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Increasing ubiquity of computational resources has enabled simulation of complex 

electronic systems and modern materials. The PAOFLOW software package is a tool designed to 

construct and analyze tight binding Hamiltonians from the solutions of DFT calculations. 

PAOFLOW leverages localized basis sets to greatly reduce computational costs of post-

processing QE simulation results, enabling efficient determination of properties such as 

electronic density, band structures in the presence of electric or magnetic fields, magnetic or 

spin circular dichroism, spin-texture, Fermi surfaces, spin or anomalous Hall conductivity (SHC 

or AHC), electronic transport, and more. PAOFLOW’s broad functionality is detailed in this work, 

and several independent studies where PAOFLOW’s capabilities directly enabled research on 

promising candidates for ferroelectric and spintronic based technologies are described. Today, 

Quantum computers are at the forefront of computational information science. Materials 

scientists and quantum chemists can use quantum computers to simulate interacting systems 

of fermions, without having to perform the iterative methods of classical computing. This 

dissertation also describes a study where the band structure for silicon is simulated for the first 

time on quantum hardware and broadens this concept for simulating band structures of generic 

crystalline structures on quantum machines. 
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CHAPTER 1 

INTRODUCTION 

Modern condensed matter physics was birthed from the unification of several 

independent investigations into the atomic properties of matter. J.J. Thompson’s discovery of 

the electron led to Drude developing a model for electrons in metallic solids [1,2]. The 

experimental discovery of superconductivity in 1911 by Heike Onnes incited heavy 

research/curiosity and wouldn’t be adequately explained until forty years later, when the 

quantum mechanics formalism was more widely adopted [3]. With Schrödinger’s wave 

interpretation of quantum mechanics, Feliks Bloch established the dynamics of electrons within 

periodic systems (1928), fueling development of modern solid-state physics. Researchers raced 

to explain many new observed phenomena, such as the quantum Hall effect or the BCS theory 

of superconductors [4,5], and developed curious new theories to describe them. 

Increasing ubiquity of computational resources in the 1950s enabled simulation of 

electronic systems which were too complex to perform by hand. The Hartree-Fock method 

became a feasible tool for computing electronic band structures and was widely adopted, 

ultimately inspiring the development of density functional theory (DFT) in 1964 by Hohenberg, 

Kohn, and Sham [6,7].  Computing devices and the DFT framework provided thrust to the 

computational materials science field, which promised to identify new properties of matter and 

design better materials for widespread applications. Large scale, production codes for 

performing DFT simulations gained traction over the following years, such as Quantum 

ESPRESSO (QE) [8,9]. Software packages like QE are capable of capturing electronic behavior in 
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complex condensed matter systems and have become commonplace in materials science and 

quantum chemistry research. Chapter 2 introduces formalism of condensed matter theory, 

such as the mathematical construction of a crystal, Bloch’s theorem for an independent 

electron in a periodic lattice, and solving many body problems with the density functional 

theory and Quantum ESPRESSO. 

Much of this work is devoted to a software package called PAOFLOW, a tool designed to 

construct and analyze tight binding Hamiltonians from the solutions of DFT calculations. 

PAOFLOW leverages localized basis sets to greatly reduce computational costs of post-

processing QE simulation results, enabling efficient determination of properties such as 

electronic density, band structures in the presence of electric or magnetic fields, magnetic or 

spin circular dichroism, spin-texture, Fermi surfaces, spin or anomalous Hall conductivity (SHC 

or AHC), electronic transport, and more. Chapters 3 and 4 describe the PAOFLOW software 

package and underlying theory for the code’s broad functionality. Additionally, chapter 4 

provides an explicit guide to using the software package and calling internal routines for 

constructing and operating on tight-binding Hamiltonians. Several applications for PAOFLOW 

are described in chapters 3 and 4, but chapters 5 and 6 provide independent studies where 

PAOFLOW’s capabilities directly enabled research on promising candidates for ferroelectric and 

spintronic based technologies. Chapters 5 overviews one specific application of PAOFLOW, 

where a high-throughput study was performed on members of the group-IV monochalcogenide 

family. Chapter 6 provides a detailed study where a spintronic transistor is proposed with two 

dimensional SnTe as a component. 
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 Today, a new paradigm of computing promises to outperform classical 

computers by an exponential factor for certain problems and physical simulations. Quantum 

computers are now at the forefront of computational information science. Materials scientists 

and quantum chemists can use quantum computers to simulate interacting systems of 

fermions, without having to perform the iterative methods of classical computing. Some crypto 

scientists study methods of factoring large numbers on quantum computers, which could 

provide an exponential speedup to modern decryption algorithms [10]. Biological scientists 

have proposed that determining how proteins fold may be easier on quantum computers [11], 

and pharmacologists may use quantum computers in the future to accelerate discovery of 

compounds used as medication [12]. Chapter 7 provides a brief introduction to quantum 

computing and quantum information science in the context of chemistry and materials science. 

Chapter 8 describes a recent study where the band structure for silicon is simulated for the first 

time on quantum hardware, and Chapter 9 broadens this study for simulating band structures 

to generic crystalline structures on quantum machines. 
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CHAPTER 2 

CONDENSED MATTER THEORY 

2.1 Theory of Crystalline Structures 

Crystalline structures are naturally periodic, possessing long range uniformity. They are 

formed by atoms arranged in a spatially repeating configuration. The smallest volume which 

contains all features of a crystal’s pattern is known as the primitive unit cell. Generally, two 

quantities are considered when creating a mathematical description of such crystalline 

structures, thae Bravais lattice and the atomic basis. The Bravais Lattice (BL) is all points defined 

by a set of vectors: 

 𝑅𝑅�⃗ = 𝑎𝑎𝑟𝑟1 + 𝑏𝑏𝑟𝑟2 + 𝑐𝑐𝑟𝑟3 (2.1) 

𝑅𝑅�⃗  is specified by a geometry of three primitive lattice vectors {𝑟𝑟1, 𝑟𝑟2, 𝑟𝑟3} and three 

integers (𝑎𝑎, 𝑏𝑏, 𝑐𝑐) ∈ ℤ. The resulting structure is infinite in extent and appears identical when 

viewed from any of its points. A primitive unit cell has the volume of a parallelepiped 

constructed with the primitive lattice vectors. 

 Ω = |𝑟𝑟1 ⋅ (𝑟𝑟2 × 𝑟𝑟3)| (2.2) 

Every BL possesses a dual representation, namely the reciprocal lattice, which is 

constructed as the Fourier transform of the real space primitive lattice vectors. The reciprocal 

lattice is generally notated as 

 𝐺⃗𝐺 = 𝑘𝑘𝑏𝑏�⃗ 1 + 𝑙𝑙𝑏𝑏�⃗ 2 + 𝑚𝑚𝑏𝑏�⃗ 3 (2.3) 

where {𝑏𝑏�⃗ 1,𝑏𝑏�⃗ 2, 𝑏𝑏�⃗ 3} are called the reciprocal lattice vectors and (𝑘𝑘, 𝑙𝑙,𝑚𝑚) ∈ ℤ. The lattice 

periodicity enforces that 𝑟𝑟𝑖𝑖 ⋅ b�⃗ j = 2πδ𝑖𝑖𝑖𝑖, and the reciprocal lattice vectors are related to the 

primitive vectors by the following relations. 



5 

 𝑏𝑏�⃗ 1 =
2𝜋𝜋
Ω

r⃗2 × r⃗3 (2.4a) 

 𝑏𝑏�⃗ 2 =
2𝜋𝜋
Ω
𝑟𝑟3 × 𝑟𝑟1 (2.4b) 

 𝑏𝑏�⃗ 3 =
2𝜋𝜋
Ω
𝑟𝑟1 × 𝑟𝑟2 (2.4c) 

The unit cell constructed in reciprocal space is known as the Wigner-Seitz cell, and is 

often referred to as the First Brillouin Zone (FBZ or BZ) in solid state physics. Naturally, this dual 

corresponds to a momentum space of the conventional lattice and is used to study electronic 

behavior in crystals. 

Another set of vectors, the atomic basis, specifies atomic positions within the primitive 

unit cell. This basis for a lattice containing N atoms is denoted τ = {τ�⃗ 1, τ�⃗ 2, … , τ�⃗ 𝑁𝑁}. Together, the 

Bravais lattice and atomic basis define a periodic system of atoms in all of space, capable of 

approximating the macroscopic configuration of natural crystalline structures. 

2.2 The Many Body Problem 

The first order of business when modeling a system comprised of quantum mechanical 

particles is to solve an appropriate Schrödinger equation. 

 𝐻𝐻�|ψ⟩ = 𝐸𝐸|ψ⟩ (2.5) 

Here, 𝐻𝐻� is some Hermitian operator representing the systems total energy, 𝐸𝐸 is a diagonalized 

matrix containing the energy eigenvalues obtainable by said system, and |ψ⟩ is a vector of 

wavefunctions which solve the Schrödinger equation. To write a trivial Hamiltonian for a solid 

state system, we include kinetic energy terms for all particles (𝑁𝑁𝑒𝑒 electrons at positions 𝑟𝑟𝑖𝑖 and 

𝑁𝑁𝑛𝑛 nucleons at positions 𝑅𝑅�⃗𝑗𝑗, for 𝑖𝑖 = 1,2, … ,𝑁𝑁𝑒𝑒 and 𝑗𝑗 = 1,2, … ,𝑁𝑁𝑛𝑛) and Coulomb potential 
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terms for all charged particles (each electron with fundamental charge 𝑒𝑒 and each nucleon with 

total charge 𝑍𝑍𝑖𝑖𝑒𝑒 for 𝑖𝑖 = 1,2, … ,𝑁𝑁𝑛𝑛). 

 
𝐻𝐻� = −�

ℏ
2𝑚𝑚𝑒𝑒

∇𝑖𝑖2
𝑁𝑁𝑒𝑒

𝑖𝑖

−�
ℏ

2𝑚𝑚𝑛𝑛
∇𝑖𝑖2

𝑁𝑁𝑛𝑛

𝑖𝑖

+ ��
𝑒𝑒2

4𝜋𝜋𝜖𝜖0
1

�𝑟𝑟𝑖𝑖 − 𝑟𝑟𝑗𝑗�

𝑁𝑁𝑒𝑒

𝑗𝑗>𝑖𝑖

𝑁𝑁𝑒𝑒

𝑖𝑖

+
1
2
��

𝑒𝑒2

4𝜋𝜋𝜖𝜖0
𝑍𝑍𝑗𝑗

�𝑟𝑟𝑖𝑖 − 𝑅𝑅�⃗𝑗𝑗�

𝑁𝑁𝑛𝑛

𝑗𝑗

𝑁𝑁𝑒𝑒

𝑖𝑖

+ ��
𝑒𝑒2

4𝜋𝜋𝜖𝜖0
𝑍𝑍𝑖𝑖𝑍𝑍𝑗𝑗

�𝑅𝑅�⃗ 𝑖𝑖 − 𝑅𝑅�⃗𝑗𝑗�

𝑁𝑁𝑛𝑛

𝑗𝑗>𝑖𝑖

𝑁𝑁𝑛𝑛

𝑖𝑖

 

 

(2.6) 

Some simplifications are employed to reduce the number of elements in the above 

Hamiltonian. Perhaps the most obvious is that the nucleons are essentially stationary with 

respect to their surrounding electrons. The electrons move adiabatically with the nucleons, 

because of the proton to electron mass relation 
𝑚𝑚𝑝𝑝

𝑚𝑚𝑒𝑒� ≈ 2000. The kinetic energy 

contribution of nucleons in the Hamiltonian vanishes, i.e. ∑ ℏ
2𝑚𝑚𝑛𝑛

∇𝑖𝑖2
𝑁𝑁𝑛𝑛
𝑖𝑖 = 0. Subsequently, the 

electron-nucleon Coulomb term is treated as each electron independently interacting with a 

global potential formed by the nucleons and sharing periodicity with the unit cell.  

 1
2
��

𝑒𝑒2

4𝜋𝜋𝜖𝜖0
𝑍𝑍𝑗𝑗

�𝑟𝑟𝑖𝑖 − 𝑅𝑅�⃗𝑗𝑗�

𝑁𝑁𝑛𝑛

𝑗𝑗

𝑁𝑁𝑒𝑒

𝑖𝑖

+ ��
𝑒𝑒2

4𝜋𝜋𝜖𝜖0
𝑍𝑍𝑖𝑖𝑍𝑍𝑗𝑗

�𝑅𝑅�⃗ 𝑖𝑖 − 𝑅𝑅�⃗𝑗𝑗�

𝑁𝑁𝑛𝑛

𝑗𝑗>𝑖𝑖

𝑁𝑁𝑛𝑛

𝑖𝑖

≈��𝑉𝑉��𝑟𝑟𝑖𝑖 − 𝑅𝑅�⃗𝑗𝑗��
𝑁𝑁𝑛𝑛

𝑗𝑗

𝑁𝑁𝑒𝑒

𝑖𝑖

 

(2.7) 

This is known as the Born-Oppenheimer approximation, first proposed in the 1927 

paper of Max Born and Robert Oppenheimer [13]. After reducing terms pertaining to atomic 

nuclei, notice that writing this Hamiltonian still leads to 𝑁𝑁𝑒𝑒2 elements in the term describing the 

purely electronic Coulomb repulsion, which is clearly unfavorable scaling as the number of 

electrons increases. To achieve linear scaling, an effective potential 𝑉𝑉𝑒𝑒(𝑟𝑟𝑖𝑖) for electron 𝑖𝑖 at is 
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produced by the average potential contributions from all other electrons, and the Hamiltonian 

for each electron takes a familiar form dependent only on position 𝑟𝑟 within the lattice: 

 𝐻𝐻�(𝑟𝑟) = −
ℏ

2𝑚𝑚𝑒𝑒
∇2 + 𝑉𝑉(𝑟𝑟) 

(2.8) 

with 

 
𝑉𝑉(𝑟𝑟) = 𝑉𝑉𝑒𝑒(𝑟𝑟) + �𝑉𝑉��𝑟𝑟 − 𝑅𝑅�⃗𝑗𝑗��

𝑁𝑁𝑛𝑛

𝑗𝑗

 
(2.9) 

While the independent electron approximation alleviates the computational load of 

modeling an electron gas in the presence of ions and accurately describes many properties of 

solids, it fails to capture any phenomenon arising from correlations between electrons. 

Extensions to the theory, such as exchange functionals [14], can help to model a wider range of 

processes in chemicals and materials while still maintaining the linear scaling with number of 

electrons achieved by the independent electron approximation. 

2.3 Bloch’s Theorem 

The independent electron approximation is employed to avoid the computational 

complexity of a many-body system of electrons. As such, a potential is introduced which 

accumulates interaction effects from all other electronic charges in the problem into a single 

potential term 𝑉𝑉(𝑟𝑟) for the electron at position 𝑟𝑟. Under this single electron approximation, 

properties of the BL are exploited to simplify the form that electronic states can take. Namely, 

Bloch’s theorem shows that electronic wavefunctions can be written as an easily computed 

phase factor 𝑒𝑒𝑖𝑖𝑘𝑘�⃗ ⋅𝑟𝑟 times a function 𝑢𝑢�𝑘𝑘�⃗ , 𝑟𝑟� sharing periodicity with the BL. 

 𝜓𝜓�𝑘𝑘�⃗ , 𝑟𝑟� = 𝑢𝑢�𝑘𝑘�⃗ , 𝑟𝑟�𝑒𝑒𝑖𝑖𝑘𝑘�⃗ ⋅𝑟𝑟 (2.10) 
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 𝑢𝑢�𝑘𝑘�⃗ , 𝑟𝑟 + 𝑁𝑁𝑖𝑖𝑟𝑟𝑖𝑖� = 𝑢𝑢�𝑘𝑘�⃗ , 𝑟𝑟� (2.11) 

Adding to the unit cell position 𝑟𝑟 any integer multiple 𝑁𝑁𝑖𝑖 of lattice vectors 𝑟𝑟𝑖𝑖 results in 

the same value of the periodic function 𝑢𝑢(𝑘𝑘�⃗ , 𝑟𝑟). Thus, the wavefunction for any spatial position 

in a lattice can be written in terms of the wavefunction within the primitive unit cell. 

 𝜓𝜓�𝑘𝑘�⃗ , 𝑟𝑟 + 𝑅𝑅�⃗ � = 𝜓𝜓�𝑘𝑘�⃗ , 𝑟𝑟�𝑒𝑒𝑖𝑖𝑘𝑘�⃗ ⋅𝑅𝑅�⃗  (2.12) 

Translational symmetry of the BL requires that, for integers 𝑁𝑁𝑖𝑖 and lattice vectors 𝑟𝑟𝑖𝑖 with 

𝑖𝑖 = 1,2,3, 

 ψ�𝑘𝑘�⃗ , 𝑟𝑟 + 𝑁𝑁𝑖𝑖𝑟𝑟𝑖𝑖� = ψ�𝑘𝑘�⃗ , 𝑟𝑟� (2.13) 

This boundary condition restricts the values of 𝑘𝑘�⃗  to 

 𝑘𝑘�⃗ =
𝑘𝑘
𝑁𝑁1

𝑏𝑏�⃗ 1 +
𝑙𝑙
𝑁𝑁2

𝑏𝑏�⃗ 2 +
𝑚𝑚
𝑁𝑁3

𝑏𝑏�⃗ 3 
(2.13) 

where (𝑘𝑘, 𝑙𝑙,𝑚𝑚) ∈ ℤ. The wave vector 𝑘𝑘�⃗  describes the electronic momentum in the crystal, 

usually called crystal momentum and given by 𝑝⃗𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = ℏ𝑘𝑘�⃗ . 

The following section describes the density functional theory, which relies on both the 

independent electron approximation from section 2.1 and the Bloch’s theorem in section 2.2 

for computational efficiency. 

2.4 The Density Functional Theory 

The pioneering logical assumptions of DFT were formulated in attempts to characterize 

the properties and behavior of an inhomogeneous electron gas. Hohenberg and Kohn introduce 

a functional to describe the total energy 𝐸𝐸 in a system of interacting electrons, dependent upon 

the spatial charge density 𝑛𝑛(𝑟𝑟) [6,7]. They demonstrate that minimizing this functional provides 

the correct ground state electronic distribution. With the ground state charge distribution one 
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can write and solve a Schrödinger equation, similar to equation 2.8. The solutions to this 

equation are known to the condensed matter community as the Kohn-Sham (KS) 

wavefunctions. For more nuanced information on DFT methodology and application, the reader 

is encouraged to see reference [15]. 

To attack the DFT problem for some system of interacting electrons, one must choose a 

basis set suitable for capturing important features. Quantum ESPRESSO (QE) is a software suite 

for materials modeling which solves the DFT problem in the basis of plane waves (PW) [8]. The 

QE executable pw.x performs self-consistent calculations to converge on a ground state 

energy for a configuration of atoms, following the theory of Hohenberg, Kohn, and Sham. For 

the purpose of studying higher energy conduction bands, non self-consistent calculations can 

also be performed by pw.x to extend the number of bands in a calculation which has already 

been converged self-consistently. QE contains dozens of modules for various materials 

properties, but in this work the focus is on two routines: pw.x for self-consistent and non self-

consistent DFT calculations, and projwfc.x for computing projections (described in section 

3.1) if they are not computed directly with PAOFLOW. 

2.5 Pseudopotentials and LCAO 

A problem is encountered when attempting to implement DFT in the PW basis. The 

repulsive coulomb potential, scaling with1
|𝑟𝑟|� , diverges close to core electron sites. This 

extreme localization of core electrons produces an rapidly oscillating feature in the KS 

wavefunctions near atomic sites. The number of PWs required to achieve accurate energies for 

valence states becomes intractably large. Valence electrons generally predict electronic/optical 
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properties in solids, and core electrons cause logistical problems for simulation grids. This 

motivates the removal of core states from the Hamiltonian. To achieve this, a Hamiltonian is 

built relative to a set of Orthogonal Plane Waves (OPW) for the valent electrons, orthogonal to 

those of the core electrons [16]. The new, orthogonal plane wave basis |Ψ𝑂𝑂𝑂𝑂𝑂𝑂⟩ is given by 

 |Ψ𝑂𝑂𝑂𝑂𝑂𝑂�𝑘𝑘�⃗ �⟩ = |Ψ𝑃𝑃𝑃𝑃(𝑘𝑘�⃗ )⟩ −� |ψ𝑐𝑐⟩⟨ψc|Ψ𝑃𝑃𝑃𝑃(𝑘𝑘�⃗ )⟩
𝑐𝑐

 (2.14) 

where |Ψ𝑃𝑃𝑃𝑃⟩ is the complete PW basis, and the summation index 𝑐𝑐 runs across all core states. 

The lowest energy states in the new basis then receive no contribution from core states and are 

necessarily those of the most tightly bound valence electrons. 

Pseudopotentials compatible with QE are stored in the Universal Pseudopotential 

Format (UPF), and generally contain several radial functions for various valence shell 

configurations. For example, a pseudopotential for silicon might contain radial functions for the 

3S, 3P, and 3D valence shells, a common configuration for this element. An atomic orbital basis 

is constructed for these shells by weighting the radial functions with spherical harmonics for 

each allowed angular momenta. The 3D (𝐿𝐿 = 2) radial wave function would have five 

corresponding atomic orbital functions, one for each angular momentum 𝑚𝑚𝑙𝑙 = −2,−1,0,1,2. 

Often in materials science and quantum chemistry, an incomplete basis of these atomic 

orbitals is used to capture the electronic properties of solids and molecules. Naturally, this 

method is known as the linear combination of atomic orbitals (LCAO). PAOFLOW, described in 

the following chapter, takes the plane wave solutions of QE and projects them onto a basis of 

atomic orbitals to drastically reduce the computational resources required for determination of 

further quantities. 
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CHAPTER 3 

PAOFLOW* 

PAOFLOW is a utility for the analysis and characterization of materials properties from 

the output of electronic structure calculation. By exploring an efficient procedure to project the 

full plane-wave solution on a reduced space of atomic orbitals, PAOFLOW facilitates the 

calculation of a plethora of quantities such as diffusive, anomalous and spin Hall conductivities, 

magnetic and spin circular dichroism, and 𝑍𝑍2 topological invariants and more. The 

computational cost associated with post-processing first principles calculations is negligible. 

This code, written entirely in Python under GPL 3.0 or later, opens the way to the high-

throughput computational characterization of materials at an unprecedented scale. It is 

important to note here, that Chapter 3 focuses on version 1.0 of PAOFLOW. While the 

mathematical description of routines described in this chapter remain accurate in modern 

versions of PAOFLOW, the current software implementation here is outdated. The most recent 

software design and package usage is presented in Chapter 4, for PAOFLOW 2.0. 

3.1 Introduction 

PAOFLOW is a software tool to efficiently post-process standard first principles 

electronic structure plane-wave pseudopotential calculations in order to promptly compute 

from interpolated band structures and density of states several quantities that provide insight 

on transport, optical, magnetic, and topological properties such as anomalous and spin Hall 

 
* This chapter is reproduced with permission from Elsevier, from the paper: PAOFLOW: A utility to construct and 
operate on ab initio Hamiltonians from the projections of electronic wave functions on atomic orbital bases, 
including characterization of topological materials by Marco Buongiorno Nardelli, Frank T. Cerasoli, Marcio Costa, 
Stefano Curtarolo, Riccardo De Gennaro, Marco Fornari, Laalitha Liyange, Andrew R. Supka, and Haihang Wang, 
published in Computational Materials Science 143, 462 (2018). 



12 

conductivity (AHC and SHC, respectively), magnetic circular dichroism, spin circular dichroism, 

and topological invariants. The methodology is based on the projection on pseudo-atomic 

orbitals (PAO) [17-19] and is the latest addition to the AFLOW software infrastructure [20,21]. 

Additional features of PAOFLOW include the calculation of selected integrated quantities using 

adaptive smearing, the ability to add spin orbit coupling using adaptive smearing, the ability to 

add spin orbit coupling using parametrized methods, and the calculation of surface projected 

band structures. 

PAOFLOW is massively parallel by design (both CPU and GPU) and provides the user 

with the ability to determine measurable quantities with first principles accuracy and with the 

spend and robustness required by high-throughput materials characterization. The current 

implementation (using Quantum ESPRESSO, QE) [8,9] does not require any additional input 

with respect to standard electronic structure calculations and, seamlessly, provides a real space 

tight-binding (TB) representation of the Hamiltonian matrix in a self-contained XML format. The 

sparse PAO matrix can easily be Fourier transformed and interpolated to determine the full 

energy dispersion and to compute additional properties associated with derivatives of the 

energy bands, such as matrix elements of the momentum operator or electron velocities, with 

the desired level of resolution. PAOFLWO is publicly available under the terms of the GNU 

General Public License as published by the Free Software Foundation, either version 3 of the 

License, or any later version. PAOFLOW is integrated into the AFLOWπ high-throughput 

framework [22] and it is distributed at http://www.aflow.org/src/aflowpi and 

http://www.aflow.org/src/paoflow. 
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3.2 Software Design 

PAOFLOW is written in Python 2.7 (using the Python standard libraries NumPy and 

SciPy). The systematic use of regular expression (re module) and XML parsing 

(xml.etree.cElementTree module) makes the software expandable to a variety of 

electronic structure engines with minimal effort. Parallelization on CPUs uses the OpenMPI 

protocol through the mpi4py module, while GPU parallelization is based on the CUDA kernel 

through the pycuda and skcuda [23] modules (https://mathema.tician.de/software/pycuda/). 

Currently, PAOFLOW requires a few basic calculations with the QE package: a first one 

to generate converged electronic density and Kohn-Sham (KS) potential on an appropriate 

Monkhorst and Pack (MP) 𝑘𝑘�⃗ -point mesh (pw.x), a second non self consistent calculation 

(pw.x) to evaluate eigenvalues and eigenfunctions for a MP mesh centered at Γ (𝑘𝑘�⃗ = (0,0,0), 

nosym and noinv=.true) and a third post-processing run using projwfc.x to obtain the 

projections of the eigenfunctions on the pseudo atomic basis functions. No additional 

calculations with QE are required. 

Starting with highly interpolated first principles electronic properties (figure 3.1), 

PAOFLOW computes band derivatives and Berry’s curvature (figure 3.2). These ingredients are 

then used to determine efficiently the AHC (figure 3.3), magnetic circular dichroism spectra 

(figure 3.4), SHC (figure 3.5), and spin circular dichroism (figure 3.6). 

The PAOFLOW package is distributed with several examples (in the main directory of the 

distribution, see section 3.6) describing the computable physical quantities and can be easily 

installed on any hardware.
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Figure 3.1: Comparison between fixed width and adaptive smearing for the density of state of FCC Si. 
The calculation is done on a 𝟏𝟏𝟏𝟏 × 𝟏𝟏𝟏𝟏 × 𝟏𝟏𝟏𝟏 MP grid and with 𝑾𝑾 = 𝟎𝟎.𝟏𝟏 eV in the fixed width smearing 
algorithm. Data adapted from example01. 

 

 
Figure 3.2: Top panel: Band structure of Fe including spin-orbit interaction. Bottom panel: Berry 
curvature. Data adapted from example04 and evaluated along the AFLOW standard path for the 
BCC lattice [24]. 

 

 
Figure 3.3: Energy resolved anomalous Hall conductivity in Fe. Data adapted from example04 using a 
𝟒𝟒𝟒𝟒 × 𝟒𝟒𝟒𝟒 × 𝟒𝟒𝟒𝟒 MP grid and adaptive broadening yielding a converged value for the AHC at 𝑬𝑬𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭 of 
𝟕𝟕𝟕𝟕𝟕𝟕 (𝜴𝜴𝜴𝜴𝜴𝜴)−𝟏𝟏 in excellent agreement with the results from reference [25]. 
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Figure 3.4: Magnetic circular dichroism spectrum of Fe. Red circles are experimental data from 
reference [26]. Data adapted from example04 using a 𝟒𝟒𝟒𝟒 × 𝟒𝟒𝟒𝟒 × 𝟒𝟒𝟒𝟒 MP grid and adaptive 
broadening. 

 

 
Figure 3.5: Energy resolved spin Hall conductivity in Pt. Data adapted from example05 using a 
𝟒𝟒𝟒𝟒 × 𝟒𝟒𝟒𝟒 × 𝟒𝟒𝟒𝟒 MP grid and adaptive broadening yielding a converged value for the SHC at 𝑬𝑬𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭 of 
2170 (𝜴𝜴𝜴𝜴𝜴𝜴)−𝟏𝟏 in excellent agreement with previous experimental [27] and theoretical [28] results. 

 

 
Figure 3.6: Spin circular dichroism spectrum of Pt. Data adapted from example04 using a 
𝟒𝟒𝟒𝟒 × 𝟒𝟒𝟒𝟒 × 𝟒𝟒𝟒𝟒 MP grid and adaptive broadening. 
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3.3 Description of the Code 

3.3.1 Modules: build_Pn.py, build_Hks.py 

Accurate PAO Hamiltonian matrices can be built from the direct projection of the KS 

Bloch states �ψ𝑛𝑛𝑘𝑘�⃗ � onto a basis set of fixed localized functions, as it was discussed extensively in 

reference [17-19]. The Hamiltonian for a specific material, 𝐻𝐻�(𝑟𝑟α), is computed in real space 

using atomic orbitals or pseudo atomic orbitals from the pseudopotential of any given element. 

The key in this procedure is the mapping of the ab initio electronic structure (solved on a well 

converged and large plane waves basis set) into a model that precisely reproduces a selected 

number of bands of interest. The crucial quantities that measure the accuracy of the basis set 

are the projectabilities 𝑝𝑝𝑛𝑛𝑘𝑘�⃗ = �𝜓𝜓𝑛𝑛𝑘𝑘�⃗ �𝑃𝑃��𝜓𝜓𝑛𝑛𝑘𝑘�⃗ � ≥ 0 (𝑃𝑃� is the operator that projects onto the space 

of the PAO basis set, as defined in reference [18]) which indicate the representability of a Bloch 

state �𝜓𝜓𝑛𝑛𝑘𝑘�⃗ � on the chosen PAO set. Maximum projectability, 𝑝𝑝𝑛𝑛𝑘𝑘�⃗ ≈ 1, indicates that the 

particular Bloch state can be perfectly represented in the chosen PAO set; contrarily, 𝑝𝑝𝑛𝑛𝑘𝑘�⃗ ≈ 0 

indicates that the PAO set is insufficient and should be augmented. Once the Bloch states with 

good projectabilities have been identified, the PAO Hamiltonian is constructed either as 

 𝐻𝐻� = 𝐴𝐴𝐴𝐴𝐴𝐴† + κ(𝐼𝐼 − 𝐴𝐴𝐴𝐴†) (3.1) 

following reference [17] or 

 𝐻𝐻� = 𝐴𝐴𝐴𝐴𝐴𝐴† + 𝜅𝜅(I − A(A†𝐴𝐴)−1A†) (3.2) 

as in reference [18], where the case can be chosen in the input of PAOFLOW (see listing 3.2 

below). Here 𝐸𝐸 is the diagonal matrix of KS eigenenergies and 𝐴𝐴 is the matrix of coefficients 

obtained from projecting the Bloch wavefunctions onto the PAO set. Since the filtering 

procedure introduces a null space, the parameter κ is used to shift all the unphysical solutions 
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outside a given energy range of interest. The procedure in equation 3.2 is recommended for 

most cases. This procedure provides and accurate real space representation of the ab initio 

Hamiltonian 𝐻𝐻��𝑅𝑅�⃗ � as a TB matrix of small dimension written in XML format, a crucial advantage 

for the accurate calculation of any physical properties that requires the precise integration in 

the reciprocal space. 

3.3.2 Module: add_ext_field.py 

Following the TB formalism (see, for instance, reference [29]), the user can add an 

arbitrary external electric field as a (time-dependent) scalar potential acting on the diagonal 

elements of the PAO Hamiltonian: ϵα,𝑅𝑅�⃗ = ϵα,𝑅𝑅�⃗
0 − 𝑒𝑒Φ�𝑅𝑅�⃗ ,𝑇𝑇�. From here is straightforward to 

introduce an ad hoc Hubbard 𝑈𝑈 correction in the Hamiltonian including defining a different 𝑈𝑈 

value for any orbital manifold on any element and obtain a fast evaluation of the effect of, for 

instance, self-consistently computed corrections on the band strcutre, i.e. the Agapito-

Curtarolo-Buongiorno-Nardelli approach (ACBN0) [30,31]. This feature is documented in section 

3.4.3. 

3.3.3 Module: do_spin_orbit.py 

The spin-orbit coupling (SOC) is essential to characterize the electronic structure and 

associated properties in topological phases (e.g. topological insulators, Weyl semimetals) and 

materials with magneto-crystalline anisotropy. In addition, the SOC modify the band strcutre 

and, in turn, affects transport and optical properties. From a fully relativistic QE calculation 

PAOFLOW can compute a TB Hamiltonian, 𝐻𝐻��𝑅𝑅�⃗ �, which includes all spin-orbit interactions. QE 

COS calculations are, however, computationally demanding and require relativistic 
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pseudopotentials. PAOFLOW provides an alternative approach to include the effects of the SOC 

via an effective approximation proposed by Abate and Asdente [32]. The SOC contribution to 

the Hamiltonians is usually written as: 

 𝐻𝐻𝑆𝑆𝑆𝑆𝑆𝑆 = λ𝐿𝐿�⃗ ⋅ 𝑆𝑆 (3.3) 

where λ is the SOC strength, which is orbital dependent, 𝐿𝐿�⃗  and 𝑆𝑆 are the orbital and spin 

angular momentum operators. The λ parameter can be added to non-SOC calculations semi-

empirically and adjusted to reproduce the SOC splitting at any band of the element’s stable 

phase. To ensure accuracy of the results, it is important to choose bands with reasonably high 

projectabilities. 

3.3.4 Modules: do_bands_calc.py, do_topology_calc.py, 
do_fermisurf.py, do_spin_texture.py, do_dos_calc.py, 
do_pdos_calc.py 
 
The calculation of topological invariants and related measurable quantities is important 

to analyze and validate predictions of topological effects in electronic structure theory. 

PAOFLOW facilitates the automatic computation of standard descriptors of the topology of 

band strcutre such as Fermi surfaces, spin texture, band velocities (∂ϵ/ ∂𝑘𝑘𝑖𝑖 , 𝑖𝑖 = 𝑥𝑥,𝑦𝑦, 𝑧𝑧), Berry 

curvature, spin Berry curvature and the 𝑍𝑍2 invariant for topological insulators. In particular, we 

follow reference [33] and calculate the four 𝑍𝑍2 invariants 𝑣𝑣0; (𝑣𝑣1, 𝑣𝑣2, 𝑣𝑣3) defined by 

 (−1)𝑣𝑣0 = � δ𝑛𝑛1𝑛𝑛2𝑛𝑛3
𝑛𝑛𝑗𝑗=0,1

 

(−1)𝑣𝑣𝑖𝑖=1,2,3 = � δ𝑛𝑛1𝑛𝑛2𝑛𝑛3
𝑛𝑛𝑗𝑗≠𝑖𝑖=0,1;𝑛𝑛1=1

 

 

 

(3.4) 

where 
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δ𝑖𝑖 =

�𝑑𝑑𝑑𝑑𝑑𝑑[𝑤𝑤(Γ𝑖𝑖)]
𝑝𝑝𝑝𝑝[𝑤𝑤(Γ𝑖𝑖)] = ±1 

(3.5) 

Here 𝑝𝑝𝑝𝑝[𝑤𝑤(Γ𝑖𝑖)] indicates the Pfaffian, 𝑤𝑤�𝑘𝑘�⃗ � = �ψi�−k�⃗ �|Θ|ψj�k�⃗ �� with Θ the time-

reversal operator, and Γ𝑖𝑖 the 8 distinct time reversal invariant momenta expressed in terms of 

primitive lattice vectors as Γ𝑖𝑖=(𝑛𝑛1𝑛𝑛2𝑛𝑛3) = �𝑛𝑛1𝑏𝑏�⃗ 1 + 𝑛𝑛2𝑏𝑏�⃗ 2 + 𝑛𝑛3𝑏𝑏�⃗ 3�/2  [33]. Of course, all the 

properties defined in the first Brillouin zone (BZ) including the band structure, are calculated 

along the standard AFLOW path (see for instance figure 3.2) [24] using Fourier interpolation 

scheme. 

3.3.5 Modules: PAOFLOW.py, smearing.py, do_gradient.py, 
do_momenta.py 
 
Band structure interpolation on arbitrary MP 𝑘𝑘�⃗ -meshes as well as adaptive smearing for 

the integration in the BZ are at the very core of the ability of PAOFLOW to provide high-

precision electronic structure data. Exploiting the analogy between the PAO and the Wannier 

functions representation of ab initio Hamiltonians, PAOFLOW implements a procedure 

developed in reference [34]. In practice, we estimate the broadening widths using the band 

derivatives that are readily available from the knowledge of the momentum operator and can 

be used to estimate the level spacing. Indeed, the TB Hamiltonian can be Fourier transformed 

from real space representation to the 𝑘𝑘�⃗ -space and interpolated with arbitrary precision using 

an efficient procedure based on a zero-padding algorithm that operates globally and fast 

Fourier transform (FFT) routines (see figure 3.7 for an illustration of the method). 
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Figure 3.7: Schematic illustration of the zero padding algorithm for fast FFT interpolation. Picture 
adapted from https://tonyfast.com/nsf-goali/. 

 
The same accuracy defined by the projectabilities is conserved in this process. The 

expectation values of the momentum operator, which is the main quantity in the definition of 

the adaptive smearing integration scheme, is given by 

 𝑝⃗𝑝𝑛𝑛𝑛𝑛�𝑘𝑘�⃗ � = �ψn�k�⃗ �|p�|ψ𝑚𝑚�𝑘𝑘�⃗ �� = ⟨𝑢𝑢𝑛𝑛�𝑘𝑘�⃗ � �
𝑚𝑚0

ℏ
∇��⃗ 𝑘𝑘�⃗ 𝐻𝐻��𝑘𝑘�⃗ �� 𝑢𝑢𝑚𝑚(𝑘𝑘�⃗ )⟩ (3.6) 

with 

 ∇��⃗ 𝑘𝑘�⃗ 𝐻𝐻��𝑘𝑘�⃗ � = �𝑖𝑖𝑅𝑅�⃗
α

𝑒𝑒𝑒𝑒𝑒𝑒�𝑖𝑖𝑘𝑘�⃗ ⋅ 𝑅𝑅�⃗ �𝐻𝐻�(𝑅𝑅�⃗ ) (3.7) 

𝐻𝐻��𝑅𝑅�⃗ � being the real space PAO matrix and |ψ𝑛𝑛(𝑘𝑘�⃗ )⟩ = 𝑒𝑒𝑒𝑒𝑒𝑒(−𝑖𝑖𝑘𝑘�⃗ ⋅ 𝑅𝑅�⃗ )|𝑢𝑢𝑛𝑛(𝑘𝑘�⃗ )⟩ the Bloch’s 

functions [35]. 

Following reference [34] we define: 

 
𝑊𝑊𝑛𝑛,𝑘𝑘�⃗ = 𝑎𝑎 �

∂ϵ𝑛𝑛,𝑘𝑘�⃗

𝜕𝜕𝜕𝜕
� 

(3.8) 

for single band integrals and 

https://tonyfast.com/nsf-goali/
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𝑊𝑊𝑛𝑛,𝑚𝑚,𝑘𝑘�⃗ = 𝑎𝑎 �

𝜕𝜕𝜖𝜖𝑛𝑛,𝑘𝑘�⃗

𝜕𝜕𝜕𝜕
−
𝜕𝜕𝜖𝜖𝑚𝑚,𝑘𝑘�⃗

𝜕𝜕𝜕𝜕
� 

(3.9) 

for double band integrals. The factor 𝑎𝑎 is of the order of one [22]. See figure 3.1 for a 

comparison between fixed vs. adaptive smearing in the calculation of the density of states of 

silicon. 

3.3.6 Module: do_Boltz_tensors.py 

The electronic transport coefficients with the constant relaxation time Boltzmann 

theory are computed as in reference [35]. The electrical conductivity tensor σ𝑖𝑖𝑖𝑖 can be 

expressed as an integral over the BZ: 

 
σ𝑖𝑖𝑖𝑖 =

𝑒𝑒2

4π3
� τ�νni �k�⃗ �ν𝑛𝑛

𝑗𝑗 �𝑘𝑘�⃗ � �−
𝜕𝜕𝑓𝑓0
𝜕𝜕𝜕𝜕
�

n

𝑑𝑑𝑘𝑘�⃗
𝐵𝐵𝐵𝐵

 
(3.10) 

where τ is the constant relaxation time, ν𝑛𝑛𝑖𝑖 �𝑘𝑘�⃗ � is the 𝑖𝑖-th component of the electron velocity 

(𝑣⃗𝑣𝑛𝑛) corresponding to the 𝑛𝑛-th band for each 𝑘𝑘�⃗ -point in the BZ, 𝑓𝑓0 is the equilibrium distribution 

function, and ϵ is the electron energy. 

Generalizing equation 3.10 it is also possible to define analogue expressions for the 

Seebeck coefficient, 𝑆𝑆, and the electronic contribution to thermal conductivity, κ𝑒𝑒𝑒𝑒. Following 

the notation from reference [36], we introduce the generating tensor ℒα (α = 0,1,2): 

 ℒ =
1

4π3
� τ�𝑣⃗𝑣𝑛𝑛�k�⃗ �𝑣⃗𝑣𝑛𝑛�𝑘𝑘�⃗ � �−

𝜕𝜕𝑓𝑓0
𝜕𝜕𝜕𝜕
� [𝜖𝜖 − 𝜇𝜇]α

n

 
(3.11) 

where 𝑣⃗𝑣𝑛𝑛�k�⃗ �𝑣⃗𝑣𝑛𝑛�𝑘𝑘�⃗ � indicates the dyadic product and μ is the chemical potential. The 

coefficients σ, 𝑆𝑆, and κ𝑒𝑒𝑒𝑒 can be expressed as follows: 

 σ = 𝑒𝑒2ℒ0  
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𝑆𝑆 = −
1
𝑇𝑇𝑇𝑇

[ℒ0]−1 ⋅ ℒ1 

κ𝑒𝑒𝑒𝑒 =
1
𝑇𝑇

(ℒ2 − ℒ1 ⋅ [ℒ0]−1 ⋅ ℒ1) 

(3.12) 

where 𝑇𝑇 is the temperature. 

3.3.7 Module: do_epsilon.py 

In the limit of long wavelength (i.e. negligible momentum transfer) the optical 

properties of the material depends only on the frequency of the electro-magnetic field. The 

dielectric tensor can then be expressed in terms of the dielectric susceptibility χ𝑖𝑖𝑖𝑖(ω): 

 ϵ𝑖𝑖𝑖𝑖(ω) = 1 + 4πχ𝑖𝑖𝑖𝑖(ω) (3.13) 

The imaginary part of χ(ω) in the single particle approximation can be written as: [29] 

 
𝐼𝐼𝐼𝐼χ𝑖𝑖𝑖𝑖(ω) =

𝑒𝑒2𝜋𝜋
𝜔𝜔2ℏ𝑚𝑚0

2Ω
� �𝑓𝑓𝑛𝑛�𝑘𝑘�⃗ � − 𝑓𝑓𝑚𝑚�𝑘𝑘�⃗ ��
𝑛𝑛,𝑚𝑚,𝑘𝑘�⃗

× 𝑝𝑝𝑛𝑛𝑛𝑛𝑖𝑖 �𝑘𝑘�⃗ �𝑝𝑝𝑛𝑛𝑛𝑛
𝑗𝑗 �𝑘𝑘�⃗ � 𝛿𝛿 �𝜔𝜔 − 𝜔𝜔𝑛𝑛𝑛𝑛�𝑘𝑘�⃗ �� 

 

(3.14) 

where 𝑚𝑚0 is the bare electron mass, Ω is the unit cell volume, 𝑚𝑚 and 𝑛𝑛 are the band indices, 

𝑓𝑓𝑙𝑙�𝑘𝑘�⃗ � the Fermi-Dirac distribution evaluated on the band with index 𝑙𝑙 at energy 𝐸𝐸𝑙𝑙�𝑘𝑘�⃗ �, 𝑝𝑝𝑖𝑖�𝑘𝑘�⃗ � 

are the matrix elements of the momentum operator calculated over the states (both occupied 

and empty with indices 𝑚𝑚 and 𝑛𝑛, and ℏω𝑚𝑚𝑚𝑚 = 𝐸𝐸𝑚𝑚�𝑘𝑘�⃗ � − 𝐸𝐸𝑛𝑛�𝑘𝑘�⃗ � is the energy of the optical 

transition. The real part of the dielectric susceptibility can then be expressed using the Kramers-

Kronig transformation of the imaginary part 

 
𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔) =

2
𝜋𝜋
� 𝑧𝑧

𝐼𝐼𝐼𝐼𝐼𝐼(𝑧𝑧)
𝑧𝑧2 − 𝜔𝜔2 𝑑𝑑𝑑𝑑

∞

0
 

(3.15) 
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Alternatively, for semiconductors and insulators, one can evaluate directly the real part 

of the susceptibility as in equation 23 of reference [29]. See reference [35] for a comprehensive 

discussion of the evaluation of the calculation of the dielectric function in the PAO scheme. 

3.3.8 Module: do_Berry_curvature.py, do_spin_Berry_curvature.py, 
do_Berry_conductivity.py, do_spin_Hall_conductivity.py 
 
PAOFLOW automatizes the calculation of anomalous charge and spin transport 

quantities. We refer to the excellent review by Gradhand et al. [37] for an in depth discussion of 

these topics. The basic quantity computed by PAOFLOW is the Berry curvature (see figure 3.2): 

 
Ω𝑛𝑛𝑧𝑧�𝑘𝑘�⃗ � = − �

2𝐼𝐼𝐼𝐼⟨𝜓𝜓𝑛𝑛,𝑘𝑘�⃗ |𝜈𝜈𝑥𝑥|𝜓𝜓𝑚𝑚,𝑘𝑘�⃗ ⟩⟨𝜓𝜓𝑚𝑚,𝑘𝑘�⃗ �𝜈𝜈𝑦𝑦�𝜓𝜓𝑛𝑛,𝑘𝑘�⃗ ⟩
(𝜔𝜔𝑚𝑚 − 𝜔𝜔𝑛𝑛)2

𝑚𝑚≠𝑛𝑛

 
(3.16) 

which provides, in turn, the anomalous Hall conductivity (AHC) (figure 3.3). Here ν𝑥𝑥 and ν𝑦𝑦 are 

obtained from the diagonal elements of the momentum operator defined in equation 3.6. 

 
σ𝑥𝑥𝑥𝑥 = −

𝑒𝑒2

ℏ
�

𝑑𝑑3𝑘𝑘�⃗
(2𝜋𝜋)3 Ω

𝑧𝑧�𝑘𝑘�⃗ �
𝐵𝐵𝐵𝐵

 
(3.17) 

where 

 Ω𝑧𝑧�𝑘𝑘�⃗ � = �𝑓𝑓𝑛𝑛Ω𝑛𝑛𝑧𝑧�𝑘𝑘�⃗ �
𝑛𝑛

 (3.18) 

is the sum of the Berry curvature over the occupied bands (𝑓𝑓𝑛𝑛 is the Fermi-Dirac distribution). 

In the case of variable fields, the Hall conductivity and magnetic circular dichroism 

(figure 3.4) can also be computed using 
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σ𝑥𝑥𝑥𝑥�𝑘𝑘�⃗ � =

𝑒𝑒2

ℏ
�

𝑑𝑑3𝑘𝑘�⃗
(2𝜋𝜋)3𝐵𝐵𝐵𝐵

��𝑓𝑓𝑛𝑛�𝑘𝑘�⃗ � − 𝑓𝑓𝑚𝑚�𝑘𝑘�⃗ ��
𝑚𝑚≠𝑛𝑛

×
2𝐼𝐼𝐼𝐼�𝜓𝜓𝑛𝑛,𝑘𝑘�⃗ |𝜈𝜈𝑥𝑥|𝜓𝜓𝑚𝑚,𝑘𝑘�⃗ ��𝜓𝜓𝑚𝑚,𝑘𝑘�⃗ �𝜈𝜈𝑦𝑦�𝜓𝜓𝑛𝑛,𝑘𝑘�⃗ �

(𝜔𝜔𝑚𝑚 − 𝜔𝜔𝑛𝑛)2 − �ω + 𝑖𝑖𝑊𝑊𝑛𝑛,𝑚𝑚�
2  

 

(3.19) 

where 𝑊𝑊𝑛𝑛,𝑚𝑚 is the adaptive smearing parameter (equation 3.9). 

Starting with relativistic (SOC) band structure PAOFLOW can also compute the spin 

Berry curvature: 

 
Ω𝑛𝑛𝑧𝑧�𝑘𝑘�⃗ � = − �

2𝐼𝐼𝐼𝐼⟨𝜓𝜓𝑛𝑛,𝑘𝑘�⃗ |𝑗𝑗𝑥𝑥𝑧𝑧|𝜓𝜓𝑚𝑚,𝑘𝑘�⃗ ⟩⟨𝜓𝜓𝑚𝑚,𝑘𝑘�⃗ �𝜈𝜈𝑦𝑦�𝜓𝜓𝑛𝑛,𝑘𝑘�⃗ ⟩
(𝜔𝜔𝑚𝑚 − 𝜔𝜔𝑛𝑛)2

𝑚𝑚≠𝑛𝑛

 
(3.20) 

where 𝑗𝑗𝑥𝑥𝑧𝑧 = 𝑠𝑠𝑧𝑧 , 𝑣⃗𝑣 is the spin current operator with 𝑠𝑠𝑧𝑧 = ℏ
2

(β,Σ ∶  4 × 4 Dirac matrices) [16] and 

the corresponding SHC (figure 3.5, equations 3.17 and 3.18). Similarly to equation 3.19, when 

fields are frequency dependent, PAOFLOW facilitates the calculation of the spin Hall 

conductivity (SHC) and magnetic circular dichroism (figure 3.6): 

 
σ𝑥𝑥𝑥𝑥�𝑘𝑘�⃗ � =

𝑒𝑒2

ℏ
�

𝑑𝑑3𝑘𝑘�⃗
(2𝜋𝜋)3𝐵𝐵𝐵𝐵

��𝑓𝑓𝑛𝑛�𝑘𝑘�⃗ � − 𝑓𝑓𝑚𝑚�𝑘𝑘�⃗ ��
𝑚𝑚≠𝑛𝑛

×
2𝐼𝐼𝐼𝐼�𝜓𝜓𝑛𝑛,𝑘𝑘�⃗ |𝑗𝑗𝑥𝑥𝑧𝑧|𝜓𝜓𝑚𝑚,𝑘𝑘�⃗ ��𝜓𝜓𝑚𝑚,𝑘𝑘�⃗ �𝜈𝜈𝑦𝑦�𝜓𝜓𝑛𝑛,𝑘𝑘�⃗ �

(𝜔𝜔𝑚𝑚 − 𝜔𝜔𝑛𝑛)2 − �ω + 𝑖𝑖𝑊𝑊𝑛𝑛,𝑚𝑚�
2  

 

(3.21) 

where 𝑊𝑊𝑛𝑛,𝑚𝑚 is the adaptive broadening parameter defined in equation 3.9. 

3.4 Installation and Input File Structure 

PAOFLOW does not need any specific setup provided that the required Python 2.7 

modules are installed on the system. PAOFLOW is executed from a simple (but expandable) 

main.py  module that calls paoflow(‘input path’, ‘input file’) where the 

arguments specify the desired path and the XML input file name to be read at runtime (see the 
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file structure in the examples directory). PAOFLOW reads also two files from the execution 

of Quantum ESPRESSO: data-file.xml generated by the main run with pw.x, and 

atomic-proj.xml generated by the post-processing of projwfc.x (see also the 

discussion in Section 3.2). 

3.4.1 Input File Format 

In the following we discuss the individual input parameters in the inputfile.xml 

file. To preserve readability, in this description, the ‘type’ and ‘size’ XML tags have been 

neglected. 

Listing 3.1: inputfile.xml – file format 

<?xml version=”1.0”?> 

<root> 

 <fpath>./dir.save/</fpath> 

 … 

 <out_vals>Hksp</out_vals> 

 … 

</root> 

 

3.4.2 System Variables 

Listing 3.2: inputfile.xml – system section 

<fpath>./silicon.save/</fpath> 

<restart>F</restart> 

<verbose>F</verbose> 

<non_ortho>F</non_ortho> 
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<write2file>F<write2file> 

<shift_type>1</shift_type> 

<shift>auto</shift> 

<pthr>0.95</pthr> 

<npool>1</npool> 

<do_comparison>F</do_comparison> 

<naw> 

<a>0 0</a> 

</naw> 

<sh> 

<a>1 2 0 1 2</a> 

</sh> 

<nl> 

<a>1 1 1 1 1</a> 

</nl> 

 
• fpath 

o Description. Directory created by projwfc.x where the calculation (data-
file.xml) and atomic projection (atomic-proj.xml) data are saved. 

o Type. String. Default ‘dir.save’. 

o Example. See listing 3.2 

• restart 

o Description. Write data to disk at selected checkpoints to skip section of 
calculations in restart. Data are written in the uncompressed .npz format of 
NumPy to ensure maximum data transferability across architectures. 

o Type. Logical. Default = False 
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o Example. See listing 3.2 

• verbose 

o Description. Writes run information on standard output. 

o Type. Logical. Default = False 

o Example. See listing 3.2 

• non-ortho 

o Description. Read overlaps to construct a non orthogonal PAO Hamiltonian. 
Necessary to perform ACBN0 calculations (see section 3.7). After the calculation 
of bands and band topology the basis is orthogonalized and the calculation 
proceeds in the new basis. 

o Type. Logical. Default = False 

o Example. See listing 3.2 

• write2file 

o Description. Write necessary data to perform ACBN0 calculations (see section 
3.7). 

o Type. Logical. Default = False 

o Example. See listing 3.2 

• write_binary 

o Description. Write necessary data in binary format to perform ACBN0 
calculations in AFLOWπ. [22] 

o Type. Logical. Default = False 

o Example. See listing 3.2 

• writedata 

o Description. Write 3-dim Berry curvature and spin Berry curvature for plotting 
(format suitable for the Mayavi 3D scientific data visualization and plotting 
package (http://docs.enthought.com/mayavi/mayavi/). 

o Type. Logical. Default = False 
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o Example. See listing 3.2 

• use_cuda 

o Description. Use nVIDIA CUDA libraries to perform fft on GPUs. 

o Type. Logical. Default = False 

o Example. See listing 3.2 

• shift_type 

o Description. Selects the filtering and shifting scheme to construct the PAO 
Hamiltonians. 

o Type. Integer. 

o Example. See listing 3.2 

o Request Syntax. if 0 uses equation 3.1, if 1 uses equation 3.2 (default), if 
2 𝑛𝑛𝑛𝑛 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. 

• shift 

o Description. Define the shifting parameter (κ in equations 3.1 and 3.2). 

o Type. String or Float 

o Example. See listing 3.2 

o Request Syntax. if ‘auto’, κ is chosen as the lowest eigenvalue of the highest 
band with projectability within the tolerance (default); if a number, amount of 
shift provided by the user. 

o Units. if Float, units are 𝑒𝑒𝑒𝑒. 

• pthr 

o Description. Tolerance on the projectability of bands: only bands with 
projectability > pthr will be considered. 

o Type. Float. Default = 0.95 

o Example. See listing 3.2 

o Request Syntax. For best Hamiltonian representability it must be a number 
between 0.9 and 1 (see reference [18] for an extensive discussion). 
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• npool 

o Description. Number of partitions of largest arrays to reduce the memory 
requirements and overhead of message passing in MPI. It can be used to 
optimize performance for large systems. 

o Type. Integer. Default = 1 

o Example. See listing 3.2 

o Request Syntax. Currently npool must be chosen so that the number of 𝑘𝑘�⃗ -
points in the interpolated MP mesh divided by npool is an integer and this 
integer must be divisible by the number of cores. 

• do_comparison 

o Description. Performs a comparison between the DFT eigenvalues from 
Quantum-ESPRESSO and the ones obtained from the PAO Hamiltonian. Useful 
when debugging for illustrative purposes. Writes a pdf file (comparison). Uses 
the matplotlib module. 

o Type. Logical. Default = False 

o Example. See listing 3.2 

• out_vals 

o Description. Defines the data structures that the PAOFLOW module will return 
after all calculations have completed. Data structures are returned as a 
dictionary with the keys named as the variables are named in PAOFLOW. 

o Type. Dictionary. Default = {} 

o Example. See listing 3.2 

• naw 

o Description. Dimensions of the atomic basis for each atom in the system. The 
order must be the same as the in the output of projwfc.x. 

o Type. NumPy array of Integers. Default = np.array([0,0]). Must be 
specified if external fields are required (see below in section 3.4.3). 

o Example. See listing 3.2 

• sh and nl 
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o Description. Shell order sh and degeneracy nl of the atomic orbital basis in a 
spin-orbit calculation. 

o Type. List of Integers. Default: sh=[0,1,2,0,1,2], 
nl=[2,1,1,1,1,1]. Must be specified if calculation has spin-orbit 

o Example. See listing 3.2 

o Request Syntax. sh[:] gives the order of shells with angular momentum 𝑙𝑙. 
Nl[:] gives the multiplicity of each 𝑙𝑙 shell (depending on the pseudopotential 
one might have duplicate shells in the list of orbitals). The default values 
correspond to a system with two atoms, the first with one 𝑠𝑠, one 𝑝𝑝, and one 𝑑𝑑 
shell. 

 

3.4.3 External Fields 

Listing 3.3: inputfile.xml – external fields 

<Efield> 

<a>0 0 0</a> 

</Efield> 

<bval>0</bval> 

<do_spin_orbit>F</do_spin_orbit> 

<theta>0.0</theta> 

<phi>0.0</phi> 

<naw>9</naw> 

<orb_pseudo>spd</orb_pseudo> 

<lambda_p>0.0</lambda_p> 

<lambda_d>0.0</lambda_d> 

 
• Efield 

o Description. Magnitude of an electric field added to the diagonal elements of the 
PAO Hamiltonian. 
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o Type. Float. Default = 0.0 

o Example. See listing 3.3 

o Units. 𝑒𝑒𝑒𝑒. 

• HubbardU 

o Description. Add a Hubbard 𝑈𝑈 to selected orbitals. 

o Type. NumPy array of Floats. Default = 0.0 

o Example. See listing 3.3 

o Units. 𝑒𝑒𝑒𝑒. 

• bval 

o Description. Index of the highest occupied band for alignment of the top state to 
0. 

o Type. Integer. Default = 0 

o Example. See listing 3.3 

• do_spin_orbit 

o Description. Add the spin-orbit interaction a posteriori in the PAO Hamiltonian. 

o Type. Logical. Default = False 

o Example. See listing 3.3 

o Request Syntax. if True one must provide theta (𝜃𝜃), phi (𝜙𝜙), naw, lambda_p 
(𝜆𝜆𝑝𝑝), and lambda_d (𝜆𝜆𝑑𝑑). 

• theta and phi 

o Description. Rotation angle around the 𝑧𝑧-axis and 𝑦𝑦-axis in cartesian coordinates, 
respectively 

o Type. Real 

o Example. See listing 3.3 

o Units. in degrees. 
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• orb_pseudo 

o Description. Type of pseudopotential used for each atom in the system. 

o Type. NumPy array of Strings. Default = np.array([‘spd’]) 

o Example. See listing 3.3 

• lambda_p and lambda_d 

o Description. Spin-orbit coupling parameter for 𝑝𝑝 and 𝑑𝑑 states, respectively. The 
SOC will be included only in the outermost 𝑝𝑝 and (or) 𝑑𝑑 orbitals. 

o Type. Real 

o Example. See listing 3.3 

o Units. if Float, units are 𝑒𝑒𝑒𝑒. 
 

3.4.4 Band Structure and Band Topology 

Listing 3.4: inputfile.xml – file format 

<onedim>F</onedim> 

<do_bands>F</do_bands> 

<ibrav>0</ibrav> 

<nk>2000</nk> 

<band_topology>F</band_topology> 

<spol>0</spol> 

<ipol>0</ipol> 

<jpol>0</jpol> 

 
• onedim 

o Description. Interpolate a band structure calculated along a particular symmetry 
line in the BZ. 

o Type. Logical. Default = False 
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o Example. See listing 3.4 

o Request Syntax. if True the non self consistent calculation of pw.x must be 
compatible in the choice of the reciprocal space path. 

• do_bands 

o Description. Interpolate the band structure by Fourier transforming the PAO 
Hamiltonian in real space. 

o Type. Logical. Default = False 

o Example. See listing 3.4 

o Request Syntax. if True the non self consistent calculation of pw.x must be 
compatible in the choice of the reciprocal space path. 

• ibrav 

o Description. Bravais lattice index following the convention of Quantum-
ESPRESSO. The 𝑘𝑘�⃗ -pints paths follow the AFLOW convention [24]. 

o Type. Logical. Default = False 

o Example. See listing 3.4 

• dkres 

o Description. Resolution of the 𝑘𝑘�⃗ -grid along the high symmetry path. 

o Type. Logical. Default = False 

o Example. See listing 3.4 

• band_topology 

o Description. Calculates the 𝑍𝑍2 invariant and topological properties (band velocity, 
Berry and spin Berry curvature) along the band path in the BZ. 

o Type. Logical. Default = False 

o Example. See listing 3.4 

• ipol, jpol, spol 
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o Description. Polarization indices for the components of the Berry (Ω𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗) and 
spin Berry curvature (Ω𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ). Components are calculated one at a time. 

o Type. Integer. Default = 0 

o Example. See listing 3.4 
 

3.4.5 Hamiltonian Interpolation and Related Quantities 

Listing 3.5: inputfile.xml – Hamiltonian interpolation 

<double_grid></double_grid> 

<nfft1>0</nfft1> 

<nfft2>0</nfft2> 

<nfft3>0</nfft3> 

<smearing>gauss</smearing> 

<do_dos>F</do_dos> 

<do_pdos>F</do_pdos> 

<emin>-1.0</emin> 

<emax>2.0</emax> 

<delta>0.01</delta> 

<do_fermisurf>F</do_fermisurf> 

<do_spintexture>F</do_spintexture> 

<fermi_up>1.0</fermi_up> 

<fermi_dw>-1.0</fermi_dw> 

 
• double_grid 

o Description. Interpolation of the original PAO Hamiltonian on finer MP grids. 
Uses a “zero padding” algorithm. 

o Type. Logical. Default = False 
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o Example. See listing 3.5 

o Notes. When True the code will automatically compute the gradient of the 
Hamiltonian and the momentum operators. 

• nfft1, nfft2, nfft3 

o Description. Dimension of the dense FFT grid. 

o Type. Integer. Default = 0 

o Example. See listing 3.5 

o Request Syntax. nfft1, nfft2, nfft3 must be even. 

• smearing 

o Description. Choice of smearing protocol. 

o Type. String. 

o Example. See listing 3.5 

o Request Syntax. Possible choices are: ‘None’ simple gaussian smearing with fixed 
delta; ‘gauss’ adaptive gaussian smearing: ‘m-p’ adaptive Methfessel-
Paxton smearing (5th order Hermite polynomials). 

• delta 

o Description. Width of the simple Gaussian smearing if smearing=None (see 
above). 

o Type. Float. Default = 0.1 

o Example. See listing 3.5 

o Units. 𝑒𝑒𝑒𝑒. 

• do_dos, do_pdos 

o Description. Calculate the density of states/projected density of states in the 
interval [emin,emax]. 

o Type. Logical. Default = False 

o Example. See listing 3.5 
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• emin, emax 

o Description. Energy interval for the calculation of the density of states/projected 
density of states. 

o Type. Float. Default = -10.0, 2.0 

o Example. See listing 3.5 

o Units. if Float, units are 𝑒𝑒𝑒𝑒. 

• do_fermisurf 

o Description. Evaluate the Fermi surface for energy values between fermi_up 
and fermi_dw. 

o Type. Logical. Default = False 

o Example. See listing 3.5 

• do_spintexture 

o Description. Evaluate the spin texture isosurface for energy values between 
fermi_up and fermi_dw. 

o Type. Logical. Default = False 

o Example. See listing 3.5 

• fermi_up, fermi_dw 

o Description. Energy interval for the calculation of the Fermi surface or spin 
texture. 

o Type. Float. Default = 0.1, -0.1 

o Example. See listing 3.5 

o Units. if Float, units are 𝑒𝑒𝑒𝑒. 

3.4.6 Transport and Optical Properties 

Listing 3.6: inputfile.xml – Transport and optical tensors 

<d_tensor> 

 <a>0 0</a> 
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 <a>0 1</a> 

 <a>0 2</a> 

 <a>1 0</a> 

 <a>1 1</a> 

 <a>1 2</a> 

 <a>2 0</a> 

 <a>2 1</a> 

 <a>2 2</a> 

</d_tensor> 

<temp>0.025852</temp><!--Room Temperature--> 

<Boltzmann>F</Boltzmann> 

<epsilon>F</epsilon> 

<metal>F</metal> 

<kramerskronig>F</kramerskronig> 

<epsmin>0.0</epsmin> 

<epsmax>10.0</epsmax> 

<ne>500</ne> 

<critical_points>F</critical_points> 

<Berry>F</Berry> 

<eminAH>-1.0</eminAH> 

<emaxAH>1.0</emaxAH> 

<ac_cond_Berry>F</ac_cond_Berry> 

<spin_Hall>F</spin_Hall> 

<eminSH>-1.0</eminSH> 
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<emaxSH>1.0</emaxSH> 

<ac_cond_spin>F</ac_cond_spin> 

 
• d_tensor 

o Description. Components of the dielectric tensor to be calculated. 

o Type. NumPy array of Integers. Default = All components are calculated 

o Example. See listing 3.6 

• t_tensor 

o Description. Components of the Boltzmann transport tensors to be calculated. 

o Type. Type. NumPy array of Integers. Default = All components are calculated 

o Example. See listing 3.6 

• a_tensor 

o Description. Components of the anomalous Hall magnetic circular dichroism 
tensors to be calculated. 

o Type. Type. NumPy array of Integers. Default = All components are calculated 

o Example. See listing 3.6 

• s_tensor 

o Description. Components of the spin Hall and spin circular dichroism tensors to 
be calculated. 

o Type. Type. NumPy array of Integers. Default = All components are calculated 

o Example. See listing 3.6 

• epsilon 

o Description. Compute the real and imaginary part of the dielectric function. 

o Type. Logical. Default = False 

o Example. See listing 3.6 
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• metal 

o Description. Add intraband contribution to the real and imaginary part of the 
dielectric function. 

o Type. Logical. Default = False 

o Example. See listing 3.6 

• kramerskronig 

o Description. Compute the real part of the dielectric function using the Kramers-
Kronig relation. 

o Type. Logical. Default = True 

o Example. See listing 3.6 

o Request Syntax. if False the program will use equation 23 from reference [29]. 

• epsmin, epsmax 

o Description. Energy interval for the calculation of the dielectric function. 

o Type. Float. Default = 0.0, 10.0 

o Example. See listing 3.6 

o Units. if Float, units are 𝑒𝑒𝑒𝑒. 

• ne 

o Description. Number of energy points in the [emin,emax] interval 

o Type. Integer. Default = 500 

o Example. See listing 3.6 

o Notes. For accurate integration of the Kramers-Kronig formula we recommend 
1000 energy points/eV. 

• critical_points 

o Description. Find 𝑘𝑘�⃗ -points where a band has zero derivative. 

o Type. Logical. Default = False 
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o Example. See listing 3.6 

• Berry 

o Description. Evaluate Berry curvature and anomalous Hall conductivity (AHC). 

o Type. Logical. Default = False 

o Example. See listing 3.6 

• eminAH, emaxAH 

o Description. Energy interval for the calculation of the AHC. 

o Type. Float. Default = -1.0, 1.0 

o Example. See listing 3.6 

o Units. if Float, units are 𝑒𝑒𝑒𝑒. 

• ac_cond_Berry 

o Description. Evaluate magnetic circular dichroism spectrum in the interval [0.0, 
shift]. 

o Type. Logical. Default = False 

o Example. See listing 3.6 

• spin_Hall 

o Description. Evaluate spin Berry curvature and spin Hall conductivity (SHC). 

o Type. Logical. Default = False 

o Example. See listing 3.6 

• eminSH, emaxSH 

o Description. Energy interval for the calculation of SHC. 

o Type. Float. Default = -1.0, 1.0 

o Example. See listing 3.6 

o Units. if Float, units are 𝑒𝑒𝑒𝑒. 
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• ac_cond_spin 

o Description. Evaluate spin circular dichroism spectrum in the interval [0.0, 
shift]. 

o Type. Logical. Default = False 

o Example. See listing 3.6 
 

3.5 Performance 

Performance of PAOFLOW exploits massive parallelization over 𝑘𝑘-points throughout the 

code and over bands whenever possible (mainly in the Hamiltonian interpolation and the 

calculation of the gradients). Parallel performances have been analyzed on a Dell PowerEdge 

R730 server with two 2.4 GHz Intel Xeon E5-2680 v4 fourteen-core processors using 

Example01, run times of select FFTs on CPUs or GPUs are compared for MP grid sizes ranging 

from 12 × 12 × 12 to 72 × 72 × 72. These results are summarized in figure 3.9. 

PAOFLOW demonstrates excellent scaling properties on manycore systems and 

possesses massively parallel capabilities. 

 
Figure 3.8: Parallelized routines provide run time scaling proportional to the number of cores used in a 
calculation, closely approaching the speed increase limit of Amdahl’s Law. 
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Figure 3.9: Executing Fast Fourier Transforms in parallel on GPUs yields a significant increase in run 
time performance on calculations with a large MP mesh. 

 

3.6 Examples, Testing and Continuous Integration 

PAOFLOW includes a full suite of examples in the examples/ directory of the 

distribution. Examples can be run for testing and verifying the accuracy of the calculations upon 

different Python installations and computer architectures. Each example has a Reference 

directory where we have collected reference data for comparison. Examples can be run 

automatically using the module run_examples.py, which needs a small customization to 

define the directory where QE executables and PAOFLOW are installed. The module will run 

automatically all the DFT calculations and the PAOFLOW post processing steps. If run with no 

arguments it will run all examples, if an example name is given as an argument, only that 

example will be run. run_examples.py will also automatically verify the accuracy of the 

results against the data in Reference within a given tolerance to avoid false positive due to 

hardware-specific numerical precision. Examples included in the distribution are: 

• Example01 
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o Description. Silicon with an 𝑠𝑠𝑠𝑠𝑠𝑠 pseudopotential: bands, density of states, 
projected density of states, Boltzmann transport and dielectric function. 

• Example02 

o Description. Aluminum with an 𝑠𝑠𝑠𝑠𝑠𝑠 pseudopotential: density of states, 
Boltzmann transport and dielectric function (metal=True). 

• Example03 

o Description. Platinum in the local spin density approximation (nspin=2): 
density of states, projected density of states, Boltzmann transport and dielectric 
function(metal=True). 

• Example04 

o Description. Iron with non-collinear magnetism and spin-orbit interaction: bands, 
band topology, density of states, spin Hall conductivity and spin circular 
dichroism. 

• Example05 

o Description. Platinum with non-collinear magnetism and spin-orbit interaction: 
bands, band topology, density of states, spin Hall conductivity and spin circular 
dichroism. 

• Example06 

o Description. AlP with ad hoc ACBN0 correction: bands, density of states, 
Boltzmann transport and dielectric function. 

• Example07 

o Description. Bismuth with the effective spin-orbit interaction approximation: 
bands, density of states 

Further tests can be added simply by incorporating more exampleXX directories with 

the same data structure as the existing ones. No modifications are needed in the 

run_examples.py module. This versatility is essential to ensure continuous integration and 

early detection of problems in new modules. 
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3.7 Externals 

Modules and utilities that use data generated by PAOFLOW, or provide input 

information for a run, have been collected in the src/external/ directory. 

3.7.1 ACBN0 Calculations 

The construction of the PAO Hamiltonian allows the direct computation of the direct 

and self-consistent evaluation of the on-site Coulomb 𝑈𝑈 and exchange 𝐽𝐽 parameters from the 

ACBN0 functional approach, recently introduced by some of us [30]. Thanks to the accurate 

PAO representation, the evaluation of the 𝑈𝑈 and 𝐽𝐽 for atoms in different chemical environments 

or close to topological defects (surfaces, interfaces, impurities, etc.)  or for closed-shell atoms 

(like Zn) becomes trivial, thus overcoming the limitations of traditional linear response 

techniques with a computation cost comparable to a regular (LDA) PBE calculation. ACBN0 is 

integrated in the AFLOWπ framework and can be run seamlessly as part of a user-defined 

workflow. However, in order to provide maximum flexibility to users, we have included an 

external module to PAOFLOW that performs the ACBN0 calculation directly. 

ACBN0 uses some modules and the cints library from PyQuante 

(http://pyquante.sourceforge.net/). In order to run the program properly, in clib/ run the 

shell script install.sh (check the $PATH to the include files in the current python 

distribution). In order to run the main ACBN0 module scfuj.py, PAOFLOW must be run with 

the variable write2file=True (see listing 3.1). 

3.7.2 Ballistic Transport 

Calculations of the ballistic electrical conductance à la Landauer are naturally built on a 
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local representation of the electronic structure like the one provided by the PAO Hamiltonians. 

Our procedure reduces the problem of calculating electron transport [38,39] to a 

computationally inexpensive post-processing maintaining the predictive power and the 

accuracy of first principles methods. Briefly, using the Landauer approach the conductance is 

determined via the transmission function that can be written as: [38,39] 

 𝒯𝒯ℯℓ = 𝑇𝑇𝑇𝑇(γ𝐿𝐿𝐺𝐺𝐶𝐶rΓ𝑅𝑅𝐺𝐺𝐶𝐶𝑎𝑎) (3.22) 

where 𝐺𝐺𝐶𝐶
(𝑟𝑟,𝑎𝑎) are the retarded and advanced Green’s functions of the conductor, respectively, 

and Γ(𝐿𝐿,𝑅𝑅) are functions that describe the coupling of the conductor to the leads. The Green’s 

function for the whole system can be explicitly written as: [41] 

 𝐺𝐺𝐶𝐶 = (ϵ − 𝐻𝐻𝐶𝐶 − Σ𝐿𝐿 − Σ𝑅𝑅)−1 (3.23) 

where Σ𝐿𝐿 and Σ𝑅𝑅 are the self-energy terms due to the semi-infinite leads. 

Once the self-energy functions are known, the coupling functions Γ(𝐿𝐿,𝑅𝑅) can easily be 

obtained as [41] 

 Γ(𝐿𝐿,𝑅𝑅) = 𝑖𝑖�Σ(𝐿𝐿,𝑅𝑅)
𝑟𝑟 − Σ(𝐿𝐿,𝑅𝑅)

𝑎𝑎 �. (3.24) 

The expression of the self-energies can be deduced along the lines of reference [38] 

using the formalism of principal layers in the framework of the surface Green’s function 

matching theory. We obtain: 

 Σ𝐿𝐿 = 𝐻𝐻𝐿𝐿𝐿𝐿
† (ϵ − 𝐻𝐻00𝐿𝐿 − (𝐻𝐻01𝐿𝐿 )†𝑇𝑇𝐿𝐿� )−1𝐻𝐻𝐿𝐿𝐿𝐿  

Σ𝑅𝑅 = 𝐻𝐻𝐶𝐶𝐶𝐶(ϵ − 𝐻𝐻00𝑅𝑅 − 𝐻𝐻01𝑅𝑅 𝑇𝑇𝑅𝑅)−1𝐻𝐻𝐶𝐶𝐶𝐶
† , 

(3.25) 

where 𝐻𝐻𝑛𝑛𝑛𝑛
𝐿𝐿,𝑅𝑅  are the matrix elements of the Hamiltonian between the layer orbitals of the left 

and right leads respectively, and 𝑇𝑇𝐿𝐿,𝑅𝑅 and 𝑇𝑇�𝐿𝐿,𝑅𝑅 are the appropriate transfer matrices. The latter 

are easily computed from the Hamiltonian matrix elements via an iterative procedure [38]. 
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A simple generalization of the procedure above allows also for the calculation of surface 

protected bulk band structures, the essential and definitive tool to determine the existence or 

not of topologically protected surface states. In figure 3.10 we compare the surface projected 

bulk band structure of the Si (001) surface with an actual 32 atoms slab calculation. 

 
Figure 3.10: Si(001) surface projected band structure. Upper panel is the 32 atom slab projected onto 
the 2 outmost atomic planes. Lower panel is the surface projected bulk band strcutre using a semi-
infinite bulk. Dark red (dark blue) is surface (bulk) bands. 

 
The calculations are managed by the transportPAO utility, an adaptation of the 

WantT code [39] originally written for a Wannier functions representation of the DFT 

Hamiltonians. 

transportPAO is written in Fortran90 and can be easily installed by running a 

standard configure + make procedure. Input for transportPAO is generated by 

restart=True. 



47 

3.8 Conclusions 

With PAOFLOW we provide the electronic structure and materials community with a 

versatile and agile tool for the ab initio characterization of materials properties. The modularity 

of the code, its speed, and its accuracy, make it an ideal platform for the development of 

modern materials property databases. 
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CHAPTER 4 

ADVANCED MATERIALS MODELING WITH PAOFLOW 2.0* 

Recent research in materials science open exciting perspectives to design novel 

quantum materials and devices, but it calls for quantitative predictions of properties which are 

not accessible in standard first principles packages. PAOFLOW is a software tool that constructs 

tight-binding Hamiltonians from self-consistent electronic wavefunctions by projecting onto a 

set of atomic orbitals. The electronic structure provides numerous materials properties that 

otherwise would have to be calculated via phenomenological models. In this paper, we describe 

recent re-design of the code as well as the new features and improvements in performance. In 

particular, we have implemented symmetry operations for unfolding 𝑘𝑘-points, which drastically 

reduces the runtime requirements of the first principles calculations, and we have provided 

internal routines of projections onto atomic orbitals enabling generation of real space atomic 

orbitals. Moreover, we have included models for non-constant relaxation time in electronic 

transport calculations, doubling the real space dimensions of the Hamiltonian as well as the 

construction of Hamiltonians directly from analytical models. Importantly, PAOFLOW has been 

now converted into a Python package, and is streamlined for use directly within other Python 

codes. The new object oriented design treats PAOFLOW’s computation routines as calss 

methods, providing an API for explicit control of each calculation. 

 
* This chapter is reproduced, in full, from the paper: Advanced modeling of materials with PAOFLOW 2.0: New 
features and software design by Frank T. Cerasoli, Andrew R. Supka, Anooja Jayaraj, Ilaria Siloi, Marcio Costa, 
Jagoda Sławińska, Stefano Curtarolo, Marco Fornari, Davide Ceresoli, and Marco Buongiorno Nardelli, submitted to 
Computational Materials Science in July 2021. 
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4.1 Introduction 

Exploring phenomena and properties of novel materials requires accurate and efficient 

computational tools that can be easily customized and manipulated. In this context, ab initio 

tight-binding (TB) Hamiltonians constructed from self-consistent quantum-mechanical 

wavefunctions projected onto a set of atomic orbitals have been very successful, since they 

allow calculations for materials that cannot be properly addressed using only density functional 

theory (DFT) such as large moiré superstructures or properties of exotic quantum systems 

where spin and topology play an important role. PAOFLOW is a new software tool that employs 

an efficient procedure of projecting the full plane-wave solution on a reduced space of 

pseudoatomic orbitals [18,19], and provides an interpolated electronic structure to promptly 

compute a plethora of relevant quantities, including optical and magnetic properties, charge 

and spin transport as well as topological invariants. Importantly, in contrast with other common 

approaches the projection does not require any additional inputs and can be successively 

integrated in high-throughput calculations of arbitrary complex materials. The code has been 

employed in multiple areas of materials science since its initial release in 2016. In particular, 

several groups used it to compute the (spin) Berry curvature as well as spin and/or anomalous 

Hall conductivity (SHC and AHC) in a variety of mate- rials, ranging from β-W to magnetic 

antiperovskites [42-46]. Transport quantities, such as the electrical and thermal conductivity, 

were also computed in order to analyze carrier mobility in thermoelectrics [47,48]. 

The software package has recently undergone a major refactor, resulting in a large 

variety of properties that can be calculated as well as highly improved performance. Many 

improvements were made to simplify the user experience, to make the package more modular, 
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and to create an API for manipulating TB Hamiltonians. PAOFLOW, now installed as a Python 

package, features an object oriented design and contains an im- portable PAOFLOW class, 

allowing multiple Hamiltonians to be constructed and manipulated simultaneously. This 

framework enables high-throughput materials analysis within a single python file. This chapter 

outlines PAOFLOW’s modified features, detail new functionalities, and provide a user manual 

for operating the various methods available within the package. Currently, PAOFLOW is publicly 

available under the terms of the GNU General Public License as published by the Free Software 

Foundation, either version 3 of the License, or any later version. It is also integrated in the 

AFLOWπ high-throughput framework [22] and distributed at http://www.aflow.org/src/aflowpi 

and http://www.aflow.org/src/paoflow [20,21].  

4.2 Software Design and Installation 

PAOFLOW is written in Python 3.8 (using the Python standard library, NumPy, and 

SciPy). Parallelization on CPUs uses the OpenMPI protocol through the mpi4py module. The 

PAOFLOW package can be easily installed on any hardware. Installation directly from the 

Python Package Index (PyPi) is possible with the single command:  pip install paoflow. 

Otherwise, one may clone the PAOFLOW repository from GitHub and install it from the 

root directory with the command: python setup.py install. The package requires no 

specific setup, provided that the prerequisite Python 3.8 modules are installed on the system. 

Example codes showcasing PAOFLOW’s capabilities are housed on GitHub, in the examples/ 

directory of the PAOFLOW repository. 

Once installed, PAOFLOW can be imported into any Python code and used in 

conjunction with other software packages. It should be noted that, in PAOFLOW 1.0 two control 
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files were required: main.py to begin the execution, and inputfile.xml to provide 

details about the calculation. In PAOFLOW 2.1 the desired routines are called directly from the 

Python code, eliminating the need for inputfile.xml. However, an updated main.py 

file is provided in the repository’s examples/ directory, which allows use of the version 1.0 

XML inputfile structure in PAOFLOW 2.1. 

Generally, PAOFLOW requires a couple of basic calculations with the Quantum 

ESPRESSO [8,9] (QE) package. The first generates a converged electronic density and Kohn-

Sham (KS) potential on an appropriate Monkhorst and Pack (MP) 𝑘𝑘�⃗ -point mesh (pw.x). A 

second, non self consistent calculation (pw.x) evaluates eigenvalues and eigenfunctions for a 

MP mesh on a larger band spectrum. Previous versions of PAOFLOW require that all the QE 

calculations include flags nosym=.true. and noinv=.true., while version 2.1 can 

reconstruct equivalent 𝑘𝑘�⃗ -points from various symmetry operations and has no such 

requirement. Once the self consistent and non self consistent calculations are complete, the KS 

wavefunctions must be projected onto PAO basis functions. One of PAOFLOW’s new 

capabilities is the generation of real space atomic orbitals, constructed from the product of 

radial components house in pseudopotential files and spherical harmonics specifying angular 

dependence. Either PAOFLOW can project the KS wavefunctions onto this internally 

constructed PAO basis set (section 4.3.2), or a third post-processing QE run with projwfc.x 

can perform the projection. If the projections are computed using QE, the eigenfunctions must 

be read by PAOFLOW explicitly before the construction of a PAO Hamiltonian (section 4.3.3). 

Alternatively, PAOFLOW can operate with no preprocessing requirements from QE, where built-

in or user-defined models serve as the recipe from building Hamiltonians. Implementing these 
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models requires specific information about the atomic system a priori, and their usage is 

described in section 4.4. 

Central to PAOFLOW is an internal object called the DataController, which has the 

sole responsibility of collecting and maintaining important information about the atomic system 

and its corresponding Hamiltonian. The DataController is initially populated with data 

from the QE run’s .save directory, providing PAOFLOW’s many routines with any information 

required for their calculation and simplifying function calls for the user. The 

DataController saves quantities which are used for later calculations, such as the 

Hamiltonian’s gradient or the adaptive smearing parameters. Some calculations require other 

quantities as a prerequisite. For example, the spin_Hall routine requires the Hamiltonian’s 

gradient, which means that gradient_and_momenta should be called first to populate the 

DataController with the gradient and momenta. The DataController stores system 

information in two dictionaries, one for strings and scalar attributes (data_attributes), 

and another for vector and tensor quantities (data_arrays). Such a structure allows 

computed quantities to be easily accessed from PAFOLWO and utilized in customized 

calculations defined by the user. Note that the dictionary keys are consistent with the naming 

conventions of PAOFLOW 1.0 to facilitate backwards compatibility with the XML inputfiles and 

minimize differences in the user experience when transitioning from the previous version. 

4.3 Code Description and Package Usage 

PAOFLOW’s most fundamental procedure is the construction of accurate PAO 

Hamiltonians, and the code’s object-oriented design allows users to manipulate multiple 

Hamiltonians easily. A PAOFLOW object is responsible for a single Hamiltonian, which is 
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constructed and operated on with PAOFLOW’s class methods. If a tight binding model is used to 

construct the Hamiltonian, rather than from projections of KS wavefunctions on atomic orbitals, 

the new PAOFLOW object will create the Hamiltonian immediately. Otherwise, the KS 

wavefunctions are read from the output of a DFT engine, namely QE’s .save directory. Next, 

the atomic orbitals are constructed and the KS wavefunctions are projected onto them with the 

projections routine, creating the PAO basis. If the projections are performed by QE’s 

projwfc.x module, they must be read with read_atomic_proj_QE. The Hamiltonian is 

constructed with build_pao_hamiltonian, which allows PAOFLOW’s other class methods 

to become functional. Listing 4.1 provides an example source code for building the PAOFLOW 

object, reading projections performed by QE, and constructing the PAO Hamiltonian. Listing 4.2 

performs the same initialization procedure, but uses the internal atomic orbital projection 

scheme. An ellipsis appearing in any listing for this chapter indicates that other PAOFLOW 

routines may follow. 

The following subsections outline PAOFLOW’s individual routines and the arguments 

that they accept for control. These routines belong to the file PAOFLOW.py, located in the 

package’s src/ directory, and are meant for direct call by the user. 

4.3.1 The Constructor: PAOFLOW 

The PAOFLOW constructor acquires information about the python execution, the names 

of input/output/working directories, and about the atomic system. It build and populates the 

DataController, which will maintain the important quantities involved in calculations, 

handle communication in multi-core runs, and write files to disc when necessary. 
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For PAOFLOW to build a Hamiltonian, the constructor must be passed arguments with 

either the location of Quantum ESPRESSO’s .save directory or required specifications for a TB 

model. The QE .save directory contains up to two files from the execution of QE: data-

file-schema.xml (data-file.xml in previous versions of QE) generated by the main 

run with pw.x, and atomic-proj.xml generated by the post-processing too projwfc.x 

(if the projections are computed with QE). To implement a TB model from scratch, rather than 

starting from the KS wavefunction solutions of DFT, a dictionary containing the model’s label 

and other required parameters should be passed into the model argument (see section 4.4). 

Arguments for the constructor, PAOFLOW: 

• workpath (string) – Default: ‘./’ – Path to the working directory. Defaults to the 
current working directory. 

• outputdir (string) – Default: ‘output’ – Name of the directory to house output 
data files. The directory is crated automatically in the workpath, if it does not 
already exist. 

• inputfile (string) – Default: None – This argument is primarily for backwards 
compatibility with PAOFLOW 1.0. It names the XML inputfile with control 
parameters described in the previous article. The XML inputfile also provides a 
consistent descriptor format for highly automated calculations, utilized by AFLOWπ. 

• savedir (string) – Default: None – Name of the Quantum ESPRESSO .save 
directory, relative to the working directory. 

• model (dict) – Default: None – Dictionary specifying parameters required to 
implement a TB model. See section 4.4. 

• npool (integer) – Default: 1 – Number of batches to process when communicating 
between processors. This value will be automatically increased if the Hamiltonian 
size exceeds mpi4py’s limit for a single cross core message. 

• smearing (string) – Default: ‘gauss’ – Selects the broadening technique used to 
smooth computed quantities. Options include ‘gauss’, ‘m-p’(Methfessel-
Paxton), and None. 
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• acbn0 (bool) – Default: False – Read overlaps to construct a non-orthogonal PAO 
Hamiltonian. Necessary to perform ACBN0 calculations [30,31]. 

• verbose (bool) – Default: False – Flag for high verbosity. Set True to include 
additional information in the PAOFLOW output. 

• restart (bool) – Default: False –  Indicates the continuation of a previous run’s 
saved state. Once the PAOFLOW object is instantiated, the restart_load routine 
should be called with the save file’s prefix passed as an argument. An example is 
provided in listings 4.4 and 4.5. 

4.3.2 projections 

Perform projections of the KS eigenfunctions onto the atomic basis, constructed by 

PAOFLOW from information in the atomic pseudopotentials. This operation requires that 

PAOFLOW is instantiated by passing a QE .save directory with required XML file from the 

self consistent and non self consistent calculations. Listing 4.2 provides example usage of the 

projections routine, and a complete description of the projection methodology can be 

found in the Appendix of reference [18]. 

projections does not accept any arguments. 

4.3.3 read_atomic_proj_QE 

 Read the projections of KS wavefunctions onto the atomic orbital basis of the 

pseudopotential, written to atomic_proj.xml by the QE routine projwfc.x. Any time 

that the Hamiltonian is built directory from the projections of QE, this routine should be called 

immediately after the constructor. 

read_atomic_proj_QE does not accept any arguments. 
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4.3.4 projectability 

The projectability routine determines which bands do not meet projectability 

requirements, flagging them for shift into the null space. The projectability 𝑝𝑝𝑘𝑘�⃗  is a quantity 

measuring how well a KS Bloch state is represented by various orbitals of the PAO basis, as 

described in section 3.3. If 𝑝𝑝𝑘𝑘�⃗ ≈ 1, the PAO basis set accurately represents that particular Bloch 

state for 𝑘𝑘�⃗ . 𝑝𝑝𝑘𝑘�⃗ ≪ 1 indicates that the state is poorly represented and should be culled for 

removal. The projection threshold pthr selects the minimum allowed projectability for 

accepting a band. All bands which do not meet the criteria are projected to the null space 

during the Hamiltonian’s construction, in one of two ways. Either as 

 𝐻𝐻� = 𝐴𝐴𝐴𝐴𝐴𝐴† + κ(𝐼𝐼 − 𝐴𝐴𝐴𝐴†) (4.1) 

following reference [17] or 

 𝐻𝐻� = 𝐴𝐴𝐴𝐴𝐴𝐴† + 𝜅𝜅(I − A(A†𝐴𝐴)−1A†) (4.2) 

as in reference [18]. Unless the shift argument is explicitly set to a floating point value, the 

shifting parameter κ is determined automatically by this routine. Which method is used to 

remove low-projectability bands during the Hamiltonian construction is selected by argument 

shift_type, in the pao_hamiltonian routine (section 4.3.5). 

Arguments for projectability: 

• pthr (float) – Default: 0.95 – The projectability threshold. All bands with a 
minimum projectability of the pthr value or higher are included in the Hamiltonian. 

• shift (string or float) – Default: ‘auto’ – Float to indicate the value (in eV) of the 
null space cutoff (κ in equations 4.1 and 4.2). Bands beneath the projectability 
threshold will be shifted to this value. Providing the default argument ‘auto’ 
automatically sets shift’s value to the minimum energy of the first band to fail the 
projectability threshold. 
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4.3.5 pao_hamiltonian 

This routine constructs the Hamiltonian in both real space and momentum space. After 

this routine is completed the data controller will contain arrays HRs and Hks, for the 

respective real space and 𝑘𝑘-space Hamiltonians. 

Listing 4.1: main.py – Build Hamiltonian 

from PAOFLOW import PAOFLOW 

 

pao = PAOFLOW.PAOFLOW(savedir=’system.save’) 

pao.read_atomic_proj_QE() 

pao.projectability(pthr=0.95) 

pao.pao_hamiltonian() 

… 

 
Arguments for pao_hamiltonian: 

• shift_type (integer) – Default: 1 – Determines which method is used to (equation 
4.2 by default) remove bands into the null space. 0 – equation 4.1, 1 – equation 4.2, 
or 2 – No shift. 

• insulator (bool) – Default: False – Setting this flag to True asserts that the 
system is insulating, setting the top of the highest occupied band to 0𝑒𝑒𝑒𝑒. The fermi 
energy is calculated for metallic systems, which corrects numerical discrepancies 
from the projection routine and irreducible wedge unfolding. This flag is set to 
True automatically if the QE output does not contain smearing parameters. 

• write_binary (bool) – Default: False – Flag to write the files necessary for the 
ACBN0 routine. Overlaps from projwfc.x are required from prerequisite QE 
calculations, and this flag is required for further use with ACBN0. 

• expand_wedge (bool) – Default: True – Applies provided symmetry operations to 
the 𝑘𝑘-mesh, unfolding the irreducible wedge into a Hamiltonian for every 𝑘𝑘-point in 
the brillouin zone. PAOFLOW routines act on the full grid of 𝑘𝑘-points (True), while 
ACBN0 only requires the irreducible wedge (False). 
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• symmetrize (bool) – Default: False – The Hamiltonian incurs numerical errors 
during the process of unfolding the wedge. Certain routines, such as 
find_weyl_points, are sensitive to the Hamiltonian’s symmetric components. 
Setting this flag to True symmetrizes the Hamiltonian with an iterative procedure 
to reduce numerical errors in the Hamiltonian’s symmetry. 

• thresh (string) – Default: 1e-6  – The tolerance of symmetrization, if the procedure 
is performed. 

• max_iter (string) – Default: 16 – The maximum number of iterations that the 
symmetrization procedure will perform. 

4.3.6 bands 

Compute the band structure along the AFLOW standard path for the specified Bravais 

lattice. A custom path can be created by defining the high symmetry points in a dictionary and 

the band path as a string (see listing 4.2). The path is Fourier interpolated to an arbitrary 

resolution, controlled by the argument nk. 

Listing 4.2: main.py – Bands 

from PAOFLOW import PAOFLOW 

 

pao = PAOFLOW.PAOFLOW(savedir=’system.save’) 

pao.projections() 

pao.projectability() 

pao.pao_hamiltonian() 

 

path = ‘G-X-S-Y-G’ 

sym_points = {‘G’:[0.0, 0.0, 0.0], 

              ‘S’:[0.5, 0.5, 0.0], 

              ‘X’:[0.5, 0.0, 0.0], 
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              ‘Y’:[0.0, 0.5, 0.0]} 

Pao.bands(ibrav=8, nk=1000, 

          band_path=path, high_sym_points=sym_points) 

… 

 
Arguments for bands: 

• ibrav (integer) – Default: None – The Bravais Lattice identifier, as specified by 
Quantum ESPRESSO. 

• band_path (string) – Default: None – String of high symmetry point labels 
separated by ‘-‘ for a line connecting two points or ‘|’ to place points directly 
adjacent on the path (see listing 4.2). If band_path is None the standard AFLOW 
path will be used [22].  

• high_sym_points (dictionary) – Default: None – A dictionary mapping the string 
label of a high symmetry point to its three dimensional crystal coordinate (listing 
4.2). 

• fname (string) – Default: ‘bands’ – File name prefix for the bands. One file is 
written for each spin component (see listing 4.2). 

• nk (integer) – Default: 500 – Number of points to compute along the band path. 

4.3.7 interpolated_hamiltonian 

Fourier interpolation of the PAO Hamiltonian can increase the 𝑘𝑘-grid to an arbitrary 

density, as described and illustrated in the manuscript for PAOFLOW 1.0. The new desired 

dimensions should be specified for nk1, nk2, and nk3. The default behavior is to double the 

original nk dimension of any unspecified nfft argument. This routine populates the 

DataController with a new array ‘Hksp’, the interpolated Hamiltonian. 

• nfft1 (integer) – Default: None – The desired new dimension for the Hamiltonian’s 
previous dimension nk1. The nfft dimension should be greater or equal to the 
previous nk dimension. If no argument is provided, the original 𝑘𝑘-grid dimension is 
doubled. 
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• nfft2 (integer) – Default: None – New interpolated dimension for nk2, following 
the same scheme as nfft1. 

• nfft3 (integer) – Default: None – New interpolated dimension for nk2, following 
the same scheme as nfft1 and nfft2. 

• reshift_Ef (bool) – Default: False – Shift the Hamiltonian’s diagonal elements such 
that zero lies at the Fermi energy. 

4.3.8 spin_operator 

The spin operator plays numerous roles in the PAOFLOW code. Generally, when the spin 

operator 𝑆𝑆𝑗𝑗 is required PAOFLOW automatically constructs it. However, 𝑆𝑆𝑗𝑗 can be explicitly 

computed by calling this routine. The shell levels and their occupations are automatically read 

from the pseudopotentials in the .save directory. 

Arugments for spin_operator: 

• spin_orbit (bool) – Default: False – Set this flag to True if spin orbit coupling is 
added at the PAO level (with adhoc_spin_orbit routine, section 4.3.10). 

4.3.9 add_external_fields 

PAOFLOW supports the addition of electric fields, on-site Zeeman fields, or Hubbard 

corrections directly to the PAO Hamiltonians [29,30]. Fields must be added after the 

Hamiltonian’s construction. Listing 4.3 provides an example where an electric field and Hubbard 

correction are simultaneously added to a Hamiltonian. 

Listing 4.3: main.py – External Fields 

from PAOFLOW import PAOFLOW 

 

pao = PAOFLOW.PAOFLOW(savedir=’system.save’) 

pao.projections() 
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pao.projectability() 

pao.pao_hamiltonian() 

 

hubbardU = np.zeros(32, dtype=float) 

hubbardU[1:4] = .1 

hubbardU[17:20] = 2.31 

pao.add_external_fields(Efield=[.1,0.,0.], 

                        HubbardU=hubbardU) 

… 

 
Arguments for add_external_fields: 

• Efield (ndarray or list) – Default: [0.] – An array of the form �𝐸𝐸𝑥𝑥,𝐸𝐸𝑦𝑦,𝐸𝐸𝑧𝑧�, added to 
the diagonal elements of the Hamiltonian. Listing 4.3 provides an example of adding 
an electric field with one non-zero component. 

• Bfield (ndarray or list) – Default: [0.] – An array of the form �𝐵𝐵𝑥𝑥,𝐵𝐵𝑦𝑦,𝐵𝐵𝑧𝑧�, specifying 
the strength and direction of an on-site magnetic field. 

• HubbardU (ndarray or list) – Default: [0.] – An array with one 𝑈𝑈 entry for each 
orbital, e.g. [𝑈𝑈1,𝑈𝑈2, … ,𝑈𝑈𝑛𝑛] where 𝑛𝑛 is the number of orbitals. An example is 
provided in listing 4.3. 

4.3.10 adhoc_spin_orbit 

This routine allows the addition of spin orbit coupling at the PAO level. SOC is 

implemented for the following shell configurations, provided as the orb_pseudo argument: 𝑠𝑠, 

𝑠𝑠𝑠𝑠, 𝑠𝑠𝑠𝑠𝑠𝑠, 𝑝𝑝𝑝𝑝, 𝑠𝑠𝑠𝑠𝑠𝑠, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. 

Arguments for adhoc_spin_orbit: 

• naw (ndarray or list) – Default: [1] – List containing the number of wavefunctions 
for each pseudopotential. 
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• phi (float) – Default: 0. – Spin orbit azimuthal angle. 

• theta (float) – Default: 0. – Spin orbit polar angle. 

• lambda_p (ndarray or list) – Default: [0.] – Array of 𝑝𝑝-orbital coupling strengths. 

• lambda_d (ndarray or list) – Default: [0.] – Array of 𝑑𝑑-orbital coupling strengths. 

• orb_pseudo (list) – Default: [‘s’] – List of strings, containing the orbital 
configuration for each pseudopotential. 

4.3.11 doubling_Hamiltonian 

Double the real space dimensions of the Hamiltonian, creating a super cell in any 

desired direction. Naturally, the number of wavefunctions in the Hamiltonians increases by a 

factor 2𝑛𝑛𝑥𝑥 × 2𝑛𝑛𝑦𝑦 × 2𝑛𝑛𝑧𝑧. Doubling is performed one time in each direction by default, and 

doubling can be suppressed by setting the argument for a dimension to 0. 

Arguments for doubling_Hamiltonian: 

• nx (int) – Default:  1 – Number of times to double the 𝑥𝑥 dimension. If nx is set to 2 
the resulting cell is 4 times larger in the 𝑥𝑥 direction. 

• ny (int) – Default:  1 – Number of times to double the 𝑦𝑦 dimension. 

• nz (int) – Default:  1  – Number of times to double the 𝑧𝑧 dimension. 

4.3.12 topology 

The topology routine calculates various quantities along the AFLOW standard 𝑘𝑘-

path. The user must call the bands routine before this one, to generate a 𝑘𝑘-path on which to 

compute the 𝑍𝑍2 invariance and topological properties. 

Arguments for topology: 

• eff_mass (bool) – Default: False – Setting this flag True computes the 
Hamiltonian’s second derivative along the 𝑘𝑘-path. The effective mass is calculated 
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and saved to file with naming convention effmass_IJ_S.dat. I and J are the 
inplane polarization indices. S is the spin index. 

• Berry (bool) – Default: False – Set True to calculate the Berry curvature along 
the 𝑘𝑘-path and writes the results to files Omega_S_IJ.dat. Here I, J are the 
inplane polarization indices. S is the spin polarization 

• spin_Hall (bool) – Default: False – Setting True calculates the spin Hall 
conductivity along the 𝑘𝑘-path and writes the results to files Omegaj_S_IJ.dat. 
The indices I, J, and S are the same as in Berry. This routine automatically 
computes the Berry curvature, but no files for Berry are written unless its flag is 
explicitly set True. 

• spol (integer) – Default: None – Spin polarization index of the spin Hall calculation. 
This selects which component of the spin operator is used to compute the spin 
current. 

• ipol (integer) – Default: None – The inplane index for calculating the spin current. 

• jpol (integer) – Default: None – The second inplane index for calculating the spin 
current. 

4.3.13 pao_eigh 

PAOFLOW’s pao_eigh routine computes the eigenspectrum for the entire 𝑘𝑘-grid, 

saving the eigen -values and -vectors as new arrays in the DataController  under keys 

‘E_k’ and ‘v_k’ respectively. Some of the previously described functions compute the 

eigenvalues and eigenvectors along a path, such as bands and topology. This routine 

replaces values computed by such routine with a new set of eigenfunctions, running across the 

entire Brillouin Zone. 

No arguments are accepted when calling pao_eigh. 

4.3.14 trim_non_projectable_bands 

Remove eigenvalues and momenta, from respective data arrays, which do not meet the 

projectability requirements set by projectability. This routine should be called after 
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pao_eigh, if such trimming is desired. 

No arguments are accepted by trim_non_projectable_bands. 

4.3.15 fermi_surface 

Compute the bands with energies between fermi_up and fermi_dw. The results are 

saved in the NumPy .npz format with naming convention Fermi_surf_band_N_M.dat, 

where N is the band index and M is the spin index. The Fermi surface is saved with resolution 

of the existing 𝑘𝑘-grid. 

Arguments for fermi_surface: 

• fermi_up (float) – Default: 1. – The upper energy bound for selecting bands. Bands 
within the range [fermi_dw, fermi_up] are included. 

• fermi_dw (string) – Default: -1. – The lower energy bound for selecting bands. 

 
Figure 4.1: Fermi surface of FeP calculated on a ultra-dense k-grid in PAOFLOW and visualized in 
FermiSurfer [49]. For description of DFT calculations see reference [30]. 

 

4.3.16 gradient_and_momenta 

The Hamiltonian’s gradient is initially computed in real space, as it takes a simpler form. 

Afterward, it is Fourier transformed bank into reciprocal space. Thus, the Hamiltonian’s 
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gradient takes the form 

The momentum is given by 

 ∇��⃗ 𝑘𝑘𝐻𝐻��𝑘𝑘�⃗ � = �𝑖𝑖𝑅𝑅�⃗  𝑒𝑒𝑒𝑒𝑒𝑒�𝑖𝑖𝑘𝑘�⃗ ⋅ 𝑅𝑅�⃗ �𝐻𝐻�(𝑅𝑅�⃗ )
𝛼𝛼

 (4.3) 

where 𝐻𝐻��𝑅𝑅�⃗ � is the real space PAO matrix and |ψ𝑛𝑛�𝑘𝑘�⃗ �⟩ = 𝑒𝑒𝑒𝑒𝑒𝑒(−𝑖𝑖𝑘𝑘�⃗ ⋅ 𝑅𝑅�⃗ )|𝑢𝑢𝑛𝑛�𝑘𝑘�⃗ �⟩ are Bloch’s 

functions [35]. The Hamiltonian’s derivative is saved under a new array key ‘dHksp’ in the 

DataController.  

Next, the momenta are computed from the Hamiltonian’s gradient as 

 𝑝⃗𝑝𝑛𝑛𝑛𝑛�𝑘𝑘�⃗ � = ⟨ψ𝑛𝑛�𝑘𝑘�⃗ �|𝑝̂𝑝|ψ𝑚𝑚�𝑘𝑘�⃗ �⟩ = ⟨u𝑛𝑛�𝑘𝑘�⃗ �|
𝑚𝑚0

ℏ
∇��⃗ 𝑘𝑘𝐻𝐻��𝑘𝑘�⃗ �|u𝑚𝑚�𝑘𝑘�⃗ �⟩ (4.4) 

Additionally, the Hamiltonian’s second derivative can be computed by setting the 

band_curvature argument to True. 

Arguments for gradient_and_momenta: 

• band_curvature (bool) – Default: False – Compute the Hamiltonian’s second 
derivative, stored as an array in the DataController under the key 
‘d2Ed2k’. 

4.3.17 adaptive_smearing 

Generate the adaptive smearing parameters, stored in the DataController as 

‘deltakp’, used to compute quantities on energy intervals, such as the density of states or 

spin Hall conductivity. Allowed adaptive smearing types are gaussian (‘gauss’), Methfessel 

Paxton (‘m-p’), or None. 

Arguments for adaptive_smearing: 

• smearing (string) – Default: ‘gauss’ – Method of broadening used to smooth the 
discrete sampling of quantities computed on energy intervals. 
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4.3.18 dos 

Compute the density of states (dos) and/or projected density of states (pdos) within a 

user defined energy range. If this routine is called after adaptive_smearing, the 

‘deltakp’ smearing parameter is used to smooth the dos calculations. 

Arguments for dos: 

• do_dos (bool) – Default: True – Flag to control whether the dos is computed. 

• do_pdos (bool) – Default: True – Flag to control whether the pdos is computed 

• delta (float) – Default: 0.01 – Width of the gaussian at each energy, used to 
smooth the dos curves. If it has been computed with the adaptive_smearing 
routine, ‘deltakp’ replaces this quantity. 

• emin (float) – Default: -10. – Lower limit for the energy range considered. 

• emax (float) – Default: 2. – Upper limit for the energy range considered. 

• ne (integer) – Default: 1000 – The number of points to evaluate within the energy 
range [emin, emax]. 

4.3.19 z2_pack 

 Writes the real space Hamiltonian to a bxsf file, for use with Z2 Pack [50]. 

• fname (string) – Default: ‘z2pack_hamiltonian.bxsf’ – Name for the 
bxsf file, written to PAOFLOW’s output directory. 

4.3.20 spin_texture 

Compute the spin texture as the spin operator’s expectation value for each band and for 

each 𝑘𝑘-point: 

 Ω��⃗ 𝑛𝑛�𝑘𝑘�⃗ � = ⟨ψ𝑛𝑛�𝑘𝑘�⃗ ��𝑆𝑆𝑗𝑗�ψ𝑛𝑛�𝑘𝑘�⃗ �⟩ (4.5) 

𝑆𝑆𝑗𝑗 is the spin operator, and �ψ𝑛𝑛�𝑘𝑘�⃗ �� are the momentum space PAO wavefunctions for 
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band index 𝑛𝑛. The spin texture is computed for bands which have values within the energy 

range specified by fermi_up and fermi_dw. Results are written to file in the NumPy .npz 

format, with naming convention spin_text_band_N.npz. Here, N is the band index, 

and each file contains spin texture computed on PAOFLOW’s 𝑘𝑘-grid. 

Arguments for spin_texture: 

• fermi_up (float) – Default: 1. – The spin texture is computed only for bands which 
contain energies beneath this upper bound. 

• fermi_dw (float) – Default: -1. – The spin texture is computed only for bands 
which contain energies above this lower bound. 

 
Figure 4.2: Spin texture (𝑺𝑺𝒛𝒛) of two-dimensional ferroelectric SnTe along high-symmetry lines 
(example08) (see chapter 6). 

 

4.3.21 anomalous_Hall 

Calculating AHC relies on accurate evaluation of the Berry curvature and requires a 

preliminary run of gradient_and_momenta. PAOFLOW implements a standard Kubo 

formula for evaluating the 𝑘𝑘-resolved Berry curvature [25]. Further details are left to the 

previous manual and a comprehensive reference to Gradhand et al [37]. The AHC is computed 
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with adaptive smearing, provided that the broadening parameters are calculated beforehand 

by adaptive_smearing. 

Arguments for anomalous_Hall: 

• do_ac (bool) – Default: False – Compute the magnetic circular dichroism (MCD) 
on the same energy range [emin, emax]. 

• emin (float) – Default: -1. – The minimum energy in the range on which the AHC is 
computed. 

• emax (float) – Default: 1. – The maximum energy in the range. 500 points are 
evaluated within the interval [emin, emax]. 

• fermi_up (float) – Default: 1. – Selects the upper energy bound for evaluating the 
Berry curvature. 

• fermi_dw (float) – Default: -1. – Selects the lower energy bound for evaluating 
the Berry curvature. 

• a_tensor (list) – Default: None – List of tensor elements to evaluate. For example, 
setting this argument to [[0,0],[1,2]] calculates the two components 𝑥𝑥𝑥𝑥 
and 𝑦𝑦𝑦𝑦. All 9 components are computed if the argument is left as None. 

4.3.22 spin_Hall 

The spin Hall conductivity (SHC, σ𝑖𝑖𝑖𝑖𝑘𝑘 ) for spin polarization along k and charge (spin) 

current along 𝑖𝑖 (𝑗𝑗), is computed in a similar manner to AHC [28]. Here, evaluation of the spin 

Berry curvature is performed with the spin operator and Hamiltonian gradient as ingredients. 

Again, the gradient_and_momenta routine is a prerequisite, and running 

adaptive_smearing beforehand controls the inclusion of broadening parameters in the 

SHC calculation. 

Arguments for spin_Hall: 

• twoD (bool) – Default: False – Setting this flag True outputs the spin_Hall 
quantities in 2-dimensional units Ω−1, removing any dependence on the sample 
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height. It is assumed that the dimensions of interest are oriented in the 𝑥𝑥𝑥𝑥 plane, 
and the sample height is in 𝑧𝑧. 

• do_ac (bool) – Default: False – Compute the spin circular dichroism (SCD) on the 
same energy range, [emin, emax]. 

• emin (float) – Default: -1. – The minimum energy in the range on which the SHC is 
computed. 

• emax (float) – Default: 1. – The maximum energy in the range. Again, 500 points 
are evaluated in the interval [emin, emax]. 

• fermi_up (float) – Default: 1. – Selects the upper bound for evaluating the spin 
Berry curvature. 

• fermi_dw (float) – Default: -1. – Selects the lower bound for evaluating the spin 
Berry curvature. 

• s_tensor (list) – Default: None – List of tensor elements to evaluate. To calculate 
𝑥𝑥_𝑥𝑥𝑥𝑥 and 𝑧𝑧_𝑥𝑥𝑥𝑥 use [[0,0,0],[2,0,1]]. If the argument is left as None all 
27 components are computed. 

4.3.23 doping 

Determine the chemical potential corresponding to a specified doping concentration 

and temperature range. 

• tmin (float) – Default: 300 – Minimum temperature for which to evaluate the 
chemical potential. 

• tmax (float) – Default: 300 – Maximum temperature for which to evaluate the 
chemical potential. 

• nt (integer) – Default: 1 – The number of temperatures to evaluate in the range 
[tmin, tmax]. 

• delta (float) – Default: 0.01 – Gaussian broadening width, used to smooth the 
density of states along the energy range. Doping calculation involves an integration 
over density of states and therefore includes a call to the dos module. 

• emin (float) – Default: -1. – Lowest value of energy of the occupied bands. 
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• emax (float) – Default: 1. – At least the minimum of the conduction bands to 
obtain accurate results. 

• ne (integer) – Default: 1000 – Number of points in the energy grid. 

• doping_conc (float) – Default: 0. – The doping concentration in carriers/cm3 for 
which to compute the chemical potential. Specify negative value for n-type doping 
and positive value for p-type doping. 

• core_electrons (integer) – Default: 0 – If the total number of electrons in the lower 
energy bands is known, this value can be input here. In this case, emin does not 
have to be the lowest energy value of occupied bands but can be instead set above 
energies of the core bands, to speed up integration. 

4.3.24 density 

Calculate the electronic density on a real space grid, performed for silicon in listing 4.4 

and displayed in figure 4.1. Wavefunctions in 𝑘𝑘-space (produced by pao_eigh) are required 

as a prerequisite, and the PAO projections must be performed by PAOFLOW’s projections 

method. This algorithm serves as a recipe for constructing the real space PAO wavefunctions. 

Although this is currently the only routine to utilize such construction, future versions of 

PAOFLOW will include other methods for computing spatially resolved quantities. The grid 

dimension defaults to 48 × 48 × 48 but can be specified with the optional arguments nr1, nr2, 

and nr3. 

Listing 4.4: main.py – Density 

from PAOFLOW import PAOFLOW 

 

pao = PAOFLOW.PAOFLOW(savedir=’system.save’) 

pao.projections() 

pao.projectability() 

pao.pao_hamiltonian() 
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pao.pao_eigh() 

 

pao.density(nr1=48, nr2=48, nr3=48) 

 

pao.finish_execution() 

 
Arguments for density: 

• nr1 (integer) – Default: 48 – Number of points in the first dimension of the real 
space grid, over which to compute the charge density. 

• nr2 (integer) – Default: 48 – Number of points in the seconds dimension of the real 
space grid. 

• nr3 (integer) – Default: 48 – Number of points in the third dimension of the real 
space grid. 

 
Figure 4.3: Electronic density for diamond structure of silicon on the ⟨𝟏𝟏,𝟎𝟎,−𝟏𝟏⟩ plane cut, calculated 
from the real space PAO wavefunctions (example01). 
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4.3.25 transport 

Calculate the transport properties, such as electrical conductivity, Seebeck coefficients, 

and thermal conductivity. The transport properties are computed in the constant relaxation 

time approximation, unless built-in or user defined τ models are provided. See Example09 

for detailed information on specifying models for the relaxation time τ. 

Arguments for transport: 

• tmin (string) – Default: 300 – Minimum temperature for which to evaluate 
transport properties. 

• tmax (string) – Default: 300 – Maximum temperature for which to evaluate 
transport properties. 

• nt (string) – Default: 1 – The number of temperatures to evaluate in the range 
[tmin, tmax]. 

• emin (string) – Default: 1 – Minimum value in the energy grid [emin, emax]. 

• emax (string) – Default: 10 – Maximum value in the energy grid. 

• ne (string) – Default: 1000 – Number of points in the energy range [emin, emax]. 

• scattering_channels (list) – Default: None – List of strings and/or TauModel 
objects containing the scattering models to be included in the calculation of τ. 

• scattering_weights (list) – Default: None – Initial guess for the parameters 𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖, 
𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑜𝑜𝑜𝑜 etc to be used for the fitting procedure if fit is set to True. The default 
behavior with this argument set to None is to use unity as every scattering weight. 

• tau_dict (dict) – Default: {} – Dictionary of parameters required for the calculation 
of scattering models. 

• write_to_file (bool) – Default: True – Path to the working directory. Defaults to 
the current working directory. 

• save_tensors (bool) – Default: False – Path to the working directory. Defaults to 
the current working directory. 
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4.3.26 find_weyl_points 

Perform a search for Weyl points within the first Brillouin Zone. The search identifies 

Weyl point candidates by utilizing scipy’s minimize function with the ‘L-BFGS-B’ algorithm. 

Arguments for find_weyl_points: 

• symmetrize (bool) – Default: False – Use QE symmetry operations to unfold 
equivalent 𝑘𝑘-points. If equivalent 𝑘𝑘-points are Weyl points, all such points are 
reported. 

• search_grid (list) – Default: [8,8,8] – Dimensions of the grid on which the 
minimization routine is performed. Bands are Fourier interpolated on this grid to 
improve resolution. 

4.3.27 restart_dump 

PAOFLOW’s computational state can be saved at any time with the restart_dump 

routine. Data is stored in the json format, and the naming convention for such files can be 

chosen with the fname prefix argument. Each processor saves a file in the workpath directory 

with name fname_prefix_N.json, where N is the core’s rank. For this reason, restarted 

calculations must be executed with the same number of cores. See listing 4.5 for an example 

where the gradient and momenta are computed and dumped for reuse in another calculation. 

Listing 4.5: main.py – Restart (dump) 

from PAOFLOW import PAOFLOW 

 

pao = PAOFLOW.PAOFLOW(savedir=’system.save’) 

pao.projections() 

pao.projectability() 

pao.pao_hamiltonian() 

pao.pao_eigh() 
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pao.gradient_and_momenta() 

pao.restart_dump(fname_prefix=’pao’) 

 
Arguments for restart_dump: 

• fname_prefix (string) – Default: ‘output’ – Path to the working directory. 
Defaults to the current working directory. 

4.3.28 restart_load 

Recover PAOFLOW’s calculation state from a previous run, saved to the json format 

with restart_dump. A restarted run must be executed with the same number of cores as 

the run which produced the dump files. Listing 4.6 provides example usage for 

restart_load. 

Listing 4.6: main.py – Restart (load) 

from PAOFLOW import PAOFLOW 

 

pao = PAOFLOW.PAOFLOW(savedir=’system.save’) 

pao.restart_load(fname_prefix=’pao’) 

pao.adaptive_smearing() 

… 

 
Arguments for restart_load: 

• fname_prefix (string) – Default: ‘output’ – Path to the working directory. 
Defaults to the current working directory. 

4.3.29 finish_execution 

Conclude the PAOFLOW run and remove references to memory intensive quantities. 
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Details about the execution are provided, such as run duration and total memory requirements. 

This routine should be called once all desired calculations are performed for a given PAOFLOW 

object, especially if the code continues to create other PAOFLOW Hamiltonians. 

finish_execution accepts no arguments. 

4.4 Tight Binding Models 

PAOFLOW is capable of generating a Hamiltonian from analytical tight binding models, 

such as the Kane-Mele or Slater-Koster models [51,52]. Each type of model requires 

specification of simple parameters to provide details about which model to use and about the 

system’s properties, such as hopping parameters, lattice constant, etc. These parameters, 

including the label selecting the model to implement, should be initially stored in a dictionary 

which is subsequently passed into PAOFLOW’s constructor as the model argument. Once the 

Hamiltonian is constructed, PAOFLOW’s class methods can be applied in the standard fashion 

to compute desired quantities about the modeled system. Two examples are provided in 

listings 4.7 and 4.8, and others are housed within the package’s examples/ directory. 

4.4.1 Cubium 

Create a Hamiltonian for a single atom in the simple cubic geometry, containing a single 

band with one orbital per site. The hopping parameter is defined by including an entry in the 

parameters dictionary with key ‘t’, and should have units of eV. 

Required dictionary entries: 

• Key: ‘label’ – Keyword identifier for the model: ‘cubium’, in this case. The 
labels are not case sensitive 
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• Key: ‘t’ – The hopping parameter for nearest neighbor interactions, in units of 
eV. 

4.4.2 Cubium 2 

Creates a Hamiltonian for a single atom in the simple cubic geometry, implementing the 

double band model with two orbitals per site. The hopping parameter and band gap energy are 

given by ‘t’ and ‘Eg’ respectively. 

Required dictionary entries: 

• Key: ‘label’ – Keyword identifier for the model: ‘cubium2’ 

• Key: ‘t’ – The hopping parameter for nearest neighbor interactions. 

• Key: ‘Eg’ – Band gap energy, in eV. 

4.4.3 Graphene 

A simple TB model for graphene, considering only nearest neighbor interactions. The 

hopping parameter is specified with parameter ‘t’. The lattice constant is taken as 𝑎𝑎 = 2.46 

Å, and lattice vectors are standard for graphene. 𝑎⃗𝑎1 = 𝑎𝑎⟨1,0,0⟩, 𝑎⃗𝑎2 = 𝑎𝑎⟨1
2

, √3
2

, 0⟩, 𝑎⃗𝑎3 =

𝑎𝑎⟨0,0,10⟩. 

Required dictionary entries: 

• Key: ‘label’ – Keyword identifier for the model: ‘graphene’ 

• Key: ‘t’ – The hopping parameter for nearest neighbor interactions. 

4.4.4 Kane Mele 

Construct a Kane-Mele Hamiltonian for graphene. The first nearest neighbors are 

handled in the standard manner, with hopping parameter ‘t’. Second nearest neighbors are 
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treated with spin depended amplitude, characterized by the parameter ‘soc_par’. See 

listing 4.7 for an example. 

Listing 4.7: main.py – Kane-Mele model 

from PAOFLOW import PAOFLOW 

 

model = {‘label’:‘Kane_Mele’, ‘t’:1.0, 

         ‘soc_par’:0.1, ‘alat’:1.0} 

 

pao = PAOFLOW.PAOFLOW(model=model, outputdir=‘./kane_mele’) 

… 

 
Required dictionary entries: 

• Key: ‘label’ – Keyword identifier for the model: ‘kane_mele’ 

• Key: ‘alat’ – The lattice parameter, 𝑎𝑎. The lattice vectors are the same as in 
section 4.4.3. 

• Key: ‘t’ – The hopping parameter for nearest neighbor interactions. 

• Key: ‘soc_par’ – The spin-orbit coupling parameter for second nearest 
neighbor interactions. 

4.4.5 Slater Koster 

A generalized Slater Koster TB model in the two-center approximation, considering only 

𝑠𝑠 and 𝑝𝑝 orbitals of first nearest neighbors. The user must specify the lattice vectors, the atomic 

positions, the included orbitals for each atom, and the hopping parameters. See listing 4.8 for 

further details. 

Required dictionary entries: 
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• Key: ‘label’ – Keyword identifier for the model: ‘slater_koster’ 

• Key: ‘a_vectors’ – A NumPy array containing the three primitive lattice 
vectors. 

• Key: ‘atoms’ – A dictionary with entries specifying atomic information for each 
atom. Dictionary keys label the atoms numerically with strings (e.g. the first atom 
has key ‘0’), and the corresponding values are dictionaries with information about 
the atom. The species, position (in crystal coordinates), and string identifier for each 
represented orbital should be saved in the atomic dictionary with respective keys: 
‘name’, ‘tau’, and ‘orbitals’. The name is simply a string, the atomic 
position is a 3-vector, and orbitals is a list of strings denoting the orbitals belonging 
to each atom. See listing 4.8 for an example. 

• Key: ‘hoppings’ – A dictionary defining the various hopping strengths, in eV. 
The Slater-Koster hopping parameters should be labeled 𝑠𝑠𝑠𝑠𝑠𝑠, 𝑠𝑠𝑠𝑠𝑠𝑠, 𝑝𝑝𝑝𝑝𝑝𝑝, and 𝑝𝑝𝑝𝑝𝑝𝑝. 

Listing 4.8: main.py – Slater-Koster model 

from PAOFLOW import PAOFLOW 

import numpy as np 

 

model = {‘label’:‘slater_koster} 

 

avecs = np.array([[.5,.5,0], 

                  [.5,0,.5], 

                  [0,.5,.5]]) 

 

atoms = {‘0’: 

         {‘name’:‘Si’, 

          ‘tau’:[0,0,0], 

          ‘orbitals’:[‘s’,‘px’,‘py’,‘pz’]}, 

         ‘1’: 
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         {‘name’:‘Si’, 

          ‘tau’:[.25,.25,.25], 

          ‘orbitals’:[‘s’,‘px’,‘py’,‘pz’]}} 

 

hops = {‘sss’:-2.36233, ‘sps’:1.86401, 

        ‘pps’: 2.85882, ‘ppp’:-0.94687} 

 

model[‘a_vectors’] = avecs 

model[‘atoms’] = atoms 

model[‘hoppings’] = hops 

 

pao = PAOFLOW.PAOFLOW(model=model, 

outputdir=‘./slater_koster’) 

 

… 

 

4.5 Scattering Models 

PAOFLOW supports a diverse set of scattering effects by allowing users to implement 

temperature and energy dependent models for the relaxation time parameter τ. Functional 

models are defined with the TauModel class. There are many built-in models, which only 

require the specification of empirical constants, and users can define new models to pass into 

PAOFLOW directly. A Python dictionary containing required parameters for any selected built-in 

models must be passed to the transport routine as the tau_dict argument (see listing 4.9).  
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Table 4.1 details the various constant parameters and their key strings for dictionary entries. 

Tau models are necessarily dependent on two quantities, the temperature and the 

Hamiltonian’s energy eigenvalues. Other varying parameters can be supplied to TauModels 

through the params dictionary. As such, a python function accepting three arguments (the 

temperature, the energy, and the parameters dictionary) is the required format when 

constructing a custom TauModel object. The τ for each included model are computed, by 

evaluating the TauModel functions. Then, the τs are harmonically summed to obtain the 

effective τ for all scattering channels. The functional form for a TauModel is presented in 

listing 4.8 and a usage case in example10. 

Listing 4.9: main.py – TauModel 

From PAOFLOW.defs.TauModel import TauModel 

from PAOFLOW import PAOFLOW 

 

pao = PAOFLOW.PAOFLOW(savedir=’system.save’) 

pao.projections() 

pao.projectability() 

pao.pao_hamiltonian() 

pao.pao_eigh() 

pao.gradient_and_momenta() 

pao.adaptive_smearing() 

 

# Define the functional model for acoustic scattering 

rho = 5.3e3;  v = 5.2e3;  D = 7 * 1.6e-19 
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m = .7 * 9.11e-13;  h_bar = 6.58e-16 

ac_const = 2 * np.pi * h_bar**4 * rho * v**2 

ac_const /= ((2*m)**(3/2) * D**2) 

def acoustic_scat ( temp, ene, params ): 

  return ac_const / (temp*np.sqrt(ene)) 

 

# Define TauModel object 

ac_model = TauModel(function=acoustic_scat) 

channels = [ac_model, ‘optical’] 

 

# Define parameters for built-in models 

tau_params = {‘ms’:0.7, ‘hwlo’:[0.03536], 

              ‘eps_inf’:11.6, ‘eps_0’:13.5} 

 

pao.transport(scattering_channels=channels, 

              tau_dict=tau_params) 

 

pao.finish_execution() 

 

4.5.1 Charged Impurity Scattering 

In order to include the effect of electron scattering from impurities, include 

‘impurity’ in the list scattering_channels [53,54]. This calculates the relaxation time as 
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τ𝑖𝑖𝑖𝑖(𝐸𝐸,𝑇𝑇) =

𝐸𝐸
3
2√2𝑚𝑚∗4𝜋𝜋𝜖𝜖2
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2𝑒𝑒4
 

(4.6) 

 
 𝑥𝑥 =

𝐸𝐸
𝑘𝑘𝐵𝐵𝑇𝑇

 (4.7) 

Required parameters are 𝑚𝑚∗, ϵ0, ϵ𝑖𝑖𝑖𝑖𝑖𝑖, 𝑛𝑛𝐼𝐼, 𝑍𝑍𝐼𝐼. 

4.5.2 Acoustic Scattering 

In order to include the effect of electron scattering from acoustic phonons, include 

‘acoustic’ in the list scattering_channels. This calculates the relaxation time according to 

[53,54] 

 
𝜏𝜏𝑎𝑎𝑎𝑎(𝐸𝐸,𝑇𝑇) =

2𝜋𝜋ℏ4𝜌𝜌𝑣𝑣2

(2𝑚𝑚∗)
3
2𝑘𝑘𝐵𝐵𝑇𝑇𝐷𝐷𝑎𝑎𝑎𝑎2 √𝐸𝐸

 
(4.8) 

Required parameters are 𝑚𝑚∗, 𝜌𝜌, 𝑣𝑣, 𝐷𝐷𝑎𝑎𝑎𝑎. 

4.5.3 Optical Scattering 

In order to include the effect of electron scattering from optical phonons, include 

‘optical’ in the list scattering_channels. This calculates the relaxation time according to 

[53,54] 

 
𝜏𝜏𝑜𝑜𝑜𝑜(𝐸𝐸,𝑇𝑇) =

�2𝑘𝑘𝐵𝐵𝑇𝑇𝜋𝜋𝑥𝑥0ℏ2

𝑚𝑚∗32𝐷𝐷𝑜𝑜𝑜𝑜2 𝑁𝑁𝑜𝑜𝑜𝑜�𝑥𝑥 + 𝑥𝑥0 + �𝑁𝑁𝑜𝑜𝑜𝑜 + 1��𝑥𝑥 − 𝑥𝑥0
 

(4.9) 

 𝑁𝑁𝑜𝑜𝑜𝑜 = 1

𝑒𝑒𝑒𝑒𝑒𝑒�
ℏ𝜔𝜔𝑙𝑙
𝑘𝑘𝐵𝐵𝑇𝑇

�−1
 ,  𝑥𝑥 = 𝐸𝐸

𝑘𝑘𝐵𝐵𝑇𝑇
 ,  𝑥𝑥 = ℏ𝜔𝜔𝑙𝑙

𝑘𝑘𝐵𝐵𝑇𝑇
 (4.10) 

Required parameters are 𝑚𝑚∗, 𝜌𝜌, 𝜔𝜔𝑙𝑙, 𝐷𝐷𝑜𝑜𝑜𝑜, 𝑁𝑁𝑜𝑜𝑜𝑜. 
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4.5.4 Polar Acoustic Scattering 

In order to include the effect of electron scattering from acoustic phonons in polar 

materials, include ‘polar_acoustic’ in the list scattering_channels. This calculates the 

relaxation time according to [53,54] 

 

τ𝑝𝑝𝑝𝑝𝑝𝑝(𝐸𝐸,𝑇𝑇) =
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�

+
1
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𝜖𝜖0

� 

(4.11) 

Required parameters are 𝑚𝑚∗, ϵ0, ϵ𝑖𝑖𝑖𝑖𝑖𝑖, ρ, 𝑣𝑣, 𝑝𝑝. 

4.5.5 Polar Optical Scattering 

In order to include the effect of electron scattering from optical phonons in polar 

materials, include ‘polar_optical’ in the list scattering_channels [53-55]. 

 
τ𝑜𝑜𝑜𝑜(𝐸𝐸,𝑇𝑇) = �
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(4.12) 
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𝐶𝐶(𝐸𝐸,𝑇𝑇,𝜔𝜔𝑙𝑙) = 2𝐸𝐸 �𝑛𝑛(𝜔𝜔𝑙𝑙 + 1)

𝑓𝑓0(𝐸𝐸 + ℏ𝜔𝜔𝑙𝑙)
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 𝑍𝑍(𝜔𝜔𝑙𝑙) = 2

𝑊𝑊0(ℏ𝜔𝜔𝑙𝑙)
1
2
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2

 (4.16) 

Required parameters are 𝑚𝑚∗, ϵ0, ϵ𝑖𝑖𝑖𝑖𝑖𝑖, ω𝐿𝐿𝐿𝐿 

Table 4.1: Symbol, units, and corresponding key in tau_dict for the parameters required in various 
scattering models. 

Parameter Symbol Units Key 

Mass density ρ 𝑘𝑘𝑘𝑘
𝑚𝑚3�  rho 

Low frequency dielectric constant ϵ0 - eps_0 

High frequency dielectric constant ϵ∞ − eps_inf 

Acoustic velocity v 𝑚𝑚 𝑠𝑠⁄  v 

Effective mass ratio 𝑚𝑚∗ - ms 

Acoustic deformation potential 𝐷𝐷𝑎𝑎𝑎𝑎 eV D_ac 

Optical deformation potential 𝐷𝐷𝑜𝑜𝑜𝑜 eV D_op 

Optical phonon energy ℏω𝑙𝑙 eV hwlo 

Number of impurities 𝑛𝑛𝐼𝐼 cm-3 nI 

Charge on impurity 𝑍𝑍𝐼𝐼  - Zi 

Piezoelectric constant p 𝐶𝐶
𝑚𝑚2�  piezo 

 

4.5.6 Effective Scattering Time 

 1
𝜏𝜏𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝐸𝐸,𝑇𝑇) =

1
𝜏𝜏𝑖𝑖𝑖𝑖(𝐸𝐸,𝑇𝑇) +

1
𝜏𝜏𝑎𝑎𝑎𝑎(𝐸𝐸,𝑇𝑇) + ⋯ (4.17) 

The total scattering time is calculated as a harmonic sum of the specified scattering 

mechanisms, evaluated for each energy and temperature, equation 4.17. The effective 



85 

scattering time τ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  is computed for each energy and temperature during the execution of the 

transport routine. 

4.6 Performance 

Benchmark performance tests reveal excellent scaling for massively parallelized 

calculations. PAOFLOW exploits parallelization over bands whenever possible, primarily in the 

calculation of gradients. However, most routines are parallelized across the 𝑘𝑘-point mesh or 

path. PAOFLOW also possesses excellent scaling of memory requirements, in parallel runs. 

Increasing the number of processors used can reduce the memory load on each processor, as 

many of the large arrays are distributed evenly among the cores. Performance is analyzed on a 

Dell PowerEdge R730 server with two 2.4GHz Intel Xeon E5-2680 v4 fourteen-core processors, 

and results for several examples are presented in figures 4.4 and 4.5. PAOFLOW demonstrates 

excellent scaling properties on manycore systems and possesses massively parallel capabilities. 

 
Figure 4.4: Select examples (see examples/ on GitHub) performed on an increasing number of 
processors. Parallelized routines provide run time scaling nearly proportional to the number of cores 
used in a calculation, closely approaching the speed increase limit of Amdahl’s Law. 
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Figure 4.5: Memory scaling per core (in GB), for select examples. An increasing core count reduces the 
memory requirements per processor. 

 

4.7 Conclusion 

PAOFLOW provides a lightweight, robust tool for efficient materials and Hamiltonian 

analysis. Continuous development of the package has streamlined its functionality and enabled 

many new tools for effectively characterizing the electronic properties of solids. The updated 

framework offers an ideal tool for high throughput condensed matter simulation and 

generation for materials genomics [56]. 
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CHAPTER 5 

GIANT SPIN HALL EFFECT IN TWO-DIMENSIONAL MONOCHALCOGENIDES* 

One of the most exciting properties of two dimensional materials is their sensitivity to 

external tuning of the electronic properties, for example via electric field or strain. Recently 

discovered analogues of phosphorene, group-IV monochalcogenides (MX with M = Ge, Sn and X 

= S, Se, Te), display several interesting phenomena intimately related to the in-plane strain, 

such as giant piezoelectricity and multiferroicity, which combine ferroelastic and ferroelectric 

properties. Here, using calculations from first principles, we reveal for the first time giant 

intrinsic spin Hall conductivities (SHC) in these materials. In particular, we show that the SHC 

resonances can be easily tuned by combination of strain and doping, and, in some cases, strain 

can be used to induce semiconductor to semimetal transitions that makes a giant spin Hall 

effect possible even in absence of doping. Our results indicate a new route for the design of 

highly tunable spintronics devices based on two-dimensional materials. 

5.1 Introduction 

The spin Hall effect (SHE) is a phenomenon emerging from spin-orbit coupling (SOC) in 

which an electric current or external electric field can induce a transverse spin current resulting 

in spin accumulation at opposite sample boundaries [57-60]. The charge/spin conversion 

without the need for applied magnetic fields makes the SHE an essential tool for spin 

manipulation in any spintronics device [61,62] and the subject of intensive theoretical and 

 
* This chapter is reproduced, with permission from IOP Science, from the paper: Giant spin Hall effect in two-
dimensional monochalcogenides by Jagoda Sławińska, Frank T. Cerasoli, Haihang Wang, Sara Postorino, Andrew 
Supka, Stefano Curtarolo, Marco Fornari, and Marco Buongiorno Nardelli, published in 2D Materials 6, 025012 
(2019). 
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experimental research. The intrinsic SHE in crystals was predicted and observed experimentally 

in a variety of materials, ranging from doped semiconductors (GaAs) [58] to elemental metals 

with strong SOC, such as platinum, tantalum, palladium, and tungsten [28,64-68]. It has been 

also investigated in metallic and semimetallic thin films [69] where SHE can be enhanced with 

respect to the corresponding bulk phase. Studies related to SHE in two dimensional (2D) 

materials are limited to only few works focused on transition metal dichalcogenides [70] and 

simple material models [71]. 

In this paper, a giant intrinsic SHE tunable by combination of strain and doping is 

predicted for the first time in monolayer group-IV monochalcogenides MX with M = Ge, Sn and 

X = S, Se, Te, often referred to as analogues of phosphorene due to their structural similarity 

[72-74]. The bulk parent compound has the orthorhombic crystal structure of black 

phosphorous (Pnma) and consists of weakly bonded van der Waals layers, making an exfoliation 

process a viable routine to produce atomically thin films or single layer crystals; indeed, some 

materials from this family have been already synthesized experimentally [75-79]. As do most 2D 

materials, group-IV monochalcogenides exhibit several extraordinary mechanical, electronic, 

and optical properties. These include high flexibility, large thermal conductivity, giant 

piezoelectricity [80], multiferroicity [81,82], superior optical absorbance [83-85], and even 

valley Hall effects [86], making them promising candidates to use in multifunctional devices. 

Finally, the strong SOC suggests their high potential for spintronics. 

The group-IV monochalcogenides possess wide band gaps, which precludes existence of 

non-negligible spin Hall conductivity (SHC) at intrinsic chemical potential, similar to 

conventional bulk semiconductors where significant electron or hole doping is needed to 
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achieve a measurable spin Hall effect. Although our calculations show that a giant SHC could be 

reached with p- or n- type doping of 𝑛𝑛ℎ/𝑒𝑒 = 1 × 1014 𝑒𝑒
𝑐𝑐𝑚𝑚2, which is an order of magnitude lower 

than in case of transition metal dichalcogenides [70], such values may still be difficult to reach 

experimentally. Here, we propose an alternative route to realize SHE in these materials. We 

demonstrate that compressive or tensile strain along any axis not only can tune the position of 

the SHC resonances, but can also induce semiconductor to metal transitions that make a giant 

spin Hall effect possible even in absence of doping. As such, different phases of SHE can be 

switched externally via strain allowing direct engineering of spintronics functionalities in these 

materials. 

5.2 Methods 

Our noncollinear DFT calculations were performed using the QUANTUM ESPRESSO code 

[8,9] interfaced with the AFLOWπ and PAOFLOW infrastructures [22]. We used the generalized 

gradient approximation (GGA) in the parameterization of Perdew, Burke, and Ernzerhof (PBE) 

[87] and, to further improve the description of the electronic properties, a novel pseudo-hybrid 

Hubbard self-consistent approach ACBN0 [30]. The ion-electron interaction was treated with 

the projector augmented wave fully-relativistic pseudopotentials [88] from pslibrary database 

[89] while the wavefunctions were expanded in a plane-wave basis of 50 Ry (500 Ry for the 

charge density). The Brillouin zone sampling at DFT level was performed following the 

Monkhorst-Pack scheme using a 24 × 24 × 1 k-points grid, further increased to 140 × 140 × 1 

with PAOFLOW’s Fourier interpolation method to accurately integrate spin Berry curvatures. 

The intrinsic spin Hall conductivities were calculated using the PAOFLOW code following 

the linear response Kubo-like formula [25,37,90]: 
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where 𝚥𝚥 = {𝑠𝑠, 𝑣⃗𝑣} is the spin current operator with 𝑠𝑠 = ℏ
2
βΣ(β,Σ : 4 × 4 Dirac matrices) and 

𝑓𝑓𝑛𝑛�𝑘𝑘�⃗ � is the Fermi distribution function for the band 𝑛𝑛 at 𝑘𝑘�⃗ . We note that, in contrast to most 

reported calculations of SHC based on the above formula [25,63,70], we do not add any 

infinitesimal term δ in the denominator to avoid singularities if the bands are degenerate. We 

have evidence (see figure S1 in supplementary material (SM) 

(stacks.iop.org/TDM/6/025012/mmedia)) that using a finite δ in Kubo’s formula leads to 

unphysical behavior of non-zero values of SHC within the semiconductor’s gap whos origin was 

unclear so far. Using perturbation theory for degenerate states to avoid numerical singularities 

ensure that σ𝑖𝑖𝑖𝑖𝑠𝑠  always vanishes at the Fermi level. 

Figure 5.1 shows the 2D non-centrosymmetric unit cell of the phosphorene-like phase 

used in the calculations for all six compounds. It contains for atoms arranged in two buckled 

layers resembling a monolayer of black phosphorous with a mirror symmetry axis along 𝑥𝑥, 

representing one of the four ground states of the system [81,82,91]. The lattice constants and 

ionic positions were fully relaxed without including SOC whose influence on forces is known to 

be negligible. The electronic structure was then recalculated with SOC self-consistently. The 

vacuum region of 20 Å was set to prevent any interaction between spurious replicas of the slab. 

The configurations with the relaxed lattice constants were used as a starting point for the 

simulations of strained structures; we considered strains varying between −10% and 10% 
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along 𝑥𝑥 and 𝑦𝑦 axes simultaneously, in each case relaxing the positions of the atoms. We 

analyzed, in total, 726 different structures. Further details of the calculations as well as 

additional results, including lattice constants, values of band gaps, and convergence tests for 

SHC are reported in the SM (table S1, figure S1). 

 
Figure 5.1: Structure of 2D group IV monochalcogenides. Panels (a) and (b) show side and top views, 
respectively, while the scheme of Brillouin Zone is displayed in (c). Right hand side of panel (b) 
additionally illustrates an example of geometry setup for spin Hall effect possible to realize in doped 
monolayers. We note that only 𝝈𝝈𝒙𝒙𝒙𝒙𝒛𝒛  and 𝝈𝝈𝒚𝒚𝒚𝒚𝒛𝒛  components of SHC tensory are different from zero. 

 

5.3 Spin Hall Effect in Unstrained Monolayers 

Let us first consider unstrained structures. Figures 5.2(a) and (b) summarize the 

relativistic band structures of sulfides, selenides, and tellurides (green, blue, and red lines, 

respectively), while panels (c) and (d) display their corresponding spin Hall conductivity as a 

function of chemical potential. Due to the reduced symmetry of two-dimensional structures, 
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the only non-vanishing independent component is σ𝑥𝑥𝑥𝑥𝑧𝑧 = −σ𝑦𝑦𝑦𝑦𝑧𝑧 . Our band structures and the 

values of the band gaps calculated with the ACBN0 functional are in good agreement with 

existing simulations that use hybrid functionals and with available experimental data (see SM, 

table S1). Comparison of the scalar relativistic band structures (plotted as black lines in panels 

(a) and (b)) with the fully relativistic ones, clearly indicates a strong impact of SOC, which 

indicates several anti-crossings and splittings of the bands. These effects are moderate in 

selenides and most pronounced in tellurides given the heaviness of Te atoms. Although it is 

quite difficult to attribute particular features of the relativistic band structures to the specific 

peaks (resonances) in σ𝑥𝑥𝑥𝑥𝑧𝑧  (𝐸𝐸), one can easily observe that severe SOC-induced modifications in 

the electronic structure of GeTe and SnTe result in giant values of spin Hall conductivity ~300 

and 500 ℏ
𝑒𝑒

(Ω × 𝑐𝑐𝑐𝑐)−1, respectively, for higher binding energies. We note that even the 

resonances closest to the Fermi level (𝐸𝐸𝐹𝐹) still achieve values as large as 200 ℏ
𝑒𝑒

(Ω × 𝑐𝑐𝑐𝑐)−1. The 

selenides exhibit slightly lower (~100) magnitudes of SHC, and the sulfides do not seem to 

display any spin Hall effect at all. 

As we have mentioned above, similarly to other semiconductors, either p-type or n-type 

doping is needed to reach the SHC resonances. In table 5.1, we list the values of the SHC peaks 

and the corresponding doping levels expressed as a Fermi level shift and number of electron 

per surface unit, for six compounds reported in figure 5.2. In general, the doping concentrations 

are of the order of 𝑛𝑛ℎ/𝑒𝑒 = 1 × 1014 𝑒𝑒
𝑐𝑐𝑚𝑚2, an order of magnitude lower than in the case of 

recently studied transition metal dichalcogenides [70] but still beyond the typical values 

achieved in experiments (~1012 − 1013 𝑒𝑒
𝑐𝑐𝑚𝑚2). However, for the compounds with highest SHC 
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peaks, the spin Hall effect could be very large even at lower doping: for instance, in SnTe the 

SHC reaches 100 ℏ
𝑒𝑒

(Ω × 𝑐𝑐𝑐𝑐)−1 for doping of ~1013 𝑒𝑒
𝑐𝑐𝑚𝑚2. We also note that the estimated values 

of doping listed in table 5.1 are simply derived from the density of states following similar 

analysis in previous theoretical works dealing with SHE in semiconductors [70] and the carrier 

concentration in real samples might be different. Therefore, we believe that the intrinsic spin 

Hall effect could be achieved experimentally even in the unstrained structures. 

5.4 Spin Hall Effect in Strained Monochalcogenides 

As a next step, we have explored the possibility of tuning the electronic properties and 

the spin Hall conductivity via external strain. The band gap (𝐸𝐸𝑔𝑔) manipulation in group-IV 

sulfides and selenides was previously reported in [74], where compressive strains along either 𝑥𝑥 

or 𝑦𝑦 axes were found to strongly reduce the band gap, and for larger strains could induce a 

semiconductor to semimetal transition. In the present study, we consider all possible strain 

configurations varying between −10% and +10% with the step of 2%, thus 121 different 

configurations for each compound. Below, we will discuss only the results for SnTe which 

displays the highest potential for spintronics; the complete set of results for all considered 

group-IV monochalcogenides are reported in the SM (figures S3-S7). 

5.4.1 SHE in the Metallic Phase 

Figure 5.2 summarizes the electronic properties and spin Hall conductivity in SnTe for 

each considered strain configuration. The band gap landscape displayed in panel (a) shows 

several interesting features: (i) compressive (tensile) strain always leads to decrease (increase) 

in 𝐸𝐸𝑔𝑔, (ii) the lowest values of 𝐸𝐸𝑔𝑔 are achieved when a compressive strain along only one axis is 
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applied, (iii) the combinations of tensile and compressive strain can also lead to a decrease in 

𝐸𝐸𝑔𝑔, larger than in the case of compressive strains applied along both axes. We have observed 

similar behavior in all compounds; in selenides the bad gaps are in general wider, thus larger 

strains are required to enable the semiconductor to semimetal transition. In sulfides, in 

contrast, a metallic phase cannot be achieved, in agreement with conclusions of [74]. 

 
Figure 5.2: Relativistic electronic structures of group IV monochalcogenides GeX (a) and SnX (b), X = S, 
Se, Te represented as green, blue, and red lines, respectively. The corresponding scalar-relativistic 
band structures are superimposed (black lines). ((c) and (d)) Spin Hall conductivities 𝝈𝝈𝒙𝒙𝒙𝒙𝒛𝒛  calculated as 
a function of chemical potential for compounds in panels ((a) and (b)) employing the same color 
scheme. 

 
The corresponding spin Hall conductivities calculated at intrinsic chemical potential 

plotted in panel (b) clearly reflect the profile in (a), that is, as long as the material is 

semiconducting, it cannot exhibit any spin Hall effect. Within the regions of 𝐸𝐸𝑔𝑔 = 0, the values 

of σ𝑥𝑥𝑥𝑥𝑧𝑧  vary because each of these strain configurations induces different modifications in the 
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electronic structure. However, we are still able to draw general conclusions regarding the 

impact of the strain based on the analysis of few selected configurations A, B, and C displayed 

in figure 5.2(c) which embody rather huge modifications of both electronic and spin properties. 

First of all, it is clear that the same stain applied along axis 𝑥𝑥 and 𝑦𝑦 (configurations A and B) 

affect the dispersion of the bands in an asymmetric way. The strain along 𝑥𝑥 (panel A), in 

general, brings upwards the occupied bands along the S—Y—Γ paths and downwards the 

unoccupied spectrum along Γ—X—S resulting in p-type pockets near Y and n-type pockets near 

X, while 𝑦𝑦-strain (panel B) is found to cause opposite shifts. The band structure of configuration 

C confirms that such tendency is more general; this lower strain configuration is structurally 

similar to B and indeed its electronic properties are very similar to the latter. 

The spin Hall conductivities of structures A, B, and C shown in figure 5.2(d) significantly 

differ from those of the unstrained structure in figure 5.2(d), which is not surprising, given the 

substantial modification of electronic structure at the Fermi level. In order to facilitate a 

systematic analysis, we have introduced the labels 𝐸𝐸1 and 𝐸𝐸2 corresponding to the two SHC 

resonances below and above 𝐸𝐸𝐹𝐹, and we followed their behavior due to the electronic structure 

changes induced by the strain (the positions of 𝐸𝐸1 and 𝐸𝐸2 without strains are reported in table 

5.1). 

It is evident that the σ𝑥𝑥𝑥𝑥𝑧𝑧  can be giant without any doping (structures A and B), which we 

attribute to the presence of resonance 𝐸𝐸2 much closer to the Fermi level than in the unstrained 

monolayer (𝐸𝐸𝐹𝐹 is located on the slope in both A and B configurations). Statistical analysis of 

these two parameters for all calculated structures confirms that indeed the change in the band 

gap is mainly correlated with the resonance 𝐸𝐸2 (calculated Pearson’s correlation between 𝐸𝐸𝑔𝑔 
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and 𝐸𝐸2 is around 80%), while the position of 𝐸𝐸1 hardly depends on the band gap. This means 

that strain is more likely to shift/modify unoccupied bands which will also determine the SHC. 

Finally, the σ𝑥𝑥𝑥𝑥𝑧𝑧  in the moderately strained configuration C also exhibits a finite value at the 

Fermi level, but since the peak 𝐸𝐸2 is not so close to 𝐸𝐸𝐹𝐹, the spin Hall effect is weaker. 

5.4.2 Tuning of SHC via Strain and Doping 

The experimental realization of SHC, its tuning and switching on/off, is likely to require a 

combination of doping and strain. In order to quantitatively estimate the effect of both, we 

have calculated the values of σ𝑥𝑥𝑥𝑥𝑧𝑧  averaged over the range of chemical potential that 

correspond to a given electron/hole concentration for every configuration of strain. The results 

for SnTe are shown in figure 5.3. In accordance with table 5.1, n-type doping of ~1014 𝑒𝑒
𝑐𝑐𝑚𝑚2 (a) 

guarantees giant values of SHC for unstrained and weakly strained structures. Surprisingly, a 

comprehensive strain (a) leads to the reduction of SHC rather than to its increase, which is 

related to the oscillating character of the intrinsic spin Hall conductivity as a function of 

chemical potential. In this case, the combination of doping and compressive strain shifts the 

Fermi level excessively, well beyond the resonance peak of SHC. Moreover, it is clear that a 

biaxial strain could be used to switch on/off the SHC. We can observe similar behavior also for 

n-type doping of ~1013 𝑒𝑒
𝑐𝑐𝑚𝑚2 (b), in such case the values of SHC are lower, but still can be 

considered large even for unstrained/weakly strained structures. For 𝑛𝑛𝑒𝑒~1012 𝑒𝑒
𝑐𝑐𝑚𝑚2 (c) the finite 

but small values of SHC can be increased by uniaxial compressive strain; this low doping 

configuration resembles the properties of the undoped structures (d) and weakly p-type doped 

configuration (e). Further increase in p-type doping to 𝑛𝑛ℎ~1013 𝑒𝑒
𝑐𝑐𝑚𝑚2 (f) offers a possibilitiy of 
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even broader modulation of SHC by strain; while biaxial compressive strain can result in 

switching off the SHC, uniaxial strain leads to its increase. Overall, however, the values of SHC 

are lower here than in the case of electron doping. Thus, as anticipated in the previous section, 

the manipulation of SHE seems to be more feasible in n-type doped systems. Finally, among the 

other monochalcogenides, GeTe reveals interesting properties for spintronics, while the 

sulfides and selenides either do not possess large SHC at all or do not exhibit sufficiently high 

tunability (see SM, figures S4-S7). 

 
Figure 5.3: Electronic properties and spin Hall conductivities of SnTe as a function of strain. (a) Band 
gap 𝑬𝑬𝒈𝒈 versus strain a (along x axis) and b (along y axis) displayed as a 3D surface in lattice constants 
space. The corresponding legend is shown in the upper left corner. (b) Heat-map of spin-Hall 
conductivities calculated at zero chemical potential for each strain configuration. The legend is 
displayed in the bottom left corner. The reversed contrast of maps (a) and (b) clearly reflects their 
physical meaning and the fact that 𝝈𝝈𝒙𝒙𝒙𝒙𝒛𝒛  can have a finite value only for 𝑬𝑬𝒈𝒈 = 𝟎𝟎. Since uniaxial strain is 
often considered in experimental realizations, we have also introduced complementary plots of 
summarizing the influence of uniaxial strains along x and y on the band gap and the SHC (see SM, 
figure S2). (c) Band structures of SnTe calculated for selected points in strain space marked in ((a) and 
(b)), A: 𝒂𝒂 = 𝟎𝟎.𝟗𝟗𝒂𝒂𝟎𝟎, 𝒃𝒃 = 𝟏𝟏.𝟎𝟎𝒃𝒃𝟎𝟎, B: 𝒂𝒂 = 𝟏𝟏.𝟎𝟎𝒂𝒂𝟎𝟎, 𝒃𝒃 = 𝟎𝟎.𝟗𝟗𝟗𝟗𝒃𝒃𝟎𝟎, C: 𝒂𝒂 = 𝟏𝟏.𝟎𝟎𝟎𝟎𝒂𝒂𝟎𝟎, 𝒃𝒃 = 𝟎𝟎.𝟗𝟗𝟗𝟗𝒃𝒃𝟎𝟎, where 𝒂𝒂𝟎𝟎 
and 𝒃𝒃𝟎𝟎 denote original (unstrained) lattice constants. (d) Corresponding 𝝈𝝈𝒙𝒙𝒙𝒙𝒛𝒛  calculated as a function 
of chemical potential. Labels 𝑬𝑬𝟏𝟏 and 𝑬𝑬𝟐𝟐 at each curve denote resonances of SHC closest to the Fermi 
level. 
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Figure 5.4: Spin Hall conductivity for SnTe as a function of strain and doping. (a) 𝝈𝝈𝒙𝒙𝒙𝒙𝒛𝒛  averaged over the 
values of chemical potential which correspond to doping of order ~𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏e cm-2 displayed as a function 
of strains along x and y. ((b) and (c)) Same as (a) for 𝒏𝒏𝒆𝒆 = 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 e cm-2 and 𝒏𝒏𝒆𝒆 = 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 e cm-2, 
respectively. (d) 𝝈𝝈𝒙𝒙𝒙𝒙𝒛𝒛  at intrinsic chemical potential, numerically identical to the map in figure 5.3(b). 
Non-zero values for the regions of 𝑬𝑬𝒈𝒈 ≠ 𝟎𝟎 are related to the numerical accuracy of calculations. (e) 
and (f) Same as ((b) and (c)) for p-type doping. Color scheme same as in figure 5.3(b) in all the maps. 

 

5.5 Summary and Conclusions 

In summary, we have reported for the first time the emergence of a giant spin Hall 

effect in group-IV monochalcogenides, which can be switched on/off and modulated either by 

doping or uniaxial compressive strain. The most interesting candidate for spintronics is SnTe. 

We have predicted that the SHE in this compound can be very strong. Moreover, the monolayer 

and multilayer samples have been recently synthesized and they reveal high potential for 
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technology [78,79,92]. While our work is limited to monolayers structurally similar to black 

phosphorous, it is worthwhile to mention that the multilayer stacks can exhibit more intriguing 

spin-orbit related properties and with even broader possibilities of tuning. Finally, SHE has been 

achieved in β-SnTe which suggests that its successful realization in 2D phase is very probable 

[93]. Despite the values of doping/strain required to reach/tune the giant SHC seeming large, 

the actual 2D character of these compounds can greatly help to overcome these difficulties. For 

example, different stacking order or thickness of the multilayer might reduce required doping. 

Also, the Fermi level could be additionally shifted by any charge originating from a substrate 

[94], or any additional strain could result from lattice constant matching at the interface. 

Finally, we emphasize that 2D spintronics are not just a hypothesis; the recent discovery 

of 2D ferromagnetism [95,96], brings it much closer to realization and new candidate materials 

will be needed. The giant SHC of monochalcogenides combined with low charge conductivity, 

even in the metallic phase, suggest they might be useful in versatile spintronics applications, 

such as spin detectors [62], and even more likely in novel multifunctional devices. We believe 

that the properties unveiled in this paper clearly show the high potential of 2D phosphorene 

analogues for spintronics and will trigger interest in the experimental realization of the spin Hall 

effect in these materials. 
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CHAPTER 6 

ULTRATHIN SNTE FILMS AS A ROUTE TOWARD ALL-IN-ONE SPINTRONICS DEVICES* 

Spin transistors based on a semiconducting channel attached to ferromagnetic 

electrodes suffer from fast spin decay and extremely low spin injection/detection efficiencies. 

Here, we propose an alternative all-in-one spin device whose operation principle relies on 

electric manipulation of the spin lifetime in two-dimensional (2D) SnTe, in which the sizable 

spin Hall effect eliminates the need for using ferromagnets. In particular, we explore the 

persistent spin texture (PST) intrinsically present in the ferroelectric phase which protects the 

spin from decoherence and supports extraordinarily long spin lifetime. Our first-principles 

calculations followed by symmetry arguments revealed that such a spin wave mode can be 

externally detuned by perpendicular electric fields, leading to spin randomization and decrease 

in spin lifetime. We further extend our analysis to ultrathin SnTe films and confirms the 

emergence of PST as well as moderate enhancement of intrinsic spin Hall conductivity. The 

recent room-temperature observation of the ferroelectric phase in 2D-SnTe suggests that novel 

all-electric spintronics devices are within reach. 

6.1 Introduction 

The idea of using electron spins in transistors for information transfer and processing 

lies at the heart of research in the area of spintronics [97]. However, after two decades of 

efforts the pioneering concept of spin transistors, proposed by Datta and Das, still suffers from 

 
* This chapter is reproduced, with permission from IOP Science, from the paper: Ultrathin SnTe films as a route 
toward all-in-one spintronic devices, by Jagoda Sławińska, Frank T. Cerasoli, Priya Gopal, Marcio Costa, Stefano 
Curtarolo, and Marco Buongiorno Nardelli, published in 2D Materials 7, 025026 (2020).  



102 

two major performance issues impeding its use in applications [98,99]. First is the low efficiency 

of spin injection and detection through ferromagnets caused by the conductivity mismatch at 

the interface. Second is the two-faceted nature of spin-orbit interaction; it enables spin 

manipulation along the channel, but it is adverse for spin lifetime and leads to spin 

randomization in the diffusive transport regime. Several approaches were proposed to 

overcome these obstacles, including all-electric spin Hall transistors without the ferromagnets 

[100,101] or devices protected from spin decoherence by uniform spin configuration known as 

a persistent spin helix (PSH) [102,103]. However, these successful realizations rely on precisely 

controlled structures, such as semiconductor quantum wells [104-106], which usually limits the 

operating temperatures to a few kelvin, preventing any practical use. 

In parallel with the progress in spin transistors, several multifunctional materials have 

been recently designed or rediscovered; some of them reveal intriguing quantum phenomena 

intimately related to dimensionality, topology, and symmetries. Group IV-VI 

monochalcogenides (MX, M=Ge, Sn; X=S, Se, Te) are narrow gap semiconductors widely used in 

conventional devices where they serve as thermoelectrics, ferroelectrics, optical filters and 

detectors, photocatalysts and sensors. Remarkably, their intriguing spin-dependent electronic 

properties remained unexplored over decades; GeTe and SnTe have been just recently 

recognized as excellent candidates to use in spintronics. In particular, they represent a class of 

so-called ferroelectric Rashba semiconductors (FERSC) whereby the spin degree of freedom 

coupled to the ferroelectricity manifests in the electrically tunable Rashba spin texture of bulk 

electronic states [107-112]. Moreover, sizable spin Hall effect (SHE) has been proposed in both 

materials [93,113], which opens a perspective to integrate different functionalities and 
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construct ferromagnet-free spin devices. 

In this paper, we put forward the idea of all-in-one spin transistor based on two-

dimensional (2D) SnTe. In such a device the spin injection and detection can be accomplished 

via direct and inverse spin Hall effects, while the on/off state is manipulated through the 

electric control of spin lifetime along the channel. Specifically, an atomically-thick SnTe in the 

structure form of phosphorene was suggested to host a persistent spin wave mode enforced by 

the crystal space group symmetry [114]. Uniform spin polarization along the out-of-plane 

direction is linked to the ferroelectricity, or more precisely to the in-plane polar displacement. 

As an intrinsic property of the material, it does not require any fine-tuning between spin-orbit 

parameters in order to support an exceptionally long spin lifetime [115]. Here, we propose that 

such a spin configuration can be externally detuned by perpendicular electric field breaking the 

crystal symmetries. The spins are then dephased by electron scattering, which enables the 

realization of the switch-off mechanism. Importantly, the injected spins are by construction 

parallel to the spin-orbit field, thus they will be transported without precession, making the 

device robust against switching between different momenta and sub-bands with opposite spin 

textures in the presence of doping. 

Finally, the ferroelectric ground state has been recently observed in mono- and multi- 

layer SnTe structures and, surprisingly, it seems to persist in the latter at room temperature 

[78]. Our density functional theory (DFT) calculations confirmed that the SHE/PSH combination 

can be realized in specific ultrathin SnTe films. In light of the above, the all-in-one spin 

transistors are an attractive hypothesis, further discussed in terms of phase robustness and 

alternative realizations. 
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6.2 SHC and PSH in 2D SnTe 

Let us start with a brief overview of geometry, electronic properties, and intrinsic spin Hall 

conductivity calculated for the SnTe monolayer (1ML-SnTe; in our notation, we refer to van der 

Waals monolayer equivalent to two atomic layers – 2AL [79]). Figure 6.1 (a)-(b) shows the 

orthorhombic lattice of the crystal. The ions are arranged in two buckled layers with distortions 

inducing the spontaneous polarization along 𝑥𝑥, while the tiny anisotropy between the lattice 

constants 𝑎𝑎 and 𝑏𝑏 emerges as a natural signature of the ferroelectric phase. Two-dimensional 

SnTe belongs to the space group number 31 (Pmn21) invariant with respect to the following 

symmetry operations: (1) the identity operation 𝐸𝐸, (2) mirror reflection 𝑀𝑀𝑦𝑦 with respect to the 

𝑦𝑦 = 0 plane, (3) glide reflection 𝑀𝑀𝑧𝑧���� consisting of mirror reflection 𝑀𝑀𝑧𝑧 about the 𝑧𝑧 = 0 plane 

followed by a fractional translation by a vector ν�⃗ = � 1
2𝑎𝑎

, 1
2𝑏𝑏

, 0�, and (4) two-fold screw rotation 

𝐶𝐶2𝑥𝑥���� combing two-fold rotation around the 𝑥𝑥-axis with a translation of ν�⃗ . Clearly, these 

symmetries suggest the intrinsic PSH in terms of the criteria formulated buy Tao and Tsymbal 

[115]. Following their general arguments based on group theory, we can rationalize the full 

(scalar) relativistic electronic structure of SnTe represented by red (black) lines in figure 6.1(b). 

In particular, the energy levels without the spin-orbit coupling (SOC) are fourfold degenerate, 

while the SOC splits them into doublets with eigenvalues of 𝑀𝑀𝑧𝑧���� = ±1 over the entire BZ except 

for the Γ—X line. Furthermore, these doublets split into singlets with eigenvalues of spin 

operator 𝑆𝑆𝑧𝑧, indicating the persistent spin texture (PST) (anti-)aligned in the out-of-plane 

direction. 

Next, we will analyze the electronic states over the full Brillouin zone. We note that the 

unidirectional spin texture of SnTe was previously considered in terms of the effective 𝑘𝑘�⃗ ∙ 𝑝⃗𝑝 
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models which aptly describe the physics around the valence band maximum (VBM) [114,116]. 

However, in the presence of doping the regions beyond the VBM may also contribute to the 

spin transport. In figure 6.1 (c)-(e), we have plotted the topography of the topmost valence 

band along with the corresponding momentum-resolved map of the energy splitting and the 

spin texture. The three-dimensional view helps to localize the regions near the Fermi level 

which could potentially be reached at sufficient level of doping. Indeed, the maxima residing 

close to the X/Y points are connected by saddle-like regions forming a shape similar to a four-

point star. Importantly, from the map shown in figure 6.1(d) we can conclude that the regions 

of the highest splitting reflect the topography of the band; in the neighborhood of the VBM the 

values of splitting are as high as 80 𝑚𝑚𝑚𝑚𝑚𝑚 whereas around the saddle-like regions they achieve 

50 𝑚𝑚𝑚𝑚𝑚𝑚. Such values are certainly sufficient to ensure proper functioning of devices at room 

temperature. Finally, the spin texture (figure 6.1(e)) reveals only the 𝑆𝑆𝑧𝑧 component is consistent 

with the prediction based on symmetries (the negligible components 𝑆𝑆𝑥𝑥/𝑆𝑆𝑦𝑦 are omitted in the 

figure). The sign reversals present in (e), e.g. along the Γ—Y line, seem to be associated to the 

swapping of sub-bands forming the Kramer’s pairs. 

Finally, we will turn our attention to the spin Hall conductivity reported in figure 6.1(f). 

Due to 2D nature of the structure (both charge and spin currents have to be in-plane), the only 

non-vanishing independent components of the SHC tensor are σ𝑥𝑥𝑥𝑥𝑧𝑧 = −σ𝑦𝑦𝑦𝑦𝑧𝑧 . As one could 

expect from the huge impact of the SOC on electronic states in the considered energy window 

(figure 6.1(b)), the estimated magnitudes are relatively large, reaching almost 400 

ℏ
𝑒𝑒

(Ω × 𝑐𝑐𝑐𝑐)−1 at the first resonance peak. As derived in the previous chapter, the p-type doping 

required to achieve such a value would have to be as large as 1014 𝑒𝑒
𝑐𝑐𝑚𝑚2 which is difficult to 
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realize. In fact, experimental studies indicated a slight intrinsic p-type doping (1011 𝑒𝑒
𝑐𝑐𝑚𝑚2) in 2D-

SnTe samples [78,79], suggesting that SHC would be rather small. We note, however, that the 

spin Hall angles can still be sufficiently large because of the low charge conductivity; this may 

enable an efficient spin injection/detection in such a case. Importantly, we have not found any 

significant difference in SHC between the polar and centro-symmetric SnTe phases which 

ensures the realization of SHE even in the presence of doping. 

 
Figure 6.1: Structural and electronic properties of SnTe monolayer. (a) Top and side view of the optical 
structure. The Sn/Te atoms are displayed as green/purple spheres. Black rectangle denotes the unit 
cell and the inset shows the Brillouin zone. (b) Electronic structure calculated along high-symmetry 
lines marked in (a). Red/black lines represent the bands with/without including SOC. (c) Three-
dimensional view of the topmost valence band over the entire BZ revealing its quasi-fourfold shape. 
The VBM is located close to X along Γ-X direction, but similar local maxima are present around Y. The 
energy splitting and the spin polarization of this band are presented in panels (d) and (e), respectively. 
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The components 𝑺𝑺𝒙𝒙 and 𝑺𝑺𝒚𝒚 are negligible in this case, thus only 𝑺𝑺𝒙𝒙 component is shown. The labels 
marked in the maps denote high-symmetry points in the BZ, as defined in the inset in (a). (f) Spin Hall 
conductivity 𝝈𝝈𝒙𝒙𝒙𝒙𝒛𝒛  as a function of chemical potential calculated for the ferroelectric structure (red) 
shown in (a-b) and the corresponding paraelectric phase (green). 

6.3 All-in-One Spin Transistor 

The all-in-one spin transistor is designed based on the geometry illustrated in figure 

6.2(a). The spin injection is realized via the direct spin Hall effect in the left part of the device. 

The charge current along the 𝑦𝑦 direction is converted into a spin current along 𝑥𝑥. The spins with 

out-of-plane polarization are then efficiently injected into a gate-controller region. The logic 

functionally is achieved by a purely electric manipulation of the anisotropy in spin lifetime 

determined by the presence or absence of the PSH mode, similar to approaches employing 

semiconductor quantum wells [106]. In the absence of electric field (𝐸𝐸�⃗ = 0�⃗ ) the robust PSH 

maintains the spin polarization along the +𝑧𝑧 axis; we note that no spin precession occurs 

because the PST is always aligned or anti-aligned to the polarization of the spin current, 

whereby the sign depends on the electron’s momentum and/or specific sub-band in a doped 

system. The spin current is then injected into the right part of the transistor and detected 

through the inverse spin Hall effect which induces the electric current along the 𝑦𝑦 direction. On 

the contrary, setting 𝐸𝐸�⃗ ≠ 0�⃗  perturbs the PSH mode leading to spin dephasing upon electron 

scattering. In this case the Hall voltage generated in the detecting region should be significantly 

reduced.  

Let us analyze in more detail the physical mechanisms that cause such a modulation of 

the PSH. Figure 6.2(b) compares the band structures of SnTe calculated at different values of 𝐸𝐸. 

It is clear that the external electric field lifts the valence band degeneracy along the Γ—X—S 

line and further separates the energy of both pairs of doublets associated with the eigenvalues 
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of the 𝑀𝑀𝑧𝑧���� symmetry operator. While the electric potential along 𝑧𝑧 induces spatial anisotropy 

between the layers, the glide reflections will not be a valid transformation anymore, thus the 

observed change in the electronic structure along the high-symmetry lines is not surprising. 

Based on the general considerations performed by Tao and Tsymbal [115], we note that for 

𝐸𝐸�⃗ = 0�⃗  the 𝑀𝑀𝑧𝑧���� in spin space anticommutes with σ𝑥𝑥 and σ𝑦𝑦 which results in zero expectation 

values of both in-plane components of spin operator. Since such a condition cannot hold for 

𝐸𝐸�⃗ ≠ 0�⃗ , we expect a severe change in the spin texture. Indeed, our DFT calculations confirmed 

the emergence of the in-plane spin components over the entire BZ, as shown in figure 6.2(c). 

Although around the VBM the 𝑆𝑆𝑥𝑥/𝑆𝑆𝑦𝑦 are rather small, they can significantly detune the PST 

provided that a sufficiently strong electric field is applied. 

 
Figure 6.2: Properties and applications of biased 1ML-SnTe. (a) Operation principle of all-in-one spin 
transistor based on 2D-SnTe. The spin injection is realized via SHE which induces the accumulation of 
spins polarized along +z. In the on state (E = 0) the direction of the spin-orbit field is parallel to spin 
orientation, thus no spin procession occurs during the transport along the channel. The spin 
orientation is further detected based on the ISHE and measured as an induced voltage. In the off state 
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(E < 0) the PSH state is detuned by the electric field leading to spin decoherence. The ISHE is largely 
limited and the measured Hall voltage is negligible. The colors in the scheme denote the direction of 
spins, but do not reflect any numerical values. (b) Band structure of SnTe monolayer calculated for 
different values of electric field 𝑬𝑬. The inset shows the details around the VBM. (c) Spin polarization of 
the topmost valence band at 𝑬𝑬 = −𝟐𝟐.𝟎𝟎 V/nm calculated over the entire BZ. We note that even close 
to the band maxima the components 𝑺𝑺𝒙𝒙 and 𝑺𝑺𝒚𝒚 are different from zero. The labels in the maps refer 
to high-symmetry points of the BZ. 

 
We emphasize that the presence of PSH is strictly related to the space group (number 

31) of 2D-SnTe. This raises a question about the thickness limit for the proposed spin-transistor 

or, more specifically, for how many layers the Pmn21 space group remains a valid description of 

the crystal. From the experimental side, ultrathin films form in a layered structural (γ) phase 

until around 3ML, while thicker samples may already consist of either mixed α and γ phases at 

low temperatures, or β and γ phases at room temperature [79]. This indicates an important 

limit for the proposed all-in-one spin device. In the next paragraphs, we will report a more 

detailed analysis of 2ML and 3ML structures in different configurations. In particular, we will 

demonstrate that PSH/SHE combinations can be still realized in such systems, which softens a 

strict criterion of a truly monolayer material. 

Ultrathin SnTe films have been constructed by stacking single layers along vertical 

direction either in parallel (AA) or anti-parallel (AB) [117], corresponding to polar and antipolar 

configurations, respectively. We have further optimized the internal coordinates and lattice 

parameters imposing strict convergence criteria. Our calculations revealed a clear tendency to 

stabilize in the AA configuration for each considered film thickness (see table 6.1, δ𝐸𝐸 denotes 

the energy difference between two stacking orders), but we will briefly compare the structural 

and electronic properties of polar and anti-polar SnTe illustrated in figure 6.3(a)-(c). At first 

glance, the geometry does not reveal any striking dissimilarity except for the direction of the 
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polar displacement in the upper layer. However, the electronic structures represented by the 

orange and dark green lines corresponding to the AA and AB respectively, are dramatically 

different. While in the former the bands seem to consist of two slightly shifted/modified 

replicas of the 1ML-SnTe valence states visible close to the Fermi level, in the latter the severe 

modification of the electronic structure suggests a more fundamental property change.  

 
Figure 6.3: Geometry and electronic structure of the 2ML-SnTe. (a) Optimized structure of the AA-
stacked bilayer. (b) Band structure calculated for the AA and AB stacking configurations, represented 
by orange and dark green lines, respectively. (c) Relaxed geometry of the AB-stacked bilayer. (d) 
Momentum-resolved band topography, (e) the associated spin texture (𝑺𝑺𝒛𝒛) and (f) the energy splitting 
of the topmost valence state calculated over the entire BZ. The negligible components 𝑺𝑺𝒙𝒙 and 𝑺𝑺𝒚𝒚 are 
omitted in (e). 

 
Indeed, a closer analysis of the crystal lattice reveals that the relaxed AA structure maintains 

the Pmn21 symmetry, while the AB configuration belongs to space group number 62 (Pnma), 

which does not support the PST [115]. This observation is further confirmed by the 

complementary plots evaluated over the entire BZ; in the AA stacking, the topography of the 
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topmost valence band (figure 6.3(d)) is quite similar to its monolayer counterpart from figure 

6.1(c), and the spin texture contains only the 𝑆𝑆𝑧𝑧 component which confirms the emergence of 

the PSH mode. In addition, the momentum resolved map of the energy splitting calculated for 

this band suggests that, in terms of the spin-dependent electronic properties, the relaxed AA 

configuration could be equally useful as the 1ML-SnTe. Finally, we note that the AB structure 

manifests an intricate spin texture (not shown), as expected from the difference in the space 

group symmetry. 

Figure 6.4(a)-(c) reports the properties of 3ML-SnTe. The relaxed geometry reveals the 

slight differences in ferroelectric displacement between the subsequent atomic layers; they 

display an oscillating dependence with respect to the layer number, being the largest close to 

the surface (compare 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜 and 𝑑𝑑𝑖𝑖𝑖𝑖 parameters in table 6.1). This conclusion is consistent with 

the previous studies of ferroelectricity in SnTe films [92,118], whereby the distinct surface and 

bulk like properties are explained in terms of different coordination of the inner and outer ions. 

Although the relaxation has slightly changed the ionic displacements and lattice constants, it 

has not altered the symmetry of the cell, which still belongs to the Pmn21 space group. Also, the 

electric polarization (𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒) is rather robust with increasing number of layers (see table 6.1). 

However, the analysis of the momentum-resolved map of the spin-splitting (figure 6.4(b)) 

indicates that the PSH may become less stable for larger film thickness, especially at higher 

temperatures, as the spin-splitting does not exceed 50 𝑚𝑚𝑚𝑚𝑚𝑚 and rapidly decreases away from 

the band maxima. We also emphasize a larger number of bands close to the Fermi level which, 

in principle, could contribute to spin transport even at moderate doping. As evident from figure 

6.4(c), the lower bands have a trend to lose the spin texture, which could also be detrimental 
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for the PSH. Last, we note that the spin Hall conductivities (figure 6.4(d)) hardly change with the 

number of layers which confirms that the PSH/SHE combination can be realized in SnTe films. 

 
Figure 6.4: Properties of multilayer SnTe. (a) Relaxed geometry of the 3ML-SnTe in the AA stacking 
configurations. (b) Momentum-resolved map of the spin-splitting in the topmost valence band 
calculated over the entire BZ for the structure shown in (a). (c) Spin textures of four topmost valence 
bands enumerated 1-4. The negligible in-plane components are omitted. (d) Spin Hall conductivity 𝝈𝝈𝒙𝒙𝒙𝒙𝒛𝒛  
as a function of chemical potential calculated for different multilayers and bulk 𝜶𝜶-SnTe in 
orthorhombic setting. Spin Hall conductivities of the multilayers are normalized by their effective 
volumes listed in Table 6.1. 

 
Finally, let us remark on the accuracy of our density functional theory approach. First, 

SnTe thin films are van der Waals (vdW) lone-pair ferroelectrics, whereby the hybridization 

interactions compete with the Pauli repulsion and strongly depend on the number of layers 

[92,118]. Although such systems are challenging to simulate, a reliable estimation of the 

geometry is a key of ingredient of the analysis, as the emergence of spin texture is a direct 

consequence of the ferroelectric distortion. Our extensive tests of computational strategies 
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confirmed the importance of vdW interactions; we have used the semiempirical Tkatchenko-

Scheffler approach which ensured a robust distortion as well as a stable convergence of the 

lattice in the region between the monolayer and the bulk. Notably, a similar method has been 

successfully used in a recent study of elemental Te, a peculiar vdW ferroelectric with in-plane 

polarization due to the interlayer interaction between the lone pairs [119]. Second, one has to 

determine the favorable stacking of the multilayer. We have found the strong preference for 

polar (AA) structure (see table 6.1), which is in reasonable agreement with the previous 

theoretical calculations employing an atomic orbital basis [120]. Surprisingly, experimental 

results from the same study indicate that the anti-polar configurations are more stable which 

may be assigned to an interplay of several factors, such as details of the growth (bottom-up 

versus cutting from the bulk), coexistence of different phases (α, β, γ) [79,121], or the influence 

of the substrate [122]. Last, we emphasize that the calculated intrinsic spin Hall conductivities 

are extremely sensitive to details of the electronic structure. In order to obtain valid 

predictions, we have used pseudo-hybrid Hubbard self-consistent approach ACBN0 which was 

previously demonstrated to provide an excellent accuracy in the case of the bulk phase [113]. 

6.4 Conclusions 

In summary, we have demonstrated that the all-in-one spin transistors employing the 

combined effect of PSH and SHE can be constructed based on the SnTe multilayers. Such 

devices could benefit from the long spin lifetime ensured by the PSH as well as the efficient 

spin/charge interconversion without ferromagnetic electrodes. However, one needs to have in 

mind several important conditions that have to be satisfied. First, a natural thickness limit for 

such a device would be of 3ML-SnTe (~20 Å), as concluded from our first-principles calculations 
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and earlier experimental results. Second, the emergence of PSH is strictly determined by the 

crystal space group; it is possible only for multilayers with a polar stacking order, which 

preserve Pmn21 symmetry. Third, the realistic predictions of spin transistor performance should 

take into account the role of the substrate. In particular, the interface could change the 

favorable stacking of vdW layers yielding an anti-polar instead of a polar order. Moreover, the 

presence of the substrate may itself perturb the spin wave mode. In such a case, the spins 

would not be fully protected from relaxation and the disorder could cause a decrease in spin 

lifetime, as observed in similar two-dimensional devices [123,124]. In order to maximally 

preserve the spatial symmetry, the system should preferably have a sandwich structure. 

We believe that the presented results will stimulate a further search of low-dimensional 

structures with similar properties. We also note that, in general, the simultaneous use of PSH 

and SHE does not need to limited to 2D ferroelectrics. There are several bulk materials with 

persistent spin texture (e.g. BiInO3, LiTeO3, CsBiNb2O7, or Bi2WO6) [113,123,124], they may also 

reveal a strong spin Hall effect and serve in all-in-one spin devices with a different operation 

principle. 

6.5 Methods 

Our calculations based on density functional theory (DFT) were performed using the 

Quantum ESPRESSO package [8,9]. We treated the ion-electron interaction with norm-

conserving pseudopotentials from the pslibrary database [89] and expanded the electron wave 

functions in a plane wave basis set with a cutoff of 150 Ry. The exchange and correlation 

interaction was taken into account within the generalized gradient approximation (GGA) 

parameterized by the Perdew, Burke, and Ernzerhof (PBE) functional [87]. We modeled the 
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SnTe multilayers within the slab approach minimizing the errors induced by the periodic 

boundary conditions with a large vacuum region of at least 20 Å and with dipole corrections 

added to the local potential. We fully relaxed the structures setting the convergence criteria for 

energy and forces to 10−7 Ry and 10−4 𝑅𝑅𝑅𝑅
𝑏𝑏𝑏𝑏ℎ𝑟𝑟

, respectively. The Tkatchenko-Sheffler van der 

Waals corrections were included in order to ensure the stability and reliable lattice parameters 

of weakly interacting layers [30]. The electronic structures were further corrected by using a 

novel pseudo-hybrid Hubbard self-consistent approach ACBN0, with the calculated 𝑈𝑈 

parameters equal to 0.17 and 2.15 𝑒𝑒𝑒𝑒 for Sn and Te, respectively. Although the SOC was 

included self-consistently in DFT calculations, the spin-orbit related quantities were evaluated 

as a post-processing step employing the tight-binding Hamiltonians; the latter were constructed 

from the projections of eigenfunctions on pseudoatomic orbitals following implementation in 

the PAOFLOW code. After interpolating the Hamiltonians to an ultra-dense k-points mesh of 

140 × 140 × 1 we calculated the spin polarization of each eigenstate ψ�𝑘𝑘�⃗ � represented as 

𝑆𝑆�𝑘𝑘�⃗ � = �𝑆𝑆𝑥𝑥�𝑘𝑘�⃗ �,𝑆𝑆𝑦𝑦�𝑘𝑘�⃗ �, 𝑆𝑆𝑧𝑧�𝑘𝑘�⃗ ��, where 𝑆𝑆𝑛𝑛�𝑘𝑘�⃗ � = �ψ�𝑘𝑘�⃗ �|σ𝑛𝑛|ψ�𝑘𝑘�⃗ �� and σ𝑛𝑛 denote the pauli 

matrices. Spin Hall conductivities were computed from the Kubo’s formula following the details 

given in chapter 5. Finally, we modeled the influence of electric fields perpendicular to the 

layers by modifying the tight-binding Hamiltonians. 
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CHAPTER 7 

QUANTUM INFORMATION IN MATERIALS SCIENCE 

Using quantum mechanical phenomena as a computational tool was first proposed in a 

seminal paper by Richard Feynman, in which he concluded that the laws of physics do not 

prevent effective computation at quantum mechanical scales [127]. Since then, it has been 

shown that the quantum mechanical principle of superposition can be leveraged to gain 

computational advantage over classical computers, in algorithms like Peter Shor’s quantum 

procedure for factoring numbers [128]. That is, certain problems which take exponential time 

to solve on classical computers, with respect to the input length, can be solved in polynomial 

time with quantum resources. This section outlines the most basic interpretation of quantum 

computers and introduces the early applications of quantum algorithms to materials science 

and quantum chemistry. 

7.1 Quantum Computing 

Quantum computers operate by manipulating qubits, which are the fundamental 

objects for storing information on quantum hardware, analogous to bits in classical computers. 

While a bit on classical computers stores a binary value (generally referred to as 0 and 1), qubits 

take on superpositions of these two states. A system with 𝑁𝑁 two state components can be 

completely described with 𝑁𝑁 bits classically, while a quantum description of the same system 

requires 2𝑁𝑁 − 1 complex numbers.  To introduce the basic principle consider an object that, 

when measured, is found in either state |0⟩ or |1⟩. An arbitrary state |ψ⟩ for such a (single) 

qubit is written as: 
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 |ψ⟩ =  α|0⟩ + β|1⟩ = �
α
β
� (7.1) 

where α, β ∈ ℂ. The state is normalized such that ⟨ψ|ψ⟩ = |α|2 + |β|2 = 1, and the probability 

of measuring |ψ⟩ in state |0⟩ or |1⟩ is given by |α|2 or |β|2 respectively.  

Quantum computers can, of course, perform any operation computable on a classical 

computer. A simple demonstration of this principle, and an introduction to operators acting on 

quantum states, is given by the NOT gate in a classical computer. The NOT gate takes one input 

and outputs the opposite binary value of the input. E.g. A gate where an input of 0 yields an 

output of 1, and an input of 1 yields an output of 0. To see how the classical operator could 

function in a quantum computer, take the σ𝑥𝑥 Pauli matrix in natural units, 𝑋𝑋� = �0 1
1 0�. Now, 

apply the 𝑋𝑋� gate to a pure |0⟩ state (equation 7.1 with α = 1 and β = 0). 

 𝑋𝑋�|0⟩ = �
0 1
1 0

� �
1
0
� = �

0
1
� = |1⟩ (7.2) 

Applying the σ𝑥𝑥 gate to a qubit to a pure |1⟩ state (α = 0 and β = 1) is similar. 

 𝑋𝑋�|1⟩ = �
0 1
1 0

� �
0
1
� = �

1
0
� = |0⟩ (7.3) 

From equations 7.2 and 7.3, it is clear that a qubit is capable of functioning the same 

way as a classical bit under the NOT operation, and it can be shown that this principle holds for 

other types of classical gates. What quantum computers do that a classical computer cannot is 

to represent mixed states, where 𝛼𝛼 ≠ 0 and 𝛽𝛽 ≠ 0 at the same time.  

Unitary operators have their complex conjugate transpose equivalent to their inverse. 

i.e. an operator 𝑈𝑈� is unitary if and only if 𝑈𝑈�† = 𝑈𝑈�−1. Quantum operators are necessarily unitary. 

Summing the probabilities of obtaining each state must yield 1 both before and after an 

operator is applied. The evolution of a quantum state via unitary operation is governed 
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appropriately by the laws of quantum mechanics; the resulting state after applying a unitary 

operation implies the input state, motivating the principle of reversible computing. While 

classical computers can escape reversibility by incurring heat or other forms of entropy, 

quantum computers must maintain fidelity of their quantum states throughout the lifetime of 

their computation. Given no noise or environmental turbulence, quantum computations are 

inherently reversible processes. For further discussion of gate model quantum computing and 

reversibility in quantum computers see reference [128]. 

To understand how multiple qubits can interact, consider the product state |Ψ⟩ of just 

two qubits in states |ψ1⟩ = �𝛼𝛼𝛽𝛽� and |ψ2⟩ = �𝛿𝛿𝛾𝛾�, given by: 

 

|Ψ⟩ = |𝜓𝜓1⟩⨂|𝜓𝜓2⟩ = �
𝛼𝛼
𝛽𝛽
�⨂�

𝛿𝛿
𝛾𝛾
� = �

𝛼𝛼𝛿𝛿
𝛼𝛼𝛾𝛾
𝛽𝛽𝛿𝛿
𝛽𝛽𝛾𝛾

� 

(7.4) 

The state |Ψ⟩ is said to be factorizable, because the complete state can be written as a 

product of two composite states (|ψ1⟩ and |ψ2⟩ in this case). Certain states, such as Bell states, 

can be achieved such that no factorization exists [129]. That is, for some state 

 
|Ψ⟩ = �

𝐴𝐴
𝐵𝐵
𝐶𝐶
𝐷𝐷

� 

|ΨBell⟩ = �
𝐴𝐴
𝐵𝐵
𝐶𝐶
𝐷𝐷

� 

(7.5) 

there is no such |𝜓𝜓1⟩ and |𝜓𝜓2⟩ which could satisfy |𝜓𝜓1⟩⨂|𝜓𝜓2⟩ = |Ψ⟩. A system of two or more 

qubits in a configuration which cannot be represented as a product state are said to be 
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entangled. If the entangled state |Ψ⟩ is known a priori, measurement of |𝜓𝜓1⟩ implies the value 

of |𝜓𝜓2⟩ and vice versa. 

Quantum computers possess other unintuitive qualities which are not discussed here, 

such as teleportation, and the inability to clone states. A discussion about quantum 

teleportation is available in reference [130], and the original proposal of the no cloning theorem 

can be found in reference [131]. The next section discusses the modern state of quantum 

computing in materials science and introduces some common algorithms that prove useful for 

simulation molecules and solids. 

7.2 Quantum Computing in Materials Science 

Quantum supremacy, a term used quite loosely in modern reports about the current 

state of quantum computing, is achieved by using a quantum processing unit (QPU) to solve a 

problem in less time than a classical CPU. A recent publication from Google engineers claimed 

quantum supremacy by calculating with quantum hardware the diffraction pattern of 

interacting laser pulses, a process that becomes exponentially harder to simulate on a classical 

computer as the physical size of the sample space grows [132]. Another study, by researchers at 

IBM, computes the bond lengths of H2, LiH, and BeH2 molecules by simulating them on a 

quantum processor [133]. Though you cannot buy a quantum computer in your local 

electronics store, they are quickly becoming a more ubiquitous technology, and some are even 

available for public use through the IBMQ web interface*. 

Quantum computers promise the ability to simulate large correlated systems of 

 
* https://www.research.ibm.com/quantum-computing/ 
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fermions, enabling emulation of large-scale molecules and materials that are intractable on 

classical computers. Because noisy intermediate-scale quantum (NISQ) processors are limited 

to a few qubits with limited connectivity and low fidelity, researchers are developing hybrid 

algorithms, which perform some computation on classical computers and utilize quantum 

computers only when a QPU would achieve exponential advantage over a CPU. The most 

popular hybrid classical algorithm is the variational quantum eigensolver (VQE), which aims to 

find minimal or maximal eigenvalues for a Hamiltonian by defining it in terms of variational 

parameters [134]. The Hamiltonian is simulated and measured on a QPU, and the parameters 

are updated with a classical optimization algorithm to achieve a global minimum or maximum. 

Explicit details of the VQE algorithm and an implementation are described in the following 

chapter. Several others noteworthy strategies for simulating atomic systems have become 

popular, such as unitary coupled cluster (UCC), quantum phase estimation (QPE), trotterization, 

and adiabatic state preparation, and are briefly described in chapters 8 and 9. See reference 

[135] for a more rigorous account of these procedures. The following chapters discuss the 

simulation of periodic crystalline silicon on quantum computers and propose various 

techniques for obtaining electronic structure for materials using a QPU. 
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CHAPTER 8 

QUANTUM COMPUTATION OF SILICON ELECTRONIC BAND STRUCTURE* 

Development of quantum architectures during the last decade has inspired hybrid 

classical-quantum algorithms in physics and quantum chemistry that promise simulations of 

fermionic systems beyond the capability of modern classical computer, even before the era of 

quantum computing fully arrives. Strong research efforts have been recently made to obtain 

minimal depth quantum circuits which could accurately represent chemical systems. Here, we 

show that unprecedented methods used in quantum chemistry, designed to simulate molecules 

on quantum processors, can be extended to calculate properties of periodic solids. In particular, 

we present minimal depth circuits implementing the variational quantum eigensolver algorithm 

and successfully use it to compute the band structure of silicon on a quantum machine for the 

first time. We are convinced that the presented quantum experiments performed on cloud-

based platforms will stimulate more intense studies towards scalable electronic structure 

computation of advanced quantum materials. 

8.1 Introduction 

Quantum computing aims to leverage superposition, entanglement, and interference of 

quantum bits in order to tackle computational tasks that scale exponentially on classical 

computers [136,137]. While renowned quantum algorithms, such as unsorted database search 

or integer factorization require resources that remain out of reach [128,138], quantum 

 
* This chapter is reproduced, with permission from The Royal Society of Chemistry, from the paper: Quantum 
computation of silicon electronic band structure by Frank T. Cerasoli, Kyle Sherbert, Jagoda Sławińska, and Marco 
Buongiorno Nardelli, published in Physical Chemistry Chemical Physics 22, 21816-21822 (2020). 
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chemistry calculations are gaining steam as a key application performed on available quantum 

architectures [139,140]. The idea of so-called quantum simulations, originally proposed by 

Feynman [141-143], relies on a mapping between the fermionic system and the set of qubits, so 

that the dynamics of the former is directly followed by the latter. Therefore, wave functions of 

complex many-body systems could be effectively reproduced in quantum measurements 

performed on qubits, providing a tool to compute desired quantities with an unprecedented 

accuracy. Even though available quantum computers contain merely few tens of qubits [132], 

they have been employed to solve quantum chemistry problems, such as the estimation of 

nuclear binding energies or molecular ground states [133,144-146]. Remarkably, these 

successful quantum experiments relied on variational approaches that greatly reduced the 

required hardware resources, inspiring more active research in order to solve elusive 

condensed matter systems beyond quantum chemistry [147-151]. 

Here, we put forward an approach to calculate the electronic structure of the periodic 

crystal on a quantum computer. While developments of quantum computation for molecules 

were primarily focused on the ground state energies, to evaluate a band structure one needs to 

determine the excited states. We have shown that a standard hybrid quantum/classical 

algorithm, variational quantum eigensolver (VQE) can easily be adapted to provide an accurate 

estimation of the electronic bands in solids. In particular, by casting a Si tight-binding (TB) 

Hamiltonian in terms of fermionic operators, we have designed a low-depth quantum circuit, 

robust enough to capture the electronic properties of a crystal in the reciprocal space. The 

quantum measurements have been performed on sets of qubits available remotely via cloud-

based platforms provided by IBM and Rigetti Computing. Importantly, we have tested different 
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classical optimization routines that minimize expectation values, corrected beforehand against 

the readout errors. Comparison between bands computed on the quantum processors, the 

quantum virtual machine, and by classical diagonalization revealed a satisfactory agreement, 

confirming the validity of the algorithm which could be generalized to explore materials more 

complex than crystalline silicon. 

8.2 Hamiltonian Representation 

Let us consider a silicon lattice in the diamond cubic structure. The Hamiltonian 

describing the electronic system can be approximated, in atomic units, as 

 
H�el = −�

∇i2

2
i

−�
Zj

�Rj − ri�i,j

+ �
1

�ri − rj�i<j

 
(8.1) 

where 𝑟𝑟𝑖𝑖 (𝑅𝑅𝑖𝑖) are the positions of electrons (nuclei) and 𝑍𝑍𝑗𝑗 denotes the nuclear charge, 

respectively. We have assumed the Born-Oppenheimer approximation and considered the 

nuclei as stationary charges, thus neglecting their kinetic energy and treating the ion repulsion 

as a constant. The last term of equation 8.1 represents the electron-electron interaction, whose 

correct simulation is one of the long-term goals of quantum simulation. However, we are now 

primarily focused on the proof-of-principle band structure calculations and have disregarded 

the electronic correlations for the purpose of the present study. 

In order to convert the Hamiltonian into a computational problem, a suitable basis set 

needs to be selected. While different representations were proposed for quantum computation 

[147], we introduce here a simple basis of atomic orbitals at each lattice site arising from the 

tight-binding (TB) approximation. The unit cell of silicon contains two tetrahedrally coordinated 

ions and is well described in terms of 𝑠𝑠, 𝑝𝑝𝑥𝑥, 𝑝𝑝𝑦𝑦, and 𝑝𝑝𝑧𝑧 orbitals centered at each atom. Because 
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magnetic order is absent, the spin degrees of freedom can be omitted in the analysis. Using the 

second quantization formalism, we can express the TB Hamiltonian via creation and 

annihilation operators (𝑎𝑎𝑖𝑖𝑖𝑖
 †  and 𝑎𝑎𝑖𝑖𝑖𝑖

† ) acting at the orbital 𝑛𝑛 and the site 𝑅𝑅𝑖𝑖: 

  

H� = �Enain
† ain

i,n

− � tin,jmain
† ajm

⟨i,j⟩,n,m

 

(8.2) 

In this expression, 𝐸𝐸𝑛𝑛 correspond to the atomic energies and 𝑡𝑡𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 denote the hopping 

integrals whose numerical values have been reported elsewhere [152]. Only the tunneling 

between pairs of nearest neighbors, denoted by the ⟨𝑖𝑖, 𝑗𝑗⟩ summation, have been considered. 

The Hamiltonian can be then easily converted to the momentum space via standard Fourier 

transform applied to the raising and lowering operators. Last, such a representation (𝐻𝐻�𝑘𝑘) needs 

to be mapped onto the system of qubits. 

In practice, qubits are manipulated on a quantum processor by operating on a set of 

Pauli matrices 𝑋𝑋�, 𝑌𝑌� , 𝑍̂𝑍, and 𝐼𝐼, the latter denoting 2 × 2 identity matrix. Any Hermitian matrix 

can be decomposed using a complete Pauli basis for matrices of dimension 𝑁𝑁 = 2𝑛𝑛 with 𝑛𝑛 =

𝑙𝑙𝑙𝑙𝑔𝑔2𝑁𝑁 terms, that can be generated by taking a tensor product: 

 {σ�}𝑛𝑛 = {𝐼𝐼,𝑋𝑋�,𝑌𝑌� , 𝑍̂𝑍}⨂𝑛𝑛 (8.3) 

Thus, the TB Hamiltonian can be decomposed as follows: 

 
𝐻𝐻�𝑘𝑘 = �𝑐𝑐𝑖𝑖𝑖𝑖σ�𝑖𝑖

4𝑛𝑛

𝑖𝑖=1

 
(8.4) 

where the set {σ�}𝑛𝑛 is the set of 4𝑛𝑛 possible basis matrices, and {𝑐𝑐𝑘𝑘}𝑛𝑛 is a set of complex 

coefficients. {𝑐𝑐𝑘𝑘}𝑛𝑛 is known as the spectral decomposition and can be determined easily. In 
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particular, we can exploit the orthogonality of Pauli matrices and the trace inner product 

between two of them: 

 𝑇𝑇𝑇𝑇�𝜎𝜎�𝑗𝑗
†𝜎𝜎�𝑗𝑗� = 2𝑛𝑛δ𝑖𝑖𝑖𝑖 (8.5) 

By taking the inner product 𝐻𝐻�𝑘𝑘
†σ�𝑖𝑖, we can eliminate all terms but one from the sum, yielding: 

 
𝑐𝑐𝑖𝑖 =

𝑇𝑇𝑇𝑇�𝐻𝐻�𝑘𝑘
†σ�𝑖𝑖�

2𝑛𝑛
 

(8.6) 

Therefore, the Hamiltonian is represented by a list of coefficients corresponding to each 

of the 4𝑛𝑛 Pauli basis matrices suitable for simulation on a QPU [153]. 

8.3 Variational Quantum Eigensolver 

We have computed the energy spectrum using the variational quantum eigensolver in 

conjunction with overlap-based techniques. VQE is a standard hybrid quantum-classical 

algorithm capable of determining the lowest or highest eigenvalue of an operator using 

minimal quantum resources, implemented by combining measurements on a quantum 

computer with classical optimization routines [154-156]. The ground state wave function and 

energy can be found based on Rayleigh-Ritz variational principle, whereby the energy 

expectation value can be minimized by a specific set of parameters. In practice, the state 

preparation and the expectation value measurements are implemented on a quantum 

machine, while the optimization of the parameters is performed classically. The whole 

algorithm used for the ground state calculation can be summarized in three following steps: 

(1) We create a quantum circuit 𝑉𝑉��θ�⃗ � depending on a set of parameters θ�⃗ , known as 
the variational form. Then, we prepare a trial wave function (or ansatz) �ψ�θ�⃗ �� =
𝑉𝑉��θ�⃗ �, where |0⟩ denotes an initial state ensuring the measurement of each qubit. 
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(2) We measure the expectation value of 𝐻𝐻�𝑘𝑘, which depends on the parameters θ�⃗ , 
𝐸𝐸�θ�⃗ � = �ψ�θ�⃗ ��𝐻𝐻�𝑘𝑘�ψ�θ�⃗ ��. The Hamiltonian is represented by a series of operators. 
The wave function |ψ⟩ is measured in the Pauli basis, yielding each ⟨σ�𝑖𝑖⟩. We can 
then reconstruct �𝐻𝐻�𝑘𝑘� with the spectrum 𝑐𝑐𝑘𝑘:  

 
�𝐻𝐻�𝑘𝑘� = �𝑐𝑐𝑖𝑖𝑖𝑖⟨𝜎𝜎�𝑖𝑖⟩

4𝑛𝑛

𝑖𝑖=1

 
(8.7) 

The measurement should be treated as a probabilistic element of the algorithm and 
needs to be performed several times. An arbitrary precision can be achieved with a 
sufficient number of repetitions. 

 
(3) We apply a classical optimization routine to explore the parameter space and 

minimize 𝐸𝐸�θ�⃗ �. We define ϵ0 = �ψ�θ�⃗ 𝑚𝑚𝑚𝑚𝑚𝑚��𝐻𝐻�𝑘𝑘�ψ�θ�⃗ min�� as the ground state energy, 
where θ�⃗ 𝑚𝑚𝑚𝑚𝑚𝑚 denotes the set of parameters minimizing the expectation value of 𝐻𝐻�𝑘𝑘. 

8.4 Energies Beyond the Ground State 

After having determined the ground state, we can calculate excited states using a 

procedure similar to the quantum deflation algorithm that exploits orthogonality of the 

Hamiltonian eigenvectors [157-159]. In particular, we define an effective Hamiltonian (𝐻𝐻�𝑘𝑘′ ) 

whose lowest eigenstate is the excited state of the original one (𝐻𝐻�𝑘𝑘). By subtracting from the 

latter a corresponding ground state projector weighted by the ground state energy, we obtain: 

 𝐻𝐻�𝑘𝑘′ = 𝐻𝐻�𝑘𝑘 − ϵ0|ψ0⟩⟨ψ0| = ��𝑐𝑐𝑖𝑖 − ϵ0
⟨σ�𝑖𝑖⟩
2𝑛𝑛

�
4𝑛𝑛

𝑖𝑖=1

σ�𝑖𝑖 (8.8) 

We observe that the last equality provides the following spectral decomposition of the 

excited Hamiltonian: 

 𝑐𝑐𝑖𝑖′ = 𝑐𝑐𝑖𝑖 − ϵ0
⟨σ�𝑖𝑖⟩
2𝑛𝑛

 (8.9) 

The procedure is used iteratively to determine as many eigenvalues as desired. Updating the 

spectral decomposition 𝑐𝑐𝑖𝑖 → 𝑐𝑐𝑖𝑖 − ϵ0
⟨σ�𝑖𝑖⟩
2𝑛𝑛

 effectively removes all ground state contributions from 
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the Hamiltonian. 

We note that the effect of subtracting the ground state density matrix weighted by its 

corresponding eigenvalue is to project that eigenstate onto the zero value. Because an arbitrary 

Hermitian matrix can have both positive and negative eigenvalues, special care must be taken 

to ensure that zero is not erroneously computed as a ground state after all negative 

eigenvalues are determined. One reconciliation is to subtract a value greater than the 

maximum eigenvalue from the diagonal elements of the Hamiltonian, ensure that all 

eigenvalues are lower than zero. Therefore, projecting an eigenstate to zero would not affect 

the remaining eigenvalues that need to be determined. Such a shift requires the modification of 

only one coefficient of the spectral decomposition, which stands before the identity matrix. 

8.5 Data Acquisition 

Before discussing the results of quantum experiments, let us remark on the various 

techniques that we have employed to compute the band structure of silicon. A careful 

distinction must be made between the use of quantum processor, quantum virtual machine, 

and quantum state simulation. In particular, simulated qubits helped us analyze the 

performance of variational forms and the effect of measurement uncertainty on a noiseless 

machine. Three independent techniques will be further referenced: 

(1) Quantum processor unit (QPU) is prepared for measurements under subsequent set 
of parameters. The measurements are performed in real time. The available APIs 
compile quantum programs and directly manipulate qubits, providing measured 
expectation values in the form of bitstrings. 

(2) Quantum virtual machine (QVM) chooses one of the possible outcomes to be 
“measured”, weighted by its respective probability computed with the quantum 
state simulator (see below). The quantum processor is mimicked, providing a 
noiseless (unless noise is simulated) simulation of the measurement process. This 
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method helps to analyze the effects in the band structure determined by discrete 
measurements of the energy expectation values. 

(3) Quantum state simulator (QSS) carries out linear algebra to obtain an exact wave 
function which would represent the simulated state of a qubit on a quantum 
processor after the application of specified gates. It can serve as an analytical 
guideline for quantum measurements. Optimization can be easily performed with 
the quantum state simulator, providing a convenient framework to test the 
performance of variational forms. 

8.6 Quantum Experiments 

Quantum computations of the band structure have been performed following two 

different techniques, both yielding a correct spectrum while compared with the classical 

diagonalization of the TB Hamiltonian. The first approach relies on a true quantum 

measurement, employing one qubit that we access on remote quantum machines Rigetti Aspen 

and IMBQ Armonk. Although these cloud platforms permit the use of larger resources, the 

practical realization of the VQE algorithm for diagonalization of the 8 × 8 Hamiltonian of Si 

required a substantial amount of time. Therefore, we have started with a reduced Hamiltonian, 

considering only the interactions between 𝑠𝑠-states which give rise to the lowest bands of 

silicon. After neglecting 𝑠𝑠-𝑝𝑝 hopping parameters in the original 𝐻𝐻�𝑘𝑘, a smaller 2 × 2 matrix block 

can be decoupled and diagonalized using VQE on the QPU. Figure 8.1 shows the two-gate 

circuit acting on a single qubit, often referred to as the mean field ansatz [160], which has been 

used in the experiment. In principle, to ensure that finding the true minimum is possible, 

circuits must be designed to span every state allowed by the operating qubits, unless the space 

is restricted by physical arguments, such as fermionic commutation relations in the UCC 

strategies [161]. The ansatz below takes a pure state |0⟩ and applies two rotations described by 

the angles θ�⃗ = (θ,ϕ). A polar rotation brings the qubit into a superposition of |0⟩ and |1⟩ 
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states, while an azimuthal rotation scans the sphere’s latitude. The two rotations produce a 

state represented by the following wave function: 

 |ψ(θ,ϕ)⟩ = 𝑐𝑐𝑐𝑐𝑐𝑐 �
θ
2
� |0⟩ + 𝑒𝑒𝑖𝑖ϕ𝑠𝑠𝑠𝑠𝑠𝑠 �

θ
2
� |1⟩ (8.10) 

 

 
Figure 8.1: Mean-field circuit acting on a single qubit has been employed to determine the lowest 
bands of silicon. It consists of a polar rotation (𝑹𝑹𝒚𝒚) followed by an azimuthal rotation (𝑹𝑹𝒛𝒛). In last step, 
the expectation value of 𝑯𝑯�𝒌𝒌 is measured. 

 
The band structure has been computed along a high symmetry line X—Γ—L by 

repeating the whole algorithm for each of the k-points. Figure 8.2(a) and (b) report the two-

band electronic structure evaluated on the quantum machines of IBM (red squares) and Rigetti 

(green circles), complemented by data from the classical diagonalization (black solid line). In 

addition, we present the results obtained via quantum-classical algorithm performed on QSS 

(blue squares) and QVM (yellow circles). While the latter directly follow the bands calculated 

classically, the quantum data reveal tiny deviations that can be noticed around the high-

symmetry points Γ and L for Rigetti and IBM, respectively. The sources of errors in the 

experiment can be manyfold. The probabilistic aspect can obviously play a role, despite a large 

number of measurements (8192) taken for each parameterization. Importantly, simulations of 

noise on QVM have revealed that any gate noise or readout error tends to increase the 

measured energy, shifting the expectation value toward different eigenstates. As described in 

the next sections, we have attempted to characterize and reduce the effects of errors arising 

from the qubit manipulation. 
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Figure 8.2: (a) The two-band electronic structure of silicon computed along X-Γ-L line using classical 
diagonalization (black solid line) and hybrid quantum-classical algorithm on quantum state simulator 
(blue squares) and quantum virtual machine (yellow circles). (b) Same as (a) realized on the QPUs of 
IBM (red squares) and Rigetti (green circles). We report the data from Rigetti before and after 
correcting for the readout errors, marked as open and closed circles, respectively. (c) Energy 
expectation value sampled over the entire parameter space [−𝝅𝝅,𝝅𝝅] in the azimuthal angle and [0,𝝅𝝅] 
in the polar angle on QSS (blue), IBM (red), and Rigetti (red). Darker (brighter) colors denote lower 
(higher) values of the energy expectation value. 

 
We note that the standard optimization routines have not been here applied. Instead, 

we have used the mean-field circuit to measure a dense grid of parameter angles in order to 

find the minimum expectation value. Sampling the entire parameter space provides a visual 

tool for analyzing the structure of parameter space. Figure 8.2(c) shows examples of the 

expectation value surface computed for one selected point 𝑘𝑘 = π
4a
⟨1,1,1⟩. Three subsequent 

panels report the surfaces obtained analytically on QSS (blue), and experimentally on IBM (red) 

and Rigetti (green). The two latter have been smoothed by minimizing the root-mean-square 

error across all data points. Again, the data collected on IBM reveals largest irregularities in the 

energy contour lines, especially compared with the analytical surface evaluated on QSS. 
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Figure 8.3: The circuit used to diagonalize the 8x8 Hamiltonian. Each qubit is initialized as a pure zero 
state. 

 

 
Figure 8.4: Electronic structure of silicon computed via hybrid classical/quantum algorithm on QSS. 
Different optimization routines BFGS and COBYLA are compared on analytic surface. Black solid lines 
denote the bands calculated classically. 

 
The second approach, employed to diagonalize full 8 × 8 Hamiltonian, relies on QSS. 

Figure 8.3 presents a robust three-qubit circuit that we have designed to variationally minimize 

the expectation value of 𝐻𝐻�𝑘𝑘 at any k-point and each level of excitation. The set of twelve 

parameters θ�⃗ = (θ1,θ2, … , θ12) in this ansatz, measured in the Pauli word basis from the 

Hamiltonian decomposition defined in equation 8.4, are varied to minimize the energy 

expectation values. Figure 8.4 displays the electronic structure computed using this circuit, 
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demonstrating that it is indeed capable of representing the silicon Hamiltonian anywhere along 

the k-line. Although small discrepancies are again visible, the overall agreement with the bands 

calculated classically seems to be sufficient. We note that now the results do not depend on 

external factors that can perturb the behavior of qubits. The deviations are related to the 

optimization procedures whose proper choice is essential to correctly determine the energy 

spectrum. 

Several classical optimization routines have been tested in conjunction with the three-

qubit circuit used for the evaluation of full electronic structure. Minimizing a function in 

parameter space of twelve dimensions is rather challenging and requires a compromise 

between the number of measurements and the smoothness of the space being optimized. We 

have found that the Broyden—Fletcher—Goldfarb—Shanno (BFGS) and Constrained 

Optimization BY Linear Approximation (COBYLA) routines yielded the most accurate results. The 

former requires fewer function evaluations to reach a minimum, but it suffers from instability 

due to the rough surface in parameter space. The latter, being a direct search method, entirely 

omits the idea of gradient decent which makes it more robust against becoming trapped in a 

local minimum. Even though it may provide more reliable global minima [162], it occasionally 

fails to settle on the correct set of parameters. Figure 8.4 clearly shows that especially the 

excited energy levels are sensitive to fluctuations in the determined parameters. The 

comparison of both routines, BFGS and COBYLA, eventually indicates the superior performance 

of the former, at least in the present case. 

8.7 Additional Remarks on Measuring Expectation Values 

While the previous section was entirely focused on the realization and results of 
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quantum experiments, the measurements of expectation values need a more detailed 

discussion. The quantities we have measured on the quantum computer are the expectation 

values ⟨σ�𝑘𝑘⟩, where the operator σ�𝑘𝑘 is an 𝑛𝑛-length Pauli word consisting of an 𝐼𝐼, 𝑋𝑋�, 𝑌𝑌� , or 𝑍̂𝑍 for 

each qubit. They depend on the state |ψ⟩ of the qubits and could be written as the integral 

⟨ψ|σ�𝑘𝑘|ψ⟩. Because we do not know |ψ⟩, we must measure the state of each qubit in the 

computational basis, resulting in a single bitstring (e.g. |00101⟩). Repeating the measurement a 

large number of times 𝑀𝑀, we construct the expectation value ⟨σ�𝑘𝑘⟩ from the ensemble of 

bitstrings. In the following paragraphs, we will first consider the single-qubit case σ�𝑘𝑘 = 𝑍̂𝑍, then 

the multi-qubit case where σ�𝑘𝑘 consists only of 𝐼𝐼 and 𝑍̂𝑍 operators and last, the general case 

including 𝑋𝑋� and 𝑌𝑌�  operators. 

The Pauli operator 𝑍̂𝑍 can be written in a matrix form: 

𝑍̂𝑍 = � 1 0
0 −1 � 

It is a diagonal matrix with eigenvalues +1 corresponding to the state |0⟩, and −1 

corresponding to the state |1⟩. The expectation value �𝑍̂𝑍� is the average of these two 

eigenvalues, weighted by the number of measurements in each state. If 𝑝𝑝 is the probability that 

we measure |0⟩ rather than |1⟩, the expectation value �𝑍̂𝑍� is given by: 

⟨𝑍𝑍⟩ = (+1)𝑝𝑝 + (−1)(1− 𝑝𝑝) = 2𝑝𝑝 − 1 

Now, consider an operator 𝐴̂𝐴 defined as a Kronecker product of 𝐼𝐼 and 𝑍̂𝑍 operators, each 

acting on their own qubit. It is a degenerate operator with half the eigenvalues +1 and half −1. 

Because its matrix form is diagonal, each bitstring we measure corresponds exactly to an 

eigenstate. The parity (±1) of a given bitstring 𝑧𝑧 is precisely the parity of the substring 𝑧𝑧′ which 

omits any index corresponding to an 𝐼𝐼 operator in 𝐴̂𝐴. For example, if 𝐴̂𝐴 = 𝐼𝐼5𝑍̂𝑍4𝑍̂𝑍3𝐼𝐼2𝑍̂𝑍1 and 𝑧𝑧 =
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|00101⟩, the substring 𝑧𝑧′ leaves off the seconds and fifth indices: 𝑧𝑧′ = |011⟩. This string has a 

weight of two, which is an even parity and therefore corresponds to the eigenvalue +1. The 

expectation values ⟨𝐴𝐴⟩ is once again an average of +1 and −1, weighted by the frequency of 

the bitstrings corresponding to each of the two states. 

Last, let us consider a general Pauli wordσ�𝑘𝑘. Half of its eigenvalues are again +1 and half 

−1, but bitstrings in the computational basis do not correspond exactly to the eigenstates. We 

therefore need to diagonalize σ�𝑘𝑘. Let 𝐴̂𝐴𝑘𝑘 be the Pauli word which replaces all 𝑋𝑋� and 𝑌𝑌�  in σ�𝑘𝑘 by 

𝑍̂𝑍, and the operator 𝑈𝑈�𝑘𝑘 changes the basis so that σ�𝑘𝑘 = 𝑈𝑈�𝑘𝑘
†𝐴̂𝐴𝑘𝑘𝑈𝑈�𝑘𝑘. Then, for each expectation 

value we have ⟨σ�𝑘𝑘⟩ = �𝑈𝑈�𝑘𝑘
†𝐴̂𝐴𝑘𝑘𝑈𝑈�𝑘𝑘�. This is equivalent to measuring the expectation value �𝐴̂𝐴𝑘𝑘� in 

a new state |ψ′⟩ = 𝑈𝑈�𝑘𝑘|ψ⟩. Thus, we may apply at the end of the variational circuit the sequence 

of gates representing 𝑈𝑈�𝑘𝑘, and then apply the methods of the previous paragraph to evaluate 

⟨σ�𝑘𝑘⟩. One example of 𝑈𝑈�𝑘𝑘 could be an operator applying the Hadamard gate 𝐻𝐻 to each qubit 

corresponding to an 𝑋𝑋� operator in σ�𝑘𝑘, and the sequence of gates 𝐻𝐻𝐻𝐻𝐻𝐻 to each qubit 

corresponding to a 𝑌𝑌�  operator. 

8.8 Error Analysis and Mitigation 

Quantum error correction, or more often error mitigation is essential for a reliable 

attainment of computations on a real QPU [163-165]. The quantum measurement, an integral 

element of any algorithm, is by itself probabilistic. In particular, expectation values of an 

operator are estimated over a large number (𝑀𝑀) of discrete measurements. On a noiseless 

quantum computer, the variance in the expectation value of the Hamiltonian is limited by: 

 
⟨ϵ2⟩ ≤

E2���

M
 

(8.11) 
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where 𝐸𝐸2���� is the average of the squared energy. It defines an uncertainty and can be resolved to 

an arbitrary level of precision by increasing the number of measurements. 

Importantly, the qubits may accumulate errors either due to the imprecise manipulation 

or interactions with environment. One of the major sources of errors that we have identified 

while collecting the data from the quantum processors is the readout error, emerging due to a 

certain probability that a qubit in a true |0⟩ state is measured as a |1⟩ or vice versa. Repeated 

measurements of prepared |0⟩ or |1⟩ states reveal transition rates 𝑤𝑤01 and 𝑤𝑤10, defined as the 

probability that |0⟩ is erroneously measured as |1⟩, or |1⟩ is measured as |0⟩, respectively. 

Moreover, the application of a particular circuit element may result in an imperfect 

transformation of the qubit state. The so-called gate noise is typically classified as a separate 

source of error but for the purpose of this study we have assumed it to be intrinsic to the 

readout error. 

The procedure of error mitigation is based on the computation of transition rates 𝑤𝑤01 

and 𝑤𝑤10 and deriving an appropriate expression to correct the measured expectation values. In 

order to estimate these rates, we have explicitly prepared the state |0⟩ (|1⟩) 100,000 times and 

counted how many |1⟩s (|0⟩s) were measured, which determines the probability that a bit flip 

occurs on a readout for the given computational state of each qubit. The transition rates need 

to be measured and updated often to ensure that the correction scheme remains effective 

across the duration of the trails. In fact, they are calculated every time before the optimization 

step is reached to take into account changes in the behavior of a specific qubit. Figure 8.5 

reports the transition rates 𝑤𝑤01 and 𝑤𝑤10 evaluated for each qubit while computing band 

energies. The transition rates are sampled once per minute across the duration of a 50 minute 
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run. The rates corresponding to a flip from |1⟩ to |0⟩ seem to oscillate with a period of roughly 

18 minutes, suggesting that environmental effects indeed modulate the behavior of qubits. 

 
Figure 8.5: The transition rates estimated for a qubit on Rigetti’s QPU. Blue circles denote the rates 
from state |𝟏𝟏⟩ to state |𝟎𝟎⟩, while red circles denote the rates from state |𝟎𝟎⟩ to |𝟏𝟏⟩. The fitted trend in 
transitions suffering from less noise is marked with a grey line. We believe these transitions to arise 
due to the environmental coupling. 

 
The measured expectation value, on a single qubit, can be corrected using the following 

expression: 

 ⟨σ�𝑐𝑐⟩ =
⟨σ�⟩ − 𝑝𝑝−

1 − 𝑝𝑝+
 

(8.12) 

with 𝑝𝑝± defined in terms of the transition probabilities for the single qubit, 𝑝𝑝± = 𝑤𝑤10 ± 𝑤𝑤01. 

The procedure can easily be generalized to any number of qubits measured in the 

computational basis [166], as follows: 

 
⟨𝑍𝑍…𝑍𝑍⟩ = � 𝑝𝑝(𝑧𝑧)�

(−1)𝑧𝑧𝑖𝑖 − 𝑝𝑝−

1 − 𝑝𝑝+

𝑛𝑛

𝑖𝑖=1𝑧𝑧ϵℤ2
𝑛𝑛

 
(8.13) 
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where 𝑧𝑧𝑖𝑖 is the 𝑖𝑖th element of bitstring 𝑧𝑧, and 𝑧𝑧 is among the set of bitstrings of length 𝑛𝑛(ℤ2𝑛𝑛). 

The fraction of measured bitstrings resulting in 𝑧𝑧 is denoted as 𝑝𝑝(𝑧𝑧). The corrections have been 

successfully applied to the quantum computation of two-band electronic structure performed 

on Rigetti. Figure 8.2(b) shows a comparison between the corrected and uncorrected data 

points (closed and open circles, respectively), demonstrating that the errors have been 

significantly reduced. 

8.9 Summary and Perspectives 

In summary, we have computed the band structure of silicon along high symmetry lines 

in the momentum space using quantum machine accessible via cloud. In order to perform 

quantum simulations beyond the tractability of modern supercomputers, we need to establish 

methods of translating a desired physical system to the language of qubits founded with 

quantum logic gates. The VQE algorithm adapted from quantum chemistry seems to be suitable 

for electronic structure computation and remarkably, is able to leverage even minimal quantum 

resources, as demonstrated by the results discussed in this work. In analogy to early quantum 

chemistry computation tackling the problems with known analytical solutions, we have selected 

the electronic structure of silicon which is considered trivial in materials science. The presented 

studies can be thus regarded as a first step towards scalable electronic structure quantum 

computation that would not be limited to a specific interaction or one particular quantum 

system. Even though the analyzed Hamiltonian was quite simple, we are convinced that adding 

interactions, field effects, or corrective terms will be possible in the nearest future. 
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CHAPTER 9 

A SYSTEMATIC VARIATIONAL APPROACH TO BAND THEORY IN A QUANTUM COMPUTER* 

Recent advances in qubit fidelity and hardware availability have driven efforts to 

stimulate molecular systems of increasing complexity in a quantum computer and motivated us 

to design quantum algorithms for solving the electronic structure of periodic crystalline solids. 

To this effect, we present a hybrid quantum-classical algorithm based on Variational Quantum 

Deflation [Higgot et al., Quantum, 2019, 3, 156] and Quantum Phase Estimation [Dobšíc ĕk et 

al., Phys. Rev. A, 2007, 76, 030306(R)] to solve the band structure of any periodic system 

described by an adequate tight-binding model. We showcase our algorithm by computing the 

band structure of a simple-cubic crystal with one 𝑠𝑠 and three 𝑝𝑝 orbitals per site (a simple model 

for Polonium) using simulators with increasingly realistic levels of noise and culminating with 

calculations on IBM quantum computers. Our results show that the algorithm is reliable in a 

low-noise device, functional with low precision on present-day noisy quantum computers, and 

displays a complexity that scales as Ω(𝑀𝑀3) with the number 𝑀𝑀 of tight-binding orbitals per 

unit-cell, similarly to its classical counterparts. Our simulations offer a new insight into the 

“quantum” mindset applied to solid state systems and suggest avenues to explore the potential 

of quantum computing in materials science. 

9.1 Introduction 

Band structures are the fundamental toolbox of materials science in the characterization 

 
* This chapter is reproduced with permission from The Royal Society of Chemistry, from the paper: A systematic 
variational approach to band theory in a quantum computer by Kyle Sherbert, Frank T. Cerasoli, and Marco 
Buongiorno Nardelli, submitted to the journal Physical Chemistry Chemical Physics in April 2021. 



141 

and discovery of the electronic properties of crystalline solids. Such periodic systems are 

typically considered infinite in extent and thus appear to require a large number of resources to 

adequately approximate. Band theory resolves this difficulty by adopting the single-electron 

approximation, in which each electron independently interacts with an effective potential 

produced by all other electrons and atomic centers. Under this approximation, a periodic 

Hamiltonian becomes separable in reciprocal space, reducing the system at any particular 

momentum 𝑘𝑘�⃗  to the complexity of a single unit cell. In this way, the eigenstates of an electron 

with momentum 𝑘𝑘�⃗  can be efficiently calculated in a classical computer; the energies of each 

eigenstate along a path through reciprocal space from the band structure of the material. 

Integrating the band structure provides early insight into structural, electronic, optical, and 

thermal properties of a material [167]. 

Band structures are an extremely useful tool but are limited by the single-electron 

approximation. Exchange and correlation effects can be treated through ad hoc correction 

terms to the effective field, but these methods fail when applied to highly-correlated systems. 

Quantum computers have the potential to surpass band theory by imposing fermionic statistics 

onto qubits and including electron correlation terms directly in the system Hamiltonian. For 

example, Quantum Phase Estimation (QPE) is a quantum algorithm which extracts eigenstate 

energies from a simulated system on a noise-resilient quantum computer at a low cost of 

computational resources [168,169]. However, quantum circuits designed for the QPE algorithm 

tend to require longer coherence times than are available in the era of Noisy Intermediate-

Scale Quantum (NISQ) devices, so recent efforts focus on hybrid algorithms which balance 

quantum and classical resource costs. In particular, a more popular algorithm for molecular 
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ground-state energy calculations is the Variational Quantum Eigensolver (VQE) [170-181]. Many 

variants of VQE have arisen in recent literature, including methods such as Variational Quantum 

Deflation (VQD) capable of exploring excited states [173]. 

These algorithms were originally developed for molecular simulation, but they are 

readily applicable to materials by adopting the tight-binding framework in which the periodic 

system is expanded in a basis of suitably constructed atomic orbitals [167,173]. One may 

simulate a periodic system of 𝑁𝑁 unit cells, each consisting of 𝑀𝑀 orbitals (see for example Cade 

et al. [175]), where 𝑀𝑀 is typically comparable to the number of orbitals considered in a single 

molecular simulation, but 𝑁𝑁 is large enough to approximate infinity. Alternatively, one may 

adopt a plane-wave basis, for which a quantum circuit is available to efficiently diagonalize the 

kinetic and potential operators directly [176]. In either approach, the size of the basis, and 

therefore the number of qubits, must be very large to accurately represent the periodic system. 

The quantum resources required to simulate a material will thus tend to be many times larger 

than those required for a molecule, and generally larger than the size of quantum computers 

available today. 

In this work, we offer an easier transition to adapt quantum algorithms for materials 

science, by implementing correlation-free band structure calculations on NISQ-era quantum 

computers. We show how the single-electron approximation accommodates a systematic 

approach to apply VQE to any periodic system. We do not expect our approach to offer any 

quantum advantage; rather, our purpose is to help materials scientists think the quantum way, 

motivating new, resource-efficient approaches to studying highly correlated systems. By 

considering the simplest available model, we can provide lower bounds on resource complexity 
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and give insight into the practical difficulties materials scientists may expect when 

implementing quantum algorithms. 

We have previously considered this topic, employing a VQE-base algorithm to iteratively 

calculated the band energies of a tight-binding silicon model (chapter 8). We now apply recent 

developments in the literature [173,177,178] to extend and improve upon our previous work. 

In section 9.2, we briefly outline the essential ideas we have taken from the literature. In 

section 9.3, we present our robust procedure for accurately calculating the band structure of 

any periodic system with a quantum computer. In section 9.4, we demonstrate our procedure 

applied to a simple-cubic lattice, presenting data from a quantum simulator and preliminary 

results from IBM’s ibmq_athens and ibmq_santiago cloud devices. In section 9.5, we discuss 

the algorithmic complexity of our procedure and highlight the steps which may or may not be 

improved in later work. 

9.2 Background 

In this section we briefly outline some essential techniques actively studied in the 

quantum computing literature. In particular, while QPE provides a robust strategy for 

measuring eigenenergies with minimal classical resources, its performance suffers greatly form 

the imperfect fidelity of NISQ devices. As such, we will focus mostly on VQE and its close cousin 

VQD when measuring eigenspectral, applying QPE when available as an optional refinement. 

9.2.1 Quantum Phase Estimation 

In the QPE algorithm [168,169], a set of qubits (the “state register”) are first prepared 

into an eigenstate |ψ⟩ of a unitary operator 𝑈𝑈�, such that  𝑈𝑈�|ψ⟩ = 𝑒𝑒2π𝑖𝑖ϕ|ψ⟩. The unitary 
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operator 𝑈𝑈 is then repeatedly applied as a controlled quantum circuit so that the phase shift ϕ 

is encoded into another set of qubits (the “readout register”). Measurements on the readout 

register give the binary expansion of ϕ. In molecular simulations one selects 𝑈𝑈� ≡ exp�iH�τ�, the 

operator which evolves a system with Hamiltonian 𝐻𝐻� by a unit time τ. If one first transforms 𝐻𝐻� 

to guarantee that all possible energies 𝐸𝐸 fall within the interval [0,2π/τ), the measured phases 

ϕ map directly onto an eigenstate |ψ⟩ and its eigenvalue ϕ has an exact binary expansion, but 

it retains some probability of success when both conditions are relaxed. Thus, QPE can be 

adapted to discover eigenstates and eigenvalues a priori, at the cost of additional rounds of 

measurement. 

Generally, 𝐻𝐻� is given as a weighted sum of non-commuting Pauli words (section 9.3.1). 

An exact circuit for 𝑈𝑈� ≡ exp�iH�τ� is not readily available, but can be closely approximated by 

Suzuki-Trotter expansion, which factors 𝑈𝑈� into many small-time slices [179]. The number of 

time slices scales polynomially with the accuracy required, and the depth of each time slice 

depends on the number of commuting groups in 𝐻𝐻�. For this reason, QPE is extremely 

susceptible to errors arising from the low gate fidelity and short coherence times which plague 

NISQ devices. Alternative approaches scale more favorably with error at the cost of ancilla 

qubits [180,181]. 

9.2.2 Variational Quantum Eigensolver 

In the VQE algorithm [170,171], one begins with a Hamiltonian 𝐻𝐻�, represented as a 

weighted sum of non-commuting Pauli words, and a parameterized quantum circuit 𝑉𝑉��θ�⃗ �, the 

“ansatz”, which prepares a set of qubits into an arbitrary state (section 9.3.2). The ansatz is 
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applied on an ensemble of states such that qubit measurements give the expectation value of 

each Pauli word in 𝐻𝐻�. The weighted sum of expectation values gives the energy 𝐸𝐸(θ) of the 

arbitrary state prepared – this procedure is called “operator estimation” [171,182]. The 

parameters θ are varied by a classical optimization routine until 𝐸𝐸 is minimized. According to 

the variational principle, this minimum is exactly the ground-state energy of the system when 

the ansatz 𝑉𝑉��θ�⃗ � is robust (ie. It spans the full Hilbert space of the system), and if the classical 

optimization succeeds in producing the global minimum. 

The algorithmic complexity of VQE depends on several factors. Measuring the 

expectation value of a Pauli word is a stochastic process, requiring a large number of 

measurements on the order of 𝑂𝑂(ϵ−2) for an acceptable sampling noise ϵ. These ensembles are 

usually measure for each Pauli word in 𝐻𝐻�, although recent advances reduce the sive of the 

ensemble by simultaneously measuring each commuting group of Pauli words [183] or by 

“classically shadowing” [184] the quantum circuit to require only a logarithmic number of 

measurements. Like in QPE, the efficiency of the algorithm is determined by the complexity of 

𝐻𝐻�, and every element of the ensemble requires a unique application of the ansatz, meaning 

that the circuit depth and gate count should be kept minimal. The dimension of the ansatz also 

determines the efficiency and efficacy of the classical optimization. For all these reasons, VQE 

tends to be impractical for perfectly robust ansatze, and much of the literature focuses on 

methods for constructing effective ansatze accounting for system symmetries and hardware 

limitations [177,185-188]. Because circuit depth and gate count are kept low, VQE is well-suited 

to NISQ devices. 



146 

9.2.3 Variational Quantum Deflation 

Variational Quantum Deflation (VQD) [173] is one approach for extending the VQE 

algorithm to explore excited states in addition to the ground-state. VQD begins as a typical VQE 

run to locate the ground-state, and the ground-state parameterization θ�⃗ 0 is recorded. The 

variational process is then repeated with an additional term in the optimization routine’s cost 

function, which gives the overlap between the current ansatz and the ground-state, weighted 

by a factor β. States similar to the ground-state will be shifted into a higher effective energy, so 

that the optimization routine considers them unfavorable. Meanwhile, higher-energy 

eigenstates must be orthogonal to the ground-state, so their overlap contribution will be zero. 

Therefore, the next lowest energy that can be found is the first excited state. This process is 

repeated for each energy level, adding a new overlap term for each eigenenergy already found. 

Each overlap can be evaluated as the expectation value of a single commuting group of Pauli 

words in the Hamiltonian, so that the total number of additional measurements after finding 𝑀𝑀 

eigenvalues is Θ(𝑀𝑀2). If 𝐻𝐻� consists of Ω(𝑀𝑀) commuting groups, measured for each of 𝑀𝑀 energy 

levels, then the additional cost of the overlap circuits is negligible. 

9.3 Method 

Our objective is to calculate the band structure of a periodic system, as described by a 

tight-binding Hamiltonian 𝐻𝐻� of the form: 

 𝐻𝐻� = �𝑡𝑡αβ𝑐𝑐α
†𝑐𝑐β

α,β

 (9.1) 

Each 𝑐𝑐𝑗𝑗
† and 𝑐𝑐𝑗𝑗 represent a creation and annihilation (ladder) operator on an atomic orbital ϕ𝑗𝑗, 

centered on a coordinate 𝑟𝑟𝚥𝚥��⃗  in the crystal. The hopping parameters 𝑡𝑡α,β denote the energy cost 



147 

of an electron transition from orbital ϕβ to orbital ϕα. They are calculated from the overlap 

integrals between each pair of orbitals ϕα and ϕβ, or they are selected to fit empirical 

observations. A general tight-binding Hamiltonian may also include multi electron correlations 

such as 𝑡𝑡αβγδ𝑐𝑐α
†𝑐𝑐β

†𝑐𝑐γ𝑐𝑐δ, but we neglect these terms in this work. 

Our strategy is to transform equation 9.1 into reciprocal space and to apply VQD to 

solve for each eigenenergy at each momentum 𝑘𝑘�⃗  along the desired path through reciprocal 

space. When sufficient quantum resources are available, we refine each band energy with QPE. 

Our procedure for mapping a single-electron periodic system onto a set of qubits is derived in 

section 9.3.1. The variational ansatz we have selected, suitable for any band structure 

calculation, is described in section 9.3.2. Details of implementing the quantum algorithm are 

presented in section 9.3.3. Finally, we provide a step-by-step schematic of our algorithm and its 

relation to VQE in figure 9.2. 

9.3.1 Qubit Mapping 

The Hamiltonian in equation 9.1 consists of ladder operators acting on atomic orbitals. 

The Hamiltonians appearing in the quantum algorithms of section 9.2 consist of Pauli words 

acting on qubits. We define a “Pauli word” 𝑃𝑃𝚤𝚤�  as an operator acting independently on each qubit 

with either the identity 𝐼𝐼 or one of the Pauli spin matrices 𝑋𝑋�, 𝑌𝑌� , 𝑍̂𝑍. Pauli words are a natural 

choice for representing physical operators in a quantum computer because their expectation 

values can be readily measured and their unitary time evolution 𝑒𝑒𝑒𝑒𝑒𝑒�𝑖𝑖𝑃𝑃�𝑖𝑖𝑡𝑡� can be readily 

implemented as a quantum circuit [189]. Our goal in this section is to map our atomic orbitals 

onto a qubit basis, and our Hamiltonian to a weighted sum of Pauli words: 
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 𝐻𝐻� = ��𝑡𝑡αβ𝑐𝑐α
†𝑐𝑐β

βα

→� ai𝑃𝑃�𝑖𝑖
i

 (9.2) 

9.3.1.1 Qubit Basis 

The simplest conceivable mapping between orbitals and qubits is to identify each orbital 

with its own qubit. The qubit state |1⟩ represents an occupied orbital, while |0⟩ is empty. There 

are however an infinite number of orbitals in an infinite crystal, and quantum computers with 

an infinite number of qubits are beyond our engineering capabilities. We therefore reinterpret 

𝐻𝐻� as the Hamiltonian of an arbitrarily large supercell with periodic boundary conditions, 

consisting of 𝑁𝑁 unit cells, each with 𝑀𝑀 orbitals. 

 
H� = ��� � 𝑡𝑡αβ

δ��⃗ 𝑐𝑐ν�⃗ ′α
† 𝑐𝑐ν�⃗ β

M−1

β=0

M−1

α=0

N

ν�⃗ ′

N

ν�⃗

 
(9.3) 

Hopping parameters are now dependent on the orbitals α, and β and the displacement vector 

δ�⃗ ≡ r⃗ν�⃗ ′α − r⃗ν�⃗ β between their atoms. As δ�⃗  increases, 𝑡𝑡αβ
δ��⃗  tends to vanish, permitting a nearest-

neighbor approximation in which one considers only the smallest δ�⃗ . 

Equation 9.3, when supplemented with two-electron correlation terms, is the form 

typically considered when applying quantum algorithms to periodic systems, requiring a total of 

𝑀𝑀𝑀𝑀 qubits. In the single-electron approximation, however, we can reduce the size of the 

system to only 𝑀𝑀 qubits by transforming into reciprocal space. Reciprocal space orbitals are 

characterized by their own ladder operators 𝑐̃𝑐𝑘𝑘�⃗ 𝑗𝑗
†  and 𝑐̃𝑐𝑘𝑘�⃗ 𝑗𝑗, related to 𝑐𝑐ν�⃗ ′α

†  and 𝑐𝑐ν�⃗ β by Fourier 

transform: 

 𝑐𝑐ν�⃗ ′α
† =

1
√𝑁𝑁

�𝑒𝑒𝑖𝑖𝑘𝑘�⃗
′⋅𝑟𝑟ν��⃗ ′α𝑐̃𝑐𝑘𝑘�⃗ ′α

†

𝑘𝑘�⃗ ′

 (9.4a) 
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 𝑐𝑐ν�⃗ β =
1
√𝑁𝑁

�𝑒𝑒−𝑖𝑖𝑘𝑘�⃗ ⋅𝑟𝑟ν��⃗ β𝑐̃𝑐𝑘𝑘�⃗ β
𝑘𝑘�⃗

 (9.4b) 

Substituting equations 9.4 into equations 9.3, we obtain 

 
𝐻𝐻� = ��� ��

1
𝑁𝑁
��𝑡𝑡αβ

δ��⃗

ν�⃗ ′ν�⃗

𝑒𝑒𝑖𝑖�𝑘𝑘�⃗
′⋅𝑟𝑟ν��⃗ ′α−𝑘𝑘�⃗ ⋅𝑟𝑟ν��⃗ β�𝑐̃𝑐𝑘𝑘�⃗ ′α

† 𝑐̃𝑐𝑘𝑘�⃗ β�
𝑀𝑀−1

β=0

𝑀𝑀−1

α=0

𝑁𝑁

𝑘𝑘�⃗ ′

𝑁𝑁

𝑘𝑘�⃗

 
(9.5) 

We simply this by recalling 𝑟𝑟ν�⃗ ′α = 𝑟𝑟ν�⃗ β + δ�⃗ . Then 𝑟𝑟ν�⃗ ′α becomes a common factor of each 𝑘𝑘�⃗  in 

the exponential, and we may exploit the orthogonality relation 1
𝑁𝑁
∑ 𝑒𝑒𝑖𝑖�𝑘𝑘�⃗

′−𝑘𝑘�⃗ �⋅𝑟𝑟ν��⃗ ′αν�⃗ ′ = δ𝑘𝑘�⃗ ′𝑘𝑘�⃗ . 

Summing over δ𝑘𝑘�⃗ ′𝑘𝑘�⃗ , we obtain 𝐻𝐻� = ∑ 𝐻𝐻�𝑘𝑘�⃗𝑘𝑘�⃗ , where 

 
𝐻𝐻�𝑘𝑘�⃗ ≡ � � 𝐻𝐻αβ�𝑘𝑘�⃗ � 𝑐̃𝑐𝑘𝑘�⃗ α𝑐̃𝑐𝑘𝑘�⃗ β

𝑀𝑀−1

β=0

𝑀𝑀−1

α=0

 
(9.6) 

 𝐻𝐻αβ�𝑘𝑘�⃗ � ≡�𝑡𝑡αβ
δ 𝑒𝑒𝑖𝑖𝑘𝑘�⃗ ⋅δ��⃗

δ��⃗

 (9.7) 

Each momentum 𝑘𝑘�⃗  contributes an independent subsystem with only 𝑀𝑀 orbitals, whose 

eigenenergies may be solved independently. Classically, the values 𝐻𝐻αβ�𝑘𝑘�⃗ � in equation 9.7 form 

an 𝑀𝑀 × 𝑀𝑀 Hermitian matrix whose eigenvalues can be efficiently calculated with standard 

linear algebraic techniques in Θ(𝑀𝑀3) time. This work instead considers how to calculate these 

eigenvalues the “quantum” way. 

We focus on a specific 𝐻𝐻�𝑘𝑘�⃗  for the remainder of this section, with the understanding that 

our procedure must be repeated for each momentum 𝑘𝑘�⃗  along the path of interest in reciprocal 

space. Equation 9.3 has a form very similar to equation 9.1, except that it acts on the reciprocal-

space orbitals rather than atomic orbitals. We therefore adopt a “reciprocal-orbital” basis, in 

which each reciprocal-space orbital is identified with its own qubit. 
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9.3.1.2 Hamiltonian Mapping 

Having transformed our Hamiltonian into reciprocal space (equation 9.6), we must now 

consider mapping each ladder operator to a set of Pauli words. The ladder operators must 

satisfy the following: 

 𝑐̃𝑐|0⟩ = 0   𝑐̃𝑐|1⟩ = |0⟩ (9.8a) 

 𝑐̃𝑐†|0⟩ = |1⟩  𝑐̃𝑐†|1⟩ = 0 (9.8b) 

Meanwhile, the Pauli spin operators 𝑋𝑋�, 𝑌𝑌� , 𝑍̂𝑍 act on a qubit’s basis states in the following way: 

 𝑋𝑋�|0⟩ = |1⟩  𝑋𝑋�|1⟩ = |0⟩ (9.9a) 

 −𝑖𝑖𝑌𝑌�|0⟩ = |1⟩  𝑖𝑖𝑌𝑌�|1⟩ = |0⟩ (9.9b) 

 𝑍̂𝑍|0⟩ = |0⟩  −𝑍̂𝑍|1⟩ = |1⟩ (9.9c) 

It is easy to verify that the following mapping suffices for a single qubit: 

 𝑐̃𝑐 →
1
2
�𝑋𝑋� + 𝑖𝑖𝑌𝑌�� (9.10a) 

 𝑐̃𝑐† →
1
2
�𝑋𝑋� − 𝑖𝑖𝑌𝑌�� (8.10b) 

In multi-electron systems, one typically adopts the Jordan-Wigner transformation, which 

retains the form of equations 9.10 but appends a 𝑍̂𝑍 operation on Θ(𝑀𝑀) other qubits to enforce 

fermionic antisymmetry. Alternatively, one may adopt the Bravyi-Kitaev transformation, which 

requires operations on only Θ(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) qubits but uses a non-intuitive basis and involves non-

adjacent interactions more difficult to simulate on certain qubit architectures. We refer the 

reader to Seely et al. [189] for an excellent introduction to both transforms. However, because 

we are considering single-electron systems, there are no other fermions to exchange with, and 

we may use equations 9.10 directly, so that each ladder operator acts on only Θ(1) qubits. 

We may rewrite equation 9.6 to exploit the Hermiticity of 𝐻𝐻�𝑘𝑘�⃗ . 
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 𝐻𝐻�𝑘𝑘�⃗ = �𝐻𝐻αα𝑐𝑐α
†𝑐𝑐α

α

+ 2��𝑅𝑅𝑅𝑅�𝐻𝐻αβ𝑐𝑐α
†𝑐𝑐β�

β>αα

 (9.11) 

Since the transpose term 𝐻𝐻βα𝑐𝑐β
†𝑐𝑐α = �𝐻𝐻αβ𝑐𝑐α

†𝑐𝑐β�
†
. Applying equations 9.10 and noting 𝑋𝑋�2 =

𝑌𝑌�2 = 𝐼𝐼, −𝑖𝑖𝑋𝑋�𝑌𝑌� = 𝑖𝑖𝑌𝑌�𝑋𝑋� = 𝑍̂𝑍: 

 𝐻𝐻� →
1
2
�𝐻𝐻αα�𝐼𝐼 − 𝑍̂𝑍α�
α

+
1
2
��𝑅𝑅𝑅𝑅�𝐻𝐻αβ��𝑋𝑋�α𝑋𝑋�β + 𝑌𝑌�α𝑌𝑌�β�

β>αα

+
1
2
��𝐼𝐼𝐼𝐼�𝐻𝐻αβ��𝑌𝑌�α𝑋𝑋�β − 𝑋𝑋�α𝑌𝑌�β�

β>αα

 

 

(9.12) 

Equation 9.12 provides the weighted sum of Pauli words required in the quantum algorithms of 

section 9.2. 

Equation 9.12 consists of Θ(𝑀𝑀2) Pauli words. The complexity of each algorithm in 

section 9.2 is determined in part by the number of commuting groups in 𝐻𝐻�. In equation 9.12, all 

terms of the form 𝑍̂𝑍α, 𝑋𝑋�α𝑋𝑋�β, and 𝑌𝑌�α𝑌𝑌�β each form commutative groups. Therefore, when 𝐻𝐻�𝑘𝑘�⃗  has 

no imaginary part, the energy can be determined with just 3 rounds of measurement. When 𝐻𝐻�𝑘𝑘�⃗  

does have an imaginary part, we note that for fixed α, 𝑌𝑌�α𝑋𝑋�β>α and 𝑋𝑋�α𝑌𝑌�β>α each form 

commutative groups, so in general we have Θ(𝑀𝑀) commuting groups. Finally, we note that 

each of these commuting groups are qubit-wise commutative, meaning that each index of all 

Pauli words in the set has either the same spin operator or the identity. This accommodates a 

particularly simple procedure for measuring expectation values of each set simultaneously, 

requiring no additional overhead in the measurement circuit. 

9.3.2 Ansatz 

The VQE and VQD algorithms require an ansatz – a parameterized quantum circuit 𝑉𝑉��θ�⃗ � 
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preparing a trial state Ψ�θ�⃗ � = 𝑉𝑉��θ�⃗ �|0⟩ for energy measurements. A quantum circuit to span 

the full Hilbert space of 𝑀𝑀 quibts requires 2(2𝑀𝑀 − 1) parameters, and it will not generally have 

an efficient decomposition into one- and two-qubit gates. However, most applications to 

molecular simulation consider a system with fixed number of electrons. In the orbital basis, or 

in our reciprocal orbital basis, one need only consider that subset of Hilbert space spanned by 

the basis states whose Hamming weights match the number of electrons in our system. For 

example, in band structure calculations we consider just one electron, so we need only consider 

the space spanned by |10 … ⟩, |010 … ⟩, etc… 

 

 

Figure 9.1: (a) The ansatz 𝑽𝑽��𝛉𝛉��⃗ � suitable for any band structure calculation. (b) One constituent 
𝑨𝑨(𝛉𝛉,𝛟𝛟) gate. Each qubit is initialized in the |𝟎𝟎⟩ state; the output is an arbitrary superposition of states 
with a single qubit in the |𝟏𝟏⟩ state. 

 
Gard et al. [177] provide a procedure for generating variational ansatz which conserve 

particle number, which is particularly simple when the particle number is 1. We begin with 𝑀𝑀 
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qubits labeled 0 through 𝑀𝑀 − 1 in the state |0⟩. First, we apply an 𝑋𝑋� gate to qubit 0, to set our 

ansatz with a single filled orbital. Then we apply the entangling parameterized 𝐴𝐴 gate [177] 

such that each qubit is entangled directly or indirectly with qubit 0 (see figure 9.1). This ansatz 

requires 𝑀𝑀 − 1 𝐴𝐴 gates, each contributing two independent parameters, for a total of Θ(𝑀𝑀) 

gates and parameters. The circuit is compatible with any quantum architecture exhibiting linear 

qubit connectivity and has a depth of Θ(𝑀𝑀). Alternatively, in a fully connected device, the 𝐴𝐴 

gates could be applied with a “divide-and-conquer” strategy, reducing the circuit depth to 

Ω(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙). 

Rather than assigning each orbital to its own qubit, we could assign each orbital to an 

individual basis state, requiring only Θ(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) qubits total. This is the approach of chapter 8. 

While this is more efficient in the number of qubits, it must explore states with an arbitrary 

Hamming weight. The number of parameters required to span the space of interest is 

unchanged, and a suitable Hamiltonian mapping will generally form the maximum number 

3𝑙𝑙𝑙𝑙𝑔𝑔2𝑀𝑀 = 𝑀𝑀𝑙𝑙𝑙𝑙𝑔𝑔23 of commuting sets, and is more difficult to reduce based on symmetries in the 

Hamiltonian (for example our observations in section 9.3.1 that a real 𝐻𝐻�𝑘𝑘�⃗  results in Θ(1) rounds 

of measurements). 

9.3.3 Band Structure Calculations 

With our ansatz 𝑉𝑉��θ�⃗ � (figure 9.1) and qubit Hamiltonian 𝐻𝐻�𝑘𝑘�⃗  (equations 9.7 and 9.12) 

prepared, we are ready to implement VQD for each momentum 𝑘𝑘�⃗  along a path through 

reciprocal space. This path is usually constructed from high-symmetry segments in the crystal’s 

First Brillouin Zone, because this proves sufficient to calculate many properties of interest. As 



154 

briefly described in section 9.2, the idea is to vary the trial state prepared by our ansatz until 

the energies 𝐸𝐸 ≡ �𝐻𝐻�� is minimized. We repeat the optimization for each band energy, adding 

additional terms to the cost function proportional to the overlap between the trail state and 

each previously found eigenstate, weighted by the constant factor β. 

 
Figure 9.2: A schematic of our algorithm and its relation to VQE. Our algorithm takes tight-binding 

parameters 𝒕𝒕𝜶𝜶𝜶𝜶
�𝜹𝜹��⃗ � as input and outputs each band energy 𝑬𝑬𝒍𝒍�𝜽𝜽��⃗ �. Optionally, each band energy may be 

refined with QPE. The operator 𝜴𝜴�𝟎𝟎 is the sum of all Pauli words spelled with letters 𝑰𝑰� and 𝒁𝒁�. The 
operator 𝑽𝑽� is the quantum circuit presented in figure 9.1. 

 
The expectation values �𝐻𝐻�� of a generic observable cannot be directly measured in the 

quantum computer. Rather, the expectation value of each Pauli word 𝑃𝑃�𝑖𝑖  are measure 

dindependently, and the energy is evaluated from the weighted sum �𝐻𝐻�� = ∑ aii �P�𝑖𝑖�, with 

weights 𝑎𝑎𝑖𝑖 taken from equation 9.12. Obtaining the Pauli expectation values �P�𝑖𝑖� is also 

somewhat indirect. First, the Pauli word 𝑃𝑃�𝑖𝑖  should be transformed so that it contains only 

letters 𝐼𝐼 or 𝑍̂𝑍 – let us refer to the modified Pauli word as 𝑄𝑄�𝑖𝑖. In practice, the transformation is 

easily accomplished by applying a “basis rotation” gate to each qubit before measurement. 

Next, each qubit is measured to be in one of the two computational basis states |0⟩ or |1⟩. The 

bitstring obtained from concatenating the state of each qubit is itself an eigenstate of 𝑄𝑄�𝑖𝑖, with 
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eigenvalue +1 or −1. This procedure is applied to a large ensemble of qubits, each prepared 

independently with the ansatz and basis rotation gates. The expectation value �𝑃𝑃�𝑖𝑖� is the 

average of all the eigenvalues of 𝑄𝑄�𝑖𝑖 measured across the ensemble. 

The ensemble necessarily has a finite size 𝑆𝑆, introducing an energy variance on the order 

of ϵ2 𝑂𝑂(1/𝑆𝑆). In practice, the ensemble is usually prepared in sequence, resetting a single 

register of qubits after each round of measurement, relegating the sampling error ϵ a 

parameter in the time complexity of any VQE-based algorithm. Fortunately, the same ensemble 

may be used to calculate the expectation values of any Pauli word which is qubit-wise 

commutative with 𝑃𝑃�𝑖𝑖. For simplicity, we assign 𝑆𝑆 = 8096 for each commuting group in this 

work, although advanced methods exist which optimally distribute measurements to minimize 

the sampling error ϵ [182]. 

Many popular optimization routines (e.g. SLSQP, BFGS) are gradient-based, and they 

have difficulty converging to the correct value in the presence of sampling noise. Therefore, we 

use COBYLA, a simplex-based algorithm implemented in the SciPy Python package, which we 

have empirically noted to give good results. We randomly generate our initial guess for the 

parameters θ�⃗ , and we use the default tolerance parameters implemented by SciPy. These 

choices are by far the simplest, but they are by no means optimal, and our results may be 

improved greatly by a more careful choice of optimization routine [190]. 

Before we can implement the deflation procedure, we must select the constant β 

suitable for “deflating” each band energy. We do this with a systematic procedure, first 

maximizing the energy of our system to find the highest possible energy 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚. We then 

minimize the energy to find 𝐸𝐸0 and Δ ≡ 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐸𝐸0. In theory, β = Δ is a sufficiently high 
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number to guarantee each eigenstate is projected sufficiently out of the optimization in later 

steps. In practice, we take β = 2Δ to insure against errors in the sampling and optimization 

process. 

Higgot et al. [173] offer several strategies for computing the overlap, offering 

robustness against error at the const of ancilla qubits or additional optimization steps. In this 

work, we choose the simplest, evaluating the overlap with an eigenstate Ψ�θ�⃗ 𝑙𝑙� by preparing 

the trial state Ψ�θ�⃗ � and applying the adjoint circuit 𝑉𝑉�𝑙𝑙
† ≡ 𝑉𝑉†��θ�⃗ 𝑙𝑙�. The probability of measuring 

the bitstring 0 … 0 gives the overlap ��Ψ�θ�⃗ ��Ψ�θ�⃗ 𝑙𝑙���
2
. In practice, the probability of measuring 

bitstring 0 … 0 is equivalent to the expectation value of an operator Ω0 ≡ ∑ 𝑄𝑄�𝑖𝑖𝑖𝑖 , the sum of all 

unique Pauli words spelled with the letters 𝐼𝐼 and 𝑍̂𝑍 (eg. 𝐼𝐼𝐼𝐼𝐼𝐼, 𝐼𝐼𝐼𝐼𝑍̂𝑍, … 𝑍̂𝑍𝑍̂𝑍𝑍̂𝑍). All such operators are 

qubit-wise commutative and can be estimated with a single round of measurements. Therefore, 

we can implement the deflation procedure conveniently in the qiskit Python package provided 

by IBM, by solving for each band energy and then adding to our Hamiltonian the deflation 

operator β𝑉𝑉�𝑙𝑙Ω�0𝑉𝑉�𝑙𝑙
†. 

Initializing the Hamiltonian 𝐻𝐻�0 ≡ 𝐻𝐻�𝑘𝑘�⃗ , our procedure can be formally summarized as 

follows: 

 θ�⃗ 𝑙𝑙 ≡ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�0�𝑉𝑉�†�θ�⃗ �𝐻𝐻�𝑙𝑙𝑉𝑉��θ�⃗ ��0� (9.13) 

 𝑉𝑉�𝑙𝑙 ≡ 𝑉𝑉��θ�⃗ �|0⟩ (9.14) 

 𝐸𝐸𝑙𝑙 ≡ �0|V� l
†𝐻𝐻�𝑙𝑙𝑉𝑉�𝑙𝑙�0� (9.15) 

 𝐻𝐻�𝑙𝑙+1 ≡ 𝐻𝐻�𝑙𝑙 + β𝑉𝑉�𝑙𝑙Ω�0𝑉𝑉�𝑙𝑙
† (9.16) 

Each 𝐸𝐸𝑙𝑙  we find is recorded as the energy of the 𝑙𝑙th band at momentum 𝑘𝑘�⃗ , and we repeat the 
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procedure for each 𝑘𝑘�⃗  in our selected path. 

Optimization routines do not always converge to the true minimum, and errors incurred 

early in the deflation procedure can propagate unfavorably to higher bands. Therefore, we 

include an optional QPE refinement to our algorithm, which applies QPE refinement to state 

Ψ ≡ 𝑉𝑉�𝑙𝑙|0⟩. QPE has the effect of selecting the dominant eigenstate of Ψ𝑙𝑙  and giving the 

corresponding eigenenergy with high precision. Thus, as long as the optimization procedure is 

“good enough”, we may update our energy calculations with the result of the QPE experiment. 

We have used the iterative version of QPE implemented in qiskit. Details of the algorithm can 

be found in Dobšíc ̆ek et al. [169]. 

9.4 Results 

To demonstrate our procedure, we consider a basic model for a material in a simple 

cubic lattice structure (see figure 9.3). Each atom has 𝑠𝑠, 𝑝𝑝𝑥𝑥, 𝑝𝑝𝑦𝑦, and 𝑝𝑝𝑧𝑧 orbitals (𝑀𝑀 = 4), with a 

large energy gap between the 𝑠𝑠 and 𝑝𝑝 orbitals. This may be considered a rough model for 

elemental Polonium, although more accurate models should take into account the relativistic 

effects and Coulomb interaction between orbitals located on the same atom [190,192]. The 

exact eigenenergies of our model at specific k-points along a high-symmetry path are calculated 

using standard linear algebraic techniques to diagonalize the matrix elements in equation 9.7 . 

We compare this band structure to the results from the quantum algorithm presented in 

section 9.3 in four different levels of simulation. 

1. Statevector – quantum operations are simulated with unitary matrices, and 
expectation values are calculated exactly. 

2. Sampling – expectation values are now calculated by sampling from a probability 
distribution. 
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3. Noisy – quantum operations and measurements are now applied with an error rate 
drawn from real quantum devices. 

4. Calibrated – the same noisy simulator is used, but classical post-processing steps are 
applied to mitigate the error. 

We also present preliminary results from IBM quantum devices. 

9.4.1 Statevector Simulator 

To validate our algorithm’s capability of producing the correct band structure, we model 

the state of an 𝑛𝑛 qubit system as a complex statevector and quantum operations as unitary 

matrices acting on the Hilbert space spanned by the 2𝑛𝑛 dimensional basis vectors. Expectation 

values are evaluated analytically. Such a simulation gives the ideal behavior of a quantum 

computer, with perfect qubit fidelity and no sampling variance.  

 
Figure 9.3: Statevector Simulator – The band structure of a simple cubic lattice with 𝒔𝒔 and 𝒑𝒑 orbitals 
(right inset) along the high-symmetry path XMΓ through the lattice’s First Brillouin Zone (left inset). 
Solid curves denote classical (exact) diagonalization. Diamonds denote the median optimization result 
from applying our method on a noiseless statevector simulator 32 times with a different random seed. 
Bars (only visible between the third and fourth bands at nearly-degenerate momenta) denote 
interquartile ranges. Hopping parameters are 2 eV between adjacent 𝒔𝒔 and 𝒑𝒑 orbitals and 2 eV 
between colinear 𝒑𝒑 orbitals. Each 𝒔𝒔 orbital has self-energy of −𝟏𝟏𝟏𝟏 eV to generate a large band gap. 
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Figure 9.3 summarizes the results of over 32 randomly-seeded optimization runs, marking the 

median optimization with a diamond and the interquartile range with a bar. For a few momenta 

where the third and fourth bands are very close together, optimization tends to locate the 

wrong eigenstate, giving a small variance in results. For every other point, the diamond 

coincides perfectly with the classical solution and the bar is absent, demonstrating that our 

ansatz is robust, the deflation procedure is mathematically sound, and that our choice of 

optimization routine (COBYLA) is generally consistent in converging to the correct values on a 

smooth surface. 

9.4.2 Sampling Simulator 

We now consider long-term viability of our procedure by retaining perfect qubit fidelity 

but simulating realistic measurement. The same unitary matrices as in the statevector simulator 

are applied to an ensemble of states, which are “measured” by sampling from the resulting 

probability distribution a finite number of times. While mathematically equivalent, the sampling 

noise resulting from the stochastic measurement process can make the energy surface bumpy, 

which can have a detrimental effect on the optimization step. We have selected the COBYLA 

optimization algorithm because it is resistant to these bumps; nevertheless, the anomalous 

variance observed at nearly degenerate points in the statevector simulator is now 

commonplace. Figure 9.4 shows our results on the noiseless qubit simulator over 32 randomly-

seeded runs, clearing marking the median (asterisk) and mean (X) for both optimization (left) 

and QPE refinement (right). The smaller dots denote the results of individual trials. 

The optimization results are extremely accurate and precise on the high-symmetry 

momenta but deviate slightly on the intermediate points. In fact, the high symmetry points in 
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this particular model each happen to have matrices 𝐻𝐻αβ�𝑘𝑘�⃗ � (equation 9.7) which are already 

diagonalized, and the resulting cost function yields a well-behaved surface which is reliably 

optimized, even in the presence of noise. Averaged results on the intermediate points still tend 

to be quite good, but individual trials can exhibit a large variance. However, the optimization 

does succeed in finding a point close enough to a correct eigenstate that the QPE refinement 

consistently extracts the dominant eigenvalue with a high precision. The median QPE results 

prove to be as accurate as is permitted by the finite binary expansion calculated by the 

algorithm. 

 
Figure 9.4: Sampling Simulator – Our method applied in the presence of sampling noise (high-fidelity 
qubits). The left column shows raw optimization results; the right column shows the energy obtained 
by QPE refinement. Gray dots denote the results from each of 32 trials, with each band given on its 
own row. The asterisk and X denote the median and mean, respectively. 
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9.4.3 Noisy Simulator 

We now consider the realistic application of our procedure on present-day quantum 

computers, which suffer from relatively short coherence times and are vulnerable to a number 

of error sources. This makes practical computations extremely difficult, even in systems 

requiring relatively few qubits. We model error sources with a simulator by occasionally 

introducing “bit flips” after applying a unitary operation or when measuring a qubit.  

 
Figure 9.5: Noisy Simulator – Our method applied while simulating low-fidelity qubits, without 
calibration. The left column shows raw optimization results; the right column shows the energy 
obtained by QPE refinement. Gray dots denote the results from each of 32 trials, with each band given 
on its own row. The asterisk and X denote the median and mean, respectively. 

 
Figure 9.5 shows our results on a simulator emulating the error rates characteristic of IBM’s 

ibmq_athens quantum computer. Qubit noise has a clearly negative impact on the quality of 

results. Lowest-band optimization results tend to suffer a large systematic shift, characteristic 
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of coherent noise in a quantum computer. Additionally, while average QPE refinement often 

improves energy estimates, its results are now clustered with some variance around each 

nearby band, and on occasion (e.g. the third band between M and Γ) the mean optimization 

result is more accurate. This is symptomatic of the long circuit requirements for QPE and 

supports the widely-believed notion that variational algorithms are better suited to NISQ 

devices. 

9.4.4 Calibrated Simulator 

Although automated error correction procedures, based on redundant qubit registers 

and applied during calculation, are the most promising path toward practical quantum 

computation, several classical post-processing methods have already proven successful in 

mitigation error. Errors modeled by bit-flips in the measurement process (“readout error”) can 

be mitigated in part or entirely, at the cost of additional calibration circuits [193]. Errors 

modeled by bit-flips as each unitary operation is applied (“gate error”) tend to result in 

systematic distortions of the energy surface, as we have seen in the optimization results of 

figure 9.5. Theses distortions can be mitigated by applying Zero-Noise Extrapolation (ZNE) [178] 

in which the same measurements are repeated several times, each time modifying the circuit to 

incur more noise. These measurements can then be extrapolated to a hypothetical circuit with 

zero noise, using Richardson extrapolation or a similar method. 

Figure 9.6 shows our results on a noisy simulator, applying readout calibration and ZNE 

for each energy evaluation during the optimization. ZNE offers noticeable improvement in the 

highest and lowest bands (calculated independently), but appears less impactful on the 

intermediate bands (calculated after deflation), perhaps even increasing variance in the third 
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band. This may be explained by noting that ZNE is designed to assume systematic error, and 

this is what we tend to observe when we can rely on the variational principle, where energies 

cannot in principle be measured below the ground-state energy.  

 
Figure 9.6: Calibrated Simulator – Our method applied while simulating low-fidelity qubits, along with 
rudimentary calibration. The left column shows raw optimization results; the right column shows the 
energy obtained by QPE refinement. Gray dots denote the results from each of 32 trials, with each 
band given its own row. The asterisk and X denote the median and mean, respectively. The squares 
and diamonds on the left denote the energies measured on quantum devices ibmq_santiago and 
ibmq_athens respectively, using the least-error optimization results obtained with the calibrated 
simulation data. Device architecture constrains the length of quantum circuits, and QPE results for 
either device could not be obtained. 

 
This is not always true because our energy estimates the linear combinations of stochastically 

evaluated Pauli expectation values, and on occasion we do observe trials which appear above 

the highest band, but these points are relatively rare, and the average values on the highest 

and lowest bands are shifted inwards. However, the deflation circuits 𝑉𝑉�0 are somewhat 
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different for each trial, depending on exactly what eigenstate was selected for the lowest band, 

and this, coupled with the coherent qubit error, has the effect of inducing a random noise on 

the intermediate bands. This explains why the intermediate bands seem to suffer a larger 

variance but reasonable average values. We note that many other error mitigation techniques 

besides readout calibration and ZNE have been proposed in the literature, and our results can 

likely be improved greatly by implementing more of them. Nevertheless, the best solution to 

combat random error remains averaging over more and more trials. 

In addition to statistics from a calibrated simulator, figure 9.6 also shows data from the 

IBM devices ibmq_athens and ibmq_santiago. These are calibrated energy measurements of 

the eigenstates given by the least-error optimization runs on the (calibrated) noisy simulator. 

Results are generally consistent with the simulator, but our error mitigation is evidently even 

less effective on real devices. Furthermore, implementing the controlled-unitary operations 

necessary for the QPE procedure on a linear architecture introduces and overwhelming amount 

of overhead in the form of additional SWAP gates, making the QPE refinement part of our 

algorithm completely intractable on these devices. 

9.5 Discussion 

We have presented an application of VQD to calculate the band structure of a periodic 

system. This algorithm is hypothetically successful in producing accurate results on a device 

with low noise and is functional to a limited extend on current NISQ devices. In this section, we 

carefully analyze the complexity of the algorithm. The classical approach to band strcutre 

includes up to equation 9.7, at which point the calculated values 𝐻𝐻αβ�𝑘𝑘�⃗ � are arranged into a 

Hermitian matrix. The matrix can be diagonalized using row-reduction or a similar technique in 
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Θ(𝑀𝑀3) steps, where 𝑀𝑀 is the number of atomic orbitals per unit cell. This is the standard 

against which we must compare our quantum algorithm. 

Quantum resources are employed in the VQD phase of our algorithm during the 

operator estimation procedure, for every evaluation of the energy 𝐸𝐸 ≡ �𝐻𝐻�𝑘𝑘�⃗ �. Each application 

of the ansatz from figure 9.1 requires 𝑀𝑀 qubits, Θ(𝑀𝑀) entangling gates, and has a depth 

between Θ(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) and Θ(𝑀𝑀) layers, depending on qubit architecture. The Hamiltonian in 

equation 9.12 has Θ(𝑀𝑀) commuting groups, even including additional terms from the deflation 

procedure (equation 9.16). “Our implementation requires an ensemble size of 𝑂𝑂(ϵ−2) for each 

commuting group in 𝐻𝐻� to obtain an expectation value accurate within 𝜖𝜖, but since 𝜖𝜖 does not 

scale with 𝑀𝑀, we omit in in the present analysis. The ensemble states may be prepared 

sequentially, for a worst-case (linear architecture) execution time on the order of Θ(𝑀𝑀2). 

Alternatively, the ensemble states may be prepared in parallel, decreasing execution time at 

the cost of additional qubits. In the best case, implementing “classical shadowing” [184] 

reduces the number of required measurements to Θ(𝑙𝑙𝑙𝑙𝑙𝑙 𝑀𝑀), and a fully-connected 

architecture permits a circuit depth as low as Θ(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙), bringing our algorithm into a sub-

polynomial quantum resource requirement. However, the operator estimation procedure is still 

bounded by the number of Pauli words Θ(𝑀𝑀2) when measurement results are assembled into 

the energy 𝐸𝐸�𝜃⃗𝜃� = ∑ 𝑎𝑎𝑖𝑖⟨Ψ�𝜃⃗𝜃��𝑃𝑃�𝑖𝑖�Ψ�𝜃⃗𝜃�⟩𝑖𝑖 . 

Operator estimation is repeated for each function evaluation in the optimization 

procedure. The number of function evaluations required depends on the optimization routine 

selected and the shape of the energy surface, so it is difficult to estimate. In general it may be 

expected to scale polynomially with the number of ansatz parameters, in our case Θ(𝑀𝑀). Thus, 
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we include a factor of Θ(𝑀𝑀𝑐𝑐), where 𝑐𝑐 ≥ 1 depends on the optimization. The optimization is 

repeated for each of 𝑀𝑀 energy levels; therefore, the VQD phase of our algorithm has a total 

run-time on the order of Θ(𝑀𝑀3+𝑐𝑐). 

An optional QPE phase may be implemented to estimate the eigenvalue to an arbitrary 

binary precision 𝑡𝑡 [169]. The implementation of QPE we have used requires 𝑀𝑀 + 1 qubits and 

Ω(𝑡𝑡) rounds of measurement (see Dobšíc ̆ek et al. [169] for a tighter bound). Each round 

applies a quantum circuit approximating a unitary operator 𝑈𝑈�𝑗𝑗 = 𝑒𝑒𝑒𝑒𝑒𝑒(𝑖𝑖𝐻𝐻�τ𝑗𝑗). Each time slice in 

the Suzuki Trotter expansion of 𝑈𝑈�𝑗𝑗 on a linear architecture requires an entangling gate count of 

Θ(𝑀𝑀3) and a circuit depth of Θ(𝑀𝑀2) [194]. QPE is repeated for each of 𝑀𝑀 energy levels, setting 

the best case run-time of the QPE phase of our algorithm on the order of Θ(𝑀𝑀3). Note also that 

the simulation time τ𝑗𝑗 scale exponentially with the accuracy of the phase estimation procedure, 

and the number of time-slices must scale accordingly to maintain an accurate 𝑈𝑈�𝑗𝑗. Thus, QPE 

tends to incur too much overhead for practical application on present-day NISQ devices. 

Altogether, evaluating the band energies for each momentum 𝑘𝑘�⃗  requires Ω(𝑀𝑀3) time 

steps, comparable to the classical approach. Even with a “perfect” optimizer in which the 

optimal parameters θ�⃗ 𝑙𝑙 are produced instantly (𝑐𝑐 = 0), the complexities of operator estimation 

and QPE alone exhibit the same scale as classical diagonalization and incur significantly greater 

overhead from the finite accuracy ϵ. While in this form band structure calculations are not a 

strong candidate for quantum advantage, quantum computers are expected to provide a 

superior edge when including electron correlation terms such as 𝑡𝑡αβγδ𝑐𝑐α
†𝑐𝑐β

†𝑐𝑐𝛾𝛾𝑐𝑐𝛿𝛿 in the 

Hamiltonian, which introduce factors of exponential complexity in the classical approach. 

However, such terms also appear to force us to abandon several simplifications we have made. 
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First, transforming into reciprocal space no longer enables 𝐻𝐻 to be separated into subsystems 

of size 𝑀𝑀, meaning many more qubits are required to accurately simulate a periodic system. 

Second, considering multiple electrons forces us to adopt a qubit mapping which enforces 

fermionic antisymmetry, greatly increasing the number of commuting groups in the 

Hamiltonian. Finally, our ansatz dimension, entangling gates, and circuit depth can no longer 

remain linear in the number of qubits while simultaneously remaining robust. Our hope is that 

this work will inspire similar simplifications to those that we have made here, while remaining 

applicable to highly-correlated systems. 

9.6 Conclusion 

In this work, we have presented a systematic algorithm for evaluating band structures 

on a quantum computer. We have demonstrated the viability of implementing this algorithm in 

noiseless qubits systems, and we have demonstrated several of the difficulties faced when 

implementing it on present-day NISQ. Given the analogy to the classical band structure 

problem, our algorithm evidently generalizes to solving the eigenvalues of any Hermitian 

matrix. Finally, we have demonstrated how state-of-the-art quantum algorithms can be applied 

with drastically lower resource requirements to correlation-free materials and motivated 

similar approaches for highly-correlated systems less accessible to classical computing. 
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CHAPTER 10 

CONCLUSION 

The discovery of novel materials has accelerated greatly in the most recent decades. 

Materials scientists use computational tools to study molecules and materials that would be 

difficult to obtain in a lab and to study large families of materials exhibiting wide ranges of 

phenomena. Software packages for computing materials properties, such as Quantum 

ESPRESSO, AFLOW, AFLOWπ, and PAOFLOW, are used for high-throughput materials genomics 

and to study new phenomena in materials. 

PAOFLOW is a relatively new software package, which constructs tight-binding 

Hamiltonians for efficient first-principles analysis of materials. In this work PAOFLOW is 

described thoroughly, and a user manual is provided for using its various routines and features. 

High throughput studies of monolayer and layered group-IV monochalcogenides reveal 

multiferroic properties and the ability to tune bandgaps with applied stresses and strains. 

PAOFLOW is also used to examine SnTe monolayers, which are found to exhibit the persistent 

spin helix (PSH) state. The PSH is a favorable property for creating spintronic gate transistors, 

and functional design of such a transistor is proposed in this work. PAOFLOW has proved itself 

as a valuable tool for identifying next generation materials and performing high-through case 

studies of material families. 

Quantum computers have provided a new avenue for the modeling of molecules and 

materials. Harnessing the power of superposition promises efficient simulation of correlations 

in fermionic systems. Even in the NISQ era, where very few qubits are available with limited 

connectivity and low fidelity, researchers are developing methods of gaining computational 
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advantage over classical machines. Quantum algorithms, like QPE and UCC, are proposed for 

obtaining eigenspectra in Hamiltonians and for describing many body systems variationally. 

Hybrid quantum-classical algorithms have become popular in the most recent years, leveraging 

CPUs for optimization and using QPUs only when a computational advantage is viable. This 

work demonstrated a proof-of-concept strategy for diagonalizing tight-binding Hamiltonians for 

silicon, computing its band structure on a quantum processor with the VQE algorithm. 

Additionally, a procedure for representing LCAO systems and computing electronic structures 

of general solid-state systems on quantum processors is proposed and verified. Materials 

simulation on quantum computers is just recently gaining traction as a viable strategy, but the 

methods proposed here will hopefully pave the way for future studies regarding electronic 

structure and electronic correlations in molecules and solids. 

Computational tools are invaluable for the classification and design of novel materials. 

They accelerate materials discovery, provide early insight to new phenomena, and enable 

affordable methods of experimenting with condensed matter. These computational techniques, 

along with development of increasingly powerful computing machines, will continue to benefit 

scientific and industrial organizations by providing low-cost methods of materials research and 

by permitting analysis of diverse materials features or phenomenon. 
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