:

01
g(t) = 1.5020 + &(0_9715)670.060%
2(0.0602)
(51) — 1.5020 4 0.0378¢0-0602¢

A graphical representation of this result is shown in figure 5.20.
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F1GURE 5.20. New threshold case 1 on the OU representation of the spread
of length 1260 between In(Q;) and In(P;)

5.1.6.3. Case 2: y>0and p=1

For this, the threshold is given by:

(52) g(t) = p£ —=(BeN —7eM).



Substituting the time horizon 7' =5 into the corresponding h(/3,7) in chapter 4 and
solving gives the optimizer as (B, 7) =~ (1.3351,0.1856), approximated to four decimal places.

Thus the optimal thresholds for this case are:

G(t) ~ i £ ——(1.3351e ™ — 0.1856¢™).
2\

Taking the estimates of the OU process parameters to be i = 1.5020, A = 0.0602 and

o = 0.0135, as in case 1, we approximate the optimal thresholds as:

0.0135
g(t) ~ 1.5020 £ —————(1.3351e~ "% — 0.1856¢" %)
1/2(0.0602)
(53) = 1.5020 % 0.0389(1.3351e~ 050 — (.1856¢-060%)

A graphical representation of this result is shown in figure 5.21.
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FI1GURE 5.21. New threshold case 2 on the OU representation of the spread
of length 1260 between In(Q;) and In(P;)
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In contrast, the optimal thresholds provided by case 1 has a narrower band in com-
parison with that of case 2 and as such is crossed more often by the path and hence generates
more trades, while the optimal threshold presented in case 2 has a broader band, and as a
result may have fewer number of crossings than case 1 and therefore fewer number of trades,

but due to the wide band, the return per trade cycle is greater for case 2 than case one.

5.1.6.4. Short Path

Let us now look at the situation for short trade time horizons. Specifically, we consider
126 days or half a year. From table 5.12 , we see that apart from A, the other two parameters
were quite well estimated. Nonetheless, a look at the graph in figure 5.22 shows that the

true path is quite well approximated by our estimated path.

True Value Method Estimate Bias Standard Error RMSE

MLE 1.50027460 0.00027460 0.01057400 0.00011189
| 1.50000000
LS 1.50028069 0.00028069

MLE 0.12241420 0.07241420 0.04302880 0.00709529
A | 0.05000000
LS 0.12250859 0.07250859

MLE 0.01438200 0.00138200 0.00095680 0.00000283
o | 0.01300000

LS 0.01444111 0.00144111

TABLE 5.12. One realization of parameter estimates by maximum likelihood
and least squares methods, for the OU representation of the spread of length

126 between In(Q;) and In(FP;)

5.1.6.5. Case 1: v=10

Substituting the time horizon 7" = % into the corresponding h(f) in chapter 4 and
solving gives the optimizer of the expected return as B ~ 0.8735, approximated to four

decimal places.
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Comparison between estimated and actual path
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FIGURE 5.22. Paths generated from one realization of parameter estimates
by maximum likelihood and least squares methods, for the OU representation

of the spread of length 126 between In(Q;) and In(P;) based on equation ...

Thus the optimal thresholds for this case are:

G(t) ~ i = ——(0.8735)e .

V23

From the maximum likelihood estimates in table 5.12, we take the values of the parameters

as it = 1.5003, A = 0.1224 and 6 = 0.0144. Hence we approximate the optimal thresholds

as:
0.0144
§(t) = 1.5003 + ——————(0.8735)¢ 01224
2(0.1224)
(54) — 1.5003 & 0.0254¢ 01224

A graphical representation of this result is shown in figure 5.23.
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F1GURE 5.23. New threshold case 1 on the OU representation of the spread

of length 126 between In(Q;) and In(FP;)

5.1.6.6. Case 2: y>0and p=1

Substituting the time horizon T = % into the corresponding h(f3, ) in chapter 4 and
solving gives the optimizer of the expected return as (B ,7) &~ (2.2621,0.6944), approximated

to four decimal places. Thus the optimal thresholds for this case are:

‘QI

G(t) ~ i £ ——(2.2621e ™ — 0.6944¢™).
2

>~

Taking the estimates of the OU process parameters to be i = 1.5003, A = 0.1224 and

o = 0.0144, as in case 1, we approximate the optimal thresholds as:

0.0144
(t) ~ 1.5003 £ —————
2(0.1224)

= 1.5003 £ 0.0291(2.2621e~""*** — 0.6944¢"1***)

(2.2621e~ 1224 (0.6944¢"-1224)
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A graphical representation of this result is shown in figure 5.24.
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FI1GURE 5.24. New threshold case 2 on the OU representation of the spread
of length 126 between In(Q;) and In(FP;)

Again, the optimal thresholds provided by case 1 has a narrower band and as such
is crossed more often by the path, while the optimal threshold presented in case 2 has a
broader band, and as a result may have fewer number of crossings than case 1, but may

generate higher return per trade cycle.

5.2. Nonzero Trend Generalized Ornstein-Uhlenbeck Process

5.2.1. The Process

Let us now consider the generalized version of the Ornstein-Uhlenbeck process:

(56) d(X; — (at +b)) = —\(X; — (at +b))dt + 0dB,, t>0
Xo = Zo, A > 0, o>0
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As noted in chapter four, this process is trend-stationary, in that it pulls back to the
linear trend at + b whenever it deviates from it. We apply Ito’s lemma A.3 once again to
solve the system.

First, we rewrite the stochastic differential equation as

dX, = (a — A\(X; — (at +b)))dt + cdB

Let Y, = eMX,

By Ito’s lemma A.3,

dY; = AN X, + eM(a — M X, — (at +b))))dt + oeMdB,

(57) = (a+ Aat + \b)eMdt + ge*dB,

Integrating both sides on the interval 0 <t < s, we get,

/ dY, = / (a4 \at + \b)eMdt + o / eMdB,
0 0 0

Y, — Y, = / (a4 Aat + \b)eMdt + a/ eMdB,
0 0
Thus,
MX, — X, = / (a4 \at + \b)eMdt + 0/ eMdB,
0 0

Applying integration by parts to the first term on the right hand side gives,

at + \b)eM]? s s
M X, = Xo + Fa +at + Abje 1 — / aetdt + 0/ eMdB,
0 0 0

A
As 1 s s
= Xo + a+ )\as)\—{— Aje™ _ (e _I;\)\b) — [Xae’\t} + O'/ eMdB,
0 0
(a+Xas+ Ab)e  (a+Ab)  aeM  a /S A
— Xo+ - ~L 1246 MdB
0 A A A A o !

= Xo+ (as +b)e* — b+ a/ eMdB,
0
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Dividing both sides by e**, we get
X, =eMXy+as+b—be + O’/ e Mg B,
0

Similarly, if we integrate 57 over the time interval t — 1 < v <t, where At =t —(t—1) is a

unit change in time, we obtain:

t t t
/ ay, = / (a+ Mav + \b)eMdy + 0/ eMdB,
t—1 -1 -1

t

t
Y,-Y,_, = / (a+ Xav + \b)eMdv + O’/ eNVdB,
t

-1 t—1

1

t t
MX, —AMVY, | = / (a+ Xav + \b)eMdv + O'/ eNdB,
t—1 t—

Integrating the first term on the right hand side by parts gives
Aav + Ab)e 1" ! !
MX, = MDY, [(a+ av + Ab)e ] _/ ae’\”du—l—a/ MdB,
)\ t—1 t—1 t—1

(a + Mat + \b)eM B (a+ Xa(t — 1) + Ab)ert—1)
A A

1 ! t
— [—ae)‘”} —|—0/ eNdB,
A t—1 t—1

(a+ Xat +Ab)eM (a4 Aa(t — 1) + Ab)et—D

— e)x(ﬁ*l))(ti1 +

— A1) x _
e t—1 + \ \
aeM  qe Mt t R
— YdB,
\ + \ +o /t_l e

Dividing both sides by e, we get

X, = e - x, 4 % Latb— %e—x(t—u—l» —a(t — 1)e M=)

a a !
o pe =0y _ & @ (-1 0/ MdB,
AA -1
t
= e MIX,  Fat+b—a(t — 1)e A — be M 4 O'/ e N4 B,
t—1
t
= e MX, b1 —e M) falt — (t—1De ™) + a/ e MN4B,
t—1

t
= e MY, b1 — e M) at — (t— At)e ™) + O’/ e Mdp,
t—1
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= X,y 4 b(1— ) a1 — e Mt + alte
t
+o / e—)\(t—u)dBV
t—1

(58)

As discussed earlier, the Ito integral ftt_l e MM dB, in equation 58 above follows a normal

. . : 2 _
distribution with mean zero and variance (1 — e=247),

So, it follows that:
(59)
2
X¢|Xi1 ~N (e_’\AtXt_l +b(1 — e ) +a(1 — e Nt + aAte ™A, ;T—)\(l — 6_2>\At)> :

As before, a discretized form of the trending OU process X; can be obtained from

the distribution in 59 above.

Let us consider an example of this process with parameter values a = 0.0002, b = 0.02,
A = 0.08 and ¢ = 0.005, which starts at xo = 0.4. We generate a path of length 10,000 based
on he model. This is shown in figure 5.25. We see here that the process oscillates around

the line X; = 0.0002¢ + 0.02, and always reverts to it whenever there is a deviation.

5.2.2. Parameter Estimation

We show in this subsection parameter estimation for the trend-stationary OU process

both with maximum likelihood and least squares methods.

5.2.2.1. Maximum Likelihood Estimator

From relation 59, the likelihood function for this model is:

1 (Xp— (e AMEX,_4b(1—e M) pa(1—e M) pante = AA))2
B o2 (1 _,—2AA
L(a,b,\, 0] X;) = H 2 e 2(92 (1_e—2AAL))
t=1 \/277';—)\(1 — e At
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FicURE 5.25. Discretized trend-stationary Ornstein-Uhlenbeck Process of
length 10000, with parameters a = 0.0002, b = 0.02, A = 0.08 and o = 0.005,
starting from xy = 0.4
We then obtain the log-likelihood as:
N 1 7(Xt—(e*MtXH+b(1—e;m’f>+a<1—e*m%wamfmﬁﬂ
I(a,b, A, 0]Xy) = H e 25 (1-emPAL)
=1 \/27T _ —2)\At)
N N
= — Slog(2m) — log(S (1 — )
2\
N
(60) — p D (X — e MX Ly = b(1— e ) —a(l— e )t — aAte )
o?
t=1

Thus the maximum likelihood estimates for a,b, A and o will be the values a, ZA), A and

o respectively, that maximize the above expression. We will solve this numerically from

equation 60.
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5.2.2.2. Method of Least Squares

We formulate the least squares regression equation from equation 59 as follows:

(61) Xt = C + at + @bXt_l + €, € ~ ZZdN(O, O'E)
where
(62) ¢ =b(1 — e 2 + aAte
(63) a = a(l — e A
(64) b=
(65) 0,2 — 0-_2(1 o 672)\At)
< 2A

Substituting the least squares estimates of equation 61, é , 1/3 and d., into equations 62, 63,
64 and 65, and solving the system gives the least squares parameter estimates for the OU

model as:

. logy
A=
) é
a = =
11—
Bzf(l—zﬁ)fﬁmﬁ
(1 —1)?
. V2h
5o V2Aoe

\/1—1?

To see the performance of our parameter estimation methods, we will apply them to

both a long path and a short one as before.
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5.2.3. Long Path

5.2.3.1. Generating the Spread

We use the last 1260 points of the path presented in figure 5.25 in our study. A graph
of this path can be found in figure 5.26.

2.0+ N

spread

1.8+ -

9000 9500 10000
time

FIGURE 5.26. Discretized trend-stationary Ornstein-Uhlenbeck Process of
length 1260, with parameter values a = 0.0002, b = 0.02, A = 0.08 and
o = 0.005

5.2.3.2. Parameter Estimation

We now estimate the parameters of the model by maximum likelihood and least
squares methods. The result is shown in table 5.13. We notice that both methods estimate
the parameters a, A and o quite well, but do not perform well for b. We generate paths from
the estimates and compare them against the true path in figure 5.27. From this figure we

can see that the model is quite resistant to the error in estimating b.
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True Value Method Estimate Bias Standard Error RMSE
MLE 0.00018800 -0.00001200 0.00000017 0.00000000
a | 0.00020000
LS 0.00018798 -0.00001202
MLE 0.13315400 0.11315400 0.00159200 0.01280636
b 1 0.02000000
LS 0.13315080 0.11315080
MLE 0.08999000 0.00999000 0.01252300 0.00025663
A | 0.08000000
LS 0.09004500 0.01004500
MLE 0.00508300 0.00008300 0.00010200 0.00000002
o | 0.00500000
LS 0.00508510 0.00008510

TABLE 5.13. Parameter estimation for the discretized trend-stationary OU

process of length 1260 by maximum likelihood and method of least squares,

with true parameter values a = 0.0002, b = 0.02, A = 0.08 and o = 0.005
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FI1GURE 5.27. Paths of length 1260, generated from one realization of param-

eter estimates from maximum likelihood and least squares methods, with true
parameter values a = 0.0002, b = 0.02, A = 0.08 and ¢ = 0.005, for the trend-

stationary OU process.
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5.2.3.3. Monte Carlo Simulation

We also perform a Monte Carlo simulation with on the same parameter values as
above to see the average estimate of the methods. From the results in table 5.14, we see
that on average all the parameters are well estimated and there is significant improve in the
estimates for b in comparison with the case of one realization. A plot of the paths generated

from these estimates in comparison with the true path can be found in figure 5.28.

True Value Method Estimate Bias Standard Error RMSE
MLE 0.00019993 -0.00000007 0.00000290 0.00000000

0.00020000
LS 0.00020000 -0.00000000 0.00000478 0.00000000
MLE 0.02083869 0.00083869 0.02720594 0.00074087

0.02000000
LS 0.02017871 0.00017871 0.04493147 0.00201887
MLE 0.08344855 0.00344855 0.01285059 0.00017703

0.08000000
LS 0.08481821 0.00481821 0.01221014 0.00017230
MLE 0.00500934 0.00000934 0.00010678 0.00000001

0.00500000
LS 0.00500355 0.00000355 0.00010317 0.00000001

TABLE 5.14. Performance of Maximum Likelihood and Least Squares meth-
ods for estimating the trend-stationary OU parameters, by 10,000 Monte Carlo

simulations, using a path of length 1260

5.2.4. Short Path

Let us now consider short term trade time horizon.

5.2.4.1. Generating the Spread

We will use the last 126 steps of the path presented in figure 5.25. A graph of this

path can be found in figure 5.29.
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Comparison between estimated and actual path

2.0+

- Long-term mean
d
7Z Least Squares Estimated

Maximum Likelihood Estimated
1.8+

9000 9500 10000
time

FIGURE 5.28. Paths generated from parameter estimates by Maximum Like-

lihood and Method of Least Squares, using Monte Carlo averages with 10,000

replications of paths of length 1260. True parameter values are a = 0.0002,
b=0.02, A =0.08 and o = 0.005
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FIGURE 5.29. Discretized trend-stationary Ornstein-Uhlenbeck Process of

length 126, with parameter values a = 0.0002, b = 0.02, A = 0.08 and o =
0.005
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5.2.4.2. Parameter Estimation

In estimating the parameters from one realization, we notice from table 5.15 that a
and o are quite well estimated, while the estimates for b and A are not very good, both
for the maximum likelihood and least squares methods. However, the paths generated from

these estimates approximate the true path well enough for our purpose. See figure 5.30.

True Value Method Estimate Bias Standard Error RMSE

MLE 0.00034270 0.00014270 0.00000020 0.00000002
a | 0.00020000
LS 0.00034272 0.00014272

MLE -1.39274270 -1.59274270 0.00187570 2.53683283
b | 0.02000000
LS -1.39275034 -1.59275034

MLE 0.21820710 0.13820710 0.06940170 0.02391780
A | 0.08000000
LS 0.21808244 0.13808244

MLE 0.00455410 -0.00044590 0.00030570 0.00000029
o | 0.00500000
LS 0.00457163 -0.00042837

TABLE 5.15. Parameter estimation for the discretized trend-stationary OU
process of length 126 by maximum likelihood and method of least squares,

with actual parameters a = 0.0002, = 0.02, A = 0.08 and ¢ = 0.005

5.2.4.3. Monte Carlo Simulation

The average estimates from Monte Carlo simulations with 10,000 replications is shown
if table 5.16. We notice an improvement over the one realization result for all the parameters,
for both estimation methods. More importantly, we notice that the maximum likelihood
estimates outperform the least squares estimates and provides better estimates for all the
parameters, which is in consonance with known statistical results. A plot of the paths

generated from these estimates is shown in figure 5.31.
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Comparison between estimated and actual path
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F1GURE 5.30. Paths of length 126 for the trend-stationary OU process, gen-

erated from one realization of estimates from maximum likelihood and least

squares methods, with true parameter values a = 0.0002,

= 0.02, A = 0.08

and o = 0.005

True Value Method Estimate Bias Standard Error RMSE
MLE 0.00020047 0.00000047 0.00001548 0.00000000

a | 0.00020000
LS 0.00020751 0.00000751 0.00015013 0.00000002
MLE 0.01572380 -0.00427620 0.15276549 0.02335558

b | 0.02000000
LS -0.05404180 -0.07404180 1.48428565 2.20858609
MLE 0.11847379 0.03847379 0.05471677 0.00447416

A | 0.08000000
LS 0.14065392 0.06065392 0.05857387 0.00710980
MLE 0.00505847 0.00005847 0.00033740 0.00000012

o | 0.00500000
LS 0.00508214 0.00008214 0.00034027 0.00000012

TABLE 5.16. Performance of Maximum Likelihood and Least Squares meth-

ods for estimating the trend-stationary OU parameters, by 10,000 Monte Carlo

simulations, using a path of length 126
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Comparison between estimated and actual path
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F1GURE 5.31. Trend-stationary OU paths from parameter estimation by Max-
imum Likelihood and Method of Least Squares, using Monte Carlo averages

with 10,000 replications of paths of length 126. The true parameter values are

5.2.5. Artificial Stocks

We now generate a pair of artificial stock prices ); and FP;, such that the spread
between their log-returns is trend-stationary and follows the trend-stationary OU process

5.2.1, and then perform parameter estimation for the pair.

5.2.5.1. Generating the Pair

For Q); we will use the same GBM we generated in subsection 5.1.5. We use relation 59
to generate a 10,000 steps trend-stationary OU process starting at zy = 1.4, with parameter
values a = 0.0002, b = 0.8, A = 0.08 and o = 0.005. We then combine these two processes
using equation 1.7, with n = 0.3, to obtain the logarithm of the price time series P; of a
second stock P. The graphs of these are shown in figures 5.32, 5.33 and 5.34 respectively.

We know from equation 58 that:
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t
X, =eMX, 1+ b(1 — e ) fa(l — e 2Dt 4 aAte P + cr/ e N=4B,,
t—1

and by equation 1.7, it follows that:

In(Py) = nin(Qr) = e (In(Pry) — nin(Qr-1)) + b(1 — e
+ a(l — e 2Nt 4 aAte ™ + o /t e M14B,
t—1
In(P,) = b(1 — e +alAte™ +a(l — e 2t + e n(P_)

(66) +0in(Qr) — ne *Mn(Qi1) + o / tl e M=dB,
.

Thus,

In(P)|In(P_1), In(Qy), In(Q_1) ~ N (b(1 — e + aAte ™ 4 a(1 — e )t 4+ e Mn(P,_))

2

(67) Fln(Qy) — ne A n(Q,_y), %(1 — Ay

which gives the following log-likelihood:

l(’)?, a, b) Av O-|lnpta anta ln-Pt—la ant—l)

N (P —b(1—e "M _ante T A _q(1_e T A m MM (B ) —nin(Qy)+ne "M In(Q_1))?
1 9(22 (1_e—2)\AL
= log H e (85 ( )
2
t=1 \/27r;—/\(1 — e~ At

N o B
(68) = —log(2m) — Flog(5(1—e 20y
)\ N
T 02(1 — oA S (n(P) = b(1 — e ) — alte™A — a(1 — et — e MUn(Pyy)
t=1

= nln(Qy) +ne Q1))

The maxLik package in R will be used to numerically solve for optimal values of the

parameters 7, u, A and o from given data set.
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For the least squares estimates, we formulate the regression equation from equation

66 as follows:

(69) In(P) =(+at+0ln(P_1 +nin(Qy) + vQi_1 + €, € ~i.i.d.N(0,0,)

where
(70) C=b(1 — e + alAte
(71) a = a(l — e 2
(72) h = e A
(73) o 0—2(1 — 7Y
<2

Substituting the least squares estimates of equation 69, é , Q, é, 1@ and J., into equations 70,

71, 72 and 73, and solving the system gives the least squares parameter estimates for the

OU model as:

>

Q>
|
>

- C(1—0) — Atad
(1—0)

V246
V11— 62

We again apply these parameter estimation methods to both a long-term trade horizon

Q>

and a short-term trade horizon. The path In(Q;) of length 10,000 from the GBM is shown
in figure 5.32. The trend-stationary OU process, X; is shown in figure 5.33, and the derived

artificial time series In(P;) is shown in figure 5.34.
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FIGURE 5.32. In(Q;) generated from Geometric Brownian Motion of length
10,000, with parameters k = 0.001 and o = 0.02), starting at 1.5
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F1GURE 5.33. Spread of length 10,000 from a trend-stationary OU process,
with parameters a = 0.0002, b = 0.8, A = 0.08 and o = 0.005
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FIGURE 5.34. In(P;) obtained from In(Q;) and the trend-stationary OU pro-

cess spread by the cointegration equation.
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F1GURE 5.35. Last 1,260 steps of the trend-stationary OU process in figure 5.33
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5.2.5.2. Long Path

Let us first consider the last 1260 days of the process generated in subsection 5.2.5.1.
The OU process and the logarithm of the price time series are presented in figures 5.35 and
5.36 respectively. Notice that the augmented Dickey-Fuller test result 5.17 indicates that all
the three linear model types are stationary. But observing the path in figure 5.35, it is more

reasonable to consider the trend.

Comparing In(P_t) and In(Q_t)

Key

— In(Q_t)
— In(P_t)

R

9000 9500 10000
time

FIGURE 5.36. Last 1,260 steps of In(F;) vs. In(Q;) from figures 5.32 and 5.34

Linear model type Lag ADF p-value

Type 1: no drift, no trend 0 -6.07 <0.01
Type 2: with drift, no trend 0 -6.07 <0.01
Type 3: with drift and trend 0 -6.12 <0.01

TABLE 5.17. Augmented Dickey-Fulller test for stationarity of the cointegra-
tion between logarithmic returns of the artificial pair P, and Q.

Note 1: Alternate hypothesis: Stationary
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5.2.5.3. Parameter Estimation

We estimate the parameters 7, a, b, A and ¢ by maximum likelihood method based on
equation 68 and also by the method of least squares using the system of equations obtained
earlier in the section. A comparison of the outputs is presented in table 5.18. We observe
from the table that the parameters are quite well estimated by both methods except for b
for the least squares method, and X is also slightly off. Based on these parameter values, we
reproduce the trend-stationary OU process and plot them in figure 5.37. We see that again
the maximum likelihood estimates are better than the least squares estimates. However these
estimate for b in the least squares method is not good enough for the purpose of estimating

optimal thresholds since the drift level plays a major role in the level of the thresholds.

True Value Method Estimate Bias Standard Error RMSE
MLE 0.28905200 -0.01094800 0.00240500 0.00012564
0.30000000
LS 0.30552645 0.00552645
MLE 0.00021070 0.00001070 0.00000018 0.00000000
0.00020000
LS 0.00015396 -0.00004604
MLE 0.80031100 0.00031100 0.02068100 0.00042780
0.80000000
LS 1.06789968 0.36789968
MLE 0.08562200 0.00562200 0.01212300 0.00017857
0.08000000
LS 0.09469577 0.01469577
MLE 0.00508800 0.00008800 0.00010600 0.00000002
0.00500000
LS 0.00509058 0.00009058

TABLE 5.18. Parameter estimation for the trend-stationary OU process repre-

senting the spread between In P, and InQ);, by maximum likelihood and method

of least squares.
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Comparison between estimated and actual path
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F1GURE 5.37. Spreads of length 1260 each, generated from one realization

of parameter estimates for the trend-stationary OU process, from maximum

likelihood and least squares methods, using In(Q;) and In(P;).

We also perform Monte Carlo simulations with 10,000 sample paths and obtain the
average estimates for the parameters, using both maximum likelihood and least squares
methods as before. Table 5.19 shows the result. We again reproduce the paths based on
these averages, and they are plotted in figure 5.38. We observe that the estimators perform

very well here.

5.2.5.4. Short Path

we now look at the last 126 days of the processes discussed in 5.2.5.1. Similar to
subsection 5.1.5.2, we show the OU process and the logarithm of the price time series of the

two artificial stocks in figures 5.39 and 5.40 respectively.
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True Value Method Estimate Bias Standard Error RMSE
MLE 0.30049995 0.00049995 0.00000013 0.00000025

n | 0.30000000
LS 0.29996349 -0.00003651 0.00656867 0.00004315
MLE 0.00020167 0.00000167 0.00000018 0.00000000

a | 0.00020000
LS 0.00020101 0.00000101 0.00002581 0.00000000
MLE 0.78000000 -0.02000000 0.00000001 0.00040000

b | 0.80000000
LS 0.79533500 -0.00466500 0.12626155 0.01596374
MLE 0.08599982 0.00599982 0.00000028 0.00003600

A | 0.08000000
LS 0.08646885 0.00646885 0.01239505 0.00019548
MLE 0.00500550 0.00000550 0.00008399 0.00000001

o | 0.00500000
LS 0.00500336 0.00000336 0.00010325 0.00000001

TABLE 5.19. Maximum Likelihood and Least Squares estimates of the trend-
stationary OU process parameters for the path of length 1260, by 10,000 Monte

Carlo simulations

Comparison between Monte Carlo estimates and actual path
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FIGURE 5.38. Spreads of length 1,260 each, generated from parameter es-
timates by maximum likelihood and least squares methods from In(Q;) and

In(P;), based on Monte Carlo averages. See table 5.19
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F1GURE 5.39. Last 126 steps of the trend-stationary OU process in figure 5.33
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FIGURE 5.40. Last 126 steps of In(P;) vs. In(Q;) from figures 5.32 and 5.34
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Linear model type Lag ADF p-value

Type 1: no drift, no trend 0 -2.73 <0.01
Type 2: with drift, no trend 0 -2.72 0.0788
Type 3: with drift and trend 0 -3.08 0.125

TABLE 5.20. Augmented Dickey-Fulller test for stationarity of the cointegra-

tion between logarithmic returns of the artificial pair P, and Q.

Note 1: Alternate hypothesis: Stationary

True Value Method Estimate Bias Standard Error RMSE
MLE 0.29881380 -0.00118620 0.02079720 0.00043393
0.30000000
LS 0.28613051 -0.01386949
MLE 0.00020130 0.00000130 0.00000046 0.00000000
0.00020000
LS 0.00030316 0.00010316
MLE 0.70968410 -0.09031590 0.19413970 0.04584719
0.80000000
LS -0.42596944 -1.22596944
MLE 0.13149820 0.05149820 0.05595530 0.31575162
0.08000000
LS 0.22047593 0.14047593
MLE 0.00443500 -0.00065600 0.00030550 0.00000965
0.00500000
LS 0.00455466 -0.00044534

TABLE 5.21. Parameter estimates by one realization, for the trend-stationary

OU representation of the spread between InP, and [n@); for 126 steps, by

maximum likelihood and method of least squares.

5.2.5.5. Parameter Estimation

We estimate the parameters 7, a, b, A and ¢ by maximum likelihood method based
on equation 68 and also by the method of least squares. A comparison of the outputs is

presented in table 5.21. Both methods do not perform well in estimating A for this case, but
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besides this, the least squares estimates for b is also poor, which is critical for our optimal

threshold estimation as explained earlier. A visualization of this is also shown in figure 5.41

Comparison between estimated and actual path
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FIGURE 5.41. Trend-stationary OU process representation of spreads of
length 126 each, generated from one realization of parameter estimates from

maximum likelihood and least squares methods, using In(Q;) and In(P;)

We perform Monte Carlo simulations with 10,000 sample paths and obtain the average
estimates for the parameters, using both maximum likelihood and least squares methods.
The results are shown in table 5.22. The paths reproduced from these estimates is shown
in figure 5.42. We observe here that the estimates perform better than the case of one
realization 5.41, although not as good as the case of long paths. We also note here that the
path from the maximum likelihood estimates is closer to the true path than the path from

the least squares estimates. We notice that the standard error in our estimate for b is also

high for both methods.
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True Value Method Estimate Bias Standard Error RMSE
MLE 0.30049999 0.00049999 0.00000053 0.00000025

n | 0.30000000
LS 0.29972018 -0.00027982 0.02278868 0.00051940
MLE 0.00020155 0.00000155 0.00000056 0.00000000

a | 0.00020000
LS 0.00018973 -0.00001027 0.00020292 0.00000004
MLE 0.78000000 -0.02000000 0.00000001 0.00040000

b | 0.80000000
LS 0.84965090 0.04965090 1.57989860 2.49854479
MLE 0.08600188 0.00600188 0.00000243 0.00003602

A | 0.08000000
LS 0.16250616 0.08250616 0.07230137 0.01203475
MLE 0.00488397 -0.00011603 0.00024220 0.00000007

o | 0.00500000
LS 0.00509510 0.00009510 0.00034781 0.00000013

TABLE 5.22. Parameter estimates by Maximum Likelihood and Least Squares

methods for the 126 steps OU process, by Monte Carlo simulations

Comparison between Monte Carlo estimates and actual path
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FIGURE 5.42. Spreads of length 126 each, generated from parameter estimates

by maximum likelihood and least squares methods from In(Q;) and In(FP,),

based on Monte Carlo averages. See table 5.22
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5.2.6. Optimal Threshold

For similar reasons as discussed in subsection 5.1.6, we will estimate 1 separately by
simple linear regression of P, on (); and then estimate the remaining four parameters using

maximum likelihood estimates as shown in subsections 5.2.3 and 5.2.4.

We will scaled the time from years to days in the trend. Thus ¢ = 252¢, since there

are 252 trading days in a year, based on the US financial market.

5.2.6.1. Long Path

True Value Method Estimate Bias Standard Error RMSE
MLE 0.00018800 -0.00001200 0.00000017 0.00000000
0.00020000
LS 0.00018798 -0.00001202
MLE 0.91314500 0.11314500 0.00159200 0.01280433
0.80000000
LS 0.91315080 0.11315080
MLE 0.09000600 0.01000600 0.01251900 0.00025663
0.08000000
LS 0.09004500 0.01004500
MLE 0.00508300 0.00008300 0.00010600 0.00000002
0.00500000
LS 0.00508510 0.00008510

TABLE 5.23. One realization of parameter estimates by maximum likelihood

and least squares methods, for the trend-stationary OU process representation

of the spread of length 1260 between In(Q;) and In(FP;), with actual parameters

a = 0.0002, b= 0.8, A = 0.08 and o = 0.005
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Comparison between estimated and actual path
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FIGURE 5.43. Paths generated from one realization of parameter estimates
by maximum likelihood and least squares methods, for the trend-stationary

OU process representation of the spread of length 1260 between In(Q;) and
in(P,)

5.2.6.2. Case 1: v=10

The thresholds for this case are given by

(74) g(t) =at’ + b+ Lﬁe_)‘t.

V2

Substituting the time horizon 7" = 5 into the corresponding h(/3) in chapter 4 and solving

gives the optimizer as 3 ~ 0.9715, approximated to four decimal places. Thus the optimal

thresholds for this case are:



From maximum likelihood estimates in table 5.23, we take the values of the parameters as

a = 0.0002, b = 0.9131, A = 0.0900 and & = 0.0051. Hence we approximate the optimal
thresholds as:

0.0051
g(t) = 0.0002t" +0.9131 + —————(0.97
2(0.0900)

= 0.9131 + 0.0002¢" & 0.0117¢ 00002

15)6—0.0900t

(75)

A graphical representation of this result is shown in figure 5.44.
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FIGURE 5.44. New threshold case 1 on the trend-stationary OU process rep-

resentation of the spread of length 1260 between In(Q;) and In(P;)

5.2.6.3. Case 2: y>0and p=1

For this, the threshold is given by:

(76) g(t) = att + b+ ——(Be

= o ’)/BM).
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Substituting the time horizon 7' =5 into the corresponding h(/3,7) in chapter 4 and

solving gives the optimizer as (B ,7) =~ (1.3351,0.1856), approximated to four decimal places.
Thus the optimal thresholds for this case are:

G0 ~att + b+ —2(1.3351e™ — 0.1856¢M).
2

Taking the estimates of the OU process parameters to be a = 0.0002, b =0.9131, A = 0.0900

and ¢ = 0.0051, as in case 1, we approximate the optimal thresholds as:

0.0051
G(t) = 0.0002t" 4 0.9131 £

1/2(0.0900)
= 0.9131 + 0.0002¢" + 0.0117(1.3351 %990 _ (. 1856¢"900%)

(1.3351e 20990 _ (), 1856¢-0900%)
(77)

A graphical representation of this result is also shown in figure 5.45.
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F1GURE 5.45. New threshold case 2 on the trend-stationary OU process rep-

resentation of the spread of length 1260 between In(Q;) and In(P;)
5.2.6.4. Short Path

We now look at the short-term trade time horizon.
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True Value Method Estimate Bias Standard Error RMSE

MLE 0.00034270 0.00014270 0.00000020 0.00000002
a | 0.00020000
LS 0.00034272 0.00014272

MLE -0.61274830 -1.41274830 0.00187640 1.99586128
b | 0.80000000
LS -0.61275034 -1.41274830

MLE 0.21816210 0.13816210 0.06937040 0.02390102
A | 0.08000000
LS 0.21808244 0.13808244

MLE  0.00455430 -0.00044570 0.00032350 0.00000030
o | 0.00500000
LS 0.00457163 -0.00042837

TABLE 5.24. One realization of parameter estimates by maximum likelihood
and least squares methods, for the OU representation of the spread of length
126 between In(Q;) and In(P;), with true parameters a = 0.0002, = 0.08,
A =0.08 and o = 0.005

Comparison between estimated and actual path
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FIGURE 5.46. Paths generated from one realization of parameter estimates
by maximum likelihood and least squares methods, for the trend-stationary

OU process representation of the spread of length 126 between In(Q);) and
ln(Pt)
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5.2.6.5. Case 1: y=0

Substituting the time horizon T = % into equation the corresponding h(f) in chapter
4 and solving gives the optimizer of the expected return as B ~ 0.8735, approximated to

four decimal places. Thus the optimal thresholds for this case are:

o
VX

From maximum likelihood estimates in table 5.23, we take the values of the parameters as

Gt ~att + b+ (0.8735)e .

a = 0.0003, b = —0.6127, A = 0.2181 and & = 0.0046. Hence we approximate the optimal

thresholds as:

0.0046
g(t) = 0.0003t" — 0.6127 £ ———(0.8735)e~ %"
2(0.2181)
(78) = —0.6127 + OOOO?)tT + 0.00616_0'2181t

A graphical representation of this result is shown in figure 5.47.

5.2.6.6. Case 2: y > 0and p=1

Substituting the time horizon T = % into corresponding h((,+) in chapter 4 and

solving gives the optimizer of the expected return as (B ,7) =~ (2.2621,0.6944), approximated
to four decimal places. Thus the optimal thresholds for this case are:

G(t) ~ att + b+ —2-(2.2621e~M — 0.6944eM).
2\

Taking the estimates of the OU process parameters to be a = 0.0003, b = —0.6127, A =

0.2181 and ¢ = 0.0046, as in case 1, we approximate the optimal thresholds as:

0.0046
G(t) =~ 0.0003t" — 0.6127 + —0(2.26216—0-218“ — 0.6944¢"-21811)
2(0.2181)
(79) = —0.6127 + 0.0003t" & 0.0070(2.2621e 22181 _ ().6944¢0-2181)

A graphical representation of this result is shown in figure 5.48.
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FIGURE 5.47.

New threshold case 1 on the trend-stationary OU representa-

tion of the spread of length 126 between In(Q;) and In(P;)
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F1GURE 5.48. New threshold case 2 on the trend-stationary OU representa-

tion of the spread of length 126 between In(Q;) and In(P;)

Similar to previous cases, the optimal thresholds provided by case 1 has a narrower
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band and as such is crossed more often by the path, while the optimal threshold presented
in case 2 has a broader band, and as a result may have fewer number of crossings than case

1, but may generate higher return per trade cycle.
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CHAPTER 6

APPLICATIONS

In this chapter we apply our results to four pairs of stocks that are often traded
together. Namely, Coca-Cola (KO)/Pepsi (PEP), Chevron (CVX)/ Exxon Mobil(XOM),
Target (TGT)/Walmart (WMT), and RWE AG (RWE.DE)/E.OnSe (EOAN.DE), [40] and
[17]. We will consider both short and long term trade time horizons.

We will first use simple linear regression to obtain the value of the parameter n for
the cointegration model and then proceed to estimate the remaining parameters by least
squares and maximum likelihood estimation. This conforms with conventional practice as
shown in [17] and [40].

We then compare our results with theirs and show that our strategy could potentially

yield higher returns than the constant threshold methods in their strategies.

6.1. Thresholds
6.1.1. Zeng and Lee’s Threshold

The strategy of Zeng and Lee [40] seeks to find optimal thresholds for the trade, that
maximize the expected return per unit time. They achieve this by utilizing the elementary
renewal theorem to derive this expectation and the optimization methods resulted in an

implicit equation involving infinite series:

(80) - fa2"+1 (2n+1)

1
24~ (2n+1)! 2

gi <2n2—|—1>7

n=0

l\DIO

where ¢ is the transaction cost and a is the level of the optimal threshold. Thus given the

transaction cost ¢, one can solve for a numerically.

6.1.2. Goncu and Akyildirim’s Threshold

The method Goncu and Akyildirim [17] on the other hand is that given an investment

time horizon T', they seek to find the level ¢ such that the probability of a successful trade
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is maximized. By this they mean successfully reaching the long term mean, from the level

¢, within the time horizon 7T'. Their optimization method resulted in the equation,

1—e 27
(81) c(T) = —r where 7 >0

6.1.3. New Thresholds

The new strategy we present, as discussed in chapter 4, differs from the other strate-
gies, in that the thresholds are not constant, but rather vary over time, and we obtain the
optimal threshold by finding parameter values that maximize the expected return of a com-
plete trade cycle. We look into two cases of our general threshold 12, and in addition we
also consider versions of these two thresholds that take into account trend information in

the data.

6.1.4. Time Scaling

As explained earlier ¢ is a scaled form of ¢, and the choice of scale depends on the
context of application. In our case, we are considering days and years. Instead of using
different notations for the two, we will convert all times to days at this point and let At be

equivalent to one day. So t will represent days for the rest of this material and not years.

6.2. Short-Term Trades

For the short term, we will consider the last 126 days up until June 30th, 2021, which
is equivalent to six months in the US financial market. RWE and EOAN are German utility
companies and have more trading days in a week than the US market, so the start date
of this pair is different from the others. The restriction of 126 days for short term trading
cycles makes it difficult to obtain accurate estimates for our parameters for the OU model
in this case, as such we will be using the least squares method to obtain initial estimates
which will then be passed on as starting point for the Newton-Raphson approximation in the
maximum likelihood estimation. This way we have good starting points and the maximum

likelihood estimation of the maxLik package in R will converge faster and be more accurate.
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6.2.1. Pepsi(PEP) and Coca-Cola(KO)

PEP vs. KO

Key

4.8 — PEP

Spread

4.2+

Jan Apr Jul
Dates

FIGURE 6.1. Logarithmic returns of PEP and KO for first half of 2021

6.2.1.1. Parameter Estimate

Method Estimate Standard Error
MLE  2.2766972 0.0154464

: LS 2.276706548
MLE  0.0438524 0.0270987

4 LS 0.043905319
MLE  0.0075725 0.0004896

7 LS 0.007603501

TABLE 6.1. Parameter estimates for OU process representation of spread be-

tween PEP and KO for first half of 2021
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Method Estimate Standard Error
MLE 0.0002681 0.0005025

! LS 0.0002680341
MLE 2.2538407 0.0477373

’ LS 2.2538261300
MLE 0.0419085 0.0273073

4 LS 0.0419038131
MLE 0.0075550 0.0004887

7 LS 0.0075852657

TABLE 6.2. Parameter estimates for the trend-stationary OU process repre-

sentation of spread between PEP and KO for first half of 2021

6.2.1.2. Thresholds

Upper Threshold

Lower Threshold

Zeng

2.3060

2.2474

Goncu

2.3102

2.2432

New case 1, no trend

2.2767 4+ 0.0228 ¢~0-0419(553)

2.2767 - 0.0228 ¢~ 0-0419(553)

New case 2, no trend

2.2767 4 0.0590 ¢~0-0419(z53)
0.0181 0-0419(5z3)

2.2767 - 0.0590 ¢~00419(552) 4
0.0181 €0-0419(553)

New case 1, with trend

2.2538 + 0.0003 t + 0.0228

t
o —0-0419(55)

2.2538 + 0.0003 t - 0.0228

t
o—0-0419(5t3)

New case 2, with trend

22538 + 0.0003 t +

0.0590 e~00419(z53) _

t
£0-0419(555)

0.0181

2.2538 + 0.0003 t - 0.0590

©—0-0419(555) 0.0181

+

t
£0-0419(555)

TABLE 6.3. Thresholds for the various trading strategies for the spread be-

tween PEP and KO for first half of 2021
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FIGURE 6.2. Zero trend new thresholds against Old thresholds for PEP and KO
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—— Zeng and Lee's threshold
Jan-01-2021 Apr-01-2021 Jul-01-2021
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FIGURE 6.3. Nonzero trend new thresholds against Old thresholds for PEP
and KO
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From figures 6.2 and 6.3, we see that for the short term pairs trading between Pepsi

and Coca cola, all the strategies yield exactly two trades. However case 2 of our new threshold

provides a wider band, and consequently yields higher return than the others, and it is even

much higher for the trending case. See table 6.13 fro the comparison.

6.2.2. E.OnSe (EOAN) and RWE AG(RWE) (German Utility Companies)

EOAN vs. RWE

Spread

2.5+

2.0

— EOAN
3.5+ — RWE

e e e

Key

Jan

Alpr Jlul
Dates

FIGURE 6.4. Logarithmic returns of EOAN and RWE for first half of 2021

6.2.2.1. Parameter Estimate

Method  Estimate Standard Error
MLE 3.80459000 0.04798800

g LS 3.80467018
MLE 0.03106200 0.02274100

4 LS 0.03106018
MLE 0.01657000 0.00106500

7 LS 0.01663610

TABLE 6.4. Parameter estimates for OU process representation of spread be-

tween EOAN and RWE for first half of 2021
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Method Estimate Standard Error
MLE  0.0010911 0.0008929

! LS 0.001089163
MLE  3.7117340 0.0822731

’ LS 3.711795198
MLE  0.0462500 0.0274028

4 LS 0.046237329
MLE  0.0166238 0.0010752

’ LS 0.016691165

TABLE 6.5. Parameter estimates for the trend-stationary OU process repre-

sentation of spread between EOAN and RWE for first half of 2021

6.2.2.2. Thresholds

Upper Threshold

Lower Threshold

Zeng

3.8577

3.7514

Goncu

3.8917

3.7174

New case 1, no trend

3.8045 + 0.0477 e~ 00462(55)

3.8046 - 0.0477 e~ 0-0462(55;)

New case 2, no trend

3.8045 4 0.0477 e 0:0462(355)
0.1236 €0-0462(3z3)

3.8046 - 0.0477 ¢~ 0-0462(55) 4
0.1236 ¢%-0462(353)

New case 1, with trend

3.7117 + 0.0011 t 4 0.0477

t
o —0-0462(55)

3.7117 + 0.0011 t - 0.0477

t
0—0-0462(5t5)

New case 2, with trend

3.7117 + 0.0011 t +
0.0477 e~ 0-0462(553) _ (.1236
60.0462(2%2)

3.7117 + 0.0011 t - 0.0477
e—0:0462(553) + 0.1236

t
£0-0462(555)

TABLE 6.6. Thresholds for the various trading strategies for the spread be-

tween EOAN and RWE for first half of 2021

117




EOAN~RWE

3.94

N7 A
1 / AW

Spread
e
5
|

3.7
Key
= = New Case 1 threshold
— New Case 2 threshold
3.6 1 -_

Long—-term mean

= = Goncu and Akyildirim' threshold

—— Zeng and Lee's threshold

Jan-01-2021 Apr-01-2021 Jul-01-2021
Date

FIGURE 6.5. Zero trend new thresholds against Old thresholds for EOAN and RWE
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FIGURE 6.6. Nonzero trend new thresholds against Old thresholds for EOAN
and RWE
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From figures 6.5 and 6.6, the short term pairs trading between EOAN and RWE yields
a maximum of two trades without considering trend, while including the trend yields three.
Apart from the lower return in Zeng’s strategy upon taking out transaction cost, there are

no significant differences in returns in this case.

6.2.3. Exxon Mobil(XOM) and Chevron(CVX)

XOM vs. CVX
4.754
Key
4.50 1 — XOM
— CVX
3
o 4.25
o
n
4.004
3.754
Jaln Alpr J;.ll

Dates

FIGURE 6.7. Logarithmic returns of XOM and CVX for first half of 2021

6.2.3.1. Parameter Estimate

Method Estimate Standard Error
MLE  -2.5825843 0.0251620

: LS -2.58257627
MLE  0.0504110 0.0354427

4 LS 0.05042265
MLE  0.0118340 0.0007767

7 LS 0.01187945

TABLE 6.7. Parameter estimates for OU process representation of spread be-

tween XOM and CVX for first half of 2021
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Method Estimate Standard Error
MLE 0.0005872 0.0004374

! LS 0.0005870524
MLE -2.6326320 0.0355792

’ LS -2.6326459124
MLE 0.0706605 0.0393406

4 LS 0.0706843357
MLE 0.0118702 0.0007846

7 LS 0.0119189268

TABLE 6.8. Parameter estimates for the trend-stationary OU process repre-

sentation of spread between XOM and CVX for first half of 2021

6.2.3.2. Thresholds

Upper Threshold

Lower Threshold

Zeng

-2.5457

-2.6195

Goncu

-2.5337

-2.6314

New case 1, no trend

-2.5826 4 0.0276 e~ 0-0707(553)

-2.5826 - 0.0276 ¢~ 0-0707(555)

New case 2, no trend

22.5826 + 0.0714 ¢~0-0707(55)
- 0.0219 £%0707(553)

-2.5826 - 0.0714 ¢ 00707(553) 4
0.0219 €%-0707(353)

New case 1, with trend

-2.6326 + 0.0006 t + 0.0276

t
o—0-0707(55)

-2.6326 + 0.0006 t - 0.0276

t
o—0-0707(5t5)

New case 2, with trend

-2.6326 + 0.0006 t +

0.0714 e~ 00707(55) _

t
£0-0707(5E5)

0.0219

-2.6326  + 0.0006 t -

0.0714 ¢~ 00707(z3) + 0.0219

£0-0707(

t
353)

TABLE 6.9. Thresholds for the various trading strategies for the spread be-

tween XOM and CVX for first half of 2021
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FIGURE 6.8. Zero trend new thresholds against Old thresholds for XOM and CVX
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FIGURE 6.9. Nonzero trend new thresholds against Old thresholds for XOM
and CVX
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From figures 6.8 and 6.9, the short term pairs trading between Exxon mobile and
Chevron yields four trades for all cases, except for case 2 of our new strategy, where we get
only two trades. But the width of the band ensures that the strategy is still profitable and

there is no significant difference in returns as shown in table 6.13.

6.2.4. Walmart(WMT) and Target(TGT)

WMT vs. TGT
5.4 Key
— WMT
— TGT
T2
o
Q.
7]
5.0 -
Jaln Alpr Jlul

Dates

FIGURE 6.10. Logarithmic returns of WMT and TGT for first half of 2021

6.2.4.1. Parameter Estimate

Method  Estimate Standard Error
MLE  4.5494307 0.0184851

g LS 4.54951867
MLE  0.0569672 0.0299087

4 LS 0.05709409
MLE  0.0112530 0.0007306

7 LS 0.01129947

TABLE 6.10. Parameter estimates for OU process representation of spread

between WMT and TGT for first half of 2021
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Method Estimate Standard Error
MLE -0.0002891 0.0004313

‘ LS -0.0002889013
MLE 4.5730214 0.0368662

’ LS 4.5729951868
MLE 0.0653352 0.0329665

4 LS 0.0653468594
MLE 0.0112824 0.0007365

7 LS 0.0113280445

TABLE 6.11. Parameter estimates for the trend-stationary OU process repre-

sentation of spread between WMT and TGT for first half of 2021

6.2.4.2. Thresholds

Upper Threshold

Lower Threshold

Zeng

4.5839

4.5150

Goncu

4.5931

4.5057

New case 1, no trend

4.5494 + 0.0273 ¢0-0653(553)

4.5494 - 0.0273 ¢0:0653(553)

New case 2, no trend

4.5494 + 0.0706 ¢~0-0653(z53) _
0.0217 €%-0653(353)

4.5494 - 0.0706 ¢~ 0-9653(553) 4
0.0217 ¢%-0653(353)

New case 1, with trend

4.5730 - 0.0003 t + 0.0273

t
o—0-0653(55)

4.5730 - 0.0003 t - 0.0273

t
o—0-0653(555)

New case 2, with trend

45730 - 0.0003 t +

0.0706 e~0-0653(55z) _ 0.0217

t
£0-0653(555)

4.5730 - 0.0003 t - 0.0706

©—0-0653(555) 0.0217

+

0.0653(

t
e 353)

TABLE 6.12. Thresholds for the various trading strategies for the spread be-

tween WMT and TGT for first half of 2021
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FIGURE 6.11. Zero trend new thresholds against Old thresholds for WMT and TGT
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FIGURE 6.12. Nonzero trend new thresholds against Old thresholds for WMT
and TGT
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From figures 6.11 and 6.12, the short term pairs trading between Target and Walmart
yields only two trades for all the old strategies, while our new strategy yields up to five trades
for case 1 with trend, and we see significantly higher returns when the trend is considered.

See table 6.13.

6.2.5. Performance Comparison

Goncu Zeng Zeng-cost Newl New2 New_Trended.1 New_Trended 2

PEP-KO 0.08 0.07 0.03 0.06 0.09 0.06 0.08
EOAN-RWE 0.17 0.10 0.06 0.10 0.10 0.12 0.21
XOM-CVX 0.10 0.07 -0.01  0.06 0.11 0.08 0.08
WMT-TGT 0.11 0.08 0.04 0.10 0.11 0.19 0.16

TABLE 6.13. Performance comparison of the strategies, by profits, for first

half of 2021

Table 6.13 should be interpreted as returns made from shorting $1.00 worth of one
of the stocks and using the amount to long the equivalent worth of the second stock in the

pair.

6.3. Long-Term Trades

For the long term time horizon, we will use the last 1260 trading days data up until

June 30th, 2021, which corresponds to five years in the US financial market.

We do not consider the strategy of [17] for long time horizons due to the fact that

the thresholds become too far from the spreads and yields no trades.
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6.3.1. Pepsi(PEP) and Coca-Cola(KO)

PEP vs. KO

5.0

Key
— PEP

4.5+

Spread

4.0+

2017 2018 2019 2020 2021
Dates

FIGURE 6.13. Logarithmic returns of PEP and KO from July, 2016 to June, 2021

6.3.1.1. Parameter Estimate

Method Estimate Standard Error
MLE 0.7042167 0.0183045

: LS 0.704223932
MLE  0.0154326 0.0048586

4 LS 0.015442115
MLE  0.0099308 0.0001994

? LS 0.009933762

TABLE 6.14. Parameter estimates for OU process representation of spread

between PEP and KO from July, 2016 to June, 2021
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Method  Estimate Standard Error
MLE 0.00006230 0.00004115

LS 0.00006245
MLE 0.66040000 0.03183000

LS 0.66025370
MLE 0.01873000 0.00543900

4 LS 0.01874875
MLE 0.00993800 0.00019990

’ LS 0.00994282

TABLE 6.15. Parameter estimates for the trend-stationary OU process repre-

sentation of spread between PEP and KO from July, 2016 to June, 2021

6.3.1.2. Thresholds

Upper Threshold

Lower Threshold

Zeng

0.7521608

0.6562727

New case 1, no trend

0.7042 + 0.0499 ¢~ 00187(553)

0.7042 - 0.0499 ¢~ 0-0187(55)

New case 2, no trend

0.7042 + 0.0685 ¢~ 0-0187(z55)
0.0095 €0-0187(553)

0.7042 - 0.0685 e 0-0187(553)
0.0095 ¢*-0187(55)

New case 1, with trend

0.6604 + 0.000062 t + 0.0499

t
o—0.0187(5L3)

0.6604 + 0.000062 t - 0.0499

t
o—0.0187(5L5)

New case 2, with trend

0.6604 + 0.000062 t +

0.0685 e~00187(z53) _ (0.0095

t
£0-0187(5t3)

0.6604 -+ 0.000062 t -
0.0685 e~ 00187(z5) 1+ (.0095

t
£0-0187(5L5)

TABLE 6.16. Thresholds for the various trading strategies for the spread be-

tween PEP and KO from July, 2016 to June, 2021
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FIGURE 6.14. Zero trend new thresholds against Old thresholds for PEP and KO
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FIGURE 6.15. Nonzero trend new thresholds against Old thresholds for PEP
and KO
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From figures 6.14 and 6.15, we see that with considering trend, the long time horizon
pairs trading between Pepsi and Coca cola yields only five trades over the five years, while
with trend we obtain nine trades for case 1 threshold and eight for case 2 threshold. All our

thresholds outperform Zeng’s threshold, especially with trend.

6.3.2. E.OnSe (EOAN) and RWE AG(RWE) (German Utility Companies)

EOAN vs. RWE

3.5+

Key
— EOAN
3.0 — RWE

Spread

2.54

2.0+

2017 2018 2019 2020 2021
Dates

FIGURE 6.16. Logarithmic returns of EOAN and RWE from July, 2016 to
June, 2021

6.3.2.1. Parameter Estimate

Method  Estimate Standard Error
MLE  1.2033039 0.0322562

g LS 1.20323964
MLE 0.0104885 0.0040641

4 LS 0.01050636
MLE 0.0119887 0.0002402

’ LS 0.01199341

TABLE 6.17. Parameter estimates for OU process representation of spread

between EOAN and RWE from July, 2016 to June, 2021
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Method  Estimate Standard Error
MLE  0.0000044 0.00008919

! LS  0.0000047
MLE  1.2000000 0.07236000

LS 1.199820
MLE 0.01050000 0.00408700

4 LS 0.01048860
MLE 0.01199000 0.00024030

’ LS 0.01199329

TABLE 6.18. Parameter estimates for the trend-stationary OU process repre-

sentation of spread between EOAN and RWE from July, 2016 to June, 2021

6.3.2.2. Thresholds

Upper Threshold

Lower Threshold

Zeng

1.264456

1.142152

New case 1, no trend

1.2033 + 0.0804 ¢~0-0105(553)

1.2033 - 0.0804 ¢~0-0105(555)

New case 2, no trend

1.2033 + 0.1104 ¢~0-0105(55) _
0.0154 €0-0105(23)

1.2033 - 0.1104 e 0-0105(z55) 4
0.0154 ¢%-0105(353)

New case 1, with trend

1.2000 + 0.000004 t + 0.0804

t
o—0-0105(55)

1.2000 + 0.000004 t - 0.0804

t
o—0.0105(5t5)

New case 2, with trend

1.2000 + 0.000004 t -+
0.1104 e—00105(555) _

0.0105(555)

0.0154

e

1.2000 + 0.000004 t -
0.1104 e 00105(355) 1+ (.0154

t
£0-0105(5L5)

TABLE 6.19. Thresholds for the various trading strategies for the spread be-

tween EOAN and RWE from July, 2016 to June, 2021
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FIGURE 6.17. Zero trend new thresholds against Old thresholds for EOAN
and RWE
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FIGURE 6.18. Nonzero trend new thresholds against Old thresholds for EOAN
and RWE
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From figures 6.17 and 6.18, we notice there is no significant trend in the spread.

However, table 6.26 shows that all our thresholds still outperform Zeng’s threshold.

6.3.3. Exxon Mobil(XOM) and Chevron(CVX)

XOM vs. CVYX
4.5
©
©
o
o
n
4.0
Key
— XOM
3.5 — cvx
2017 2018 2019 2020 2021

Dates

FIGURE 6.19. Logarithmic returns of XOM and CVX from July, 2016 to June, 2021

6.3.3.1. Parameter Estimate

Method Estimate Standard Error
MLE -3.2942037 0.0468415

g LS -3.29412264
MLE  0.0128430 0.0040526

4 LS 0.01284758
MLE  0.0210520 0.0004217

’ LS 0.02106278

TABLE 6.20. Parameter estimates for OU process representation of spread

between XOM and CVX from July, 2016 to June, 2021
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Method Estimate Standard Error
MLE  -0.00029550 0.00005101

‘ LS -0.0002953393
MLE  -3.08400000 0.03824000

’ LS -3.0842283357
MLE 0.03283000 0.00740600

4 LS 0.0328136899
MLE 0.02118000 0.00042920

7 LS 0.0211814889

TABLE 6.21. Parameter estimates for the trend-stationary OU process repre-

sentation of spread between XOM and CVX from July, 2016 to June, 2021

6.3.3.2. Thresholds

Upper Threshold

Lower Threshold

Zeng

-3.211814

-3.376593

New case 1, no trend

-3.2942 4 0.0803 ¢~0-0462(553)

-3.2942 - 0.0803 ¢—0-0462(553)

New case 2, no trend

-3.2942 + 0.1103 e~0-0462(55)
- 0.0153 £0-0462(5z3)

-3.2942 - 0.1103 ¢~00462(z5) 4
0.0153 €0-0462(353)

New case 1, with trend

3.7117 - 0.0003 t + 0.0803

t
o—0-0462(5k5)

3.7117 - 0.0003 t - 0.0803

t
o—0-0462(5k5)

New case 2, with trend

3.7117 - 0.0003 t 4+

0.1103 e 00462(553)

0.0462(555)

0.0153

e

3.7117 - 0.0003 t - 0.1103
¢ 0:0462(553) + 0.0153

t
£0-0462(555)

TABLE 6.22. Thresholds for the various trading strategies for the spread be-

tween XOM and CVX from July, 2016 to June, 2021
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FIGURE 6.20. Zero trend new thresholds against Old thresholds for XOM and CVX
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FI1GURE 6.21. Nonzero trend new thresholds against Old thresholds for XOM
and CVX
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We see here that the spread between Exxon mobile and Chevron has a significant
trend. Thus we get significantly more trades when the trend is considered. See figure 6.20
and 6.21. All our thresholds still perform better than Zeng’s threshold, and the trend-
ing thresholds perform even better, generating almost twice as much profit as Zeng’s with

transaction cost considered.

6.3.4. Walmart(WMT) and Target(TGT)

WMT vs. TGT

5.5+

5.0+

Spread

4.5+

Key

— wwmT
4.0-
— TGT

2017 2018 2019 2020 2021
Dates

FIGURE 6.22. Logarithmic returns of WMT and TGT from July, 2016 to
June, 2021

6.3.4.1. Parameter Estimate

Method Estimate Standard Error
MLE 2.2301072 0.0551505

: LS 2.229735861
MLE  0.0065499 0.0032483

4 LS 0.006567753
MLE  0.0128164 0.0002563

? LS 0.012821651

TABLE 6.23. Parameter estimates for OU process representation of spread

between WMT and TGT from July, 2016 to June, 2021
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Method Estimate Standard Error
MLE -0.0001508 0.0002448

‘ LS -0.0001514578
MLE 2.3518474 0.2201089

’ LS 2.3523800692
MLE 0.0055067 0.0034584

4 LS 0.0055053940
MLE 0.0128072 0.0002563

7 LS 0.0128118140

TABLE 6.24. Parameter estimates for the trend-stationary OU process repre-

sentation of spread between WMT and TGT from July, 2016 to June, 2021

6.3.4.2. Thresholds

Upper Threshold

Lower Threshold

Zeng

2.304404

2.15581

New case 1, no trend

2.2301 + 0.1186 ¢0-0055(55)

2.2301 - 0.1186 ¢~0-0055(5%3)

New case 2, no trend

2.2301 + 0.1629 e~00055(553)
0.0227 €0-0055(553)

2.2301 - 0.1629 ¢~0-00%5(z53) 4
0.0227 €0-0053(353)

New case 1, with trend

2.3518 - 0.00015 t + 0.1186

t
o—0-0055(55)

2.3518 - 0.00015 t - 0.1186

t
o—0-0055(555)

New case 2, with trend

23518 - 0.00015 t +

0.1629 e—0:0055(55) _

0.0055(5%5)

0.0227

e

2.3518 - 0.00015 t - 0.1629

©—0.0055(55) + 0.0227

0.0055( 555)

(&

TABLE 6.25. Thresholds for the various trading strategies for the spread be-

tween WMT and TGT from July, 2016 to June, 2021
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FIGURE 6.23. Zero trend new thresholds against Old thresholds for WMT and TGT
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FIGURE 6.24. Nonzero trend new thresholds against Old thresholds for WMT
and TGT
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For the Target/Walmart pair, we notice that the trend in the spread switches from
an increasing one to a decreasing trend between the first and second halves of of the time
horizon, as shown in figures 6.23 and 6.24. Nonetheless, we notice from table 6.26 that our
method is still superior to that of [40], with almost twice as much profit for without trend
and almost trice as much for case 2 with trend, in comparison with [40] after deducting

transaction cost.

6.3.5. Performance Comparison

Zeng Zeng-cost Newl New2 New_Trended 1 New_Trended 2

PEP-KO 0.22 0.12 024 0.31 0.45 0.50
EOAN-RWE 0.71 045 0.78 0.75 0.78 0.74
XOM-CVX  0.79 0.59 082 0.94 1.06 1.01
WMT-TGT 0.48 034 0.59 0.62 0.53 0.94

TABLE 6.26. Performance comparison of the strategies, by profits, from July,

2016 to June, 2021
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CHAPTER 7

CONCLUSION

We have looked at pairs trading as a form of statistical arbitrage, and have considered
some of the resent trading strategies published in major quantitative finance journals. In
particular we reviewed the strategies of Zeng and Lee [40], published as recent as 2014, and
Goncu and Akyildirim [17], which was published in 2016. In our study of these two results
we pointed out limitations of their strategies, such as overdependence on transaction cost,
in the case of Zeng and Lee, which leads to a collapse of their strategy when transaction
cost is zero, and on the other hand, the wide band of Goncu and Akyildirim’s thresholds
for long trading time horizons which yields zero trade under the circumstance and becomes

inapplicable.

We presented a novel class of non-linear boundaries for the OU process, base on which
we derived new decision rules for pairs trading. We proved the existence and uniqueness of
maximizers for obtaining optimal thresholds for our new strategies. We also looked at ver-
sions of these boundaries for the trend-stationary OU process 12. Based on these boundaries,
we came up with new strategies that presented four types of thresholds, two each for the mean
reverting OU process and the trend-stationary OU process, and we named them case 1 and
case 2, where case 1 has a tight band while case 2 is broader. We then considered both long-
term and short term trade time horizons and showed with Monte Carlo simulations and real
data for the pairs Pepsi(PEP)/Coca-cola(KO), Walmart(WMT)/Target(TGT), Exxon Mo-
bil(XOM)/Chevron(CVX) and the German utility companies E.OnSe(EOAN)/RWE AG(RWE),
that our new strategies are robust and outperform existing ones in terms of total profit over
the trade time horizon, generating almost trice as much profit as Zeng and Lee’s strategy
in the case of long-term trade over a five-year period for the Walmart(WMT)/Target(TGT)
pair, when transaction cost is taken into account. Our results showed that for both Long-

term and short-term trade time horizons, considering trend yields higher profits.

In addition, we also derived simple formulas for some FPT moments of the standard
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Brownian motion to some class of boundaries without relying on analytic expressions for the
densities, since they are mostly nonexistent, and we extended this result to the Ornstein-

Uhlenbeck process.
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APPENDIX

SOME RELEVANT THEOREMS
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A.1. Wang’s Theorem

We consider the general diffusion process, X;, satisfying the stochastic differential

equation (SDE)
(82) dX, = ult, X,)dt + o(t, X,)dWt, X = o,

where the drift term u(t, z) : [0,00) x R — R and the diffusion coefficient o(¢,x) : [0, 00) X
R — Ry are real, deterministic functions and {W;,¢ > 0} is the standard Brownian motion
(BM).

We define the boundary (non)crossing probability (BCP) of the process X; to the

boundaries a(t) and b(t) over the time interval [0,7") by
Px(a,b,T) = P(a(t) < W; < b(t),Vt € [0,T)

THEOREM A.1. If there exists a function f(t,z) € C1*([0,00) x R), such that Y; := f(t, X;)
satisfies dYy; = 6, dWy, where 6, € C([0,00)) is a real, deterministic function satisfying ¢, #
0,Vt € [0,00), then there exists a standard BM {WS, s > 0}, such that for any boundaries
a(t), b(t),
(1) Px(a,b,T)
(2) Px(a,b,T)

Py (c,d,S), if 6, > 0,Vt € [0,00);
Py (d,c,S), if 6, < 0,Vt € [0,00);

where,

c(s) = f(t(s),a(t(s))) = f(0,20),0 < s < 5,

d(s) = f(t(s),b(t(s))) — f(0,20),0 < s < S,
t(s) is the inverse function of s(t) = [, 7. %du and S = s(T) [36].
A.2. Mill’s Ratio Inequality

Given x > 0,
4

2
<R < ————,
Vrz+4d+ax (v) < Va2 + 8+ 3x

where R(z) = =2 g the Mills ratio, with ®(x) and ¢(x) being the standard normal CDF
o(x)

and PDF respectively. [32], [39].
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A.3. Ito’s Lemma

Given a diffusion process X; satisfying the stochastic differential equation:
dXt = ,u(Xt, t)dt + O'(Xt, t)dBt,

where B; is the standard Brownian motion, Let f(X;,t) € C?(R?,R), then f(X;,t) satisfies

.o 1 F(Xtt) F(Xet)
Of (Xt )_|_—0'2(Xt,t)a—(Xt>t)> dt+g(Xt,t)a—(Xt,t)dBt

A 4. Girsanov’s Theorem

Given the probability space (2, FF, P), let B; be Brownian motion on the filtration

{F;}+>0. Let u; be a process adapted to the filtration Iy, and define a probability measure

Q by
4Q
dP |,

in other words Q(A) = E,[Z;14], for A € F,.

1t 2 t
=¢e 2 Jo nidst [y nsdBs _ Zy,

Then ) ~ P, and the process
t
W, =By — / fsds
0

is a Brownian motion under the probability measure @ [16] .
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