
 

 

 

 
 

 

  

APPROVED: 
 
Kai-Sheng Song, Major Professor 
Joseph Iaia, Committee Member 
Nam Trang, Committee Member 
Ralf Schmidt, Chair of the Department of 

Mathematics 
Pamela Padilla, Dean of the College of 

Science 
Victor Prybutok, Dean of the Toulouse 

Graduate School 

OPTIMAL PAIR-TRADING DECISION RULES FOR A CLASS OF NON-LINEAR 

BOUNDARY CROSSINGS BY ORNSTEIN-UHLENBECK PROCESSES 

Emmanuel Edem Kwaku Tamakloe, BEd., MS  

Dissertation Prepared for the Degree of 

DOCTOR OF PHILOSOPHY 

UNIVERSITY OF NORTH TEXAS 

December 2021 



Tamakloe, Emmanuel Edem Kwaku. Optimal Pair-Trading Decision Rules for a 

Class of Non-Linear Boundary Crossings by Ornstein-Uhlenbeck Processes . Doctor of 

Philosophy (Mathematics), December 2021, 147 pp., 51 tables, 83 figures, 1 appendix, 40 

numbered references.     

The most useful feature used in finance of the Ornstein-Uhlenbeck (OU) stochastic 

process is its mean-reverting property: the OU process tends to drift towards its long- 

term mean (its equilibrium state) over time.  This important feature makes the OU process 

arguably the most popular statistical model for developing best pair-trading strategies. 

However, optimal strategies depend crucially on the first passage time (FPT) of the OU 

process to a suitably chosen boundary and its probability density is not analytically 

available in general. Even for crossing a simple constant boundary, the FPT of the OU 

process would lead to crossing a square root boundary by a Brownian motion process 

whose FPT density involves the complicated parabolic cylinder function. To overcome the 

limitations of the existing methods, we propose a novel class of non-linear boundaries for 

obtaining optimal decision thresholds. We prove the existence and uniqueness of the 

maximizer of our decision rules. We also derive simple formulas for some FPT moments 

without analytical expressions of its density functions. We conduct some Monte Carlo 

simulations and analyze several pairs of stocks including Coca-Cola and Pepsi, Target and 

Walmart, Chevron and Exxon Mobil. The results demonstrate that our method 

outperforms the existing procedures. 
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CHAPTER 1

INTRODUCTION

With the introduction of algorithmic trading and high frequency trading in the late

1980s, trading in the financial market has transformed over the years, and this is true for all

forms of trading strategies, including arbitrage.

1.1. Pairs Trading

Various trading strategies are employed in financial markets, one of which is arbitrage.

Billingsley defined arbitrage as ”the process of buying assets in one market and selling them

in another to profit from unjustifiable price differences” [6]. While this is true, the assets

need not be in different markets. An arbitrage exists as long as there is a deviation in price,

which is expected to close up over time. There are various forms of arbitrage, some of which

have been identified in [6]. One form of arbitrage is the statistical arbitrage. Goncu and

Akyildirim defined a statistical arbitrage as follow:

A statistical arbitrage is a zero initial cost, self-financing trading strategy {v(t) : t ≥ 0} with

cumulative discounted value v(t) such that

(1) v(0) = 0

(2) limt→∞E[v(t)] > 0,

(3) limt→∞P (v(t) < 0) = 0, and

(4) limt→∞
var(v(t))

t
= 0 if P (v(t) < 0) > 0,∀t <∞ [17]

”A statistical arbitrage refers to trading strategies that generate almost sure profits

asymptotically via trading signals generated from quantitative models” [17]. These models

are usually mean-reversion models. and the assets are usually short-term financial instru-

ments. Pairs trading is a form of statistical arbitrage. It is widely assumed to be the

”ancestor” of statistical arbitrage [4].

In its most common form, pairs trading involves forming a portfolio of two related

stocks whose relative pricing departs from its ”equilibrium” [20]. The idea of pairs trading

is based on the assumption that if the prices of a pair of financial instruments, for instance

1



stocks, moved together in the past, then this behavior is likely to continue in the future [40].

The strategy employs a lot of quantitative and computational techniques to realize results.

1.2. Cointegration

It is well known that asset price time series are generally nonstationary. In conformity

with the efficient market hypothesis, they exhibit unit-root property. Thus the current price

is the best predictor of the next price [15]. However, there exists co-movements among prices

of different assets. As a result, one may find a linear combination of the asset prices, which

is stationary. This idea lends itself to the concept of cointegration, which was documented

in [7]. The term cointegration was later coined by Granger in [18].

Let Xt be an asset price. It is said to be of integration order zero if it is stationary,

and we denote that by Xt ∼ I(0). If Xt is nonstationary but ∇Xt := Xt−Xt−1 is stationary,

then Xt is said to be of integration order 1. In this case, we say that Xt has a unit root and

is denoted by Xt ∼ I(1). Now, suppose we have two related stocks P and Q. Let Pt and Qt

be the time series of their prices. Suppose they both have integration order 1. If there exists

a non-zero constant η such that Pt− ηQt ∼ I(0), then Pt and Qt are said to be cointegrated

[15]. Thus there exist a linear combination of the two time series whose integration order is

zero. In other words this linear combination is stationary.

We can model the cointegration of Pt and Qt as:

(1.1) ln(Pt)− ln(Pt0) = α(t− t0) + η[ln(Qt)− ln(Qt0)] + εt, t ≥ 0,

where α is the drift rate, η is some constant and εt is a stationary or mean-reverting process

[4].

1.3. Mean Reversion Models

As stated in the previous section, the random variable εt in equation (1.1) is assumed

to be stationary, or mean reverting. A mean-reversion process is a stochastic process that

tends to revert toward its equilibrium position or long-term mean, or a long-term trend,

whenever there is a deviation from this position or trend. Thus the long-term mean or trend
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acts as an attractor and together with the random component makes the process oscillate

around this mean or trend [26].

The long-term trend may be deterministic or stochastic. A one-dimensional mean

reversion process with deterministic long-term trend and constant parameters can be modeled

as:

(1.2) dXt = λ(µ(t)−Xt)dt+ σXγ
t dBt; t ∈ [0, T ]

where X0 = x is the initial position, the constant λ > 0 is the reversion rate, the constant

σ > 0 is the scale parameter for the volatility and the constant γ ∈ [0, 3/2] is the sensitivity

parameter of the variance of the process to the level of Xt. The deterministic function µ(t)

is the long-term trend, and {Bt}t≥0 is a one-dimensional standard Brownian motion defined

on a complete probability space (Ω,F ,P) [26].

Some examples of the above model with constant long-term mean include:

(1) Vasicek / Ornstein-Uhlenbeck Process (OU)

(1.3) dXt = λ(µ−Xt)dt+ σdBt

(2) Cox-Ingersoll-Ross Square Root model (CIR SR)

(1.4) dXt = λ(µ−Xt)dt+ σ
√
XtdBt

(3) Brennan-Schwartz model

(1.5) dXt = λ(µ−Xt)dt+ σXtdBt

Some examples with time-dependent long-term trend

(4) Hull-White model

(1.6) dXt = λ(µ(t)−Xt)dt+ σdBt

For (1), see [35]. (2) can be found in [12]. Michael Brennan and Eduardo Schwartz

constructed (3) in [9]. Also, a summary of these can be found in [11] and [34].
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1.4. Ornstein-Uhlenbeck Processes

Given two stocks P and Q and their price time series Pt and Qt as defined in section

1.2, we model the spread of their log-returns by the cointegration model (1.1), where the

random component εt is assumed to follow an Ornstein-Uhlenbeck process [4, 40, 17].

We may or may not ignore the drift rate α. Both [17] and [40] suggest that it is

usually ignorable compared to the fluctuations of the residual εt, and indeed did not include

it in their models. Following their approach, we define Xt := εt + ln(P0)− ηln(Q0).

Thus the cointegration model can therefore be represented as:

(1.7) Xt = ln(Pt)− ηln(Qt)

We note that since ln(P0)−ηln(Q0) is constant, thenXt is also an Ornstein-Uhlenbeck(OU)

process. Thus it satisfies equation (1.3), which is stated again here for completeness.

dXt = λ(µ−Xt)dt+ σdBt

The interpretation of equation (1.7) together with the above equation is that at some

time t∗ > 0 where Xt∗ 6= µ, the trader may initiate a trade by doing one of the following:

(I) If Xt∗ > 0, then at time t∗, asset P is relatively overvalued in comparison with asset Q

and hence its current price is relatively above the long-term equilibrium price. Thus the

return on asset P as the values of both assets shift towards the long-term equilibrium

is expected to decrease while the return on asset Q will increase since it is relatively

undervalued. In this case, at time t∗, the trader will short 1 dollar of asset P and long

η dollars of asset Q, and then clear position when Xt reaches the long-term mean µ.

(II) If Xt∗ < 0, then at time t∗, asset P is relatively undervalued in comparison with

asset Q and hence its current price is relatively below the long-term equilibrium price.

Thus the return on asset P as the values of both assets shift towards the long-term

equilibrium is expected to increase while the return on asset Q will decrease since it is

relatively overvalued. For this case, at time t∗, the trader will long 1 dollar of asset P
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and short η dollars of asset Q, and then clear position when Xt reaches the long-term

mean µ.

There are various ways of deciding a value for η. Some common ones are as follows:

(1) As a linear regression coefficient of the logarithm of one asset price time series

against the other [40].

(2) η = log(Pt∗/Qt∗), also known as the no borrowing/lending case, since the amount

for the long and short positions offset each other [17].

(3) η = βP/βQ, where the β’s are obtained from the market at the beginning of each

trade cycle [17].

1.5. The Generalized Ornstein-Uhlenbeck Process

Suppose we choose to maintain the drift rate α in the cointegration. Then we will

define Xt by Xt := α(t − t0) + εt + ln(P0) − ηln(Q0), where the residual εt follows a mean

reverting OU process as before. In this case, the long-term equilibrium behavior of Xt has a

linear trend coming from the term α(t− t0).

The cointegration model again becomes

Xt = ln(Pt)− ηln(Qt),

−αt0 + ln(P0) − ηln(Q0) is constant, but Xt follows a trending Ornstein-Uhlenbeck

process (Also called the trend-stationary Ornstein-Uhlenbeck process). The stochastic dif-

ferential equation for this model is represented as:

(1.8) d(Xt − µt) = −λ(Xt − µt)dt+ σdBt

or

(1.9) dXt = (µ− λ(Xt − µt))dt+ σdBt [34]
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Similar to the OU process case, at some time t∗ > 0 where Xt∗ 6= µt∗, the trader takes

position as discussed in I and II above, and clears position when Xt∗ crosses the long-term

equilibrium trend.

1.6. The Problem Statement

At this point, the question that comes to mind is how does one determine the time t∗

at which to take position? This is among the questions we seek to address in this dissertation.

In general, the way this is done is to find an ”appropriate” level of the spread Xt to start the

trade cycle and the first time this level is crossed will be our choice for t∗. We first explore

various literature on this problem in the next chapter.
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CHAPTER 2

OVERVIEW AND LIMITATIONS OF EXISTING METHODS

As explained in the statement of the problem, pairs trading strategy is about choosing

the appropriate time to enter a trade position and when to exit, according to the procedure

explained in section 1.4. The question of choosing the appropriate time to enter trade

position also corresponds to that of choosing an appropriate spread level at which to enter

the trade position. Thus we initiate trade the first time the level is crossed. So the problem

can be framed in the context of first passage time (FPT), which is discussed in the next

section.

2.1. First Passage Time

The first passage time (FPT) of a stochastic process to a boundary is the amount

of time it takes the process to reach the boundary for the first time, given its initial value.

Formally defined as follows:

Given a stochastic process {Xt}t≥0 with X0 = x0, and a real-valued function b(t)

defined on t ≥ 0, such that b(0) ≥ x0, we define the first passage time (FPT) of Xt to b(t)

by,

τb := inf{t > 0 : Xt ≥ b(t)|X0 = x0}

The probability distribution and density functions of the first passage time of various

stochastic processes are very much studied because of their wide range of applications in

various fields. A few of these applications besides pairs trading are listed below;

i In biology, first passage time densities are used in the study of stochastic birth-death

model for cell populations [21].

ii In chemical physics, it is used for instance in studying models for the dissociation of

diatomic molecules in which dissociation occurs when the molecules acquire a certain

critical energy Ec through collisions [37].
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iii The most prevalent use is found in quantitative finance, where first passage times are

used in credit risk analysis (times of default) as well as in defining exotic contingent

claims ( so-called barrier options) [14].

Despite the numerous applications, expressions of first passage time densities are

known only in very few specific cases. These include Brownian motions to constant bound-

aries, linear boundaries, square root boundaries [8, 29] and square boundaries [19], and

Ornstein-Uhlenbeck (OU) processes to constant boundaries [3]. There are also results for

certain transformations of these boundaries. See for instance [2]. However, with the excep-

tion of the constant and the linear Brownian motion boundaries, the rest are all in terms

of infinite series of some advanced mathematical functions, such as the parabolic cylinder

function, the Hermite polynomial and the Airy function [1], which makes them unwieldy.

In the case of Brownian motions, one common method by which results are obtained involves

solving Kolmogorov’s differential equation to obtain the transition density of the Brownian

motion and using the result to find the first passage time density [13]. Another approach

is through what is known as the method of images. It involves solving an implicit equation

that involves the integral of some exponential function with respect to a positive σ-finite

measure, and then the first passage time density is defined as some function of the solution

[25, 23].

For Ornstein-Uhlenbeck processes, the case of the constant boundary corresponds to

the square root boundary of the Brownian motion [3]. Alili et al showed how this is achieved

via Doob’s transform [36].

In the absence of general analytic expressions for the first passage time density or

distribution, one has to resort to computational methods, which is a common practice.

Some numeral methods used are based on integral equations, such as the Volterra integral

equations [31, 10] and the Fredholm equations [23, 33].

There are also other numerical methods that rely on Monte Carlo simulations [22].
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2.2. Pairs Trading Strategies

The random component of the cointegration model for pairs trading follows an Ornstein-

Uhlenbeck process. Hence in deciding the optimal level for taking position, most of the

strategies rely on the first passage time of the Ornstein-Uhlenbeck process to a one-sided or

two-sided boundary, and/or the first passage time of the Ornstein-Unlenbeck process from

a boundary to the long term mean. We look into some of these methods next. The meth-

ods differ in two ways: how the optimal level or boundary is chosen and how the trade is

implemented.

2.2.1. Conventional Method

In the conventional method of pairs trading, the spread between the log-returns of

the prices of the pair of assets is modeled with the cointegration relation. The random

part is assumed to follow a mean-reverting stochastic process, such as the OU process. The

optimal buy/sell thresholds are determined with the appropriate mathematical and statistical

technique and a buy or sell position is taken when the set threshold is reached and the trader

waits for the process to return to the long-term mean in order to clear position, and this cycle

is repeated throughout the trading time horizon. The optimal levels are usually determined

by the two standard deviation rule [5]. However, other levels of standard deviation may be

used, see for instance [4].

2.2.2. Continuous Time Trading

A continuous trading strategy comprises a sequence of individual trades

performed on a continuous time stochastic process [5].

Bertram also added that ”a continuous time trading strategy is defined by entering a trade

when Xt = a, exiting the trade at Xt = m, and waiting until the process returns to Xt = a,

to complete the trading cycle”. The difference here is that the exit level is not necessarily

the long-term mean. Bertram expressed the return as a function of the entry level a, exit

level b and the transaction cost. The optimal thresholds are found by solving for the entry

and exit levels that maximize the expected return as well as the Sharpe ratio.
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2.2.3. Zeng and Lee’s Strategy

Zeng and Lee presented an alternative method in which they sought to find optimal

entry and exit thresholds that maximize the expected profit per unit time in the long run [40].

Similar to [5], the exit level is not necessarily the long term mean. Using the elementary

renewal theorem, they were able to obtain an expression for the expected profit per unit

time in terms of the entry level, the exit level, and the transaction cost. Then applying

the relevant optimization techniques, they obtained implicit expressions for the thresholds.

One of the cases they considered reduced to the conventional method, in that the exit level

matched with the long term mean, while the other two cases they considered resulted in

their ”New Optimal Rule”. They noted that when there is no transaction cost, the maximal

return of the new rule is the same as the maximal return of the conventional method. But

the new rule outperforms the conventional rule if the transaction cost is greater than zero.

2.2.4. Goncu and Akyildirim’s Strategy

Another strategy, which is more like the conventional method in terms of exit level,

is presented by [17]. The objective is to find the optimal threshold that maximizes the

probability of successful trade within a given time horizon. Successful trade in this context

is defined as successful mean reversion and closing of spread position with the given time.

They used the first passage time density of the Ornstein-Uhlenbeck process from a position

above the long term mean to the long term mean in deriving the optimal threshold for

the strategy. Although transaction cost was considered in the paper, it does not affect the

optimization technique use in this strategy.

2.3. Limitations of Existing Methods

We have seen some useful pairs trading strategies in the previous section. As useful

as they are, they do have some limitations which we discuss in this section.

2.3.1. The Cointegration Drift Rate

As pointed out earlier on, a common assumption of the strategies discussed in the

previous section is that the drift rate α in the cointegration model (1.1) is often negligible
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and therefore ignored. While this is true, there are several empirical cases where we found

out that maintaining the drift rate was necessary to ensure that the pair of asset price

time series were cointegrated, thus (1.7) represents a stationary process. We present some

examples below. As we see in figure 2.1, the residual plot for the cointegration between

logarithmic returns of Pepsi stock price time series and Coca Cola stock price time series

from September 16th, 2008 to July 7th, 2009 shows that a trend is present. This shows time

dependency, hence nonstationarity in the spread, and therefore suggests that the logarithmic

returns of the two stock prices over the given period may not be really cointegrated. In this

example, η is taken to be the coefficient of linear regression. On the other hand, considering

a stationarity test, such as the augmented Dickey-Fuller test, for the same data set, as

presented in table 2.1, the p-values suggest stationarity in the residuals with or without

trend. The ”drift” used in the table refers to the vertical intercept of the line, while the

”trend” refers to the rate of change of the line [30].

0.4
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0.6

Oct−01−2008 Jan−01−2009 Apr−01−2009 Jul−01−2009
Date

R
es

id
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l

Figure 2.1. Cointegration between logarithmic returns of Pepsi and Coca

Cola stock prices from September 16, 2008 to July 7, 2009
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Linear model type Lag ADF p-value

Type 1: no drift, no trend 0 -2.6 ≤ 0.01

Type 2: with drift, no trend 0 -2.6 0.0977

Type 3: with drift and trend 0 -4.39 ≤ 0.01

Table 2.1. Augmented Dickey-Fulller test for stationarity of the cointegra-

tion between Pepsi and Coca Cola log-returns.

Note 1: Alternate hypothesis: Stationary

Notwithstanding, if we consider the augmented Dickey-Fuller test statistic presented

in the table, we notice that the model with drift and trend (Type 3) has significantly lower

test statistic than the model with no drift nor trend. This may be worth considering in

choosing whether or not to maintain the drift rate α in the cointegration model. We will

explore this further in chapter 3.

Additionally, we also noticed that out of sample prediction was better in some cases

when we involve the drift rate. It also provides more crossings and thus has the potential to

generate more trade opportunities.

2.3.2. Constant Boundary

The strategies we have discussed so far all employ a constant (non-time-dependent)

threshold. To the best of our knowledge, no literature on pairs trading strategies employs

any form of time dependent threshold.

Since the residual in the cointegration model is assumed to follow a mean-reverting

process, one would expect that over time there would be a reduction in the deviation from

the long term mean or trend. This is particularly true for short-term trades as evidenced in

the examples to follow. We pick four pairs of stocks that are considered to exhibit similar

patterns and were used by [40]; [17] in their papers.

Thus with a constant threshold, there is a high chance that at the early part of the

time horizon, the trader may enter trade position at a level too close to the long term mean

and hence miss some profit and/or miss trade opportunities toward the end of the time
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horizon due to reduction in deviation from the long term mean over time. It is worth noting

that this phenomenon is very common, but we only picked a few instances for each of the

four pairs to make our point as shown in figures 2.2, 2.3, 2.4 and 2.5.

2.3.3. Zeng and Leng’s Strategy and Transaction Cost

Except for Goncu and Akyildirim’s strategy, most known pairs trading strategies de-

pend on transaction cost. In fact Zeng and Lee stated in their paper that at zero transaction

cost their result yield the same maximal return as the conventional method [40]. On top of

this we found out that a zero transaction cost would mean a threshold of zero for Zeng and

Lee’s method. This can be checked by solving equation 80. However, trades nowadays have

either zero or close to zero transaction cost, which means Zeng and Lee’s strategy would not

be applicable in such circumstances.

2.3.4. A Discussion on the Method of Goncu and Akyildirim

As stated earlier Goncu and Akyildirim’s method is based on the investment time

horizon, T . The function they sought to maximize is:

P (τ < T ) =

∫ T

0

√
2

π

|c|e−t

(1− e−2t)3/2
exp

(
− c2e−2t

2(1− e−2t)

)
dt

We show a plot of this function for the case of T = 0.5 in figure 2.6. It is clear from

this plot that the optimal value of the function is obtained when c is approximately equal

to zero, which makes intuitive sense, in that the closer the threshold is to the long term

mean, the higher the chance of reaching it within the time horizon T . But this would

mean their threshold is essentially zero, hence provides no trade opportunity in the given

time horizon. So, the strategy fails. Besides this, we also have concerns regarding the

optimization technique employed by the authors in arriving at the optimal expression for

level c. The approach does not guarantee in general that P (τ) is a probability function for

the resulting value of c. We also note that for large time horizon T , say T = 2, the resulting

thresholds for their strategy are too far from the spread to yield any trades at all. We show

an example in figure 2.7 for 2-year time horizon for the German utility companies EOAN

and RWE.

13



Out[ ]=

0.2 0.4 0.6 0.8 1.0
c

-1.0

-0.5

0.5

1.0

1.5
Prob

Figure 2.6. Objective function of Goncu and Akyildirim for time horizon

T = 0.5

1.25

1.50

1.75

2.00

Jul−01−2019 Jan−01−2020 Jul−01−2020 Jan−01−2021 Jul−01−2021
Date

S
pr

ea
d

Key

Long−term mean

Goncu and Akyildirim's threshold

EOAN~RWE

Figure 2.7. Goncu and Akyildirim’s threshold for 2 year time horizon pairs

trading of EOAN.DE and RWE.DE

14



−0.4

−0.3

−0.2

Oct−01−2008 Jan−01−2009 Apr−01−2009
Date

S
pr

ea
d

1.45

1.50

1.55

1.60

Apr−01−2009 Jul−01−2009
Date

S
pr

ea
d

3.25

3.30

3.35

3.40

3.45

Jul−01−2011 Oct−01−2011 Jan−01−2012
Date

S
pr

ea
d

2.725

2.750

2.775

2.800

Jan−01−2012 Apr−01−2012 Jul−01−2012
Date

S
pr

ea
d

0.875

0.900

0.925

0.950

Jan−01−2014 Apr−01−2014
Date

S
pr

ea
d

0.95

1.00

1.05

Oct−01−2016 Jan−01−2017 Apr−01−2017
Date

S
pr

ea
d

1.24

1.26

1.28

1.30

Apr−01−2017 Jul−01−2017
Date

S
pr

ea
d

−0.45

−0.40

−0.35

−0.30

Apr−01−2018 Jul−01−2018 Oct−01−2018
Date

S
pr

ea
d

1.60

1.65

1.70

1.75

Apr−01−2019 Jul−01−2019
Date

S
pr

ea
d

2.82

2.85

2.88

2.91

Jul−01−2019 Oct−01−2019 Jan−01−2020
Date

S
pr

ea
d

PEP~KO

Figure 2.2. Spreads between logarithmic returns of PEP and KO stock prices

for various half year periods 15



−3.3

−3.2

−3.1

−3.0

Oct−01−2008 Jan−01−2009 Apr−01−2009
Date

S
pr

ea
d

−2.90

−2.85

−2.80

−2.75

−2.70

Apr−01−2009 Jul−01−2009
Date

S
pr

ea
d

−0.20

−0.15

−0.10

−0.05

Jul−01−2009 Oct−01−2009 Jan−01−2010
Date

S
pr

ea
d

−0.76

−0.72

−0.68

−0.64

Jan−01−2010 Apr−01−2010 Jul−01−2010
Date

S
pr

ea
d

0.4

0.5

0.6

Jul−01−2011 Oct−01−2011 Jan−01−2012
Date

S
pr

ea
d

−1.15

−1.10

−1.05

−1.00

Apr−01−2012 Jul−01−2012 Oct−01−2012
Date

S
pr

ea
d

−2.9

−2.8

−2.7

−2.6

Oct−01−2012 Jan−01−2013 Apr−01−2013
Date

S
pr

ea
d

1.24

1.28

1.32

1.36

Apr−01−2013 Jul−01−2013
Date

S
pr

ea
d

0.8

0.9

1.0

1.1

Oct−01−2016 Jan−01−2017
Date

S
pr

ea
d

0.84

0.88

0.92

0.96

Oct−01−2018 Jan−01−2019
Date

S
pr

ea
d

EOAN~RWE

Figure 2.3. Spreads between logarithmic returns of EOAN and RWE stock

prices for various half year periods 16



−0.25

−0.20

−0.15

−0.10

Apr−01−2011 Jul−01−2011
Date

S
pr

ea
d

3.375

3.400

3.425

3.450

Oct−01−2012 Jan−01−2013 Apr−01−2013
Date

S
pr

ea
d

0.75

0.80

0.85

0.90

0.95

1.00

Jul−01−2013 Oct−01−2013 Jan−01−2014
Date

S
pr

ea
d

0.825

0.850

0.875

0.900

Jan−01−2014 Apr−01−2014
Date

S
pr

ea
d

1.250

1.275

1.300

1.325

Apr−01−2014 Jul−01−2014 Oct−01−2014
Date

S
pr

ea
d

1.975

2.000

2.025

2.050

2.075

Apr−01−2015 Jul−01−2015
Date

S
pr

ea
d

0.00

0.05

0.10

0.15

Apr−01−2016 Jul−01−2016 Oct−01−2016
Date

S
pr

ea
d

2.750

2.775

2.800

2.825

Apr−01−2017 Jul−01−2017
Date

S
pr

ea
d

2.700

2.725

2.750

2.775

2.800

2.825

Jul−01−2017 Oct−01−2017 Jan−01−2018
Date

S
pr

ea
d

0.2

0.3

0.4

Apr−01−2019 Jul−01−2019
Date

S
pr

ea
d

XOM~CVX

Figure 2.4. Spreads between logarithmic returns of XOM and CVX stock

prices for various half year periods 17



2.8

2.9

3.0

Oct−01−2008 Jan−01−2009 Apr−01−2009
Date

S
pr

ea
d

3.65

3.70

3.75

3.80

Apr−01−2009 Jul−01−2009
Date

S
pr

ea
d

1.15

1.20

1.25

Jul−01−2010 Oct−01−2010
Date

S
pr

ea
d

−1.60

−1.55

−1.50

−1.45

−1.40

Jul−01−2012 Oct−01−2012
Date

S
pr

ea
d

1.50

1.55

1.60

1.65

Oct−01−2012 Jan−01−2013 Apr−01−2013
Date

S
pr

ea
d

1.425

1.450

1.475

1.500

1.525

Apr−01−2013 Jul−01−2013
Date

S
pr

ea
d

4.9

5.0

5.1

5.2

5.3

Jan−01−2018 Apr−01−2018
Date

S
pr

ea
d

3.8

3.9

4.0

4.1

Oct−01−2018 Jan−01−2019 Apr−01−2019
Date

S
pr

ea
d

1.85

1.90

1.95

Apr−01−2019 Jul−01−2019
Date

S
pr

ea
d

3.75

3.78

3.81

Jul−01−2019 Oct−01−2019 Jan−01−2020
Date

S
pr

ea
d

WMT~TGT

Figure 2.5. Spreads between logarithmic returns of WMT and TGT stock

prices for various half year periods 18



CHAPTER 3

METHODOLOGY

From the literature reviewed in chapter 2, it is clear that the application of first pas-

sage time density in deriving optimal thresholds for pairs trading strategies is not completely

new. However, existing strategies only consider constant thresholds and also overlook trend

in the data by ignoring the drift rate in the cointegration model.

3.1. The Drift Rate Treatment

Our study will be in two folds; one in which we will consider the drift rate α and

another in which we follow existing methods and ignore the drift rate. In the performance

analyses, we will be comparing the returns in both cases against the some recent pairs trading

strategies.

3.2. New Pair Trading Strategy

From figures 2.2, 2.3, 2.4 and 2.5, we see that constant boundaries are not always

appropriate, if one wants to make maximum returns from pairs trading, especially for pairs

for which the deviations reduce over the time horizon.

To address this issue, we present a new boundary that takes into account the mean-

reversion rate of the Ornstein-Uhlenbeck process and as such drifts toward the long-term

mean or trend over time.

We will study two cases of this threshold and come up with objective functions that

we will use to obtain our optimal thresholds for the pairs trading strategy. We will show

the existence and uniqueness of optimizers. This will be done by exploiting the association

between OU processes and the standard Brownian motion, as well as their boundary crossing

probabilities.

3.3. Performance

We will first test our strategy on an artificial pair of stocks, which we denote by P

and Q, in chapter 5. We will then proceed in chapter 6 to recent real data collected for the
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four pairs of stocks, Coca-Cola (KO)/Pepsi (PEP), (CVX)/(XOM), Target (TGT)/Walmart

(WMT), and RWE AG (RWE.DE)/E.OnSe (EOAN.DE). We will consider both long-term

and short-term performance of our optimal thresholds, both with and without trend and

compare the returns against those obtained from two recent strategies from [40] and [17]

discussed in Chapter 2.

3.4. Result on Certain Moments of First Passage Time

Another result that we present in this dissertation is about certain moments of the

first passage time of the standard Brownian motion to some class of boundaries. First passage

time probabilities and densities for Brownian motions are not known in most cases. But it

is possible to obtain certain moments of the first passage time without knowing explicitly

the corresponding probabilities or densities. We derive a simple formula that provides these

moments for several cases of the standard Brownian motion boundaries. We will also show

how this formula extends to the OU process.
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CHAPTER 4

THEORETICAL RESULTS

4.1. Relationship between Boundary Crossing Probabilities of Ornstein-Uhlenbeck Processes

and Brownian Motion

From previous chapters, it is apparent that Ornstein-Uhlenbeck processes, as well as

other diffusion processes are related to Brownian motions.

We consider the Ornstein-Uhlenbeck process,

(1) dXt = λ(µ−Xt)dt+ σdBt, X0 = x0

This process can be standardized as follows:

Let t̃ = λt and Zt̃ = (Xt − µ)/
√

σ2

2λ

Thus,

Xt − µ =
σ√
2λ
Zt̃

dXt =
σ√
2λ
dZt̃

and,

dt =
1

λ
dt̃

and by the scaling property of Brownian motion, Bt̃ =
√
λBt.

Thus dBt̃ =
√
λdBt. Hence,

σ√
2λ
dZt̃ = − λ σ√

2λ
Zt̃

1

λ
dt̃ + σ

1√
λ
dBt̃

dZt̃ = − Zt̃dt̃ +
√

2dBt̃,(2)

which is the standardized OU process, and is also called the dimensionless OU process, since

Zt̃ is not dependent on the parameters of the original OU process.
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Similarly, for the generalized (trend-stationary) OU process with linear trend, which satisfies

the SDE

(3) d(Xt − (at+ b)) = −λ(Xt − (at+ b))dt+ σdBt, t ≥ 0

X0 = x0, λ > 0, σ > 0.

let t̃ = λt and Zt̃ = (Xt − (at+ b))/
√

σ2

2λ

Thus,

dZt̃ =

√
2λ

σ
d(Xt − (at+ b))

and

dt =
1

λ
dt̃

and by the scaling property of Brownian motion, Bt̃ =
√
λBt.

Thus dBt̃ =
√
λdBt. Hence,

σ√
2λ
dZt̃ = − λ σ√

2λ
Zt̃

1

λ
dt̃ + σ

1√
λ
dBt̃

dZt̃ = − Zt̃dt̃ +
√

2dBt̃.

4.2. Boundary Crossing Probabilities and First Passage Time Probabilities of the Standard-

ized Ornstein-Uhlenbeck Process

Consider the standardized OU process

(4) dZt̃ = −Zt̃dt̃ +
√

2dBt̃, Z0 = z0.

Let Yt̃ = et̃Zt̃

Then by Ito’s lemma, appendix A.3,

dYt̃ = (et̃Zt̃ + (−Zt̃)et̃ + 0)dt̃+
√

2et̃dBt̃,

=
√

2et̃dBt̃
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Thus Yt̃ is Martingale. ∫ t

0

dYt̃ =
√

2

∫ t

0

et̃dBt̃

Yt = Y0 +
√

2

∫ t

0

et̃dBt̃(5)

It also follows that

E[Yt] = Y0(6)

V ar[Yt] = 2E

[(∫ t

0

et̃dBt̃

)2
]

= 2

∫ t

0

e2t̃dt̃, by isometry of Ito integral

=
[
e2t̃
]t

0

= e2t − 1(7)

Thus Yt is a continuous Gaussian process with E[Yt] = Y0 and V ar[Yt] = e2t− 1. For

t ≥ 0, we define s(t) := e2t − 1. s(t) is a strictly increasing function of t, and hence admits

an inverse t(s) = 1
2
ln(1 + s), s ≥ 0.

Define W̃s := Yt(s) − Y0, s ≥ 0.

Then

E[W̃s] = 0, W̃0 = 0

and

V ar[W̃s] = V ar[Yt(s)]

= e2t(s) − 1

= e2( 1
2
ln(1+s)) − 1

= s

So {W̃s, s ≥ 0} is a standard Brownian motion.
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Now,

Zt = e−tYt

= e−t(Y0 + W̃s(t))

= e−t(Z0 + W̃s(t))(8)

Let b(t) be some continuous function of t such that b(0) > Z0.

Then,

P (Zt < b(t),∀t ∈ [0, T ]) = P (e−t(z0 + W̃s(t)) < b(t),∀t ∈ [0, T ])

= P (W̃s(t) < −z0 + etb(t),∀t ∈ [0, T ])

= P (W̃s < −z0 + et(s)b(t(s)),∀s ∈ [0, S])

(where S = s(T ) = e2T − 1)

= P (W̃s < −z0 + (
√

1 + s)b(t(s)), ∀s ∈ [0, S])(9)

Similarly, let a(t) be some continuous function of t such that a(0) < Z0.

Thus,

P (Zt > a(t),∀t ∈ [0, T ]) = P (e−t(z0 + W̃s(t)) > a(t),∀t ∈ [0, T ])

= P (W̃s(t) > −z0 + eta(t),∀t ∈ [0, T ])

= P (W̃s > −z0 + et(s)a(t(s)),∀s ∈ [0, S])

(where S = s(T ) = e2T − 1)

= P (W̃s > −z0 + (
√

1 + s)a(t(s)), ∀s ∈ [0, S])(10)

Under some assumptions, Wang and Potzelberger proved a general form of this result

for two-sided boundaries [36]. See appendix A.1.

The above results imply that one can obtain the first passage time probability of the

standardized OU process Zt to either the lower boundary a(t) or the upper boundary b(t)
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from the corresponding first passage time probability of the standard Brownian motion W̃s

to the boundaries −z0 + (
√

1 + s)a(t(s)) or −z0 + (
√

1 + s)b(t(s)), respectively.

4.3. New Class of Non-Linear Boundaries and New Thresholds

In this section, we introduce a new class of boundaries for the OU process. Given the

Ornstein-Uhlenbeck process Xt satisfying the SDE

dXt = λ(µ−Xt)dt+ σdBt, X0 = x0,

we study the first passage time to the boundaries

(11) g(t) = µ± σ√
2λ

(βe−λt − γeρλt),

where, λ > 0, σ > 0, β > γ ≥ 0 and ρ > −1. We also assume µ + σ√
2λ

(β − γ) > x0 and

µ − σ√
2λ

(β − γ) < x0. As we will soon see, these boundaries are almost straight lines for

small intervals of t. Nonetheless, they are not linear boundaries.

The equivalent of this in the trend-stationary OU process is

(12) g(t) = at† + b± σ√
2λ

(βe−λt − γeρλt),

where t† is an appropriate scaling of t, depending on the context of application (see sub-

sections 5.2.6 and 6.1.4), with a, b ∈ R and other parameters satisfying same conditions as

above, and here we assume b+ σ√
2λ

(β − γ) > x0 and b− σ√
2λ

(β − γ) < x0.

Our interest is in the one sided boundary and as such it is sufficient to consider only

the upper boundary;

(13) g(t) = µ+
σ√
2λ

(βe−λt − γeρλt)

or

(14) g(t) = at† + b+
σ√
2λ

(βe−λt − γeρλt).

We define the first passage time of Xt to g(t) by:

(15) τg(t),xo := inf{t > 0 : Xt ≥ g(t)|X0 = x0}
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We will consider two cases of this threshold (boundary), as listed in the subsequent subsec-

tions.

Let us first consider the standardized OU process Zt̃ satisfying the SDE

dZt̃ = −Zt̃dt̃ +
√

2dWt̃, Z0 = z0.

The above boundary for the OU process is equivalent to the boundary

(16) g̃(t̃) = βe−t̃ − γeρt̃,

of the standardized OU process.

Theorem 4.1. Let τg̃(t̃),Zo := inf{t̃ ≥ 0 : Zt̃ ≥ g̃(t̃)|Z0 = z0} be the first passage time of Zt̃

to the boundary g̃(t̃) = βe−t̃. Then the density of τg̃(t̃) is given by

(17) fg̃(t̃),z0(t̃) =
(−z0 + β)(2e2t̃)√

2π(e2t̃ − 1)3/2
exp

(
−(−z0 + β)2

2(e2t̃ − 1)

)
Proof. By equation 9,

P (Zt̃ < g̃(t̃),∀t ∈ [0, T ]) = P (W̃s < −z0 + (
√

1 + s)g̃(t̃(s)),∀s ∈ [0, S])

= P (W̃s < −z0 + (
√

1 + s)βe−
˜t(s),∀s ∈ [0, S])

= P (W̃s < −z0 + (
√

1 + s)βe−
1
2
ln(1+s),∀s ∈ [0, S])

= P (W̃s < −z0 + (
√

1 + s)β(1 + s)−
1
2 , ∀s ∈ [0, S])

= P (W̃s < −z0 + β, ∀s ∈ [0, S])

Thus the boundary crossing probability of the standardized OU process to the boundary

g̃(t̃) = βe−t̃ is equal to the boundary crossing probability of the standard Brownian motion

W̃s to the constant boundary g(s) = −z0 + β.

Let us define the first passage time of the standard Brownian motion to the boundary

g(s) = −z0 + β by τg(s),zo := inf{s ≥ 0 : W̃s ≥ −z0 + β|W̃0 = 0}, and let fg(s),0 denote its

density function. It is well known that fg(s),0 follows the Levy distribution and has density

fg(s),0(s) =
(−z0 + β)√

2πs3/2
exp

(
−(−z0 + β)2

2s

)
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Hence,

fg̃(t̃),z0(t̃) =
(−z0 + β)√

2π(e2t̃ − 1)3/2
exp

(
−(−z0 + β)2

2(e2t̃ − 1)

)
(2e2t̃)

�

Theorem 4.2. Let τg̃(t̃),Zo := inf{t̃ ≥ 0 : Zt̃ ≥ g̃(t̃)|Z0 = z0} be the first passage time of Zt̃

to the boundary g̃(t̃) = βe−t̃ − γet̃. Then the density of τg̃(t̃) is given by

(18) fg̃(t̃),z0(t̃) =
2| − z0 + β − γ|(e2t̃)√

2π(e2t̃ − 1)3
exp

(
−(−z0 + β − γe2t̃)2

2(e2t̃ − 1)

)
Proof. By equation 9,

P (Zt̃ < g̃(t̃),∀t ∈ [0, T ]) = P (W̃s < −z0 + (
√

1 + s)g̃(t̃(s)), ∀s ∈ [0, S])

= P (W̃s < −z0 + (
√

1 + s)(βe−
˜t(s) − γe ˜t(s)),∀s ∈ [0, S])

= P (W̃s < −z0 + (
√

1 + s)(βe−
1
2
ln(1+s) − γe

1
2
ln(1+s)),∀s ∈ [0, S])

= P (W̃s < −z0 + (
√

1 + s)(β(1 + s)−
1
2 − γ(1 + s)

1
2 ),∀s ∈ [0, S])

= P (W̃s < −z0 + β − γ − γs, ∀s ∈ [0, S])

Here the boundary crossing probability of the standardized OU process to the boundary

g̃(t̃) = βe−t̃ − γet̃ is equal to the boundary crossing probability of the standard Brownian

motion W̃s to the linear boundary g(s) = −z0 + β − γ − γs.

Let us define the first passage time of the standard Brownian motion to the boundary

g(s) = −z0 + β − γ − γs by τg(s),Zo := inf{s ≥ 0 : W̃s ≥ −z0 + β − γ − γs|W̃0 = 0}, and let

fg(s),0 denote its density function.

Following Karatzas and Shreve [24], we have that fg(s),0 follows an inverse gaussian

distribution and has density

fg(s),0(s) =
|(−z0 + β − γ)|√

2πs3
exp

(
−(−z0 + β − γ − γs)2

2s

)
Hence,

fg̃(t̃),z0(t̃) =
|(−z0 + β − γ)|√

2π(e2t̃ − 1)3
exp

(
−(−z0 + β − γ − γ(e2t̃ − 1))2

2(e2t̃ − 1)

)
(2e2t̃)
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=
2|(−z0 + β − γ)|(e2t̃)√

2π(e2t̃ − 1)3
exp

(
−(−z0 + β − γe2t̃)2

2(e2t̃ − 1)

)

�

4.4. The Ornstein-Uhlenbeck Process First Passage Time Densities

4.4.1. Case 1: γ = 0

Let γ = 0, then the boundary 13 becomes

(19) g(t) =
σ√
2λ

(βe−λt) + µ.

Corollary 4.3. The density of the first passage time τg(t),xo of the OU process Xt to the

above boundary, g(t), is given by

(20) fg(t),x0 =
(
√

2λ
σ

(−x0 + µ) + β)
√

2π(e2λt − 1)3/2
exp

(
−(
√

2λ
σ

(−x0 + µ) + β)2

2(e2λt − 1)

)
(2λe2λt).

To see this, notice that in the transformation of the OU process Xt to the standard OU

process Zt̃, we set t̃ = λt and Zt̃ = (Xt − µ)/
√

σ2

2λ
.

Thus z0 =
√

2λ
σ

(x0 − µ). So the result follows from theorem 4.1 after changing the time

variable from t̃ to t, and replacing z0 with
√

2λ
σ

(x0 − µ).

4.4.2. Case 2: γ ≥ 0 and ρ = 1

Now, let γ ≥ 0 and ρ = 1. Then the boundary 13 becomes

g(t) =
σ√
2λ

(βe−λt − γeλt) + µ.

Corollary 4.4. The density of the first passage time τg(t),xo of the OU process Xt to the

above boundary, g(t), is given by

(21) fg(t),x0 =
|
√

2λ
σ

(−x0 + µ) + β − γ|√
2π(e2λt − 1)3

exp

(
−(
√

2λ
σ

(−x0 + µ) + β − γe2λt)2

2(e2λt − 1)

)
(2λe2λt).

This result also follows from theorem 4.2, by a similar argument as in case 1.
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4.5. The Optimization Problem
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Figure 4.1. Spread and threshold.

Given the spread between the logarithmic returns of the pair of stocks, our objective

is to find thresholds that maximize the expected return of a complete trade cycle. The trade

cycle involves two stages. The first stage is the movement from the long-term mean or long-

term trend to crossing either the upper or lower threshold, while the second stage involves

the movement back to the long-term mean or long-term trend. Since the thresholds we are

considering are symmetric 11, we will focus on a one-sided threshold for our optimization

problem. The return on the trade cycle corresponds to the height of the spread at the time

of crossing the threshold. We demonstrated this in figure 4.1 for the constant threshold for

simplicity. Since we are considering a time-dependent threshold this height will vary over

time.

In section 4.1, we showed that the OU process 1 and the trend-stationary OU process

3 can be converted to the standardized (dimensionless)OU process. Thus we will undertake

the optimization in the dimensionless system, and then the optimal thresholds in the original

process can be obtained by translation and scaling, as shown in section 4.3, equations 14, 15
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and 16.

In our study, it came to light that although theoretically we can always find values

for our parameters β and γ that maximize the expected return, practically, this can only be

done for a reasonable time horizon, which usually should not be more than 11
4

years. As a

result, our objective function will entail two pieces, the first piece focuses on time horizon

T ≤ 1.25 where we optimize the expected return, while the second piece focuses on T > 1.25

where we optimize a scaled form of the probability that the first passage time is greater

than 1.25 but less than the time horizon. This is to ensure that β does not blow out, nor

γ become too small such that we do not obtain any trades. In fact this second piece of the

objective function is a nice behaved function that maximizes our return.

4.5.1. Case 1: γ = 0

The dimensionless system threshold for this case is

g̃(t̃) = βe−t̃.

The objective function is

h(β) =


E
[
βe−τI(0<τ≤T )

]
, 0 < T ≤ 1.25

e−βP (1.25 < τ < T ), 1.25 < T <∞

Theorem 4.5. For any 0 < T < ∞, there exists some β̃ ∈ (0,∞) which maximizes h(β)

and it is unique.

Lemma 4.6. There exists some β̃ ∈ (0,∞) which maximizes E
[
βe−τI(0<τ≤T )

]
and it is

unique.

Proof. Let ΠT (β) = E
[
βe−τI(0<τ≤T )

]
, where β > 0.

By theorem 4.1, the pdf of τ is given by

fτ (t̃) =

√
2

π

β√
(e2t̃ − 1)3

exp

(
−β2

2(e2t̃ − 1)

)
, t̃ > 0
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By change of variable, with v = β
√

e2t̃

e2t̃−1
, we have,

ΠT (β) = 2βe
β2

2

∫ ∞
Cβ

1√
2π
e−

v2

2 dv, where C =

√
e2T

e2T − 1

Thus

(22) ΠT (β) = 2βe
β2

2 [1− Φ(Cβ)],

where Φ denotes the standard normal cumulative distribution function(CDF).

By the Mills ratio inequality, see appendix A.2, [32] and [39], it follows that

2√
(Cβ)2 + 4 + Cβ

φ(Cβ) ≤ 1− Φ(Cβ) ≤ 4√
(Cβ)2 + 8 + 3Cβ

φ(Cβ)

where φ is the standard normal density function.

Hence,

4βe
β2

2 φ(Cβ)√
(Cβ)2 + 4 + Cβ

≤ ΠT (β) ≤ 8βe
β2

2 φ(Cβ)√
(Cβ)2 + 8 + 3Cβ

The right hand side of the above inequality is equivalent to 8β√
2π
e−

(C2−1)β2

2
1√

(Cβ)2+8+3Cβ
.

Since C2 − 1 = 1
e2T−1

> 0, it follows that,

lim
β→∞

8β√
2π
e−

(C2−1)β2

2
1√

(Cβ)2 + 8 + 3Cβ
= 0

Also,

lim
β→0

8β√
2π
e−

(C2−1)β2

2
1√

(Cβ)2 + 8 + 3Cβ
= 0

Which proves that β̃ = maxβ>0 ΠT (β) exists and is achieved in (0,∞).

We now show that β̃ is unique. We do this by contradiction.

From equation 21, we have that,

dΠT (β)

dβ
= 2(1 + β2)e

β2

2 [1− Φ(Cβ)]− 2Cβφ(Cβ)e
β2

2 .

Suppose there are two maximizers, namely β1 and β2. Then they both satisfy the equation:

1− Φ(Cβ)

φ(Cβ)
=

Cβ

1 + β2
.
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Thus,

(23) log[1− Φ(Cβi)] = logφ(Cβi) + log(βi) + log(C)− log(1 + β2
i ), for i = 1, 2.

Since both β1 and β2 are maximizers of ΠT (β), then ΠT (β1) = ΠT (β2) with β1 6= β2.

Then from equation 22, we have

(24) log[1− Φ(Cβ1)]− log[1− Φ(Cβ2)] = log

(
β2

β1

)
+

1

2
(β2

2 − β2
1).

Equations 23 and 24 together implies:

log

(
φ(Cβ1)

φ(Cβ2)

)
+ log

(
1 + β2

2

1 + β2
1

)
+

1

2
(β2

1 − β2
2) + 2log

(
β1

β2

)
= 0

This is equivalent to

β2
1

1 + β2
1

e−
1
2

(C2−1)β2
1 =

β2
2

1 + β2
2

e−
1
2

(C2−1)β2
2

Consider the function:

l(x) =
xe−

1
2

(C2−1)x

1 + x
for x > 0

The derivative of l(x) is given by:

l′(x) =
[1− 1

2
(C2 − 1)x(x+ 1)]

(x+ 1)2
e−

1
2

(C2−1)x

We note that the equation 1− 1
2
(C2− 1)x(x+ 1) = 0 has two roots: One is negative and the

other is positive, which is given by

x̃ =
−1 +

√
1 + 8

C2−1

2
.

When x > x̃, l′(x) < 0, which implies l(x) is strictly decreasing on (x̃,∞). When 0 <

x < x̃, l′(x) > 0, which implies l(x) is strictly increasing on (0, x̃). Since l(β2
1) = l(β2

2) and

β1 6= β2, by Rolle’s theorem, there exists at least one r between β2
1andβ2

2 such that l′(r) = 0.

W.L.O.G., we assume β1 < β2. Then r ∈ (β2
1 , β

2
2). Using the fact that l′(x) = 0 has only one

positive root x̃, we conclude that r = x̃. Since β2 is a maximizer of ΠT (β), we obtain

ΠT (β2) =
2C√
2π
l(β2

2).
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But β2
2 > r and l(x) is a strictly decreasing function of x on x > r. Thus we conclude that

ΠT (β2) <
2C√
2π
l(r) = ΠT (r).

Which contradicts the assumption that β is a maximizer of ΠT (β). Thus it follows that the

maximizer of ΠT (β) is unique, which completes the proof. �

Lemma 4.7. Given 0 < Ts < T < ∞, there exists some β̃ ∈ (0,∞) which maximizes

e−βP (Ts < τ < T ), and it is unique for sufficiently large T .

Proof. To show the existence, let ΠTs,T (β) = eβP (Ts < τ < T ), where β > 0.

Thus

ΠTs,T (β) = eβ
∫ T

Ts

√
2

π

βe2t√
(e2t − 1)3

e
− β2

2(e2t−1)dt.

By change of variable with u = 1
e2t−1

, we obtain

ΠTs,T (β) =
βe−β√

2π

∫ (e2Ts−1)−1

(e2T−1)−1

u−
1
2 e−

β2

2
udu.

By another change of variable with y =
√
u, we get

ΠTs,T (β) =
2βe−β√

2π

∫ C2

C1

e−
(βy)2

2 dy, where C1 =

√
1

e2T − 1
, C2 =

√
1

e2Ts − 1

= 2e−β [Φ(βC2)− Φ(βC1)] ,

where Φ is the standard normal CDF.

It follows from the above equation that

limβ→0ΠTs,T (β) = 0 and limβ→∞ΠTs,T (β) = 0

To show uniqueness, we consider the function,

l(β) = log(ΠTs,T (β))

Thus,

l′(β) = − 1 +
φ(βC2)C2 − φ(βC1)C1

Φ(βC2)− Φ(βC1)
,where φ is the standard normal PDF

(25)
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and

l′′(β) =
[−βC2φ(βC2)C2

2 + βC1φ(βC1)C2
1 ][Φ(βC2)− Φ(βC1)]− [φ(βC2)C2 − φ(βC1)C1]2

[Φ(βC2)− Φ(βC1)]2
.

(26)

Since C2 > C1, Φ(βC2)− Φ(βC1) > 0

For sufficiently large T , C1 → 0, which implies φ(βC1)C3
1 − φ(βC2)C3

2 < 0

Thus l′′(β) < 0 Hence for sufficiently large T , the maximizer of l(β) is unique. �

To cover uniqueness for small values of T , a more delicate mathematical analysis is

needed. This has been a challenge. However, let us consider the function ξTs,T (β), defined

by:

ξTs,T (β) = 2e−β
[
β∆− 1

2
β3C1∆2

]
φ(βC1),where∆ = C2 − C1

This function is an accurate approximation of ΠTs,T (β). More importantly, their maximizers

are approximately the same. We show in figure 4.2 a plot of these two functions for the

case of Ts = 1.25 and T = 5. In fact for smaller values of T , it is impossible to distinguish

between the two curves as they overlay each other perfectly.
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Figure 4.2. Graph of ξTs,T (β)(Yellow) and ΠTs,T (β)(Blue), with Ts = 1.25

and T = 5

Note that at this point, we only need to show uniqueness of the maximizer of ΠTs,T (β)

for small values of T (i.e. when T is close to Ts), in order to obtain a complete proof of

theorem 4.5. Nonetheless, we will prove a general statement for ξTs,T (β).

Lemma 4.8. For all 0 < Ts < T < ∞, there exists some β̃ ∈ (0,∞) which maximizes

ξTs,T (β), and it is unique.

Proof. Let ξTs,T (β) = 2e−β
[
β∆− 1

2
β3C1∆2

]
φ(βC1), where ∆ = C2 − C1.

Now,

e−βφ(C1β) = e−β
1√
2π
e−

(C1β)2

2

=
1√
2π
e−

(C1β)2+2β
2

=
1√
2π
e−

C2
1

(
β2+

2β

C2
1

+ 1
C4

1

− 1
C4

1

)
2

= e
1

2C2
1

1√
2π
e−

(C1β+ 1
C1

)
2

2
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Hence,

ξTs,T (β) = 2∆

[
β − 1

2
β3C1∆

]
e

1

2C2
1 φ

(
C1β +

1

C1

)
Let χTs,T (β) = logξTs,T (β).

Thus,

χTs,T (β) = log(2∆) + log(β − 1

2
β3C1∆) +

1

2C2
1

+ log

[
φ

(
C1β +

1

C1

)]
So,

χTs,T
′(β) =

1− 3
2
C1β

2∆

β − 1
2
C1β3∆

− (C2
1β + 1)

and

χTs,T
′′(β) =

−3C1β∆(β − 1
2
C1β

3∆)− (1− 3
2
C1β

2∆)2

(β − 1
2
C1β3∆)2

− C2
1

Now,

−3C1β∆(β − 1

2
C1β

3∆)− (1− 3

2
C1β

2∆)2

= − 3C1β(C2 − C1)(β − 1

2
C1β

3(C2 − C1))− (1− 3

2
C1β

2(C2 − C1))2

= − 3β2C1C2 +
3

2
β4C2

1C
2
2 −

3

2
β4C3

1C2 + 3β2C2
1 −

3

2
β4C3

1C2 +
3

2
β4C4

1

−
(

1 +
9

2
β4C2

1C
2
2 +

9

2
β4C4

1 − 3β2C1C2 + 3β2C2
1 − 2

(
3

2
β2C1C2

)(
3

2
β2C2

1

))
= − 1− 3β4C2

1C
2
2 −

3

4
β4C4

1

< 0,

which implies that χTs,T
′′(β) < 0.

Also, we may rewrite ξTs,T (β) as ξTs,T (β) = 2e−ββ
[
∆− 1

2
β2C1∆2

]
φ(βC1).

Then, it is then clear that limβ→0ξTs,T (β) = 0, and limβ→∞ξTs,T (β) = 0.

Thus we have proven both the existence and uniqueness of a maximizer. �

Theorem 4.5 thus follows from lemma 4.6, lemma 4.7 and lemma 4.8.

By setting the first derivative of the objective function equal to zero, we find that for

0 < T ≤ 1.25, the unique β̃ can be found by solving the equation

(1 + β2)[1− Φ(Cβ)] = Cβφ(Cβ)
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and for 1.25 < T <∞, it can be found by solving the equation

C2φ(C2β)− C1φ(C1β) = Φ(C2β)− Φ(C1β),

where Φ, φ, C, C1 and C2 are as defined above.

4.5.2. Case 2: γ ≥ 0 and ρ = 1

The dimensionless system threshold for this case is

g̃(t̃) = βe−t̃ − γeρt̃

The objective function is

h(β, γ) =


E
[
(βe−τ − γeτ )I(0<τ≤T )

]
, 0 < T ≤ 1.25

γe−βP (1.25 < τ < T ), 1.25 < T <∞

We claim that for any 0 < T <∞, there exists some 0 < γ̃ < β̃ <∞ which maximizes

h(β, γ) and (β̃, γ̃) is unique.

The mathematical proof of the above claim is part of an ongoing project and is not

yet complete. However this claim is backed by several numerical examples that we performed

with the numerical maximization function in Mathematica [38]. An example of the first piece

with T = 0.5 is shown in figure 4.3, where the maximum is h(β̃, γ̃) = 0.3632 and occurs at

(β̃, γ̃) = (2.2621, 0.6944). Also, an example of the second piece with T = 5 is shown in figure

4.4, where the maximum is h(β̃, γ̃) = 0.006564 and occurs at (β̃, γ̃) = (1.3351, 0.1856)
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Figure 4.3. Graph of h(β, γ) for T = 0.5, with maximum value h(β̃, γ̃) =

0.3632 at β̃ = 2.2621 and γ̃ = 0.6944

4.6. Certain Moments of First Passage Time of Brownian Motions to Some Class of Bound-

aries

Theorem 4.9. Let ζ(s) = −a+ b(s+ c)d, where a > 0, b > 0, d > 0, bcd < a and (Ws)s≥0 be

a standard Brownian motion. We define the first passage time (from above) of Ws to ζ(s) by

τ := inf{s ≥ 0 : Ws ≤ ζ(s)}. Let F (s) = P (τ ≤ s) be its distribution function, and f(s) be

the probability density function. Then E
[
(τ + c)d

]
= a

b
, if (s+ c)d is defined on 0 ≤ s ≤ ∞.
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Figure 4.4. Graph of h(β, γ) for T = 5, with maximum value h(β̃, γ̃) =

0.006564 at β̃ = 1.3351 and γ̃ = 0.1856

Proof. Let τα = inf{s ≥ 0 : Ws ≤ ζ(s) + αs}, α ∈ [0,∞).

Let Fα be the distribution function of τα

Then,

ζ(s) + αs = − a+ b(s+ c)d + αs

≥ − a+ b(s+ c)d

≥ − a+min{bcd, 0}

Let l = −a+min{bcd, 0}

Since τl := inf{s ≥ 0 : Ws ≤ l} is almost surely finite, then so is τα.

Thus Fα(∞) = 1.

Now, let Bs = Ws − αs

Thus τα = inf{s ≥ 0 : Bs ≤ ζ(s)}

Define Z := e−
α2s

2
+αWs
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Define a probability measure Q(A) :=
∫
A
z(w)dP (w).

By Girsanov’s theorem, A.4, Bs = Ws − αs is a standard Brownian motion under Q.

Thus τα has the distribution F under Q.

So, EQ [1τα≤s] = EP [1τα≤tZ].

F (s) = Q(τα ≤ s)

= EP [1τα≤sZ]

= EP

[
1τα≤se

−α
2s
2

+αWs

]
= EP

[
EP

[
1τα≤se

−α
2s
2

+αWs |τα = ν
]]

=

∫ s

0

EP

[
e−

α2s
2

+αWs|τα = ν
]
Fα(dν)

=

∫ s

0

EP

[
e−

α2s
2

+α(Ws−Wτα+Wτα )|τα = ν
]
Fα(dν)

=

∫ s

0

EP

[
e−

α2s
2

+α(Ws−Wν)eαWτα |τα = ν
]
Fα(dν).

Since Wτα = ζ(τα) + ατα almost surely,

F (s) =

∫ s

0

eα(ζ(ν)+αν)EP

[
e−

α2s
2

+α(Ws−Wν)|τα = ν
]
Fα(dν)

=

∫ s

0

eαζ(ν)+α2ν)EP

[
e−

α2s
2

+α(Ws−Wν)
]
Fα(dν)

=

∫ s

0

eαζ(ν)+α2ν)e−
α2s

2 EP
[
eα(Ws−Wν)

]
Fα(dν)

=

∫ s

0

eαζ(ν)+α2ν)e−
α2s

2 e
α2

2
(s−ν)Fα(dν)

=

∫ s

0

eαζ(ν)+α2ν−α
2ν
2 Fα(dν)

=

∫ s

0

eαζ(ν)+α2ν
2 Fα(dν)

This implies,

F (ds) = eαζ(s)+
α2s

2 Fα(ds)
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e−αζ(s)−
α2s

2 F (ds) = Fα(ds)∫ ∞
0

e−αζ(s)−
α2s

2 F (ds) =

∫ ∞
0

Fα(ds)

= Fα(∞)

= 1

We differentiate both sides with respect to α

d

dα

∫ ∞
0

e−αζ(s)−
α2s

2 F (ds) = 0∫ ∞
0

d

dα
e−αζ(s)−

α2s
2 F (ds) = 0∫ ∞

0

(−ζ(s)− αs)e−αζ(s)−
α2s

2 F (ds) = 0

Let α→ 0.

Then, ∫ ∞
0

−ζ(s)F (ds) = 0∫ ∞
0

−(−a+ b(s+ c)d)F (ds) = 0

b

∫ ∞
0

(s+ c)dF (ds) =

∫ ∞
0

aF (ds)∫ ∞
0

(s+ c)dF (ds) =
a

b

Thus E
[
(τ + c)d

]
= a

b
�

Theorem 4.10. Let ζ(s) = a− b(s+ c)d, where a > 0, b > 0, d > 0, bcd < a and (Ws)s≥0 be

a standard Brownian motion. We define the first passage time (from below) of Ws to ζ(s) by

τ := inf{s ≥ 0 : Ws ≥ ζ(s)}. Let F (s) = P (τ ≤ s) be its distribution function, and f(s) be

the probability density function. Then E
[
(τ + c)d

]
= a

b
, if (s+ c)d is defined on 0 ≤ s ≤ ∞.
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Proof. Let τα = inf{s ≥ 0 : Ws ≥ ζ(s)− αs}, α ∈ [0,∞).

Let Fα be the distribution function of τα

Then,

ζ(s)− αs = a− b(s+ c)d − αs

≤ a− b(s+ c)d

≤ a−min{bcd, 0}

Let l = a−min{bcd, 0}

Since τl := inf{s ≥ 0 : Ws ≥ l} is almost surely finite, then so is τα.

Thus Fα(∞) = 1.

Now, let Bs = Ws + αs

Thus τα = inf{s ≥ 0 : Bs ≥ ζ(s)}

Define Z := e−
α2s

2
−αWs

Define a probability measure Q(A) :=
∫
A
z(w)dP (w).

By Girsanov’s theorem, A.4, Bs = Ws + αs is a standard Brownian motion under Q.

Thus τα has the distribution F under Q.

So, EQ [1τα≤s] = EP [1τα≤tZ].

Thus,

F (s) = Q(τα ≤ s)

= EP [1τα≤sZ]

= EP

[
1τα≤se

−α
2s
2
−αWs

]
= EP

[
EP

[
1τα≤se

−α
2s
2
−αWs|τα = ν

]]
=

∫ s

0

EP

[
e−

α2s
2
−αWs|τα = ν

]
Fα(dν)

=

∫ s

0

EP

[
e−

α2s
2
−α(Ws−Wτα+Wτα )|τα = ν

]
Fα(dν)

42



=

∫ s

0

EP

[
e−

α2s
2
−α(Ws−Wν)e−αWτα |τα = ν

]
Fα(dν).

Since Wτα = ζ(τα)− ατα almost surely,

F (s) =

∫ s

0

e−α(ζ(ν)−αν)EP

[
e−

α2s
2
−α(Ws−Wν)|τα = ν

]
Fα(dν)

=

∫ s

0

e−αζ(ν)+α2ν)EP

[
e−

α2s
2
−α(Ws−Wν)

]
Fα(dν)

=

∫ s

0

e−αζ(ν)+α2ν)e−
α2s

2 EP
[
e−α(Ws−Wν)

]
Fα(dν)

=

∫ s

0

e−αζ(ν)+α2ν)e−
α2s

2 e
α2

2
(s−ν)Fα(dν)

=

∫ s

0

e−αζ(ν)+α2ν−α
2ν
2 Fα(dν)

=

∫ s

0

e−αζ(ν)+α2ν
2 Fα(dν)

This implies,

F (ds) = e−αζ(s)+
α2s

2 Fα(ds)

eαζ(s)−
α2s

2 F (ds) = Fα(ds)∫ ∞
0

eαζ(s)−
α2s

2 F (ds) =

∫ ∞
0

Fα(ds)

= Fα(∞)

= 1

We differentiate both sides with respect to α

d

dα

∫ ∞
0

eαζ(s)−
α2s

2 F (ds) = 0∫ ∞
0

d

dα
eαζ(s)−

α2s
2 F (ds) = 0∫ ∞

0

(ζ(s)− αs)eαζ(s)−
α2s

2 F (ds) = 0

43



Let α→ 0.

Then, ∫ ∞
0

ζ(s)F (ds) = 0∫ ∞
0

(a− b(s+ c)d)F (ds) = 0

b

∫ ∞
0

(s+ c)dF (ds) =

∫ ∞
0

aF (ds)∫ ∞
0

(s+ c)dF (ds) =
a

b

Thus E
[
(τ + c)d

]
= a

b
�

Let us now consider some examples.

4.6.1. Example 1

Let us consider the linear boundary ζ(s) = −a+ bs, where a > 0, b > 0 and (Ws)s≥0

be a standard Brownian motion.

We define the first passage time (from above) of Ws to ζ(s) by τ := inf{s ≥ 0 : Ws ≤

ζ(s)}.

Then by theorem 4.9, we have:

E [τ ] =
a

b

To verify this result, we consider that according to [24], τ has the following density:

f(τ) =
| − a|√

2πτ 3
e−

(a−bτ)2

2τ

which we may rewrite as follows,

f(τ) =
a√

2πτ 3
e−

b2(τ−a
b

)2

2τ(27)

=
a√

2πτ 3
e
−
a2(τ−a

b
)2

2(a
b

)2τ ∼ Inverse Gaussian(
a

b
, a2)(28)
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Thus, if follows that

E [τ ] =
a

b
,

which matches our result.

Similarly, for the boundary ζ(s) = a − bs, where a > 0, b > 0 and the standard

Brownian motion (Ws)s≥0, we consider the first passage time (from below) of Ws to ζ(s),

τ := inf{s ≥ 0 : Ws ≥ ζ(s)}.

It follows from theorem 4.10 that

E [τ ] =
a

b
,

and one can verify this similarly as shown above, due to symmetry of Brownian motions.

4.6.2. Example 2

Let us consider the square root boundary ζ(s) = −a + b
√

(s+ c), where a > 0, b >

0, b
√
c < a and (Ws)s≥0 be a standard Brownian motion. We define the first passage time,τ ,

(from above) of Ws to ζ(s) as before. Then by theorem 4.9, we have:

E
[
(τ + c)

1
2

]
=
a

b

To check this claim, let us consider the following result, which is due to Novikov.

Let τ = inf{s ≥ 0 : Ws ≤ −a + b
√
s+ c}, where a ≥ 0, c ≥ 0 and b

√
c < a. Let

Dν(z) be the parabolic cylinder function of the parameter ν, and let zν be the largest root

of the equation Dν(z) = 0 (If ν ≤ 0, then Dν(z) > 0 and zν = −∞).

Theorem 4.11. [28], Let −∞ < ν <∞. Then,

E
[
(τ + c)

ν
2

]
=


cν/2ea

2/4c−b2/4cDν(a/
√
c)

Dν(b)
, b > zν

∞, b ≤ zν

For ν = n = 1, 2, ... and c = 0, this formula becomes

E
[
(τ)

ν
2

]
=


an

Hen(b)
, b > zν

∞, b ≤ zν
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where Hen(z) = ez
2/4Dn(z) is the Hermite polynomial of order n.

Our case corresponds to ν = 1 in Novikov’s formula. This gives the value of largest

root as Z1 = −58.446, which is less than zero. Since we are only considering b > 0, our

result should match Novikov’s formula.

Now, by Novikov’s formula,

E
[
(τ + c)

1
2

]
=
c1/2ea

2/4c−b2/4cD1(a/
√
c)

D1(b)

Since ν = 1 is a nonnegative integer, then ez
2/4D1(z) = He1(z), the Hermite polynomial of

order 1.

Thus,

E
[
(τ + c)

1
2

]
=
c1/2He1(a/

√
c)

He1(b)

=
c1/2(−1)e

( a√
c
)2/2 d

d(a/
√
c)
e
−( a√

c
)2/2

(−1)eb2/2 d
db
e−b2/2

=
c1/2e

( a√
c
)2/2

e
−( a√

c
)2/2

(−
2 a√

c

2
)

eb2/2e−b2/2(−2b
2

)

=
a

b
,

which matches our result.

In the special case where c = 0, we simply have:

E
[
(τ)

1
2

]
=

a

He1(b)

=
a

b
.

4.7. Expectation of a Functional of the First Passage Time of Ornstein Uhlenbeck Processes

to Some Class of Boundaries

We now extend our results in section 4.6 to the OU process.

Theorem 4.12. Given the boundary

g(t) =
σ√
2λ

(βe−λt − γeρλt) + µ,
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of the OU process Xt, where, λ > 0, σ > 0, β >
√

2λ
σ

(x0 − µ) + γ ≥ 0, γ > 0 and ρ > −1,

and the first passage time τ of Xt from x0 to the g(t),

(29) E
[
eτ(ρ+1)

]
=

√
2λ
σ

(−x0 + µ) + β

γ

Proof. The equivalent boundary to g(t) for the standardized OU process is g̃(t̃) = βe−λt̃−

γeρλt̃. The condition that β >
√

2λ
σ

(x0 − µ) + γ implies g(0) > 0.

By 9, the equivalent boundary for the standard Brownian motion is ζ(s) =
√

2λ
σ

(−x0 + µ) +

β − γ(1 + s)
ρ+1

2 , where s(t) = e2t̃ − 1.

The conditions β >
√

2λ
σ

(x0 − µ) + γ and γ > 0 implies ζ(s) > 0 and
√

2λ
σ

(−x0 + µ) + β > 0.

Let θ be the first passage time of the standard Brownian motion to the boundary ζ(s). Then

P (τ ≤ t) = P (θ ≤ s).

Therefore,

E
[
eτ(ρ+1)

]
= E

[
(e2τ )

ρ+1
2

]
=

∫ ∞
0

(e2τ )
ρ+1

2 P (dτ)

=

∫ ∞
0

(θ + 1)
ρ+1

2 P (dθ)

=

√
2λ
σ

(−x0 + µ) + β

γ
, by theorem 4.10

�

By a similar argument as above, an application of theorem 4.9 here, can be use to

show that for the boundary

g(t) =
σ√
2λ

(−βe−λt + γeρλt) + µ

of Xt, where λ > 0, σ > 0, β >
√

2λ
σ

(x0 − µ) + γ ≥ 0, γ > 0 and ρ > −1,

(30) E
[
eτ(ρ+1)

]
=

√
2λ
σ

(x0 − µ) + β

γ
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CHAPTER 5

SIMULATIONS

5.1. Zero Trend Ornstein-Uhlenbeck Process

5.1.1. The Process

The zero trend mean-reverting Ornstein-Uhlenbeck process satisfies the following sys-

tem:

(31) dXt = λ(µ−Xt)dt+ σdBt, t ≥ 0

X0 = x0, λ > 0, σ > 0

The solution to the above system can be obtained using Ito’s lemma. The lemma can

be found in various literature. See for instance [27].

Let Yt = eλtXt

Then by Ito’s lemma A.3,

dYt = (λeλtXt + λeλt(µ−Xt))dt+ σeλtdBt

= λµeλtdt+ σeλtdBt

Integrating both sides on the interval 0 ≤ t ≤ s, we get,

∫ s

0

dYt = λµ

∫ s

0

eλtdt+ σ

∫ s

0

eλtdBt

Ys − Y0 =

[
λµ

1

λ
eλt
]s

0

+ σ

∫ s

0

eλtdBt

Thus,

eλtXt −X0 = µeλt − µ+ σ

∫ t

0

eλνdBν

Xt = e−λtx0 + µ(1− e−λt) + σ

∫ t

0

e−λ(t−ν)dBν
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We may similarly integrate over the time interval t− 1 ≤ ν ≤ t, where ∆t = t− (t− 1) is a

unit change in time, to obtain:

∫ t

t−1

dYν = λµ

∫ t

t−1

eλνdν + σ

∫ t

t−1

eλνdBν

Yt − Yt−1 =

[
λµ

1

λ
eλν
]t
t−1

+ σ

∫ t

t−1

eλνdBν

eλtXt − eλ(t−1)Xt−1 = µeλt − µeλ(t−1) + σ

∫ t

t−1

eλνdBν

Xt = e−λ(t−(t−1))Xt−1 + µ− µe−λ(t−(t−1)) + σ

∫ t

t−1

e−λ(t−ν)dBν

= e−λ∆tXt−1 + µ(1− e−λ∆t) + σ

∫ t

t−1

e−λ(t−ν)dBν(32)

We consider the Ito integral
∫ t
t−1

e−λ(t−ν)dBν in equation 32 above. Since e−λ(t−ν) is

a deterministic function of ν which does not depend on Bν , it follows that the Ito integral,∫ t
t−1

e−λ(t−ν)dBν follows a normal distribution with zero mean and variance obtained as follow:

V ar

[∫ t

t−1

e−λ(t−ν)dBν

]
= E

[(∫ t

t−1

e−λ(t−ν)dBν

)2
]

= E

[∫ t

t−1

e−2λ(t−ν)dν

]
(33)

=

[
1

2λ
e−2λ(t−ν)

]t
t−1

=
1

2λ
(1− e−2λ∆t),(34)

where we have used the isometry property of Ito integral in equation 33.

It then follows from equations 32 and 34 that:

(35) Xt|Xt−1 ∼ N

(
e−λ∆tXt−1 + µ(1− e−λ∆t),

σ2

2λ
(1− e−2λ∆t)

)
.

A discretized form of the OU process Xt can be obtain from the distribution in 35 above.

We consider an example of this process with parameters µ = 2.3, λ = 0.08 and

σ = 0.005. We also pick an initial value of X0 = 2.4, which is not too far from the long term
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mean of 2.3. Using the discretized solution above, we form a path of length ten thousand.

A plot of this path is presented in figure (5.1). As one would notice, the initial value of

Xt, thus X0 = 2.4, deviates from the long term mean of the process, µ = 2.3. As such the

process quickly reverts to the long term mean. There are also instances along the path that

the process deviates from the long term mean, and whenever this happens, we see a reversion

back to µ.
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Long−term mean

Figure 5.1. Discretized Ornstein-Uhlenbeck Process of length 10000, with

parameter values µ = 2.3, λ = 0.08 and σ = 0.005, starting from x0 = 2.4

5.1.2. Parameter Estimation

In this subsection, we consider how to estimate the parameters of the model from

a given data set. We will use two methods, namely the maximum likelihood and the least

squares methods.

5.1.2.1. Maximum Likelihood Estimator

The likelihood function can be obtained from 35 as follows:
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L(µ, λ, σ|Xt) =
N∏
t=1

 1√
2π σ

2

2λ
(1− e−2λ∆t)

e
− (Xt−(e−λ∆tXt−1+µ(1−e−λ∆t)))2

2(σ
2

2λ
(1−e−2λ∆t))


We then obtain the log-likelihood as:

l(µ, λ, σ|Xt) = log
N∏
t=1

 1√
2π σ

2

2λ
(1− e−2λ∆t)

e
− (Xt−(e−λ∆tXt−1+µ(1−e−λ∆t)))2

2(σ
2

2λ
(1−e−2λ∆t))



(36)

= −N
2
log(2π)−N

2
log(

σ2

2λ
(1−e−2λ∆t))− λ

σ2(1− e−2λ∆t)

N∑
t=1

(Xt−e−λ∆tXt−1−µ(1−e−λ∆t))2

The maximum likelihood estimates for µ, λ and σ will be the values µ̂, λ̂ and σ̂ respectively,

that maximize the above expression. We will solve this numerically from equation 36, using

the maxLik package in R.

5.1.2.2. Method of Least Squares

While we acknowledge that this is a nonlinear least squares problem, from several

numerical examples, we observed that the linear least squares estimate approximate the

nonlinear least squares estimates up to eight decimal places. Thus we will approximate the

optimization solution with linear least squares method throughout this work. This also saves

us from having to deal with complicated hessian matrices that result from the nonlinear least

squares optimization problem, particularly in proving its positive definiteness.

We formulate the least squares regression equation from equation 32 as follows:

(37) Xt = ζ + ψXt−1 + εt, εt ∼ i.i.d.N(0, σε)

where

ζ = µ(1− e−λ∆t)(38)

ψ = e−λ∆t(39)
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σ2
ε =

σ2

2λ
(1− e−2λ∆t)(40)

Substituting the least squares estimates of equation 37, ζ̂, ψ̂ and σ̂ε, into equations 38, 39

and 40, and solving the system gives the least squares parameter estimates for the OU model

as:

λ̂ = − logψ̂
∆t

µ̂ =
ζ̂

1− ψ̂

σ̂ =

√
2λ̂σ̂ε√

1− ψ̂2

5.1.3. Long Path

In this subsection, we will look into estimating the OU process parameters from a

long dicretized path. We also perform parameter estimation using both maximum likelihood

estimation and the method of least squares. We then perform Monte Carlo simulations to

test the robustness of the estimation methods discussed in the previous subsection.

5.1.3.1. Generating the Spread

We use the last 1260 points of the example presented at the beginning of the section

and in figure 5.1 in our study. This corresponds to 5 years of trading data in the US financial

market, if we consider each time step as a day. A graph of this path can be found in figure

5.2. We observe that the process always oscillates around the long term mean, and whenever

there is a deviation, it reverts back to the mean.
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Figure 5.2. Discretized Ornstein-Uhlenbeck Process of length 1260, with

parameter values µ = 2.3, λ = 0.08 and σ = 0.005

5.1.3.2. Parameter Estimation

From the path generated above, we can estimate the parameters of the OU process to

see how good the model performs. The result of this is shown in table 5.1. We see that given

enough data points, both the maximum likelihood and the least squares methods return

good estimates for all three parameters.

Figure 5.3 presents a comparison of the true path of the OU process with the pa-

rameters µ = 2.3, λ = 0.08 and σ = 0.005, with the paths produced from the estimates of

the maximum likelihood and least squares methods. One can hardly distinguish among the

paths, which shows how well the estimates perform.

5.1.3.3. Monte Carlo Simulation

We perform a Monte Carlo simulation with of the OU process with the parameters

µ = 2.3, λ = 0.08 and σ = 0.005, using both the maximum likelihood estimator and the

method of least squares. The result of this simulation can be seen in table 5.2. Both methods

estimate all three parameters very well, and are robust.
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True Value Method Estimate Bias Standard Error RMSE

µ 2.30000000
MLE 2.30048740 0.00048740 0.00155000 0.00000264

LS 2.30048494 0.00048494

λ 0.08000000
MLE 0.09484300 0.01484300 0.01288570 0.00038636

LS 0.09486643 0.01486643

σ 0.00500000
MLE 0.00521410 0.00021410 0.00010890 0.00000006

LS 0.00521647 0.00021647

Table 5.1. Parameter estimation for the discretized OU process of length

1260 by maximum likelihood and method of least squares, with true parameter

values µ = 2.3, λ = 0.08 and σ = 0.005
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Figure 5.3. Paths of length 1260, generated from one realization of parame-

ter estimates from maximum likelihood and least squares methods, with true

parameter values µ = 2.3, λ = 0.08 and σ = 0.005.
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True Value Method Estimate Bias Standard Error RMSE

µ 2.30000000
MLE 2.30021012 0.00021012 0.00144191 0.0000021

LS 2.30000084 0.00000084 0.00178205 0.00000318

λ 0.08000000
MLE 0.08256713 0.00256713 0.01220114 0.00015546

LS 0.08349471 0.00349471 0.01231287 0.00016382

σ 0.00500000
MLE 0.00500196 0.00000196 0.00010335 0.00000001

LS 0.00500611 0.00000611 0.00010417 0.00000001

Table 5.2. Performance of Maximum Likelihood and Least Squares methods

for estimating the OU parameters, by 10,000 Monte Carlo simulations, using

a path of length 1260
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Figure 5.4. Paths generated from parameter estimates by Maximum Likeli-

hood and Method of Least Squares, using Monte Carlo averages with 10,000

replications of paths of length 1260. True parameter values are µ = 2.3,

λ = 0.08 and σ = 0.005
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5.1.4. Short Path

We also consider a short path. Similar to subsection 5.1.3, we look into the parameter

estimation of the OU process from such paths, using both the maximum likelihood and

the least squares methods, and then perform Monte Carlo simulations to determine the

robustness of the estimators.

5.1.4.1. Generating the Spread

In this case, we consider the last 126 steps of the path generated at the beginning of

the section. A graph of this path is provided in figure 5.5. Again we see that the process

oscillates around the long term mean.
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Figure 5.5. Discretized Ornstein-Uhlenbeck Process of length 126, with pa-

rameter values µ = 2.3, λ = 0.08 and σ = 0.005

5.1.4.2. Parameter Estimation

Both the maximum likelihood estimators and the method of least squares are em-

ployed to estimate the parameters µ, λ and σ of the OU process. From table 5.3, we see that

both methods give good estimates of the µ and σ, but do not do very well for λ. A graphical

comparison of the true path and the paths produced from the estimates is shown in figure
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5.6. While one can hardly distinguish between the estimated paths, we notice however that

they both differ slightly from the true path of the process.

True Value Method Estimate Bias Standard Error RMSE

µ 2.30000000
MLE 2.30049290 0.00049290 0.00329950 0.00001113

LS 2.30048086 0.00048086

λ 0.08000000
MLE 0.15094150 0.07094150 0.04952930 0.00748585

LS 0.15091469 0.07091469

σ 0.00500000
MLE 0.00554470 0.00054470 0.00037440 0.00000044

LS 0.00556660 0.00056660

Table 5.3. Parameter estimation for the discretized OU process of length

126 by maximum likelihood and method of least squares, with true parameter

values µ = 2.3, λ = 0.08 and σ = 0.005
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Figure 5.6. Paths of length 126, generated from one realization of estimates

from maximum likelihood and least squares methods, with true parameter

values µ = 2.3, λ = 0.08 and σ = 0.005.
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5.1.4.3. Monte Carlo Simulation

Like we did with the long path, we similarly perform Monte Carlo simulations for the

short path using both the maximum likelihood estimator and the least squares method. The

results are presented in table 5.4. We notice here that both methods are robust in estimating

the parameters µ and σ, but on the other hand, they do not perform very well in estimating

λ. However, this does not pose much of a problem, since our goal is not to predict the path

perfectly, but rather obtain good enough estimates to determine an optimal threshold.

5.1.5. Artificial Stocks

In this subsection, we will test our methods on an artificial pair. In finance, stock

price processes are often assumed to follow a geometric Brownian motion (GBM), [34]. So, to

test the performance of our model and parameter estimation techniques in a pseudo-practical

situation, we will assume we have a stock price time series Qt that follows the GBM, and

then assuming Xt is an OU process, we will derive the appropriate time series Pt for the

price of a second stock P , such that Pt and Qt are cointegrated. We will then perform our

parameter estimation on the resulting data sets and also employ Monte Carlo simulation to

assess the average performance of our estimators.

True Value Method Estimate Bias Standard Error RMSE

µ 2.30000000
MLE 2.30020981 0.00020981 0.01982779 0.00039319

LS 2.29999153 -0.00000847 0.00562541 0.00003165

λ 0.08000000
MLE 0.11421728 0.03421728 0.05234302 0.00391061

LS 0.11714017 0.03714017 0.05267428 0.00415397

σ 0.00500000
MLE 0.00503053 0.00003053 0.00033744 0.00000011

LS 0.00505308 0.00005308 0.00033910 0.00000012

Table 5.4. Performance of Maximum Likelihood and Least Squares methods

for estimating the OU parameters, by 10,000 Monte Carlo simulations, using

a path of length 126
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Figure 5.7. OU paths from parameter estimation by Maximum Likelihood

and Method of Least Squares, using Monte Carlo averages with 10,000 replica-

tions of paths of length 126. The true parameter values are µ = 2.3, λ = 0.08

and σ = 0.005

First, Qt satisfies the following stochastic differential equation.

(41) dQt = κQtdt+ σQtdBt,

where κ is the percentage drift and σ is the percentage volatility.

Let Yt = lnQt.

By Ito’s lemma A.3,

dYt =

(
κQt

1

Qt

+
σ2Qt

2

2

(
− 1

Qt
2

))
dt+ σQt

1

Qt

dBt

Thus, ∫ t

t−1

dYν =

∫ t

t−1

(
κ− σ2

2

)
dν + σ

∫ t

t−1

dBν
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Yt − Yt−1 =

[(
κ− σ2

2

)
ν

]t
t−1

+ σ(Bt −Bt−1)

lnQt − lnQt−1 =

(
κ− σ2

2

)
(t− (t− 1)) + σ(Bt −Bt−1)

lnQt = lnQt−1 +

(
κ− σ2

2

)
(t− (t− 1)) + σ(Bt −Bt−1),

Bt −Bt−1 ∼ i.i.d. N(0,∆t)(42)

5.1.5.1. Generating the Pair

A discretized form of the the GBM can be obtained from equation 42. In our example,

we use the parameters κ = 0.001 and σ = 0.02 to generate a logarithm of the price time

series Qt starting at ln(Q0) = 1.5 and including 10,000 steps. The plot is shown in figure

5.8. We also use relation 35 to generate a 10,000-step OU process that starts at x0 = 2.35,

with parameters µ = 2.5, λ = 0.09 and σ = 0.013. The graph can be found in figure 5.9. We

then combine these two processes using equation 1.7, with η = 0.3, to obtain the logarithm

of the prices time series Pt of a second stock P , such that ln(Pt) and ln(Qt) are cointegrated.

ln(Pt) is shown in figure 5.10. We will take the time unit ∆t to be a day.

We know from equation 32 that:

Xt = e−λ∆tXt−1 + µ(1− e−λ∆t) + σ

∫ t

t−1

e−λ(t−ν)dBν ,

and by equation 1.7, it follows that:

ln(Pt)− ηln(Qt) = e−λ∆t(ln(Pt−1)− ηln(Qt−1)) + µ(1− e−λ∆t) + σ

∫ t

t−1

e−λ(t−ν)dBν

(43) ln(Pt) = µ(1− e−λ∆t) +ηln(Qt) + e−λ∆tln(Pt−1)−ηe−λ∆tln(Qt−1) +σ

∫ t

t−1

e−λ(t−ν)dBν

Thus,

(44)

ln(Pt)|ln(Pt−1) ∼ N

(
µ(1− e−λ∆t) + ηln(Qt) + e−λ∆tln(Pt−1)− ηe−λ∆tln(Qt−1),

σ2

2λ
(1− e−2λ∆t)

)
,
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which gives the following log-likelihood:

l(η, µ, λ, σ|lnPt, lnQt, lnPt−1, lnQt−1)

= log

N∏
t=1

 1√
2π σ

2

2λ
(1− e−2λ∆t)

e
− (ln(Pt)−µ(1−e−λ∆t)−ηln(Qt)−e

−λ∆tln(Pt−1)+ηe−λ∆tln(Qt−1)))2

2(σ
2

2λ
(1−e−2λ∆t))

 ,

(45) = −N
2
log(2π)− N

2
log(

σ2

2λ
(1− e−2λ∆t))

− λ

σ2(1− e−2λ∆t)

N∑
t=1

(ln(Pt)−µ(1− e−λ∆t)− ηln(Qt)− e−λ∆tln(Pt−1) + ηe−λ∆tln(Qt−1)))2

The maxLik package in R will be used to numerically solve for optimal values of the

parameters η, µ, λ and σ for a given data set.

We may also obtain the least squares estimates as follows:

First, we formulate the least squares regression equation from equation 43

(46) ln(Pt) = ζ + θln(Pt−1 + ηln(Qt) + ψQt−1 + εt, εt ∼ i.i.d.N(0, σε)

where

ζ = µ(1− e−λ∆t)(47)

θ = e−λ∆t(48)

σ2
ε =

σ2

2λ
(1− e−2λ∆t)(49)

Substituting the least squares estimates of equation 46, ζ̂, α̂, θ̂, ψ̂ and σ̂ε, into equations 47,

48 and 49, and solving the system gives the least squares parameter estimates for the OU

model as:

λ̂ = − logθ̂
∆t
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µ̂ =
ζ̂

1− θ̂

σ̂ =

√
2λ̂σ̂ε√

1− θ̂2

To see the performance of our parameter estimation methods, we will apply them to

both a long path and a short one.
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Figure 5.8. ln(Qt) generated from Geometric Brownian Motion of length

10,000, with parameters κ = 0.001 and σ = 0.02, starting at 1.5
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Figure 5.9. Spread of length 10,000 from an OU process, with parameters

µ = 2.5, λ = 0.09 and σ = 0.013, start at x0 = 2.35
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Figure 5.10. ln(Pt) obtained from ln(Qt) and the OU process spread by the

cointegration equation.

5.1.5.2. Long Path

Let us first consider the last 1260 days of the process generated in subsection 5.1.5.1.

The OU process and the logarithm of the price time series are presented in figures 5.11 and

5.12 respectively.
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Figure 5.11. Last 1,260 steps of the OU process in figure 5.9
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Figure 5.12. Last 1,260 steps of ln(Pt) vs. ln(Qt) from figures 5.8 and 5.10

Linear model type Lag ADF p-value

Type 1: no drift, no trend 0 -5.81 ≤ 0.01

Type 2: with drift, no trend 0 -5.81 ≤ 0.01

Type 3: with drift and trend 0 -5.91 ≤ 0.01

Table 5.5. Augmented Dickey-Fulller test for stationarity of the cointegra-

tion between logarithmic returns of the artificial pair Pt and Qt.

Note 1: Alternate hypothesis: Stationary

5.1.5.3. Parameter Estimation

By the augmented Dickey-Fuller test result presented in table 5.5, it is reasonable to

assume the processes ln(Pt) and ln(Qt) are cointegrated. Thus Xt = ln(Pt) − ηln(Qt) is a

stationary process. So we estimate the parameters η, µ, λ and σ by maximum likelihood

method based on equation 45 and also by the method of least squares. A comparison of the

outputs is presented in table 5.6. Based on these parameter values, we reproduce the OU

process and plot them in figure 5.13. We observe here that both the maximum likelihood and
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least squares methods overestimate the µ, the level of the long term mean, but the maximum

likelihood method performed better. This is not very surprising, given that we only picked

one instance of the process. To better understand the performance of the model, we perform

Monte Carlo simulations with 10,000 sample paths and obtain the average estimates for the

parameters, using both maximum likelihood and least squares methods. Table 5.7 shows the

result. We again reproduce the paths based on these averages, and they are plotted in figure

5.14. We observe here that the estimates perform very well and it is almost impossible to

distinguish among the true path, the path from the maximum likelihood estimates and the

path from the least squares estimates.

5.1.5.4. Short Path

We now turn our attention to the last 126 days of the processes discussed in 5.1.5.1.

Similar to subsection 5.1.5.2, we show the OU process and the logarithm of the price time

series of the two artificial stocks in figures 5.15 and 5.16 respectively.

True Value Method Estimate Bias Standard Error RMSE

η 0.30000000
MLE 0.28454530 -0.01545470 0.01557660 0.00048148

LS 0.29773916 -0.00226084

µ 1.50000000
MLE 1.61252270 0.11252270 0.11299430 0.02542907

LS 1.82803207 0.32803207

λ 0.05000000
MLE 0.05121930 0.00121930 0.00966090 0.00009482

LS 0.05324758 0.00324758

σ 0.01300000
MLE 0.01318950 0.00018950 0.00027020 0.00000011

LS 0.01319774 0.00019774

Table 5.6. Parameter estimation for the OU process representing the spread

between lnPt and lnQt, by maximum likelihood and method of least squares.
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Figure 5.13. Spreads of length 1260 each, generated from one realization of

parameter estimates for the OU process, from maximum likelihood and least

squares methods, using ln(Qt) and ln(Pt).

True Value Method Estimate Bias Standard Error RMSE

η 0.30000000
MLE 0.30009965 0.00009965 0.01477949 0.00021844

LS 0.29997765 -0.00002235 0.01752722 0.00030720

µ 2.50000000
MLE 1.49889455 -0.00110545 0.10779558 0.01162111

LS 1.50040114 0.00040114 0.18946277 0.03589630

λ 0.09000000
MLE 0.05400583 0.00400583 0.01032903 0.00012274

LS 0.05508819 0.00508819 0.01011371 0.00012818

σ 0.01300000
MLE 0.01299313 -0.00000687 0.00026786 0.00000007

LS 0.01301512 0.00001512 0.00026522 0.00000007

Table 5.7. Maximum Likelihood and Least Squares estimates of the OU

parameters for the path of length 1260, by 10,000 Monte Carlo simulations
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Figure 5.14. Spreads of length 1260 each, generated from parameter esti-

mates by maximum likelihood and least squares methods from ln(Qt) and

ln(Pt), based on Monte Carlo averages.
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Figure 5.15. Last 126 steps of the OU process, with parameter values µ =

2.5, λ = 0.09 and σ = 0.013
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Figure 5.16. Last 126 steps of ln(Pt) vs. ln(Qt) from figures 5.8 and 5.10

Linear model type Lag ADF p-value

Type 1: no drift, no trend 0 -2.32 0.0218

Type 2: with drift, no trend 0 -2.30 0.21

Type 3: with drift and trend 0 -2.35 0.428

Table 5.8. Augmented Dickey-Fulller test for stationarity of the cointegra-

tion between logarithmic returns of the artificial pair Pt and Qt.

Note 1: Alternate hypothesis: Stationary

5.1.5.5. Parameter Estimation

The augmented Dickey-Fuller test result for the process Xt = ln(Pt) − ηln(Qt) is

shown in 5.8. It is reasonable to assume ln(Pt) and ln(Qt) are cointegrated.

Thus we estimate the parameters η, µ, λ and σ by maximum likelihood method

based on equation 45 and also by the method of least squares. A comparison of the outputs

is presented in table 5.9. Although both methods do not perform well in this case, the

maximum likelihood estimates are better than the method of least squares estimates. A
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visualization of this is also shown in figure 5.17.

To better understand the performance of the model, we perform Monte Carlo sim-

ulations with 10,000 sample paths and obtain the average estimates for the parameters,

using both maximum likelihood and least squares methods. The results are shown in table

5.10. We again reproduce the paths based on these averages, and they are plotted in figure

5.18. We observe here that the estimates do not perform very well. However, the maximum

likelihood estimate is closer to the true path than the path from the least squares estimates.

5.1.6. Optimal Threshold

In this subsection, we obtain optimal thresholds for the process discussed in subsection

5.1.5. We will let ∆t correspond to a day. Thus the 126 trading days correspond to half of

a year of trading days and 1260 corresponds to five years of trade data in the US financial

market.

True Value Method Estimate Bias Standard Error RMSE

η 0.30000000
MLE 0.26151180 -0.03848820 0.05445690 0.00444670

LS 0.26272021 -0.03727979

µ 2.50000000
MLE 1.75560820 0.25560820 0.41761910 0.23974127

LS 2.66869415 1.16869142

λ 0.09000000
MLE 0.04647160 -0.00352840 0.02996400 0.00091029

LS 0.05683273 0.00683273

σ 0.01300000
MLE 0.01272400 -0.00027600 0.00082630 0.00000076

LS 0.01282800 -0.00017200

Table 5.9. Parameter estimates by one realization, for the OU representation

of the spread between lnPt and lnQt for 126 steps, by maximum likelihood and

method of least squares.
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Figure 5.17. Spreads of length 126 each, generated from one realization of

parameter estimates from maximum likelihood and least squares methods,

using ln(Qt) and ln(Pt)

True Value Method Estimate Bias Standard Error RMSE

η 0.30000000
MLE 0.29927062 -0.00072938 0.05609920 0.00314765

LS 0.29571629 -0.00428371 0.04870552 0.00239058

µ 1.50000000
MLE 1.54209289 0.04209289 0.51689144 0.26894857

LS 1.43436118 -0.06563882 1.46113841 2.13923392

λ 0.05000000
MLE 0.08370286 0.03370286 0.05781343 0.00447828

LS 0.10151337 0.05151337 0.04976264 0.00512995

σ 0.01300000
MLE 0.01303405 0.00003405 0.00088106 0.00000078

LS 0.01321786 0.00021786 0.00092366 0.00000090

Table 5.10. Parameter estimates by Maximum Likelihood and Least Squares

methods the 126 steps OU process, by Monte Carlo simulations
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Figure 5.18. Spreads of length 126 each, generated from parameter estimates

by maximum likelihood and least squares methods from ln(Qt) and ln(Pt),

based on Monte Carlo averages.

True Value Method Estimate Bias Standard Error RMSE

µ 1.50000000
MLE 1.50195030 0.00195030 0.00633370 0.00004392

LS 1.50197867 0.00197867

λ 0.05000000
MLE 0.06021400 0.01021400 0.01006890 0.00020571

LS 0.06025913 0.01025913

σ 0.01300000
MLE 0.01352990 0.00052990 0.00027780 0.00000039

LS 0.01353488 0.00053488

Table 5.11. One realization of parameter estimates by maximum likelihood

and least squares methods, for the OU representation of the spread of length

1260 between ln(Qt) and ln(Pt)

Ideally, it is best to estimate all the four parameters η, µ, λ and σ together. But, con-
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sidering how the one realization estimates perform, particularly in estimating the long-term

mean µ when all four parameters are estimated together, and the standard error obtained

for µ, we recommend estimating η separately by simple linear regression of Pt on Qt and

then estimate the remaining three parameters using maximum likelihood estimates as shown

in subsections 5.1.3 and 5.1.4. This is in line with the methods used by [40] and [17].

5.1.6.1. Long Path
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Figure 5.19. Paths generated from one realization of parameter estimates

by maximum likelihood and least squares methods, for the OU representation

of the spread of length 1260 between ln(Qt) and ln(Pt)

5.1.6.2. Case 1: γ = 0

The thresholds for this case are given by

(50) g(t) = µ± σ√
2λ
βe−λt.

Substituting the time horizon T = 5 into the corresponding h(β) in chapter 4 and solving

gives the optimizer as β̃ ≈ 0.9715, approximated to four decimal places. Thus the optimal

thresholds for this case are:
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g̃(t) ≈ µ̃± σ̃√
2λ̃

(0.9715)e−λ̃t.

From maximum likelihood estimates in table 5.11, we take the values of the parameters as

µ̃ = 1.5020, λ̃ = 0.0602 and σ̃ = 0.0135. Hence we approximate the optimal thresholds as:

g̃(t) = 1.5020± 0.0135√
2(0.0602)

(0.9715)e−0.0602t

= 1.5020± 0.0378e−0.0602t(51)

A graphical representation of this result is shown in figure 5.20.
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Figure 5.20. New threshold case 1 on the OU representation of the spread

of length 1260 between ln(Qt) and ln(Pt)

5.1.6.3. Case 2: γ ≥ 0 and ρ = 1

For this, the threshold is given by:

(52) g(t) = µ± σ√
2λ

(βe−λt − γeλt).

73



Substituting the time horizon T = 5 into the corresponding h(β, γ) in chapter 4 and

solving gives the optimizer as (β̃, γ̃) ≈ (1.3351, 0.1856), approximated to four decimal places.

Thus the optimal thresholds for this case are:

g̃(t) ≈ µ̃± σ̃√
2λ̃

(1.3351e−λ̃t − 0.1856eλ̃t).

Taking the estimates of the OU process parameters to be µ̃ = 1.5020, λ̃ = 0.0602 and

σ̃ = 0.0135, as in case 1, we approximate the optimal thresholds as:

g̃(t) ≈ 1.5020± 0.0135√
2(0.0602)

(1.3351e−0.0602t − 0.1856e0.0602t)

= 1.5020± 0.0389(1.3351e−0.0602t − 0.1856e0.0602t)(53)

A graphical representation of this result is shown in figure 5.21.
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Figure 5.21. New threshold case 2 on the OU representation of the spread

of length 1260 between ln(Qt) and ln(Pt)
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In contrast, the optimal thresholds provided by case 1 has a narrower band in com-

parison with that of case 2 and as such is crossed more often by the path and hence generates

more trades, while the optimal threshold presented in case 2 has a broader band, and as a

result may have fewer number of crossings than case 1 and therefore fewer number of trades,

but due to the wide band, the return per trade cycle is greater for case 2 than case one.

5.1.6.4. Short Path

Let us now look at the situation for short trade time horizons. Specifically, we consider

126 days or half a year. From table 5.12 , we see that apart from λ, the other two parameters

were quite well estimated. Nonetheless, a look at the graph in figure 5.22 shows that the

true path is quite well approximated by our estimated path.

True Value Method Estimate Bias Standard Error RMSE

µ 1.50000000
MLE 1.50027460 0.00027460 0.01057400 0.00011189

LS 1.50028069 0.00028069

λ 0.05000000
MLE 0.12241420 0.07241420 0.04302880 0.00709529

LS 0.12250859 0.07250859

σ 0.01300000
MLE 0.01438200 0.00138200 0.00095680 0.00000283

LS 0.01444111 0.00144111

Table 5.12. One realization of parameter estimates by maximum likelihood

and least squares methods, for the OU representation of the spread of length

126 between ln(Qt) and ln(Pt)

5.1.6.5. Case 1: γ = 0

Substituting the time horizon T = 1
2

into the corresponding h(β) in chapter 4 and

solving gives the optimizer of the expected return as β̃ ≈ 0.8735, approximated to four

decimal places.
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Figure 5.22. Paths generated from one realization of parameter estimates

by maximum likelihood and least squares methods, for the OU representation

of the spread of length 126 between ln(Qt) and ln(Pt) based on equation ...

Thus the optimal thresholds for this case are:

g̃(t) ≈ µ̃± σ̃√
2λ̃

(0.8735)e−λ̃t.

From the maximum likelihood estimates in table 5.12, we take the values of the parameters

as µ̃ = 1.5003, λ̃ = 0.1224 and σ̃ = 0.0144. Hence we approximate the optimal thresholds

as:

g̃(t) = 1.5003± 0.0144√
2(0.1224)

(0.8735)e−0.1224t

= 1.5003± 0.0254e−0.1224t(54)

A graphical representation of this result is shown in figure 5.23.
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Figure 5.23. New threshold case 1 on the OU representation of the spread

of length 126 between ln(Qt) and ln(Pt)

5.1.6.6. Case 2: γ ≥ 0 and ρ = 1

Substituting the time horizon T = 1
2

into the corresponding h(β, γ) in chapter 4 and

solving gives the optimizer of the expected return as (β̃, γ̃) ≈ (2.2621, 0.6944), approximated

to four decimal places. Thus the optimal thresholds for this case are:

g̃(t) ≈ µ̃± σ̃√
2λ̃

(2.2621e−λ̃t − 0.6944eλ̃t).

Taking the estimates of the OU process parameters to be µ̃ = 1.5003, λ̃ = 0.1224 and

σ̃ = 0.0144, as in case 1, we approximate the optimal thresholds as:

g̃(t) ≈ 1.5003± 0.0144√
2(0.1224)

(2.2621e−0.1224t − 0.6944e0.1224t)

= 1.5003± 0.0291(2.2621e−0.1224t − 0.6944e0.1224t)(55)
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A graphical representation of this result is shown in figure 5.24.
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Figure 5.24. New threshold case 2 on the OU representation of the spread

of length 126 between ln(Qt) and ln(Pt)

Again, the optimal thresholds provided by case 1 has a narrower band and as such

is crossed more often by the path, while the optimal threshold presented in case 2 has a

broader band, and as a result may have fewer number of crossings than case 1, but may

generate higher return per trade cycle.

5.2. Nonzero Trend Generalized Ornstein-Uhlenbeck Process

5.2.1. The Process

Let us now consider the generalized version of the Ornstein-Uhlenbeck process:

(56) d(Xt − (at+ b)) = −λ(Xt − (at+ b))dt+ σdBt, t ≥ 0

X0 = x0, λ > 0, σ > 0
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As noted in chapter four, this process is trend-stationary, in that it pulls back to the

linear trend at + b whenever it deviates from it. We apply Ito’s lemma A.3 once again to

solve the system.

First, we rewrite the stochastic differential equation as

dXt = (a− λ(Xt − (at+ b)))dt+ σdB

Let Yt = eλtXt

By Ito’s lemma A.3,

dYt = (λeλtXt + eλt(a− λ(Xt − (at+ b))))dt+ σeλtdBt

= (a+ λat+ λb)eλtdt+ σeλtdBt(57)

Integrating both sides on the interval 0 ≤ t ≤ s, we get,

∫ s

0

dYt =

∫ s

0

(a+ λat+ λb)eλtdt+ σ

∫ s

0

eλtdBt

Ys − Y0 =

∫ s

0

(a+ λat+ λb)eλtdt+ σ

∫ s

0

eλtdBt

Thus,

eλtXs −X0 =

∫ s

0

(a+ λat+ λb)eλtdt+ σ

∫ s

0

eλtdBt

Applying integration by parts to the first term on the right hand side gives,

eλsXs = X0 +

[
(a+ λat+ λb)eλt

λ

]s
0

−
∫ s

0

aeλtdt+ σ

∫ s

0

eλtdBt

= X0 +
(a+ λas+ λb)eλs

λ
− (a+ λb)

λ
−
[

1

λ
aeλt

]s
0

+ σ

∫ s

0

eλtdBt

= X0 +
(a+ λas+ λb)eλs

λ
− (a+ λb)

λ
− aeλt

λ
+
a

λ
+ σ

∫ s

0

eλtdBt

= X0 + (as+ b)eλs − b+ σ

∫ s

0

eλtdBt
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Dividing both sides by eλs, we get

Xs = e−λsX0 + as+ b− be−λs + σ

∫ s

0

e−λ(s−t)dBt

Similarly, if we integrate 57 over the time interval t− 1 ≤ ν ≤ t, where ∆t = t− (t− 1) is a

unit change in time, we obtain:∫ t

t−1

dYν =

∫ t

t−1

(a+ λaν + λb)eλνdν + σ

∫ t

t−1

eλνdBν

Yt − Yt−1 =

∫ t

t−1

(a+ λaν + λb)eλνdν + σ

∫ t

t−1

eλνdBν

eλtXt − eλ(t−1)Xt−1 =

∫ t

t−1

(a+ λaν + λb)eλνdν + σ

∫ t

t−1

eλνdBν

Integrating the first term on the right hand side by parts gives

eλtXt = eλ(t−1)Xt−1 +

[
(a+ λaν + λb)eλν

λ

]t
t−1

−
∫ t

t−1

aeλνdν + σ

∫ t

t−1

eλνdBν

= eλ(t−1)Xt−1 +
(a+ λat+ λb)eλt

λ
− (a+ λa(t− 1) + λb)eλ(t−1)

λ

−
[

1

λ
aeλν

]t
t−1

+ σ

∫ t

t−1

eλνdBν

= eλ(t−1)Xt−1 +
(a+ λat+ λb)eλt

λ
− (a+ λa(t− 1) + λb)eλ(t−1)

λ

− aeλt

λ
+
aeλ(t−1)

λ
+ σ

∫ t

t−1

eλνdBν

Dividing both sides by eλt, we get

Xt = e−λ(t−(t−1))Xt−1 +
a

λ
+ at+ b− a

λ
e−λ(t−(t−1)) − a(t− 1)e−λ(t−(t−1))

− be−λ(t−(t−1)) − a

λ
+
a

λ
e−λ(t−(t−1)) + σ

∫ t

t−1

eλνdBν

= e−λ∆tXt−1 + at+ b− a(t− 1)e−λ∆t − be−λ∆t + σ

∫ t

t−1

e−λ(t−ν)dBν

= e−λ∆tXt−1 + b(1− e−λ∆t) + a(t− (t− 1)e−λ∆t) + σ

∫ t

t−1

e−λ(t−ν)dBν

= e−λ∆tXt−1 + b(1− e−λ∆t) + a(t− (t−∆t)e−λ∆t) + σ

∫ t

t−1

e−λ(t−ν)dBν
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= e−λ∆tXt−1 + b(1− e−λ∆t) + a(1− e−λ∆t)t+ a∆te−λ∆t

+ σ

∫ t

t−1

e−λ(t−ν)dBν

(58)

As discussed earlier, the Ito integral
∫ t
t−1

e−λ(t−ν)dBν in equation 58 above follows a normal

distribution with mean zero and variance σ2

2λ
(1− e−2λ∆t).

So, it follows that:

(59)

Xt|Xt−1 ∼ N

(
e−λ∆tXt−1 + b(1− e−λ∆t) + a(1− e−λ∆t)t+ a∆te−λ∆t,

σ2

2λ
(1− e−2λ∆t)

)
.

As before, a discretized form of the trending OU process Xt can be obtained from

the distribution in 59 above.

Let us consider an example of this process with parameter values a = 0.0002, b = 0.02,

λ = 0.08 and σ = 0.005, which starts at x0 = 0.4. We generate a path of length 10,000 based

on he model. This is shown in figure 5.25. We see here that the process oscillates around

the line Xt = 0.0002t+ 0.02, and always reverts to it whenever there is a deviation.

5.2.2. Parameter Estimation

We show in this subsection parameter estimation for the trend-stationary OU process

both with maximum likelihood and least squares methods.

5.2.2.1. Maximum Likelihood Estimator

From relation 59, the likelihood function for this model is:

L(a, b, λ, σ|Xt) =
N∏
t=1

 1√
2π σ

2

2λ
(1− e−2λ∆t)

e
− (Xt−(e−λ∆tXt−1+b(1−e−λ∆t)+a(1−e−λ∆t)t+a∆te−λ∆t))2

2(σ
2

2λ
(1−e−2λ∆t))
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Figure 5.25. Discretized trend-stationary Ornstein-Uhlenbeck Process of

length 10000, with parameters a = 0.0002, b = 0.02, λ = 0.08 and σ = 0.005,

starting from x0 = 0.4

We then obtain the log-likelihood as:

l(a, b, λ, σ|Xt) = log
N∏
t=1

 1√
2π σ

2

2λ
(1− e−2λ∆t)

e
− (Xt−(e−λ∆tXt−1+b(1−e−λ∆t)+a(1−e−λ∆t)t+a∆te−λ∆t))2

2(σ
2

2λ
(1−e−2λ∆t))



= − N

2
log(2π)− N

2
log(

σ2

2λ
(1− e−2λ∆t))

− λ

σ2(1− e−2λ∆t)

N∑
t=1

(Xt − e−λ∆tXt−1 − b(1− e−λ∆t)− a(1− e−λ∆t)t− a∆te−λ∆t))2(60)

Thus the maximum likelihood estimates for a, b, λ and σ will be the values â, b̂, λ̂ and

σ̂ respectively, that maximize the above expression. We will solve this numerically from

equation 60.
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5.2.2.2. Method of Least Squares

We formulate the least squares regression equation from equation 59 as follows:

(61) Xt = ζ + αt+ ψXt−1 + εt, εt ∼ i.i.d.N(0, σε)

where

ζ = b(1− e−λ∆t) + a∆te−λ∆t(62)

α = a(1− e−λ∆t)(63)

ψ = e−λ∆t(64)

σ2
ε =

σ2

2λ
(1− e−2λ∆t)(65)

Substituting the least squares estimates of equation 61, ζ̂, ψ̂ and σ̂ε, into equations 62, 63,

64 and 65, and solving the system gives the least squares parameter estimates for the OU

model as:

λ̂ = − logψ̂
∆t

â =
α̂

1− ψ̂

b̂ =
ζ̂(1− ψ̂)−∆αψ

(1− ψ̂)2

σ̂ =

√
2λ̂σ̂ε√

1− ψ̂2

To see the performance of our parameter estimation methods, we will apply them to

both a long path and a short one as before.
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5.2.3. Long Path

5.2.3.1. Generating the Spread

We use the last 1260 points of the path presented in figure 5.25 in our study. A graph

of this path can be found in figure 5.26.
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Figure 5.26. Discretized trend-stationary Ornstein-Uhlenbeck Process of

length 1260, with parameter values a = 0.0002, b = 0.02, λ = 0.08 and

σ = 0.005

5.2.3.2. Parameter Estimation

We now estimate the parameters of the model by maximum likelihood and least

squares methods. The result is shown in table 5.13. We notice that both methods estimate

the parameters a, λ and σ quite well, but do not perform well for b. We generate paths from

the estimates and compare them against the true path in figure 5.27. From this figure we

can see that the model is quite resistant to the error in estimating b.
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True Value Method Estimate Bias Standard Error RMSE

a 0.00020000
MLE 0.00018800 -0.00001200 0.00000017 0.00000000

LS 0.00018798 -0.00001202

b 0.02000000
MLE 0.13315400 0.11315400 0.00159200 0.01280636

LS 0.13315080 0.11315080

λ 0.08000000
MLE 0.08999000 0.00999000 0.01252300 0.00025663

LS 0.09004500 0.01004500

σ 0.00500000
MLE 0.00508300 0.00008300 0.00010200 0.00000002

LS 0.00508510 0.00008510

Table 5.13. Parameter estimation for the discretized trend-stationary OU

process of length 1260 by maximum likelihood and method of least squares,

with true parameter values a = 0.0002, b = 0.02, λ = 0.08 and σ = 0.005
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Figure 5.27. Paths of length 1260, generated from one realization of param-

eter estimates from maximum likelihood and least squares methods, with true

parameter values a = 0.0002, b = 0.02, λ = 0.08 and σ = 0.005, for the trend-

stationary OU process.
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5.2.3.3. Monte Carlo Simulation

We also perform a Monte Carlo simulation with on the same parameter values as

above to see the average estimate of the methods. From the results in table 5.14, we see

that on average all the parameters are well estimated and there is significant improve in the

estimates for b in comparison with the case of one realization. A plot of the paths generated

from these estimates in comparison with the true path can be found in figure 5.28.

True Value Method Estimate Bias Standard Error RMSE

a 0.00020000
MLE 0.00019993 -0.00000007 0.00000290 0.00000000

LS 0.00020000 -0.00000000 0.00000478 0.00000000

b 0.02000000
MLE 0.02083869 0.00083869 0.02720594 0.00074087

LS 0.02017871 0.00017871 0.04493147 0.00201887

λ 0.08000000
MLE 0.08344855 0.00344855 0.01285059 0.00017703

LS 0.08481821 0.00481821 0.01221014 0.00017230

σ 0.00500000
MLE 0.00500934 0.00000934 0.00010678 0.00000001

LS 0.00500355 0.00000355 0.00010317 0.00000001

Table 5.14. Performance of Maximum Likelihood and Least Squares meth-

ods for estimating the trend-stationary OU parameters, by 10,000 Monte Carlo

simulations, using a path of length 1260

5.2.4. Short Path

Let us now consider short term trade time horizon.

5.2.4.1. Generating the Spread

We will use the last 126 steps of the path presented in figure 5.25. A graph of this

path can be found in figure 5.29.
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Figure 5.28. Paths generated from parameter estimates by Maximum Like-

lihood and Method of Least Squares, using Monte Carlo averages with 10,000

replications of paths of length 1260. True parameter values are a = 0.0002,

b = 0.02, λ = 0.08 and σ = 0.005
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Figure 5.29. Discretized trend-stationary Ornstein-Uhlenbeck Process of

length 126, with parameter values a = 0.0002, b = 0.02, λ = 0.08 and σ =

0.005
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5.2.4.2. Parameter Estimation

In estimating the parameters from one realization, we notice from table 5.15 that a

and σ are quite well estimated, while the estimates for b and λ are not very good, both

for the maximum likelihood and least squares methods. However, the paths generated from

these estimates approximate the true path well enough for our purpose. See figure 5.30.

True Value Method Estimate Bias Standard Error RMSE

a 0.00020000
MLE 0.00034270 0.00014270 0.00000020 0.00000002

LS 0.00034272 0.00014272

b 0.02000000
MLE -1.39274270 -1.59274270 0.00187570 2.53683283

LS -1.39275034 -1.59275034

λ 0.08000000
MLE 0.21820710 0.13820710 0.06940170 0.02391780

LS 0.21808244 0.13808244

σ 0.00500000
MLE 0.00455410 -0.00044590 0.00030570 0.00000029

LS 0.00457163 -0.00042837

Table 5.15. Parameter estimation for the discretized trend-stationary OU

process of length 126 by maximum likelihood and method of least squares,

with actual parameters a = 0.0002, = 0.02, λ = 0.08 and σ = 0.005

5.2.4.3. Monte Carlo Simulation

The average estimates from Monte Carlo simulations with 10,000 replications is shown

if table 5.16. We notice an improvement over the one realization result for all the parameters,

for both estimation methods. More importantly, we notice that the maximum likelihood

estimates outperform the least squares estimates and provides better estimates for all the

parameters, which is in consonance with known statistical results. A plot of the paths

generated from these estimates is shown in figure 5.31.
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Figure 5.30. Paths of length 126 for the trend-stationary OU process, gen-

erated from one realization of estimates from maximum likelihood and least

squares methods, with true parameter values a = 0.0002, = 0.02, λ = 0.08

and σ = 0.005

True Value Method Estimate Bias Standard Error RMSE

a 0.00020000
MLE 0.00020047 0.00000047 0.00001548 0.00000000

LS 0.00020751 0.00000751 0.00015013 0.00000002

b 0.02000000
MLE 0.01572380 -0.00427620 0.15276549 0.02335558

LS -0.05404180 -0.07404180 1.48428565 2.20858609

λ 0.08000000
MLE 0.11847379 0.03847379 0.05471677 0.00447416

LS 0.14065392 0.06065392 0.05857387 0.00710980

σ 0.00500000
MLE 0.00505847 0.00005847 0.00033740 0.00000012

LS 0.00508214 0.00008214 0.00034027 0.00000012

Table 5.16. Performance of Maximum Likelihood and Least Squares meth-

ods for estimating the trend-stationary OU parameters, by 10,000 Monte Carlo

simulations, using a path of length 126
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Figure 5.31. Trend-stationary OU paths from parameter estimation by Max-

imum Likelihood and Method of Least Squares, using Monte Carlo averages

with 10,000 replications of paths of length 126. The true parameter values are

5.2.5. Artificial Stocks

We now generate a pair of artificial stock prices Qt and Pt, such that the spread

between their log-returns is trend-stationary and follows the trend-stationary OU process

5.2.1, and then perform parameter estimation for the pair.

5.2.5.1. Generating the Pair

For Qt we will use the same GBM we generated in subsection 5.1.5. We use relation 59

to generate a 10,000 steps trend-stationary OU process starting at x0 = 1.4, with parameter

values a = 0.0002, b = 0.8, λ = 0.08 and σ = 0.005. We then combine these two processes

using equation 1.7, with η = 0.3, to obtain the logarithm of the price time series Pt of a

second stock P . The graphs of these are shown in figures 5.32, 5.33 and 5.34 respectively.

We know from equation 58 that:
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Xt = e−λ∆tXt−1 + b(1− e−λ∆t) + a(1− e−λ∆t)t+ a∆te−λ∆t + σ

∫ t

t−1

e−λ(t−ν)dBν ,

and by equation 1.7, it follows that:

ln(Pt)− ηln(Qt) = e−λ∆t(ln(Pt−1)− ηln(Qt−1)) + b(1− e−λ∆t)

+ a(1− e−λ∆t)t+ a∆te−λ∆t + σ

∫ t

t−1

e−λ(t−ν)dBν

ln(Pt) = b(1− e−λ∆t) + a∆te−λ∆t + a(1− e−λ∆t)t+ e−λ∆tln(Pt−1)

+ ηln(Qt)− ηe−λ∆tln(Qt−1) + σ

∫ t

t−1

e−λ(t−ν)dBν(66)

Thus,

ln(Pt)|ln(Pt−1), ln(Qt), ln(Qt−1) ∼ N ( b(1− e−λ∆t) + a∆te−λ∆t + a(1− e−λ∆t)t+ e−λ∆tln(Pt−1)

+ ηln(Qt)− ηe−λ∆tln(Qt−1),
σ2

2λ
(1− e−2λ∆t) ) ,(67)

which gives the following log-likelihood:

l(η, a, b, λ, σ|lnPt, lnQt, lnPt−1, lnQt−1)

= log
N∏
t=1

 1√
2π σ

2

2λ
(1− e−2λ∆t)

e
− (ln(Pt)−b(1−e

−λ∆t)−a∆te−λ∆t−a(1−e−λ∆t)t−e−λ∆tln(Pt−1)−ηln(Qt)+ηe
−λ∆tln(Qt−1))2

2(σ
2

2λ
(1−e−2λ∆t))

 ,

(68) = −N
2
log(2π)− N

2
log(

σ2

2λ
(1− e−2λ∆t))

− λ

σ2(1− e−2λ∆t)

N∑
t=1

(ln(Pt)− b(1− e−λ∆t)− a∆te−λ∆t − a(1− e−λ∆t)t− e−λ∆tln(Pt−1)

− ηln(Qt) + ηe−λ∆tln(Qt−1))2

The maxLik package in R will be used to numerically solve for optimal values of the

parameters η, µ, λ and σ from given data set.

91



For the least squares estimates, we formulate the regression equation from equation

66 as follows:

(69) ln(Pt) = ζ + αt+ θln(Pt−1 + ηln(Qt) + ψQt−1 + εt, εt ∼ i.i.d.N(0, σε)

where

ζ = b(1− e−λ∆t) + a∆te−λ∆t(70)

α = a(1− e−λ∆t)(71)

θ = e−λ∆t(72)

σ2
ε =

σ2

2λ
(1− e−2λ∆t)(73)

Substituting the least squares estimates of equation 69, ζ̂, α̂, θ̂, ψ̂ and σ̂ε, into equations 70,

71, 72 and 73, and solving the system gives the least squares parameter estimates for the

OU model as:

λ̂ = − logθ̂
∆t

â =
α̂

1− θ̂

b̂ =
ζ̂(1− θ̂)−∆tα̂θ̂

(1− θ̂)2

σ̂ =

√
2λ̂σ̂ε√

1− θ̂2

We again apply these parameter estimation methods to both a long-term trade horizon

and a short-term trade horizon. The path ln(Qt) of length 10,000 from the GBM is shown

in figure 5.32. The trend-stationary OU process, Xt is shown in figure 5.33, and the derived

artificial time series ln(Pt) is shown in figure 5.34.
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Figure 5.32. ln(Qt) generated from Geometric Brownian Motion of length

10,000, with parameters κ = 0.001 and σ = 0.02), starting at 1.5
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Figure 5.33. Spread of length 10,000 from a trend-stationary OU process,

with parameters a = 0.0002, b = 0.8, λ = 0.08 and σ = 0.005
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Figure 5.34. ln(Pt) obtained from ln(Qt) and the trend-stationary OU pro-

cess spread by the cointegration equation.
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Figure 5.35. Last 1,260 steps of the trend-stationary OU process in figure 5.33
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5.2.5.2. Long Path

Let us first consider the last 1260 days of the process generated in subsection 5.2.5.1.

The OU process and the logarithm of the price time series are presented in figures 5.35 and

5.36 respectively. Notice that the augmented Dickey-Fuller test result 5.17 indicates that all

the three linear model types are stationary. But observing the path in figure 5.35, it is more

reasonable to consider the trend.
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Figure 5.36. Last 1,260 steps of ln(Pt) vs. ln(Qt) from figures 5.32 and 5.34

Linear model type Lag ADF p-value

Type 1: no drift, no trend 0 -6.07 ≤ 0.01

Type 2: with drift, no trend 0 -6.07 ≤ 0.01

Type 3: with drift and trend 0 -6.12 ≤ 0.01

Table 5.17. Augmented Dickey-Fulller test for stationarity of the cointegra-

tion between logarithmic returns of the artificial pair Pt and Qt.

Note 1: Alternate hypothesis: Stationary
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5.2.5.3. Parameter Estimation

We estimate the parameters η, a, b, λ and σ by maximum likelihood method based on

equation 68 and also by the method of least squares using the system of equations obtained

earlier in the section. A comparison of the outputs is presented in table 5.18. We observe

from the table that the parameters are quite well estimated by both methods except for b

for the least squares method, and λ is also slightly off. Based on these parameter values, we

reproduce the trend-stationary OU process and plot them in figure 5.37. We see that again

the maximum likelihood estimates are better than the least squares estimates. However these

estimate for b in the least squares method is not good enough for the purpose of estimating

optimal thresholds since the drift level plays a major role in the level of the thresholds.

True Value Method Estimate Bias Standard Error RMSE

η 0.30000000
MLE 0.28905200 -0.01094800 0.00240500 0.00012564

LS 0.30552645 0.00552645

a 0.00020000
MLE 0.00021070 0.00001070 0.00000018 0.00000000

LS 0.00015396 -0.00004604

b 0.80000000
MLE 0.80031100 0.00031100 0.02068100 0.00042780

LS 1.06789968 0.36789968

λ 0.08000000
MLE 0.08562200 0.00562200 0.01212300 0.00017857

LS 0.09469577 0.01469577

σ 0.00500000
MLE 0.00508800 0.00008800 0.00010600 0.00000002

LS 0.00509058 0.00009058

Table 5.18. Parameter estimation for the trend-stationary OU process repre-

senting the spread between lnPt and lnQt, by maximum likelihood and method

of least squares.
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Figure 5.37. Spreads of length 1260 each, generated from one realization

of parameter estimates for the trend-stationary OU process, from maximum

likelihood and least squares methods, using ln(Qt) and ln(Pt).

We also perform Monte Carlo simulations with 10,000 sample paths and obtain the

average estimates for the parameters, using both maximum likelihood and least squares

methods as before. Table 5.19 shows the result. We again reproduce the paths based on

these averages, and they are plotted in figure 5.38. We observe that the estimators perform

very well here.

5.2.5.4. Short Path

we now look at the last 126 days of the processes discussed in 5.2.5.1. Similar to

subsection 5.1.5.2, we show the OU process and the logarithm of the price time series of the

two artificial stocks in figures 5.39 and 5.40 respectively.
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True Value Method Estimate Bias Standard Error RMSE

η 0.30000000
MLE 0.30049995 0.00049995 0.00000013 0.00000025

LS 0.29996349 -0.00003651 0.00656867 0.00004315

a 0.00020000
MLE 0.00020167 0.00000167 0.00000018 0.00000000

LS 0.00020101 0.00000101 0.00002581 0.00000000

b 0.80000000
MLE 0.78000000 -0.02000000 0.00000001 0.00040000

LS 0.79533500 -0.00466500 0.12626155 0.01596374

λ 0.08000000
MLE 0.08599982 0.00599982 0.00000028 0.00003600

LS 0.08646885 0.00646885 0.01239505 0.00019548

σ 0.00500000
MLE 0.00500550 0.00000550 0.00008399 0.00000001

LS 0.00500336 0.00000336 0.00010325 0.00000001

Table 5.19. Maximum Likelihood and Least Squares estimates of the trend-

stationary OU process parameters for the path of length 1260, by 10,000 Monte

Carlo simulations
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Figure 5.38. Spreads of length 1,260 each, generated from parameter es-

timates by maximum likelihood and least squares methods from ln(Qt) and

ln(Pt), based on Monte Carlo averages. See table 5.19
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Figure 5.39. Last 126 steps of the trend-stationary OU process in figure 5.33
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Figure 5.40. Last 126 steps of ln(Pt) vs. ln(Qt) from figures 5.32 and 5.34
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Linear model type Lag ADF p-value

Type 1: no drift, no trend 0 -2.73 ≤ 0.01

Type 2: with drift, no trend 0 -2.72 0.0788

Type 3: with drift and trend 0 -3.08 0.125

Table 5.20. Augmented Dickey-Fulller test for stationarity of the cointegra-

tion between logarithmic returns of the artificial pair Pt and Qt.

Note 1: Alternate hypothesis: Stationary

True Value Method Estimate Bias Standard Error RMSE

η 0.30000000
MLE 0.29881380 -0.00118620 0.02079720 0.00043393

LS 0.28613051 -0.01386949

a 0.00020000
MLE 0.00020130 0.00000130 0.00000046 0.00000000

LS 0.00030316 0.00010316

b 0.80000000
MLE 0.70968410 -0.09031590 0.19413970 0.04584719

LS -0.42596944 -1.22596944

λ 0.08000000
MLE 0.13149820 0.05149820 0.05595530 0.31575162

LS 0.22047593 0.14047593

σ 0.00500000
MLE 0.00443500 -0.00065600 0.00030550 0.00000965

LS 0.00455466 -0.00044534

Table 5.21. Parameter estimates by one realization, for the trend-stationary

OU representation of the spread between lnPt and lnQt for 126 steps, by

maximum likelihood and method of least squares.

5.2.5.5. Parameter Estimation

We estimate the parameters η, a, b, λ and σ by maximum likelihood method based

on equation 68 and also by the method of least squares. A comparison of the outputs is

presented in table 5.21. Both methods do not perform well in estimating λ for this case, but
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besides this, the least squares estimates for b is also poor, which is critical for our optimal

threshold estimation as explained earlier. A visualization of this is also shown in figure 5.41
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Figure 5.41. Trend-stationary OU process representation of spreads of

length 126 each, generated from one realization of parameter estimates from

maximum likelihood and least squares methods, using ln(Qt) and ln(Pt)

We perform Monte Carlo simulations with 10,000 sample paths and obtain the average

estimates for the parameters, using both maximum likelihood and least squares methods.

The results are shown in table 5.22. The paths reproduced from these estimates is shown

in figure 5.42. We observe here that the estimates perform better than the case of one

realization 5.41, although not as good as the case of long paths. We also note here that the

path from the maximum likelihood estimates is closer to the true path than the path from

the least squares estimates. We notice that the standard error in our estimate for b is also

high for both methods.
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True Value Method Estimate Bias Standard Error RMSE

η 0.30000000
MLE 0.30049999 0.00049999 0.00000053 0.00000025

LS 0.29972018 -0.00027982 0.02278868 0.00051940

a 0.00020000
MLE 0.00020155 0.00000155 0.00000056 0.00000000

LS 0.00018973 -0.00001027 0.00020292 0.00000004

b 0.80000000
MLE 0.78000000 -0.02000000 0.00000001 0.00040000

LS 0.84965090 0.04965090 1.57989860 2.49854479

λ 0.08000000
MLE 0.08600188 0.00600188 0.00000243 0.00003602

LS 0.16250616 0.08250616 0.07230137 0.01203475

σ 0.00500000
MLE 0.00488397 -0.00011603 0.00024220 0.00000007

LS 0.00509510 0.00009510 0.00034781 0.00000013

Table 5.22. Parameter estimates by Maximum Likelihood and Least Squares

methods for the 126 steps OU process, by Monte Carlo simulations
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Figure 5.42. Spreads of length 126 each, generated from parameter estimates

by maximum likelihood and least squares methods from ln(Qt) and ln(Pt),

based on Monte Carlo averages. See table 5.22
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5.2.6. Optimal Threshold

For similar reasons as discussed in subsection 5.1.6, we will estimate η separately by

simple linear regression of Pt on Qt and then estimate the remaining four parameters using

maximum likelihood estimates as shown in subsections 5.2.3 and 5.2.4.

We will scaled the time from years to days in the trend. Thus t† = 252t, since there

are 252 trading days in a year, based on the US financial market.

5.2.6.1. Long Path

True Value Method Estimate Bias Standard Error RMSE

a 0.00020000
MLE 0.00018800 -0.00001200 0.00000017 0.00000000

LS 0.00018798 -0.00001202

b 0.80000000
MLE 0.91314500 0.11314500 0.00159200 0.01280433

LS 0.91315080 0.11315080

λ 0.08000000
MLE 0.09000600 0.01000600 0.01251900 0.00025663

LS 0.09004500 0.01004500

σ 0.00500000
MLE 0.00508300 0.00008300 0.00010600 0.00000002

LS 0.00508510 0.00008510

Table 5.23. One realization of parameter estimates by maximum likelihood

and least squares methods, for the trend-stationary OU process representation

of the spread of length 1260 between ln(Qt) and ln(Pt), with actual parameters

a = 0.0002, b = 0.8, λ = 0.08 and σ = 0.005
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Figure 5.43. Paths generated from one realization of parameter estimates

by maximum likelihood and least squares methods, for the trend-stationary

OU process representation of the spread of length 1260 between ln(Qt) and

ln(Pt)

5.2.6.2. Case 1: γ = 0

The thresholds for this case are given by

(74) g(t) = at† + b± σ√
2λ
βe−λt.

Substituting the time horizon T = 5 into the corresponding h(β) in chapter 4 and solving

gives the optimizer as β̃ ≈ 0.9715, approximated to four decimal places. Thus the optimal

thresholds for this case are:

g̃(t) ≈ ãt† + b̃± σ̃√
2λ̃

(0.9715)e−λ̃t.
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From maximum likelihood estimates in table 5.23, we take the values of the parameters as

ã = 0.0002, b̃ = 0.9131, λ̃ = 0.0900 and σ̃ = 0.0051. Hence we approximate the optimal

thresholds as:

g̃(t) = 0.0002t† + 0.9131± 0.0051√
2(0.0900)

(0.9715)e−0.0900t

= 0.9131 + 0.0002t† ± 0.0117e−0.0602t(75)

A graphical representation of this result is shown in figure 5.44.
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Figure 5.44. New threshold case 1 on the trend-stationary OU process rep-

resentation of the spread of length 1260 between ln(Qt) and ln(Pt)

5.2.6.3. Case 2: γ ≥ 0 and ρ = 1

For this, the threshold is given by:

(76) g(t) = at† + b± σ√
2λ

(βe−λt − γeλt).
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Substituting the time horizon T = 5 into the corresponding h(β, γ) in chapter 4 and

solving gives the optimizer as (β̃, γ̃) ≈ (1.3351, 0.1856), approximated to four decimal places.

Thus the optimal thresholds for this case are:

g̃(t) ≈ ãt† + b̃± σ̃√
2λ̃

(1.3351e−λ̃t − 0.1856eλ̃t).

Taking the estimates of the OU process parameters to be ã = 0.0002, b̃ = 0.9131, λ̃ = 0.0900

and σ̃ = 0.0051, as in case 1, we approximate the optimal thresholds as:

g̃(t) ≈ 0.0002t† + 0.9131± 0.0051√
2(0.0900)

(1.3351e−0.0900t − 0.1856e0.0900t)

= 0.9131 + 0.0002t† ± 0.0117(1.3351e−0.0900t − 0.1856e0.0900t)(77)

A graphical representation of this result is also shown in figure 5.45.
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Figure 5.45. New threshold case 2 on the trend-stationary OU process rep-

resentation of the spread of length 1260 between ln(Qt) and ln(Pt)

5.2.6.4. Short Path

We now look at the short-term trade time horizon.
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True Value Method Estimate Bias Standard Error RMSE

a 0.00020000
MLE 0.00034270 0.00014270 0.00000020 0.00000002

LS 0.00034272 0.00014272

b 0.80000000
MLE -0.61274830 -1.41274830 0.00187640 1.99586128

LS -0.61275034 -1.41274830

λ 0.08000000
MLE 0.21816210 0.13816210 0.06937040 0.02390102

LS 0.21808244 0.13808244

σ 0.00500000
MLE 0.00455430 -0.00044570 0.00032350 0.00000030

LS 0.00457163 -0.00042837

Table 5.24. One realization of parameter estimates by maximum likelihood

and least squares methods, for the OU representation of the spread of length

126 between ln(Qt) and ln(Pt), with true parameters a = 0.0002, = 0.08,

λ = 0.08 and σ = 0.005
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Figure 5.46. Paths generated from one realization of parameter estimates

by maximum likelihood and least squares methods, for the trend-stationary

OU process representation of the spread of length 126 between ln(Qt) and

ln(Pt)
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5.2.6.5. Case 1: γ = 0

Substituting the time horizon T = 1
2

into equation the corresponding h(β) in chapter

4 and solving gives the optimizer of the expected return as β̃ ≈ 0.8735, approximated to

four decimal places. Thus the optimal thresholds for this case are:

g̃(t) ≈ ãt† + b̃± σ̃√
2λ̃

(0.8735)e−λ̃t.

From maximum likelihood estimates in table 5.23, we take the values of the parameters as

ã = 0.0003, b̃ = −0.6127, λ̃ = 0.2181 and σ̃ = 0.0046. Hence we approximate the optimal

thresholds as:

g̃(t) = 0.0003t† − 0.6127± 0.0046√
2(0.2181)

(0.8735)e−0.2181t

= −0.6127 + 0.0003t† ± 0.0061e−0.2181t(78)

A graphical representation of this result is shown in figure 5.47.

5.2.6.6. Case 2: γ ≥ 0 and ρ = 1

Substituting the time horizon T = 1
2

into corresponding h(β, γ) in chapter 4 and

solving gives the optimizer of the expected return as (β̃, γ̃) ≈ (2.2621, 0.6944), approximated

to four decimal places. Thus the optimal thresholds for this case are:

g̃(t) ≈ ãt† + b̃± σ̃√
2λ̃

(2.2621e−λ̃t − 0.6944eλ̃t).

Taking the estimates of the OU process parameters to be ã = 0.0003, b̃ = −0.6127, λ̃ =

0.2181 and σ̃ = 0.0046, as in case 1, we approximate the optimal thresholds as:

g̃(t) ≈ 0.0003t† − 0.6127± 0.0046√
2(0.2181)

(2.2621e−0.2181t − 0.6944e0.2181t)

= −0.6127 + 0.0003t† ± 0.0070(2.2621e−0.2181t − 0.6944e0.2181t)(79)

A graphical representation of this result is shown in figure 5.48.
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Figure 5.47. New threshold case 1 on the trend-stationary OU representa-

tion of the spread of length 126 between ln(Qt) and ln(Pt)
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Figure 5.48. New threshold case 2 on the trend-stationary OU representa-

tion of the spread of length 126 between ln(Qt) and ln(Pt)

Similar to previous cases, the optimal thresholds provided by case 1 has a narrower
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band and as such is crossed more often by the path, while the optimal threshold presented

in case 2 has a broader band, and as a result may have fewer number of crossings than case

1, but may generate higher return per trade cycle.
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CHAPTER 6

APPLICATIONS

In this chapter we apply our results to four pairs of stocks that are often traded

together. Namely, Coca-Cola (KO)/Pepsi (PEP), Chevron (CVX)/ Exxon Mobil(XOM),

Target (TGT)/Walmart (WMT), and RWE AG (RWE.DE)/E.OnSe (EOAN.DE), [40] and

[17]. We will consider both short and long term trade time horizons.

We will first use simple linear regression to obtain the value of the parameter η for

the cointegration model and then proceed to estimate the remaining parameters by least

squares and maximum likelihood estimation. This conforms with conventional practice as

shown in [17] and [40].

We then compare our results with theirs and show that our strategy could potentially

yield higher returns than the constant threshold methods in their strategies.

6.1. Thresholds

6.1.1. Zeng and Lee’s Threshold

The strategy of Zeng and Lee [40] seeks to find optimal thresholds for the trade, that

maximize the expected return per unit time. They achieve this by utilizing the elementary

renewal theorem to derive this expectation and the optimization methods resulted in an

implicit equation involving infinite series:

(80)
1

2

∞∑
n=0

(
√

2a)2n+1

(2n+ 1)!
Γ

(
2n+ 1

2

)
= (a− c

2
)

√
2

2

∞∑
n=0

(
√

2a)2n

(2n)!
Γ

(
2n+ 1

2

)
,

where c is the transaction cost and a is the level of the optimal threshold. Thus given the

transaction cost c, one can solve for a numerically.

6.1.2. Goncu and Akyildirim’s Threshold

The method Goncu and Akyildirim [17] on the other hand is that given an investment

time horizon T , they seek to find the level c such that the probability of a successful trade
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is maximized. By this they mean successfully reaching the long term mean, from the level

c, within the time horizon T . Their optimization method resulted in the equation,

(81) c∗(T ) =

√
1− e−2T

e−2T
, where T > 0

6.1.3. New Thresholds

The new strategy we present, as discussed in chapter 4, differs from the other strate-

gies, in that the thresholds are not constant, but rather vary over time, and we obtain the

optimal threshold by finding parameter values that maximize the expected return of a com-

plete trade cycle. We look into two cases of our general threshold 12, and in addition we

also consider versions of these two thresholds that take into account trend information in

the data.

6.1.4. Time Scaling

As explained earlier t† is a scaled form of t, and the choice of scale depends on the

context of application. In our case, we are considering days and years. Instead of using

different notations for the two, we will convert all times to days at this point and let ∆t be

equivalent to one day. So t will represent days for the rest of this material and not years.

6.2. Short-Term Trades

For the short term, we will consider the last 126 days up until June 30th, 2021, which

is equivalent to six months in the US financial market. RWE and EOAN are German utility

companies and have more trading days in a week than the US market, so the start date

of this pair is different from the others. The restriction of 126 days for short term trading

cycles makes it difficult to obtain accurate estimates for our parameters for the OU model

in this case, as such we will be using the least squares method to obtain initial estimates

which will then be passed on as starting point for the Newton-Raphson approximation in the

maximum likelihood estimation. This way we have good starting points and the maximum

likelihood estimation of the maxLik package in R will converge faster and be more accurate.
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6.2.1. Pepsi(PEP) and Coca-Cola(KO)
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Figure 6.1. Logarithmic returns of PEP and KO for first half of 2021

6.2.1.1. Parameter Estimate

Method Estimate Standard Error

µ
MLE 2.2766972 0.0154464

LS 2.276706548

λ
MLE 0.0438524 0.0270987

LS 0.043905319

σ
MLE 0.0075725 0.0004896

LS 0.007603501

Table 6.1. Parameter estimates for OU process representation of spread be-

tween PEP and KO for first half of 2021
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Method Estimate Standard Error

a
MLE 0.0002681 0.0005025

LS 0.0002680341

b
MLE 2.2538407 0.0477373

LS 2.2538261300

λ
MLE 0.0419085 0.0273073

LS 0.0419038131

σ
MLE 0.0075550 0.0004887

LS 0.0075852657

Table 6.2. Parameter estimates for the trend-stationary OU process repre-

sentation of spread between PEP and KO for first half of 2021

6.2.1.2. Thresholds

Upper Threshold Lower Threshold

Zeng 2.3060 2.2474

Goncu 2.3102 2.2432

New case 1, no trend 2.2767 + 0.0228 e−0.0419( t
252

) 2.2767 - 0.0228 e−0.0419( t
252

)

New case 2, no trend 2.2767 + 0.0590 e−0.0419( t
252

) -

0.0181 e0.0419( t
252

)

2.2767 - 0.0590 e−0.0419( t
252

) +

0.0181 e0.0419( t
252

)

New case 1, with trend 2.2538 + 0.0003 t + 0.0228

e−0.0419( t
252

)

2.2538 + 0.0003 t - 0.0228

e−0.0419( t
252

)

New case 2, with trend 2.2538 + 0.0003 t +

0.0590 e−0.0419( t
252

) - 0.0181

e0.0419( t
252

)

2.2538 + 0.0003 t - 0.0590

e−0.0419( t
252

) + 0.0181

e0.0419( t
252

)

Table 6.3. Thresholds for the various trading strategies for the spread be-

tween PEP and KO for first half of 2021
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Figure 6.2. Zero trend new thresholds against Old thresholds for PEP and KO

2.20

2.25

2.30

Jan−01−2021 Apr−01−2021 Jul−01−2021
Date

S
pr

ea
d

Key

New Case 1 with Trend

New Case 2 with trend

Trend

Long−term mean

Goncu and Akyildirim' threshold

Zeng and Lee's threshold

PEP~KO

Figure 6.3. Nonzero trend new thresholds against Old thresholds for PEP

and KO
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From figures 6.2 and 6.3, we see that for the short term pairs trading between Pepsi

and Coca cola, all the strategies yield exactly two trades. However case 2 of our new threshold

provides a wider band, and consequently yields higher return than the others, and it is even

much higher for the trending case. See table 6.13 fro the comparison.

6.2.2. E.OnSe (EOAN) and RWE AG(RWE) (German Utility Companies)
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Figure 6.4. Logarithmic returns of EOAN and RWE for first half of 2021

6.2.2.1. Parameter Estimate

Method Estimate Standard Error

µ
MLE 3.80459000 0.04798800

LS 3.80467018

λ
MLE 0.03106200 0.02274100

LS 0.03106018

σ
MLE 0.01657000 0.00106500

LS 0.01663610

Table 6.4. Parameter estimates for OU process representation of spread be-

tween EOAN and RWE for first half of 2021
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Method Estimate Standard Error

a
MLE 0.0010911 0.0008929

LS 0.001089163

b
MLE 3.7117340 0.0822731

LS 3.711795198

λ
MLE 0.0462500 0.0274028

LS 0.046237329

σ
MLE 0.0166238 0.0010752

LS 0.016691165

Table 6.5. Parameter estimates for the trend-stationary OU process repre-

sentation of spread between EOAN and RWE for first half of 2021

6.2.2.2. Thresholds

Upper Threshold Lower Threshold

Zeng 3.8577 3.7514

Goncu 3.8917 3.7174

New case 1, no trend 3.8045 + 0.0477 e−0.0462( t
252

) 3.8046 - 0.0477 e−0.0462( t
252

)

New case 2, no trend 3.8045 + 0.0477 e−0.0462( t
252

) -

0.1236 e0.0462( t
252

)

3.8046 - 0.0477 e−0.0462( t
252

) +

0.1236 e0.0462( t
252

)

New case 1, with trend 3.7117 + 0.0011 t + 0.0477

e−0.0462( t
252

)

3.7117 + 0.0011 t - 0.0477

e−0.0462( t
252

)

New case 2, with trend 3.7117 + 0.0011 t +

0.0477 e−0.0462( t
252

) - 0.1236

e0.0462( t
252

)

3.7117 + 0.0011 t - 0.0477

e−0.0462( t
252

) + 0.1236

e0.0462( t
252

)

Table 6.6. Thresholds for the various trading strategies for the spread be-

tween EOAN and RWE for first half of 2021
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Figure 6.5. Zero trend new thresholds against Old thresholds for EOAN and RWE
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Figure 6.6. Nonzero trend new thresholds against Old thresholds for EOAN

and RWE
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From figures 6.5 and 6.6, the short term pairs trading between EOAN and RWE yields

a maximum of two trades without considering trend, while including the trend yields three.

Apart from the lower return in Zeng’s strategy upon taking out transaction cost, there are

no significant differences in returns in this case.

6.2.3. Exxon Mobil(XOM) and Chevron(CVX)
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Figure 6.7. Logarithmic returns of XOM and CVX for first half of 2021

6.2.3.1. Parameter Estimate

Method Estimate Standard Error

µ
MLE -2.5825843 0.0251620

LS -2.58257627

λ
MLE 0.0504110 0.0354427

LS 0.05042265

σ
MLE 0.0118340 0.0007767

LS 0.01187945

Table 6.7. Parameter estimates for OU process representation of spread be-

tween XOM and CVX for first half of 2021
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Method Estimate Standard Error

a
MLE 0.0005872 0.0004374

LS 0.0005870524

b
MLE -2.6326320 0.0355792

LS -2.6326459124

λ
MLE 0.0706605 0.0393406

LS 0.0706843357

σ
MLE 0.0118702 0.0007846

LS 0.0119189268

Table 6.8. Parameter estimates for the trend-stationary OU process repre-

sentation of spread between XOM and CVX for first half of 2021

6.2.3.2. Thresholds

Upper Threshold Lower Threshold

Zeng -2.5457 -2.6195

Goncu -2.5337 -2.6314

New case 1, no trend -2.5826 + 0.0276 e−0.0707( t
252

) -2.5826 - 0.0276 e−0.0707( t
252

)

New case 2, no trend -2.5826 + 0.0714 e−0.0707( t
252

)

- 0.0219 e0.0707( t
252

)

-2.5826 - 0.0714 e−0.0707( t
252

) +

0.0219 e0.0707( t
252

)

New case 1, with trend -2.6326 + 0.0006 t + 0.0276

e−0.0707( t
252

)

-2.6326 + 0.0006 t - 0.0276

e−0.0707( t
252

)

New case 2, with trend -2.6326 + 0.0006 t +

0.0714 e−0.0707( t
252

) - 0.0219

e0.0707( t
252

)

-2.6326 + 0.0006 t -

0.0714 e−0.0707( t
252

) + 0.0219

e0.0707( t
252

)

Table 6.9. Thresholds for the various trading strategies for the spread be-

tween XOM and CVX for first half of 2021
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Figure 6.8. Zero trend new thresholds against Old thresholds for XOM and CVX
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Figure 6.9. Nonzero trend new thresholds against Old thresholds for XOM

and CVX
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From figures 6.8 and 6.9, the short term pairs trading between Exxon mobile and

Chevron yields four trades for all cases, except for case 2 of our new strategy, where we get

only two trades. But the width of the band ensures that the strategy is still profitable and

there is no significant difference in returns as shown in table 6.13.

6.2.4. Walmart(WMT) and Target(TGT)
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Figure 6.10. Logarithmic returns of WMT and TGT for first half of 2021

6.2.4.1. Parameter Estimate

Method Estimate Standard Error

µ
MLE 4.5494307 0.0184851

LS 4.54951867

λ
MLE 0.0569672 0.0299087

LS 0.05709409

σ
MLE 0.0112530 0.0007306

LS 0.01129947

Table 6.10. Parameter estimates for OU process representation of spread

between WMT and TGT for first half of 2021

122



Method Estimate Standard Error

a
MLE -0.0002891 0.0004313

LS -0.0002889013

b
MLE 4.5730214 0.0368662

LS 4.5729951868

λ
MLE 0.0653352 0.0329665

LS 0.0653468594

σ
MLE 0.0112824 0.0007365

LS 0.0113280445

Table 6.11. Parameter estimates for the trend-stationary OU process repre-

sentation of spread between WMT and TGT for first half of 2021

6.2.4.2. Thresholds

Upper Threshold Lower Threshold

Zeng 4.5839 4.5150

Goncu 4.5931 4.5057

New case 1, no trend 4.5494 + 0.0273 e−0.0653( t
252

) 4.5494 - 0.0273 e−0.0653( t
252

)

New case 2, no trend 4.5494 + 0.0706 e−0.0653( t
252

) -

0.0217 e0.0653( t
252

)

4.5494 - 0.0706 e−0.0653( t
252

) +

0.0217 e0.0653( t
252

)

New case 1, with trend 4.5730 - 0.0003 t + 0.0273

e−0.0653( t
252

)

4.5730 - 0.0003 t - 0.0273

e−0.0653( t
252

)

New case 2, with trend 4.5730 - 0.0003 t +

0.0706 e−0.0653( t
252

) - 0.0217

e0.0653( t
252

)

4.5730 - 0.0003 t - 0.0706

e−0.0653( t
252

) + 0.0217

e0.0653( t
252

)

Table 6.12. Thresholds for the various trading strategies for the spread be-

tween WMT and TGT for first half of 2021
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Figure 6.11. Zero trend new thresholds against Old thresholds for WMT and TGT
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Figure 6.12. Nonzero trend new thresholds against Old thresholds for WMT

and TGT
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From figures 6.11 and 6.12, the short term pairs trading between Target and Walmart

yields only two trades for all the old strategies, while our new strategy yields up to five trades

for case 1 with trend, and we see significantly higher returns when the trend is considered.

See table 6.13.

6.2.5. Performance Comparison

Goncu Zeng Zeng-cost New1 New2 New Trended 1 New Trended 2

PEP-KO 0.08 0.07 0.03 0.06 0.09 0.06 0.08

EOAN-RWE 0.17 0.10 0.06 0.10 0.10 0.12 0.21

XOM-CVX 0.10 0.07 -0.01 0.06 0.11 0.08 0.08

WMT-TGT 0.11 0.08 0.04 0.10 0.11 0.19 0.16

Table 6.13. Performance comparison of the strategies, by profits, for first

half of 2021

Table 6.13 should be interpreted as returns made from shorting $1.00 worth of one

of the stocks and using the amount to long the equivalent worth of the second stock in the

pair.

6.3. Long-Term Trades

For the long term time horizon, we will use the last 1260 trading days data up until

June 30th, 2021, which corresponds to five years in the US financial market.

We do not consider the strategy of [17] for long time horizons due to the fact that

the thresholds become too far from the spreads and yields no trades.
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6.3.1. Pepsi(PEP) and Coca-Cola(KO)
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Figure 6.13. Logarithmic returns of PEP and KO from July, 2016 to June, 2021

6.3.1.1. Parameter Estimate

Method Estimate Standard Error

µ
MLE 0.7042167 0.0183045

LS 0.704223932

λ
MLE 0.0154326 0.0048586

LS 0.015442115

σ
MLE 0.0099308 0.0001994

LS 0.009933762

Table 6.14. Parameter estimates for OU process representation of spread

between PEP and KO from July, 2016 to June, 2021
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Method Estimate Standard Error

a
MLE 0.00006230 0.00004115

LS 0.00006245

b
MLE 0.66040000 0.03183000

LS 0.66025370

λ
MLE 0.01873000 0.00543900

LS 0.01874875

σ
MLE 0.00993800 0.00019990

LS 0.00994282

Table 6.15. Parameter estimates for the trend-stationary OU process repre-

sentation of spread between PEP and KO from July, 2016 to June, 2021

6.3.1.2. Thresholds

Upper Threshold Lower Threshold

Zeng 0.7521608 0.6562727

New case 1, no trend 0.7042 + 0.0499 e−0.0187( t
252

) 0.7042 - 0.0499 e−0.0187( t
252

)

New case 2, no trend 0.7042 + 0.0685 e−0.0187( t
252

) -

0.0095 e0.0187( t
252

)

0.7042 - 0.0685 e−0.0187( t
252

) +

0.0095 e0.0187( t
252

)

New case 1, with trend 0.6604 + 0.000062 t + 0.0499

e−0.0187( t
252

)

0.6604 + 0.000062 t - 0.0499

e−0.0187( t
252

)

New case 2, with trend 0.6604 + 0.000062 t +

0.0685 e−0.0187( t
252

) - 0.0095

e0.0187( t
252

)

0.6604 + 0.000062 t -

0.0685 e−0.0187( t
252

) + 0.0095

e0.0187( t
252

)

Table 6.16. Thresholds for the various trading strategies for the spread be-

tween PEP and KO from July, 2016 to June, 2021
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Figure 6.14. Zero trend new thresholds against Old thresholds for PEP and KO
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Figure 6.15. Nonzero trend new thresholds against Old thresholds for PEP

and KO
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From figures 6.14 and 6.15, we see that with considering trend, the long time horizon

pairs trading between Pepsi and Coca cola yields only five trades over the five years, while

with trend we obtain nine trades for case 1 threshold and eight for case 2 threshold. All our

thresholds outperform Zeng’s threshold, especially with trend.

6.3.2. E.OnSe (EOAN) and RWE AG(RWE) (German Utility Companies)
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Figure 6.16. Logarithmic returns of EOAN and RWE from July, 2016 to

June, 2021

6.3.2.1. Parameter Estimate

Method Estimate Standard Error

µ
MLE 1.2033039 0.0322562

LS 1.20323964

λ
MLE 0.0104885 0.0040641

LS 0.01050636

σ
MLE 0.0119887 0.0002402

LS 0.01199341

Table 6.17. Parameter estimates for OU process representation of spread

between EOAN and RWE from July, 2016 to June, 2021
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Method Estimate Standard Error

a
MLE 0.0000044 0.00008919

LS 0.0000047

b
MLE 1.2000000 0.07236000

LS 1.199820

λ
MLE 0.01050000 0.00408700

LS 0.01048860

σ
MLE 0.01199000 0.00024030

LS 0.01199329

Table 6.18. Parameter estimates for the trend-stationary OU process repre-

sentation of spread between EOAN and RWE from July, 2016 to June, 2021

6.3.2.2. Thresholds

Upper Threshold Lower Threshold

Zeng 1.264456 1.142152

New case 1, no trend 1.2033 + 0.0804 e−0.0105( t
252

) 1.2033 - 0.0804 e−0.0105( t
252

)

New case 2, no trend 1.2033 + 0.1104 e−0.0105( t
252

) -

0.0154 e0.0105( t
252

)

1.2033 - 0.1104 e−0.0105( t
252

) +

0.0154 e0.0105( t
252

)

New case 1, with trend 1.2000 + 0.000004 t + 0.0804

e−0.0105( t
252

)

1.2000 + 0.000004 t - 0.0804

e−0.0105( t
252

)

New case 2, with trend 1.2000 + 0.000004 t +

0.1104 e−0.0105( t
252

) - 0.0154

e0.0105( t
252

)

1.2000 + 0.000004 t -

0.1104 e−0.0105( t
252

) + 0.0154

e0.0105( t
252

)

Table 6.19. Thresholds for the various trading strategies for the spread be-

tween EOAN and RWE from July, 2016 to June, 2021
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Figure 6.17. Zero trend new thresholds against Old thresholds for EOAN

and RWE
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Figure 6.18. Nonzero trend new thresholds against Old thresholds for EOAN

and RWE
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From figures 6.17 and 6.18, we notice there is no significant trend in the spread.

However, table 6.26 shows that all our thresholds still outperform Zeng’s threshold.

6.3.3. Exxon Mobil(XOM) and Chevron(CVX)
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2017 2018 2019 2020 2021
Dates

S
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ea
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Key

XOM

CVX

XOM vs. CVX

Figure 6.19. Logarithmic returns of XOM and CVX from July, 2016 to June, 2021

6.3.3.1. Parameter Estimate

Method Estimate Standard Error

µ
MLE -3.2942037 0.0468415

LS -3.29412264

λ
MLE 0.0128430 0.0040526

LS 0.01284758

σ
MLE 0.0210520 0.0004217

LS 0.02106278

Table 6.20. Parameter estimates for OU process representation of spread

between XOM and CVX from July, 2016 to June, 2021
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Method Estimate Standard Error

a
MLE -0.00029550 0.00005101

LS -0.0002953393

b
MLE -3.08400000 0.03824000

LS -3.0842283357

λ
MLE 0.03283000 0.00740600

LS 0.0328136899

σ
MLE 0.02118000 0.00042920

LS 0.0211814889

Table 6.21. Parameter estimates for the trend-stationary OU process repre-

sentation of spread between XOM and CVX from July, 2016 to June, 2021

6.3.3.2. Thresholds

Upper Threshold Lower Threshold

Zeng -3.211814 -3.376593

New case 1, no trend -3.2942 + 0.0803 e−0.0462( t
252

) -3.2942 - 0.0803 e−0.0462( t
252

)

New case 2, no trend -3.2942 + 0.1103 e−0.0462( t
252

)

- 0.0153 e0.0462( t
252

)

-3.2942 - 0.1103 e−0.0462( t
252

) +

0.0153 e0.0462( t
252

)

New case 1, with trend 3.7117 - 0.0003 t + 0.0803

e−0.0462( t
252

)

3.7117 - 0.0003 t - 0.0803

e−0.0462( t
252

)

New case 2, with trend 3.7117 - 0.0003 t +

0.1103 e−0.0462( t
252

) - 0.0153

e0.0462( t
252

)

3.7117 - 0.0003 t - 0.1103

e−0.0462( t
252

) + 0.0153

e0.0462( t
252

)

Table 6.22. Thresholds for the various trading strategies for the spread be-

tween XOM and CVX from July, 2016 to June, 2021
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Figure 6.20. Zero trend new thresholds against Old thresholds for XOM and CVX
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Figure 6.21. Nonzero trend new thresholds against Old thresholds for XOM

and CVX
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We see here that the spread between Exxon mobile and Chevron has a significant

trend. Thus we get significantly more trades when the trend is considered. See figure 6.20

and 6.21. All our thresholds still perform better than Zeng’s threshold, and the trend-

ing thresholds perform even better, generating almost twice as much profit as Zeng’s with

transaction cost considered.

6.3.4. Walmart(WMT) and Target(TGT)
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Dates
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Key
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WMT vs. TGT

Figure 6.22. Logarithmic returns of WMT and TGT from July, 2016 to

June, 2021

6.3.4.1. Parameter Estimate

Method Estimate Standard Error

µ
MLE 2.2301072 0.0551505

LS 2.229735861

λ
MLE 0.0065499 0.0032483

LS 0.006567753

σ
MLE 0.0128164 0.0002563

LS 0.012821651

Table 6.23. Parameter estimates for OU process representation of spread

between WMT and TGT from July, 2016 to June, 2021
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Method Estimate Standard Error

a
MLE -0.0001508 0.0002448

LS -0.0001514578

b
MLE 2.3518474 0.2201089

LS 2.3523800692

λ
MLE 0.0055067 0.0034584

LS 0.0055053940

σ
MLE 0.0128072 0.0002563

LS 0.0128118140

Table 6.24. Parameter estimates for the trend-stationary OU process repre-

sentation of spread between WMT and TGT from July, 2016 to June, 2021

6.3.4.2. Thresholds

Upper Threshold Lower Threshold

Zeng 2.304404 2.15581

New case 1, no trend 2.2301 + 0.1186 e−0.0055( t
252

) 2.2301 - 0.1186 e−0.0055( t
252

)

New case 2, no trend 2.2301 + 0.1629 e−0.0055( t
252

) -

0.0227 e0.0055( t
252

)

2.2301 - 0.1629 e−0.0055( t
252

) +

0.0227 e0.0055( t
252

)

New case 1, with trend 2.3518 - 0.00015 t + 0.1186

e−0.0055( t
252

)

2.3518 - 0.00015 t - 0.1186

e−0.0055( t
252

)

New case 2, with trend 2.3518 - 0.00015 t +

0.1629 e−0.0055( t
252

) - 0.0227

e0.0055( t
252

)

2.3518 - 0.00015 t - 0.1629

e−0.0055( t
252

) + 0.0227

e0.0055( t
252

)

Table 6.25. Thresholds for the various trading strategies for the spread be-

tween WMT and TGT from July, 2016 to June, 2021
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Figure 6.23. Zero trend new thresholds against Old thresholds for WMT and TGT
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Figure 6.24. Nonzero trend new thresholds against Old thresholds for WMT

and TGT
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For the Target/Walmart pair, we notice that the trend in the spread switches from

an increasing one to a decreasing trend between the first and second halves of of the time

horizon, as shown in figures 6.23 and 6.24. Nonetheless, we notice from table 6.26 that our

method is still superior to that of [40], with almost twice as much profit for without trend

and almost trice as much for case 2 with trend, in comparison with [40] after deducting

transaction cost.

6.3.5. Performance Comparison

Zeng Zeng-cost New1 New2 New Trended 1 New Trended 2

PEP-KO 0.22 0.12 0.24 0.31 0.45 0.50

EOAN-RWE 0.71 0.45 0.78 0.75 0.78 0.74

XOM-CVX 0.79 0.59 0.82 0.94 1.06 1.01

WMT-TGT 0.48 0.34 0.59 0.62 0.53 0.94

Table 6.26. Performance comparison of the strategies, by profits, from July,

2016 to June, 2021
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CHAPTER 7

CONCLUSION

We have looked at pairs trading as a form of statistical arbitrage, and have considered

some of the resent trading strategies published in major quantitative finance journals. In

particular we reviewed the strategies of Zeng and Lee [40], published as recent as 2014, and

Goncu and Akyildirim [17], which was published in 2016. In our study of these two results

we pointed out limitations of their strategies, such as overdependence on transaction cost,

in the case of Zeng and Lee, which leads to a collapse of their strategy when transaction

cost is zero, and on the other hand, the wide band of Goncu and Akyildirim’s thresholds

for long trading time horizons which yields zero trade under the circumstance and becomes

inapplicable.

We presented a novel class of non-linear boundaries for the OU process, base on which

we derived new decision rules for pairs trading. We proved the existence and uniqueness of

maximizers for obtaining optimal thresholds for our new strategies. We also looked at ver-

sions of these boundaries for the trend-stationary OU process 12. Based on these boundaries,

we came up with new strategies that presented four types of thresholds, two each for the mean

reverting OU process and the trend-stationary OU process, and we named them case 1 and

case 2, where case 1 has a tight band while case 2 is broader. We then considered both long-

term and short term trade time horizons and showed with Monte Carlo simulations and real

data for the pairs Pepsi(PEP)/Coca-cola(KO), Walmart(WMT)/Target(TGT), Exxon Mo-

bil(XOM)/Chevron(CVX) and the German utility companies E.OnSe(EOAN)/RWE AG(RWE),

that our new strategies are robust and outperform existing ones in terms of total profit over

the trade time horizon, generating almost trice as much profit as Zeng and Lee’s strategy

in the case of long-term trade over a five-year period for the Walmart(WMT)/Target(TGT)

pair, when transaction cost is taken into account. Our results showed that for both Long-

term and short-term trade time horizons, considering trend yields higher profits.

In addition, we also derived simple formulas for some FPT moments of the standard
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Brownian motion to some class of boundaries without relying on analytic expressions for the

densities, since they are mostly nonexistent, and we extended this result to the Ornstein-

Uhlenbeck process.
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APPENDIX

SOME RELEVANT THEOREMS

141



A.1. Wang’s Theorem

We consider the general diffusion process, Xt, satisfying the stochastic differential

equation (SDE)

(82) dXt = µ(t,Xt)dt+ σ(t,Xt)dWt, X0 = x0,

where the drift term µ(t, x) : [0,∞)× R→ R and the diffusion coefficient σ(t, x) : [0,∞)×

R→ R+ are real, deterministic functions and {Wt, t ≥ 0} is the standard Brownian motion

(BM).

We define the boundary (non)crossing probability (BCP) of the process Xt to the

boundaries a(t) and b(t) over the time interval [0, T ) by

PX(a, b, T ) = P (a(t) < Wt < b(t),∀t ∈ [0, T ])

Theorem A.1. If there exists a function f(t, x) ∈ C1,2([0,∞)×R), such that Yt := f(t,Xt)

satisfies dYt = σ̃tdWt, where σ̃t ∈ C([0,∞)) is a real, deterministic function satisfying σ̃t 6=

0,∀t ∈ [0,∞), then there exists a standard BM {W̃s, s ≥ 0}, such that for any boundaries

a(t), b(t),

(1) PX(a, b, T ) = PW̃ (c, d, S), if σ̃t > 0,∀t ∈ [0,∞);

(2) PX(a, b, T ) = PW̃ (d, c, S), if σ̃t < 0,∀t ∈ [0,∞);

where,

c(s) = f(t(s), a(t(s)))− f(0, x0), 0 ≤ s ≤ S,

d(s) = f(t(s), b(t(s)))− f(0, x0), 0 ≤ s ≤ S,

t(s) is the inverse function of s(t) =
∫ t

0
σ̃u

2du and S = s(T ) [36].

A.2. Mill’s Ratio Inequality

Given x > 0,

2√
x2 + 4 + x

≤ R(x) ≤ 4√
x2 + 8 + 3x

,

where R(x) = 1−Φ(x)
φ(x)

is the Mills ratio, with Φ(x) and φ(x) being the standard normal CDF

and PDF respectively. [32], [39].
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A.3. Ito’s Lemma

Given a diffusion process Xt satisfying the stochastic differential equation:

dXt = µ(Xt, t)dt+ σ(Xt, t)dBt,

where Bt is the standard Brownian motion, Let f(Xt, t) ∈ C2(R2,R), then f(Xt, t) satisfies

d(f(Xt, t)) =

(
µ(Xt, t)

∂f(Xt, t)

∂t
+

1

2
σ2(Xt, t)

∂f(Xt,t)

∂X2
t

(Xt, t)

)
dt+ σ(Xt, t)

∂f(Xt,t)

∂X2
t

(Xt, t)dBt

.

A.4. Girsanov’s Theorem

Given the probability space (Ω,F, P ), let Bt be Brownian motion on the filtration

{Ft}t≥0. Let µt be a process adapted to the filtration Ft, and define a probability measure

Q by

dQ

dP

∣∣∣∣
Ft

= e−
1
2

∫ t
0 µ

2
sds+

∫ t
0 µsdBs = Zt,

in other words Q(A) = Ep[Zt1A], for A ∈ Ft.

Then Q ∼ P , and the process

Wt = Bt −
∫ t

0

µsds

is a Brownian motion under the probability measure Q [16] .
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[36] Liqun Wang and Klaus Pötzelberger, Crossing probabilities for diffusion processes with

piecewise continuous boundaries, Methodology and Computing in Applied Probability

9 (2007), no. 1, 21–40.

[37] George H. Weiss, First Passage Time Problems in Chemical Physics, Advances in chem-

ical physics, vol. 13, 2007, pp. 1–18.

[38] Inc. Wolfram Research, Mathematica, 2021.

[39] Zhen-Hang Yang and Yu-Ming Chu, On approximating Mills ratio, Journal of Inequal-

ities and Applications 2015 (2015), 273.

[40] Zhengqin Zeng and Chi Guhn Lee, Pairs trading: optimal thresholds and profitability,

Quantitative Finance 14 (2014), no. 11, 1881–1893.

147


	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER 1. INTRODUCTION
	1.1. Pairs Trading
	1.2. Cointegration
	1.3. Mean Reversion Models
	1.4. Ornstein-Uhlenbeck Processes
	1.5. The Generalized Ornstein-Uhlenbeck Process
	1.6. The Problem Statement

	CHAPTER 2. OVERVIEW AND LIMITATIONS OF EXISTING METHODS
	2.1. First Passage Time
	2.2. Pairs Trading Strategies
	2.2.1. Conventional Method
	2.2.2. Continuous Time Trading
	2.2.3. Zeng and Lee's Strategy
	2.2.4. Goncu and Akyildirim's Strategy

	2.3. Limitations of Existing Methods
	2.3.1. The Cointegration Drift Rate
	2.3.2. Constant Boundary
	2.3.3. Zeng and Leng's Strategy and Transaction Cost
	2.3.4. A Discussion on the Method of Goncu and Akyildirim


	CHAPTER 3. METHODOLOGY
	3.1. The Drift Rate Treatment
	3.2. New Pair Trading Strategy
	3.3. Performance
	3.4. Result on Certain Moments of First Passage Time

	CHAPTER 4. THEORETICAL RESULTS
	4.1. Relationship between Boundary Crossing Probabilities of Ornstein-Uhlenbeck Processes and Brownian Motion
	4.2. Boundary Crossing Probabilities and First Passage Time Probabilities of the Standardized Ornstein-Uhlenbeck Process
	4.3. New Class of Non-Linear Boundaries and New Thresholds
	4.4. The Ornstein-Uhlenbeck Process First Passage Time Densities
	4.4.1. Case 1
	4.4.2. Case 2

	4.5. The Optimization Problem
	4.5.1. Case 1
	4.5.2. Case 2

	4.6. Certain Moments of First Passage Time of Brownian Motions to Some Class of Boundaries
	4.6.1. Example 1
	4.6.2. Example 2

	4.7. Expectation of a Functional of the First Passage Time of Ornstein Uhlenbeck Processes to Some Class of Boundaries

	CHAPTER 5. SIMULATIONS
	5.1. Zero Trend Ornstein-Uhlenbeck Process
	5.1.1. The Process
	5.1.2. Parameter Estimation
	5.1.2.1. Maximum Likelihood Estimator
	5.1.2.2. Method of Least Squares

	5.1.3. Long Path
	5.1.3.1. Generating the Spread
	5.1.3.2. Parameter Estimation
	5.1.3.3. Monte Carlo Simulation

	5.1.4. Short Path
	5.1.4.1. Generating the Spread
	5.1.4.2. Parameter Estimation
	5.1.4.3. Monte Carlo Simulation

	5.1.5. Artificial Stocks
	5.1.5.1. Generating the Pair
	5.1.5.2. Long Path
	5.1.5.3. Parameter Estimation
	5.1.5.4. Short Path
	5.1.5.5. Parameter Estimation

	5.1.6. Optimal Threshold
	5.1.6.1. Long Path
	5.1.6.2. Case 1
	5.1.6.3. Case 2
	5.1.6.4. Short Path
	5.1.6.5. Case 1
	5.1.6.6. Case 2


	5.2. Nonzero Trend Generalized Ornstein-Uhlenbeck Process
	5.2.1. The Process
	5.2.2. Parameter Estimation
	5.2.2.1. Maximum Likelihood Estimator
	5.2.2.2. Method of Least Squares

	5.2.3. Long Path
	5.2.3.1. Generating the Spread
	5.2.3.2. Parameter Estimation
	5.2.3.3. Monte Carlo Simulation

	5.2.4. Short Path
	5.2.4.1. Generating the Spread
	5.2.4.2. Parameter Estimation
	5.2.4.3. Monte Carlo Simulation

	5.2.5. Artificial Stocks
	5.2.5.1. Generating the Pair
	5.2.5.2. Long Path
	5.2.5.3. Parameter Estimation
	5.2.5.4. Short Path
	5.2.5.5. Parameter Estimation

	5.2.6. Optimal Threshold
	5.2.6.1. Long Path
	5.2.6.2. Case 1
	5.2.6.3. Case 2
	5.2.6.4. Short Path
	5.2.6.5. Case 1
	5.2.6.6. Case 2



	CHAPTER 6. APPLICATIONS
	6.1. Thresholds
	6.1.1. Zeng and Lee's Threshold
	6.1.2. Goncu and Akyildirim's Threshold
	6.1.3. New Thresholds
	6.1.4. Time Scaling

	6.2. Short-Term Trades
	6.2.1. Pepsi(PEP) and Coca-Cola(KO)
	6.2.1.1. Parameter Estimate
	6.2.1.2. Thresholds

	6.2.2. E.OnSe (EOAN) and RWE AG(RWE) (German Utility Companies)
	6.2.2.1. Parameter Estimate
	6.2.2.2. Thresholds

	6.2.3. Exxon Mobil(XOM) and Chevron(CVX)
	6.2.3.1. Parameter Estimate
	6.2.3.2. Thresholds

	6.2.4. Walmart(WMT) and Target(TGT)
	6.2.4.1. Parameter Estimate
	6.2.4.2. Thresholds

	6.2.5. Performance Comparison

	6.3. Long-Term Trades
	6.3.1. Pepsi(PEP) and Coca-Cola(KO)
	6.3.1.1. Parameter Estimate
	6.3.1.2. Thresholds

	6.3.2. E.OnSe (EOAN) and RWE AG(RWE) (German Utility Companies)
	6.3.2.1. Parameter Estimate
	6.3.2.2. Thresholds

	6.3.3. Exxon Mobil(XOM) and Chevron(CVX)
	6.3.3.1. Parameter Estimate
	6.3.3.2. Thresholds

	6.3.4. Walmart(WMT) and Target(TGT)
	6.3.4.1. Parameter Estimate
	6.3.4.2. Thresholds

	6.3.5. Performance Comparison


	CHAPTER 7. CONCLUSION
	APPENDIX: SOME RELEVANT THEOREMS
	REFERENCES



