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Abstract: Agricultural support programs distribute payments to farms based on a diverse set of
policy objectives. Adequate targeting of this support to priority areas is key to efficient and effective
policy. We evaluated the targeting strategy of a national-level program in Mexico that distributed
support based on seven criteria that prioritized poor smallholder farming communities at high risk
of cropland failure. We used a series of logistic models to assess the coverage and leakage rates
of the program’s targeting strategy and found rates of about 80 and 20 percent, respectively. We
also found significant differences between the targeting priorities specified in program rules and
the observed distribution of support measures. In general, the program favored arid and semi-arid
regions at high risk of soil erosion but neglected smallholder farms in high-poverty regions with
elevated rates of cropland failure. Our findings highlight the continued lack of financial support
for smallholder agriculture in Mexico, despite program rules and priority statements that stress
the vulnerability of this sector. This study also illustrates the important role of spatial targeting in
better aligning agricultural support payments with stated policy priorities. This alignment is often
overlooked in ex-post assessment, but it is critical for improving targeting precision, equity, and
overall policy effectiveness.

Keywords: agri-environmental policy; smallholder; poverty; climate; targeted support

1. Introduction

Agricultural policies have expanded in recent decades beyond the traditional em-
phasis on crop productivity to address a range of socioeconomic, rural development, and
environmental objectives [1]. Research into this policy diversification has focused on the
Common Agricultural Policy of the European Union, where the term agri-environmental
has come to describe a wide variety of policies, schemes, programs, and measures. Gen-
erally, findings show that better targeting of agri-environmental support leads to more
effective and cost-efficient policy [2,3], so long as transaction costs are low [4] or are offset
by enhanced provision of services [5]. Studies of targeting effectiveness tend to examine
single support measures [6] and provide insights into specific policy actions and outcomes
(i.e., levels of farmer participation, promotion of green farming practices, provision of
ecosystem services, rural development, and equity) [7–12]. Few studies focus on the initial
distributional aspects of targeting and if the distribution of support actually reflects pro-
gram rules and stated priorities. Evaluating this (mis)alignment is a critical though often
overlooked part of assessing overall targeting effectiveness.

In theory, targeting decisions are based on carefully defined objectives and priority
criteria [13,14] and quantitative indicators of those criteria [15–17]. In practice, poorly
defined criteria and insufficient indicator data often result in ineffective targeting and
suboptimal outcomes [18–21]. Collecting indicator data that reflect program criteria can
be challenging due to the heterogeneity of data types and the complexities of monitoring
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multifunctional (agri-environmental) landscapes [22–25]. Data challenges can be severe in
lower- and middle-income countries, which often lack the institutional resources to collect
data and to implement, monitor, and evaluate targeting strategies [26–30].

Targeting leakages occur when gaps exist between stated coverage rules (priority
criteria) and actual coverage (observed distribution of measures) [31]. In a statistical
context, ineffective targeting can lead to two types of coverage error. Type I errors occur
when priority areas are under-covered (errors of omission), and Type II errors occur
when non-priority areas are covered (errors of inclusion or over-coverage) [32,33]. In
a general policy context, most targeting studies seek ways to maximize coverage and
minimize leakage through optimization modeling [34–36]. For example, in humanitarian
and development contexts, optimization models help policymakers target limited support
to reduce poverty in vulnerable areas experiencing violent conflict or famine [37,38]. In
environmental contexts, targeting studies often explore how to maximize coverages and
minimize leakages of conservation investments in protected area management [39]. In
agricultural (agri-environmental) contexts, quantitative assessment of targeting coverages
and leakages is less common [40], though improved quantitative understanding is key to
optimizing distributional outcomes under budget constraints [41,42]. This is especially true
in lower- and middle-income countries, where agri-environmental policies are relatively
new [43] and where few critical analyses have been conducted [1].

To address this research gap, the objective of this study was to quantify and assess the
targeting effectiveness, coverage, and leakage rates of one of Mexico’s largest agricultural
(agri-environmental) programs, the Comprehensive Program for Sustainable Agriculture
and Productivity Growth on Vulnerable Lands. We used a series of logistic models, receiver
operator characteristic curves, and odds ratios to examine the degree to which the program
distributed agri-environmental support measures (AEM) based on official program rules
and targeting priorities. We examined targeting effectiveness on two levels. First, we
assessed the overall coverage and leakage rates based on whole model effects, whereby
priority criteria were used to explain the observed distribution of AEM. Second, we ex-
plored the partial effects (simple and adjusted) of each criterion as a determinant of this
distribution. We used these results to identify criteria that played significant roles in AEM
distribution and contrast these with criteria that played less significant roles. We discuss
our findings in the context of Mexican agricultural policy, support for smallholder farms,
and the role of spatial targeting in agri-environmental policy more broadly.

2. Materials and Methods
2.1. Study Background: Agri-Environmental Policy in Mexico

Agricultural policy in Mexico is characterized by an extensive rural support system
managed by the Ministry of Agriculture and Rural Development (SADER) (formerly
SAGARPA). SADER began merging agricultural and rural development policy in the early
to mid-20th century, but greater attention to rural development and poverty came with
passage of the North American Free Trade Agreement (NAFTA) in 1994 [44]. These early
support programs aimed to boost crop productivity as the primary means of addressing
poverty, a policy emphasis that largely remained through the first two decades of the 21st
century [45].

Broad integration of environmental concerns into SADER policy came after passage
of the Sustainable Rural Development Law in 2001, which required agricultural policy
to explicitly address issues of environmental sustainability and equity [46,47]. Policies
began addressing these concerns in rural extension services, micro-credit lending, and
an emerging suite of agri-environmental programs [48–50]. Although the emphasis on
boosting productivity remained, SADER took an increasingly integrative approach to
policy design, providing payments for conservation-based approaches to agricultural land
management [51].

From 2003 to 2007, SADER implemented one of its largest initiatives, the Compre-
hensive Program for Sustainable Agriculture and Productivity Growth on Vulnerable
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Lands (hereafter PIASRE). The program had several objectives: (i) increase productivity
on small farms in regions with high levels of cropland failure; (ii) decrease vulnerability
in regions susceptible to soil erosion and climatic stress; (iii) repair and enhance rainfed
agroecosystems; and (iv) provide support in rural areas with high or very high levels of
human marginality [52,53]. The program funded AEM across the country in the form of
payments for small-scale soil and water conservation projects. A total of 552 of Mexico’s
2455 municipalities received support, at a total cost of over two billion pesos (~200 mil-
lion US dollars) [54]. The program distributed support based on seven priority selection
criteria, which SADER issued through federal directives and program-level Rules of Oper-
ation [52,53].

An evaluation of the program by the Food and Agriculture Organization of the United
Nations (FAO) found that the strategy to distribute AEM across the country was inadequate.
Specifically, FAO indicated that the program did not use a method to quantify and delimit
target areas and populations owing to the lack of sufficient data on priority criteria and
their indicators [52]. The program also did not provide a value ordering or ranking of
the criteria, which further limited FAO assessment. Financial data on the program were
unavailable, and the potential role of budgetary factors on the targeting strategy was
not assessed. The report recommended that future programs design targeting strategies
based, in part, on Mexico’s National Agricultural Census (CAP) database, which included
data aligned with several program criteria [55]. The report did not provide evidence of
poor targeting beyond finding that inadequate data and methods had been used. In this
study, we developed quantitative indicators for the seven criteria, assessed their roles as
determinants of AEM distribution, and evaluated the FAO finding.

2.2. Data Sources and Variables

Agri-environmental measures. We first downloaded the complete record of official
registries for the PIASRE program. These data were published online through its System
of Transparency (SITRAN), an open-access database available from ~2006 to ~2013 [54].
From the registries, we identified each AEM (N = 12,416) and the municipality where it
was implemented, classifying all municipalities as either receiving support (AEM[Y]) or
not (AEM[N]). The municipality was the unit of observation for the study, which was the
smallest program administrative unit common to all variables. The program rules specified
the following targets for AEM.

Failed cropland. Rainfed farming regions prone to cropland failure (FC). Although
little guidance on potential data sources was provided, rules specified that FC should be
calculated as the difference between the total rainfed surface area sown and harvested
(sown [ha] − harvested [ha] = FC), following established accounting practice in Mexico [53].
Using this formula, we calculated the total FC for each municipality from 2002 to 2006
using data from the Agriculture and Fisheries Service (SIAP), a branch of SADER that
provides official yearly totals of municipal-level productivity across the country [56].

Marginality. Regions with high and very high levels of marginality [52,57]. We classi-
fied the marginality level of each municipality using the 2005 Marginality Index, a broadly
used indicator of poverty and deprivation developed by the Mexican government. The
index includes data on ethnic identity, income level, educational access, and other needs-
based components unique to Mexico [58–60]. Each composite index score is comprised
of 10 sociocultural and economic indicators assessed by the National Population Coun-
cil. Standardized scores are used to classify each municipality according to five levels of
marginality (very low, low, medium, high, and very high) [61].

Rural areas. Rules did not specify how rural areas were to be determined for target-
ing [52]. We used the National Institute for Federalism and Municipal Development 2005
dataset to classify each municipality as either “rural” or “other” based on six categories of
population distribution, from rural to metropolis [62].

Farmland size. Farms <40 ha in size [53]. We derived farmland size indicators using
the National Agricultural Census (CAP) dataset (2008) following the earlier recommenda-
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tions [52]. Matching individual census plots with farm-level data on AEM recipients was
not possible due to data misalignment. Therefore, we calculated the mean farmland area
(MFA) of each municipality by dividing the total cultivated area by the total number of
farms following previous studies [63,64]. We then classified each municipality as having
MFA greater than or less than 40 ha.

Rainfed surface area. Regions with large rainfed surface areas [52]. We again used
the CAP dataset to calculate the total surface area per municipality under rainfed cultiva-
tion [52,55].

Climate region. Regions repeatedly impacted by adverse climate phenomena. Rules
specified that climate regions should be determined based on the CONAZA and UACH
(2003) study, which classified regions using a series of eight-part modified Thornthwaite
projections [65]. Using this classification, we assigned the centroid of each municipality to
one of the eight corresponding climate zones.

Erosion risk. Regions at high risk of soil erosion. Rules specified that risk determination
should follow the national soil survey and erosion risk classifications of the Secretary of the
Environment and Natural Resources and the Colegio de Postgraduados [66]. Using this
classification, we assigned the centroid of each municipality to one of four corresponding
erosion risk zones from “negligible risk” to “high risk”.

2.3. Statistical Approach

We use three logistic regression models to examine the seven targeting criteria as
determinants of AEM distribution. Logistic regression is widely used in land-use clas-
sification and agri-environmental policy studies to model relationships between one or
more independent variables and one or more binary dependent variables [67–69]. Here,
we model the seven priority criteria as independent variables and AEM distribution as the
binary outcome, receiving AEM (AEM[Y] = 1) or not (AEM[N] = 0). The logistic model has
the form

log
(

P
1 − P

)
= b0 + b1X1 + b2X2 + · · ·+ bnXn (1)

where P is the response probability that the expected outcome of AEM(Y) or AEM(N) is
present; X1 through Xn are independent variables; and b0 though bn are the coefficients.
In logistic regression the coefficients for continuous variables show the change in the
expected log odds per one-unit increase in X, holding other variables constant. To facilitate
interpretation, coefficients are often expressed as odds ratios, which are the exponentiated
(inverse or undone) versions of the logistic coefficients. Typically, the odds of the target
outcome are divided by those of the non-target outcome in the form

Odds Ratio =
oddsAEM(Y)

odds AEM(N)
=

pAEM(Y)/
(

1 − pAEM(Y)

)
pAEM(N)/

(
1 − p AEM(N)

) (2)

The odds ratios for each variable shows the change in the relative odds of the target
outcome occurring for every one-unit increase in X. When odds ratio = 1, there is no effect
on the odds of AEM(Y); when odds ratio >1, the effect on the odds of AEM(Y) is greater
than 1; and when odds ratio <1, the effect on the odds of AEM(Y) is less than 1. For
categorical variables, the odds are calculated in relation to a reference category using either
dummy or effects coding, rather than in relation to unit increases.

Model 1: Simple logistic (unadjusted). We first used seven simple logistic regression
models to estimate the singular effects of each priority criterion on the likelihood of AEM(Y).
The univariate models served to establish baseline relationships between each criterion and
AEM distribution and as a reference point from which to quantify the adjustment effects of
the other six criteria in Model 2. Key assumptions of simple logistic regression were met.
Basic linear relationships between independent variables and the log odds were identified
using scatterplots for the two continuous variables and correspondence analyses for the
five categorical variables.
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Model 2: Multiple logistic (adjusted). A multiple logistic regression model was used
to examine the combined effects of the seven priority criteria on AEM distribution. Key
assumptions of multiple logistic regression were met. Independence of parameters was
established with all variable inflation factors ≤2.34. Absence of collinearity was established
based on diagonal values in a covariance matrix (all between −0.163 and 0.139), and the
standard errors of parameter coefficients were low (i.e., ≤0.43). However, a test for spatial
autocorrelation (SAC) was performed on the residuals of the dependent variable yielding a
Moran’s Index of 0.033, a Z-score of 13.78, and a p-value of 0.001, indicating the presence
of SAC.

Model 3: Multiple logistic (adjusted for SAC). Model 3 was designed to control for
SAC. Methods of controlling SAC in logistic regression include: developing autocovariate
models in which a spatial control variable is incorporated based on the weighted average
distances between neighbors of the same unit response variable [70] or SAC residuals [71];
using random sampling to minimize the effects of SAC [72]; incorporating geographic
coordinates as continuous predictor variables [73]; and incorporating other spatially explicit
lag variables that control for locational effects [74].

To control for SAC, we included a physiographic region variable in Model 3 by
assigning the centroid of each municipality to one of nine distinct regions based on the
National Institute of Geography and Statistics classification [75]. Tests for SAC in Model 3
yielded a Moran’s Index of −0.001, a Z-score of −0.31, and a p-value of 0.755, indicating
the absence of SAC.

2.4. Assessing Targeting: ROC Curves and Odds Ratios

Receiver operator characteristic (ROC) curves illustrate the ability of a diagnostic test
to distinguish between two conditions [33]. ROC curves have been used in humanitarian
and development contexts to test the ability of a model to distinguish poverty thresholds
or the accuracy of existing poverty indicators [76]. In these contexts, ROC curves often
examine the probability that a model will correctly classify a poor person as “poor” (true
positive), a measure of model “sensitivity” usually plotted on the y-axis. The same curves
also illustrate the probability a model will correctly classify a non-poor person as “non-
poor” (true negative). This is known as model “specificity” and is usually plotted on
the x-axis as 1 - specificity. The ROC curve itself represents all possible combinations
of sensitivity and 1 - specificity that result from different probability threshold cutoff
points [41]. The area under the curve (AUC) represents the overall ability of the model
to correctly distinguish between the binary outcomes (accuracy) and is often used as
a measure of model fit [77]. For example, an AUC of 0.70 correctly predicts outcomes
70 percent of the time. Often, a diagonal line from the point of origin (0, 0) to (1, 1) is drawn
to represent a model with no discrimination (chance), with an AUC of 0.50. The difference
between the two (AUC = 0.20) represents a model accuracy greater than random chance.
Because the point (0, 1) represents perfect specificity and sensitivity, the point on the ROC
curve closest to (0, 1) represents the optimal probability cutoff point where sensitivity and
specificity are maximized. This point can be determined using the Youden Index, which
calculates the maximum vertical distance between the diagonal (AUC = 0.50) and the ROC
curve for each single decision threshold [78].

In the context of poverty targeting, where “poor” = 1 and “non-poor” = 0, model speci-
ficity represents targeting coverage and 1—sensitivity represents targeting leakage. The
Youden Index in this case identifies the cutoff point where coverage is maximized and leak-
age is minimized, assuming the costs of over-coverage (false positive) and under-coverage
(false negative) are equal. Verme and Gigliarano (2019) provide extended explanation
of the use of ROC curves for this purpose as a diagnostic tool for optimizing targeting
and increasing overall distributive efficiency under different scenarios. Here we used a
modified version of this method, which is to our knowledge the first use of ROC curves in
assessing the targeting effectiveness of agri-environmental policy.
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For each of the three models, we first assessed overall model explanatory power with
AUC and pseudo-R-squared (McFadden and Nagelkerke) measures, lowest information
criteria (Akaike and Bayesian), and likelihood ratio tests. We then developed the ROC
curve for each of the models by plotting all possible combinations of targeting leakages on
the horizontal axis and targeting coverages on the vertical axis, based on all combinations
of predicted and observed coverages, respectively. These combinations were plotted at
each possible threshold cutoff point for receiving AEM (Y = 1; N = 0) as determined by
the maximum likelihood function of the logistic curve. We identified the cutoff point
(Youden Index) as the optimization point between coverage and leakage rates assuming
the distributive costs of model misclassification due to false negative and false positive
were equal. We then illustrated the two error rates (Type I and Type II) and coverage
rates in 2 × 2 confusion matrices based on the predicted and observed outcomes at the
cutoff value. We developed matrices only for Models 2 and 3 as they provided the greatest
explanatory power. Using the matrices, overall coverage rates were identified based on
true positive and true negative results. Under-coverage (exclusion or Type I error) and
over-coverage (inclusion or Type II error) rates were based on false negative and false
positive results, respectively.

We used odds ratios to examine the partial effects of each targeting criterion on AEM
distribution in Models 2 and 3. We used forest plots to illustrate the odds ratios for Models
2 and 3 and the adjustment effects of controlling for SAC (Model 3). All spatial analyses
were performed with ArcGIS Pro (ESRI) and other statistics with JMP Pro 14.2.0 (SAS
Institute, Cary, NC, USA).

3. Results
3.1. Descriptive Statistics of Variables

About 23 percent of municipalities (552/2455) received AEM through the PIASRE
program (Table 1). We compared priority criteria indicator values between these munici-
palities (AEM[Y]) and those that did not receive support (AEM[N]). The total mean area of
failed cropland was 11 times larger for AEM(Y) municipalities (16,460 ha) than for AEM(N)
(1500 ha), but the total mean areas of rainfed cropland differed little (26 percent). Marginal-
ization levels between AEM(Y) and AEM(N) municipalities showed that as a percent of
the total, municipalities with very low, low, and medium marginality were two, nine, and
three percent higher in AEM(Y) than AEM(N), respectively. Municipalities with high or
very high marginality were five and nine percent lower in AEM(Y) than AEM(N). Among
AEM(Y) municipalities, 84 percent had mean farm areas (MFA) less than 40 ha, while
among AEM(N) municipalities, 95 percent had MFA less than 40 ha. Rural municipalities
comprised 64 percent of AEM(Y) and 56 percent of AEM(N). Regarding climate region,
each of the four most arid zones (E, D1, D2, D3) comprised a greater percent of AEM(Y)
than AEM(N) municipalities, whereas each of the four most humid zones (A, B, C2, C1)
comprised a smaller percent of AEM(Y) than AEM(N) municipalities. Almost 90 percent
of AEM(Y) municipalities exhibited low or moderate risk of soil erosion, with negligible
and high erosion risk comprising only one and nine percent, respectively. For AEM(N)
municipalities, low and moderate erosion risk was almost 20 percent lower than in AEM(Y)
municipalities, while negligible and high erosion risk were 9 and 10 percent higher. For
physiographic region, the highest percent of AEM(Y) was in the Western mountains regions
(22 percent), while for AEM(N), the highest percent of municipalities was in the Southern
Mountains region (42 percent).
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Table 1. Targeting indicators for municipalities with and without receiving support measures through Mexico’s PIASRE
program.

Receipt of Agri-Environmental Measures among Mexican Municipalities

Variable (Independent) Yes (n = 552) No (n = 1903) Total (n = 2455)

Mean SD Mean SD Mean SD

Failed cropland (10 k ha) 1.646 2.148 0.150 0.400 0.252 0.733
Rainfed cropland (10 k ha) 0.603 1.296 0.815 1.578 1.002 1.757

n % n % n %

Marginalization level 552 100 1903 100 2455 100
very low 74 13 205 11 279 11

low 130 24 294 15 424 17
medium 127 23 374 20 501 20

high 175 32 711 37 886 36
very high 46 8 319 17 365 15

Mean farm area 552 100 1903 100 2455 100
MFA < 40 ha 461 84 1799 95 2260 92
MFA > 40 ha 91 16 104 5 195 8

Rural classification 552 100 1903 100 2455 100
rural 364 66 1062 56 1426 58
other 188 34 841 44 1029 42

Climate region 552 100 1903 100 2455 100
Perhumid (A) 19 3 315 17 334 14

Humid (B) 23 4 310 16 333 14
Moist subhumid (C2) 23 4 223 12 246 10
Dry subhumid (C1) 140 25 564 30 704 29
Semiarid light (D3) 114 21 274 14 388 16
Semiarid mod. (D2) 124 22 134 7 258 11
Semiarid dry (D1) 93 17 71 4 164 7

Arid (E) 16 3 12 1 28 1

Erosion risk 552 100 1903 100 2455 100
negligible 6 1 181 10 187 8

low 195 35 931 49 1126 46
moderate 299 54 425 22 724 29

high 52 9 366 19 418 17

Physiographic region 552 100 1903 100 2455 100
Southern mts. 91 16 803 42 894 36
Yucatán-LGCP 14 3 217 11 231 9
Volcanic axis 95 17 595 31 690 28

Central tablelands 88 16 17 1 105 4
Gulf coastal plains 46 8 74 4 120 5
Pacific coast plains 25 5 22 1 47 2

Eastern mts. 61 11 132 7 193 8
Western mts. 124 22 42 2 166 7

Baja peninsula 8 1 1 0 9 0

3.2. Model Results
3.2.1. Targeting Coverage and Leakage

Each priority criterion’s main effects (unadjusted) on AEM distribution in Model 1
were statistically significant (α = 0.05) (Table 2). Climate region and erosion risk had larger
whole effects than other criteria, the highest likelihood ratio tests (LRTs), highest pseudo-R-
squared (M and N), and lowest information criteria scores (AICc and BIC). Climate region
and erosion risk also produced the highest singular AUC values, correctly explaining AEM
distribution 75 and 69 percent of the time.

Overall, Models 2 and 3 explained AEM distribution about 83 and 87 percent of the
time, respectively, which indicates good to excellent discriminatory capacity [77]. The con-
trols imposed on Model 3 improved the success rate from Model 2 by about three percent
(AUC = 0.866–0.834). Pseudo-r-squared measures were higher in Model 3 (McFadden = 0.33,
Nagelkerke = 0.45) than in Model 2 (McFadden = 0.26, Nagelkerke = 0.37); likelihood ratio
tests also were higher (Model 3 = 864, Model 2 = 673); and Model 3 had lower AICc (Model 3
= 1808, Model 2 = 1964) and BIC (Model 3 = 1982, Model 2 = 2092) scores (Table 2).
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Table 2. Fit statistics for simple (Model 1) and multiple (Models 2 and 3) logistic regression models.

AUC R2 (M) R2 (N) LRT p-Value AICc BIC

Model 3 (multiple) 0.87 0.33 0.45 864 <0.0001 1808 1964
Model 2 (multiple) 0.83 0.26 0.37 673 <0.0001 1982 2092

Model 1 (simple)
Climate region (CR) 0.75 0.14 0.21 359 <0.0001 2274 2321

Erosion risk (ER) 0.69 0.09 0.14 230 <0.0001 2395 2418
Rainfed cropland (RC) 0.69 0.03 0.05 83 <0.0001 2538 2550
Failed cropland (FC) 0.68 0.06 0.10 160 <0.0001 2461 2473
Marginalization (MI) 0.59 0.02 0.03 47 <0.0001 2580 2609

Mean farm area (MFA) 0.56 0.02 0.04 61 <0.0001 2560 2572
Rural classification (R) 0.55 0.01 0.01 18 <0.0001 2603 2614

The probability threshold cutoff points for Models 2 and 3 as determined by the
Youden Index were 0.201 and 0.198, respectively. At these optimization points, Models
2 and 3 correctly explained AEM(Y) about 77 and 80 percent of the time, respectively
(Figure 1). The under-coverage rates of Model 2 and Model 3 were 23 and 20 percent,
respectively, while over-coverage rates were 24 and 19 percent, respectively (Table 3).
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Table 3. Coverage and leakage rates for Models 2 and 3. Bold values refer to coverage rates, bold
italicized values to over-coverage rates, and italicized values to under-coverage rates.

Observed AEM

Model No Yes

Predicted 2 No 75.72% 23.01%
AEM Yes 24.28% 76.99%

3 No 81.14% 20.29%
Yes 18.86% 79.71%

The overall coverage rate of Model 3 was 79–80 percent, and the leakage rate was
19–20 percent. The targeting errors of Model 3 showed AEM were misallocated to non-
priority municipalities 19 percent of the time (inclusion error), while priority municipalities
were excluded from receiving AEM 20 percent of the time (exclusion error).

3.2.2. Positive Odds of Receiving AEM per Priority Criterion

Within these overall measures of targeting effectiveness, the roles of each targeting
criterion in determining AEM(Y) varied widely. In other words, the coverage–leakage rates
above were determined only after the models assigned very different effects to each of the
explanatory variables.

Failed cropland was a strong determinant of AEM(Y) in Model 2 but a weak determi-
nant in Model 3. The odds of AEM(Y) increased 73 percent with every one-unit (10,000 ha)
increase in failed cropland in Model 2 but fell to a statistically insignificant 15 percent once
adjusted for SAC and physiographic region (Model 3). Rainfed cropland was a statistically
significant determinant in both models. The odds of AEM(Y) increased by 19 and 20 percent
with every one-unit increase in rainfed cropland in Models 2 and 3, respectively (Figure 2).

Marginalization level was negatively associated with AEM(Y) in Model 2. Compared
to municipalities with very low marginalization, those with medium, high, and very high
were 3, 20, and 31 percent less likely to receive AEM, respectively, although these effects
were not statistically significant. The association reversed after the adjustments of Model
3, where the odds of AEM(Y) in municipalities with low, medium, high, and very high
marginality were 22, 54, 91, and 70 percent higher, respectively. However, even in Model 3,
only the high-marginality classification effects were statistically significant.

Mean farm area of municipalities had little effect on AEM distribution. Municipalities
with mean farm areas less than 40 ha (target classification) were 17 percent less likely to
receive AEM in Model 2. In Model 3 the effect was negligible and statistically insignificant.
Contrasting with this, the rural municipality classification was a significant determinant of
AEM(Y). Rural municipalities were 146 percent more likely to receive AEM than non-rural
municipalities in Model 2 and 75 percent more likely in Model 3.

Climate region was a strong determinant of AEM distribution. In Model 2, the odds
of AEM(Y) in the most arid regions (E, D1, and D2) were 35, 27, and 11 times higher,
respectively, than in the perhumid region (A). These odds fell to 21, 20, and 9 times higher
in Model 3. In humid regions the adjustment effects of Model 3 were smaller. Overall,
the positive relationship between aridity and the odds of AEM(Y) was strong, statistically
significant, and relatively consistent between Models 2 and 3.

Erosion risk also was a strong determinant of AEM distribution. Compared to mu-
nicipalities with the lowest erosion risk (negligible), the odds of AEM(Y) in municipalities
with low, moderate, and high risk were 18, 33, and 23 times higher, respectively, in Model
2. The positive (ordered) association between erosion risk and the odds of AEM(Y) was
clearer in Model 3. Here, the odds of AEM(Y) in municipalities with low, moderate, and
high risk increased sequentially at 21, 22, and 29 times higher, respectively.

Physiographic region, like climate and erosion risk, was a strong and statistically
significant determinant of AEM distribution. Unlike the other variables, however, the
different physiographic regions (PRs) did not reflect a logical value ordering based on
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program criteria. However, for illustrative purposes we ordered the PR levels in a general
north-trending sequence. This showed that municipalities in the northern regions of the
Eastern Mountains, Central Tablelands, and Baja Peninsula were about 17, 21, and 74 times
more likely, respectively, to receive AEM than municipalities in the southern most region
(Southern Mountains). Inclusion of PR satisfied model assumptions and controlled the
effects of SAC, and moderately attenuated the effects of climate regions and erosion risk on
AEM distribution. However, the largest attenuating effects of PR were on the relationship
between marginality and AEM distribution.
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Overall, the effects of climate zone, erosion risk, and physiographic region were the
strongest determinants of AEM distribution in both models. The partial effects of climate
region showed strong positive association between aridity and the odds of receiving AEM.
The other priority criteria were less significant, despite being described in program rules as
important determinants of AEM distribution (Figure 2).

4. Discussion

Our logistic models explained the distribution of agri-environmental measures in one
of Mexico’s largest support programs about 83 to 87 percent of the time. The targeting
strategy had coverage and leakage rates of about 80 and 20 percent, respectively. These
findings suggest a relatively effective targeting strategy [41,77,79]. However, closer exami-
nation reveals significant differences in the whole and partial effects of the seven priority
criteria on AEM distribution. Climate region and erosion risk indicators were far better
determinants of AEM distribution than were a municipality’s mean farmland size, rainfed
land area, failed cropland area, or marginalization level.

4.1. AEM Targeting Favors Arid Regions at Risk of Soil Erosion

The observed distribution of AEM reflects Mexico’s strong policy emphasis on ad-
dressing hydroclimatic vulnerability and the effects of desertification on agriculture [80].
Municipalities in arid and semi-arid regions at high risk of soil erosion were about 20 times
more likely to receive AEM than wetter municipalities with little erosion risk. About 65 per-
cent of Mexican territory is dry (hyper-arid, arid, semi-arid, and sub-humid) [81], and
about 60 percent of agriculture is rainfed and thus susceptible to climatic variability [82].
This vulnerability of rainfed agriculture to drought has played a major role in institutional
responses to cropland failure over the last several decades [83,84], which come in the
form of emergency relief, subsidies, and agri-environmental support measures [48–50].
Unlike the differences we found among climate regions, we found no significant differences
among the low, medium, and high erosion risk classifications in the likelihood of receiving
AEM (Model 3). This suggests that the program did not target AEM based on erosion
risk distinctions to the same degree it did based on climate region distinctions. In general,
aridity was a stronger determinant than erosion risk.

While the PIASRE program successfully targeted AEM to dry regions with some
erosion risk, the conceptual basis for prioritizing these factors over regions with high levels
of failed cropland is unclear. Furthermore, the lack of specificity in program rules in how
to define and constrain the climate region, erosion risk, and failed cropland criteria makes
assessing these relationships problematic. Ultimately, this lack of clarity serves as a major
impediment to any meaningful ex-post assessment of policy effectiveness beyond the
immediate, indicator-based targeting strategy.

4.2. AEM Targeting Neglects Marginalized Smallholder Farms

A 2009 report by the World Bank characterized the PIASRE program as specifically tar-
geted to the rural poor, although the reasoning behind the characterization is unclear [50,85].
Our assessment found weak evidence that the program prioritized poor rural areas for
AEM distribution. Instead, we found a negative relationship between marginalization
and the likelihood of receiving AEM in Model 2, and only a slightly higher likelihood of
receiving AEM among municipalities with high levels of marginalization in Model 3.

The discrepancy between the above characterization and our findings has at least
two possible explanations: definitional ambiguity and characterization based on the tar-
geting rules, rather than the actual distribution of AEM. First, there are many different
methods for defining and measuring poverty in Mexico, and as the report notes, methods
often vary across policies [50]. In the current case, PIASRE program rules specify using
marginalization level as the priority indicator, marginalization being a common metric of
multidimensional poverty in Mexico [58–60]. Therefore, definitional ambiguity does not
explain the different characterizations.
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A more likely explanation is that the characterization was based on the program’s
targeting rules [52,53,57] rather than on observed coverages. The report acknowledges that
leakages typically prevent some targeted support from reaching poorer regions but does
not specify the nature or scale of leakages in the PIASRE program [50]. Our study confirms
that the program was targeted to the rural poor, but only at the level of program design.
The observed distribution of AEM was minimally aligned with the poverty targeting
priorities in program rules. That is, the targeting strategy effectively failed to prioritize
Mexico’s poorest regions, resulting instead in targeting under-coverages and more general
policy leakages. Other studies confirm significant leakages in Mexican agricultural [49]
and development policy [79], though these leakages are seldom quantified. This is due, in
part, to transparency issues and the lack of available program data [86].

The leakages identified in this study reflect a broader institutional neglect of small-
holder agriculture in Mexico. Despite rhetoric, policies have long failed to provide support
to small farms, tending instead to distribute support to larger and wealthier farms [87,88].
In Mexico, close associations exist between smallholder agriculture, rural poverty, lack of
access to irrigation, degraded or marginal farmland, and agricultural vulnerability more
generally [89–91]. Commonly classified as having fewer than five hectares, smallholder
farms in Mexico comprise about 72 percent of all farms but hold only about 18 percent
of all cultivated land [49]. PIASRE program rules specified that farms smaller than 40 ha
should be prioritized for AEM—a range that would include very small, small, medium,
and many large farms [63]. Yet we found no statistically significant relationship between
mean farm area and AEM distribution—municipalities with mean farm areas smaller than
40 ha were no more likely to receive AEM than municipalities with areas greater than
40 ha. Although Mexican agricultural policy has expanded to address a broader range of
socioeconomic and environmental concerns, our study highlights the persistent neglect of
its poorest farming regions. This has occurred despite enhanced legal requirements and
some outward improvements in transparency over the last several decades [49,86].

4.3. Targeting Gaps in Agri-Environmental Policy Implementation

Gaps between stated program rules and the observed distribution of support are
largely attributable to the absence of value ordering among the targeting criteria. In place
of an explicit value order, our study reveals the implicit ordering of priorities based on
ex-post assessment of the observed distribution. Value ordering of priority criteria is key
to policy effectiveness when multiple objectives are involved in targeting [4,19]. Conflicts
can emerge among objectives, e.g., optimizing equity verses efficiency [92,93], which
may require tradeoffs and careful analyses of interaction or spillover effects [6]. These
effects can be highly variable in space and time. Recognition of this variability has driven
calls for indicator-based approaches to targeting assessment and the selection of priority
criteria [2,19,94]. In the case of the PIASRE program, similar indicator-based approaches
to assessment could be used to provide the framework for a more empirically grounded
value ordering of criteria.

It is beyond the scope of this study to explore whether the PIASRE program’s targeting
strategy would have achieved beneficial results if properly implemented. A two-year
experimental case study found that the program produced mixed benefits [95]. Support
measures were targeted to address a specific soil and water conservation objective, although
the incentive structure produced only short-term conservation benefits. In the medium
to longer terms, support measure actions actually resulted in landscape degradation.
In addition, the empirical results needed to make this assessment required a level of
intensive and sustained field monitoring that is seldom practical over larger spatial scales
and timeframes.

Such site-level experimental approaches constitute the greatest share of ex-post as-
sessment of the environmental effects of AEM. The spatiotemporal limitations associated
with these approaches often result in a general lack of understanding of targeting effects on
larger-scale processes [9]. Additional challenges to assessing larger-scale processes include
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the high costs of monitoring and measurement and the lack of linearity and immediacy of
AEM effects [96]. Indeed, misalignment between institutional and ecosystem timeframes
is a complicating scale effect that is often encountered when working at the intersection
of social and ecological systems [97]. The design and evaluation of multi-objective agri-
environmental policy requires similarly synthetic approaches to socioenvironmental sys-
tems science [98]. As such, improved integration of agri-environmental policy approaches
remains a central challenge to targeting design, implementation, and evaluation [92].

We cannot say with certainty why smallholders in poor regions prone to cropland
failure failed to receive a greater share of support, as required by program rules. The
program’s over-coverage of arid and semi-arid regions may reflect legitimate concerns or
policy changes that remain unexplained. Furthermore, we recognize that budgetary factors
may have played a role in the targeting strategy, though we were unable to assess this as
these data were unavailable. We also did not investigate the willingness or unwillingness
of farmers to participate as a determinant of AEM distribution though we recognize its
potential relevance [7,8]. Previous research shows that support programs involving little
actual change in farming practices often generate higher farmer participation [12]. One
study shows the land management practices supported by the PIASRE program were
already in widespread use in marginalized smallholder regions [99], which would suggest
a higher willingness to participate. Further research into the specific drivers of the targeting
leakages identified in this study is needed. The methods developed in this study also could
be applied to examine targeting strategies in rural humanitarian and development contexts,
helping policymakers better target support to reduce poverty and vulnerability, conflict,
and famine [37,38].

The push for greater policy focus on results-based targeting of agri-environmental
measures is growing in Europe [8,100,101]. In Mexico, results-based targeting is also
discussed, but in the context of payments for hydrological services and biodiversity conser-
vation [102,103]. Mexico has one of the largest payments for ecosystem services programs in
the world, which the country manages through the Ministry of the Environment and Natu-
ral Resources (SEMARNAT) and the National Forestry Commission (CONAFOR) [104,105].
Although separate ministries, some integration of these efforts with SADER policy could
help generate the results- and indicator-based assessments of AEM that are needed in
Mexico [88,94]. In turn, findings from these combined efforts could better inform the
selection and value ordering of priority criteria—a factor critical not only to the design of
targeting strategies but also to their effective implementation.

5. Conclusions

We used logistic models, ROC curves, and odds ratios to assess the targeting cover-
ages and leakages of Mexico’s PIASRE program, which distributed agricultural support
measures to farms across the country based on seven priority criteria. Our results show
that despite coverage and leakage rates of 80 and 20 percent, respectively, large differences
exist in priority criteria effects on AEM distribution. While the program favored arid and
semi-arid regions at risk of soil erosion, it neglected poor smallholder farming regions with
high levels of cropland failure. These targeting gaps reveal that despite new legislation
and some outward improvements in transparency, actual policy support for smallholder
agriculture remains inadequate. Better structural alignment between the design and im-
plementation of targeting strategies is needed. This alignment is a critical though often
overlooked determinant of targeting precision and overall policy effectiveness.
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