

APPROVED:

Ifana Mahbub, Major Professor
Gayatri Mehta, Committee Member
Xinrong Li, Committee Member
Shengli Fu, Chair of the Department of

Electrical Engineering
Hanchen Huang, Dean of the College of

Engineering
Victor Prybutok, Dean of the Toulouse

Graduate School

ASYNCHRONOUS LEVEL CROSSING ADC FOR BIOMEDICAL

RECORDING APPLICATIONS

Kieren Pae

Thesis Prepared for the Degree of

MASTER OF SCIENCE

UNIVERSITY OF NORTH TEXAS

August 2021

Pae, Kieren. Asynchronous Level Crossing ADC for Biomedical Recording

Applications. Master of Science (Electrical Engineering), August 2021, 78 pp., 6 tables, 31

figures, 3 appendices, 51 numbered references.

This thesis focuses on the recording challenges faced in biomedical systems. More

specifically, the challenges in neural signal recording are explored. Instead of the typical

synchronous ADC system, a level crossing ADC is detailed as it has gained recent interest

for low-power biomedical systems. These systems take advantage of the time-sparse nature

of the signals found in this application. A 10-bit design is presented to help capture the

lower amplitude action potentials (APs) in neural signals. The design also achieves a full-

scale bandwidth of 1.2 kHz, an ENOB of 9.81, a power consumption of 13.5 microwatts,

operating at a supply voltage of 1.8 V. This design was simulated in Cadence using 180

nm CMOS technology.

Copyright 2021

by

Kieren Pae

ii

ACKNOWLEDGEMENTS

This work is based upon work supported by the National Science Foundation (NSF)

under grant No. ECCS 1943990.

I would like to thank my major professor Dr. Ifana Mahbub for all of her help and

guidance through this project. Her insight was invaluable during my work on this thesis. I

would also like to thank Dr. Gayatri Mehta and Dr. Xinrong Li for taking the time to serve

on this thesis committee.

Lastly, I would like to thank my friends and family for helping make this possible.

Their encouragement and support through this entire process has helped me accomplish this

goal of attaining a Master’s degree in Electrical Engineering.

iii

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS iii

LIST OF TABLES vi

LIST OF FIGURES vii

CHAPTER 1 INTRODUCTION 1

1.1. Biomedical Sensing Constraints 1

1.2. Original Contributions 2

1.3. Outline of Thesis 2

CHAPTER 2 OVERVIEW OF ADC ARCHITECTURES 3

2.1. Architectures 8

2.1.1. SAR 9

2.1.2. Pipeline 10

2.1.3. Flash 11

2.1.4. Σ-∆ ADC 12

2.2. Synchronous vs. Asynchronous 14

2.3. Performance Metrics 18

CHAPTER 3 ASYNCHRONOUS ADC DESIGN 26

3.1. DAC Design 26

3.2. Comparator Design 27

3.3. Digital Logic 28

3.4. Simulation Results 38

3.5. Comparison With the State-of-the-Art 46

3.6. Future Work 48

CHAPTER 4 CONCLUSION 49

iv

APPENDIX A VERILOGA CODE 50

APPENDIX B MATLAB CODE FOR DATA MANIPULATION 53

APPENDIX C MATLAB CODE FOR RMSE ANALYSIS 70

REFERENCES 73

v

LIST OF TABLES

Page

2.1 Signal Definitions 16

3.1 Comparator Summary 29

3.2 Inputs to Add/Sub Circuits 33

3.3 Ring Oscillator Summary 38

3.4 DAC Results 40

3.5 Performance Summary 47

vi

LIST OF FIGURES

Page

2.1 ADC Block Diagram 3

2.2 Ideal ADC example(a) Ideal ADC graph (b) Quantization error 5

2.3 Explaining the effects of aliasing. (a) Input analog signal (b) Sampling

function (c) Overall signal (d) Aliasing example 7

2.4 Demonstrating the effects of an anti-aliasing filter. (a) Input signal (b)

Filtered signal (c) The effect of the filter 9

2.5 SAR ADC Architecture 10

2.6 Pipeline ADC Architecture 11

2.7 Pipeline Stage Block Diagram 12

2.8 Flash ADC Architecture 13

2.9 Σ-∆ ADC Architecture 13

2.10 Synchronous vs. Asynchronous(a) Uniform sampling (b) Asynchronous or

level-crossing sampling 15

2.11 Asynchronous ADC architecture 16

2.12 Demonstrating DNL (a) Nonideal 3-bit ADC (b) DNL illustrated with

quantization error 20

2.13 Demonstrating INL (a) Nonideal 3-bit ADC (b) INL illustrated with

quantization error 22

3.1 DAC block diagram 27

3.2 DAC selection circuit 28

3.3 CT Comparator 29

3.4 Digital logic block diagram 30

3.5 Output logic block 30

3.6 Level crossings in the ADC. Consecutive level crossing (CLC) shown with

black circles. Repeated level crossings (RLC) shown with white circles. 31

3.7 Track bits block 32

vii

3.8 Keeping track of the level crossings. DOUTp = DOUT+, DOUTm =

DOUT-, and DOUT’ = new value of DOUT 34

3.9 Control bits block 35

3.10 Traditional ring oscillator 36

3.11 Current starved ring oscillator 37

3.12 Comparator simulation results 39

3.13 DAC simulation results 40

3.14 Ring oscillator simulation results 41

3.15 Digital logic simulation results 1 42

3.16 Digital logic simulation results 2 43

3.17 ADC simulation 1 44

3.18 ADC simulation 2 46

viii

CHAPTER 1

INTRODUCTION

The amount of information being recorded and processed in today’s world has never

been higher. That amount of information also continues to grow with each passing year.

Computers and other digital devices handle the bulk of these processing requirements. Un-

fortunately for these devices, we live in an analog world, and that fact has led to the analog-

to-digital converter (ADC) being one of the most important building blocks in today’s tech-

nology. ADCs take continuous-time (CT) signals and convert them into a form that digital

devices can take as an input. The basic operating principle behind this is that the ADC

samples the CT signal and outputs the data as bits, which is what the digital devices are

looking for as an input to be able to process the information.

ADCs are found in a wide range of devices, including wireless sensors, cameras, audio

devices, cell phones, and televisions. Another application for these circuits are found in

portable and implantable medical devices. These devices help medical personnel have the

information they need to properly diagnose and treat various diseases. The ADCs required

for these biomedical devices will be the main focus of this thesis. The following section will

continue with a more in-depth look at the requirements for these devices.

1.1. Biomedical Sensing Constraints

As the medical science field grows and evolves, it is only natural for the devices

used by medical personnel to also grow and evolve. One great asset already mentioned in

this thesis can be found with portable and implantable devices. These allow for a level

of information available to doctors that was not possible for most of human history. The

designs for these systems, however, are required to be extremely power efficient and have a

low silicon footprint [1].

One of the areas that has developed over the recent decades is neurological signal

acquisition. These signals can be classified into local field potential (LFP) and action po-

tentials (APs) [2]. APs are the result of activity for a single neuron. LFPs, on the other

1

hand, are generated by superimposition of electrical activity of neurons in the region. The

signal characteristics of LFPs are typically in the frequency range of 0.1-250 Hz with a peak

amplitude of several mV. For APs, the peak amplitude can be about a few µV and be found

in the 0.25-5 kHz bandwidth [3]. A low-power ADC is required to digitize these signals. The

typical choice for this process is an SAR ADC with a resolution ranging from 8-10 bits [4].

The SAR architecture is popular because it can meet the demands of biopotential sampling,

including low power, low sampling rate, and the resolution criteria. However, due to the

time sparse nature of biomedical signals, level crossing ADCs have gained attention as an

alternative method [5]. Since this architecture only samples when the signal is active, it has

been shown to save power for signals such as this [6].

1.2. Original Contributions

A unique design for a 10-bit level crossing ADC is presented in this thesis. The design

utilizes concepts found in literature to reliably process both LFP and APs in neuropotential

signals. This architecture uses the concept of level crossings to facilitate a low power design

that can still accurately reconstruct the signal. Designs for the digital to analog converter

(DAC), comparators, and digital logic are to be presented and discussed.

1.3. Outline of Thesis

This thesis is organized as follows. Chapter 2 starts with an exploration of synchro-

nous ADC principles along with some sample architectures in that space. Then a discussion

on how asynchronous ADCs are defined followed by a literature review on the work being

done in biomedical asynchronous ADCs. After that Chapter 2 wraps up with a discussion

of various performance metrics found in the literature. Chapter 3 begins with the discussion

on the design for this thesis. Then simulation results are shown with a comparison with the

state-of-the-art. The future work that is planned on this project is found at the end of this

chapter. Finally, this thesis wraps up in Chapter 4 with the conclusion.

2

CHAPTER 2

OVERVIEW OF ADC ARCHITECTURES

As was briefly mentioned in the introduction to this thesis, an ADC takes a CT

analog signal and converts it into a sequence of digital values proportional to the input

signal’s magnitude [7]. This process is generally much more difficult than the reverse process

of taking a digital signal and converting it into analog form [8]. Fig. 2.1 shows a very basic

block level diagram of an ADC. The input signal, Vin, is fed into an anti-aliasing filter, which

leads to the ADC block with the N-bit digital output. This anti-aliasing filter is not always

necessary, and it’s function will be discussed later in this section.

Figure 2.1. ADC Block Diagram

The N-bit digital output consists of N-bits labeled as D0 to DN-1. D0 corresponds

to the least significant bit (LSB) while DN-1 represents the most significant bit (MSB). A

typical digital output code is shown in Eqn. 2.1.

Dout = DN-1...D1D0 (2.1)

This digital output that is delivered at the output of the ADC is useless without knowing

the code and conversion relationship that is being used in the architecture [7]. The most

commonly used code is straight binary (base 2). This results in the LSB having a value

3

weight of 20, the next bit’s weight is 21, up until the MSB value whose weight is given as

2N-1.

The value of N for the ADC determines the resolution, or in other words how many

quantization levels the component will have. The ADC will split the Vref voltage shown in

Fig 2.1 into 2N equal parts. As an example to help better explain this concept as well as the

digital code discussed earlier an example of a Vref value of 1.8 V and N being equal to 3 will

be used. Now since the reference voltage is split into 2N equal parts the value of a change in

1 LSB is Vref/2N. Plugging in the values for our example gives us the simple arithmetic of

1.8/8 = 0.225 V. Now that we have our conversion relationship mentioned in [7] as 1 LSB

= 0.225 V the binary output code can now be converted to a voltage value. The code to be

used in this example is Dout = 110.

Now we take the value of Dout and multiply it by the value of 1 LSB in volts. This

is given by (110)20.225 V = (6)100.225 V = 1.35 V. Now this example is admittedly a little

misleading because it doesn’t take into account the quantization error that arises from this

operation. What is meant by this statement is that the actual value of the analog input

signal is in the range of 1.35 V to the next quantization value, which is 1.575 V for this

system. 1.575 V corresponds to a digital code of (111)2 = (7)10. To put it more concisely,

with an output code of (110)2 = (6)10 the real analog input voltage value will be in the range

of 1.35 V ≤ Vin < 1.575 V. Fig. 2.2 will help to further explain this concept.

Fig. 2.2(a) shows Dout, digital output, of an ideal 3-bit ADC [8]. The dashed line

represents a ramp input from an analog signal while the staircase plot shows how the digital

output changes with the aforementioned analog input. The x-axis has been normalized to

Vref. This means that at the ADC’s maximum output, corresponding to 1112(2
N-1), will

represent a value of Vin/Vref ≥ 7/8.

Fig. 2.2(b) shows how the quantization error changes as the analog input increases

[8]. The way to look at quantization error is that it naturally arises due to the differences

between analog and digital systems. Digital systems only have a finite number of available

outputs, 8 in this case, while the analog input shown theoretically has an infinite number of

4

points on that line. To better explain the quantization concept the part of Fig. 2.2 where

1/8 ≤ Vin/Vref ≤ 2/8 will be used as an example. The first points to look at are the edges

of this boundary. When Vin/Vref are equal to 1/8 and 2/8 there is a discontinuity in the

quantization error graph where it goes from 1 to 0 bits. It can be seen that this discontinuity

happens at every boundary for the Dout values. This is simply representing the fact that

at exactly those values of the boundaries the digital and analog signals are in complete

agreement. Thus the bit error is 0. However, if the signal is below or above the boundaries

respectively, then the bit error is almost 1 bit showing that the system is losing almost that

entire bits worth of information due to the digitization process.

Figure 2.2. Ideal ADC example(a) Ideal ADC graph (b) Quantization error

5

One of the most important details of synchronous ADC’s is the sampling rate the

ADC will operate at. This determines how often the ADC samples the CT analog signal

and transforms it into the corresponding digital code. The sampling rate, fs, will largely

be application dependent, but there is one condition that must be met that is well known

in literature. Eqn. 2.2 shows the Nyquist Criterion. The equation reads that the sampling

frequency, fs, must be more than two times of the highest frequency found in the analog

signal, f0 [8].

f s > 2f 0 (2.2)

If this condition is met than there will be no aliasing in the frequency domain of the

sampled signal. There will be no way to restore the signal from digital to analog without

distortion if the condition in Eqn. 2.2 is not met without using other techniques [9]. One

such way to subvert the Nyquist Criterion is by using compressive sensing (CS) algorithms.

These methods allow the sampling rate to be determined by the signals sparsity instead of

it’s highest frequency content [10]. This can facilitate a reduction of data rate and power

savings for the circuits processing the information [11].

To better explain the Nyquist Criterion Fig. 2.3 will be used to help the reader

visualize the aliasing concept. In this figure it can be seen that the signal is represented in

both the time and frequency domains, the sampling function consisting of a unit impulse

train, as well as two examples of the resulting sampled signal. Fig. 2.3 (a) shows a band-

limited signal with center frequency of f0. This means the frequency range shown in the

figure contains all of the frequency content found in the signal. As mentioned earlier the

unit impulse train shown in Fig. 2.3 (b) represents the sampling function with a sampling

period, T = 1/fs. This part of the figure is displaying the action of sampling at discrete

points in time. In the frequency domain it can be seen that the signals are spaced fs apart.

All of the impulses shown have a value of 1 so that when this signal is multiplied with

Fig. 2.3 (a), the ensuing signal is given in Fig. 2.3 (c). It can be seen from this part of the

figure that the frequency domain representation for the sampled signal is simply multiple

versions of the band-limited signal at multiples of the sampled frequency.

6

Figure 2.3. Explaining the effects of aliasing. (a) Input analog signal (b)

Sampling function (c) Overall signal (d) Aliasing example

Fig. 2.3 (d) shows that as fs is decreased the multiple versions that arise in the

frequency domain squeeze closer and closer together. There comes a point where the signals

finally overlap and cause the aliasing that been talked about and is shown by the frequency

7

domain side of Fig. 2.3 (d). The point at which the copies begin to overlap is called the

folding frequency [8]. This effect is obviously undesirable as a loss of information occurs

with the overlapping. One solution to this problem can be found by taking another look at

Eqn. 2.2. The designer simply needs to increase the sampling frequency to avoid the folding

effect. This solution may not always be feasible or desirable for an application, which leads

to a more elegant solution. That solution comes in the form of an anti-aliasing filter.

An anti-aliasing filter has a simple working principle. The filter cuts off the signal so as

to prevent the information from overlapping as shown in Fig. 2.3 (d). To better demonstrate

this principle please refer to Fig. 2.4. It can be seen that the input is the same as the one

shown in the previous figure. We are now assuming that the frequency f0 does not meet the

Nyquist criterion. This leads to Fig. 2.4 (b) where it is shown what an ideal case for a filtered

signal would be. To prevent folding, the designer simply needs to limit the bandwidth to

fs/2. This will result in what is shown in Fig. 2.4 (c). When the full spectra in the frequency

domain is shown the signals no longer overlap as they would without the filter. While it is

clear that there is still a loss of information with this method, the integrity of the signal is

still intact. The designer knows that the output of this signal is not tainted by operating

under the folding frequency. To meet high performance requirements of today’s systems, an

anti-aliasing filter must have a strong stop-band suppression, high flatness in the band, as

well as a large bandwidth [12].

2.1. Architectures

With the fundamentals of ADCs now explained, we can get into some of the details

associated with the different architectures found in the literature. As with all the basic

building blocks in engineering and other disciplines, ADCs can be tailored by the designer

for their exact specifications. For instance, if a designer values speed over accuracy then the

most common solution is to use a Flash ADC [13]. If the system that is being designed for

only has signals below 10 MHz, then pipeline ADC is the correct choice [14].

The rest of this section explains these two example architectures in more detail as

well as others. While these are not the only architectures found in literature, they were

8

Figure 2.4. Demonstrating the effects of an anti-aliasing filter. (a) Input

signal (b) Filtered signal (c) The effect of the filter

chosen to be representative of different requirements that ADCs have in practical designs.

2.1.1. SAR

The first architecture that will be discussed is the successive approximation regis-

ter (SAR). The SAR ADC architecture is widely used when the application requires high

precision and medium speed processing of analog signals [15]. The block diagram for this

architecture is shown in Fig. 2.5. The analog input, Vin, is fed to a sample and hold circuit.

The output of this circuit is then fed into a comparator. This comparator is instrumental

to the working principle of the SAR ADC, which is the binary search algorithm [16]. This

algorithm that is carried out by the SAR logic block works as follows. The initial comparison

is between the Vin and Vref/2. In this instance, Vref is meant to represent a full scale input.

9

If true, then the comparator outputs a logic ’1’. Then the algorithm compares the input

signal to 3Vref/4. If the input signal is still higher, the SAR logic block compares the input

to 7Vref/8. If the input was lower than 3Vref/4 then it is compared to 5Vref/8. The binary

search algorithm continues in this manner until the resolution of the ADC cannot get any

finer.

Figure 2.5. SAR ADC Architecture

2.1.2. Pipeline

Another common architecture that can be found in literature is the Pipeline ADC.

This architecture has grown popular due to its good balance between power dissipation,

size, speed, and resolution [17]. The Pipeline ADC got its name because of how the stages

are connected. As can be seen from Fig. 2.6, the architecture consists of stages that are

connected end to end, resembling how a pipeline is laid out.

To better understand why the layout is as such, the operation of each stage will be

discussed. Fig. 2.7 shows a close up of one of the stages. The input signal Vin is fed into

a sample and hold circuit labeled S/H as well as to a sub-ADC. The output of the ADC

is fed into the DAC and the digital error correction or similar stage. The DAC output is

connected to the summing block which is followed by a gain block that leads to the output of

10

Figure 2.6. Pipeline ADC Architecture

the stage. The S/H, DAC, summing block, and the gain block are usually laid out together

in one block called a Multiplying-DAC (MDAC) [18]. Now that the basic structure has been

shown, it will be easier to explain what the purpose of each stage is. After the output of the

sub-ADC is fed into the DAC and converted into an analog signal, it is subtracted from the

original Vin to create a residue voltage [19]. This residue voltage is then gained up and fed

into the next stage. The easiest way to look at this architecture is to think about each stage

resolving certain bits in the output of the ADC. For instance, the first stage resolves the

most significant bits in the output, while the Flash ADC located in the far right of Fig. 2.6

resolves the last N2 bits in the output of the ADC. N2 is used to distinguish between the

two different N values found in the figure. Simply put, the number of stages, represented by

N, does not necessarily have to equal the resolution of the Flash ADC, N2.

2.1.3. Flash

As mentioned at the beginning of this section, flash analog-to-digital converters are

used when speed is the most important factor in the design. This architecture achieves this

speed due to the parallel nature of its operation. Fig. 2.8 shows a typical flash architecture.

As can be seen from Fig. 2.8, the architecture comprises of three stages. The first

stage is a resistor ladder that sets the reference voltages. The number of resistors used in this

ladder is 2N, where N is the resolution of the ADC [20]. These reference voltages are then

fed to the second stage of comparators. The number of comparators is 2N-1, which is equal

to the 2N-1 reference voltages generated in the resistor ladder. In terms of the ADC, each

11

Figure 2.7. Pipeline Stage Block Diagram

comparator is 1 LSB away from the comparators on either side of it [13]. These comparators

output a logic high when the input voltage is higher than the reference voltage. The outputs

are then fed into the third and final stage of the architecture which is the encoder. The

encoder’s job is to take the outputs of the 2N-1 comparators, called thermometer code, and

transform them into a binary code [20].

2.1.4. Σ-∆ ADC

The last architecture to be discussed for synchronous ADCs is the Σ-∆ type. This

architecture is also referred to as an oversampling ADC in the literature. This name came

about from the fact that this method samples the analog input at a rate higher than the

Nyquist Criterion that was discussed earlier in this chapter. The main home for this type

are applications wanting low silicon footprint, low power consumption, and a high resolution

[21]. Some of the applications this type is useful for are data acquisitions, communications,

and instrumentation [22]. To help explain the architecture, Fig. 2.9 shows some of the basic

building blocks. Vin is processed in the Sigma Delta Modulator block at the sampling rate,

fs. The output of this block is given as a 1-bit stream of data going to the digital filter.

Then the digital and decimation filter reduces the data rate to a more usable value, as well

as extract useful information from the stream coming from the Sigma Delta Modulator [23].

12

Figure 2.8. Flash ADC Architecture

Figure 2.9. Σ-∆ ADC Architecture

13

2.2. Synchronous vs. Asynchronous

Until now, the focus of this chapter has been on synchronous architectures and con-

cepts. This was important to explain in some amount of detail so that the differences between

synchronous and asynchronous ADCs, also called level-crossing ADCs, could be more fully

understood. The principle of level-crossing ADCs in literature can be traced back to papers

as early as 1966 [24, 25]. At the time, the level-crossing architecture was referred to as delta

modulation. This scheme works similar to a flash ADC, with the difference of only using

two comparators in its design [26]. Fig. 2.10 will be used to help explain the differences in

synchronous vs. asynchronous. Fig. 2.10 (a) shows how a uniform sampling scheme works

in ADCs. As can be seen no matter how the signal is behaving, the synchronous system

takes a data point, the black circles found on the signal, at every dotted line. The dotted

line represents the sampling frequency for our example ADC. The level-crossing example

shown in Fig. 2.10 demonstrates how this scheme only takes data points when certain volt-

age thresholds are crossed. Because of the nature of this method, the time between samples,

∆t is also required for reconstruction. This value is kept track of using a timer circuit.

With the fundamentals of asynchronous sampling laid out, the applications for this

architecture are easily comprehensible. Systems with signals that have varying activity over

time and run on low power resources are suitable for this approach. Applications where this

is true can be found in intelligent sensor networks and audio signal processing [27, 28]. These

systems only require data transmission when their sensors indicate a significant change in

level. One can also infer that speech signals would be a good use case for this approach due

to their burst like nature with intervals of silence.

As the title of this thesis would suggest, a level-crossing scheme is well suited for

biomedical devices that are wearable and implantable [29]. The time sparse nature for the

output of these devices make them the perfect candidate for this technology. This approach

can also facilitate a design to compress the output data, further increasing the power saving

benefits for these systems [30].

To help explain how the system works more in depth a term I am borrowing from

14

Figure 2.10. Synchronous vs. Asynchronous(a) Uniform sampling (b) Asyn-

chronous or level-crossing sampling

a paper by Agarwal, Trakimas, and Sonkusale will be used [31]. The architecture to be

presented is a regular asynchronous method. Briefly put, this simply means that the voltage

threshold levels the ADC uses to monitor the input signal only move up or down by 1 LSB

regardless of how the input is behaving. The block level diagram for my design is shown in

Fig. 2.11.

The figure shows that the architecture has three main components. These are the

DAC, the comparator, and the digital logic. The inner workings of these blocks will be

explored in the subsequent sections, but for now a discussion of the role each of these have

in the overall level-crossing ADC will be had. To explore the interconnections of the block

diagram the labels on the signal paths will be defined. See Table 2.1 for the explanations.

15

Figure 2.11. Asynchronous ADC architecture

Table 2.1. Signal Definitions

Signal Label Purpose

VIN Input signal

INC Indicates when the upper voltage threshold has been hit

DEC Indicates when the lower voltage threshold has been hit

DOUT 10-bit output of the ADC

DOUT+ Sets the upper voltage threshold

DOUT- Sets the lower voltage threshold

∆t Reports time in between samples

As was mentioned in the table, the design for this thesis was chosen to have a res-

olution of 10 bits. The operation of the ADC will be described by first assuming that the

digital logic block has just taken a sample and has stored the digital output in “DOUT”.

16

One of the first actions taken by the logic is to reset the internal timer that keeps track of the

value for “∆t”. After this the logic needs to set to new values for “DOUT+” and “DOUT-”

so that the voltage thresholds can be accurately set by the two DACs for the next sample.

At this point the digital logic simply waits for either the “INC” or “DEC” lines to go high

which signal that a voltage threshold has been crossed and the aforementioned process needs

to start again.

As was mentioned earlier in this section, it was important to look at different syn-

chronous architectures to help the reader understand the differences between those and

asynchronous systems. While the technical details of the differences have just been laid out,

there is another difference worth mentioning and exploring here. That is the different types

of sub architectures found in asynchronously sampled biomedical systems. What is meant

by this is that Section 2.1 laid out several different methods to synchronously take samples.

All of these approaches vary in some fundamental way that changes what application the

systems are suited for. For level crossing systems, the recent works have been tweaking the

approach and not fundamentally changing how the process works. Some of the optimizations

that are presented in prior works will now be discussed.

One of the methods found is the concept of an adaptive resolution [30, 32, 33]. Adap-

tive resolution means that the ADC can actually change the resolution it operates at. This

has been proven to not only save power but also perform data compression, which is another

desired feature for this application. This can be achieved in many ways but the principle is

the same. In times that the input has a high enough slope, the ADC lowers the resolution

so that the voltage thresholds used for comparison do not trigger as often. For instance, in

one of the papers the authors designed the system to simply look at the time in between

samples and decrease the resolution if they were too close together [30].

Another evolution found in the architecture is the advent of fixed-window comparisons

[5, 26, 34, 35, 36]. For the conventional architecture discussed earlier in Section 2.2 a floating

window structure is discussed. This simply means that the inputs to both of the comparators

change with the input signal as it is moving. With a fixed window system the voltages used

17

for comparison are fixed, usually around the midpoint of the rail-to-rail voltage. Then

whenever a threshold crossing has occurred the input voltage Vin is either subtracted or

added to for a newly defined voltage Vm. This Vm value is halfway between the fixed voltage

thresholds. In essence the tracked Vin is artificially made to stay within the fixed bounds of

comparison by resetting the input voltage to Vm at every level crossing.

One of the biggest power draws for the conventional level crossing architecture are

the continuous-time (CT) comparators. One way to improve upon this aspect is the use

of dynamic comparators [34, 37]. Dynamic comparators only perform comparison upon

receiving a clock signal and therefore only use power during those comparisons, saving power

over their CT counterparts. The paper by Ghasemi et. al even goes the extra step by only

having 1 comparator in the design to have an even further reduction in power [34].

Another change some designers have made is to replace the DAC circuits with a

suitable alternative [33, 37]. A scaler circuit is used in one paper to replace the N-bit DAC

[33]. Instead of a DAC circuit to add and subtract to the input voltage Vin, the scaler, as its

name suggests, scales Vin based on a novel gain code generator that controls the ratio of the

scaling. In the other paper that was cited, an analog memory cell is used for the replacement

of the DAC [37]. This memory cell acts as a DAC in their proposed architecture by holding

the last voltage level crossed. The paper mentions that the main drawback for this design is

the voltage nature and hold times for the cell.

The main design goal for this thesis is being able to acquire the APs mentioned in

Section 1.1. One of the often used methods to capture these are a bandpass filter followed

by a simple threshold. However, much of the information about the shape of the spikes as

well as sub threshold regions are lost [38]. Because of the low amplitudes found in APs, the

design will use a 10-bit scheme to reliably capture these signals and will be discussed more

in depth in Chapter 3.

2.3. Performance Metrics

Mean Squared Error (MSE)

18

Mean squared error (MSE) is a well known measure of how close two signals are. The

typical formula has been taken and adapted to fit with the variables in an ADC [39].

MSE =
1

n

n∑
k=1

(V in − V out)
2 (2.3)

In Eqn. 2.3 n stands for the number of samples, Vin represents the input voltage to

the ADC, and Vout is the output voltage of the ADC after interpolating it’s outputs.

Differential Nonlinearity (DNL)

The differential nonlinearity (DNL) for an ADC is a measure of the difference between

non-ideal ADC step size and ideal ADC step size. A succinct view of this concept can be

found in Eqn. 2.4 [8].

DNL = Actual step width− Ideal step width (2.4)

DNL can be defined with either the units of volts or LSBs. This is a result of the

step widths property of being expressed by either of these units. Fig. 2.12 showcases what

an example of a DNL would look like.

This figure may look familiar to the reader as it is a modified version of a previous

figure in this chapter. That figure showcased the ideal 3-bit ADC. The original ideal case

for an ADC is modified in Fig. 2.12 to help show what DNL looks like. Before continuing

with the explanation there will be a brief discussion on the notation to be used. When

referring to step widths the form DNLx will be used, where x is the corresponding Dout value

in decimal form. For example, DNL2 refers to the transition for the Dout value of 010. Now

with that better explained a more detailed look at how to actually calculate the DNL will

be presented.

As in Fig. 2.2 (b), Fig. 2.12 (b) shows the quantization error expressed in LSBs. For

an ideal transition DNLx = 0. The ideal transition points for this example can be found in

DNL0, DNL1, DNL3 DNL5, DNL6, and DNL7. One thing to note for these ideal cases is that

DNL7 sticks out when one is looking at Fig. 2.12. This is simply because the ideal transition

at this point is 1.5 LSB since this is the maximum value of our ADC.

19

Figure 2.12. Demonstrating DNL (a) Nonideal 3-bit ADC (b) DNL illus-

trated with quantization error

Now the calculation of the DNL for the non-ideal case will be looked at. It will discuss

more in depth momentarily, but the non-ideal step width can be found in DNL2, DNL4. It

can be seen that for Dout = 2 that the step width shown is 1.5 LSB. This can be calculated by

(3/8) - (3/16). This results in 3/16, and knowing that 1 LSB = 1/8 gives us the previously

mentioned 1.5 LSB for DNL2. Through a similar process DNL4 can be found to be equal to

-0.5 LSB.

20

One thing to observe is that when DNL = -1 then there is a guarantee that the

ADC will have a missing code [8]. This means one of the values of Dout would not have a

representation on a graph similar to 2.12 (a). One final note on DNL is that passive element

mismatches are typically the cause of non-ideal DNL values [40].

Integral Nonlinearity (INL)

As with DNL, a modified version of Fig. 2.2 will be used to help explain integral

nonlinearity (INL). This can be seen in Fig. 2.13. The first thing to point out in this figure is

the location of the dotted line. Unlike in DNL, for the INL graph the dotted line is positioned

to connect the first and last transitions by their end points. This allows us to define INL as

the difference between Dout transition points and the straight line while all the other errors

are set to zero [8]. The concise way to communicate this can be found in Eqn. 2.5.

INL = Actual transition point− Ideal transition point (2.5)

To better explain the notation from the discussion on DNL will once again be used

where INLx represents the Dout value in decimal form. A quick inspection of Fig. 2.13 reveals

that there are only two transitions not on the dotted line. This leaves us with INL0, INL1,

INL3, INL4, INL5, INL7 being equal to zero.

We are left with the two points Dout = 010 and 110. There are two ways to determine

the INL with the graphs given. For INL2, one can use Eqn. 2.5 along with Fig. 2.13 (a)

to come up with (2/8) - (3/16) = 1/16 or 0.5 LSB. To determine INL6 we will now look

at the quantization graph given in Fig. 2.13 (b). Whenever the error lies outside the ± 0.5

LSB band it will show where the non-ideal INL resides. As can be seen INL6 is at -1 LSB,

therefore INL6 = -0.5. INL is also caused by passive element mismatches as well as active

block non-linearities [40].

Signal to Noise Ratio (SNR)

SNR in ADCs is defined as the ratio of the value for the largest RMS input signal and

the noise power [8]. The noise sources include the quantization noise and that of the passive

and active devices used in the ADC. The SNR for asynchronous ADCs can be calculated by

21

Figure 2.13. Demonstrating INL (a) Nonideal 3-bit ADC (b) INL illustrated

with quantization error

transforming the quantization error in time to an error in amplitude [41]. Eqn. 2.6 shows

the result of such an analysis.

SNR = 20 log OSR− 11.2 dB (2.6)

This was first derived in a work by Sayiner et. al [42]. The term OSR in this equation

stands for the clock oversampling ratio. This is calculated by taking the ratio of the timer

22

frequency to the input signal frequency. The formula in Eqn. 2.6 works under the assumption

that the value of OSR is high[26].

While this equation can be found in literature, there was an assertion made in [43]

that the derivation for Eqn. 2.6 was done incorrectly and produced an erroneous result by a

wrong method of calculating average slope and average power in a non uniformly sampled

signal. The corrected expression is found in Eqn. 2.7

SNR = 20 log OSR− 14.2 dB (2.7)

As can be seen the result claims there is a 3 dB overstatement of the theoretical

SNR as previously calculated. For the result shown in Table 3.5 the SNR calculation from

Eqn. 2.6 will be used. These equations can be compared to the one found in Eqn. 2.8 that

shows the SNR for a conventional ADC.

SNR = 6.02 n+ 1.76 dB (2.8)

In this formula n represents the number of bits for the output of the ADC. As you

can see this equation only cares about the number of bits in the design. This makes a good

amount of logic sense as in the conventional ADC structure a big source of noise comes from

the quantization noise of the voltage, which is directly affected by the value for n in Eqn. 2.8

Signal to Noise and Distortion Ratio (SNDR)

This metric is a slightly modified version of the previously shown SNR. The signal to

noise and distortion Ratio (SNDR) is defined as the ratio of the value for the largest RMS

input signal to the noise and distortion power. This metric includes all distortion and noise

sources in the ADC [40].

Effective Number of Bits (ENOB)

The value for effective number of bits (ENOB) helps quantify how well the ADC per-

forms in terms of the number of bits it can produce effectively. Nonlinearity and component

noise will affect the value for this metric [40]. Eqn. 2.9 shows how the ENOB is calculated

using the SNDR for the system.

23

ENOB =
SNDR− 1.76 dB

6.02 dB
(2.9)

This metric is very useful and one that can be seen in much of the literature. It is

derived by solving for n in Eqn. 2.8.

Figure of Merit (FOM)

This metric is a popular measurement across disciplines. While the exact meaning

for a figure of metric (FOM) changes depending on the topic at hand, the rationale behind it

is the same. A FOM is used to characterize the performance of a device, system, or method,

relative to its alternatives [44]. For ADCs, a FOM is a quantity that describes how much

energy is consumed per conversion step. For asynchronous ADCs the FOM is defined as seen

in Eqn 2.10.

FOM =
Power

2ENOB ∗ 2BW
(2.10)

This equation encompasses most of the information for the ADC. By inspection it is

easy to see how to design the ADC to improve the FOM. One option that is always good to

consider is lowering the power consumption. Another direction to tackle the improvement

of the FOM is to increase the value of either ENOB or the bandwidth, BW.

As with the SNR metric discussed earlier, the FOM also has a different version for

uniform sampling systems. The only difference between the two equations is that the sam-

pling frequency fs replaces the 2BW term for the asynchronous case. This makes a good

amount of intuitive sense as fs is one of the most important parameters for synchronous

sampling schemes.

FOM =
Power

2ENOB ∗ f s

(2.11)

One thing that is rather interesting is how the previous two metrics can be calculated.

If you notice the FOM depends on ENOB and the ENOB depends on SNDR. As you can

recall the SNDR is a measure of how much noise and distortion is in your system relative

to your signal. It’s a nice sanity check that these last two metrics, which are the most often

24

cited metrics in literature, can be improved by improving the signal quality which makes a

good amount of intuitive sense.

25

CHAPTER 3

ASYNCHRONOUS ADC DESIGN

In this chapter, we will get into a more detailed look at the design for this thesis.

The 10-bit resolution was chosen to help detect the APs in the signal. Assuming the AP

can have a µV-level amplitude, as previously stated in this paper, the gain of the amplifier

that would precede the ADC block in a typical neural signal recording system would need to

be ∼60 dB [3]. This puts the amplitude of the AP at a few mV after amplification. Given

this requirement, the 10-bit resolution combined with the rail voltage of 1.8 V gives an LSB

value of around 1.7 mV and thus is able to capture these events.

3.1. DAC Design

While all of the blocks in this architecture are important, the DAC holds a very im-

portant place among the others. This block is responsible for setting up the threshold levels

for the comparators based on the “DOUT+” and “DOUT-” 10-bit inputs. The accuracy of

the two DACs is a major component of how the overall system performs. This assertion can

be thought of intuitively by remembering how the overall architecture works. For conven-

tional level crossing schemes, the error produced in the system is one in the value of “∆t”

and not the voltage level. So having an accurate output for the DAC to get as close to the

ideal case is important to accomplish.

The topology chosen for this design is the popular charge-scaling DAC. While not

ubiquitous in the literature for this application, it can be found in various forms over the

years [45, 46]. To explain the architecture please refer to Fig. 3.1. As it can be seen from

the figure there is a binary-weighted array of capacitors with a total value of 2NC. A digital

code D0D1...DN-1 is sent to switches connected to the bottom plate of the capacitors. These

switches are labeled as Selection Circuit in Fig. 3.1. The selection circuit switches between

either Vref or ground depending on the corresponding bit in the digital code. This causes

Vout to be a function of voltage division between the capacitors.

To better understand this process one can find a formula to relate the input code

26

Figure 3.1. DAC block diagram

to the output voltage. To derive the equation simply take the impact that each individual

capacitor has on the output and use the principle of superposition to get the entire output

[8]. The result of such an analysis produces the formula shown in Eqn. 3.1.

V out =
N−1∑
k=0

Dk2
k-N ∗ V ref (3.1)

To verify this equation we will take a simple example and analyze. Let us assume

that the digital code consists of all zeros except the MSB DN-1. This represents half of the

range and as such we should expect Dout to be Vref/2. Plugging into the equation we know

that it will be all zeros except for the case when k = N-1. This leaves us with 2k-N as being

equal to 2N-1-N = 2-1 = 1/2. Therefore the output voltage Vout is equal to Vref/2, confirming

our test case agrees logically and mathematically.

The switches in the selection circuit shown in Fig. 3.1 are realized with a pair of

transmission gates shown in Fig. 3.2. Transmission gates are a powerful tool in digital logic

designs as they have the capability of passing strong 1s and 0s. When Din is high, then Vref

is passed to the output. On the other hand, GND is passed to Vout when Din goes high.

Transmission gates typically have a high W/L ratio. Transistors M0 and M2 have W/L ratio

of 10/1, while devices M1 and M3 have a W/L ratio of 20/1.

3.2. Comparator Design

Due to the asynchronous nature of the level crossing method, a continuous-time (CT)

comparator is used in most of the literature. This paper is no different. The comparator

27

Figure 3.2. DAC selection circuit

designed for this equation is a Class-A amplifier that sharpens the transitions between 1s

and 0s through a pair of inverters at the output [47]. The Vbias voltage is generated through

a current mirror using a bias current of 5 µA. Table 3.1 presents a summary of the devices

found in the comparator.

3.3. Digital Logic

The digital logic block is responsible for handling all the outputs for the system as

well as telling the DACs where to set the voltage thresholds. To accomplish this, the block

takes the“INC” and “DEC” lines shown in Fig. 2.11 as inputs. The block diagram for the

logic is shown in Fig. 3.4.

The block labeled Output Logic controls the output lines of the system. Whenever a

threshold is crossed in the system, as indicated by “INC” or “DEC” going high, an internal

signal named “Change” is generated. This signal triggers 10 different D flip flops that

take the now previous “DOUT” value and save it as a temporary signal “DOUT tempX”.

The X represents the bit of “DOUT” that it has saved. This temp signal is sent to an

28

Figure 3.3. CT Comparator

Table 3.1. Comparator Summary

Device W/L gm/id

M0 1.4 µm/500 nm 8.92

M1, M2 700 nm/500 nm 17.44

M3, M4 1.2 µm/500 nm 15.51

M5 1.2 µm/500 nm 15.20

M6 700 nm/500 nm 8.32

M7 1.2 µm/500 nm 0.47

M8 700 nm/500 nm 28.60

M9 1.2 µm/500 nm 30.83

M10 700 nm/500 nm 0.47

29

Figure 3.4. Digital logic block diagram

Figure 3.5. Output logic block

adder/subtractor circuit that has K and B0 as its other inputs. The new value for “DOUT”

is set by these parameters. the value of K controls if the block is adding or subtracting, 1 is

subtracting 0 is adding, and B0 is the LSB for the number being added to “DOUT” while

30

all of the other bits on that line are set to 0. After the new “DOUT” is generated, this

signal is sent as an output as well as to two more adder/subtractor circuits that handle the

generation of the “DOUT+” and “DOUT-” lines. Similar to “DOUT”, the “DOUT+” and

“DOUT-” signals are controlled with the variables K+, K-, B0+, and B0-. These variables

used for the adder/subtractor circuits are generated inside of the Control Bits block found

in Fig. 3.4.

To better explain the logic behind setting the “DOUT+” and “DOUT-” there will

be terminology borrowed from a paper by Li et al [26]. For this architecture there are two

types of level crossings. These will be coined consecutive level crossings (CLC) and repeated

level crossings (RLC).

Figure 3.6. Level crossings in the ADC. Consecutive level crossing (CLC)

shown with black circles. Repeated level crossings (RLC) shown with white

circles.

Fig. 3.6 shows the CLC and RLC concepts in action. RLC can be seen as when the

signal comes back on itself and crosses over the previous threshold that was triggered. The

CLC is when the signal crosses the threshold that it did not previously cross. Keeping track

of this is important as it informs the system as to how “DOUT” is moving.

31

Figure 3.7. Track bits block

To accomplish this, the circuit shown in Fig. 3.7 has been employed. This represents

the circuits found inside the Track Bits block found in the block diagram. The Track0 and

Track1 lines are used for the memory of the level crossings. A pair of D flip flops are used

to set these values. As can be seen in the figure the Track1 line is set by the previous level

of Track0. At the same time the new Track0 is being set by either the “INC” or “DEC”

lines going high. Assuming Set Track0 and Res Track0 are both low, the output of the NOR

gates attached to the SET and RES have a high output while “INC” and “DEC” are low.

As soon as either of these lines goes high, however, the respective NOR gate goes low and

updates the value for Track0. An upper threshold crossing, indicated by “INC”, corresponds

to the Track bits being high, while the lower threshold crossing, indicated by “DEC”, is

represented by the Track bits being low.

Now that we have a good system to keep track of the RLC and CLC instances, there

needs to be a way to convert the Track bits into inputs for the Add/Sub circuits shown in

Fig. 3.5. To accomplish this, a flowchart for the logic is shown in Fig. 3.8. DOUTp stands

for “DOUT+” and DOUTm stands for “DOUT-”. The logic starts off by asking if “INC” or

“DEC” has gone high. For either answer, a follow up question of the previous level crossings

32

value is asked. With these two questions all four of the possibilities are covered. Let us first

take the instances where the first and second answers are different, i.e. “INC” to “DEC”

and “DEC” to “INC”. The actions taken at the end of these branches are very similar. The

value for “DOUT” will be the same as the signal crossed the threshold where “DOUT” is

already at. Then if the signal was increasing the “DOUT+” line is set to one above the new

“DOUT” value while “DOUT-” is set to the new “DOUT” value. A similar process is done

if the signal is decreasing but instead the “DOUT-” line is set to one below “DOUT” and

“DOUT+” is equal to the new “DOUT”.

Now let us look at when the history of level crossings is the same. These branches

are found when the sequence is “INC” to “INC” and “DEC” to “DEC”. As with the other

branches, these two have a very similar function to be performed. As can be seen in Fig. 3.8

when the signal is “INC” to “INC” then we know that the value for “DOUT” needs to

increase by one. Then “DOUT+” is set to one above the new “DOUT” and “DOUT-” is

the new “DOUT”.

Following the flow shown in Fig. 3.8 we now have to create digital logic to accomplish

all of these actions. Shown in Table 3.2 is the truth table that was created to help figure out

the most efficient logic to achieve this.

Table 3.2. Inputs to Add/Sub Circuits

Track1 Track0 K K- K+ B0 B0- B0+

0 0 1 1 X 1 1 0

0 1 X X 0 0 0 1

1 0 X 1 X 0 1 0

1 1 0 X 0 1 0 1

There are many ways to approach designing a digital logic circuit, but in this case

using the “don’t care” values, represented by X, help to facilitate some patterns that evolve

from the table. Before going further with the analysis there will be a brief reminder as to

what the values represent. The K, K-, and K+ values control if the ADD/SUB circuits are

33

Figure 3.8. Keeping track of the level crossings. DOUTp = DOUT+,

DOUTm = DOUT-, and DOUT’ = new value of DOUT

adding or subtracting. The K values for this are 0 and 1 respectively. The B0 terms control

the LSB for their respective outputs. The Track bits are there for tracking level crossings

where 0 means “DEC” was triggered and an “INC” trigger is shown by a 1. Also the Track0

34

bit is the most recent crossing while Track1 is the crossing before that. The patterns that

jump off of the page immediately are for K- and K+. K- is always high and K+ is always

low no matter what the Track bits are doing. So these two values never have to change in

the logic. The next bit looked at was K. This was another case where the don’t care bits

helped greatly in simplifying this logic. K can trivially be described as the inverse of Track0.

It should also be pointed out that the other representation is the inverse of Track1, but for

this design the Track0 bit was used. For B0, it can be seen that Track0 XNOR Track1 is

the best way to describe it. The expression for B0- is simply realized by being the inverse

of Track0. In the same vein, B0+ is just the inverse of B0-. Fig. 3.9 shows how all of these

bits are laid out with actual logic gates. This figure represents the internals of the Control

Bits block found in Fig. 3.4.

Figure 3.9. Control bits block

With the “DOUT”, “DOUT-”, and “DOUT+” logic all described that only leaves

35

the method for “∆t” left to be explained. This was realized through a combination of a

ring oscillator and a counter circuit. For the counter circuit, a VerilogA code was written to

count up to 10 bits. The code can be found in Appendix A. For the ring oscillator a current

starved architecture was chosen. This allows the clock frequency to be set more accurately

to the desired speed while designing it.

To explain the current starved ring oscillator more effectively a conventional ring

oscillator’s architecture will first be described. The traditional ring oscillator is comprised of

a closed-loop of identical inverter stages that meet the Barkhausen criteria to oscillate [48].

The block diagram can be found in Fig. 3.10. In this figure, N must be odd and greater than

1 to be an effective ring oscillator.

Figure 3.10. Traditional ring oscillator

To compute the frequency of oscillation there are only two variables required. One is

the total delay time for each inverter stage, td. The other is the number of stages labeled as

N. Eqn. 3.2 shows how to calculate oscillation frequency given the previous values [49]. The

2 found in the denominator of the equation accounts for the full low to high and high to low

cycle found in the oscillator.

f =
1

2N td
(3.2)

The current starved ring oscillator used has a similar working principle to the previ-

ously described traditional architecture with only one difference. The current starved version,

as the name suggests, limits the amount of current available to the inverter stages [48]. As

36

the current increases in the system there is less resistance in the transistors producing a

smaller delay through each stage.

Figure 3.11. Current starved ring oscillator

Fig. 3.11 shows the design. Transistors M0 and M1 form the biasing stage that along

with Vctrl set the current available for each stage. Devices M3 and M4 form the inverter for

the stage. M2 and M5 are the transistors that control the amount of current available to the

inverter pair for the oscillation. Transistors M6 and M7 form a buffer for the output voltage

37

Vout. Notice that between the Nth stage and the out inverter that the signal gets rerouted

back to the beginning of the circuit to carry on the oscillations. The value for N has the

same restrictions found in Fig. 3.10. Table 3.3 shows a summary of the devices found in the

ring oscillator circuit. One thing to point out that is not shown in Fig. 3.11 is that a 456

fF capacitor was introduced in between each inverter stage to help shape the delay time for

each stage. The value of N was chosen to be 21 and the operating frequency of 1 MHz was

achieved with a Vctrl voltage of 893 mV.

Table 3.3. Ring Oscillator Summary

Device W/L gm/id

M0 1 µm/500 nm 4.50

M1 3.5 µm/500 nm 4.57

M2 3.5 µm/500 nm 2.81

M3 3 µm/500 nm 5.80

M4 1.5 µm/500 nm 7.74

M5 1 µm/500 nm 3.02

M6 1.4 µm/300 nm 4.03

M7 700 nm/300 nm 4.74

3.4. Simulation Results

The design for this level crossing ADC was implemented and simulated using a 180 nm

CMOS process with a rail voltage of 1.8 V. This was accomplished using Cadence Virtuoso

with the output data exported and processed in MATLAB to show the figures on display in

this section. See Appendix B for the code used for processing.

The first simulation to be shown is for the comparator. The attributes to look for are

1) the output is high when Vin+ > Vin- and 2) the output doesn’t take too long to react

to a change in Vin+ and Vin-. Fig. 3.12 shows the simulation results. As can be seen the

38

Figure 3.12. Comparator simulation results

comparator is only high when Vin+ is the greater signal and the circuit reacts very quickly

to changes in this value.

The next result to be shown is for the DAC. The design for this paper as previously

mentioned is for 10 bits. With this and the fact of the rail voltage being 1.8 V in mind, we

can calculate what an expected jump in the output voltage will be for a 1 LSB increase at

the input of the DAC. Plugging these values into Eqn. 3.1 we get that 1 LSB = Vref/210 =

1.8/1024 = 1.7578 mV. Fig. 3.13 shows the simulation output.

Since displaying the full 10 bit range on one graph would be unseemly, only the first

16 digital codes for the DAC are shown. This equates to showing the 4 LSB bits for the

device. The results are divided into the output voltage on top and the input code on the

39

Figure 3.13. DAC simulation results

bottom. As can be seen we have the nice staircase effect for both graphs that we would

expect. As the input code decreases by 1 LSB at each step, the output voltage decreases by

approximately 1.7578 mV. To help illustrate the accuracy of the DAC a comparison of the

ideal values and measured ones will be shown. See Table 3.4 for these results.

Table 3.4. DAC Results

Din Vout Ideal (mV) Vout Measured (mV)

15 26.367 26.245

14 24.609 24.495

13 22.851 22.745

12 21.094 20.994

11 19.336 19.246

10 17.578 17.496

40

As can be seen the ideal case and the measured values agree very well. In fact there is

a pattern that emerges from this sample size. The measured values are consistently around

100 nV below what the ideal step values are. This could be used to further increase the

accuracy of the ADC by noting what the actual values are in the reconstruction of the signal

to be shown later. This thesis does not employ this tactic but it is something to keep in

mind when accuracy at that scale is paramount.

Figure 3.14. Ring oscillator simulation results

The next simulation to be discussed is for the ring oscillator. The timer resolution

for this thesis was chosen to be 1 µs so the frequency for this circuit needed to be 1 MHz.

This value was chosen so that the design can react fast enough for the high input slope

parts of the input signal. The data shown in Fig. 3.14 shows that the oscillator achieves this

frequency by repeating every 1 µs and thus being suitable for this design.

41

Figure 3.15. Digital logic simulation results 1

The last block of simulations to show are for the digital logic. To fully show that

the design works as intended, the results have been split into two graphs. The first one,

Fig. 3.15, shows when the Track bits both start low and then two “INC” pulses are sent into

the circuit. Fig. 3.16 is similar in that it shows the Track bits starting high and then two

“DEC” pulses are sent to verify the functionality of the design. One thing to note about

Figures 3.15 and 3.16 is that the values at time 0 are the result of the initial states of the

simulation and are quickly set to the actual starting values for the analysis.

The first case to be shown is in Fig. 3.15. The Track bits are representing that the

42

previous two level crossings were both “DEC”. With this input to the logic, “DOUT” and

“DOUT+” should be the same and “DOUT-” should be 1 below that value. From the

simulation you can see that this assertion holds true. Then when the first “INC” pulse is

sent at 1 µs the value for “DOUT” should stay the same while the “DOUT+” and “DOUT-

” lines both move up by one to account for the changing signal. This is also confirmed in

Fig. 3.15. The final “INC” pulse for this simulation is sent at 2 µs and sets both of the

Track bits to high indicating the signal has increased in the past two cycles. For this case all

three of the output lines “DOUT”, “DOUT+”, and “DOUT-” should increase by one and

the simulation shows this happening.

Figure 3.16. Digital logic simulation results 2

The last simulation to show before the overall results are presented can be found in

43

Fig. 3.16. In this case the Track bits are initially set to be high, showing that the signal has

been increasing for the past two cycles. For this case we expect “DOUT” and “DOUT-” to

be the same while “DOUT+” is one above these two. This hold up in the simulation. Then

similar to the previous case when the “DEC” signal is sent at 1 µs the “DOUT” line will

stay the same then “DOUT+” and “DOUT-” will both move down by one. Then on the

next “DEC” pulse all three lines move down by one as expected.

Figure 3.17. ADC simulation 1

Now that the individual blocks have been shown to be working as expected it is time

to show how the overall ADC performs when integrated together. For this test an input

sinusoid with an amplitude of 400 mV with a DC offset of 0.9 V and 300 Hz frequency was

44

used. This amplitude and offset mimics what would be an expected output for an analog

front end (AFE) found in biomedical devices. The simulation was performed for just over a

full cycle of this sin wave, so about 3.4 ms to be exact. As mentioned in the first part of this

chapter the data from this simulation was exported to MATLAB and processed to gather

the actual “DOUT” and “∆t” values. Appendix B goes into more detail on this process.

Fig. 3.17 shows the entire cycle for this test case. The note about this figure is that only 1

in 5 samples is shown so the figure is more legible for this discussion. The full set of samples

will be discussed in the next figure to be shown. The solid blue line shown is the actual

input signal fed into the ADC. The red X’s show a portion of the samples that the ADC

took. The exact measurement of the error will be discussed later but to the naked eye there

is a great deal of agreement between the ADC and the actual input signal.

Fig. 3.18 shows a more zoomed in look at output of the simulation. Unlike Fig. 3.17

this graph shows all of the samples taken in the ADC. Now the reason to show this zoomed

in picture of the output is to verify that the level crossing nature of the designed ADC

is functioning as intended. A reminder for the reader is that synchronous architectures

do not change the amount of samples taken depending on the input signal. However, for

the asynchronous design in this paper we should expect the rate of samples being taken to

change as the slope of the signal increases and decreases. From Fig. 3.18 we can see this

exact phenomenon happening. At the beginning of the graph the slope of the input signal

is at its greatest. The amount of samples being taken in the system is also at its greatest as

expected. As the signal begins to taper off at the zenith of the input, the amount of samples

slows down and eventually we see a dead area at the absolute top. This is an easy sanity

check to show that the proposed architecture is working as intended.

Up until this point the discussion over the results of the ADC and its individual

blocks has been mostly qualitative. In the next section we will be taking a more quantitative

look at this design as well as compare these performance parameters with the previous works

found in the literature.

45

Figure 3.18. ADC simulation 2

3.5. Comparison With the State-of-the-Art

Before a comparison can be done we must first define how this design performs. The

first metric to be looked at is the root mean square error (RMSE). While this metric isn’t used

extensively in the literature it used it to verify the accuracy of the ADC that Figures 3.17

and 3.18 suggested it had. To accomplish this an interpolation operation was performed on

the outputs of the ADC in MATLAB. Then all of the time values from the input signal were

plugged into the polynomial and compared with the actual voltage values found in the input.

The code can be viewed in Appendix C. The result of this analysis found that the RMSE of

the system was 0.65 mV. This confirms that the ADC has the high accuracy we thought it

46

had. The error found here can in part be attributed to the quantization error found in the

time output.

The power calculation found in the table was calculated without the power drawn

from the ring oscillator. Most of the previous works found in literature figures out the time

in between samples via an outside source such as a logic analyzer or external clock signal and

counter. The bandwidth was found by putting the timer resolution at 0.5 µs and estimating

the fastest full scale input signal that could be put through the system without multiple

crossings in the system. The ENOB and FOM presented in the table are calculated with the

theoretical SNR of this system. The equations for these were found in Section 2.3.

Table 3.5. Performance Summary

Parameter [30] [50] [37] This Work

Technology (µm) 0.18 0.18 0.35 0.18

Supply Voltage (V) 0.7 0.8 1.8-2.4 1.8

Resolution (bits) 4-8 8 4-8 10

Adaptive Resolution Yes No No No

Timer Resolution (µs) 1 - 1.0-62.5 0.5

Bandwidth (kHz) 1 3.3 1 1.2

ENOB 8.4 - 6-8 9.81b

Power Consumption (µW) 25a 0.062-106 0.6-2.0 13.5c

FOM (pJ/conv.) 37 0.133-0.191.7 3.9 6.25b

a Without off-chip logic

b Calculated with derived SNR value

c Without ring oscillator power

Table 3.5 presents a comparison of this design with other works found in the literature.

As can be seen the resolution was designed to be higher than the other mentioned works.

This leads to the calculated ENOB to be higher than the other reported works. The static

power consumption shown is also competitive at 13.5 µW of power draw.

47

3.6. Future Work

One of the aspects of a biomedical recording system that wasn’t covered in this design

is the amplifier at the analog front end (AFE). Designing one of these to have the appropriate

amount of gain and noise suppression in the LFP and AP bandwidths for my system is high

in priority. Another aspect of the design to tackle is to keep the 10-bit resolution by having

an ”aggressive” adaptive scheme. What is meant by this is that the resolution controller

envisioned changes the resolution more often than the previously mentioned schemes as this

design is for 10 bits. This scheme would be designed to try and provide a similar amount of

data compression found in the papers with 4-8 bit variable resolution. The DAC structure

is another design to look at changing in the future. The footprint could be reduced with

the methods mentioned in Section 2.2 concerning either the fixed window comparison or

the DAC alternatives. The last thing that will always be kept in mind for all designs going

forward is reducing the power wherever possible. The best return on investment for this

venture at first will definitely be the comparator designs as they account for over half of the

simulated power. Another way to accomplish this goal is to reduce the supply voltage for

the overall circuit.

48

CHAPTER 4

CONCLUSION

Different architectures for synchronous and asynchronous ADCs have been discussed.

The application focused on in this thesis regarded neuropotential acquisition in biomedi-

cal circuits. The process of capturing both the LFP and APs found in these signals led

to the design choices presented. As asynchronous level crossing ADCs have started being

explored relatively recently, this thesis focused on a design for that architecture instead of

the more traditional SAR ADCs used in literature. The level crossing ADC designed has

10-bit resolution that has a static power consumption of 13.5 µW.

49

APPENDIX A

VERILOGA CODE

50

The code shown is modified from code found in a post on the Cadence website [51].

This VerilogA code acts as an up counter to help track the time between samples. There

are two inputs, labeled enable and clk, and a 10 bit output. The clk input is used to trigger

the code to count up by one on a rising edge. The enable input is poorly named as in this

51

case it is actually used as a reset on the rising edge. The reasoning for this name choice

was that this input was used for something else in previous testing of the code and simply

was not changed to reflect what it’s actual function in the logic is. The 10 bit output shows

how many clock cycles have passed in between the reset signals. This combined with the

knowledge of the clock frequency can be used to determine the time in between samples for

the ADC.

52

APPENDIX B

MATLAB CODE FOR DATA MANIPULATION

53

The first code to be shown deals with how the output data of the simulations is

processed to give the DOUT and ∆t of the ADC. Before executing this code, the simulation

data is first opened in excel and is trimmed to only show the data points shortly before and

after the counter for ∆t gets reset. Then this shortened simulation data file is fed into the

following code to extract and plot the output of the ADC.

1 %Attempting to graph data from the output o f ADC

2 %%

3 %run t h i s s e t i o n i f Table needs to trans form in to matrix

4 %NOTE: perform t h i s s e c t i o n on the formatted input data

5 %Matrix Name = Table Name { : , : } ;

6 SinTest1CopyCopy = FullSinTestCopy { : , : } ;

7

8 %%

9 %Data manipulat ion s e c t i o n

10

11 %f i r s t s e t up parameters f o r the row and columns

12 i n c = 1 ; dec = 2 ;

13 C9 = 3 ; C8 = 4 ; C7 = 5 ; C6 = 6 ; C5 = 7 ; C4 = 8 ; C3 = 9 ; C2 = 10 ;

C1 = 11 ; C0 = 12 ;

14 D0 = 13 ; D1 = 14 ; D2 = 15 ; D3 = 16 ; D4 = 17 ; D5 = 18 ; D6 = 19 ; D7

= 20 ; D8 = 21 ; D9 = 22 ;

15

16 %determine he ight o f t ab l e f o r the whi l e loop

17 RowMax = s i z e (SinTest1CopyCopy , 1) ;

18

19 %s e t up v a r i a b l e s f o r the outputs

20 %NOTE: SampleMax i s an es t imate o f how many samples the re might be

54

t h i s i s

21 %j u s t to p r e a l l o c a t e the v a r i a b l e s to speed up the l o g i c

22 SampleMax = 2000 ;

23 Dout0 = ze ro s (1 , SampleMax) ;

24 Dout1 = ze ro s (1 , SampleMax) ;

25 Dout2 = ze ro s (1 , SampleMax) ;

26 Dout3 = ze ro s (1 , SampleMax) ;

27 Dout4 = ze ro s (1 , SampleMax) ;

28 Dout5 = ze ro s (1 , SampleMax) ;

29 Dout6 = ze ro s (1 , SampleMax) ;

30 Dout7 = ze ro s (1 , SampleMax) ;

31 Dout8 = ze ro s (1 , SampleMax) ;

32 Dout9 = ze ro s (1 , SampleMax) ;

33

34 Count0 = ze ro s (1 , SampleMax) ;

35 Count1 = ze ro s (1 , SampleMax) ;

36 Count2 = ze ro s (1 , SampleMax) ;

37 Count3 = ze ro s (1 , SampleMax) ;

38 Count4 = ze ro s (1 , SampleMax) ;

39 Count5 = ze ro s (1 , SampleMax) ;

40 Count6 = ze ro s (1 , SampleMax) ;

41 Count7 = ze ro s (1 , SampleMax) ;

42 Count8 = ze ro s (1 , SampleMax) ;

43 Count9 = ze ro s (1 , SampleMax) ;

44

45

46

55

47 %l o g i c f o r gather ing the data po in t s

48 %v a r i a b l e f o r whi l e loop

49 n = 1 ;

50 %v a r i a b l e f o r index ing Dout and Count ar rays

51 i = 1 ;

52 whi le n <= RowMax

53 i f ((SinTest1CopyCopy (n , C9) == 1) | | (SinTest1CopyCopy (n , C8)

== 1) . . .

54 | | (SinTest1CopyCopy (n , C7) == 1) . . .

55 | | (SinTest1CopyCopy (n , C6) == 1) . . .

56 | | (SinTest1CopyCopy (n , C5) == 1) . . .

57 | | (SinTest1CopyCopy (n , C4) == 1) . . .

58 | | (SinTest1CopyCopy (n , C3) == 1) . . .

59 | | (SinTest1CopyCopy (n , C2) == 1) . . .

60 | | (SinTest1CopyCopy (n , C1) == 1) . . .

61 | | (SinTest1CopyCopy (n , C0) == 1))

62 %s e t Count v a r i a b l e s

63 Count0 (i) = SinTest1CopyCopy (n , C0) ;

64 Count1 (i) = SinTest1CopyCopy (n , C1) ;

65 Count2 (i) = SinTest1CopyCopy (n , C2) ;

66 Count3 (i) = SinTest1CopyCopy (n , C3) ;

67 Count4 (i) = SinTest1CopyCopy (n , C4) ;

68 Count5 (i) = SinTest1CopyCopy (n , C5) ;

69 Count6 (i) = SinTest1CopyCopy (n , C6) ;

70 Count7 (i) = SinTest1CopyCopy (n , C7) ;

71 Count8 (i) = SinTest1CopyCopy (n , C8) ;

72 Count9 (i) = SinTest1CopyCopy (n , C9) ;

56

73

74 %increment n by 100 to sk ip count va lue s

75 n = n + 100 ;

76

77 %increment i

78 i = i + 1 ;

79 end

80 n = n + 1 ;

81 end

82

83 v = 20 ;

84 x = 1 ;

85 whi le v <= RowMax

86 i f ((SinTest1CopyCopy (v , C9) == 1) | | (SinTest1CopyCopy (v , C8)

== 1) . . .

87 | | (SinTest1CopyCopy (v , C7) == 1) . . .

88 | | (SinTest1CopyCopy (v , C6) == 1) . . .

89 | | (SinTest1CopyCopy (v , C5) == 1) . . .

90 | | (SinTest1CopyCopy (v , C4) == 1) . . .

91 | | (SinTest1CopyCopy (v , C3) == 1) . . .

92 | | (SinTest1CopyCopy (v , C2) == 1) . . .

93 | | (SinTest1CopyCopy (v , C1) == 1) . . .

94 | | (SinTest1CopyCopy (v , C0) == 1))

95 v = v − 1 ;

96 Dout0 (x) = SinTest1CopyCopy (v , D0) ;

97 Dout1 (x) = SinTest1CopyCopy (v , D1) ;

98 Dout2 (x) = SinTest1CopyCopy (v , D2) ;

57

99 Dout3 (x) = SinTest1CopyCopy (v , D3) ;

100 Dout4 (x) = SinTest1CopyCopy (v , D4) ;

101 Dout5 (x) = SinTest1CopyCopy (v , D5) ;

102 Dout6 (x) = SinTest1CopyCopy (v , D6) ;

103 Dout7 (x) = SinTest1CopyCopy (v , D7) ;

104 Dout8 (x) = SinTest1CopyCopy (v , D8) ;

105 Dout9 (x) = SinTest1CopyCopy (v , D9) ;

106 v = v + 100 ;

107 x = x + 1 ;

108 end

109 v = v + 1 ;

110 end

111

112 %now to s e t the f i n a l va lue f o r Dout

113 Dout0 (x) = SinTest1CopyCopy (RowMax, D0) ;

114 Dout1 (x) = SinTest1CopyCopy (RowMax, D1) ;

115 Dout2 (x) = SinTest1CopyCopy (RowMax, D2) ;

116 Dout3 (x) = SinTest1CopyCopy (RowMax, D3) ;

117 Dout4 (x) = SinTest1CopyCopy (RowMax, D4) ;

118 Dout5 (x) = SinTest1CopyCopy (RowMax, D5) ;

119 Dout6 (x) = SinTest1CopyCopy (RowMax, D6) ;

120 Dout7 (x) = SinTest1CopyCopy (RowMax, D7) ;

121 Dout8 (x) = SinTest1CopyCopy (RowMax, D8) ;

122 Dout9 (x) = SinTest1CopyCopy (RowMax, D9) ;

123

124 %%

125 %proce s s Dout va lue s to get 1 ’ s and 0 ’ s

58

126 %WARNING: prev ious s e c t i o n must be run to gather the data f o r Dout

127

128 th r e sho ld = 1 ;

129 j = i −1;

130 f o r k = 1 : j

131 i f Dout0 (k) < th r e sho ld

132 Dout0 (k) = 0 ;

133 e l s e

134 Dout0 (k) = 1 ;

135 end

136 end

137 f o r k = 1 : j

138 i f Dout1 (k) < th r e sho ld

139 Dout1 (k) = 0 ;

140 e l s e

141 Dout1 (k) = 1 ;

142 end

143 end

144 f o r k = 1 : j

145 i f Dout2 (k) < th r e sho ld

146 Dout2 (k) = 0 ;

147 e l s e

148 Dout2 (k) = 1 ;

149 end

150 end

151 f o r k = 1 : j

152 i f Dout3 (k) < th r e sho ld

59

153 Dout3 (k) = 0 ;

154 e l s e

155 Dout3 (k) = 1 ;

156 end

157 end

158 f o r k = 1 : j

159 i f Dout4 (k) < th r e sho ld

160 Dout4 (k) = 0 ;

161 e l s e

162 Dout4 (k) = 1 ;

163 end

164 end

165 f o r k = 1 : j

166 i f Dout5 (k) < th r e sho ld

167 Dout5 (k) = 0 ;

168 e l s e

169 Dout5 (k) = 1 ;

170 end

171 end

172 f o r k = 1 : j

173 i f Dout6 (k) < th r e sho ld

174 Dout6 (k) = 0 ;

175 e l s e

176 Dout6 (k) = 1 ;

177 end

178 end

179 f o r k = 1 : j

60

180 i f Dout7 (k) < th r e sho ld

181 Dout7 (k) = 0 ;

182 e l s e

183 Dout7 (k) = 1 ;

184 end

185 end

186 f o r k = 1 : j

187 i f Dout8 (k) < th r e sho ld

188 Dout8 (k) = 0 ;

189 e l s e

190 Dout8 (k) = 1 ;

191 end

192 end

193 f o r k = 1 : j

194 i f Dout9 (k) < th r e sho ld

195 Dout9 (k) = 0 ;

196 e l s e

197 Dout9 (k) = 1 ;

198 end

199 end

200

201

202

203

204

205 %%

206 %Set t ing up vin from the tab l e import

61

207 %s i m i l a r p roce s s f o r f i r s t s e c t i o n

208 SinTest1Copy = Ful lS inTes tv in { : , : } ;

209

210 %%

211 %Pre−Graphing s e c t i o n

212 %WARNING: prev ious 2 s e c t i o n must be run f i r s t to gather the data

to graph

213 %as we l l as import the data f o r vinx and viny

214

215

216 %f i r s t get r i d o f s up e r f l uou s 0 ’ s at the ends o f Count and Dout

ar rays

217

218 L = i − 1 ;

219 fDout0 = ze ro s (1 , L) ;

220 fDout1 = ze ro s (1 , L) ;

221 fDout2 = ze ro s (1 , L) ;

222 fDout3 = ze ro s (1 , L) ;

223 fDout4 = ze ro s (1 , L) ;

224 fDout5 = ze ro s (1 , L) ;

225 fDout6 = ze ro s (1 , L) ;

226 fDout7 = ze ro s (1 , L) ;

227 fDout8 = ze ro s (1 , L) ;

228 fDout9 = ze ro s (1 , L) ;

229 Dout tota l = ze ro s (1 , L) ;

230

231 fCount0 = ze ro s (1 , L) ;

62

232 fCount1 = ze ro s (1 , L) ;

233 fCount2 = ze ro s (1 , L) ;

234 fCount3 = ze ro s (1 , L) ;

235 fCount4 = ze ro s (1 , L) ;

236 fCount5 = ze ro s (1 , L) ;

237 fCount6 = ze ro s (1 , L) ;

238 fCount7 = ze ro s (1 , L) ;

239 fCount8 = ze ro s (1 , L) ;

240 fCount9 = ze ro s (1 , L) ;

241 Count tota l = ze ro s (1 , L) ;

242 Count temp = ze ro s (1 , L) ;

243

244 %s e t t i n g up Vin

245 Rows = s i z e (SinTest1Copy , 1) ;

246 vinx = ze ro s (1 , Rows) ;

247 viny = ze ro s (1 , Rows) ;

248

249 v inx index = 1 ;

250 v iny index = 2 ;

251 f o r k = 1 : Rows

252 vinx (k) = SinTest1Copy (k , v inx index) ;

253 end

254 f o r k = 1 : Rows

255 viny (k) = SinTest1Copy (k , v iny index) ;

256 end

257

258 %now to proce s s dout and count

63

259 f o r k = 1 :L

260 fDout0 (k) = Dout0 (k) ;

261 end

262 f o r k = 1 :L

263 fDout1 (k) = Dout1 (k) ;

264 end

265 f o r k = 1 :L

266 fDout2 (k) = Dout2 (k) ;

267 end

268 f o r k = 1 :L

269 fDout3 (k) = Dout3 (k) ;

270 end

271 f o r k = 1 :L

272 fDout4 (k) = Dout4 (k) ;

273 end

274 f o r k = 1 :L

275 fDout5 (k) = Dout5 (k) ;

276 end

277 f o r k = 1 :L

278 fDout6 (k) = Dout6 (k) ;

279 end

280 f o r k = 1 :L

281 fDout7 (k) = Dout7 (k) ;

282 end

283 f o r k = 1 :L

284 fDout8 (k) = Dout8 (k) ;

285 end

64

286 f o r k = 1 :L

287 fDout9 (k) = Dout9 (k) ;

288 end

289

290 f o r k = 1 :L

291 fCount0 (k) = Count0 (k) ;

292 end

293 f o r k = 1 :L

294 fCount1 (k) = Count1 (k) ;

295 end

296 f o r k = 1 :L

297 fCount2 (k) = Count2 (k) ;

298 end

299 f o r k = 1 :L

300 fCount3 (k) = Count3 (k) ;

301 end

302 f o r k = 1 :L

303 fCount4 (k) = Count4 (k) ;

304 end

305 f o r k = 1 :L

306 fCount5 (k) = Count5 (k) ;

307 end

308 f o r k = 1 :L

309 fCount6 (k) = Count6 (k) ;

310 end

311 f o r k = 1 :L

312 fCount7 (k) = Count7 (k) ;

65

313 end

314 f o r k = 1 :L

315 fCount8 (k) = Count8 (k) ;

316 end

317 f o r k = 1 :L

318 fCount9 (k) = Count9 (k) ;

319 end

320

321

322 Count LSB = 0 .000001 ; Dout LSB = 1 .8/1024 ;

323 Dout tota l = (fDout0 + 2∗ fDout1 + 4∗ fDout2 + 8∗ fDout3 + 16∗ fDout4

. . .

324 + 32∗ fDout5 + 64∗ fDout6 + 128∗ fDout7 + 256∗ fDout8 . . .

325 + 512∗ fDout9) ∗Dout LSB ;

326

327 Count temp = (fCount0 + 2∗ fCount1 + 4∗ fCount2 + 8∗ fCount3 + 16∗

fCount4 . . .

328 + 32∗ fCount5 + 64∗ fCount6 + 128∗ fCount7 + 256∗ fCount8 . . .

329 + 512∗ fCount9) ∗Count LSB ;

330 %Count f ina l i s formatted to show the time between samples

331 %we need t o t a l time so more p r o c e s s i n g i s r equ i r ed

332 Count tota l (1) = Count temp (1) ;

333 f o r k = 2 :L

334 Count tota l (k) = Count temp (k) + Count tota l (k−1) ;

335 end

336

337 %because the s i g n a l was delayed 1 microsecond

66

338 Count tota l = Count tota l −0.000001;

339

340 %%

341 %t h i s s e c t i o n f o r tak ing the f i r s t microsecond o f f o f vinx and

viny

342 n = 828 ; %n i s 1 microsecond index

343 RowMax2 = s i z e (vinx , 2) ;

344 temp = RowMax2−n+1;

345 v i n x t e s t = ze ro s (1 , temp) ;

346 v i n y t e s t = ze ro s (1 , temp) ;

347 i = 0 ;

348 f o r k = n :RowMax2

349 i = i + 1 ;

350 v i n x t e s t (i) = vinx (k) ;

351 v i n y t e s t (i) = viny (k) ;

352 end

353 v i n x t e s t = v inxte s t −0.000001;

354

355 %%

356 %s e c t i o n f o r reduc ing number o f data po in t s f o r Dout tota l to

graph

357 samp = 5 ; %make sure RowMax3/samp i s i n t e g e r

358 RowMax3 = s i z e (Dout tota l , 2) ;

359 Dout reduc = ze ro s (1 ,RowMax3/samp) ;

360 Count reduc = ze ro s (1 ,RowMax3/samp) ;

361

362 f o r k = 1 : (RowMax3/samp)

67

363 Dout reduc (k) = Dout tota l (k∗samp) ;

364 Count reduc (k) = Count tota l (k∗samp) ;

365 end

366

367

368 %%

369 %Graphing Sec t i on

370 %WARNING: make sure a l l data i s complete ly ready f o r graphing

371

372 f i g u r e (’ DefaultAxesFontSize ’ , 18)

373 p lo t (v inxte s t , v inyte s t , ’ LineWidth ’ , 3)

374 hold on

375 s c a t t e r (Count tota l , Dout tota l , 200 , ’ x ’ , ’ red ’)

376 t i t l e (’ADC Input and Output ’)

377 x l a b e l (’Time (ms) ’)

378 y l a b e l (’ Voltage (V) ’)

379 ylim ([1 . 1 5 1 . 3 5])

380 xlim ([0 . 0 0 0 3 5 0 . 0 0 1])

381 x t i c k s ([0 0 .00025 0 .0005 0.00075 0 . 0 0 1])

382 x t i c k l a b e l s ({ ’ 0 ’ , ’ 0 .25 ’ , ’ 0 . 5 ’ , ’ 0 .75 ’ , ’ 1 ’ })

383 hold o f f

384

385 %l e s s data samples shown

386 f i g u r e (’ DefaultAxesFontSize ’ , 18)

387 p lo t (v inxte s t , v inyte s t , ’ LineWidth ’ , 3)

388 hold on

389 s c a t t e r (Count reduc , Dout reduc , 200 , ’ x ’ , ’ red ’)

68

390 t i t l e (’ADC Input and Output ’)

391 x l a b e l (’Time (ms) ’)

392 y l a b e l (’ Voltage (V) ’)

393 ylim ([0 . 4 1 . 4])

394 xlim ([0 0 . 0 0 3 5])

395 x t i c k s ([0 0 .001 0 .002 0 . 0 0 3])

396 x t i c k l a b e l s ({ ’ 0 ’ , ’ 1 ’ , ’ 2 ’ , ’ 3 ’ })

397 hold o f f

69

APPENDIX C

MATLAB CODE FOR RMSE ANALYSIS

70

The following code has a much simpler job than the previously laid out code. The

following is for interpolating the output of the ADC and finding the RMSE that was reported

in the thesis.

1 %i n t e r p o l a t i n g the ADC data and f i n d i n g RMSE

2 %f i r s t f i n d c o e f f i c i e n t s

3

4 %taking o f f the f i r s t microsecond o f vinx and viny

5 n = 828 ; %n i s 1 microsecond index

6 RowMax = s i z e (vinx , 2) ;

7 temp = RowMax−n+1;

8 v i n x t e s t = ze ro s (1 , temp) ;

9 v i n y t e s t = ze ro s (1 , temp) ;

10 i = 0 ;

11 f o r k = n :RowMax

12 i = i + 1 ;

13 v i n x t e s t (i) = vinx (k) ;

14 v i n y t e s t (i) = viny (k) ;

15 end

16 v i n x t e s t = v inxte s t −0.000001;

17

18 p = p o l y f i t (Count tota l , Dout tota l , 7) ;

19 %next eva luate the polynomial with the o r i g i n a l vinx data

20 v i n y i n t e r p o l a t e d = po lyva l (p , v i n x t e s t) ;

21 %now f i n d RMSE

22 RMSE = s q r t (mean ((v i n y i n t e r p o l a t e d − v i n y t e s t) . ˆ 2)) ;

23 %f i n d percentage d i f f e r e n c e (Mean Absolute Percentage Error)

24 MAPE = mean ((v inyte s t −v i n y i n t e r p o l a t e d) . / v i n y t e s t) ;

71

25

26

27 f i g u r e

28 s c a t t e r (Count tota l , Dout tota l)

29 hold on

30 p lo t (v inxte s t , v i n y i n t e r p o l a t e d)

31 ylim ([0 . 4 1 . 4])

32 hold o f f

33

34 f i g u r e

35 p lo t (v inxte s t , v inyte s t , ’ LineWidth ’ , 1 . 8)

36 hold on

37 p lo t (v inxte s t , v i n y i n t e r p o l a t e d , ’−−r ’ , ’ LineWidth ’ , 1 . 8)

38 ylim ([0 . 4 1 . 4])

39 hold o f f

72

REFERENCES

[1] H. Tang, Z. C. Sun, K. W. R. Chew, and L. Siek, “A 5.8 nw 9.1-enob 1-ks/s local

asynchronous successive approximation register adc for implantable medical device,”

IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 22, no. 10,

pp. 2221–2225, 2014.

[2] M. Pagin and M. Ortmanns, “Evaluation of logarithmic vs. linear adcs for neural signal

acquisition and reconstruction,” in 2017 39th Annual International Conference of the

IEEE Engineering in Medicine and Biology Society (EMBC), pp. 4387–4390, 2017.

[3] N. Tasneem and I. Mahbub, “A 2.53 nef 8-bit 10 ks/s 0.5 m cmos neural record-

ing read-out circuit with high linearity for neuromodulation implants,” Electron-

ics, vol. 10, no. 5, p. 590, 2021. Copyright - © 2021. This work is licensed un-

der http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the

ProQuest Terms and Conditions, you may use this content in accordance with the terms

of the License; Last updated - 2021-03-09.

[4] A. T. Do, Y. Tan, C. Lam, M. Je, and K. S. Yeo, “Low power implantable neural

recording front-end,” in 2012 International SoC Design Conference (ISOCC), pp. 387–

390, 2012.

[5] J. Jimenez, S. Dai, and J. K. Rosenstein, “A microwatt front end and asynchronous adc

for sparse biopotential acquisition,” in 2017 IEEE 60th International Midwest Sympo-

sium on Circuits and Systems (MWSCAS), pp. 503–506, 2017.

[6] C. Weltin-Wu and Y. Tsividis, “An event-driven clockless level-crossing adc with signal-

dependent adaptive resolution,” IEEE Journal of Solid-State Circuits, vol. 48, no. 9,

pp. 2180–2190, 2013.

[7] W. Kester, The Data Conversion Handbook. Burlington, MA: Newnes, 2005.

[8] R. J. Baker, CMOS Circuit Design, Layout, and Simulation. Hoboken, New Jersey:

Wiley, 3rd ed., 2010.

[9] V. Zamaruiev, V. Ivakhno, and B. Styslo, “Anti-aliasing filter in digital control sys-

73

tem for converter with active power filter function,” in 2019 IEEE 39th International

Conference on Electronics and Nanotechnology (ELNANO), pp. 797–801, 2019.

[10] E. Crespo Marques, N. Maciel, L. Naviner, H. Cai, and J. Yang, “A review of sparse

recovery algorithms,” IEEE Access, vol. 7, pp. 1300–1322, 2019.

[11] F. Chen, A. P. Chandrakasan, and V. M. Stojanovic, “Design and analysis of a hardware-

efficient compressed sensing architecture for data compression in wireless sensors,” IEEE

Journal of Solid-State Circuits, vol. 47, no. 3, pp. 744–756, 2012.

[12] Y. Mingfei and L. Shengli, “A bandwidth controllable anti-aliasing filter design method,”

in 2018 IEEE 18th International Conference on Communication Technology (ICCT),

pp. 641–644, 2018.

[13] Megha R and Pradeepkumar K A, “Implementation of low power flash adc by reducing

comparators,” in 2014 International Conference on Communication and Signal Process-

ing, pp. 443–447, 2014.

[14] R. E. Rad, S. J. Kim, A. Hejazi, M. R. Ur Rehman, Z. Bai, D. Ziqi, and K. Lee, “A low

power 12-bit pipeline adc with 40 ms/s using a modified op-amp,” in 2020 International

Conference on Electronics, Information, and Communication (ICEIC), pp. 1–3, 2020.

[15] V. P. Singh, G. K. Sharma, and A. Shukla, “Power efficient sar adc designed in 90

nm cmos technology,” in 2017 2nd International Conference on Telecommunication and

Networks (TEL-NET), pp. 1–5, 2017.

[16] V. S. Sooraj and G. M. Joseph, “Speed resolution enhancement of 12-bit sar adc,” in

2018 Second International Conference on Intelligent Computing and Control Systems

(ICICCS), pp. 1655–1658, 2018.

[17] “”pipeline adcs come of age”.” https://www.maximintegrated.com/en/design/

technical-documents/tutorials/6/634.html. Accessed: 5-Mar-2021.

[18] R. Loehr, M. Kempf, F. Ohnhaeuser, J. Roeber, R. Weigel, and A. Baenisch, “Imple-

mentation of a high-speed flash adc for high-performance pipeline adcs in an 180nm

cmos process,” in 2015 International Symposium on Intelligent Signal Processing and

Communication Systems (ISPACS), pp. 317–322, 2015.

74

https://www.maximintegrated.com/en/design/technical-documents/tutorials/6/634.html
https://www.maximintegrated.com/en/design/technical-documents/tutorials/6/634.html

[19] “Understanding pipeline analog to digital converter.” https://www.maximintegrated.

com/en/design/technical-documents/tutorials/1/1023.html. Accessed: 5-Mar-

2021.

[20] A. Jayakumar and K. Vishnu, “A 7-bit 500-mhz flash adc,” in 2014 First International

Conference on Computational Systems and Communications (ICCSC), pp. 75–79, 2014.

[21] S. Mahdavi, F. Noruzpur, R. Ebrahimi, and Z. Alizad, “Analysis simulation and com-

parison different types of the sigma delta adc modulators based on ideal model system

level and behavioral model using matlab,” in 2017 IEEE 4th International Conference

on Knowledge-Based Engineering and Innovation (KBEI), pp. 0252–0259, 2017.

[22] D. Prasad and V. Nath, “Design of cmos difference amplifier circuit for sigma delta adc

for aerospace applications,” in 2017 International Conference on Information, Commu-

nication, Instrumentation and Control (ICICIC), pp. 1–4, 2017.

[23] “Sigma delta adcs.” https://www.maximintegrated.com/en/design/

technical-documents/tutorials/1/1870.html. Accessed: 5-Mar-2021.

[24] H. Inose, T. Aoki, and K. Watanabe, “Asynchronous delta-modulation system,” in

Electron. Lett., vol. 2, pp. 95–96, 1966.

[25] P. D. Sharma, “Characteristics of asynchronous delta modulation and binary slope

quantized pcm systems,” in Electron. Eng., vol. 40, pp. 32–37, 1968.

[26] Y. Li, D. Zhao, and W. A. Serdijn, “A sub-microwatt asynchronous level-crossing adc

for biomedical applications,” IEEE Transactions on Biomedical Circuits and Systems,

vol. 7, no. 2, pp. 149–157, 2013.

[27] M. Neugebauer and K. Kabitzsch, “A new protocol for a low power sensor network,”

in IEEE International Conference on Performance, Computing, and Communications,

2004, pp. 393–399, 2004.

[28] M. Tlili, A. Maalej, M. Ben-Romdhane, M. C. Bali, F. Rivet, D. Dallet, and C. Rebai,

“Level-crossing adc modeling for wireless electrocardiogram signal acquisition system,”

in 2016 IEEE International Instrumentation and Measurement Technology Conference

Proceedings, pp. 1–5, 2016.

75

https://www.maximintegrated.com/en/design/technical-documents/tutorials/1/1023.html
https://www.maximintegrated.com/en/design/technical-documents/tutorials/1/1023.html
https://www.maximintegrated.com/en/design/technical-documents/tutorials/1/1870.html
https://www.maximintegrated.com/en/design/technical-documents/tutorials/1/1870.html

[29] Y. Tsividis, “Event-driven data acquisition and digital signal processing—a tutorial,”

IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 57, no. 8, pp. 577–

581, 2010.

[30] M. Trakimas and S. R. Sonkusale, “An adaptive resolution asynchronous adc architec-

ture for data compression in energy constrained sensing applications,” IEEE Transac-

tions on Circuits and Systems I: Regular Papers, vol. 58, no. 5, pp. 921–934, 2011.

[31] R. Agarwal, M. Trakimas, and S. Sonkusale, “Adaptive asynchronous analog to digital

conversion for compressed biomedical sensing,” in 2009 IEEE Biomedical Circuits and

Systems Conference, pp. 69–72, 2009.

[32] C. Weltin-Wu and Y. Tsividis, “An event-driven, alias-free adc with signal-dependent

resolution,” in 2012 Symposium on VLSI Circuits (VLSIC), pp. 28–29, 2012.

[33] Y. Hou, J. Qu, Z. Tian, M. Atef, K. Yousef, Y. Lian, and G. Wang, “A 61-nw level-

crossing adc with adaptive sampling for biomedical applications,” IEEE Transactions

on Circuits and Systems II: Express Briefs, vol. 66, no. 1, pp. 56–60, 2019.

[34] M. Ghasemi, N. Ravanshad, and H. Rezaee-Dehsorkh, “An ultra-low power level-

crossing adc for ecg monitoring application,” in 2020 28th Iranian Conference on Elec-

trical Engineering (ICEE), pp. 1–6, 2020.

[35] W. Tang, A. Osman, D. Kim, B. Goldstein, C. Huang, B. Martini, V. A. Pieribone, and

E. Culurciello, “Continuous time level crossing sampling adc for bio-potential recording

systems,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 60, no. 6,

pp. 1407–1418, 2013.

[36] Z. Tian, R. Ying, P. Liu, G. Wang, and Y. Lian, “A low power level-crossing adc for

wearable wireless ecg sensors,” in 2016 38th Annual International Conference of the

IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3543–3546, 2016.

[37] T. Marisa, T. Niederhauser, A. Haeberlin, R. A. Wildhaber, R. Vogel, J. Goette, and

M. Jacomet, “Pseudo asynchronous level crossing adc for ecg signal acquisition,” IEEE

Transactions on Biomedical Circuits and Systems, vol. 11, no. 2, pp. 267–278, 2017.

76

[38] R. R. Harrison, “The design of integrated circuits to observe brain activity,” Proceedings

of the IEEE, vol. 96, no. 7, pp. 1203–1216, 2008.

[39] “Mean squared error: Definition and example.” https://www.statisticshowto.com/

probability-and-statistics/statistics-definitions/mean-squared-error/.

Accessed 8-Jun-2021.

[40] M. Ensafdaran, High speed successive approximation ADC and its applications. PhD

thesis, 2013. Copyright - Database copyright ProQuest LLC; ProQuest does not claim

copyright in the individual underlying works; Last updated - 2021-05-13.

[41] M. Trakimas, Integrated Circuits and Systems for Sparse Signal Acquisition based on

Asynchronous Sampling and Compressed Sensing. PhD thesis, 2011. Copyright - Data-

base copyright ProQuest LLC; ProQuest does not claim copyright in the individual

underlying works; Last updated - 2021-05-18.

[42] N. Sayiner, H. Sorensen, and T. Viswanathan, “A level-crossing sampling scheme for

a/d conversion,” IEEE Transactions on Circuits and Systems II: Analog and Digital

Signal Processing, vol. 43, no. 4, pp. 335–339, 1996.

[43] W. Kuang, “Correction and comment on “an adaptive resolution asynchronous adc

architecture for data compression in energy constrained sensing applications”,” IEEE

Transactions on Circuits and Systems I: Regular Papers, vol. 60, no. 4, pp. 1097–1099,

2013.

[44] “Analytical figures of merit.” https://www.sciencedirect.com/topics/chemistry/

figure-of-merit. Accessed 6-Jun-2021.

[45] R. L. Grimaldi, S. Rodriguez, and A. Rusu, “A 10-bit 5khz level-crossing adc,” in 2011

20th European Conference on Circuit Theory and Design (ECCTD), pp. 564–567, 2011.

[46] S. Sirimasakul and A. Thanachayanont, “A logarithmic level-crossing adc,” in 2017 14th

International Conference on Electrical Engineering/Electronics, Computer, Telecommu-

nications and Information Technology (ECTI-CON), pp. 576–579, 2017.

[47] M. Trakimas and S. Sonkusale, “A 0.8 v asynchronous adc for energy constrained sensing

applications,” in 2008 IEEE Custom Integrated Circuits Conference, pp. 173–176, 2008.

77

https://www.statisticshowto.com/probability-and-statistics/statistics-definitions/mean-squared-error/
https://www.statisticshowto.com/probability-and-statistics/statistics-definitions/mean-squared-error/
https://www.sciencedirect.com/topics/chemistry/figure-of-merit
https://www.sciencedirect.com/topics/chemistry/figure-of-merit

[48] K. Peepra and R. Gurjar, “A linear current starved voltage controlled ring oscillator with

wide tuning range using 180nm cmos technology,” in 2018 International Conference on

Recent Innovations in Electrical, Electronics Communication Engineering (ICRIEECE),

pp. 2925–2928, 2018.

[49] S. Suman, K. G. Sharma, and P. K. Ghosh, “Analysis and design of current starved

ring vco,” in 2016 International Conference on Electrical, Electronics, and Optimization

Techniques (ICEEOT), pp. 3222–3227, 2016.

[50] S. Polineni and A. K. Gupta, “8-bit nano watt level crossing adc for bio-medical appli-

cation,” in 2015 International Conference on Computer, Communication and Control

(IC4), pp. 1–6, 2015.

[51] “Solved: binary counter in veriloga with programmable stepsize.” https:

//community.cadence.com/cadence_technology_forums/f/custom-ic-design/

34770/solved-binary-counter-in-veriloga-with-programmable-stepsize.

Accessed 10-Mar-2021.

78

https://community.cadence.com/cadence_technology_forums/f/custom-ic-design/34770/solved-binary-counter-in-veriloga-with-programmable-stepsize
https://community.cadence.com/cadence_technology_forums/f/custom-ic-design/34770/solved-binary-counter-in-veriloga-with-programmable-stepsize
https://community.cadence.com/cadence_technology_forums/f/custom-ic-design/34770/solved-binary-counter-in-veriloga-with-programmable-stepsize

	ACKNOWLEDGEMENTS
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER 1. INTRODUCTION
	1.1. Biomedical Sensing Constraints
	1.2. Original Contributions
	1.3. Outline of Thesis

	CHAPTER 2. OVERVIEW OF ADC ARCHITECTURES
	2.1. Architectures
	2.1.1. SAR
	2.1.2. Pipeline
	2.1.3. Flash
	2.1.4. - ADC

	2.2. Synchronous vs. Asynchronous
	2.3. Performance Metrics

	CHAPTER 3. ASYNCHRONOUS ADC DESIGN
	3.1. DAC Design
	3.2. Comparator Design
	3.3. Digital Logic
	3.4. Simulation Results
	3.5. Comparison With the State-of-the-Art
	3.6. Future Work

	CHAPTER 4. CONCLUSION
	APPENDIX A. VERILOGA CODE
	APPENDIX B. MATLAB CODE FOR DATA MANIPULATION
	APPENDIX C. MATLAB CODE FOR RMSE ANALYSIS
	REFERENCES

