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In weak-light environments, images suffer from low contrast and the loss of details. Traditional image enhancement models are
usually failure to avoid the issue of overenhancement. In this paper, a simple and novel correction method is proposed based on
an adaptive local gamma transformation and color compensation, which is inspired by the illumination reflection model. Our
proposed method converts the source image into YUV color space, and the Y component is estimated with a fast guided filter.
The local gamma transform function is used to improve the brightness of the image by adaptively adjusting the parameters.
Finally, the dynamic range of the image is optimized by a color compensation mechanism and a linear stretching strategy. By
comparing with the state-of-the-art algorithms, it is demonstrated that the proposed method adaptively reduces the influence of
uneven illumination to avoid overenhancement and improve the visual effect of low-light images.

1. Introduction

The computer vision system has been widely used in a variety
of fields such as industrial production, video surveillance,
intelligent transportation, and remote sensing [1] and plays
a more and important role in human’s life. Nevertheless, dur-
ing image acquisition, many uncontrollable factors will lead
to various defects in the acquired images. Especially under
poor and complex light conditions, such as low light, uneven
light, backlight, and hazy conditions, the weak reflection of
light from the object’s surface causes color distortion and
noise amplification in the images, which seriously affects
the image quality [2]. As shown in Figure 1, the top row
includes uneven-light images, in which uneven illumination
can cause some areas of an image to be overexposed while
others are underexposed, affecting not only human visual
perception but also the accuracy of image segmentation and
object recognition, sometimes resulting in the failure of a
machine vision system. Therefore, it is of great importance

to enhance the contrast and observability of images collected
from poor lighting conditions [3–5].

Weak-light image enhancement has become a focus of
research in the image processing field, and its interdisciplin-
ary characteristics have attracted considerable attention from
researchers worldwide. For example, in a facial recognition
system, Oloyede et al. [6] applied a new evaluation function
in conjunction with metaheuristic-based optimization algo-
rithms to automatically select the best-enhanced face image.
To enhance underwater images, Hou et al. [7] presented a
novel underwater color image enhancement approach based
on hue preservation by combining the HSI and HSV color
models. Fu and Cao [8] combine the merits of deep learning
and conventional image enhancement technology to improve
the quality of underwater image. To improve the contrast of
retinal fundus images, Soomro et al. [9] used independent
component analysis (ICA) for image enhancement to effec-
tively achieve quick and accurate segmentation of the eye
vessels. Kallel et al. [10] proposed a new enhancement algo-
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rithm dedicated to computed tomography (CT) scans based
on the discrete wavelet transform with singular value decom-
position (DWT–SVD) followed by adaptive gamma correc-
tion (AGC), which consistently produced good contrast
enhancement with excellent brightness and edge detail
conservation.

However, those conventional methods are limited in
adaptivity and tend to overenhance some local areas in
the case of uneven illumination. They are also difficult to
strike the balance between computational complexity and
visual effect. Therefore, in this research work, a self-
adaptive enhancement method is proposed for processing
images from uneven light environments, which is inspired
by the illumination-reflection model. Figure 1 shows sam-
ples processed with our method. This method can effec-
tively enhance the visual effect of an image, revealing
more details in dark areas while preserving the overall
detail information, thus providing a valuable reference
for the study of the correction of images acquired under
uneven lighting conditions. The contributions are as
follows:

(1) It is a simple and effective image enhancer based on a
novel local gamma transformation and illumination
reflection model. This method can effectively
enhance the visual effect of an image, revealing more
details in dark areas while preserving the overall
detail information

(2) The method has a color compensation mechanism; it
is suitable for the processing of color images captured
with monitoring system

(3) The proposed method can adjust the parameters
according to the light distribution and adaptively
reduce the influence of uneven illumination on the
image, thus providing a valuable reference for the
study of the correction of images acquired under
uneven lighting conditions

(4) Our method can produce the satisfied results with
less computational complexity

The rest of this paper is organized as follows. In Section 2,
some related works are summarized. Section 3 introduces the
flowchart of the proposed method. In Section 4, the compar-
isons of the experimental results are presented. Finally, the
research work is concluded in Section 5.

2. Related Works

Traditional image enhancement methods of weak-light
images include histogram equalization (HE) and grayscale
transformation (GT) [11, 12], which usually obtains the cor-
rection parameters based on the cumulative probability dis-
tribution of gray values. For example, Huang et al. [13]
proposed a gamma correction algorithm that adaptively
obtains gamma correction parameters based on the cumula-
tive probability distribution. Later, Liu et al. proposed a low-
light image enhancement method based on the optimal
hyperbolic tangent function [14]. In Ref. [15], a block-
iterative histogram method was used to enhance the contrast
of an image while processing each different part of the image
with partially overlapped subblock histogram equalization
(POSHE) using a moving template. Subsequently, Chen
and Ramli proposed the minimum mean brightness error
bihistogram equalization (MMBEBHE) [16] algorithm to
minimize the error between the brightness mean values of
the output image and the original image. Celik and Tjahjadi
[17] proposed the contextual and variational contrast
enhancement (CVC) algorithm, which performs nonlinear
data mapping using context information and a 2D gray histo-
gram to achieve the contrast improvement. These methods
are simple in their computation rules and low in compu-
tational complexity but are prone to various processing
issues, such as color loss and noise amplification. Huang
et al. propose an effective image enhancement strategy
named as contrast limited dynamic quadri-histogram

Figure 1: Examples of images acquired under uneven illumination (top row: original images; bottom row: enhanced images).
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equalization (CLDQHE) which includes three steps can
yield pleasing results with the preservation of brightness
and structures [18].

Based on the computational theory of color constancy,
Jobson et al. proposed the single-scale retinex (SSR) algo-
rithm, which was further developed into various
multiple-scale retinex (MSR) algorithms, such as the mul-
tiscale retinex with color restoration (MSRCR) algorithm
[19, 20] and multiscale retinex with chromaticity preserva-
tion (MSRCP) [21]. Later, Fu et al. presented a weighted
variational model to estimate illumination from a weak-
light image, which can not only extract the reflection
information accurately but also suppress the amplification
of noises [22]. Wang et al. [23] introduced an NPE (natu-
ralness preserved enhancement) algorithm with a bright-
pass filter to preserve the image naturalness by integrating
the neighborhood information of pixels, thereby improving
the image contrast while avoiding excessive local enhance-
ment. In 2011, Dong et al. [24] inverted low-light images
to generate images similar to those acquired on foggy days
and then used a defogging algorithm to enhance the con-
trast of the original images. Later, Zhang et al. proposed
the framework of real-time enhancer by combining the
dehazing methods with bilateral filter techniques, in which
the DCP (dark channel prior) model is used for parameter
optimization and a joint bilateral filter is used to reduce
the noise interferences [25]. Park et al. introduced the
bright channel prior (BCP) and combined the BCP esti-
mation with retinex theory to realize the weak-light image
enhancement [26] and achieved good results. Such
methods effectively enhance the details in the dark areas
of an image, but they also incur high computational com-
plexity and tend to produce halo effects in dark areas.

In the past decade, machine-learning-based techniques
have been widely adopted to improve the contrast of weak-
light images [27]. For example, Lore et al. [28] adopted SSDA
(stacked sparse denoising autoencoder) method to develop
an image enhancer based on the simulation of a low-light
environment, in which a machine-learning algorithm was
used for training a self-encoder to adjust the brightness adap-
tively for several low-illumination image signals. Shen et al.
[29] analyzed the performance of the MSR algorithm from
the perspective of CNNs and designed an MSR network with
a CNN architecture for enhancing low-light images. Tao et al.
proposed an LLCNN (low-light convolutional neural net-
work) model for image enchantment based on a deep learn-
ing technique, in which the enhanced images can finally be
generated from multilevel feature graphs after learning on
the low-light image database [30]. Park et al. introduced the
retinex theory into the deep learning framework and pro-
posed a double self-encoding network [31], in which a con-
volutional autoencoder and a stacked autoencoder are used
to achieve brightness enhancement and noise suppression.
Inspired by image-fusion-based methods [32] developed a
single-image enhancer by combing the image-fusion-based
technique to train an end-to-end CNNmodel, which is based
on building a multiexposure image dataset with different
contrast-scale images. Methods of this kind offer a good
image enhancement effect, but their computational models

often require an excessively long time or too many expensive
resources for training.

3. Framework of Proposed Method

According to the basic principle of imaging, an image is pro-
duced by the light that is reflected or emitted from the surface
of an object in a scene and reaches the camera. Generally, it
often is regarded as a two-dimensional function Fðx, yÞ,
where the value of this function is the brightness of the pixel
at coordinates ðx, yÞ in the image, and Fðx, yÞ is the compo-
sition of the illumination component (Iðx, yÞ) that enters the
scene and the reflection component (Rðx, yÞ)from the object
surface. The mathematical expression of this illumination-
reflection model is as follows:

F x, yð Þ = I x, yð ÞR x, yð Þ: ð1Þ

The spatial relations of this model are illustrated in
Figure 2.

It is shown that the intensity of incident light mainly
relies on the light source, and its distribution function
(Iðx, yÞ) shows little spatial variation. The spectrum of Iðx,
yÞmainly concentrated in the low-frequency region to reflect
the lighting environment during the imaging process, while
that of the reflection component Rðx, yÞ is mainly concen-
trated over a wide range in the high-frequency band, corre-
sponding to the image details that reflects the natural
attributes of the target. If the illumination in a scene is even,
then the illumination component is uniformly distributed in
the space, and the acquired image is considered to have
natural lighting and high visual quality; however, if the illu-
mination in an imaged scene is uneven, then areas with
excessively strong illumination will be overexposed, while
those with insufficient illumination will be underexposed,
causing various visual questions for the human eyes. If we
can find a way to estimate the reflection component, i.e., sep-
arating Iðx, yÞ from Fðx, yÞ, then, we can eliminate the effects
of light on imaging, thus helping to achieve the goal of image
enhancement [33].

Inspired by the above model and theory, we propose the
framework of image enhancer based on adaptive local
gamma transform and color compensation in this paper.
The proposed method eliminates the associations among
color components by modifying color space; thus, the goal
of image enhancement is achieved by processing the color
components in a different space. First of all, the source color
image is transformed to the YUV space, where the brightness

Camera

Object

Light source

I (x,y) F (x,y)

R (x,y)

Figure 2: The illumination-reflection model.
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part of the scene is estimated from the Y component using a
fast guided filtering function, and then, local gamma trans-
form enhancement is performed on the image through adap-
tive adjustment according to the gray distribution of the
brightness component. Finally, the contrast of the image is
adjusted via grayscale linear stretching, and a color compen-
sation strategy is applied to the RGB image. The whole flow-
chart is shown in Figure 3.

3.1. Color Space Conversion. As known from the neural
mechanism of the visual perception system, the human eyes
are more sensitive to luminance than to color; thus, the
enhancement of luminance is the key to the proposed algo-
rithm for the correction of unevenness in illumination. For
color images, the chrominance information and brightness
information cannot be effectively distinguished in the RGB
(red, green, blue) color space; consequently, applying a direct

Component Y

Input image Components U and V Output image

1

1

5

5

4

2

3

Figure 3: The framework of the proposed method: ① RGB space to YUV space; ② illumination component estimation; ③ local gamma
transformation; ④ grayscale stretching; ⑤ saturation enhancement.

(a) Source image (b) Y component

(c) U component (d) V component

(e) Gray image (f) R component

(g) G component (h) B component

Figure 4: Example of RGB space to YUV space.
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correction to the three channels in the RGB color space not
only leads to color distortion but also increases the computa-
tion load. By contrast, in the YUV color space, each color
corresponds to two chrominance components (U and V)
and one brightness component (Y); hence, the separation
of brightness and chrominance makes it possible to alter illu-
mination intensity without affecting the color. Therefore, in
this study, we propose a YUV-space grayscale mapping based
chrominance-luminance recombination algorithm in which
the luminance component Y is processed while leaving the
chrominance components U and V unchanged for enhance-
ment. The relation of RGB color space and YUV color space
is [33]:

Y

U

V

2
664

3
775 =

0:299 0:587 0:114
−0:147 −0:289 0:436
0:615 −0:515 −0:100

2
664

3
775 ×

R

G

B

2
664

3
775: ð2Þ

After the conversion to YUV space, the images corre-
sponding to each component are as shown in Figure 4. In
Figure 4, (a) is the source color image, (e) is the correspond-
ing gray image of (a), (b–d) are the three components of Y ,U
, and V , respectively, and (f–h) are the components of R, G,
and B, respectively.

3.2. Estimation of the Illumination Component. To effectively
reduce the effect of uneven illumination on image quality, the
accurate extraction of the lighting information from a scene
is particularly important. Currently, the main methods for

extracting the illumination component include average filter,
bilateral filter, and Gaussian filter. The average filtering
method smooths images by calculating the mean value of
each pixel with its neighbors. It is fast but can be strongly
influenced by neighboring pixels. The Gaussian filtering
method is poor at retaining edges, causing the extracted
illumination component to have fuzzy edges and thus to
perform poorly in the retention of detailed information.
The bilateral filtering algorithm shows better edge preser-
vation characteristics but has a very high computational
complexity, which limits its use in practical engineering
applications. The guided filtering algorithm is a guided
image-based local linear transformation that obtains the
low-frequency information from the image while retaining
the edge information and has low computational complex-
ity. It is the fastest available edge-retaining filtering algo-
rithm and was therefore used in this study to extract the
illumination component [34, 35].

Let the images for inputting, outputting, and guiding are
denoted by p, q, and I, respectively. Then, for any given pixel
s, its guided filtering process is:

qj = asI j + bs, ∀j ∈ ωs, ð3Þ

where j is the pixel index and as and bs are the linear transfor-
mation factors. The minimum reconstruction difference
between p and q is calculated as follows:

(a) Input image (b) δ = 15

(c) δ = 50 (d) δ = 80

(e) δ = 250 (f) Multiscale method

Figure 5: Single-scale and multiscale illumination component extraction.
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as =
1/ ωj j∑I jpj − μs�ps

σ2s + ξ
, ð4Þ

bs = �ps − asμs, ð5Þ
where σ2s and μs are the variance and the mean value of the
guided image I within the window ωs, respectively; ξ is a
parameter that controls the degree of smoothness of the filter;
jωj is the pixel number of ωs; and �ps is the mean value of the
input image p. Thus, the output of the filter will be:

qj =
1
ωj j 〠

s:j∈ωs

asI j + bs
� �

, ð6Þ

qj = �ajI j + �bj, ð7Þ

where �bj and �aj are the mean values of b and a, respec-
tively, within the neighborhood window ωscentered on
pixel j.

Therefore, the guided filtering process can be seen as the
convolution of the guided filtering function and the original

(a) Source image (b) Average filtering

(c) Median filtering (d) Gaussian filtering

(e) Bilateral filtering (f) Guided filtering

Figure 6: Extraction of the illumination component with different methods.
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Figure 7: A one-dimensional plot of the illumination components
extracted with different algorithms.
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image, which gives rise to the following estimate of the illu-
mination component:

Î x, yð Þ = Y x, yð Þ ∗GF x, yð Þ, ð8Þ

where GFðx, yÞ is the guided filter, Yðx, yÞ is the input image,
and Îðx, yÞ is the output image which denotes the estimation
of the luminance component.

To consider both the local and global characteristics of
the estimated luminance values, we introduced the multiscale
guided filtering, which will extract the illumination compo-
nents of the scene using filtering windows of different scales
and weights, which ultimately gives rise to the following esti-
mate of the illumination component:

G x, yð Þ = Î x, yð Þ = 〠
N

t=1
λt Y x, yð Þ ∗GF

t x, yð Þ� �
, ð9Þ

where λi is the weights for the illumination component
extracted at the tth scale and N is the number of scales used;
Îðx, yÞ is the value of the weighted combination of the illumi-

nation components at point ðx, yÞ that is extracted using the
guided filtering function with windows of various scales. In
Figure 5, the values of the illumination components extracted
using three different scales are shown. In Figure 5(f), the
result of the fusion of these three different scales (15, 80,
and 250) is shown, where the weight of the illumination com-
ponent extracted at each scale was set to 1/3.

From Figure 5, it can be seen that the method based on
multiscale guided filtering can well extract the illumination
component from the source image, which describes the vari-
ation of illumination while get rid of the details, to meet the
requirements of practical application. However, this method
requires multiple filtering operations to be performed on the
image. Based on the comprehensive consideration of both
computational complexity and performance, we propose a
calculation method with an adaptive window, in which the
window size c is 1/4 of the smaller dimension of the image,
as follows:

c = Int min w, hð Þ
4

� �
, ð10Þ
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Figure 8: Curve changes with illumination.
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where Int½� is a function to extract an integer that down to the
nearest number and h and w are the height and width of the
image, respectively. To demonstrate the advantages of guided
filtering, the effects of various filtering methods (including
Gaussian filter, average filter, median filter, and bilateral
filter) are compared in Figure 6.

It shows that guided filter, bilateral filter, and Gaussian
filter all yield good descriptions of the illumination variations
in the scene, consistent with the distribution of the illumina-
tion component. To further compare the edge-retaining
characteristics of the guided filter, bilateral filter, and Gauss-
ian filter, we consider the pixels on Line 110 in Figures 6(a)
and 6(d)–6(f) as examples. In Figure 7, we present a one-

dimensional brightness diagram generated from the gray-
scale values acquired at the corresponding positions in these
images.

Figure 7 shows that Gaussian filtering results in larger
deviations in sharp edge regions compared with the edges
in the original image, while the fast guided filtering algorithm
performs the best approximating the brightness distribution
of the original image, especially in the edge areas, while main-
taining low computational complexity and a high speed.

3.3. Local Gamma Transform. To adaptively increase the
brightness of low-illumination areas while decreasing the
brightness of high-illumination areas based on the gray

(a) Source image (b) m = 1:5

(c) m = 2 (d) m = 2 + Gðx, yÞ

(e) m = 3 (f) m = 3 +Gðx, yÞ

Figure 9: Enhancement results with different m.
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distribution, we attempt to improve and expand the conven-
tional method of gamma correction, which has the following
standard form:

O x, yð Þ = Y x, yð Þ½ �γ, ð11Þ

where Oðx, yÞ is the corrected brightness with a range of [0
1], Yðx, yÞ is the source image to be enhanced, and γ is a con-

trol parameter. When γ is less than 1 but greater than 0, the
overall brightness increases, and when γ is greater than 1,
the overall brightness decreases.

For uniformly overexposed or underexposed images, this
algorithm can produce satisfactory results through the
adjustment of the parameter γ, but when both overexposed
and underexposed areas are present in the same image, it is
difficult for the algorithm to achieve satisfactory effectiveness

(a) Before stretching (b) After stretching

Figure 10: Images before and after gray stretching.

(a) Source image (b) Obtained with Eq. (16)

(c) Obtained with Eq. (17)

Figure 11: Color saturation enhancement.
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when the same parameter is used across the entire image.
Therefore, we introduce an algorithm that allows γ to vary
with the local information of the image, as follows:

γ =m 2×G x,yð Þ−1ð Þ, ð12Þ

where Gðx, yÞ is the illumination extracted from Yðx, yÞ and
m is the base of the exponential function. In general, areas
with low illumination need more aggressive correction, so a
small γ value should be adopted, i.e., a greater value of m
should be adopted in Eq. (12); for images with excessively
high contrast, a γ value greater than 1 should be adopted,
i.e., the value ofm should be low, to suppress the illumination
intensity. In Ref. [36], a piecewise function is formulated
based on whether the mean value of the input image is
greater than 0.5. However, for images with both overexposed
and underexposed areas, the mean value can be very close to
0.5, and if such images are processed using this algorithm, it
is possible that no notable change may result, meaning that
the actual needs of image correction will not be met. There-
fore, we present a formulation of the gamma correction
parameter γ that varies with the illumination component of
the scene and propose an adaptive brightness adjustment
function based on this local gamma transformation, which
adaptively adjusts the control parameters according to the
illumination distribution of the input image, as follows:

O x, yð Þ = Y x, yð Þ½ � 2+G x,yð Þð Þ 2×G x,yð Þ−1½ �
: ð13Þ

According to Eq. (12), when the base values are set to 2
and 2 +Gðx, yÞ, the changes in the output γ with the input
Gðx, yÞ are as shown in Figure 8.

According to Eq. (13), when the base is set to 2, 2 +
Gðx, yÞ, or 3 +Gðx, yÞ, the changes of correction effect
are as shown in Figure 9. Figure 9 shows that as m increases,
low pixel values are enhanced, and high pixel values are sup-
pressed. This compresses the image’s dynamic range and
leads to an overall enhancement in the image brightness, at
the cost of reduced contrast.

3.4. Grayscale Linear Stretching. To mitigate the problem of
image gray value concentration, we use a grayscale stretching
function to improve the image. A simple linear pointwise
operation is performed to expand the histogram of the image
to include the entire grayscale range. The rationale for this
action is to improve the dynamic grayscale range for image
processing.

Let Oðx, yÞ denote the input image, whose minimum
grayscale value Lmin and maximum grayscale value Lmax are
defined as follows:

Lmin = min O x, yð Þ½ �, Lmax = max O x, yð Þ½ �: ð14Þ

By linearly mapping the dynamic range from ½A, B� to
½A, 1�, then the output image Y ′ðx, yÞ will be:

Y ′ x, yð Þ = 1 − Lminð Þ
Lmax − Lmin

O x, yð Þ + Lmax − 1ð ÞLmin
Lmax − Lmin

: ð15Þ

As shown in Figure 10, processing with the proposed
algorithm expands the dynamic range of the image, facili-
tating the identification of details in overexposed and
underexposed areas of the image.

3.5. Color Compensation. Using the following formulas, we
convert the image back from the YUV color space into the
RGB color space using the enhanced component Y ′ while
leaving the U and V components unchanged:

R′

G′

B′

2
664

3
775 =

1:000 0:000 1:140
1:000 −0:395 −0:581
1:000 2:032 0:001

2
664

3
775 ×

Y ′

U

V

2
664

3
775, ð16Þ

where Y ′, U , and V are the brightness component and the
two chrominance signal components, respectively, in YUV
space.

However, after the conversion to RGB space using the
above method, the image may show a decrease in color satu-
ration. To ensure that the color saturation of the output
image is consistent with that of the input image, we adopt
the following expressions:

R′ = ε × Y ′
Y

 !
× R + Yð Þ + R − Y

" #
,

G′ = ε × Y ′
Y

 !
× G + Yð Þ +G − Y

" #
,

B′ = ε × Y ′
Y

 !
× B + Yð Þ + B − Y

" #
,

8>>>>>>>>>>><
>>>>>>>>>>>:

ð17Þ

(1) Input weak-light image F
(2) Transform source image into YUV space using Eq. (2) and separate the luminance and the chrominance components V , Y , and U
(3) Extract the illumination component from Y using Eq. (8) to obtain image G
(4) Obtain the enhanced brightness image O using Eq. (13)
(5) Perform linear stretching on image O using Eqs. (14) and (15) to generate image Y ′
(6) Make color compensation to enhance the saturation of image using Eq. (17)
(7) Output the enhanced image J

Algorithm 1
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where ε is set to an empirical value of 0.5; R, G, and B denote
the red, green, and blue components in the RGB space,
respectively; and Y and Y ′ are the brightness components
in YUV space before and after enhancement, respectively.

The images obtained using Eqs. (16) and (17) and their
corresponding grayscale histograms are shown in Figure 11.
The image obtained using Eq. (17) has better color saturation
and higher contrast than that obtained using Eq. (16).

The specific steps of implementation of the above-
described adaptive enhancement method for low-light
images acquired under uneven illumination are summarized
as follows:

4. Experiments and Analysis

To test the performance of our method, we used an experi-
mental platform consisting of a computer (with an Intel(R)
Core (TM) i7-6700 and 16GB of RAM) and the simulation
software MATLAB. The images used for testing included
an urban streetscape, some natural scenery, and an indoor
scene and have the common features of a large dynamic
range and uneven illumination. Some of the experimental
results are shown in Figure 12 for the images “Night,”
“Bridge,” “Castle,” “Town,” “Girl” [37], “Street,” “Pine,”

and “Dawn.” As shown in Figure 12, after processing with
the proposed algorithm, the areas with low illumination are
enhanced, and those with high illumination are suppressed.
The enhanced images are natural in color and clear in detail,
indicating that the proposed method can adaptively mitigate
the impact of uneven scene illumination on image quality.
Next, we will compare the processing results of the proposed
algorithm with those of various mainstream algorithms in
terms of both a subjective visual assessment and an objective
quantitative analysis.

4.1. Subjective Evaluation

4.1.1. Comparison with Traditional Enhancement Methods.
In Figure 13, the results of the proposed method and other
conventional image enhancement methods are shown.
Figure 13(a) shows the original images [37], and
Figures 13(b)–13(h) show the experimental results of a linear
transformation (LT), histogram equalization (HE), adaptive
histogram equalization (AHE), homomorphic filtering
(HF), the wavelet transform (WT), the Retinex method,
and the proposed method, respectively. The corresponding
amplification effects in the areas demarcated by boxes in
Figure 13(a) are shown in rows 3 and 6. The results indicate

(a) Night (b) Bridge (c) Castle (d) Town

(e) Girl (f) Street (g) Pine (h) Dawn

Figure 12: Samples of image enhancement with our method.
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that the images processed using the various methods show
changes of varying degrees relative to the original image.
For example, Figures 13(c) and 13(g) are significantly
enhanced in terms of contrast, showing greater detail but a
shift in hue. In addition, the severe “halo” noise in
Figure 13(g) results in poor visual quality. Figures 13(e) and
13(f) show no overall hue shift but exhibit inadequate
improvement in details and are fuzzy. Figures 13(b) and
13(d) show good overall effects, but excessive enhancement
is evident in bright regions due to the linear transformation
method, whereas AHE causes the color to be significantly
darkened. In contrast, the proposed method yields remark-
able improvements in both color and contrast, achieving a
better visual effect than the other methods.

4.1.2. Comparison with State-of-the-Art Methods.We further
compared the enhancement effect of the proposed method
with those of some state-of-the-art methods using “Window”
and “Furniture” as test images. The results are shown in
Figures 14 and 15. In each of these figures, (a) shows the orig-
inal image and enlarged views of the areas demarcated by the
boxes, and (b–h) show the results obtained using CegaHE

[38], CVC [16], the linear dynamic range (LDR) technique
[39], DCP [24], MSRCP [21], SRIE [22] and the proposed
algorithm, respectively, along with the corresponding
enlarged areas. The results show that compared with the
original image, the overall visibility and contrast of the
enhanced images obtained using the various enhancement
methods are greatly improved, achieving good enhancement
effectiveness. However, the CegaHE method results in a
severe hue shift. The CVC and LDR methods achieve only
a slight enhancement while amplifying the noise in the dark
regions, while the CVC method is additionally unable to
restore color to low-light pixels. The MSRCP and DCP
methods enhance the overall image brightness, but the
MSRCP method results in overenhancement, while the
DCP method shows a significant overenhancement effect in
edge regions. Relative to the other methods, the SRIE method
and the proposed method both strike a balance between color
information and brightness information, thereby achieving
good enhancement effects. However, the SRIE method is
unable to achieve uniform results for images with alternating
bright and dark regions, resulting in inferior overall perfor-
mance compared to the proposed method. With regard to

(a) Source image (b) Linear transform (c) HE (d) AHE

(e) Homomorphic filtering (f) Wavelet transformation (g) Single scale retinex (h) Our method

Figure 13: Comparison of the proposed algorithm with several conventional algorithms.
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local details, in the areas of the images demarcated by boxes,
the DCP method results in overenhancement and conse-
quent noise at the edges. The CVC and LDR methods lead
to underenhancement, the CegaHE and MSRCP methods
lead to local overenhancement, and the SRIE method gener-
ates shadows in some local areas. By contrast, the proposed
method shows no excessive amplification of the noise in dark
areas in the enhanced image while significantly enhancing
the areas that need highlighting without overenhancement,

thereby achieving superior sharpness, contrast, and image
color.

To further compare the processing effects of the different
algorithms, we also tested the algorithms on artificially syn-
thesized images, as shown in Figure 16. In this figure, (a)
shows two images acquired under proper lighting, and (b)
shows corresponding low-light images that have been syn-
thesized through gamma transformation (with a γ value of
2). (c–h) show the image enhancement results obtained using

(a) Source image (b) CegaHE (c) CVC (d) LDR

(e) DCP (f) MSRCP (g) SRIE (h) Proposed method

Figure 14: Experimental results on the “Window” image.

(a) Source image (b) CegaHE (c) CVC (d) LDR

(e) DCP (f) MSRCP (g) SRIE (h) Proposed method

Figure 15: Experimental results on the “Furniture” image.
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the different methods. The results indicate that the proposed
method can adaptively enhance the brightness of low-light
areas while suppressing that of high-illuminance areas, and
the enhancement effects are consistent with those observed
on the actual images presented above.

4.2. Objective Evaluation. Because different methods focus on
different aspects of an image, a subjective evaluation is likely
to be biased [40]. Therefore, we adopt several objective eval-
uation criteria to further examine the processing effects of
different methods. We adopt the mean squared error
(MSE), the peak signal-to-noise ratio (PSNR), and the struc-
tural similarity index measure (SSIM) as objective evaluation
metrics for comparison and evaluation [41]. The objective
evaluation data corresponding to Figure 16 are shown in
Table 1, where the best results are italicized.

To conduct a more general test, we subjected a number of
synthesized images to processing with various methods,
including CegaHE [38], CVC [16], LDR [39], DCP [24],

EFF [42], MSRCP [21], SRIE [22], and the proposed algo-
rithm. Some of the experimental results are shown in
Figure 17, where Figure 17(a) shows the original images,
Figure 17(b) shows the artificial quality-reduced images,
and Figure 17(c) shows the results obtained after the
enhancement of the images in Figure 17(b). The objective
evaluation metrics achieved by the various methods based
on these images are shown in Table 2, in which the values
indicating the best performance are italicized.

Tables 1 and 2 indicate that the enhanced images gener-
ated using the proposed method most closely match the orig-
inal images in terms of both gray value distribution and
structure. The proposed method greatly outperforms the
other methods in terms of its comprehensive effect, generat-
ing the best results. These results show that the proposed
algorithm can mitigate the influence of uneven illumination
on images and achieve effective correction for images of
diverse scenes acquired under uneven lighting.

4.3. Computational Complexity. To compare the computa-
tional complexity of the above methods, we tested the
methods on images of different sizes in the MATLAB
experimental environment and report the average run time
calculated from 20 operations on images of the same size.
The results presented in Table 3 show that the SRIE
method has the lowest computational efficiency when pro-
cessing a single image, requiring 242.22 seconds to process
an image with 2048 × 1536 pixels, while CVC, MSRCP,

(a) Source image (b) Synthesized image (c) CegaHE (d) CVC

(e) LDR (f) DCP (g) MSRCP (h) Proposed method

Figure 16: Experimental results on synthesized images.

Table 1: The assessment results on the images in Figure 16.

CegaHE CVC LDR DCP MSRCP
Our

method

MSE 1087.535 2462.565 864.13 718.64 1088.675 329.58

PSNR 17.8 14.585 18.78 19.635 17.77 23.13

SSIM 0.85 0.825 0.895 0.835 0.87 0.97
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DCP, EFF, and the proposed method all require similar
seconds to process the same image. With the size of the
image increasing, the processing time of the MSRCP
method increases more rapidly, while that of the other
methods increases linearly. The proposed method requires

the least run time and thus has the lowest time
complexity.

4.4. Adaptivity of OurMethod.We also tested the methods on
images acquired under extremely low illumination as well as

(a) Source images

(b) Artificial processed images

(c) Output images with proposed method

Figure 17: Comparison with state-of-the-art methods.

Table 2: The assessment results on the images in Figure 17.

CegaHE CVC LDR DCP EFF MSRCP SRIE Our method

Group 1

MSE 839.31 4554.18 732.72 873.17 1292.50 1131.82 1135.16 368.12

PSNR 18.89 11.55 19.48 18.72 17.02 17.59 17.58 22.47

SSIM 0.82 0.74 0.85 0.83 0.86 0.82 0.80 0.95

Group 2

MSE 1212.11 1389.11 695.13 976.86 427.98 1167.74 1184.34 683.90

PSNR 17.30 16.70 19.71 18.23 21.82 17.46 17.40 19.78

SSIM 0.90 0.93 0.93 0.90 0.96 0.88 0.92 0.96

Group 3

MSE 712.05 3084.25 487.98 453.46 1172.70 712.31 588.00 142.47

PSNR 19.61 13.24 21.25 21.57 17.44 19.60 20.44 26.59

SSIM 0.80 0.77 0.86 0.85 0.87 0.86 0.88 0.95

Group 4

MSE 914.60 1518.88 1193.66 672.35 685.98 992.04 1105.18 748.61

PSNR 18.52 16.32 17.36 19.85 19.77 18.17 17.70 19.39

SSIM 0.89 0.88 0.89 0.91 0.93 0.88 0.90 0.95

Groupe5

MSE 1016.39 3160.82 1106.58 492.06 651.73 1061.99 655.86 478.82

PSNR 18.06 13.13 17.69 21.21 19.99 17.87 19.96 21.33

SSIM 0.81 0.78 0.83 0.82 0.90 0.83 0.89 0.96

Table 3: Experimental results of computational complexity (unit: seconds).

600 × 400 800 × 600 1024 × 768 1600 × 1200 2048 × 1536
CVC 0.27 0.40 0.60 1.27 2.33

MSRCP 0.17 0.40 0.88 3.29 7.41

DCP 0.33 0.60 1.06 2.42 3.89

SRIE 7.08 13.61 22.38 101.91 242.02

EFF 0.42 0.62 0.94 1.86 3.03

Proposed method 0.19 0.32 0.51 1.09 2.14

15Journal of Sensors



images obtained in normal light conditions; the experimental
results are shown in Figure 18. In the top panel of this figure,
the first row contains the original images acquired under
extremely low illumination, and the second row shows the
corresponding enhancement results.

The results show that for the enhancement of images
acquired under extremely low illumination, which has pre-
sented great challenges in the field of image processing,
although the enhancement effect of the proposed method is
unsatisfactory, no blocky effect is not present in the restored
images; in this sense, they are consistent with human visual
perception. In the bottom panel of the figure, the first and
second rows show images acquired under normal illumina-
tion and the corresponding enhancement results obtained
using the proposed method, respectively, and the results
showed that for images acquired under normal illumination
conditions, the processing results of the proposed method
are identical to the original images, indicating that the pro-
posed method can adaptively adjust its parameters for differ-
ent scenes and thus shows good robustness and adaptability.

5. Conclusion

In this paper, we propose a color image correction method
based on local gamma transformation and color compensa-
tion. In which the illumination-reflection model is adopted
to address the problems of local overenhancement due to
uneven illumination in low-light images and the lack of
adaptability of the parameter settings encountered in previ-
ous methods. First, we convert the original RGB color image
into the YUV color space and extract the illumination distri-

bution of the scene from the Y component using a guided fil-
tering function. Then, we perform illuminance enhancement
based on an adaptive local gamma transformation and
expansion of the dynamic range. Finally, we enhance the
color saturation of the image. Comparisons between the pro-
posed method and other conventional algorithms indicate
that the proposed algorithm can not only effectively improve
the visual effect of the processed image but also reveal more
detailed information in dark regions. Because the proposed
algorithm uses the distribution characteristics of the illumi-
nation component of the scene to dynamically adjust the
parameters of the gamma function, it can effectively improve
the visual quality of an image, allowing better identification
of details in both overexposed and underexposed areas of
the image.
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