
Analyzing WARC on
Serverless Computing

Yinlin Chen

Digital Library Architect & Assistant Professor
ylchen@vt.edu

Virginia Tech Libraries

Web Archiving Conference 2021
15 - 16 Jun 2021

Agenda

• Challenges
• Serverless
• Architecture design
• Experiment setup
• Results
• Conclusion
• Future work

Challenges

• Limited in-house resource to maintain a cluster 24/7
– Configure servers, monitor tools, logs, etc.
– Software version upgrade, security patches, etc.
– Hardware replacement

• Scalability is limited by the compute resource
• Time to process a set of datasets is fixed
• Moving the entire setup to the cloud would be

expensive

NowBefore
Resource Usage Resource Usage

• Ready to receive requests 24/7
• Handle scalability automatically with

more flexible resources
• Use the servers, no need to maintain

them
• Resource usage is closer to actual

usage

• Cluster 24/7
• Handle scalability under a fixed

resource
• Maintenance burden

Principles of Serverless Design
Design push-based, event-driven

pipelines

Write single-purpose, stateless
functions

Execute functions on demand and use
the exact resources that are needed

Three Pillars of Observability: Logs,
Metrics, & Traces

Event-driven Pipeline Workflow

• Task files upload to a S3 bucket
– S3 URL location of Common Crawl data

• Trigger a Lambda function
• Lambda function reads content in a task file and

submits a batch job
• Each batch job runs a container and processes

the program workflow
• Results upload to a S3 bucket

AWS Lambda

AWS Cloud

Common Crawl
data files

Amazon S3

Task file

Result output files

Amazon S3

AWS Batch

Batch Job –
Warc file 1

Batch Job –
Warc file 2

Batch Job –
Warc file 3

Batch Job –
Warc file 4

Batch Job –
Warc file n

Amazon S3

Program Workflow

• Get a file from Common Crawl
• Load a file into ArchiveSpark
• Create CDX
• Extract page with links
• Save all the derivative data
• Record execution times
• Upload results to a S3 bucket

Infrastructure as Code (DevOps)

One click deploy

Experiment Setup

• Run 10, 20, 40, 80, 100, 1000 # of tasks
• Each task processes one Common Crawl file
• Run tasks using

– On-demand instance
– Spot instance (up to 40% off the on-demand instance

price)
• Record execution time, logs, and cost

Monitor Cluster Status

Managed Compute Environment Automatically

Monitor Lambda Status

Monitor Job Progress

Batch Job Logs

Batch Job Logs

Query Log Results

Results
• Avg. execution time for processing a WARC file is 23.3

mins
• Execution times for processing 10, 20, 40, 80, 100 # of

WARC files are under 30 mins using on-demand
instance
– 1000 tasks took about 6 hours

• Each job (1G file) cost:
– On-demand instance: $0.066
– Spot instance: $0.022

• Success rate:
– On-demand instance: 99%
– Spot instance: depends (need to run more experiments)

Cost: NowCost: Before

• Add one server, plus the cost
• Plan server capacity each year

• Overestimation
• Underestimation

• Pay what we use
• Use it well and pay less
• Pay 0 when services are idle

• Some (invisible) costs vanish
• Server maintenance cost
• Labor, time, electric, etc.

Conclusion
• This serverless architecture design can process almost any

number of tasks
• Use only the resources that are needed
• Eliminate the need to manage underlying servers
• Event-driven pipeline automates the entire workflow
• A suite of services for three pillars of observability: logs,

metrics, and traces
• On-demand instance is more stable than spot instance

– Need more experiments to verify
– Spot instance cost is cheaper

• GitHub: https://github.com/yinlinchen/warc-analytics-wac2021

https://github.com/yinlinchen/warc-analytics-wac2021

Future Work

• Extend WARC processing program for more
complex tasks

• Batch resource (compute environment) tuning
– CPU and Memory
– Container

• Spot instance usage tuning
• Apply to other use cases using this serverless

pipeline

Q & A

Thank You!

This research work was supported by
AWS Educate program

