
 

 

 

 
 

 

  

APPROVED: 
 
Song Fu, Major Professor 
Rodney Nielsen, Committee Member 
Armin R. Mikler, Committee Member 
Ryan Garlick, Committee Member 
Yan Huang, Chair of the Department of 

Computer Science and Engineering 
Hanchen Huang, Dean of the College of 

Engineering 
Victor Prybutok, Dean of the Toulouse 

Graduate School 

Dissertation Prepared for the Degree of 

DOCTOR OF PHILOSOPHY 

UNIVERSITY OF NORTH TEXAS 

May 2021 

 
AN EXTENSIBLE COMPUTING ARCHITECTURE DESIGN FOR  

CONNECTED AUTONOMOUS VEHICLE SYSTEM 

Jacob Daniel Hochstetler 



 

Hochstetler, Jacob Daniel. An Extensible Computing Architecture Design for 

Connected Autonomous Vehicle System. Doctor of Philosophy (Computer Science and 

Engineering), May 2021, 278 pp., 26 tables, 80 figures, 255 numbered references.    

Autonomous vehicles have made milestone strides within the past decade.  

Advances up the autonomy ladder have come lock-step with the advances in machine 

learning, namely deep-learning algorithms and huge, open training sets. And while 

advances in CPUs have slowed, GPUs have edged into the previous decade's TOP 500 

supercomputer territory. This new class of GPUs include novel deep-learning hardware 

that has essentially side-stepped Moore's law, outpacing the doubling observation by a 

factor of ten.  While GPUs have make record progress, networks do not follow Moore's 

law and are restricted by several bottlenecks, from protocol-based latency lower bounds 

to the very laws of physics. In a way, the bottlenecks that plague modern networks gave 

rise to Edge computing, a key component of the Connected Autonomous Vehicle system, 

as the need for low-latency in some domains eclipsed the need for massive processing 

farms. The Connected Autonomous Vehicle ecosystem is one of the most complicated 

environments in all of computing. Not only is the hardware scaled all the way from 16 

and 32-bit microcontrollers, to multi-CPU Edge nodes, and multi-GPU Cloud servers, but 

the networking also encompasses the gamut of modern communication transports. I 

propose a framework for negotiating, encapsulating and transferring data between vehicles 

ensuring efficient bandwidth utilization and respecting real-time privacy levels. 
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CHAPTER 1

INTRODUCTION

Autonomous vehicles have made milestone strides within the past decade. Google’s

own Self-Driving Car Project was founded just 10 years ago on January 17, 2009. Since then,

several production vehicles has made it to SAE Level 2 for autonomy, including notable names

like Tesla, Mercedes-Benz and Cadillac. These advances up the autonomy ladder have come

lock-step with the advances in machine learning, namely deep-learning algorithms and huge,

open training sets. And while advances in CPUs have slowed, GPUs have edged into the

previous decade’s TOP 500 supercomputer territory, using just the power of an incandescent

light-bulb. This new class of GPUs include novel deep-learning hardware that has essentially

side-stepped Moore’s law, outpacing the doubling observation by a factor of ten.

While GPU and software advances have enabled the A in Connected and Autonomous

Vehicles (CAV ), the network hardware and protocols on the vehicle are responsible for the

C. As opposed to CPUs, networks do not follow Moore’s law and are restricted by several

bottlenecks, from protocol-based latency lower bounds to the very laws of physics (Shannon

limit). In a way, the bottlenecks that plague modern networks gave rise to Edge computing,

as the need for low-latency in some domains eclipsed the need for massive processing farms.

The need for efficient network utilization is exacerbated by the fact autonomous vehicles

(AV s) are producing terabytes of data per day. On a modern Tesla vehicle, one of the

eight cameras (HW2.5) alone can produce over 1.2 terabytes of compressed video per day

(H.264 720p @ 60fps). While video data is the bulk of the on-board sensor production, this

does not include the radar, GPS, and ancillary sensor data. So equipped, the uncompressed

data production on a single AV (9.92 Gbps) would encompass almost half of the available

bandwidth for the future 5G communications standard (20 Gbps). Unfortunately, that is for

a single vehicle-to-vehicle session, so a duplex exchange would consume the entire bandwidth,

far from the goal of multi-vehicle/vehicle-to-edge communication.

At the same time software and hardware have accelerated, everyday end-consumers
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have become increasingly aware of data privacy issues. Some of these issues include super-

cookies, social media selling, big Data mining, and EU’s recent General Data Protection

Regulation 2016/679 (GDPR). Even the FBI recently issued a warning against Smart TVs

spying on customers [204].

I propose a framework for negotiating, encapsulating and transferring data between

vehicles ensuring efficient bandwidth utilization and respecting real-time privacy levels.

1.1. Scope of Research

In order to enhance decision making at several levels, autonomous vehicles must

become connected. While a generic term, it contains an expanse of problems, both technical

and civil.

For the in-vehicle only computing model, the applications running on the platform

must contend with each other for limited resources on the platform. For instance, assume

two latency-sensitive applications require execution on the GPU at the same time. If there

is only one GPU on the vehicle, the second scheduled application might not produce a timely

decision. Similarly, even though processing of sensor data produced on the vehicle might be

within latency constraints, full perception may still not be possible due to sensor limitations.

But processing data that originated outside of the vehicle brings in several problems, falling

into two categories of issues:

• Internal (technical issues related to hardware or software)

• External (privacy/regulatory or trust issues)

To create a framework that is possible, I will limit the scope of my proposal to vehicles

already equipped with network connectivity hardware and that have established an ad hoc

mesh network between two or more vehicles.

1.2. Major Contributions

The major contribution of this dissertation is my proposal for a standard architecture

for CAV services. This framework includes a data format, protocol, and application orches-

tration layer, and is designed to be both extensible for future development and backwards

2



compatible for legacy clients. Additionally is it technically superior, solving both resource

-constrained communication problems and actual software development life cycle concerns.

This work is separated into chapters, with the problems and challenges of a CAV architec-

ture in Chapter 2 and Chapter 3 details the approach to these problems and challenges.

Chapters 4, 5 and 6 detail the proposed framework, and provide comparisons to competing

standards and systems. Chapter 7 details my prior work in the CAV ecosystem, and an

overview of that work is given in Figure 1.1 below. Cloud-related work includes proactive

storage-system data protection, and SSD drive reliability. Cloud services form the back-

bone of machine learning for autonomous vehicles and storage systems are an integral part

of training the ML models. Additionally, with the reduction in SSD cost, flash storage is

being deployed as both the caching layer fronting larger storage systems, and as the primary

storage for Edge systems. My Edge-related work includes optimal police patrol planning

based on information entropy, and a mutation testing tool for application pipelines. The

application of optimal police patrols is important step for “smart cities”, and can be feed

data received from both far Edge nodes or near Edge police vehicles. The mutation testing

tool is important for Edge systems as Golang is gaining ground in essential backend services

for infrastructure. Lastly, my CAV-related research includes neural computing stick bench-

marking for embedded systems, and a low-latency data sharing scheme for connected and

autonomous vehicles. Together this research has provided insights into how data is both

collected from vehicles, and transformed into useful products, either through Edge-nodes or

Cloud services.

1.3. Background and Related Research

In this section I will explore four background concepts needed for the function of

C onnected Autonomous V ehicles (CAVs), namely:

• Decentralized computing

• In-Vehicle services and systems

• Vehicle d producers/sensors

• Modern privacy concerns

3
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Figure 1.1. Overview of CAV ecosystem with prior work annotated.

(a) Sec. 7.5 Reliability Characterization of Solid State Drives in a Scalable Production Data Center

2018 IEEE Int. Conf. on Big Data (Big Data)

(b) Sec. 7.1 Optimal Police Patrol Planning Strategy for Smart City Safety

2016 IEEE 14th Int. Conf. on Smart City

(c) Sec. 7.3 Embedded Deep Learning for Vehicular Edge Computing

2018 IEEE/ACM Symposium on Edge Computing (SEC)

(d) Sec. 7.4 Low-Latency High-Level Data Sharing for Connected and Autonomous Vehicular Networks

2019 IEEE Int. Conf. on Industrial Internet (ICII)

(e) Sec. 7.2 TuranGo: Mutation Testing a Language

(f) Sec. 7.6 Incorporate Proactive Data Protection in ZFS Towards Reliable Storage Systems

2018 IEEE 16th Int. Conf. on Dependable, Autonomic and Secure Computing

(g) Sec. 7.7 Developing Cost-Effective Data Rescue Schemes to Tackle Disk Failures in Data Centers

2018 BigData, 7th Intl. Congress

(h) Sec. 7.8 An Empirical Study of Quad-Level Cell (QLC) NAND Flash SSDs for Big Data Applications

2019 IEEE Int. Conf. on Big Data (Big Data)
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1.3.1. Decentralized Computing

Since then, connected computing has been categorized by different attributes based

around their computing power and data locality (resource/power/latency), and these at-

tributes can be mapped into a continuum. A simple hierarchy of this continuum is shown in

Figure 1.2. Telecoms describe “the Edge” a bit differently from traditional IT operations.

From their perspective, there are actually three different edges. First, there’s the “cloud

edge,” where the content delivery networks (CDNs) work. The only job of the CDN is to

place servers physically close to end users to distribute traffic and reduce latency. A CDN’s

edge server is normally just a caching web server and is just a single piece in an application’s

architecture.

Additionally, telecoms also label the “near edge” and the “far edge” (together called

the “broad edge”). The near edge includes servers located at cell towers or local telecom’s

points of presence. Such locations are typically well-suited to host small data centers with

all the essential trimmings: power, cooling, racks of equipment, and sometimes a bare-

bones staff. The near edge may also represent a facility that hosts Internet of Things (IoT)

gateways, a sensor center at a factory, in a city’s traffic switching office (sometimes called

a traffic management office), or in the security command center of a large building/campus

such as a stadium, airport, or office park. Finally the far edge is the devices themselves,

either handheld smartphones, IoT sensors/actuators or CAVs.

While the architecture and capacity that powers data centers differs from edge de-

vices, all immediate storage has moved from magnetic spinning hard disks to solid state flash

drives. This has moved all magnetic storage to serving roles as secondary (remote) storage

for larger, long-term storage. For many platforms this is a concerted effort in conjunction

with Hierarchical Storage Management (HSM), a data storage technique that automatically

moves data between high-cost/high-performance and low-cost/low-performance storage me-

dia. For a typical data center that means moving data from a VM’s flash SSD (shared

multi-tenant with other VMs on the hypervisor) to a network-attached storage device con-

sisting of spinning hard drives (fronted by SSD cache), and then finally to silos of magnetic

5



Cloud
• Infinitelya scalable resources

• Largest data latency

• Multiple-hops to producer

Near Edge
• Medium resources

• Medium data latency

• Single-hop to data producer

Far edge (Local)
• Limited resources

• Lowest data latency

• Directly connected producer

• Power throttling concerns

Figure 1.2. Connected computing hierarchy.
aObviously not really infinite, but workload-infinite.

tape (fronted by more flash cache). Within a data center, this two-way data transition can

take place frequently due to the data locality and a focus on data gravity. For an Edge node,

the path from local SSD to a tape silo could take weeks, since the cost of moving data that

far away from a given producer/consumer does not justify the benefits. More specifically,

the cost could be actual money spent for network bandwidth, or the computational cost of

tying up local edge resources.

1.3.1.1. Cloud Computing

Cloud computing is the name of services that offload traditional, on-premise com-

puting to a remote set of internet-connected servers. These services normally involve at a
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Operating	System

Virtualization

Servers	/	Storage	/	Network

Applications

Data

Runtime

Middleware

Operating	System

Virtualization

Applications

Data

Runtime

Middleware

Operating	System

Virtualization

Servers	/	Storage	/	Network

Infrastructure	as	a	Service Platform	as	a	Service Software	as	a	Service

Cloud	Service	Models

Figure 1.3. Cloud service models. Blue blocks are end user managed, green
blocks are managed by your service provider.

basic level virtualization technologies in several areas, namely: compute, storage and net-

working. Cloud computing can also be utilized in an on-premise capacity, as long as the

same characteristics are met when the service is delivered from the data center.

The National Institute of Standards and Technology [NIST] (U.S. Department of

Commerce) defines five essential characteristics of cloud computing [146]:

(1) on-demand self-service

(2) broad network access

(3) resource pooling

(4) rapid elasticity/expansion

(5) measured service

In the same publication, NIST also lists three “service models” and what the end

user manages:

• IaaS: Infrastructure as a Service (OS, application & data)

• PaaS: Platform as a Service (application & data)

• SaaS: Software as a Service (only data)

These service models and levels of end user-management are visualized in Figure 1.3 below.
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1.3.1.2. Ubiquitous Computing

Ubiquitous computing is the 30-year trend of embedding computational capability

into everyday objects to make them effectively communicate and perform useful tasks. Ubiq-

uitous computing is also referred to as pervasive computing, as the differences between the

two are mostly academic [145]. The main contrast with traditional computing is that ubiq-

uitous computing minimizes the end user’s need to interact with computers as computers.

Ubiquitous/pervasive computing devices are network-connected and constantly available.

Recent examples of ubiquitous computing includes connected-home devices like Amazon’s

Alexa or Google’s Assistant, where the primary human-computer interaction is accomplished

through voice commands.

Satyanarayanan’s seminal 2001 paper “Pervasive Computing: Vision and Challenges”

describes the flow from the agenda of distributed system applications to mobile computing

and then to pervasive computing. Each set is composed of it’s own new issues, and the prob-

lems/issues of the superset are multiplied. This is shown with original caption in Figure 1.4.

1.3.1.3. Connected Vehicles

The group tasked to create the first Wireless Access in Vehicular Environments

(WAVE) standard was formed in November 2004. This was the beginning of the IEEE

802.11p amendment to the 802.11 wireless local area network (WLAN) standard. This was

the start of vehicle-to-everything (V2X) communications. There are several categories of

connected vehicle communications as shown in Figure 1.5:

• V2I: Vehicle-to-infrastructure

• V2V: Vehicle-to-vehicle

• V2N: Vehicle-to-network

• V2D: Vehicle-to-device

• V2G: Vehicle-to-grid

• V2P: Vehicle-to-pedestrian

8



Figure 1.4. This figure shows how research problems in pervasive

computing relate to those in mobile computing and distributed systems. New

problems are encountered as one moves from left to right in this figure. In

addition, the solution of many previously-encountered problems becomes

more complex. As the modulation symbols suggest, this increase in

complexity is multiplicative rather than additive — it is very much more

difficult to design and implement a pervasive computing system than a

simple distributed system of comparable robustness and maturity. Note that

this figure describes logical relationships, not temporal ones. Although the

evolution of research effort over time has loosely followed this picture, there

have been cases where research effort on some aspect of pervasive computing

began relatively early. For example, work on smart spaces began in the early

1990’s and proceeded relatively independently of work in mobile

computing. [193]
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V2D

V2P

V2I

V2V

V2NV2G

Figure 1.5. Types of Connected Vehicle communication types.

There are two main types of vehicular communications: 1) WLAN-based, and 2)

cellular-based. The Society of Automotive Engineers (SAE) refers to the technology using

802.11p as Dedicated Short-Range Communications (DSRC), which is a held-over term from

the 1999 FCC program opening up 75 MHz of spectrum in the 5.9 GHz band for intelligent

transportation systems (ITS). The telephony standards group 3GPP refers to their tech-

nology as C-V2X (cellular V2X) to differentiate itself from the 802.11p V2X specifications.

Bluetooth and satellite were also considered for V2X, but their high-latency has all but

eliminated them.

DSRC is designed to be effective up to 1000 m, while actual the real-world range is less

than 300 m [239]. While DSRC’s strength lies in its low-latency, the 6 to 27 Mbps available

bandwidth is a huge negative for anything more than command/control messaging. For this

reason cellular-based V2X has seen increased interest in the last few years as the constant

evolution in cell-based communications has pushed beyond DSRC capabilities.

Following the established by standards bodies, several original equipment manufac-

turers (OEM) have integrated V2X technologies into their vehicles. The adoption has been

10



slow though, as there isn’t much direct benefit for an OEM to spend the money, time and

resources. The lament over the lack of adoption has been expressed since 2013 [248]. As

of 2019, both Toyota and General Motors have sold vehicles equipped with DSRC, while

several government-sponsored programs have utilized DSRC during demonstrations.

Once a majority of vehicles are equipped with V2X equipment, the applications and

level of processing will increase exponentially. Many of the applications that V2X enables

are safety related and all vehicles on the road must participate to achieve their full potential.

Some these applications include [239]:

• Emergency warning system for vehicles

• Cooperative forward collision warning

• Cooperative adaptive cruise control

• Approaching emergency vehicle warning (Blue Waves)

• Vehicle safety inspection

• Transit or emergency vehicle signal priority

• Electronic parking payments

• Commercial vehicle clearance and safety inspections

• In-vehicle signing

• Rollover warning

• Probe data collection

• Highway-rail intersection warning

• Electronic toll collection

• Convoys

1.3.2. In-Vehicle Services and Systems

In this section, I briefly discuss four types of services that will be available on CAVs.

Conventionally, these services on current vehicles could be classified into three groups ac-

cording to their functionality: real-time diagnostics, advanced driver-assistant systems, and

in-vehicle infotainment. In addition, there is an emerging type of services, 3rd party appli-

cations from various vendors, which will be prevalent on CAVs as the vehicle data in the
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future will not be exclusive to the automakers.

1.3.2.1. Real-time Diagnostics

This type of service usually refers to the On-board diagnostics (OBD) system, which

allows the vehicle to have the capability of self-diagnosis and reporting. The OBD system

appeared on the vehicle in the 1980s and has evolved from the early simple ”idiot light” to

a modern version that can provide real-time vehicle data (e.g., the engine’s revolution from

the engine control unit) and a standardized series of diagnostic trouble codes. Such codes

are useful for vehicle troubleshooting and repair. The device reading the real-time data

is actually an additional device to the vehicle called an OBD reader. The maintainer can

leverage the OBD reader to obtain information about the fault, e.g., the diagnostic trouble

code. This usually will not consume any resources of the vehicle, since it is just reading data

already produced by the engine computer, however, it is not an in-vehicle system. In future

CAVs, this type of service should be built in the vehicle, which collects the related vehicle

data, including real-time data and historical data, and would be analyzed to predict faults.

This proactive system could remind the owner of maintenance issues to ensure the vehicle is

operating in good (and legal) condition.

As an important side-note, all Tesla models and some other modern vehicles uti-

lize Over-the-Air programming (OTA). This effectively side-steps logistically cumbersome

dealership-based firmware and operating system updates by delivering new features and

value to existing customers in an agile manner. This is akin to Android/Apple upgrading

operating system for their mobile phones. Normally the same hardware and infrastructure

that supports OTA also enables bi-directional communication from the vehicle, which has

a variety of uses from fleet-based deep learning (and inference optimization), route-learning

and even automatic emergency service response (in the event of a detected collision).

1.3.2.2. Advanced Driver-Assistant Systems (ADAS)

Nowadays, more and more vehicles are equipped with the ADAS that can detect some

objects, complete basic classification, and alert the driver of unsafe driving behaviors. It may
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LEVEL 0 LEVEL 1 LEVEL 2 LEVEL 3 LEVEL 4 LEVEL 5

You are driving whenever these driver support features are
engaged - even if your feet are off the pedals and you are not

steering

You are not driving when automated driving features are
engaged - even if you are seated in "the driver's seat"

You must constantly supervise these support features; you
must steer, brake or accelerate as needed to mantain safety

These automated driving features
will not require you to take over

driving

When the feature
requests,

you must drive

What does the
human in the
driver's seat
have to do?

These features
are limited to

providing
warnings and
momentary
assistance

traffic jam
chauffeur

What do these
features do?

These are driver support features These are automated driving features

These features
provide steering

OR brake/
acceleration

support to the
driver

These features
provide steering

AND brake/
acceleration

support to the
driver

automatic
emergency
braking
blind spot
warning
lane departure
warning

lane centering

  AND

adaptive cruise
control at the
same time

local driverless
taxi

pedals/steering   
wheel may or
may not be
installed

same as level 4,
but feature can
drive
everywhere in
all conditions

These features can drive the vehicle
under limited conditions and will not
operate unless all required conditions

are met

This feature can
drive the vehicle

under all
conditions

lane centering

  OR

adaptive cruise
control 

Example
Features

Figure 1.6. SAE J3016 levels of driving automation, adapted from [192].

also slow or stop the vehicle. For example, the steering wheel will vibrate when the vehicle

is close to a traffic line without illuminating the turn light. The Society of Automotive

Engineers (SAE) International grades autonomous driving at six levels [192], in which the

level 0 means the vehicle is without any assistant, and the level 5 means the vehicle is in full

control by an autonomous driving system. A vehicle with ADAS is usually rated the SAE

level 1 or level 2 based on provided functions. Usually, level 3 means the human driver can

safely turn their attention away from driving tasks. As the level ascends, the autonomous

driving system takes over more controls from human drivers and needs more computation

resources to run computational intensive algorithms. The SAE levels are shown below in

Figure 1.6.

The most important element of ADAS is the real-time object detection that is based

on either computer vision or deep learning technology. Two of the most representative

detection algorithms for ADAS are Lane Detection and Vehicle Detection. The former
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Table 1.1. ADAS Response Times. [251]

Name Latency

Lane Detection 13.57 ms

Vehicle Detection (Haar) 269.46 ms

Vehicle Detection (TensorFlow) 13 971.98 ms

relies on the computer vision technology. Regarding the latter, the underlying technologies

are Haar-based image processing and TensorFlow-based deep learning algorithm. As of

December 2019 from [251], as shown in Table 1.1, the vehicle detection shows that the latency

of Haar-based algorithm significantly outperforms (around 51x faster) the TensorFlow-based.

But in the future CAVs, deep learning based algorithms will dominate since they can detect

multiple types of objects at once, as shown in Microsoft Research Asia’s Region Proposal

Networks [185].

1.3.2.3. In-Vehicle Infotainment

In-Vehicle infotainment includes a wide range of services that provide audio or video

entertainment. For example, the driver uses the radio to listen to music, including cloud

services from the Internet such as Pandora, and the passengers sitting in the backseat can

relax by watching online videos or news using the device embedded on the seat. This

means these services might involve large-scale Internet data transmission. Most mainstream

auto vendors have Internet supported infotainment services, e.g., Uconnect for Chrysler,

Blue Link for Honda, and iDrive for BMW. Another trend of on-board infotainment is the

Android-based system that has been implemented by many auto vendors including Honda,

Hyundai, Audi, and Volvo. Tesla even includes a 17 inch tablet running Ubuntu for it’s GPS

mapping, Internet streaming radio and built-in web browser. For these services, video or

audio data must be downloaded from the Internet and then decoded locally on the vehicle,

and eventually delivered to the passengers. During negotiation, the infotainment system

could scale up or down the quality, or even pre-fetch/cache data for a better user-experience.

It means these applications not only require compute resources but also require an elastic
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high requirement for the network bandwidth.

1.3.2.4. Third-Party Applications

An in-vehicle, third-party application provided by a vendor other than the car maker

is used to enhance the user experiences or provide other add-on services (e.g., finding a

missing car for law enforcement). The trend of openness of vehicle data will make it easier

for third-party vendors to develop and deploy different kinds of applications on the vehicle.

In addition, with the rapid development of in-vehicle processor processing, vehicle to vehicle

communications and autonomous driving technologies, future CAVs could be viewed as a

sophisticated computer on wheels with a variety of third-party applications. Several projects

including these types of applications have been initiated. For example, Kar et al. [120]

proposed an application to enhance the vehicle safety by detecting whether the driver is

registered or not through analyzing their operation features (e.g., the time duration of door

open and close). Another example is to leverage the on-board camera to recognize and track

a targeted vehicle, which is a mobile version for their AMBER alert assistant [252], promising

to enhance the AMBER alert system. Generally, the core of such types of applications is

either vision-related or machine learning based data processing algorithm fed by the same

on-board sensor data (e.g., dash camera). Since the core algorithms are computationally

intensive, these types of third-party applications need access to powerful computing hardware

as well.

1.3.3. Vehicle Data Producers/Sensors

In this section I will briefly describe some of the main data producers available on

modern CAVs:

(1) Positional tracking systems (GPS/IMUs)

(2) LiDAR

(3) Radar

(4) Imagery (camera/video)

(5) Convolutional Feature Maps
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Positional tracking systems (GPS/IMUs)

LiDAR

Radar

Imagery (video)

Convolutional Feature Maps

Sonar (ultrasound)

Figure 1.7. Overlay showing vehicle sensors discussed and their approximate
ranges/placement. Sensor data characteristics are listed in Table 1.2.

(6) Sonar (ultrasound)

The data formats and approximate bandwidth of each sensor class is shown in Table

1.2 below, and an overlay of these sensors on an example vehicle is shown in Figure 1.7.

Currently there are two separate factions within the AV community: 1) those that

believe LiDAR is needed for full SAE Level 5, and 2) those that believe a combination of radar

and imagery can provide enough sensor information instead. AV manufacturers/integrators

can normally be categorized into one of these two groups with General Motors, Ford Motor

Company, Uber and Alphabet Inc’s Waymo (a Google subsidiary) relying upon LiDAR while

Nissan and Tesla utilize multiple cameras with radar [207]. Waymo specifically has heavily

invested in LiDAR technologies [94] and [93], while newer research has produced “LiDAR-

like” results using only cameras [224]
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1.3.3.1. Positional Tracking Systems

The Global Positioning System (GPS) is an American created, satellite-based radio-

navigation system. Currently there are 31 satellites in medium-earth orbit (MEO), each

containing a synchronized atomic clock. Each satellite continuously transmits a radio signal

containing the current time and position data. Since the speed of radio waves is constant

and independent of the satellite speed, the time delay between when the satellite transmits

a signal and the receiver receives it is proportional to the distance from the satellite to the

receiver. A GPS receiver monitors multiple satellites and solves equations to determine the

precise position of the receiver and its deviation from true time [107]. At a minimum, four

satellites must be in view of the receiver for it to compute four unknown quantities: three

position coordinates on a spheroid and clock deviation from satellite time. With modern

single-frequency GPS receivers, locations can be fixed to ≤ 1.6 m (horizontal) 95% of the

time [67]. Dual-frequency receivers can achieve ≤ 0.3 m accuracy.

Inertial measurement units (IMUs) can be coupled, or integrated into GPS units

to provide both extra precision, and coverage during GPS blackouts. They generate this

information by detecting linear acceleration using one or more accelerometers and rotational

rate using one or more gyroscopes. IMUs are important since GPS signals may be obscured

in places like cities with high buildings or valleys between mountains. The downside of

IMUs is accumulated error, but this drift is corrected through Kalman filters when GPS

data becomes available again [34].

1.3.3.2. LiDAR

Light Detection And Ranging is a type of sensor based on the emission and detected

reflection of a pulsed laser. The duration of these laser pulses are precisely measured by

a light detector, and combined with a synchronized GPS feed, produces a 3D point cloud

originating at the sensor. Modern automotive LiDAR sensors like the Velodyne VLS-128,

produce millions of laser pulses per second, and mechanically spin at up to 20 Hz [222].

Since these sensors operate around humans, to be sold commercially they must be

certified eye-safe. This is a legal requirement in the U.S., from standards established by the
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U.S. Food & Drug Administration in 1992. This standard sets limits for wavelengths, and

provides classification levels for powers [218]. Automotive LiDAR systems operate at one of

two wavelengths, either ~905 nm or 1550 nm (331.3 THz or 193.4 THz).

1.3.3.3. Radar

Similar to LiDAR, radar (radio detection and ranging) is based on the transmission

and subsequent detection of reflected radio waves. If an object is moving either towards

or away from the transmitter/receiver, then there will also be a frequency shift due to the

Doppler effect, and the velocity of the target object can be computed. Radar has a long

technological history, spanning over 100 years (1904 Telemobiloscope patent), and is the

standard technique used when the range/position or speed of an object is needed in an

application. This includes industries ranging from aviation, to weather forecasting and even

civil traffic enforcement.

Since the radio waves used for radar are much lower frequency than the narrow

wavelength pulses used in LiDAR, radar can penetrate weather effects (rain/snow/fog/dust),

and is effective at longer distances. Unlike LiDAR, radar can also provide relative target

speed and is effective at ranging dirty vehicles, while LiDAR has problems getting a good

reflection return. LiDAR is also much more expensive than radar and has many more moving

parts. This is why most manufacturers base their adaptive cruise control on one or more

radar(s) possibly in conjunction with cameras for reliability.

Most Autonomous Vehicle radar uses 77 GHz in the W band (75 to 110 GHz / 4.0 to

2.7 mm wavelength). This is classified as millimeter radar and gives higher resolution than

radar packages in other lower-frequency bands. Additionally, as shown in Table 1.2, radar

has bandwidth requirements orders of magnitude lower than LiDAR.

1.3.3.4. Imagery

Imagery is the capture of visual data (attenuation of light waves) through mechanical

or electronic means. In my research I will use “image sensor” and “camera” interchangeably,

unless specifically mentioned, to mean the same thing (a visual information recorder). In
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reality one or more image sensors are merely parts of a camera, which also includes an image

signal processor, color processors/filters and other discrete signal processors which together

produce an image that is human consumable.

Image sensors themselves fall into two categories: either a “charge-coupled device”

(CCD) or a “complementary metal-oxide semiconductor” (CMOS ) sensor. Either sensor

is composed of a 2-D array of thousands/millions of miniature solar cells, each of which

transforms the photons received from one small portion of the image into electrons. Next,

the values are read from this array (accumulated charge) and packetized frame by frame and

line by line for reading. CCD and CMOS differ on both the manufacturing process and how

the values are collected, with CCD being more expensive and precise, while CMOS is cheaper

and has lower power-consumption. CMOS sensors are sometimes referred to as “active-pixel

sensors” since each single unit cell contains a photodetector and one or more transistors.

There are a number of ways to detect color with an image sensor, either using a filter

in front of the detectors or increasing the number of CCDs in the package. Most normal

cameras use RGGB (red-green-green-blue) Bayer-filter, which doubles-up on the green filter

to enhance luminance as it’s in the middle of the visible color spectrum. Many AV integrators

utilize special filters to tailor the specific camera to it’s application. For instance, an RCCC

filter (red-clear-clear-clear) removes three color filters, except for the red filter used in the

detection of red traffic lights and taillights. In this application detection of blue or green

is not important, just the increased monochrome sensitivity for use in line detection (lane

markings) and stereoscopic vision (object distance calculations).

At a hardware level, there are four main sensor package attributes that affect the

final image product.

• Pixel count (width by height, e.g. 1920x1080)

• Bit depth (number of bits per pixel, e.g. 12-bit)

• Frame rate (usually in frames per second as fps)

• Filter type (e.g. Bayer RGGB filter)

Additionally, most imagery sensors insert metadata at a hardware level, either in
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Figure 1.8. ArcGIS FMV [25] overlaying a UAV track (yellow spline) with
the viewport coordinates (yellow rectangle) and the video (child window on
left).

overlay or as extra rows above/below the visual array. For example The popular ON Semi-

conductor (formerly Aptina) AR0132 has a 1280x960 resolution CMOS, but adds four rows

of embedded stats and data to make each frame 1280x964.

The imagery category encompasses all the visual recording sensors involved with AVs.

This includes everything from CMOS sensors used for end user backup cameras, to color-

shifted long-range CCD sensors, to even ultraviolet or infrared sensors used for night vision

in some high-end luxury vehicles.

A specific subset of imagery that has applications in CAV is called full-motion video

(FMV ). FMV contains video that is either overlaid or embedded with other fused or derived

metadata, e.g. geospatial metadata consisting of GPS coordinates, current viewport/zoom,

and a directional heading. This is shown in Figure 1.8.

1.3.3.5. Convolutional Feature Maps

Convolutional Feature Maps are listed as a separate item because every manufacturer

will have “hand-engineered” features, specific to their ADAS platform needs. Deep feature

maps and even networks of convolutional feature maps are of particular importance for object

detection [186]. These features, once mapped to a specific spatial area, can be transferred

as vectors to another platform and translated to their coordinate origin. Since these feature

maps are much smaller byte-wise than raw sensor data, but do not contain inferred (and
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possibly untrustworthy) information, they may provide a good-balance between transferring

high-bandwidth sensor data and low-bandwidth fully-mapped 3D scenes.

1.3.3.6. Sonar

Sonar, as used in electronics, means having an ultrasonic emitter and and ultrasonic

receiver. There are also some sonar systems with a single emitter/receiver. However, they

all use ultrasonic sound waves in order to sense the distance to an object. This is achieved

through measuring the timing between the emission of the ultrasonic wave and the reception

of it, which is proportional to the distance to the object. The word sonar originally was an

acronym for sound navigation and ranging.

Some animals have evolved to use ultrasound for target ranging and navigation (echo-

location), and humans finally caught up to bats and dolphins in 1912 with a British Patent by

English meteorologist Lewis Fry Richardson. Ultrasound has several characteristics which

make it so useful and that have led to its use in many electronics applications. First,

it is inaudible to humans and therefore undetectable by the user, which is important for

parking sensors that may operate at 100 dB. Second, ultrasound waves can be produced with

high directivity, which is needed for multi-sensor applications. Finally, they have a lower

propagation speed than light, which allows measurement using low speed signal processing.

Currently, almost all vehicles manufacturers use ultrasound for their OEM parking

sensors, as opposed to electro-magnetic sensors. These ultrasonic sensors are found as the

small, ~15 mm wide, flat discs in front and rear bumpers. For parking applications most

manufacturers install eight sensors (four front and back), while for AV applications, 12

sensors are often used for 360° coverage. Modern automotive ultrasonic sensors, such as

those made by Murata, operate at > 58 kHz frequency, and provide detection and ranging

from 10 cm up to 5 m [102].

Like Radar, sonar produces a sparse matrix of ranging information, which can be com-

pressed easily but the information must first be GPS-tagged/fused so spatial-translation can

take place at the receiver. Additionally, with 12 or more sensors producing data, combined

with the fact that ultrasound is relatively short-range, other sensor data would commonly
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take priority for transmission between CAVs.

Table 1.2. Typical Vehicle Sensor Formats and Approximate Bandwidth.

Type Format Bandwidth (Mbs)

LiDAR Binary [sparse matrix] 1280 @ 20 Hz

Video 1280x960/12-bit color [various containers] 864 @ 60 fps

Feature Maps Binary [encoded vector] 9.4 @ 1 Hz

Sonar Various 0.63 @ 10 Hz

Radar Binary [sparse matrix] 0.63 @ 20 Hz

GPS/IMU Various 0.31 @ 10 Hz

1.3.4. Modern Privacy Concerns

Modern privacy revolves around what data is collected, who is collecting the data

and how it is being collected. According to Sheehan, there are four distinct groups of end-

users [196]:

• unconcerned: exhibit minimal concern with privacy online

• circumspect: have minimal concern with privacy online overall, although some

situations may cause them to have higher levels of concern.

• wary: have a moderate level of concern with their privacy in many situations, and

several situation s cause them to experience higher than average concern with

privacy.

• alarmed: are highly concerned about their privacy online.

The study focused on 1st party data collection (and spam email). Defined, here are

the types of data by origin to the business consumer:

• 1st party: directly collected data from customers

• 2nd party: purchased from the data owner

• 3rd party: purchased from non-original owner

Sheehan’s study was conducted in 1999, a time before constant geotracking of users

and massive 3rd party data management services like Lotame existed. Back then, a consumer
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only had to be concerned with the 1st party implications of their choices. Consumer’s role in

online privacy has deteriorated so far today, that even a citizen’s own government is acting

as a non-consenting privacy-broker gift-giving data to 2nd and 3rd parties [235].

Broadly, there exists five kinds of data that is collected from consumers, ordered by

veracity:

• Passively collected data: geolocation tracking, Google Analytics, sensor data, etc.

• Breadcrumbs: behaviors, actions or interests demonstrated across the product

(website, application, etc.)

• Data supplied by the customer through a customer relationship management

(CRM) or other similar system

• Directly-sourced: surveys, customer feedback, etc.

• Inferred data: Social media (linked through a key, e.g. through the CRM email

address), purchased 3rd party data, etc.
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CHAPTER 2

PROBLEMS AND CHALLENGES

2.1. Challenge 1: Extensibility and Compatibility

The first challenge in creating a flexible computing architecture for CAVs is one of

abstraction and standards. In other words, how much abstraction is needed for different

manufacturers’ applications to work together. But more layering of abstractions create real-

world consequences including increased latency and leaking interfaces [203].

As given in Beautiful Code [162], David Wheeler’s famous aphorism “all problems in

computer science can be solved by another level of indirection” has an important corollary:

“But that usually will create another problem”. This sometimes repeated as the “funda-

mental theorem of software engineering”.

2.1.1. Subproblem 1-1: Data Format/Protocol

One of the main issues with creating a standard or protocol to encapsulate data,

is how to extend the standard with new features/attributes while still providing service to

older clients. This is normally referred to as “backward” and “forward” compatibility. This

applies to both the formats used to model data (down to the byte level) and to the services

(APIs) that interfaces those models.

Google provides some guidance on this through their API Design guidelines [88].

Backwards-compatible (non-breaking) changes include:

• Adding an API interface to an API service definition

• Adding a method to an API interface

• Adding an HTTP binding to a method

• Adding a field to a request message

• Adding a field to a response message

• Adding a value to an enum

• Adding an output-only resource field
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Backwards-incompatible (breaking) changes include:

• Removing/renaming a service, field, method or enum

• Changing an HTTP binding

• Changing the type of a field

• Changing a resource name format

• Changing visible behavior of existing requests

• Changing the URL format in the HTTP definition

• Adding a read/write field to a resource message

Forward-compatibility is accomplished through loose coupling of data models and

processes, i.e. to maintain forward-compatibility, a new field in a model should not cause a

older version process to crash. This is different from extensibility, which refers to how easily

new processes can be created without changes to other processes or the data model.

2.1.2. Subproblem 1-2: 1st Through 3rd-Party Integration

With so many different OEMs working together (and in some regards against each

other), integration is understandable brittle between applications deployed on different op-

erating systems, middleware and hardware. The application brittleness arises from tight

coupling down the stack. In other words, relying upon a specific feature (in an operating

system, middleware, or library) has detrimental effects when those layers are swapped out

for different ones.

While subproblem 1 can be thought of a data problem, subproblem 2 can be thought

of an architecture problem.

2.2. Challenge 2: Data Sharing

The second challenge is directed at the ramifications of sharing data between CAVs.

The two aspects I will focus on are end-user privacy, and the actual trust between vehicles.

Managing privacy in an AV is especially important since there’s not an “opt-out” toggle

built into the platform like there is with web browsers. The worst that would happen by

disabling cookies or JavaScript on a modern website would be reduced functionality, while
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this would cripple the capabilities of the AV. The end result could be a fatal due to poor

inference from faulty/incomplete data.

The second ramification of data sharing is trust. Since sharing of data between

CAVs will most likely be a one-time interaction, the fundamental question becomes with

no prior communication, how can each vehicle trust the data originating outside of itself?

Data arriving from the other vehicle could be produced by a different sensors, software and

assembled by a different OEM. And that just includes rational aberrations, not including

exploitative or illegal participation. Only considering the two vehicles involved, there is no

way to initially know that this data has not been unintentionally malformed or maliciously

attacked. A priori knowledge may increase trust, but ultimately a posteriori knowledge

gained during the vehicle interaction could determine the basis of trust and reputation.

2.2.1. Subproblem 2-1: Privacy (Data Ownership and Retention)

Modern data privacy has become such a normalized topic, the issue has made it on

to U.S. Presidential candidates platforms. For other countries, data privacy has been a

politicized subject for several years, followed by actual legislation. The European Union’s

GDPR of 2018 is one such regulation that has had wide ramifications for the data industry.

Two specific GDPR principles had new significance for the legal, academic and business

world: the reintroduced concept of consent along with its revocation as well as the right to

be forgotten (RtbF ) [170]. The GDPR both defines and separates as distinct rights, privacy

and data protection. Privacy generally refers to the protection of an individual’s “personal

space,” while data protection refers to limitations or conditions on the processing of data

relating to an identifiable individual. In Article 4 of the GDPR [53], “personal data” is

defined as

any information relating to an identified or identifiable natural person

(“data subject”); an identifiable natural person is one who can be iden-

tified, directly or indirectly, in particular by reference to an identifier such

as a name, an identification number, location data, an online identifier or to

one or more factors specific to the physical, physiological, genetic, mental,
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economic, cultural or social identity of that natural person

As the GDPR is a regulation and not a directive, it identifies specific penalties for

mishandling of an individual’s personal data. For severe violations, this is e20 million or up

to 4% of the annual worldwide turnover [revenue] of the preceding financial year, whichever

is higher. As of December 2019, the largest fine levied has been e204 million against British

Airways.

With the huge number of vehicles in circulation, mishandling of “personal data” by

an OEM could result in disastrous financial consequences. Using Ford Motor Company as

an example, they made $3.7 billion profit on $160.3 billion revenue in 2018[213]. During

that year they sold 1,014,037 vehicles in Europe. If they experienced a data violation on all

1,014,037 2018 cars sold in Europe (categorically labeled as a severe “personal data” breach),

the penalty could be up to $6.4 billion. Since their cash reserves in 2018 amounted to $33.9

billion, this fine would erase their global profit and decimate their cash holdings.

2.2.2. Subproblem 2-2: Trustworthiness of Non-Self Platforms

In order to utilize incoming data from other CAVs or edge nodes, trust will have to be

established. This is necessary to avoid two issues. First, unintentional bad data from broken

sensors or faulted software. Secondly, intentional bad data from bad actors or compromised

systems. In the last 25 years, T rust and Reputation Systems (TRSs) have become a mature

research topic in the field of computational trust systems. Early work in the 1990’s was

merely based around reputation systems, but now there are entire conferences dedicated to

trust computing, such as The International Federation for Information Processing Interna-

tional Conference on Trust Management (IFIPTM). Commercial implementations of TRSs

are now part of mainstream client-server technology which has resulted in books on how to

build TRSs in real world applications [66]. However, the literature specifically focusing on

the robustness of TRSs is much more limited and still in an early stage. It should be noted

that publications on TRSs usually analyze robustness to a certain extent, but typically only

consider a very limited set of attacks.

Recent work has produced a taxonomy and analysis frame-work for TRSs [106]. They
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analyzed 24 of the most prominent TRSs based on 25 different attributes. Out of the 24

TRSs, six were analyzed further because their characteristics were representative of other

TRSs. In other work, general challenges for the building robustness into TRSs described,

and specific categorizing of attacks [116]. These typical attacks against TRSs are given below

in Table 2.1.

Table 2.1. Various strategies for attacking trust and reputation systems,
adapted from [116].

Attack type Short description

Playbooks Planned sequence of actions in order to manipulate and deceive

Unfair Ratings Ratings that do not correctly reflect the actual experience

Review Spam False reviews, often in conjunction with unfair, i.e. opinion spam

Discrimination Deliberately providing different quality services to specific relying parties

Collusion Coordinated actions among participants in order to manipulate and deceive

Proliferation Multiple offerings of the same service in order to obscure competing services

Reputation Lag Abuse multiple buyers before the TRS reacts to their negative feedbacks

Re-entry Take new identity, in order to eliminate bad reputation of old identity

Value Imbalance Exploit reputation from many low value services, for one high value fraud

The Sybil Attack Take on multiple identities in order to generate rating and review spam
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CHAPTER 3

APPROACH

3.1. Subproblem 1-1: Data Format/Protocol

They are quite a number of data formats and protocols in use in industry. Everything

from Simple Object Access Protocol (SOAP) XML with Attachments to human-readable

JavaScript Object Notation (JSON) over HTTP, and proprietary language binary formats

(e.g. .NET BinaryFormatter). As computing has grown more distributed, both physically

and logically, the protocols used for inter-machine communication have evolved to become

both simpler and more extensible than the preceding protocols (SOAP, XML-RPC, CORBA,

etc.). Abstract Syntax Notation One (ASN.1) and Protocol Buffers are two such interface

description languages used to define data structures for cross-platform use.

In order to model all the data needed in a CAV, a registry of structures can be im-

plemented to both introduce standardization and deduplication. Google’s protocol buffers

(protobuf) provide a way to enable serialization and deserialization of structured data be-

tween disparate services. Protocol buffers are a flexible, efficient, automated mechanism for

serializing structured data, like XML, but smaller, faster, and simpler. How the data is

structured is defined once, then special generated source code can easily write and read this

structured data to and from a variety of data streams and using a variety of languages. This

formal data definition is self-describing and can even be updated without breaking deployed

programs that are compiled against the “old” format. An example of a Protobuf .proto

definition file is shown in Listing 3.1 below.

Protobufs have some advantages over both text-based formats (JSON, XML) and

even binary formats like ASN.1 [15]:

(1) Schemas Are Awesome: By encoding the semantics of the business objects once in

proto format, it helps “ensure that the signal doesn’t get lost between applications,

and that the boundaries you create enforce your business rules”.

(2) Backward Compatibility for Free: JSON doesn’t use number fields whereas Protocol
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Buffers does. This obviates the need for version checks and avoids the need for “ugly

code”, making backward compatibility less of a challenge.

(3) Less Boilerplate Code: Protocol Buffers allows the proto generated classes evolve

along with the schema whereas JSON endpoints in HTTP based services tend to rely

on hand-written boilerplate code to handle the encoding and decoding of objects to

and from JSON.

(4) Validations and Extensibility: The keywords in Protocol Buffers are powerful, al-

lowing you to encode the shape of your data structure and how the classes will work

in each language.

(5) Easy Language Interoperability: The variety of languages that are used to imple-

ment Protocol Buffers makes “interoperability between polyglot applications in your

architecture that much simpler”.

Listing 3.1. Example Protocol Buffers message declaration person.proto

1 message Person {
2 required string name = 1;
3 required int32 id = 2;
4 optional string email = 3;
5

6 enum TelType {
7 MOBILE = 0;
8 HOME = 1;
9 WORK = 2;

10 }
11

12 message TelNumber {
13 required string number = 1;
14 optional TelType type = 2 [default = HOME];
15 }
16

17 repeated TelNumber phone = 4;
18 }

Official Protobuf bindings are available for Java, JavaScript, PHP, Python 2/3, Ob-

jective-C, C++, Dart, Go, Ruby and C#, with an example of a C++ program shown in

Listing 3.2. With Proto3 (protobuf version 3), there is a canonical mapping between the

proto message and a JSON-encoded value. This makes it easier to share data between sys-
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tems and bridges the gap between legacy systems and modern microservices. Additionally,

the protobuf specification includes supports remote procedure calls (RPC) through gRPC (or

other RPC implementations). gRPC takes advantage of HTTP/2 for transport, so it avoids

the overhead handshaking of JSON/XML over HTTP and may other network improvements,

which are detailed in depth in Section 5.2.1.

Listing 3.2. Example Protocol Buffers C++

1 // "Writing"
2 // Create new Person
3 Person person;
4

5 // Populate Person
6 person.set_name("John Doe");
7 person.set_id(1234);
8 person.set_email("jdoe@example.com");
9

10 // Serialize Person to stream
11 fstream output("file", ios::out | ios:: binary);
12 person.SerializeToOstream (& output);
13

14 // "Reading"
15 // Read message from steam
16 fstream input("file", ios::in | ios:: binary);
17

18 // Deserialize Person
19 Person person;
20 person.ParseFromIstream (& input);
21

22 // Read back Person attributes and print
23 cout << "Name: " << person.name() << endl;
24 cout << "E-mail: " << person.email() << endl;

Protobufs do have some drawbacks over equivalent JSON or XML formats:

• Smaller community: Probably the root cause of the first disadvantage. On Stack

Overflow, for example, you will find about 5,000 questions tagged with protobuf.

While there are more than 275,000 questions tagged JSON and 185,000 tagged XML.

• Resources: There isn’t much detailed documentation, or technical writing online

about using and developing with protobuf.

• Support: Google does not provide support for other programming languages like

Swift, R, Scala and etc. There are third-party libraries, like Swift protobuf provided

by Apple.
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• Non-human readability: JSON, as exchanged on text format and with simple struc-

ture, is easy to be read and analyzed by humans. This is not the case with a binary

format, and is makes debugging more in-depth.

For circumstances where a schema-less format is needed or encoding a text-based

document is required, MessagePack (msgpack) is a good substitute for JSON. MessagePack

is an efficient binary serialization format and is supported by over 50 programming languages

and environments. Small integers are encoded into a single byte, and typical short strings

require only one extra byte in addition to the strings themselves. Many of the language

implementations also include RPC client/server codecs. An example of a Go program using

msgpack is given in Listing 3.3 below.

Services over TCP/HTTP endpoints come in many shapes and sizes. How the service

is exposed should flow out of the problem that the provider is trying to solve. Normally in

distributed systems, this is either an RPC or a REpresentational S tate T ransfer (REST)

API. RPC calls are directly tied to, and usually named as, functions on the server. RPC is

also normally stateful, while REST is stateless [69], i.e. sessions are not persisted between

connections. RPC has advantages as it can be encapsulated for passing through message

queues or other distributed buses. Either style can be used over HTTP, and can serve

multiple formats (JSON, XML, etc.). Servers can also provide both an RPC and a REST

API, for reasons ranging from maintaining backwards-compatibility, supporting languages or

clients not well supported by RPC, to simply maintaining the aesthetics and tooling involved

with a RESTful architecture. An example of this is shown in Figure 3.1 below.

Other considerations for the “data format/protocol” subproblem include service dis-

covery and content-negotiation. These concepts are normally a part of the protocol used.

Additionally there are application-level considerations such sampling rate or image quality.

And example of this negotiation between a CAV and an edge node is shown in Figure 3.2.

3.2. Subproblem 1-2: 1st Through 3rd-Party Integration

In order to facilitate all the differences in architectures, languages, and frameworks, a

sensible solution from industry is presented: virtualization. Namely containerization through
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Listing 3.3. Example MessagePack Go program with RPC client/server

1 // create and use decoder/encoder
2 var (
3 v interface {} // to decode/encode into
4 r io.Reader
5 w io.Writer
6 b []byte
7 mh codec.MsgpackHandle
8 )
9

10 dec = codec.NewDecoder(r, &mh)
11 dec = codec.NewDecoderBytes(b, &mh)
12 err = dec.Decode (&v)
13

14 enc = codec.NewEncoder(w, &mh)
15 enc = codec.NewEncoderBytes (&b, &mh)
16 err = enc.Encode(v)
17

18 // RPC Server
19 go func() {
20 for {
21 conn , err := listener.Accept ()
22 rpc.ServeCodec(
23 codec.GoRpc.ServerCodec(conn , mh),
24 )
25 }
26 }()
27

28 //RPC Communication (client side)
29 conn , err = net.Dial("tcp", "localhost:5555")
30 client := rpc.NewClientWithCodec(
31 codec.GoRpc.ClientCodec(conn , mh),
32 )

the various Linux container runtimes and storage drivers. Containers are a solution to

the problem of how to get applications to run reliably when moved from one computing

environment to another. This could be from a developer’s laptop to a test environment,

from a local staging environment into a cloud production platform, and or from an edge

node to a CAV.

Containers in Linux refer to lightweight, operating system-level virtualization using

the Linux Containers project (LXC). LXC is an extension of chroot composed of control

groups (cgroups), and kernel namespacing, while Docker containers are composed of LXC

(now a pure Go component) and a storage layer (normally a union file system). Although

Docker has popularized containers in Linux, operating system level virtualization existed
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Figure 3.1. gRPC-gateway : a plugin of the Google protocol buffers compiler
protoc. It reads protobuf service definitions and generates a reverse-proxy
server which translates a RESTful HTTP API into gRPC.
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Figure 3.2. Communication with content negotiation between a CAV ’A’
and a roadside edge node ’Z’. Both App1 and App2 on the CAV are using
outdated container layers (v1.0.0), but the Importer and Exporter contain-
ers on the edge node are semantically within the same major version as the
Aggregator and Exporter on ’Z’ (v1), so backward/forward-compatibility is
guaranteed.

before in several forms: direct LXC (Linux), jails (FreeBSD), Workload Partitions (AIX)

and Solaris Containers (Sun) [184].
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With LXC, processes are isolated, but run straight on the host. This means that CPU

performance is almost identical to native performance, while memory performance is a few

% slower due to system accounting. Network performance also incurs a small overhead as

more encapsulation/deencapsulation has to take place in software. These namespaces have

been expanded to provide namespacing for several items:

• Process Identifier (PID) Namespaces: Ensures that processes within one namespace

are not aware of process in other namespaces.

• Network Namespaces: Isolation of the network interface controller, iptables, routing

tables, and other lower level networking tools.

• Mount Namespaces: Filesystems are mounted, so that the file system scope of a

namespace is limited to only the directories mounted.

• User Namespaces: Limits users within a namespace to only that namespace and

avoids user ID conflicts across namespaces.

In 2006, engineers at Google invented the Linux “control groups”, abbreviated as

cgroups. This is a feature of the Linux kernel that isolates and controls the resource usage

for user processes. These processes can be put into namespaces, essentially collections of

processes that share the same resource limitations. A computer can have multiple names-

paces, each with the resource properties enforced by the kernel. The resource allocation per

namespace can be managed in order to limit the amount of the overall CPU, RAM, etc that

a set of processes can use.

The third piece to Docker’s containerization is its ’union file system’. A container is

made up of layers of images, binaries packed together into a single package. The base image

contains the operating system of the container, which can be different from the operating

system of the host. The operating system of the container is in the form an image. This is

not the full operating system as exists on the host, with the difference being that the image

is just the file system and binaries for the operating system while the full operating system

includes the file system, binaries, and the kernel. This is shown in Figure 3.3. On top of the

base image are multiple images that each build a portion of the container.
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Figure 3.3. Operating system, virtualization, and library differences be-
tween a Type 1 hypervisor, Type 2 hypervisor, and lightweight containers [5].

While containerization benefits development, testing and deployment, there are sev-

eral features that contributes to system interoperability. First, each container layer is another

image that can both be versioned and de-duplicated on the host system. For example, if two

applications (App1, App2 ) need to use a Python computer vision library, that library can be

pushed into an layer and shared among all containerized applications with a single on-disk

image. When App1 needs to update that library to take advantage of new features, only it’s

container needs to pull down a new layer, and App2 can continue to use the ’older’ layer.

These images can be versioned, cryptographically signed and pushed to a public or private

image registry. Secondly, the Open Container Initiative (OCI) is a Linux Foundation project

that designs standards governing container-level virtualization. There are three major stan-

dards to ensure interoperability of container technologies: the OCI Image, Distribution, and

Runtime specifications. Lastly, since there are different container runtimes, each manufac-

turer can choose to deploy the runtime most suitable for their platform/environment. These

could be well-known open-source projects (CoreOS’ rkt, Docker, CRI-O, podman/buildah,

Google’s lmctfy), or closed-source proprietary OCI-conformant runtime. Additionally, by

separating every application/service to be containerized, infrastructure orchestration is log-

ically separated from application deployment. This frees each manufacturer from using the

same deployment orchestration and enables technologies like Kubernetes (k8s) or RancherOS

for deployment of backend services, or even k3s for edge nodes.
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3.3. Subproblem 2-1: Privacy (Data Ownership and Retention)

In order to ensure both privacy of vehicle data and legal requirements are satisfied, I

propose categorizing the type of privacy being described. For simplicity and clarity I have

defined three levels of privacy, following in order of increasing data leakage:

(1) Private: restricted to the producer/consumer (1st party)

(2) Internal: restricted internal to the CAV (2nd party)

(3) Shareable: external to the CAV (3rd party)

By clearly defining categories for privacy, end-users can easily decide their own com-

fort level with their data privacy. This gives them the ability to “opt-out” of specific data

sharing, while retaining sharing needed for common CAV tasks.

To ensure that the end-user’s privacy levels are respected, I will experiment with

an onboard proxy server that is positioned between data producers, consumers, and the

network stack on the CAV. Another onboard server will serve as a privacy registry, tagging

data with the three previously defined privacy categories. This privacy registry could even

scrubbing user data at the drive resource level (i.e. GPS scrambling data protected structs).

An example of this architecture is shown in Figure 3.4. This work will be done with guidance

from the GDPR and [219].

3.4. Subproblem 2-2: Trustworthiness of Non-Self Platforms

They are many solutions to trust and reputation, from blanket authoritative hierar-

chies to learned trust between unique nodes. Authoritative hierarchies include systems such

as government or manufacturers I dentity Access M anagement (IAM), while learned trust

could include a trustbank of compared sensor data. Each system is trying to solve two dis-

tinct issues, bad/unreliable sensors (unintentional), and bad/unreliable actors (intentional).

A hybrid approach to this problem seems most likely to be successful. A govern-

ment agency could act as a root authority, and cryptographically sign identities assigned to

each manufacturer. The manufacturers in turn could as an intermediate authority and sign

identities to specific platforms. Once the platforms are “in the wild”, they can create trust
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Figure 3.4. Architecture and data flow of a privacy proxy implemented in
a Connected Autonomous Vehicle. The actual privacy proxy is shown in red,
with the privacy registry shown in light red. The data flow shows an example
application App2 using the privacy registry to tag datum, and then the privacy
proxy uses the registry to either block or allow the datum to private (solid
green), internal (solid blue), or external consumers (solid red).

between each other through a heuristic reputation value based on various attributes, e.g.

same manufacturer, same model, same sensor data, etc.

This trust can be implemented in a similar fashion to the ’privacy proxy’ above,

with the additional component of the TRS engine as a feedback loop for the trust system.

Other concerns include ’transitive trust’, also known as ’friend of a friend’ (FOAF), and

implementation of trust revocation.

3.5. Conclusion

My work will be limited to solving the challenge of extensibility and compatibility, by

focusing on efficient data communication between CAV services and modern application or-

chestration. Benchmarking of example protocols with deployment onto embedded hardware
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will be shown in the following chapters, along with comparisons against competing standards

and methodologies. Previous work in benchmarking of neural nets on embedded platforms

has been performed on the Raspberry Pi and specialized low-power vision processing units.
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CHAPTER 4

DATA FORMAT

The formatting of data so it can be exchanged easily and efficiently is both a technical

problem and a cultural problem. Namely, just because a format is the most efficient in a

certain metric, e.g. packed bytes, does not mean that developers will readily use it or

integrate it within their architecture. This is evident with the proliferation of standards

among all aspects of computer science and computer engineering. So my goal is not to

create another “universal standard” based on specific technical merits which will change

over time, but rather push forward one specific standard based on its immutable cultural

merits.

Google’s language-neutral data interchange format, Protocol Buffers, meet both the

technical merits and the ease of exchange and development. This format standard was

designed inside Google around 2001, and had evolved over the years to eventually become

open-sourced in 2008. Named protocol buffers, the original meaning of a buffered C++

class has long since disappeared, while the name stuck internally at Google. Today a ‘protocol

message‘ refers to a message in the abstract sense, while ‘protocol buffer‘ refers to the

serialized copy of that message, and ‘protocol message object‘ for the in-memory object

representation of the parsed message. Culturally, Google employees embraced protobufs for

green-field (new development) work, and then slowly over the next decade as applications and

systems were redesigned and rearchitected, protobufs were integrated into “legacy” systems.

At this point the decision to open-source protobufs was made because many projects Google

wanted to open-source already contained protobufs. Soon thereafter it was re-written from

scratch as version 2 (proto2). After some industry exposure and lessons learned, version 3

was released (proto3) in 2016.

Currently Google provides code generators for many languages, including targeting

embedded/edge systems such as C, C++, Golang, and JavaNano. As the appeal of protobufs

is gaining traction, third-party code generators have been created that target such diverse
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languages as Ada, Haskell, R, Rust, and Julia.

4.1. Details

Protocol Buffers are composed of a Interface Definition Language (IDL), a binary

scheme to encode/decode formats described in the IDL, combined with a code generator/-

compiler (protoc). The IDL specification is openly documented [89] and is defined using

Extended Backus-Naur Form. Proto messages are composed of fields, which can be one of

three types: normal, oneof, or map. Each field consists of a wire type, name and a field

number. There may be additional options appended. Wire types can either scalar values

(integer, float, string, etc.) or composite types. Arrays are represented by the repeated

keyword in front of a field. The field number is required and must be unique as it is the tag

the field uses for binary encoding, and cannot be reused within the encoding. Numbers 1-15

only require one byte, so they should be used for commonly used or repeated fields, while

higher number fields should be used for less-common values. This optimization is useful

because if a field isn’t set in a message, a default value is used instead and not serialized and

set over the network.

In order to use protoc3, you must have two things: a well-formatted proto file, and

a proto compiler. As stated earlier, the compilers are available for almost every popular

language. A toy example of a proto message can be found in Listing 3.1 above. Using

the protoc compiler to generate Go code for that proto file is just the command ‘protoc

--go out=$APP DIR person.proto‘. This will generate person.pb.go in the given app

directory, with a Go struct with defined pointer fields, along with getter functions for each

field. These getters will return the previously reference default value if the field is blank.

Oddly enough, these getters functions are prefixed with Get, in direct opposition to the

Golang style guide, “neither idiomatic nor necessary to put Get into the getter’s name.”

The reason for this is to wrap nil values with defaults while still exposing the original,

exported field. What files are generated by the protoc compiler depends on the target

language, .e.g.:
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• C++: a header file (.h) and an implementation file (.cc) from each .proto, with a

class for each message type described in your file.

• Java: a .java file with a class for each message type, as well as special Builder

classes for creating message class instances.

• Python: a module with a static descriptor of each message type in the .proto file,

which is then used with a metaclass to create the necessary Python data access class

at runtime.

• Go: a .pb.go file with a type for each message type in your file.

Once the .pb..go file is generated, it can be used in the main application as an ob-

ject/struct, composed of reading, and writing. Writing a message is as simple as initializing

a struct from the generated code, such as person := &pb.Person{name: "John Doe"},

and then serialization that person struct with data := proto.Marshal(person). data

can then be saved to a file or sent across the network to another service. Reading a PB

message is almost the same, just in reverse. First data is received from a source, a file for in-

stance: data := ioutil.ReadFile(filename). Then a person struct is initialized, person

:= &pb.Person{}, and the data is deserialized: proto.Unmarshal(data, person). Error

checking was eliminated from these reader/writer examples for clarity. The usage of pro-

tobufs within applications is similar for all supported languages. At a higher level, the

developer workflow for using protobufs in an application is generically shown in Figure 4.1

below.

The encoding of a proto message produces a binary message, minimized for transmis-

sion across networks, and suitable for low-power consumers (no automatic compression/de-

compression). For example, using the populated message from Listing 3.2, the message size

would be 31 bytes. The exact byte for byte encoding is shown in Figure 4.2. The person

record is just a concatenation of its fields. Within the message, each field starts with a byte

indicating it’s tag number and what kind of field it is. The numbers 1, 2, and 3 correspond

to the same numbers within the proto definition. If the wire type is a string, the next bytes

give the length of the string, and then the UTF-8 encoding of the string. If the field is an
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Figure 4.1. Developer workflow with protobufs: 1. Proto file composed;
2. Proto file published; 3. repo pulled; 4. PB file(s) generated with protoc

compiler; 5. build the application and generate the binary/artifacts; optionally
repeat step 2-5 for updates to the .proto file.

integer, then a a variable-length encoding of the number is next.

Variable integers, or varints, are based on the idea that most numbers are not

uniformly distributed. For example, the id field within an organization would start with 1,

and values such as invoice numbers are assigned sequentially. As smaller numbers are more

common, the encoding gives preference to these smaller numbers. Two common ways of

encoding varints are length prefixed, and continuation bits. Protobuf’s use continuation

bits using a simple technique: the top bit of each byte is used to determine if the number

continues to the next byte, and the least significant group comes first. Using the example

value of 1234, converting to binary becomes 10011010010. Splitting them into 7-bit chunks

gives 1001 and 1010010. Moving them to least significant group first and padding to 7 bits

gives 1010010 and 0001001. Since the first byte continues to the second byte, we add a top
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0a 08 4a 6f 68 6e 20 44 6f 65

10 d2 09

1a 10 6a 6f 65 40 65 78 61 6d 70 6c 65 2e 63 6f 6d64

 J  o  h  n     D  o  e 

 j  d  o  e  @  e  x  a  m  p  l  e  .  c  o  m  

length 8

length 16

1234
0001001 1010010

00001 010

00010 000

00011 010

type 2
(string)

field tag = 2

type 2
(string)

Total: 31 bytes

000100110100101 0

field tag = 3

type 0
(varint)

field tag = 1

Figure 4.2. Illustration of example protobuf message composed of three
fields: hexadecimal wire values shown in black, with decoded values and field
descriptions in green.

bit to the first byte as 1, and since there are no more bytes after the second, we add a top

bit of 0. This becomes two full bytes of 11010010 00001001, encoding into hex as d2 09.

This encoding is very efficient for small numbers since they will take up less space in the

message and consequently less space across the network, but still allows for encoding of any

sized integer. Some encoding/decoding computation has to take place forvarints beyond

127, but the trade off is high efficiency for a majority of message transmissions. In the real

world, decodings happen through prefix searches in lookup tables, negating many of the

performance drawbacks. There is no need to pad encode to a byte boundary since varints

are byte aligned and a 64-bit number can be decoded in at most 10 bytes. Additionally,

because of the self-delimiting nature of varints, they can be concatenated together into

arrays within the message without the need for other bytes in between. Non-varint numbers,

composed of wire types 1 (double/float) and 5 (double/fixed32), are simply a 64/32-bit

lump of data, stored in little-endian order.

UTF-8 encoding uses prefixed length encoding, with the length encoded in unary. The

most significant group is first, in contrast to varints. UTF-8 is compatible with existing

ASCII character encodings. Since the leading number of bits indicate how many extra bytes

follow, decoding of UTF-8 can be quicker than continuation formatting. UTF-8 values are

also more error tolerant due to the amount of “dead” bits within the encoding that can be

mangled and the characters can still be decoded. Since the most significant group is first,

sorting is also quicker, as values that differ greatly can immediately be shuffled.
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4.2. Benefits

The simple workflow inherent in the design of protobufs is the real benefit. This

publish/compile/push workflow allows developers from different teams, and even different

companies to coordinate on shared definitions of data formats. With automated workflows

using modern CI/CD tools, when a change is detected in a published protobuf, webhooks

can be used to pull down those changes, compile the new generated code, and immediately

run unit and integration tests against it. For many teams, this would be a simple, one-

time change to their continuous integration/continuous delivery (or deployment) pipeline.

As more abstraction is is used in the team’s application architecture, having an “open”

data format is an immense cultural benefit. By using a self-describing standard, business

value can be created quicker and delivered to the customer, and since this format can be

updated at any time, it couples well with the modern agile delivery method of “iteration

over milestones”.

Technically, protobufs has three main merits: wide language support, actual serializa-

tion size on the wire, and forward/backwards compatibility. By having multiple languages

supported by the protobuf compiler, development can take place in whatever works best for

the application architecture. This is in contrast to some 3rd party libraries that either force

developers into a certain stack to interface with their APIs (libraries), or worse, cause the

developers to reverse engineer the data structures so they can pack their own bytes.

4.3. Concerns

There are both technical and non-technical concerns with protobufs. Much like any

other open-source software, there is a concern of ownership over the software and how to

maintain the hosting. “Closing” of the software repository is a valid concern that has affected

numerous real-world application deployments. This single point of failure also exists for

hosted proto files. To mitigate risk, development teams normally clone down the repository

from the hosting site and mark them as ‘vendored’.

Another issue that arise from openly-hosting proto files is the risk of governance

fracturing. If for instance Toyota disagreed with the format of a message that the SAE
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standardized, they could host their own proto files, forcing integrators to “choose” between

competing, incompatible encodings. Legal enforcement, either through contracts or body

membership would discourage this behavior, although there is still risk of competing stan-

dards within organizations.

4.4. Comparisons

In the following sections I will briefly describe competing encoding standards, and

compare them against protobufs.

4.4.1. ASN.1

Abstract Syntax Notation One (ASN.1 ), has its roots in the joint 1984 standard

(CCITT X.409:1984) developed by the International Telecommunications Union Telecom-

munication Standardization Sector (ITU-T ) and International Organization for Standard-

ization (ISO) with International Electrotechnical Commission (IEC). Since 1984, it has been

moved to it’s own standard, and been revised several times, with the latest being in 2015,

specifically defined in ISO/IEC 8824 and the X.680 series of ITU-T Recommendations.

ASN.1 defines how data structures should be assembled, so they can be serialized and

deserialized across various languages and platforms [61]. Much like protobufs, data schemas

(ASN.1 modules) are compiled into code libraries (normally into codecs) using a separate

ASN.1 compiler. Large numbers of protocols are backed by ASN.1, from a precursor to

email, to modern cryptography standards.

ASN.1 uses types, identifiers, and constraints to define interfaces, which are organized

in modules. Each type (such as People) in ASN.1 must begin with an uppercase letter.

Items that are components of a message (such as name, id, email and telNumbers) are

called identifiers and must begin with a lowercase letter. The limitations that are defined on

items are called constraints and can even be combined using union and intersection logical

operators. These constraints can either be explicit individual allowed values, specific value

ranges, or restrictions on the length of the value. In ASN.1, all definitions are placed inside

of a module which starts with the BEGIN keyword and closed with the END keyword. Listing
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3.1 below shows an equivalent ‘person’ message using the types, identifiers and constraints

of ASN.1 organized into a module named People.

Listing 4.1. Example ASN.1 message declaration person.asn

1 People DEFINITIONS AUTOMATIC TAGS ::=
2 BEGIN
3 Person ::= SEQUENCE {
4 name PrintableString ,
5 id INTEGER (-2147483648..2 147483647),
6 email UTF8String OPTIONAL ,
7

8 telNumbers ListOfTelNumbers
9 }

10

11 ListOfTelNumbers ::= SEQUENCE (SIZE (1..4 )) OF TelNumber
12

13 TelNumber ::= SEQUENCE {
14 telType ENUMERATED {mobile(0),home(1),work(2)} DEFAULT home ,
15 number NumericString (SIZE (10))
16 }
17 END

A key difference with ASN.1 is that it offers several different human-readable or

binary-only encodings (notes in italics):

• Basic Encoding Rules (BER) binary [179]

• Distinguished Encoding Rules (DER) binary [179]

• Canonical Encoding Rules (CER) binary [179]

• Basic Packed Encoding Rules (PER) aligned/unaligned, binary [180]

• Canonical Packed Encoding Rules (CPER) aligned/unaligned, binary [180]

• Basic XML Encoding Rules (XER) human[181]

• Canonical XML Encoding Rules (CXER) human[181]

• Extended XML Encoding Rules (EXER) human[181]

• Octet Encoding Rules (OER) binary [182]

• Canonical Octet Encoding Rules (OER) binary [182]

• JSON Encoding Rules (JER) human[183]

• Generic String Encoding Rules (GSER) human[133]

• BACNet Encoding Rules binary [155]
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• Signalling Specific Encoding Rules (SER) binary [36]

Many more encodings have been proposed but were abandoned due to lack of support

or incompleteness. Additionally, if none of the existing encoding rules are suitable for a given

application, the Encoding Control Notation (ECN) of ASN.1 provides a way for a program-

mer to define their own customized encoding rules. With regards to remote procedure calls,

ASN.1 is like protobufs whereas they are not tied to a single RPC language/stack, and can

be used by different library implementations.

While ASN.1 has been used almost exclusively within the telecom industry (e.g.

SS7, DSRC, GSM, 3G), there is heavy usage in computer networking (e.g. LDAP, Microsoft

RDP, SNMP) and cryptography (e.g. PKCS, Kerberos). Despite being used in almost every

computer communication in one form or another, ASN.1 is surprisingly still obscure after

two decades of use. This is due to a number of factors, namely:

(1) Documentation/specifications are not freely available from ITU-T/ISO

(2) The wide-variety of encoding rules makes efficient encoding for composite types

non-trivial

(3) The complexity of the specification/kitchen-sink syndrome

These are not new issues, and even a 20-year-old IETF draft references some of these

problems [249]. The lack of word alignment means poor performance, and buggy ASN.1

parsers produced security issues that many have not forgotten. While ASN.1 has been

embraced by many fields within computer science/engineering, simpler is usually better, and

the marginal difference in wire size does not make up for its shortcomings, especially for

intra-node communication.

4.4.2. XML

The Extensible Markup Language was created by the World Wide Web Consortium

(W3C) in a 1998 Recommendation [246]. Like HTML, XML is based on SGML (Standard

Generalized Markup Language), and was really designed to be a simpler markup language,

as the perceived complexity of SGML was not driving adoption. SGML itself came from
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Scribe, an earlier attempt at a word processing system similar to LATEX [82]. XML was

designed to be semantic-free, as opposed to HTML. XML is a meta-language in that is a

language for describing other languages. HTML is not a suitable format for data serialization

because it’s really just a mechanic to generate a semantic layer for displaying of embedded

data (normally in combination with presentation through style sheets). In other words, just

because the string ’John Doe’ is wrapped in an HTML <div> tag, there is no information

present that this is a Person data structure, even though if this HTML is shown to a

human with extra context like a preceding <b>Name:</b> fragment, a human will be able

to ascertain what information is being conveyed. While HTML tags tell a browser how

to display this Person information, the tags don’t tell the browser what the information

is. With XML, meaning can be assigned to the tags in the document, and that ’John Doe’

fragment would become <name>John Doe</name>. Thousands of different formats have been

established based on XML, from instant messaging protocols (XMPP) to desktop application

(Microsoft Office documents). Within the Java community, it became the de facto standard

for data-exchange, with Sun Microsystems’ Jon Bosak, chair of the XML Working Group,

commenting “XML gives Java something to do” [21]. An example of a XML message file

is given in Listing 4.2. Note that this is exactly what would be transmitted over the wire,

excluding any inter-tag whitespace minification or external compression.

Although there exists XML compilers for some languages, most are not used as XML

parser libraries are feature-complete and provide everything needed to efficiently serialize

and deserialize data structures. For most languages these parsers are either document ob-

ject model-based (DOM), or stream-based. DOM refers to the in-memory representation of

the XML document, and must be completely loaded for transversal and processing. Stream-

based loads individual nodes of the XML document and either runs callbacks or fires events

(depending on the language involved). Each have advantage, DOM allows for random ac-

cess to each node in the document, while stream driven algorithms have a smaller memory

footprint and are typically much faster due to avoiding tree-traversals. Some languages even

have a third parser type that is a middle ground between the two former types, like Java’s
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StAX.

Additionally, to validate that a given XML document is formatted correctly, a two

step process is invoked. First the document is passed through a ‘Well-Formedness’ checker,

to ensure the document conforms to the XML specification. Then an external file called

an XML Schema Definition (XSD) is required. XSD provides 19 primitive data types, e.g.

boolean, float, duration, string, etc. Since XSD is an XML schema language, XSD is

used to express a set of rules which an XML document must conform in order to be considered

“valid”. XSD was also designed with the intent that determination of a document’s validity

would produce the context of the document’s conformity. Such a post-validation infoset is

useful in XML document processing and versioning. The XML Schema data model includes

the vocabulary (element and attribute names), content model (relationships and structure)

and data types. This collection of information is called the Post-Schema-Validation Infoset

(PSVI ).

While the primary purpose of an XML schema is to validate XML documents, XML

schemas can also be used for code generation and generation of human-readable documenta-

tion for a given XML format. An example of a companion XSD to Listing 4.2 is given below

in Listing 4.3. Regarding document validity, an XML document can be one of three kinds:

• Well-formed: meet the XML syntax rules but don’t have a schema.

• Valid: are well-formed and meet the rules defined by their schema.

• Invalid: that don’t meet the syntax rules defined by the XML specification or their

schema.

The major benefit of XML is being human-readable/editable, but since most, if not

all, communication in CAV systems is machine-to-machine, the benefits of human readability

are eliminated. XML also has extensive tooling and integration with all modern languages.

Additionally, it is the basis for several other remote procedure protocols, namely SOAP. XML

is schema-based, but it is grossly verbose due to the inherit nested wrapping of the markup

language. Almost all XML for transmission is compressed, either during the encoding phase,

or at the proxy server. In either case, the extra CPU cycles needed for compression/decom-
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Listing 4.2. Example XML person.xml

1 <?xml version="1.0 " encoding="UTF -8"?>
2

3 <person xmlns:xsi="http://www.w3.org/2001/XMLSchema -instance"
4 xsi:noNamespaceSchemaLocation="person.xsd">
5 <name>John Doe</name>
6 <id>1234</id>
7 <email>jdoe@example.com</email>
8 <telNumbers >
9 <telNumber >

10 <telType >mobile </telType >
11 <number >123-456-7890</number >
12 </telNumber >
13 <telNumber >
14 <number >555-555-5555</number >
15 </telNumber >
16 </telNumbers >
17 </person >

pression are not suited for edge devices. Even though it is schema-based, an XML document

can be parsed without knowledge the schema due to the nature of how the markup tags are

formatted. Prior schema knowledge is needed for validation of an XML message though,

similar to protobufs and ASN.1. As stated in 2003 by Siméon and Wadler [200, p. 1], “the

essence of XML is this: the problem it solves is not hard, and it does not solve the problem

well”.

Using the equivalent, minimal comparison in Listing 4.4, the protobuf version on the

wire would be approximately be 28 bytes long and take around 100 to 200 nanoseconds to

parse. The XML version is at least 69 bytes after whitespace minification, and would take

around 5,000 to 10,000 nanoseconds to parse. This is not including the compression/de-

compression that normally takes place during transmission of an XML document, but since

gzipping such a small fragment actually increases the wire size (to ~80 bytes), it is outside

the scope of this comparison. While this is a toy example, the orders of magnitude differ-

ence between the two is an insurmountable barrier to cross and Protocol buffers have other

advantages over XML for serializing structured data:

• simpler (specification and documentation)

• 3 to 10 times smaller (both representation and wire-size)
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Listing 4.3. Example XSD person.xsd

1 <?xml version="1.0 " encoding="UTF -8"?>
2 <xs:schema
3 xmlns:xs="http: //www.w3.org/2001/XMLSchema"
4 attributeFormDefault="unqualified"
5 elementFormDefault="qualified">
6 <xs:element name="person">
7 <xs:complexType >
8 <xs:sequence >
9 <xs:element type="xs:string" name="name" />

10 <xs:element type="xs:integer" name="id" />
11 <xs:element type="xs:string" name="email" />
12 <xs:element name="telNumbers">
13 <xs:complexType >
14 <xs:sequence >
15 <xs:element name="telNumber" maxOccurs="4" minOccurs="1">
16 <xs:complexType >
17 <xs:sequence >
18 <xs:element
19 name="telType"
20 default="home"
21 minOccurs="0"
22 maxOccurs="1">
23 <xs:simpleType >
24 <xs:restriction base="xs:string">
25 <xs:enumeration value="mobile" />
26 <xs:enumeration value="home" />
27 <xs:enumeration value="work" />
28 </xs:restriction >
29 </xs:simpleType >
30 </xs:element >
31 <xs:element type="xs:string" name="number" />
32 </xs:sequence >
33 </xs:complexType >
34 </xs:element >
35 </xs:sequence >
36 </xs:complexType >
37 </xs:element >
38 </xs:sequence >
39 </xs:complexType >
40 </xs:element >
41 </xs:schema >

• 20 to 100 times faster (due to less parsing and validation overhead)

• less ambiguous (explicit rules for types and composition)

• easier to use programmatically (fewer, less verbose data access classes are generated)

[shown in Listing 4.5 below]

52



Listing 4.4. Comparison of an XML fragment and the equivalent protobuf
textual format representation.

1 <person >
2 <name>John Doe</name>
3 <email>jdoe@example.com</email>
4 </person >

1 person {
2 name: "John Doe"
3 email: "jdoe@example.com"
4 }

Listing 4.5. Comparison of manipulating an equivalent XML fragment and

the corresponding protobuf in C++

1 /* Accessing XML elements */

2 cout << "Name: "

3 << person.getElementsByTagName("name")->item(0)->innerText ()

4 << endl;

5 cout << "E-mail: "

6 << person.getElementsByTagName("email")->item(0)->innerText ()

7 << endl;

8

9 /* Accessing protobuf equivalent fields */

10 cout << "Name: " << person.name() << endl;

11 cout << "E-mail: " << person.email() << endl;

4.4.3. CORBA

The Common Object Request Broker Architecture (CORBA) is a standard defined

by the Object Management Group (OMG) in 1991 for the exchange of “objects” between

disparate computer systems. There has been three major versions of CORBA ratified (the

first version was only for C and did not even provide interoperability), with the latest being

in 2012. CORBA defines both an Interface Definition Language and communication broker,

with the design being a “distributed” objects (in the Object Orientated Programming-sense).

This communication broker, an Object Request Broker (ORB), contains an Object Adapter,

which maintains internal structures like reference counts, object/reference instantiation poli-

cies, and object lifetime policies. The Object Adapter is used to register instances of the

generated code classes.
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To use a CORBA-based distributed object interface, a developer must write the IDL

code that defines the object-oriented interface to the logic the system will use or implement.

Most ORB implementations includes a tool called an IDL compiler that translates the IDL

interface into the target language for use in that part of the system. A traditional compiler

then compiles the generated code to create the linkable-object files for use in the application.

CORBA mappings were first developed for C, then C++ and Java, with other languages

following. As CORBA is a distributed object system, there are several ways to share objects,

namely either by reference, or by value. An example of a CORBA IDL file is given in Listing

4.6, note that the CORBA IDL has no definition for optional fields or default values for data

types.

As given in [81], the typical life-cycle of a CORBA application is as follows:

(1) define the service as interfaces in IDL

(2) compile the IDL to generate client stub and server skeletons

(3) implement the service and associate it with the skeletons via the portable object

adapter (POA)

(4) publish the service with a Naming or Trading Service for use by clients.

The CORBA client processing involves the following:

(1) contact the Naming Service for the desired service and retrieve the appropriate

object reference,

(2) invoke operations on the object reference using the IDL-compiler generated stubs.

Alternatively, clients can infer the operations supported by the service by consulting

an interface repository (IR) and dynamically create requests populating them with

the appropriate parameters using the dynamic invocation interface (DII)

(3) process incoming reply or exceptions.

An overview of CORBA components is given in Figure 4.3.

CORBA was just not designed for modern distributed systems and is considered both

a technological and procedural failure. As stated by Henning [101] in 2006 , “some of the

OMG’s early object services specifications, such as the life cycle, query, concurrency control,
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Listing 4.6. Example CORBA IDL people.idl. Note that the lack of
optional fields or default values for data types.

1 module People {
2 enum TelType {MOBILE , HOME , WORK};
3

4 struct TelNumber {
5 string number;
6 TelType type;
7 };
8

9 struct Person {
10 string name;
11 long id;
12 string email;
13

14 TelNumber telNumber[4];
15 };
16 };

relationship, and collection services, were not only complex, but also performed no useful

function whatsoever. They only added noise to an already complex suite of specifications,

confused customers, and reinforced CORBA’s reputation of being hard to use.” It’s short-

comings far outweigh any benefits it once had, and the industry has mostly moved on to

better paradigms with CORBA seen as a ‘lesson learned’.

Figure 4.3. Components in the CORBA 2.x Reference Model. [81]
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4.4.4. JSON

Around the year 2000, JavaScript Object Notation (JSON) arose out of a need to

transfer data between a web server and a client browser without using plugins like Java

applets or Adobe Flash. This was in conjunction with the development of Ajax (Asynchro-

nous JavaScript and XML) technologies in web browsers. Today the XML in Ajax has been

supplanted by JSON, which lead to the rise of the RESTful paradigm [69] being embraced

by everything from startups to industry leaders and government bodies.

JSON has been defined as a IETF standard with several documents evolving the

specification over several years: ECMA-262, RFC 4627, RFC 7158, RFC 7159, ECMA-404,

and finally RFC 8259/STD 90. It’s also an ISO standard under ISO/IEC 21778:2017. These

changes in the specification have mostly been driving JSON to be a more generalized data

interchange format, as JSON has become less tied to JavaScript over the preceding years

with languages other than JavaScript adding ‘batteries-included’ support for JSON. In most

languages, accessing JSON data fields/attributes is similar to XML, using marshaling/un-

marshaling techniques or direct pathing. A notable difference is that while streaming XML

is an established specification, there is only limited support for the JSON streaming speci-

fication formalized in IETF RFC 7464, and many libraries implement their own streaming

tokenizer, either line-delimited, length-prefixed, concatenated, or record-separated.

JSON is a human-readable (and editable) format, which maps one-to-one to corre-

sponding JavaScript data structures. An example message of the recurring ‘person’ model is

given in Listing 4.7 below. Like XML, a JSON message relies upon an external file/process

for validation (a JSON schema file), but unlike XML’s noNamespaceSchemaLocation tag

attribute, there is no built-in mechanism for a JSON message to reference their correspond-

ing schema. JSON Schema is still an IETF draft, with the latest being the 2019-09 IETF

Draft (formerly Draft 8). [236]. JSON Schema is verbose, but includes many features like

collection limits, value length limits/ranges, and stranger rules like multipleOf for numeric

types [59]. A complementary JSON Schema to Listing 4.7 is shown in Listing 4.8 below.

JSON is a context-free grammar and can be parsed without advanced schema knowl-
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edge, but unlike XML, does include some basic types. Namely four simple data types:

number, string, boolean, and null, along with the two composite types: array, and

object. Noticeably absent are types for date, or time, or duration along with enums. All

the types are straight forward except for object, which is JavaScript’s loose equivalent to

a key-value ‘map’ (hash, associative array, etc.), and number, which is actually defined as

a 64-bit IEEE 754 float. Number makes no requirements regarding implementation details

such as overflow, underflow, loss of precision, rounding, or signed zeros, and different imple-

mentations may treat integers, floats or scientific notation differently. Objects in JSON can

only use strings for keys and the values can only be other JSON defined types, i.e. they can-

not hold references to other keys, regular expressions or other esoteric data like anonymous

functions. Regarding language differences, note that JavaScript arrays and objects can

hold multiple types at once, i.e. they are heterogeneous collections which many languages

do not support.

With JSON, the data representational format is the same format for wire transmis-

sion, so there is no need for a compiler for code generation or ‘helper’ classes. Like XML,

most of the performance bottlenecks with JSON are found in the parser implementations,

and this has created a proliferation of third-party libraries trying to edge out incremental

performance. For Java, there are over 24 third-party libraries and 23 for C++. Academic

papers are also a hot topic for JSON performance, with 42,000 papers returned for a Google

Scholar search for “JSON performance comparision”. For CAV/CV systems, the benefit

of a human readable/editable format like JSON (and XML before it), doesn’t really apply.

While less verbose then XML, JSON is not a binary format and consequently suffers from

unpacked “byte bloat”.

Listing 4.7. Example JSON message person.json

1 {
2 "person": {
3 "name": "John Doe",

4 "id": 1234,

5 "email": "jdoe@example.com",

6 "telNumbers": [

7 {
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8 "number": "123-456-7890",

9 "telType": "mobile"

10 },
11 {
12 "number": "555-555-5555"

13 }
14 ]

15 }
16 }

Listing 4.8. Example JSON schema message person.schema.json

1 {
2 "$schema": "http://json -schema.org/draft -04/schema #",

3 "type": "object",

4 "additionalProperties": false,

5 "properties": {
6 "person": {
7 "type": "object",

8 "additionalProperties": false,

9 "properties": {
10 "name": {
11 "type": "string"

12 },
13 "id": {
14 "type": "integer"

15 },
16 "email": {
17 "type": "string"

18 },
19 "telNumbers": {
20 "type": "array",

21 "items": [

22 {
23 "type": "object",

24 "additionalProperties": false,

25 "properties": {
26 "number": {
27 "type": "string"

28 },
29 "telType": {
30 "type": "string",

31 "default": "home",

32 "enum": [

33 "mobile",

34 "home",

35 "work"

36 ]

37 }
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38 },
39 "required": [

40 "number"

41 ]

42 }
43 ],

44 "minItems": 1,

45 "maxItems": 4

46 }
47 },
48 "required": [

49 "name",

50 "id",

51 "telNumbers"

52 ]

53 }
54 },
55 "required": [

56 "person"

57 ]

58 }

MessagePack (msgpack) is a binary ‘form’ of JSON and has types that loosely corre-

spond to those in the JSON format, with explicit types for integers, floats and timestamps

[74]. It was designed for efficient and fast network transmission though, and not necessarily

for low-resource computing. Like JSON, it is schema-less, and like protocol buffers, it requires

interface libraries to encode/decode messages. MessagePack doesn’t support external vali-

dation of messages, as there are enough differences in types between JSON and MessagePack

that JSON Schemas cannot be used. MessagePack has gained a significant following, as for

many applications it can be a ‘drop-in’ replacement for JSON, while eliminating performance

issues with JSON parsing, and reducing bandwidth cost (a common theme with public cloud

deployments). Using the JSON example in Listing 4.7, the wire size would be 314 bytes

(whitespace minified, uncompressed). Converted to binary MessagePack, the wire size is 121

bytes, a reduction of over 250%. Over 50 languages support MessagePack, but as with all

binary formats, there still is the downside of losing human-readability,

YAML is another JSON offshoot, and is a superset of JSON. Widely used for storing

data inside configuration files, it is not a popular format for data exchange since it is even
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more verbose than JSON is. YAML is more human-readable than JSON and even includes

the ability to add comments to documents, along with allowing embedding of other formats

(such as JSON or XML) within a YAML file. The YAML specification has evolved drastically

over the years, with latest revisions having support for references, and relational anchors.

These features have penalized the time and resources needed for serialization/deserialzation

though, with YAML parsers having to contend with a much larger grammar set than JSON.

JSON is a great format for RESTFful, human-readable data exchange, and the wide-

spread usage within industry reinforces this. Due to the issues stated above, I can not

recommend it for machine-to-machine communication. In this context it offers no benefits

over other formats, and even has major drawbacks, including the lack of a built-in schema,

versioning, or streaming support. The large wire size of a JSON message is the final problem

for an environment like CAVs, where bandwidth and latency are paramount concerns.

4.4.5. Thrift

Apache Thrift is both an IDL and an RPC client/server. Designed internally by

Facebook and open-sourced in 2007, Apache Thrift was brought into the Apache Software

Foundation (ASF) [176]. To address performance and scalability concerns within Facebook

services, Facebook forked Thrift and rewrote much of the C++ RPC backend for the next

seven years. In 2014 they re-open sourced their forked Thrift as fbthrift, while ‘classic’ Thrift

still survives as a “Top Level Project” within ASF. Besides heavy usage at Facebook, Thrift

users include Twitter (through Finagle), Foursquare, Pinterest, Uber (through TChannel),

and Evernote. Thrift is a reliable, mature choice for a Service-Oriented Architecture (SOA),

and is a favorite for including in data serialization case-studies.

Since the first component of Thrift is an IDL, a compiler must be used to generate

code and bindings for the target language, similar to ASN.1 and CORBA. The Thrift IDL

specifies basic types, structs and containers, along with enumerations ((enum), type aliasing

(typedef) and constants (const). The type system allows programmers to use native types

as much as possible, no matter what programming language Thrift is used with. The basic

types include boolean (bool), byte (byte), 16, 32, and 64-bit integers (i16, i32, i64),
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64-bit floating point numbers (double), and strings (string). Thrift structs are similar to

C/C++ structs whereas they are the common objects in Thrift and contain a set of strongly-

typed fields. Containers include an ordered array (list), an unordered array of unique items

(set), and an associative array (map). Documentation can also be added to structs, fields

and services, using the Javadoc comment style (/** ... */). HTML documentation can

be automatically generated from these comments using the Thrift compiler. An example

of the ‘person’ definition is given below in Listing 4.9. Note that the Thrift IDL does not

allow nested structs and line separators are either not present or must be either a comma

or semi-colon. Service definitions for the Thrift RPC are added to the same file as the data

IDL, and stubs for service functions/methods are generated during the compilation phase.

An overview of Apache Thrift components and architecture is given in Figure 4.4. Apache

Thrift components are show in green and code generated from the Thrift IDL in white. There

are four protocols supported for encoding data:

• TBinaryProtocol: A binary format that is not optimized for space efficiency. This

protocol is faster to process than the plain text protocols but is more difficult to

debug than the human-readable formats.

• TCompactProtocol: A more compact binary format which is more efficient to pro-

cess.

• TJSONProtocol: This protocol uses JSON for serialization.

• TSimpleJSONProtocol: A write-only protocol that cannot be parsed by Thrift be-

cause it drops metadata using JSON. Suitable for parsing by scripting languages.

Thrift IDL is similar to protobufs, with an emphasis on forwards and backwards-

compatibility. Attention must be made to not rename or reorder field numbers, and there

are several best practices that must be follow. This includes making every field optional,

which seems counter-intuitive, but since the IDL and RPC are coupled, message validation

is pushed up the stack to the application level. In direct comparison to protobufs, Thrift

was originally more feature-complete, had faster serialization/deserialization, and supported

dozens more languages as the original v2 release of protobufs didn’t even include support
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Figure 4.4. Components and Architecture Diagram of Apache Thrift data
exchange between a client and server [1]. Apache Thrift components are show
in green and code generated from the Thrift IDL in white.

for Google’s own language, Golang. Since v3, the feature-set has surpassed Thrift and gone

beyond, especially with IDL options like class naming and JSON field tagging. Additionally,

protobufs on the wire are still ~30% smaller than equivalent Thrift messages due to variable

length integer coding, both for values and for field identifiers. The only thing that protobufs

lack are unique ordered lists (sets), which do not have , Thrift also differs in that it is

both an IDL and an RPC implementation, but as evidenced by the multiple ‘versions’ of

Thrift, tightly coupling the IDL to RPC interfaces has led to friction within the open-

source community. Another thing to consider is the developer community, with protobufs

having 700 public contributors and 46,000 stars on GitHub, while Thrift and fbthrift have

~400 contributors each and 10,000 stars combined.
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Listing 4.9. Example Thrift IDL file person.thrift. Note: lack of nested

structs, line separators are defined as , (comma), ; (semi-colon), or blank.

1 enum TelType {
2 MOBILE ,
3 HOME ,
4 WORK
5 }
6

7 struct TelNumber {
8 1: required string number ,
9 2: optional TelType type = TelType.HOME

10 }
11

12 struct Person {
13 1: required string name;
14 2: required i32 id;
15 3: optional string email;
16 4: list <TelNumber > phone;
17 }

4.4.6. Avro

Apache Avro is a data serialization framework and RPC developed through the

Apache Hadoop project (distributed map/reduce). For Hadoop, Avro is the main tech-

nique for serializing data for persistent storage, and also for distributing messages to other

nodes in a binary, wire-compact format. Avro’s data format is actually JSON, with a for-

mal schema defining what constitutes an Avro Object Container File (OCF), the serialized

representation of Avro data.

The OCF is composed of a header consisting of the Avro version, the schema defini-

tion, and a sync marker, and then one or more data blocks holding the actual data. The OCF

can be binary-encoded for space, or JSON-encoded for human-readability and debugging.

The Avro specification designates two kinds of available types [70]:

‘Primitive’ types:

• null: no value

• boolean: a binary value

• int: 32-bit signed integer

• long: 64-bit signed integer
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• float: 32-bit floating-point number (IEEE 754)

• double: 64-bit floating-point number (IEEE 754)

• bytes: sequence of 8-bit unsigned bytes

• string: unicode character sequence

‘Complex’ types:

• record: schema’s main container, holding an array of fields objects composed of

four fields:

– name: a JSON string providing the name of the field

– type: one of these ‘primitive’ or ‘complex’ types

– doc: a JSON string describing this field for users

– default: default value

• enum: an enumerated type composed of two fields:

– name: a JSON string providing the name of the field

– symbols: a JSON array, listing symbols, as JSON strings

• array: an ordered list composed of two fields:

– name: a JSON string providing the name of the field

– items: the schema type of the array’s items

• map: an associative array composed of two fields (the map keys must be strings):

– name: a JSON string providing the name of the field

– values: the schema type of the map’s values

• union: a union datatype is used whenever the field has one or more datatypes

represented as a JSON array

– e.g. if a field that could be either an int or null, then the union is represented

as ["int","null"]

• fixed: a fixed number of bytes for storing binary data composed of two fields:

– name: a JSON string providing the name of the field

– size: an integer, specifying the number of bytes per value

Using the Avro schema, the ‘person’ model is given in Listing 4.10 below. Notice that
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the Avro schema has no specification for limits on array sizes and all field are mandatory

in Avro. For a field to be optional, the first union type must be "null", and the field’s

default value must be null, e.g. the ‘email’ field with the ‘person’ field on line 21.

Listing 4.10. Example Avro schema person.avsc

1 {
2 "name": "PersonClass",

3 "type": "record",

4 "namespace": "com.hochstetler.avro",

5 "fields": [

6 {
7 "name": "person",

8 "type": {
9 "name": "person",

10 "type": "record",

11 "fields": [

12 {
13 "name": "name",

14 "type": "string"

15 },
16 {
17 "name": "id",

18 "type": "int"

19 },
20 {
21 "name": "email",

22 "type": [

23 "null",

24 "string"

25 ],

26 "default": null

27 },
28 {
29 "name": "telNumbers",

30 "type": {
31 "type": "array",

32 "items": {
33 "name": "telNumbers_record",

34 "type": "record",

35 "fields": [

36 {
37 "name": "number",

38 "type": "string"

39 },
40 {
41 "name": "telType",

42 "type": "enum",
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43 "symbols" : ["MOBILE", "HOME", "WORK"],

44 "default": "HOME"

45 }
46 ]

47 }
48 }
49 }
50 ]

51 }
52 }
53 ]

54 }

With Avro’s use of JSON, there is no need for an ‘extra’ compile phase for code and

interface generation when used in application development. This simplifies working with

dynamically typed languages like JavaScript, Ruby and Python immensely. For strongly-

type languages like C++, Go, Rust, Java, and TypeScript, there is no real benefit gained.

Avro’s OCF format that joins both the schema and data does eliminate an entire step in

the JSON/XML validation process, while also allowing dynamic languages to reflect on the

data structures inside. While Avro is used heavily in the Hadoop project, there is little use

outside of that, especially with languages other than Java.

4.5. Protobuf Examples

In this section I will discuss several protobuf examples and and explain their impor-

tance.

4.5.1. Serialization/Deserialization Benchmark Example

Benchmarking is a notoriously thorny endeavour, fraught with many issues arising

from seemingly inconsequential techniques. The following benchmarks are not meant to be

rigorous, merely to show consistent differences between serialization libraries within a single

language. In Figure 4.5, Go’s own benchmarking framework is used to serialize and deserialize

toy data models, to illustrate the differences in speed, RAM usage and raw allocations. The

testing file that generated this benchmark is in Listing 4.11.
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Listing 4.11. Benchmark serialization/deserialization testing file.

1 package benchmarks_test
2

3 import (
4 "encoding/json"
5 "io/ioutil"
6 "testing"
7 "github.com/golang/protobuf/proto"
8 )
9

10 var fixtureData = &TestData{
11 Message: "Nullam congue sapien eu nunc",
12 Data: [] string{"Aenean", "sit", "amet", "tellus", "vel"},
13 }
14 var result TestData
15

16 func BenchmarkJSON(b *testing.B) {
17 b.Run("Serialize", func(b *testing.B) {
18 for n := 0; n < b.N; n++ {
19 json.Marshal(fixtureData)
20 }
21 })
22 b.Run("SerializeStream", func(b *testing.B) {
23 for n := 0; n < b.N; n++ {
24 json.NewEncoder(ioutil.Discard).Encode(fixtureData)
25 }
26 })
27 data , _ := json.Marshal(fixtureData)
28 b.Run("Deserialize", func(b *testing.B) {
29 for n := 0; n < b.N; n++ {
30 json.Unmarshal(data , &result)
31 }
32 })
33 b.Run("DeserializeStream", func(b *testing.B) {
34 for n := 0; n < b.N; n++ {
35 json.NewDecoder(bytes.NewReader(data)).Decode (& result)
36 }
37 })
38 }
39

40 func BenchmarkPb(b *testing.B) {
41 b.Run("Serialize", func(b *testing.B) {
42 for n := 0; n < b.N; n++ {
43 proto.Marshal(fixtureData)
44 }
45 })
46 data , _ := proto.Marshal(fixtureData)
47 b.Run("Deserialize", func(b *testing.B) {
48 for n := 0; n < b.N; n++ {
49 proto.Unmarshal(data , &result)
50 }
51 })
52 }
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(a) µs/operation (b) kB RAM allocated/operation (c) allocations/operation

Figure 4.5. Plots of serialization/deserialization benchmarks: gRPC is in
dark gray and JSON is in light gray, while serialization is solid, and deserial-
ization is hatched.

4.5.2. Open Source Projects

While there may be many closed-source, commercial products using protobufs, sur-

veying and auditing open-source projects provides insight into industry trends and is useful

to compare implementation details between organizations. For review I have chosen a third-

party protobuf compiler nanopb, a ‘web-scale’ SQL ACID database CockroachDB, and the

open-source base of the most popular web browser in the world, chromium.

Nanopb is a Protobuf compiler specifically designed for embedded-C systems. It

uses the same proto files as the normal protoc, but reading additional model metadata

from an options file. This allows more granularity in creating interfaces for microcontrollers,

where every kB of RAM matters, and statically generating arrays beforehand has measurable

performance implications. Since starting in 2011, nanopb has fairly healthy open-source

community, with almost 100 contributors and ~140 pull requests. Nanopb has been deployed

in Android phones, Garmin watches, TomTom GPS devices, and Cisco Telepresence Servers.

CockroachDB (crdb) is an open-sourced, distributed SQL database built on a transac-

tional and strongly-consistent key-value store. It is wire-compatible with PostgreSQL, and

supports strongly-consistent ACID transactions. Scaling horizontally, it can survive disk,

machine, rack, and even data center failures with minimal latency disruption and no manual

intervention. For cluster communication, it uses proto files for everything between nodes,
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from simple datum timestamps, to encapsulation of actual SQL requests, response rows and

associated telemetry. Actual communication is handled through gRPC, and is muxed with

an HTTP server to provide the Web dashboard on the same port that PostgreSQL drivers

communicate with. This lowers the requirements for firewalls and corresponding networking.

CockroachDB has over 400 contributors on Github and over 20k stars.

The Chromium web-browser is an open-source browser that several browsers are built

on: Google’s Chrome, Opera, Amazon’s Silk and Microsoft’s Edge. While many end-users

may not be aware of open-sourced Chromium, it powers every modern browser besides

Firefox and Safari, amounting to ~38 market share worldwide in 2020. It also is the main

interface in Chromium OS, a Linux derivative upstream of Chrome OS. Protobufs are used

in Chromium to maintain state in the browser, and hold configuration data for policies. This

includes everything from how bookmark history status is polled, to syncing of user profiles.

4.5.3. Edge Node

An example of a service needed on an edge node that protobufs would be useful

for is a cluster heartbeat. In simple, tightly clusters, heartbeats are normally just a ‘check-

in’ from established members of the cluster. In more loosely defined clusters, where an

unreliable network, or constrained resources force members to join/leave ad-hoc, heartbeats

contain more information about the cluster, for example in Redis each ping/pong packet

carries important pieces of information about the state of the cluster from the point of view

of the sender node [129]:

• hash slots distribution

• configuration information

• additional data about other trusted nodes

From the opposite perspective, if there is a central dispatcher in the cluster, e.g. a job queue,

then heartbeat information will need to include more endogenous node information for the

dispatcher to make decisions. This information could include the current processing load,

state of resources and other telemetry data.
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4.5.4. Resource Modeling/Service Discovery

As CAVs have many different sensors with a wide array of data characteristics, there

should be a catalog of available resources that the CAV can provide. This catalog should

include all the pertinent data about the sensor/resource, along with what service on the

CAV is advertising, and the format of the data. This can all be accomplished with a CAV

service announcing resources through standard protobufs definitions. Through automating

the process by which resources are discovered, a larger scale of services can be accessed and

managed.

4.6. CAV-Specific Implementation

Since the proto files would be used by many teams, the independent ownership of

proto files should be established. These repositories should be owned and maintained by

a standards body like ISO or SAE for example, preferably by the organization holding the

standard. These proto files should be hosted openly, i.e. not behind paywalls or subscriber

licensing agreements. Manufacturer-specific protobufs should be hosted in their respective

open-source repositories for consumption by 2nd and 3rd parties.

70



CHAPTER 5

DATA PROTOCOL

Gone are the days of shared memory programming, single-server services and localized

resources. Some of today’s modern application stacks involve hundreds of services powered

by thousands of servers, spread not only across data centers, but across continents. A large,

complex system cannot change direction quickly though, and therefore cannot adapt to mar-

ket pressures in a timely manner. There are several solutions to this problem, and while many

companies still run a complex, monolithic, “do all” architecture, over the past decade the

most innovative companies have transitioned to microservices. A simple visual comparison

of a monolithic stack versus a microservice-based application is given in Figure 5.1.

In contrast to a monolithic service, a microservice contains just enough functionality

to do one thing (or service). Some defining characteristics are:

• Highly maintainable and testable

• Loosely coupled

• Independently deployable

• Organized around capabilities

• Owned by a small team

Some definitions go beyond these attributes and add ‘idempotence’ as a microservice

trait. Idempotence can be thought of as an extension of deterministic behavior (same input

results in same output each time), i.e., clients calling the same service repeatedly will produce

the same result. In other words, making multiple identical requests has the same effect as

making a single request. Note that while idempotent operations produce the same result on

the server (no side effects), the response itself may not be the same, e.g. a resource’s state

may change between requests.

Architecturally, microservices can also reduce code silos and reinforce DRY (Don’t

Repeat Yourself) development. This can be accomplished in monolithic applications, but

it is a reinforced pattern in microservices. Additionally microservices reinforce network
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Figure 5.1. Architectural illustrating comparing a monolithic application
stack versus a microservice-based application stack of an example E-Commerce
website with two kinds of consumers and persistent backing data storage.

abstraction, since a microservice doesn’t need to know where (local, remote, etc.) it’s running

as all communication happens over its API. Microservices offer technical benefits in addition

to architectural ones. Services that are ‘hot’, i.e. are resource-intensive or time-intensive,

can be scaled individually. Similarly, services in a ‘critical’ path can be scaled for resiliency

and redundancy. Since microservices can be deployed independently from one another, they

can be scaled without affecting other services. This independent deployment capability also
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leads to more advance deployments techniques like Blue/Green [72], which will be covered

in more detail in Chapter 6, and independent version evolution. This independent version

evolution allows microservices to move away from the “lock step” feature deployment of an

entire application.

A microservice API can be considered a contract between the service and its clients.

The only way the service can communicate is through this API, and therefore the only way

to change or maintain state with each other is through this contract. This emphasis on

communication is demonstrated in another way: by the difference in connections between

Figure 5.1a and 5.1b. For non-toy examples, these connections can explode in number as

services interconnect during their lifetime. For instance, notice the differences between the

simplified Netfix architecture circa 2012 in Figure 5.2a and the actual arch in Figure 5.2b.

This is colloquially referred to as a ‘Death Star’ diagram, and has presented new problems,

both for the industry [98] (interdependency anti-patterns) and for academia [75] (QoS/uti-

lization).

(a) Simplified architecture. (b) Actual architecture.

Figure 5.2. Netflix microservice architecture generated by Adrian Cockcroft
using SPIGO [50] [49].

The future of CAV is microservices. Not only do all the ‘normal’ benefits of microser-

vices apply, but the layering of CAV communication (between the cloud, edge nods, and

inter-CAV), is especially well suited for services that aren’t tightly coupled within the same
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network. In other words, since there is already a hard domain separation between CAV, edge

and cloud, services already must enforce communication contracts to produce and consume

data. For microservices to effectively communicate across these barriers they must agree on

a standard protocol for transmission. Within distributed systems this is communication is

generically a remote procedure call (RPC), and refers to literally calling a procedure in a

remote address space on a different computer. Researching all the modern RPC systems

in an exhaustive manner is counter-productive, as many of the same companies that have

migrated to microservices independently chose a definitive RPC system, namely gRPC.

5.1. Details

Like, protocol buffers, gRPC was developed internally at Google and released in

2015 [142]. Originally named Stubby, gRPC was designed to power “massively distributed

systems that span data centers, as well as power mobile apps, real-time communications,

IoT devices and APIs.” While released at the same time as version 3 of protocol buffers,

gRPC is not tied specifically to protocol buffers, and different data formats can be used

(JSON, Protobuf, Thrift, XML) at varying levels of maturity.

gRPC evolved out of lessons learned running web-scale services, resulting in the prin-

ciples defined in Table 5.1 [selected]. The ‘fallacies of ignoring the network’ referred to in

the principle “Services not Objects, Messages not References” deserve more explicit enu-

meration, which arose from seminal distributed computing work at Sun Microsystems in the

1990’s:

(1) The network is reliable.

(2) Latency is zero.

(3) Bandwidth is infinite.

(4) The network is secure.

(5) Topology doesn’t change.

(6) There is one administrator.

(7) Transport cost is zero.

(8) The network is homogeneous.
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Table 5.1. gRPC Principles [selected] [191].

Principles & Requirements Description/Explanation

Services not Objects,
Messages not References

Promote the microservices design philosophy of coarse-grained
message exchange between systems while avoiding the pitfalls
of distributed objects [73] and the fallacies of ignoring the
network [189].

Coverage & Simplicity The stack should be available on every popular development
platform and easy for someone to build for their platform of
choice. It should be viable on CPU and memory-limited devices.

Free & Open Make the fundamental features free for all to use. Release all
artifacts as open-source efforts with licensing that should
facilitate and not impede adoption.

Interoperability & Reach The wire protocol must be capable of surviving traversal over
common internet infrastructure.

General Purpose & Performant The stack should be applicable to a broad class of use-cases
while sacrificing little in performance when compared to a
use-case specific stack.

Layered Key facets of the stack must be able to evolve independently. A
revision to the wire-format should not disrupt application layer
bindings.

Payload Agnostic Different services need to use different message types and
encodings.

Streaming Storage systems rely on streaming and flow-control to express
large data-sets. Other services, like voice-to-text or
stock-tickers, rely on streaming to represent temporally related
message sequences.

Pluggable A wire protocol is only part of a functioning API infrastructure.
Large distributed systems need security, health-checking,
load-balancing and failover, monitoring, tracing, logging, etc.

Extensions as APIs Extensions that require collaboration among services should
favor using APIs rather than protocol extensions where possible.

Metadata Exchange Common cross-cutting concerns like authentication or tracing
rely on the exchange of data that is not part of the declared
interface of a service. Deployments rely on their ability to evolve
these features at a different rate to the individual APIs exposed
by services.

Standardized Status Codes Clients typically respond to errors returned by API calls in a
limited number of ways. The status code namespace should be
constrained to make these error handling decisions clearer.

gRPC services are defined in a service files, by default using the same Interface Def-

inition Language (IDL) as protocol buffers. This service definition specifies the methods
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that can be called remotely, along with their parameters and return types. Continuing the

‘Person’ example, an example ‘Contacts’ service is given in Listing 5.1. There are four kinds

of services that can be defined:

Unary: a client sends a single request to the server and gets a single response back.

Server streaming: a client sends a request to the server and gets a stream to read a

sequence of messages back. The client reads from the returned stream until there

are no more messages.

Client streaming: the client writes a sequence of messages and sends them to the server,

again using a provided stream. Once the client has finished writing the messages,

it waits for the server to read them and return its response.

Bidirectional streaming: both client and server send a sequence of messages using a read-

write stream. The two streams operate independently, so clients and servers can

read and write in whatever order they prefer.

Message ordering is guaranteed within an individual RPC call, and in bidirectional

streaming the order of messages in each stream is also preserved. Additionally, these services

can be defined as either asynchronous, or synchronous, target language permitting.

Using the gRPC plugin for protoc generates both client-side and server-side code from

the service definition. Clients the can call these APIs on the client side while developers can

implement the corresponding API on the server side. For the server side, the developer

implements the methods declared by the service and runs a gRPC server to handle client

calls. The infrastructure stack decodes incoming requests, executes service methods, and

encodes service responses. On the client side, the client has a local object known as stub

(for some languages, the preferred term is client) that implements the same methods as

the service. The client can then just call those methods on the local object, wrapping the

parameters for the call in the appropriate message type.

Each of the ten default supported languages has multiple layers, allowing users to

customize what pieces they want in your application. There are three main stacks in gRPC:

C-core, Go, and Java. Most of the languages supported are just thin wrappers on top of
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the C-based gRPC core library, show in Figure 5.3. For example, a Python application

calls into the generated Python stubs. These calls pass through interceptors, and into the

wrapping library where the calls are translated into C calls. The gRPC C-core will encode the

RPC as HTTP/2, optionally encrypt the data with TLS, and then write it to the network.

By layering the framework, different pieces can be swapped out depending on application

requirements. For example, if C++ is needed for performance, it can use an In-Process

transport, saving calls from having to go all the way down to the OS network layer. Another

example is enabling experimental projects, like QUIC protocol (see 5.2.1.4). For each of the

wrapped languages, the default HTTP/2 implementation is built into the C-core library,

but it is possible to exchange it, for instance replacing HTTP/2 with Cronet (the Chrome

networking library). The structure of the Go stack is much simpler since it only supports

one language, as shown in Figure 5.4. The flow from the top of the stack to the bottom

is more linear, and unlike wrapped languages, gRPC Go can use either its own HTTP/2

implementation, or the standard Go library net/http package. While the Java stack shown

in Figure 5.5 also only supports one language, the Java stack supports multiple configurations

for underlying layers. Java supports HTTP/2, QUIC, and In Process like the C-core. Unlike

the C-Core though, applications commonly can bypass the generated stubs and interceptors,

and speak directly to the Java Core library. Each structure is slightly different based on

the needs of each language implementation of gRPC. Also unlike wrapped languages, gRPC

Java separates the HTTP/2 implementation into pluggable libraries, such as Java’s Netty,

OkHttp, or Cronet.

5.2. Benefits

The benefits of gRPC broadly fall into three points:

(1) Leverage server-side streaming from underlying HTTP/2.

(2) Efficiency gains during serialization and deserialization by using compact encodings.

(3) Ability to auto-generate and publish services SDKs and documentation.
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Figure 5.3. gRPC Wrapped Languages stack (C-core) [144].

Figure 5.4. gRPC Go stack [144].

5.2.1. HTTP/2

gRPC largely follows HTTP semantics over HTTP/2 but explicitly allows for full-

duplex streaming. Typical REST conventions are avoided, with static paths used instead for

performance reasons during call dispatch. This for performance reasons due to parsing call

parameters from paths, query parameters and payload body adds latency and complexity.

Also included is a formalized set of errors that are more directly applicable to API use cases
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Figure 5.5. gRPC Java stack [144].

than the HTTP status codes.

The benefits of using HTTP as an underlying RPC layer:

Software:

• Libraries already designed to handle HTTP (standard codes, error handling, etc.)

• Extensive server-side optimization (caching, resource tagging, etc.)

• Wide client support

• Replaceable with newer standards (see Section 5.2.1.4)

Hardware:

• Specialized hardware availability to offload HTTP cryptography (TLS accelerators)

• Network equipment is already designed/optimized for HTTP traffic, e.g. firewalls/In-

trusion Detection Systems/Layer 7 load balancers

HTTP/2 is an IETF standard published as RFC 7540 in May 2015 [14]. It superse-

ceded HTTP/1.1, which had been the HTTP standard since 1997. HTTP/2 is based almost

entirely on an early Google experimental protocol called SPDY, with the only real difference

being replacment of the dynamic header compression with a fixed scheme. Compared to
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Listing 5.1. Example IDL file contacts.proto for a ‘Contacts’ gRPC service.

1 service Contacts {
2 // Adds a Person to the Contacts
3 rpc CreateContact(CreateContactRequest) returns (Empty) {
4 options (google.api.http) = {
5 // Create maps to HTTP POST.
6 post: "/v1/contacts",
7 body: "person",
8 }
9 }

10 // Get returns person for ID
11 rpc GetContact(Person) returns (Person) {
12 // Get maps to HTTP GET. No body.
13 options (google.api.http) = {
14 // 'id ' field mapped from Person definition
15 get: "/v1/contacts /{id}"
16 }
17 }
18 // Searches Contacts for People matching 'name '
19 rpc ListContacts(Name) returns (People) {
20 // Get maps to HTTP GET. No body.
21 options (google.api.http) = {
22 // URL query params are automatically mapped , e.g. ?name=$name
23 get: "/v1/contacts"
24 }
25 }
26 }
27

28 message CreateContactRequest {
29 string person_id = 3;
30 // The contact resource to create.
31 // The field name should match the Noun in the method name.
32 Person person = 2;
33 }
34

35 message People { // an array of 0 or more Persons
36 repeated Person people = 1;
37 }
38

39 message Name {
40 string name = 1;
41 }
42

43 message Empty {} // empty message to represent an empty response

HTTP/1.x, HTTP/2 provides three major enhancements: encoding, multiplexing, and flow

control [91].
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5.2.1.1. Encoding

Compared to the newline-delimited, plain text HTTP/1.x protocol, HTTP/2 uses

binary encoding for frames. The binary encoding is much more compact, efficient for pro-

cessing, and easier to implement correctly. In HTTP/2, headers are compressed using fixed

Huffman compression scheme to reduce the size of HTTP headers. When HTTP/1.x was

developed, headers between clients and servers was minuscule, but with the advent of cook-

ies and session tokens, header sizes has been pushed up the limit of web servers, up to 16

KB. Headers are often repeated across requests and responses, and HTTP/2 leverages static

codes to compress literals. In addition to the compression, the client and server also maintain

a list of frequently seen fields and their compressed values. So when these fields are repeated

they simply include the reference to the compression values, instead of passing the actual

value across the wire.

5.2.1.2. Multiplexing

HTTP/1 was initially a single request and response flow. Client had to wait for the

response before issuing the next request. HTTP/1.1 introduced pipelining, whereas a client

could send multiple requests without waiting for the response. However, the server is still

required to send the responses in the order of incoming requests (FIFO queue). So HTTP/1.1

suffered from requests getting blocked on high latency requests in the front (referred to as

Head-of-line blocking). HTTP/2 introduces fully asynchronous multiplexing of requests by

introducing the concept of streams. A single underlying TCP connection can contain streams

initiated by both clients and servers. Compared to HTTP/1.x, in HTTP/2 even the server

can initiate a stream for transferring data which it anticipates will be required by the client.

For example when client request a web page from an HTTP/2 web server, in addition to

sending the main HTML content, the server can initiate a separate stream to transfer images

or other resources that it knows the client will require to render the full page (referred to as

HTTP Push). Figure 5.6 illustrates a single multiplexed TCP connection between a client

and server, over four streams and three TCP packets. While HTTP/2 streams are mostly

independent, there are provisions to establish priority and dependencies across streams as
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DATA DATA

Server
Client

Figure 5.6. HTTP/2 multiplexing four streams and using ‘server push’ be-
tween a client and server over one TCP connection containing three packets.
Stream 0 is reserved for control messages/frames, while Stream 1 & Stream 3
are initiated by the client. Stream 2 is initiated by the server, pushing headers
and data in Packet 3.

well.

5.2.1.3. Flow Control

Successful multiplexing requires flow control in place to avoid contention for under-

lying TCP resources and avoid destructive behavior across streams. Rather than enforce a

particular control flow algorithm, HTTP/2 provides the building blocks for client and servers

to implement flow control suitable for their specific situation and context. Application-layer

(OSI model layer 7) flow control allows the browser to fetch only a part of a particular

resource, put the fetch on hold by reducing the stream flow control window down to zero,

and then resume it later, e.g., fetch a preview image, display it and then allow other high

priority fetches to proceed, then resume the fetch once more critical resources have finished

loading. Note than during the RFC process, allowing a layer 7 protocol to duplicate flow

control that should be handled by TCP (layer 4) was a contentious topic, and was one of

the main objections to the HTTP/2 standard as is.

5.2.1.4. HTTP/3

HTTP/2 will soon be superseceded by HTTP/3, addressing some flaws that were

found in HTTP/2 during the RFC process [17]. Work on switching out HTTP/2 for HTTP/3
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in gRPC has already been started, with no impact to users. HTTP/3 uses QUIC, a transport

layer network protocol also developed initially by Google. Compared to the version jump

from HTTP/1 to HTTP/2, replacing TCP with QUIC was relatively trivial. QUIC differs

from TCP in where user space congestion control is used over the User Datagram Protocol

(UDP). The switch to QUIC aims to fix a major problem of HTTP/2 called “head-of-line

blocking”: because the parallel nature of HTTP/2’s multiplexing is not visible to TCP’s loss

recovery mechanisms, a lost or reordered packet causes all active transactions to experience

a stall regardless of whether that transaction was impacted by the lost packet. Because

QUIC provides native multiplexing, lost packets only impact the streams where data has

been lost. QUIC also introduces a low-latency initial connection establishment, by reducing

session startup time. Zero roundtrip time connection resumption (0-RTT) is also supported,

which means that subsequent connections can start up much faster by eliminating the TLS

acknowledgement from the server when setting up the connection. Since there is no need

to renegotiate a connection with 0-RTT, connections can migrate and are resilient to NAT

rebinding, i.e. clients on HTTP/3 can switch between WiFi and mobile networks without

penalty. All these improvements will have meaningful impacts in imperfect, high-latency

network environments like WiFI and mobile.

5.2.2. Compact Encodings

While different encoding formats are supported, as stated previously the default en-

coding for gRPC is protocol buffers. For reference, the benefits of protocol buffers are covered

in Chapter 4. Besides the technical reasons for using protocol buffers with gRPC, keeping ob-

ject interface definitions adjacent to the services that access/mutate them lessens developer

cognitive load and simplifies CI/CD pipelines.

5.2.3. SDK Auto-Generation

Committing to gRPC as the PRC framework means moving from documenting APIs for

developer consumption to providing SDKs to customer integration into their own products/services/adapters.

By releasing SDKs instead of APIs, developers can copy-paste example code written in their
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language into their adapters. Since these SDKs are auto-generated from the service defini-

tion files, this means the service owner does not need to manually update API contracts,

and because they are abstracted, there is no need to maintain SDKs for multiple languages.

Additionally, these changes are in locked between all SDKs, and avoids the issue of docu-

mentation/APIs drifting out of spec with the actual service definitions. This is especially

important with Agile delivery, where deployment of new services versions could be overlap

customer’s development windows.

Along with the SDKs, OpenAPI (formerly Swagger) schemas can be automatically

generated from service files using protoc during the compilation phase. OpenAPI has be-

come the standard specification for machine-readable interface files for describing, producing,

consuming, and visualizing RESTful web services, with several innovative tools created for

API exploration [126], [250]. Building beyond OpenAPI, API management products like

Apigee integrate directly to enforce throttling and security policies, collect telemetry and

analytics data, and even monetization of commercial endpoints.

5.3. Concerns

The same concerns that I raised with protobufs in Section 4.3 also apply to gRPC.

There are also concerns with legacy applications that cannot take advantage of gRPC, or with

a specific languages that cannot bind to gRPC. This concern is lessened with the deployment

of a JSON to gRPC gateway. The gRPC-Gateway is part of the gRPC ecosystem and is a

plugin for protoc. By adding an option tag with an endpoint URL to an RPC method

within the definition file, the gRPC-Gateway provides the API in both a gRPC and RESTful

style at the same time. An overview of this gateway is shown in Figure 3.1.

Debugging, along with API exploration, is also a concern. Whereas a developer’s

normal tools used for APIs, like command-line-based curl or GUI-based Postman, cannot call

gRPC endpoints. For this, several new tools like gRPC-swagger can take advantage of service

reflection, and can be used to list and call gRPC methods using swagger-ui conveniently.

Since it’s based on reflection, the reflection feature only needs to be enabled when starting

the service and there is no need to modify encoding files or related code implementations.
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gRPC is a Cloud Native Computing Foundation (CNCF) project, which means that

no single company can steer the direction of development. Although in practice, like most

open-source projects, development is driven by the company devoting the most developers

to producing/merging features.

5.4. Comparisons

In the following sections I will briefly describe competing protocol standards, and

compare them against gRPC.

5.4.1. HTTP/JSON

The history of HTTP, being closely tied to the internet, is long, and while worthy

of an entire chapter or book, instead of detailing the early years, I will jump ahead to the

advent of REST and the rise of JSON-based APIs.

5.4.1.1. REST

Roy Fielding’s seminal 2000 doctoral dissertation on “Representational state trans-

fer” [69] shaped the next two decades of World Wide Web development, from influencing the

HTTP/1.1 and URI standards to framing the transition to API-driven web development.

The REST architectural style today is regarded as essentially for modern web development,

but REST has also “become an industry buzzword: frequently abused to suit a particular

argument, confused with the general notion of using HTTP, and denigrated for not being

more like a programming methodology or implementation framework” [68]. Unlike SOAP,

REST isn’t an actual defined standard, but rather a set of restrictions on how the HTTP

protocol is used and how object (resource) state is represented. If an API follows REST

guidelines, it’s termed ‘RESTful’. The core concepts of REST include stateless resource

transfer between client and server, and uniform interfaces. REST and RESTful principles

are a deep subject, with over thirty books with “REST” in the title published by O’Reilly

& Associates alone, and according to Google Scholar Fielding’s dissertation itself has been

cited over 6,000 times. Although the REST architectural style doesn’t wholly pertain to
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RPC, as it was designed to solve issues arising from HTTP client-server interactions, almost

all of it’s principles apply to gRPC:

Uniform interface: An API must expose specific application resources to API consumers.

Client-server: The client and the server function independently. The client will only know

the URIs that point to the application’s resources, i.e. the server is a blackbox to

the client (besides knowledge of the endpoints).

Stateless: The server does not save any data pertaining to the client request. Each HTTP

connection should be a ‘clean slate’ connection, unaware of previous transactions.

Cacheable: Resources exposed by the API need to be cacheable by the client or intermedi-

ary servers. This is normally accomplished with the HTTP headers Expires/Cache-

Control 1 and Last-Modified/ETag 2.

Layered: The architecture is layered, which allows different components to be maintained on

different servers. A client should not ordinarily be aware of whether it is connected

directly to the end server or to an intermediary along the way. This allows proxies,

traffic management (load balancers/global server load balancers), and authZ/authN

layers to function seamlessly in a client-server session.

Code-on-Demand (optional): This allows the client to receive executable code as part of

a response from the server. Originally this was intended to spotlight Java applets

executing in the browser, but is largely ignored today.

To solve some of the limitations in RESTful APIs, Facebook created GraphQL, which

can be thought of as a query language (like SQL) for APIs. Its query language is based on

JSON, and includes the ability to join several ‘resources’ together into a single response. Indi-

vidual attributes can also be selected for a response, and like SQL, constraints can be placed

on data returned. In other words, clients calling GraphQL endpoints can specify exactly the

data they needs in a query and the structure of the response follows precisely the nested

structure defined in the query. This eliminates the REST problems of ‘overfetching’ (return-

1 “strong caching headers”

2 “weak caching headers”
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ing extraneous data you don’t need), and ‘underfetching’ (requiring additional requests for

nested data, i.e. the n+1 request problem. In order for gRPC to support GraphQL clients,

the protoc plugin grpc-graphql-gateway can produce GraphQL schema for consumption by

clients.

5.4.1.2. AJAX and JSON

The history of JSON actually starts just a year later, in April of 2001, when Douglas

Crockford and Chip Morningstar sent the first HTML-wrapped JSON message [54]. Con-

tinuing the long history of other Silicon Valley inventors, this message was sent while they

were hacking in their garage. What Crockford and Morningstar were trying to accomplish

was passing data to a web page after the initial page load. Browser support was not good

for what they were attempting, and they had not found a way to that would properly work

across all the browsers they were targeting. This was at a time when Microsoft’s Internet

Explorer browser provided primordial support through the now defunct ActiveX framework.

This did not work on the competing Netscape Navigator browser, so they decided to abuse

an HTML tag element to try and support both platforms. The first JSON message ever sent

is shown in Listing 5.2. Crockford himself admits that he did not “invent” JSON, instead

that he “just discovered it, and gave it a specification and a little website”. Oddly enough,

they first tried to name it “JSML”, for JavaScript Markup Language, but quickly found

that it conflicted with Java Speech Markup Language. In the end they decided to go with

JavaScript Object Notation.

Listing 5.2. The “first” JSON message ever sent. This was to solve the
problem of dynamic loading of data after initial browser page (HTML) load-
ing [54]. Note there is a syntax error on line 4, as do is a reserved JavaScript
keyword.

1 <html><head><script >
2 document.domain = 'fudco ';
3 parent.session.receive(
4 { to: "session", do: "test", text: "Hello world" }
5 )
6 </script ></head></html>
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How JSON became the standard for web APIs is an equally grassroots Silicon Valley

story. In 2005, Jesse Garrett coined the term “Ajax” in a blog post about asynchronous

data exchange. He stressed that AJAX wasn’t any one new technology he invented, but

instead “several technologies . . . coming together in powerful new ways” [76]. AJAX stands

for Asynchronous JavaScript and XML, but in a followup Q&A post he explained that

JSON was an entirely acceptable alternative to XML. Writing that “XML is the most fully-

developed means of getting data in and out of an AJAX client, but there’s no reason you

couldn’t accomplish the same effects using a technology like JavaScript Object Notation

or any similar means of structuring data.” [76]. Over time the ‘X’ in AJAX languished

as developers found JSON easier to work with, both natively through JavaScript, and in

stateful changes of the HTML document object model. In the resulting years, the paradigm

shift to frontend/backend style development pushed API development to programmers who

only had experience with JavaScript applications and corresponding web technologies. This

made JSON an obvious choice for backend APIs that needed to send data to a frontend

UI, or even other backend APIs. This was exacerbated by the need for “Web 2.0” websites

to become as performant as possible due to industry pressures. With the need to eek out

performance that could exist anywhere between the browser and server (JavaScript engine,

compression libraries, language constructs, etc.) and XML’s parsing speed comparatively

lagging [158], JSON also beat XML on a performance level.

Although JSON has become widespread in APIs due to it’s roots in web applications

and developers familiarity with such, it’s not the best fit for machine-to-machine communi-

cation. While I have already stated my issues with JSON for this purpose in Section 4.4.4,

I additionally think that the gRPC-JSON gateway resolves many of the issues in abandon-

ing JSON as a ‘first-class’ format. Namely the secondary features that have organically

grown around JSON like API exploration through Swagger, API management with Apigee,

or 3rd-party tooling like Postman/Insomnia.
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5.4.2. CoAP

A recently standardized protocol that has been gaining support among the industry

is Constrained Application Protocol, or CoAP [20]. Standardized in RFC 7252 [197], CoAP

is designed for communication of internet-of-things (IoT) devices in a ‘lossy’/‘noisy’ network

environment. Published by the Constrained RESTful Environments (CoRE) Parameters

Group, CoAP is based on REST principles and is designed to easily translate to HTTP for

integration with web services. This means that CoAP is a replacement for HTTP at the

application layer by extending HTTP semantics and even uses a superset of HTTP verbs

and response codes. The protocol uses Datagram Transport Layer Security (DTLS) for

encryption of network traffic. DTLS is based on TLS, and operates at the transport layer

with UDP, preventing eavesdropping, tampering, or message forgery. CoAP defines four

security models based around DTLS :

NoSec: DTLS is disabled, for testing and debugging.

PreSharedKey: DTLS is enabled and there is a list of pre-shared keys.

RawPublicKey: DTLS is enabled and the device uses an asymmetric key pair without a

certificate, which is validated out of band.

Certificate: DTLS is enabled and the device uses X.509 certificates for validation.

CoAp has recently come into prominence with the introduction of the Thread proto-

col [216]. Thread is an IPv6-based, low-power mesh networking technology for IoT products.

Using 6LoWPAN (IEEE 802.15.4), Thread is focused on home automation and generic IoT

communication in a mesh environment. It is promoted through the “Connected Home over

IP” a working group within the Zigbee Alliance, formed by Amazon, Apple, and Google

to create a “new royalty-free connectivity standard to increase compatibility among smart

home products, with security as a fundamental design tenet” [255].

Unfortunately CoAP and Thread are too focused on home automation to be useful

for CAV purposes, where low-latency and streaming communication is a critical requirement.

This niche in home automation may expand in the future, and replacing HTTP in the process.

Of note, many production implementations of CoAP use protobufs as the data format
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for exchange between services, using nanopb [4], an ANSI C implementation of protocol

buffers targeted at 32 bit microcontrollers and other memory restricted systems (<10 kB

ROM/<1 kB RAM).

5.4.3. Thrift RPC

Thrift was discussed in Section 4.4.5, and Thrift itself is more of an RPC framework

than a data serialization one. As stated earlier, there are two versions of Thrift, Apache

Thrift and Facebook’s own open-sourced fork fbthrift. The ‘Contacts’ service is shown

in Listing 5.3. As shown in Figure 4.4, Apache Thrift provides a ‘server’, ‘protocol’, and

‘transport’. The five transports available are:

• TSimpleFileTransport: This transport writes to a file.

• TFramedTransport: This transport is required when using a non-blocking server

(TNonblockingServer). It sends data in frames, where each frame is preceded by

length information.

• TMemoryTransport: Uses memory for I/O. The Java implementation uses a simple

ByteArrayOutputStream internally.

• TSocket] Uses blocking socket I/O for transport.

• TZlibTransport: Used in conjunction with another transport to provide compression

using zlib.

Thrift also supports four different servers:

• TSimpleServer: A single-threaded server using standard blocking I/O. Useful for

testing.

• TNonblockingServer: A multi-threaded server using non-blocking I/O (Java imple-

mentation uses NIO channels). TFramedTransport referenced above must be used

with this server.

• TThreadedServer: A multi-threaded server using a thread per connection model

and standard blocking I/O.

• TThreadPoolServer: TThreadedServer using a thread pool.
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Listing 5.3. Example IDL file contacts.thrift for a ‘Contacts’ Thrift service.

1 // Namespaces in Thrift are similar to C++ namespaces or Java packages.
2 // They are a way to organize or isolate code.
3 // Thrift allows namespaces on a per -language basis:
4 namespace cpp com.example.contacts
5 namespace java com.example.contacts
6 namespace py com.example.contacts
7 namespace go com.example.contacts
8 namespace js com.example.contacts
9

10 service Contacts {
11 /**
12 * A method definition looks like C code. It has a return type ,
13 * arguments , and optionally a list of exceptions that it may throw.
14 * Note that argument lists and exception lists are specified using
15 * the exact same syntax as field lists in Thrift structs or
16 * exception definitions.
17 */
18

19 // Structs can also be exceptions
20 exception InvalidOperation {
21 1: i32 code ,
22 2: string message
23 }
24

25 // save creates or updates a Person record
26 // returns an error if person cannot be saved
27 void save(1:Person person) throws (1:InvalidOperation error),
28

29 // get returns a single Person given the ID parameter
30 // returns an error if person not found
31 Person get(1:i32 id) throws (1:InvalidOperation error),
32

33 // search returns a set of Persons matching the given 'name' param
34 set <Person > search(1:string name)
35 }

One of the biggest concerns with using Thrift as the RPC framework for CAV ap-

plications is the lack of support for streaming data. Also while multiple configurations and

options may be viewed as beneficial, this can lead to much confusion over what is ‘best’

for specific applications. In this regard ‘opinionated’ frameworks like gRPC that default to

‘reasonable’ choices will perform better for almost all use cases. As for service definitions,

gRPC provides interceptors, which can be used to add common functionalities to multiple

endpoints. This makes it trivial to implement health checks, telemetry or authentication

shared by master and worker interfaces. Thrift has no equivalent API. Lastly, by abstract-
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ing on top of HTTP/2, gRPC can use full-duplex bi-directional streams for it’s communication

channels. This advantage over Thrift also means it can benefit from future advancements in

flow control and underlying network protocols to alleviate congestion and QoS pressures.

5.5. gRPC Examples

In this section I will benchmark a few protocol examples and explain the results.

All benchmarks were run on a 64-bit workstation with a 16-core Intel®Core™i9-9900K

3.60 GHz CPU and 32 GB RAM. This workstation is meant to represent a high-end Edge

server communicating with client nodes over a ‘non-lossy’ network connection. All testing

was done on Linux with a 4.4 kernel.

5.5.1. Heartbeat

Heartbeats are a mainstay of cluster communications. Besides informing other nodes

of each other’s status, heartbeats are used to form subclusters, failover operations and main-

taining quorum. A heartbeat client and server was created to benchmark examples of both

gRPC and JSON over HTTP. Three run averages were collected, and each benchmark ran

for 3 s. The benchmark results are shown in Figure 5.7 while the heartbeat message itself

is detailed in Listing 5.4 and the actual test/benchmark file in Listing 5.5. The benchmark,

while isolated from network interference, shows that gRPC running in parallel is almost an

order of magnitude faster than JSON over HTTP in parallel. In single request mode, gRPC

is almost twice as slow as the equivalent JSON heartbeat. This is likely due to three things:

(1) JSON serialization/deserialization has been heavily optimized in the standard

library.

(2) The small wire size of the “heartbeat message” is not worth the marshalling and

compression overhead of protobufs. This is reinforced in Figure 5.7c where the

single request allocations are similar for both gRPC and JSON.

(3) The impact of reflecting on the heartbeat protobuf data structure slows down

single request performance as that reflected meta-information cannot be used
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Listing 5.4. Protocol buffer IDL file heartbeat.proto used for benchmark-
ing gRPC and JSON/HTTP remote procedure call.

1 syntax = "proto3";
2

3 package messages;
4

5 message PingRequest {
6 string ping = 1;
7 Point location = 2;
8 string origin_addr = 3;
9 string origin_cluster_id = 4;

10 string server_version = 5;
11 int32 target_node_id = 6;
12 int32 origin_node_id = 7;
13 }
14

15 message PingResponse {
16 string pong = 1;
17 int32 client_id = 2;
18 int64 server_time = 3;
19 string server_version = 4;
20 int32 server_id = 5;
21 string cluster_name = 6;
22 }
23

24 message Point {
25 double latitude = 1;
26 double longitude = 2;
27 }
28

29 service Heartbeat {
30 rpc Ping (PingRequest) returns (PingResponse) {}
31 }

again for the next request. This is shown in Figure 5.7b where the allocation sizes

are higher for the gRPC service.

5.5.2. Streaming Resource Transfer

A comparison of a gRPC service with a comparable HTTP service for different payload

sizes and connection types is given in Table 5.2. This benchmark uses four different built-in

servers, and includes both unary responses and streaming messages.

5.6. CAV-Specific Implementation

Since the technology lifecycle management for gRPC services is the same as for protobufs,

the same development pipelines and repositories can be used. This includes the same gover-
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Listing 5.5. Benchmark RPC testing file.

1 package benchmarks_test
2

3 import (
4 "testing"
5 "github.com/jh125486/benchmarks"
6 )
7

8 func setup(b *testing.B) (* benchmarks.Client , func()) {
9 rpcAddr , rpcStop := benchmarks.InitRPCServer("Testing -GRPC")

10 httpAddr , httpStop := benchmarks.InitHTTPServer("Testing -HTTP")
11 client , err := benchmarks.NewClient(rpcAddr , httpAddr)
12 if err != nil {
13 b.Fatal(err)
14 }
15 return client , func() {
16 b.StopTimer () // stop benchmark timer before tear down happens
17 client.Shutdown () // tear down client TCP connections
18 rpcStop () // stop gRPC server (graceful shutdown)
19 httpStop () // stop HTTP server
20 }
21 }
22

23 func checkPing(b *testing.B, fn benchmarks.Pinger) {
24 if _, err := fn(); err != nil {
25 b.Fatal(err)
26 }
27 }
28

29 func BenchmarkSendHeartBeat(b *testing.B) {
30 client , stop := setup(b)
31 defer stop()
32 for name , fn := range map[string]benchmarks.Pinger{
33 "JSON": client.PingJSON ,
34 "gRPC": client.PingRPC ,
35 } {
36 b.Run(name , func(b *testing.B) {
37 for i := 0; i < b.N; i++ {
38 checkPing(b, fn)
39 }
40 })
41 b.Run(name+"Parallel", func(b *testing.B) {
42 b.RunParallel(func(pb *testing.PB) {
43 for pb.Next() {
44 checkPing(b, fn)
45 }
46 })
47 })
48 }
49 }
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(a) µs/operation (b) kB RAM allocated/opera-
tion

(c) allocations/operation

Figure 5.7. Plots of remote client/server heartbeat benchmarks: gRPC is in
dark gray and JSON over HTTP is in light gray.

Table 5.2. RPC Benchmarking with gRPC and HTTP.

Benchmark Name µs/op speed MB/s kB alloc/op allocs/op

Request Count 1K 64K 1K 64K 1K 64K 1K 64K

gRPC Serve()u 28 201 74 653 16 459 155 172

gRPC Serve()s 16 215 125 610 8 457 27 50

gRPC ServeHTTP()u 93 395 22 332 35 565 211 310

gRPC ServeHTTP()s 28 346 72 379 9 545 35 160

ProtoBuf RPCu 20 218 101 601 5 433 16 24

ProtoBuf HTTP/1.1u 194 368 11 357 60 960 457 612

ProtoBuf HTTP/2u 108 485 19 271 33 1100 112 212

u Unary message.

s Streaming message.

nance policies dictating ownership and maintenance, as in Section 4.6.
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CHAPTER 6

APPLICATION ORCHESTRATION

While solving the issue of data interoperability and service communication is a para-

mount issue for all levels within the CAV ecosystem, how applications are built and deployed

is just as important for longevity and ‘Day 2’ operations. Day 2 refers to the time between

an application being fully deployed and that application being terminated or deprecated.

This includes everything from deploying new versions of the application, or patching vulner-

abilities and even things like rotating security certificates as shown in Figure 6.1. Obviously

by making sensible and forward-thinking choices in ‘Day 0’ and ‘Day 1’, ‘Day 2’ operations

will result in measurable impacts to KPIs like application uptime or vulnerability scorecards.

The move from physical, bare-metal servers to hypervisor-based virtualization has

shortened ‘Day 1’ operations, and the arrival of containerization almost removed them en-

tirely, moving those tasks back into ‘Day 0’. This movement is closely tied to infrastructure-

as-code, and refers to the way of treating infrastructure as any other programmatic interface,

e.g. provisioning VMs through domain languages and automatic configuration of network

load balancers through service discovery. Several tools are built for infrastructure-as-code,

like Chef, Ansible, Terraform, and a favorite among HPC distributions, CFEngine [202].

Infrastructure-as-code is also tangentially related to Immutable Server Architecture, the act

of infrastructure provisioning and configuration being 100% automated, so that instead of

upgrading or patching a live, production server during ‘Day 2’, the automation should be

able to spin up an exact server replica that contains the upgrades and security patches

needed. Since it’s an independent, exact copy, the patches/updates can be tested out of

band to ensure correctness. Once the new immutable infra is live, network load balancers

can switch traffic to the new server address and the termination process can begin for the

obsolete infrastructure. If two separate sets of infrastructure are maintained, they can be

alternately used for new application versions or patches, while automated processes are used

to route between them. This is called “Blue-Green” deployments [72] and is an integral part
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of “Continuous Deployment”.

Requirements
Architecture
Design/coding
Testing

Day 0
Rack/stack
Installation
Setup
Configuration

Day 1
Upgrade
Patching
Maintenance
Optimize

Day 2

Deletion
Reclamation
Clean-up

Termination

Figure 6.1. Application lifecycle.

6.1. Details

The arrival of containerization has brought more advantages, by abstracting further

away from the underlying operating system and libraries. Each container that is repeatable

and through the standardization from having dependencies included leads to deterministic

behavior during deployment. By decoupling applications from underlying host infrastruc-

ture deployment becomes simple in a different operating system or even a different cloud

environment. With containers ‘Day 1’ operations can be reduced to a few seconds while the

container is starting, to milliseconds with advanced frameworks like AWS’ Firecracker [3].

As containers are immutably configured by default, ‘Day 2’ operations are reduced to Blue-

Green deployments, further tightening the software development lifecycle loop. For CAV

applications, containers provide benefits conferred beyond what applies in data centers and

developer laptops, namely the integration of 1st through 3rd party applications. If deployed

through containers, these non-OEM applications would be tenant-isolated, and still reap

performance benefits without the resource overhead of an entire VM separation.

An industry example of this was the recent U.S. Air Force U-2 spyplane flight in

October 2020, which flew four computers on-board as part of a Kubernetes cluster [217].

This airframe houses many sensor packages, from electronic signals, imagery intelligence,

including radar and electro-optical, and air samples, and this Kubernetes cluster was used

to perform advanced machine learning algorithms on those four individual, flight-certified

computers. The next flight included two updates: a logging container that wrote some text

along with a timestamp in a file and deployment of “improved automatic target recognition
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algorithms” in an unspecified test application/sensor. This work was not unique either, as

early in 2019 the U.S Air Force deployed three Kubernetes clusters to legacy hardware in an

F-16 fighter, detailed in talk at KubeCon 2019 [35]. Of note, NASA flies two planes as the

ER-2, with missions ranging from soil nitrate observation, celestial observations and wildfire

mapping.

Released in 2014, Kubernetes was designed to deploy and automate microservice-

based applications running in containers. It’s analogous to an operating system scheduler

that decides which processes to run on specific CPUs. In Kubernetes, the ‘processes’ are

containers and the ‘CPUs’ are host machines. In other words, Kubernetes abstracts ap-

plication orchestration from single machines to a data center, or even across multiple data

centers and regions. Like gRPC, Kubernetes (abbreviated and stylized as k8s), was originally

designed by Google and is now maintained by the Cloud Native Computing Foundation. A

deployed Kubernetes cluster is composed of a Control Plane, along with at least one worker

Node. Important Kubernetes deployment concepts include:

Control Plane: makes global decisions about the cluster, e.g. scheduling, as well as de-

tecting and responding to cluster events, e.g. starting up a new Pod when a de-

ployment’s replicas count is unsatisfied.

Node: a worker machine that runs containerized applications and every cluster has at least

one worker.

Namespace: a virtual cluster backed by the same physical cluster.

Pod: the smallest deployable units of computing in Kubernetes, a group of one or more con-

tainers, with shared storage and network resources. Always co-located, co-scheduled

onto the same Node and run in the same shared context.

Service: an abstract way to expose an application running on a set of Pods as a network

service. Kubernetes gives Pods their own IP addresses and a single DNS name for

a set of Pods, and can load-balance across them.

Ingress: manages external access to the Services in a cluster and may provide load bal-

ancing, SSL termination and name-based virtual hosting.
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Resource Quotas: provides constraints that limit aggregate resource (milli-CPUs and GB

RAM) consumption per Namespace. It can limit the quantity of objects that

can be created in a Namespace by type, as well as the total amount of compute

resources that may be consumed by resources in that Namespace.

The Control Plane is composed of the following pieces:

kube-apiserver : the front end for the Kubernetes control plane and designed to scale

horizontally, balancing traffic between them.

etcd : a highly-available component of the control plane which contains the overall state of

the cluster at any given point of time. Uses raft for distributed quorum consensus.

kube-scheduler : watches for newly created Pods with no assigned node, and selects a

node for them to run on, based on: individual and collective resource requirements,

hardware/software/policy constraints, affinity and anti-affinity specifications, data

locality, inter-workload interference, and deadlines.

kube-controller-manager : manages the controllers, control loops that watch the state of

the cluster, then make or request changes where needed.

cloud-controller-manager : links the cluster into a cloud provider’s API, and separates

out the components that interact with that cloud platform from components that

just interact with the local cluster.

Components of the Control Plane and how they interact with Workers is shown in

Figure 6.2. A worker Node is composed of:

kubelet : an agent that runs on each node in the cluster. It makes sure that containers are

running in a Pod.

kube-proxy : a network proxy that runs on each node in the cluster, implementing part of

the Kubernetes Service concept. kube-proxy maintains network rules on nodes and

allows network communication to the Pods from network sessions inside or outside

of the cluster.

Container Runtime: daemon responsible for running containers. Kubernetes supports

several container runtimes: Docker, containerd, CRI-O or anything meeting the
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Figure 6.2. Components of a Kubernetes cluster.

Kubernetes CRI (Container Runtime Interface).

6.2. Benefits

The pod isolation, network segregation and integrated service discovery make Kuber-

netes ideal for CAVs that need to deploy applications from multiple-companies or manufac-

turers. For manufacturers that want to include and deploy 2nd or 3rd party applications,

Kubernetes’ Namespaces along with Network Policies provide multi-tenancy isolation to

guarantee data is not leaked across manufacturers. Resource Quotas ensure that applica-

tions that are ‘noisy’ or experiencing transient load will not affect other applications in the

same Node. Even the operator model can be tailored to only give access appropriate to role,

so other developers cannot access applications outside their own Namespace. The downside

of Kubernetes is the administration overhead and complicated deployment of cluster com-

ponents. With highly-available services deployed to clouds, Kubernetes clusters may include

three-times over replicas for essential clusters services, which is not feasible for single-board

computers powering CAVs.
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6.2.1. K3s: Kubernetes at the Edge

In 2019, Rancher Labs released k3s [11], a fully certified Kubernetes distribution (dis-

tro) designed to address the issues that prevent k8s from running on resource-constrained

or embedded hardware. While still including all the benefits of Kubernetes, k3s is packaged

as a single, lightweight <40 MB binary, and removes the need for more complex pieces of

Kubernetes. This reduces the controller plane memory size to ~300 MB and ~100 MB for the

agent. Just like the benefits of moving to container-based virtualization, deploying k3s in

production allows developers to use the same Kubernetes commands locally to write appli-

cations, and testing pipelines can use the same Kubernetes configurations to run hundreds

of tests in cloud infrastructure. It also designed to run on both ARM64 and ARMv7 archi-

tectures, bridging the gap between developers’ hardware, targeted edge devices and cloud

infrastructure. Compared to Figure 6.2, an overview of a k3s server and agent node is shown

in 6.3. In other to reduce the complexity and administrative overhead of a full Kubernetes

installation, several components were replaced with lighter-weight equivalents:

Flannel: a very simple L2 overlay network that satisfies the Kubernetes requirements.

CoreDNS: a flexible, extensible DNS server that can serve as the Kubernetes cluster DNS.

Traefik: is a modern HTTP reverse proxy and load balancer.

Klipper Load Balancer: a Service load balancer that uses available host ports.

SQLite3: The storage backend used by default (also support MySQL, Postgres, and etcd3 ).

Containerd: is a stripped down runtime container daemon.

6.2.2. K3OS: The Kubernetes Operating System

As compact and edge-friendly that k3s is, it still needs a full Linux environment un-

derneath it to provide all the operating system services. This underlying operating system

must be patched and maintained after initial deployment, just like all other operating sys-

tems. Timing operating system updates with Kubernetes updates is especially important

since many Kubernetes features are tied to developments in the Linux kernel and related

drivers. Shortly after releasing k3s, Rancher Labs announced another open-sourced project,
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Figure 6.3. Components of k3s from K3s ‘How it Works’ [11].

k3OS [10], or “the Kubernetes operating system”. K3OS is a Linux distro built for the sole

purpose of running Kubernetes clusters. It differs from a normal Linux distro in that all

services not required to run Kubernetes have been removed, and every system service is run

within k3s Pods. A diagram of k3OS is shown in Figure 6.4. This enables administrators

to roll out updates to Edge devices without bringing them offline or disturbing the separate

Kubernetes cluster running end-user applications. By not patching the underlying operating

system, significant security risks are introduced to the Kubernetes cluster. These unpatched

CVEs in the underlying operating system threaten the security of the entire cluster. In the

other direction, by patching Linux, and not coordinating with with the Kubernetes instal-

lation, operating system upgrades can cause multiple nodes to become unavailable at the

same time. Even though Kubernetes is designed to withstand individual node reboots, this

can cause the Kubernetes master to lose quorum or disrupt the application workload. Both

Linux and Kubernetes are part of the foundational computing platform. Combining a Linux

distro with a Kubernetes distro into a Kubernetes operating system simplifies Kubernetes

cluster operations and improves system security and reliability, fully eliminating infrastruc-
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Figure 6.4. Components of k3OS from K3OS ‘How it Works’ [10].

ture ‘Day 1’ operations and merging ‘Day 2’ infrastructure operations with the application

cluster operations. This allows Edge administrators and operators to focus on other ‘Day 2’

operations:

• Application tracing/observability

• Application log aggregation

• Monitoring/alerting

• Storage persistence

• Hierarchical storage management

• Metering/billing chargeback

• Tenant networking policy

• Resource segmentation

• Multi-environment rollout

• Cluster/application elasticity
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6.3. K3OS Example

Installed on a Raspberry Pi 3 B, a bare k3OS Server and Agent, showed the con-

figuration in Listing 6.1 with kubectl. This output shows both the ‘system’ Namespace

kube-system and the user Namespace default. I installed an example application, Medi-

aWiki, consisting of a webserver and database.

6.4. Concerns

The concerns with moving to a Kubernetes-backed deployment are issues with scale.

Kubernetes, and by inference a k3s fleet, only makes sense when working at web-scale, with

thousands of cluster nodes and hundreds of applications. Additionally, the foundational

components to be successful at web-scale applications must be in place: infrastructure-as-

code, strongly opinionated configurations and mature CI/CD pipelines. If any of those

pieces are lacking, companies will not be able to deploy Kubernetes effectively, or worse,

once deployed they will suffer high-availability outages. For many companies that are just

now making the leap to containers, or even virtualization, the bar for Kubernetes is just too

high to surpass.
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Listing 6.1. Example k3OS installation showing Pods and Services.
Ephemeral postfixes and labels removed for clarity.

rancher [~] kubectl get all --all -namespaces

NAMESPACE NAME READY STATUS RESTARTS AGE

kube -system pod/helm -install -traefik 0/1 Completed 1 25h

k3os -system pod/system -upgrade -controller 1/1 Running 1 25h

kube -system pod/local -path -provisioner 1/1 Running 1 25h

kube -system pod/metrics -server 1/1 Running 1 25h

kube -system pod/svclb -traefik 2/2 Running 2 25h

kube -system pod/coredns 1/1 Running 1 25h

kube -system pod/traefik 1/1 Running 1 25h

default pod/svclb -mediawiki5 0/1 Pending 0 20h

default pod/mediawiki -mariadb -0 1/1 Running 0 20h

NAMESPACE NAME TYPE CLUSTER -IP EXTERNAL -IP PORT(S) AGE

default svc/kubernetes IP 10.43.0.1 <none > 443/ TCP 25h

kube -system svc/kube -dns IP 10.43.0.10 <none > 53/UDP ,53/TCP ,9153/ TCP 25h

kube -system svc/metrics -server IP 10.43.241.154 <none > 443/ TCP 25h

kube -system svc/traefik -prometheus IP 10.43.199.18 <none > 9100/ TCP 25h

kube -system svc/traefik LB 10.43.83.123 192.168.1.9 80/TCP ,443/ TCP 25h

default svc/mediawiki -mariadb IP 10.43.240.144 <none > 3306/ TCP 20h

default svc/mediawiki LB 10.43.100.237 <pending > 80:30490/ TCP 20h

NAMESPACE NAME DESIRED CURRENT READY UP -TO-DATE AVAILABLE AGE

kube -system daemonset.apps/svclb -traefik 1 1 1 1 1 25h

default daemonset.apps/svclb -mediawiki 1 1 0 1 0 20h

NAMESPACE NAME READY UP-TO -DATE AVAILABLE AGE

k3os -system deployment.apps/system -upgrade -controller 1/1 1 1 25h

kube -system deployment.apps/local -path -provisioner 1/1 1 1 25h

kube -system deployment.apps/metrics -server 1/1 1 1 25h

kube -system deployment.apps/coredns 1/1 1 1 25h

kube -system deployment.apps/traefik 1/1 1 1 25h

NAMESPACE NAME DESIRED CURRENT READY AGE

k3os -system replicaset.apps/system -upgrade -controller 1 1 1 25h

kube -system replicaset.apps/local -path -provisioner 1 1 1 25h

kube -system replicaset.apps/metrics -server 1 1 1 25h

kube -system replicaset.apps/coredns 1 1 1 25h

kube -system replicaset.apps/traefik 1 1 1 25h

NAMESPACE NAME READY AGE

default statefulset.apps/mediawiki -mariadb 1/1 20h

NAMESPACE NAME COMPLETIONS DURATION AGE

kube -system job.batch/helm -install -traefik 1/1 68s 25h
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CHAPTER 7

PREVIOUS RESEARCH

Applications of connected vehicles vary widely, but one of the easiest transitions to

make is automated Police Patrol placement. Police patrol placement is not currently highly

automated, but can take advantage of simple GPS sensors on each patrol car, along with

cloud resources data mining relevant crime datasets. In the future, unmanned drones could

replaced the patrolling aspect of policing, leading to better utilization of non-automated

(human) resources. To enable the automation of patrol selection to scale, and not need

to rely upon a centralized decision system, each vehicle should have an application that

determines it’s own placement, communicating to other police vehicles to determine patrol

routes for each time of day.

7.1. Optimal Police Patrol Planning Strategy for Smart City Safety [104]1

The safety of citizens is an integral part of any smart city project. Police patrol

provides an effective way to detect suspects and possible crimes. However, policing is a

limited resource just like any other service that a Smart City provides. In order to efficiently

consume this resource, the city has several aspects that can be controlled to make efficient

use of Police patrolling: where (area), what (number), when (hour). In this paper, we utilize

the LA County Sheriff’s open crime dataset to study the police patrol planning problem. We

propose a novel approach to build a network of clusters to efficiently assign patrols based on

informational entropy. This minimizes Police time-to-arrival and lowers the overall numbers

of police on patrol. Our algorithm relies upon the categories of crimes, and the locations of

crimes. Since we use real-time traffic analysis to join crime clusters, our solution is extensible

enough to be applied to any metropolitan area.

1Section 7.1 is reproduced in its entirety from Jacob Hochstetler, Lauren Hochstetler, and Song Fu, An
optimal police patrol planning strategy for smart city safety, 2016 IEEE 18th International Conference
on High Performance Computing and Communications; IEEE 14th International Conference on Smart
City; IEEE 2nd International Conference on Data Science and Systems (HPC-C/SmartCity/DSS), pp.
1256-1263, with permission from IEEE
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7.1.1. Introduction

The concept of Smart City as a means to enhance the life quality of citizens has

been gaining increasing importance in the agenda of policy makers [154]. Most recently, 10

cities in the United States were selected to participate in the Smart Cities Initiative [220],

including Los Angeles, Dallas, and eight other cities. The involved projects deal with smart

transit/parking, Internet of Things, micro-grids, streetlights and smart poles, integrated

smart city systems and more [64].

A smart city must be a secure city first. While many smart-city projects will increase

well-being or quality of life, the safety of the citizens should be an integral part of any city

project. With advancement of civilization, day-to-day human life is safer today than ever

before. However, in view of new threats of terrorism, organized crimes, gang violence and

gun crimes, securing cities remains an equally important and a big challenge that smart city

initiatives could provide unique solutions to.

Routine activities theory posits that crimes, both individual and serial, occur when a

motivated offender encounters a suitable target in a time and place where there is an absence

of capable guardianship [24]. Police patrol provides an effective way to detect suspects and

possible crimes, thereby deterring offenders from committing crimes. For example, suspect-

oriented patrol occurs when a suspect matches the description of an offender in a series, and

directed patrol involves instructing officers to visit certain locations at certain times. The

current practice of police patrol is either based on officers’ experience or neighborhood crime

statistics, that is, if an area has more crimes in the near past, more officers will patrol in

that area.

Motorized and foot police patrols have been utilized as a crime deterrent method for

many years. Studies have been done on this method to discover whether or not it is effective

in eliminating crime, or whether crime just moves away from the areas patrols have increased.

An experiment [178] conducted in Philadelphia of more than 200 foot patrol officers in the

summer of 2009 found that police foot patrols raised the public’s perception of the police

in the communities, reducing their fear of crime.They studied police effectiveness over 60
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violent crime problem areas. In 12 weeks,there was a significant reduction in the amount

of crimes in the targeted areas,exceeding the control site numbers by 23% with 53 violent

crimes prevented. These findings show that police patrols in targeted areas where violent

crime occurs can have a significant impact on violent crime rates at a microspatial level.

Patrol placement is a critical process used to maximize the effectiveness of the police

department in its activities. However, police are limited in supply. To be effective at policing,

officers must be qualified, formally trained, and developed. For example, officers in the City

of Los Angeles Police Department (LAPD) must be 21 years of age, and have completed a

six-month training course before beginning their year-long probationary period [48]. These

constraints mean that the number of officers, like many other city resources, is inelastic.

Further, the limited availability of resources in comparison to the city’s large population

and size makes it more difficult to patrol the entire city of Los Angeles. Limited budget

implies limited number of patrols cars which can pose a problem to availability of back up

officers present at crime scenes or in the pursuit of criminals. The limited police personnel

and budget makes patrol planning a challenging task. A smart placement strategy is needed

to assure the safety of smart cities.

In this paper, we propose a data-driven, smart decision making approach to place

police officers for the optimal patrol. Our goal is to maximize the responsiveness of police

departments in their activities while having limited police officers and resources. Our pro-

posed approach leverages an entropic metric in selecting patrol locations and in searching for

the cluster locations that maximize the total entropy in the Patrol Police Network (PPN),

relating maximal entropy with maximal clusters coverage. We use Los Angeles Open Data

(LAOD) [138], especially the crime related datasets, and evaluate the performance of our

proposed patrol planning strategy. The experimental results show that response-time can

be reduced and police can cover more crimes through our entropy-based approach. We want

to emphasize that this is not a crime-prevention strategy, as crime factors are complex and

numerous. Instead, we will treat crime like a resource that should be monitored, with patrols

as the sensors that do the monitoring.
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Table 7.1. Information About Los Angeles County and Budget/Equipment
of LAPD

Policing coverage & equipment Quantity

LA area ~12,300 km2

LA population 3.8 million residents

Police budget $1.4 billion

Number of police stations 21

Number of police officers ~10,000

Officers per 10k residents ~25.6

Number of patrol cars Unknown

Number of police boats 2

Number of police helicopters 26

Number of police fixed-wing 3

Number of mounted (horses) 21

Number of K-9 units (canine) 22

Table 7.2. Selected Attributes of LA County Crime Data

Attribute Explanation

Incident Date Date a crime incident occurred.

Category Incident crime category.

Statistical Code A three digit number to identify the primary
crime category for an incident.

Statistical Code Description The definition of the statistical code number.

Full Address The street number, street name, state and zip
where the incident occurred.

Street Address The street number and street name where the
incident occurred.

City The city where the incident occurred.

X / Y Geocode Used to map the general location of the incident.

The rest of the paper is organized as follows. We describe the crime datasets from

LAOD and a classification of crime types in Section 7.1.2 and Section 7.1.3. The methodology

and patrol planning design are presented in Section 7.1.4. The implementation and detailed
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Table 7.3. Sample of Crime Categories

Category Count Weight Reasoning

Arson 4337 0 Investigation occurs after the fact in
coordination with the Fire Services
Investigator. Officer must be present to
cordon off the scene.

Commitments 14 1 Drunk/Drug tank; officer must be present
to take suspect into custody.

Criminal Homicide 1689 5 Most heinous crime which requires
immediate Police response.

Forgery 16531 0 Not time-sensitive.

Fraud/NSF Checks 44681 0 Not time-sensitive or critical.

Traffic Accidents 14402 4 First responders are needed to direct traffic
and resource other assets.

Warrants 2326 0 Served on an as-needed basis.

evaluation results are reported in Section 7.1.5 and Section 7.1.6. We conclude this paper

and discuss possible future work in Section 7.1.7.

7.1.2. City Safety Dataset

We explore the Los Angeles County Sheriff’s Department Jurisdiction Data available

from Los Angeles County GIS Data Portal [47] in this study. Los Angeles County was chosen

because of three main reasons:

• Weather stability

• Land size

• Dataset size & crime variation

The historical average temperature in LA County varies from a December low of

8.6 °C, to an August high of 23.5 °C [157]. Month by month, this results in a mean daily

temperature variation of only 10.8 °C, with a standard deviation of 0.54. For comparison,

Chicago, which is similar in population size, has a daily average low of -10.8 °C in January

to an average high of 28.6 °C in July. This results in a mean of 11.6 °C with a standard

deviation of 1.63. With regards to rain and snow, LA receives an average 379.2 mm of rainfall
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each year, while Chicago receives 936.2 mm of precipitation. LA County has no average snow

or ice. Compared to Chicago, LA has more stable weather and this stability should produce

more consistent crime data that isn’t affected by seasonal patterns.

Since we utilize the drive-time between clusters for our calculations, it makes sense

to have a dataset that is geographically distributed. Once again, compared to Cook County

(Chicago), LA county is much larger at 12,300 km2 versus 4,235 km2. Ideally this would

produce geographically distributed clusters of crime which would show the effectiveness of

the strategy.

The dataset consists of 2,130,504 crimes from 2005 to 2015 (11 years). Each year is

formatted as a CSV file, and there are 18 data fields for each record. Selected attributes are

listed in Table 7.2. The variations in crime is discussed in Section 7.1.3 below.

In addition to the crime data, we also collect the information of equipment and

resources of Los Angeles Police Department (LAPD). Our goal is to effectively allocate these

resources for optimal police patrolling to respond to and suppress crimes. For now, we

will focus on just allocating patrol cars, as specialized assets require specific use cases for

deployment. Information and selected resources of the LAPD are shown in Table 7.1.

7.1.3. Crime Prioritization and Statistical Analysis

In the LA county crime dataset, a total of 42 major crime categories are specified. Due

to the limited police personnel and resources, we prioritize these crime types by assigning

higher priorities to those types that need more immediate police response. To this end, we

have consulted with a domain expert in Criminal Justice to help us better understand the

datasets we use. Since some crimes are more critical than other crimes, i.e. rape vs. larceny,

we weight each crime on a scale of zero to five. A weighting of five is the most important,

whereas a 1 is of the lowest importance. A weighting of zero means we do not include this

crime in our algorithm. Each crime belongs to a “Category” and we can exploit this field to

base our weighting. There are a total of 42 major crime categories and 369 sub-categories.

The domain expert finds many of these categories are not time-sensitive. A sample of some

of the categories, the count in our dataset, the weighting and our reasoning is presented

111



in Table 7.3. Due to space limitations, we have only listed some of the crime categories.

Figure 7.2a shows the number of crime records at each of the five priority levels.

Each crime record contains an X and a Y coordinate that locate the crime within

LA County. Although each complete crime also includes the full address, we would have

to geocode each address through an API, severely limiting our throughput. The X and

Y coordinates are in the State Plane Coordinate System (SPS) format, specifically Cali-

fornia Zone V (5). We remove those records that do not contain X or Y coordinates. A

histogram plot of these records results in a spike from coordinates X[6200000:7000000] and

Y[1700000:1900000]. Some of the outliers are as far away as Colorado, and include bad neg-

ative coordinates that are not even possible with the SPCS. The LA crime dataset of 2015

does not include the time for each crime. This skews our hourly results towards midnight,

since every crime occurs at 00:00 in that dataset.

After preprocessing we end up with 1,486,678 crimes, i.e., about 70% of the original

data. We use hexagonal binning to check if the crime distribution is uniform across coor-

dinates. Sample sizes for 15, 30 and 50 bins are show in Figure 7.1. The clusters are not

uniform, and the figures show the centroids begin to dissipate at bin size 30.

We further analyze the distribution of crimes by hours of the day and days of the

week using both the overall layout of the crimes and the density of the crimes. These are

shown in Figure 7.2b and Figure 7.2c. From the figures, we can see that the distributions

for hourly and daily crimes are not uniform. More crimes happen during 16:00-01:00 and

on Fridays than other times and days. Meanwhile, 03:00-06:00 and Sundays have the least

number of crimes. These uneven crime distributions suggest that we should differentiate

police allocation to achieve better cost-effective patrolling. To minimize the affect of time,

we will group the crime data into hours for this paper. More specialized implementation

can be performed on a per-day basis. Holidays and other city events were not selected as

attributes, but could be used for further study since they also affect crime patterns.

Since we use data clustering methods for our patrol planning algorithm, we need for

further preprocessing of the data. We filter the crime data set, first by removing all zero-
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(a) Bin size 15 (b) Bin size 30

(c) Bin size 50

Figure 7.1. Hexbin clustering of crimes in LA County based on X and Y
coordinates in survey feet.

weight crimes, and further restricting the X geo-coordinate to between 6270000 and 6680000

survey feet. This leaves us with 1,351,527 crime records. Since data clustering methods do

not use weighting, we replicate each of the weight lines the number of its respective weight.

This results in a total count of 3,101,851 crime records.

7.1.4. Optimal Police Patrolling Strategy

The patrol planning problem can be informally described as follows. For an area in

question (such as a city or a county), given its historical crime data and available police

resources, find the best officer placement for patrol that can maximally suppress possible

crimes. This is a challenging problem as it involves geolocations of many streets in the area

and unevenly distributed crime occurrences at those locations under the constraint of limited

police resources.
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(a) By weight/priority. (b) By hour.

(c) By day of week.

Figure 7.2. Distribution of crimes in LA County based on data attributes (log10).

7.1.4.1. Design of Police Patrolling Strategy

To address these challenges and make the best patrol planning, we formalize the

preceding problem as an entropy maximization problem in a police placement network and

derive the optimal solution. Before presenting the details of our police patrolling strategy,

we briefly describe entropy and equivocation. Entropy [90] quantifies the smoothness with

which a transformation occurs and of the disorder and the amount of wasted energy during

the transformation from one state to another. Mathematically, entropy can be expressed as

Ha =
∑
pa ln(1/pa), where pa is the probability mass function of variable a. The entropy of

two variables can be calculated as

(7.1) H(A,B) = H(A|B) +H(B|A) + I(A,B) ,
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where I(A,B) is the mutual information between A and B, which is determined by

(7.2) I(A,B) =
∑

a∈A,b∈B

p(a, b) ln

(
p(a, b)

p(a)p(b)

)
.

H(A|B) in Equation 7.1 is the entropy of A conditional on B, which is called equiv-

ocation as computed with

(7.3) H(A|B) =
∑

a∈A,b∈B

p(a, b) ln

(
p(b)

p(a, b)

)
.

For a system with n variables, entropy H(p1, . . . , pn) is a measure of a system’s order

and stability. Its value is maximized when the system is at an equiprobability state. A greater

value of entropy indicates a more balanced system in terms of the measured information.

The police patrol planning problem can be restated as one in which patrol locations

are sought so that the system entropy is maximized. We define the probability term pa in

terms of a statistical measure of the ratio of an officer’s patrolling radius (r) with regard to

the quickest path to other locations over the length of the network. It also includes the effect

of historical crime data in terms of the crime weight (w, defined in Section 7.1.3). That is

(7.4) Hc1 = −p(c1) ln p(c1) , p(c1) =

(
rc1
rsys

+
wc1

wsys

)/
2 .

The entropy is a combination of the weight of a crime centroid (wc1), generated from

crime clustering, over the total system weight (wsys), added to the quickest path from the

centroid to any other centroid (rc1), over the quickest path in the entire system (rsys). This

balances the need for multiple patrols to cover a larger area that has few short paths between

centroids. The value of rsys can be determined by the length of an area’s all paths being

patrolled.

The total system entropy can be computed by summing up the entropy values for each

path, as HSystem =
∑

ciHci. The goal, therefore, is to maximize the system entropy subject

to the allowable maximum number of officers and patrolling resources, or equivalently to

maximize the entropy while minimizing the number of officers and resources used.

115



(a) stat density2d plot with size=1, bins=128. (b) geom point plot with alpha=1/10.

Figure 7.3. ggplot2 plots of all crimes by weight.

The entropy maximization approach works as follows. It starts with the nodal entropy

values from the all officer configuration as the calculation base, and assumes that the entropy

contributions to the total system entropy from the patrolling officers are not subject to the

equivocation property. After ranking the nodal entropies in descending order, the method

selects the node that contributes the maximum to the system entropy and places an officer at

that node. After assigning an officer to a node, the entropy values of the connected nodes are

adjusted, considering equivocation and entropy maximization approach. The nodal entropies

are re-calculated and the node with the highest entropy is selected for patrol placement.

The process is repeated until the entire area is covered or the number of available officers is

reached.

7.1.4.2. Implementation of Police Patrolling Strategy

To ensure that the geospatial distribution is fairly uniform, we plot the crimes against

a map of LA County using the library ggmap [119]. A 2d density plot of the crimes is shown

in Figure 7.3a and a plot of the all the crimes shaded by crime weight is shown in Figure 7.3b.

Both figures were generated using the R [210] library ggplot2 [226].

We use Google Maps as the base layer for ggmap to present crime clusters and police
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patrol placement. We convert each crime record from the State Plane Coordinate System

(SPS) format to the actual latitude/longitude since that is the only format Google Maps

API will allow. The correct State Plane projection for California V is European Petroleum

Survey Group (EPSG) 2229 [96]. To get the correct latitude/longitude we use the rgdal [123]

library in R to convert each X/Y pair to EPSG 4326, which is the EPSG identifier for World

Geodetic System (WGS) 84.

After the coordinates are converted, we cluster consecutive sets of data for different

hours of a day and different days of a week. We use a simple data clustering method, i.e.,

K-Means clustering, with a size of 50 based on the hexbin plots shown in Figure 7.1c. Since

K-Means clustering does not implement a weight feature, we replicate each row times its

weight for clustering. For the optimum clustering, Mclust or DBSCAN should be used and

data should not have to be replicated. The resulting cluster centroids are aggregated with

their sum weights and saved.

We use real-time traffic analysis as the basis for our “pipes” between clusters. The

Google Maps Distance Matrix API [87] provides traffic-time between points, and can be

used to predict traffic at future dates/times. Using the Google Maps Distance Matrix API,

the distance between each pair of the centroids is the drive-time calculated to each other.

For cluster i and cluster j we use the first drive-time calculation, i.e. from i to j only. A

more robust solution would be to calculate bi-directional travel-times for each centroid in

the fully-connected graph. Since the free-limit for the API is 2500/per day, we find that the

bi-directional aspect would not affect our experimental data.

As we collect all the traffic data, our algorithm connects the cluster centroids using

this traffic-time. Using this network, we then place patrols within the centroids. Patrols are

placed according to the entropy calculation using Equation (4) for each edge in the connected

centroid graph.

We place a fraction (denoted by f) of the number of centroids as patrols (denoted

by n), such as 50%. This is a fair number of patrols to emphasize our approach, although

this number would obviously be adjusted for real cities. This is a small number for such a
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(a) Monday at 0000 hours. (b) Monday at 0100 hours.

Figure 7.4. Crime clusters generated by K-means clustering. Black dots
represent each cluster’s center (centroid).

large area, but our algorithm is generalized enough that any area and cluster combination

is calculable. The only restriction is the drive-time between clusters using the Google API,

since for a robust algorithm, the number of edges is an nP2 permutation of the number of

centroids.

After each edge entropy is calculated, the f × n patrols are placed according to

the most information gained from the entropy calculation. All preprocessing, filtering, and

feature selection is done using the Go programming language for speed and concurrency, and

then the data are exported to CSV for visualization in R.

7.1.5. Experimental Results

Figure 7.4a and 7.4b show the results of crime groups by using K-Means clustering

approach. One is for Monday at 0000 hours and another is for Monday at 0100 hours. Using

our entropy calculation to place patrols, we emphasize the long drive time needed between

crime clusters and the actual amount and severity of crime in a given area. There are several

outliers located in the south-east corner of LA County, which means that the entropy formula
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(a) Monday at 0000 hours. (b) Monday at 0100 hours.

Figure 7.5. 50 crime clusters with 25 patrols placed using entropy algorithm.
Black cross-hairs show placed patrols.

must be balanced between the aggregate weighting and drive-time. These plots are available

in Figure 7.5a and 7.5b. Larger area cities might need to assign a higher weight to drive-

time during entropy calculation, whereas smaller cities could emphasize crime aggregates

and disregard drive-time.

The choice of 25 patrols is used as the number of cluster nodes. For real-world use,

the entire entropy of the system could be calculated over hundreds of nodes. Then patrols

would be placed on the highest-entropy nodes, and the entropy of the system minus that

node would be recalculated. Patrols would be placed until there is no change in entropy,

or there is no more “information” gained by covering any other nodes. This is much easier

if hundreds of clusters have been generated since patrols will be able to overlap closely

(drive-time) related nodes.

Another solution to the closely clustered centroids is described below, which is to

collapse clusters that are “clustered” together inside some predetermined constant. Neither

solution addresses the aggregate weighting of crimes at nodes, merely the presence of police

at a given node. In higher weighted nodes, more physical police presence should be em-

placed, while in lower weighted nodes lower-profile solutions could be used instead of police
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officers. These lower-profile solutions could include community-organized watch or at-risk

youth programs.

While the results follow the information theory of entropy, there is unfortunately no

way to determine if the calculated patrols can reduce crime. It would be up to the LAPD

to change patrol areas and implement new strategies. Therefore, the impact of this strategy

in real-world applications is uncertain.

7.1.6. Discussion

In our experiments, we need to remove about 37% of the original dataset because

of incorrect X/Y coordinates or incomplete data. There is a possibility that the crime

densities would not be uniform across weightings or hours due to these records. Since our

algorithm can work at a more granular level, i.e., by day and hour, this should not affect our

performance.

There are many external threats to validity. While police patrols can be varied and

changed, police officers are not a resource that can be turned on or off each shift. If officers are

not out on patrol, they will be at their station on administrative duty. In addition, while our

algorithm balances car patrols among the higher crime areas, criminologists agree that Police

presence in communities is one of the main deterrents to crimes being committed. Adding

random car or foot patrols to lightly surveilled areas could counteract those criminals.

We do not partition our data into hourly chunks, but for actual implementation, each

hour could be treated as its own maximization problem, with carry-over between centroids

that cross hourly barriers. In addition, we do not take into consideration the aggregate

size of each centroid. Patrol sizes should be adjusted to account for both the aggregate

weighting of the centroid and the numbers of crimes within a predefined area of time around

the centroid. Statistically we can determine how many crimes will occur in this centroid per

hour and adjust the patrol count to adequately cover most crimes within the entire cluster,

but this would be up to police management and budget constraints.

There are numerous problems with the crime dataset, from missing time, to blank

coordinates, and locations that are not even in the state of California. For future study,
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completing the dataset and mapping crimes with correct coordinates will improve the re-

sults for effective patrol planning. Regarding the weighting system, since each police force

categorizes and prioritizes crime differently, this would be adjusted by city-policy. For Los

Angeles, we felt five levels were sufficient, but for other cities that number would be adjusted

up or down. In addition, the crime weighting system could be improved by adding a sliding

time scale so that more recent crimes are favored over older crimes. The window used in the

experiment by Ratcliffe et al. [178] weighted crimes committed each year half as much as

the next year, e.g. 2008 = 1.0, 2007 = 0.5, 2006 = 0.25. Since crime hotspots usually have

a long-term crime trajectory, weighing each crime’s date with an exponential decay may be

better suited to robust crime data that spans many years.

7.1.7. Conclusion

In this paper, we study the police patrol planning problem for the safety of citizens in

cities. We formalize the problem as an entropy maximization process in a police placement

network and derive the optimal solution. Our algorithm shows that using entropy composed

of both the drive-time between cluster centroids and the actual severity and aggregate of

the centroid is effective in placing police patrols. These patrols are placed according to the

resource maximization of available patrols, and police time is not spent driving between

hot-spots of crime within the city. Since our approach is generalizable, any city utilizing

smart crime collection can benefit from our work, provided they defined their crime weight

and reporting system.

In our study, the main categories are a good estimate for our algorithm, but for future

work we will focus on broader datasets and be more pragmatic in filtering records that do not

meet a timeliness threshold, i.e., “Exploitation of Child via internet” should not necessitate

an immediate police response. For cities with multiple types of police response, e.g., car,

foot, and bicycle, the Google API can provide a drive-time for each type of patrol, further

benefiting the overall patrol coverage. Lastly, we plan to define a response time and collapse

all the clusters that are within that time window into one super-cluster with the aggregate

weighting of all sub-clusters before the entropy of the system is calculated.
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7.2. TuranGo: Mutation Testing a Language

The modern CAV landscape includes almost every programming language know.

Starting at the data center, Golang is used for a host of backend services, like schedulers in

Cloud Foundary, or networking ingress controllers in Kubernetes. Every cloud provider has

extensive Golang codebases, with most composing the majority of their open-source con-

tributions. For developing machine learning models, Python has been dominating machine

learning with popular libraries like TensorFlow, PyTorch, Theano, Keras or of course scikit-

learn. The other most popular ML language is C++, also used with TensorFlow. These

languages normally use the NVidia CUDA API, written for C, C++, and Fortran, to run

large training sets in parallel on the GPUS in graphics cards. For running inference models,

Python, C++, Java and C#are popular. Low-level, microcontroller programming is handled

by C, with more and more work being done in C++. Even Golang is being deployed to

microcontrollers with projects like TinyGo [65]. For general purpose applications, Java is

still popular for many applications, as the JVM is relied upon to provide platform abstrac-

tion between the developers workstation and the end-user’s device. All these languages have

extensive testing frameworks, with Java’s JUnit pushing forward the concept of test-driven

development (TDD) with its release in 1997.

Passing tests gives your project confidence, and with enough coverage, this confidence

is justified. But what about the libraries your application relies upon? A language’s standard

libraries are taken for granted, and universally used. Normally these libraries are trusted to

be quality implementations and tested to be free from bugs. One of the most effective ways

to verify your test suite is complete is with mutation testing. To test if mutation testing is

suitable for modern Continuous Integration (CI) environments, in this paper we present a

mutation tool for Go packages called TuranGo and evaluate it on open-source application

and packages. In addition, since Go is relatively new, the standard libraries are treated as a

reference for the “Go way”. Thus we develop an experiment to investigate whether the test

suites become better over time. To do this, we take a sample of the standard libraries and

mutation and test it throughout each Go version.
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7.2.1. Introduction

The main idea of mutation testing [160] is to create a different version of a codebase

(called a mutant), and then run the original test suite on this mutant. There are three

possible outcomes for the test suite:

(1) failed because the mutant is killed,

(2) passed because the mutant lives, or

(3) passed due to an equivalent mutant that cannot be killed.

According to the Reachability, Infection, and Propagation (RIP) model [7], a mutant can

only be killed if the following three conditions are met.

(1) Reached —- The test must actually execute the statement.

(2) Infected —- The statement must actually be mutated.

(3) Propagated -— The result of the test must be visible.

While being an effective way to judge the quality of a test suite and thus the codebase,

mutation testing is expensive [159] in terms of both computational power and time spent on

testing. Many modern mutation tools have complex algorithms to pre-select tests and pair

those tests with the “correct” mutants, thereby reducing the overall testing time.

Go offers an interesting way to address that expense, as by design it is a modern lan-

guage built for fast compilation with a built-in testing framework and baked-in concurrency.

To evaluate if mutation testing is an appropriate fit for the Go language, in this paper

we develop a Go mutation tool, called TuranGo. We evaluate it using experiments. In the

first set of experiments, we sample open-source programs along with some packages to study

if the benefits outweigh the disadvantages in a continuous integration (CI) environment.

For the second set of experiments, we write another tool to test a sample of Go’s standard

packages to analyze if the test suites developed better quality tests through each version

of Go released. Our experimental results show that there are good benefits for Go CI

mutation testing, even though it extends testing time significantly. Additionally, our second

experiment shows that the quality of tests in the actual Go language has decreased slightly
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over time, with some specific packages having unexpected and irregular quality trends.

The rest of this paper is organized as follows. Section 7.2.2 introduces the Go language

and Section 8.2.1 discusses the related work. The design of TuranGo is described in Section

7.2.3. Sections 7.2.4 and 7.2.5 present and analyze the experimental results. Section 7.2.6

concludes the paper with remarks on future research.

7.2.2. Background

Go is a “new” language invented in 2007 by Robert Griesemer, Rob Pike, and Ken

Thompson. It was started as a pure research experiment while all three were working at

Google. Robert Griesemer previously worked for Sun Microsystems focusing on the Java

Hotspot VM, and later wrote the V8 JavaScript engine for Google. Rob Pike previously

worked for Bell Labs, where he wrote the first windowing system for UNIX. With Ken

Thompson, he developed UTF-8. Ken Thompson is best known for inventing UNIX while

working at Bell Labs.

7.2.2.1. Go

Go, also called golang, is a derivative in the C-family of computer languages. Designed

to be concise, the Go language consists of only 25 keywords and 47 operators/delimiters.

This compares to 112 keywords for C++ (120 including identifiers) and 44 for C, according

to the C++20 and C++17 standards [115]. In addition, Go was designed for the “modern

age”, with a number of design goals [84]:

• Computers are enormously quicker but software development is not faster. It is

possible to compile a large Go program in a few seconds on a single computer.

• Dependency management is a big part of software development today but the

“header files” of languages in the C tradition are antithetical to clean dependency

analysis and fast compilation. Go provides a model for software construction that

makes dependency analysis easy and avoids much of the overhead of C-style include

files and libraries.
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• There is a growing rebellion against cumbersome type systems like those of Java

and C++, pushing users towards dynamically typed languages such as Python and

JavaScript. Go’s type system has no hierarchy, so no time is spent defining the

relationships between types. Although Go has static types, the language attempts

to make types feel lighter weight than in typical object oriented languages.

• Some fundamental concepts such as garbage collection and parallel computation are

not well supported by popular systems languages. Go is fully garbage-collected and

provides fundamental support for concurrent execution and communication.

• The emergence of multicore computers has generated worry and confusion. By

its design, Go proposes an approach for the construction of system software on

multicore machines.

Go also has a built-in testing framework. Any *_test.go file in the package directory

will be loaded by the go test command and any functions prefixed with “Test” will be

executed. Test coverage is also built-in, and can be generated by appending the -cover flag

to the go test command.

Go is particularly suitable for mutation testing because of its ability to quickly com-

pile. Some of the main reasons for this efficiency include:

(1) A clearly defined syntax that is mathematically sound, for efficient scanning and

parsing.

(2) A type-safe and statically-compiled language that uses separate compilation with

dependency and type checking across module boundaries, to avoid unnecessary re-

reading of header files and re-compiling of other modules - as opposed to independent

compilation like in C/C++ where no such cross-module checks are performed by the

compiler. Compared to C++ that needs to re-read all those header files over and

over again, even for a simple one-line “hello world” program.

(3) An efficient compiler implementation (e.g. single-pass, recursive-descent top-down

parsing).

Go uses semantic versioning [171]. There have been 66 patch releases of Go since 1.0
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was released March 28th, 2012. There have been 11 minor releases with an average of three

patch releases for each minor release. There has only been one major release of Go.

7.2.3. TuranGo: A Mutation Tool for Go Packages

In order to examine mutation testing in the Go language, we first survey the open-

source community for current mutation testing packages. Two packages have been well

developed, but have not fully met the needs for our experiments. One does not include

enough mutators and the other tool includes platform-specific UNIX code that makes it

unsuitable for cross-platform development.

We develop a mutation tool for Go packages, named TuranGo. TuranGo is composed

of three main components: a Parser, a pluggable Mutator framework, and a Tester. An

architecture overview is shown in Fig 7.6. The Parser loads the Go package and loops

through each non-test file in the package, then parses that source code into an abstract syntax

tree (AST). We use an AST because Go has very good support for transferring/modifying

an AST tree through packages ‘go/ast ’, ‘go/parser ’ and ‘go/token’. Using ASTs provides

many benefits since the Mutators do not have to get bogged down the details of syntax,

correctness, or commented-code. The Parser also does a benchmark test of the package to

both ensure that all tests pass in the test suite and generate a baseline timeout number for

the test mutants.

The Mutator framework contains a number of mutators that are registered and en-

abled during the mutation phase. These mutators are separate packages and are listed in

Table 7.4. Packaging each mutator separately ensures that mutators can be enabled or

disabled by the developer during testing, and facilitates a concurrent/parallel solution for

larger target packages. Each mutator walks the AST, returning both the count of available

mutations and a channel for signaling mutant creation. Some Mutators remove statements

entirely and other Mutators swap operators to their logical opposite. For unary tokens, their

mutation is the removal of the token entirely. Table 7.5 lists all the tokens TuranGo currently

recognizes during mutation. These tokens are taken from the Go language specification [86].

Once a mutant has been created, the source code is saved to a temporary directory
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within the GOROOT environment variable. This is because starting with Go version 1.5,

“internal” packages may only be used within GOROOT, and compilation/testing fails otherwise.

Figure 7.6. TuranGo architecture

The Tester functionally tests the mutant code using Go’s go test command, and

records the results as either Alive, Killed, TimedOut, or ErrorCompiling. If the mutate

code is compilable, the Tester also records a difference of the source file and the mutant file.

Currently this functionality relies upon the command line tool diff being installed. After

the mutant has been tested, the Tester sends a message back down the Mutator channel to

start the next mutant generation.

After all the mutators have been iterated through, the results from all the mutations

are collected into a struct. The struct is then serialized to JSON in the specified output

directory.

While Go does include some object-oriented logic, it is not a conventional object-

oriented programming (OOP) language like C++ or Java. The only objects are structs, and

nested structs, and public or private is determined by either a CamelCased name for an

exported function/variable, or an all lowercase name for unexported function/variable. We

initially choose to mutate the exported/unexported functions in Go. However, this results

in a huge number of mutants which almost all fail to compile. With the large number of

failed mutants, we deem mutating unexported/exported unnecessary.
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Table 7.4. TuranGo Mutators

Package/Mutator Description/Capabilities

control/case Empties a case body in a switch statement

control/else Empties the body of an else statement in a conditional

control/if Empties the body of an if statement in a conditional

expression/remove Removes terms from a binary expression

expression/remove/LAND Short-circuits a && expression by setting the first term to TRUE

expression/remove/LOR Short-circuits a || expression by setting the first term to FALSE

operator/assignment Swaps assignment operators to their logical opposite

operator/binary Swaps binary operators to their logical opposite

operator/inc dec Swaps increment/decrement operators to their logical opposite

operator/unary Removes unary operators from expressions

statement/remove Removes statements, both from blocks and case clauses

7.2.4. Empirical Study and Experimental Results

We conduct experiments on a quad-core Intel Core i5-3570K with 16GB memory.

Testing needs to be completed in several phases because of the total number of mutations

involved. Since TuranGo writes each mutation to disk, the execution time is limited by the

slower magnetic disk. An SSD or a memory-based file system would improve overall speed.

Although Go is cross-platform and can cross-compile, Windows 10 is selected as the host

OS for convenience since mutation testing 26 Go versions across 28 packages results in 728

separate TuranGo runs and 272,574 mutations.

7.2.4.1. Would Mutation Testing Be a Good Fit For a CI Pipeline?

In order to test if TuranGo would be a good fit for CI, we choose to evaluate an

open-source application through the CI cycle combined with TuranGo mutation testing. Go

applications can range from large (many thousands of lines of code in hundreds of packages)

to small (hundreds of lines of code in only one package ‘main’). Software application [32]

for instance is composed of 229 packages and over 190,000 lines of code (KLOC), with 261
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Table 7.5. List of Tokens and Their Logical Opposites

Token name Operator Go token Opposite

Addition +, += ADD, ADD ASSIGN SUB, SUB ASSIGN

Subtraction -, -= SUB, SUB ASSIGN ADD, ADD ASSIGN

Multiplication *, *= MUL, MUL ASSIGN QUO, QUO ASSIGN

Quotient /, /= QUO, QUO ASSIGN MUL, MUL ASSIGN

Remainder %, %= REM, REM ASSIGN QUO, QUO ASSIGN

Unary Plus + ADD Nonea

Negation - SUB Nonea

Bitwise AND &, &= AND, AND ASSIGN OR, OR ASSIGN

Bitwise OR |, |= OR, OR ASSIGN AND, AND ASSIGN

Bitwise XOR ^, ^= XOR, XOR ASSIGN AND, AND ASSIGN

Bitwise Shift Left <<, <<= SHL, SHL ASSIGN SHR, SHR ASSIGN

Bitwise Shift Right >>, >>= SHR, SHR ASSIGN SHL, SHL ASSIGN

Bitwise AND NOT &^, &^= AND NOT, AND NOT ASSIGN XOR, XOR ASSIGN

Bitwise Complement ^ XOR Nonea

Logical AND && LAND LOR

Logical OR || LOR LAND

Logical NOT ! NOT Nonea

Increment ++ INC DEC

Decrement -- DEC INC

Equal to == EQL NEQ

Less than < LSS GEQ

Greater than > GTR LEQ

Not equal to != NEQ EQL

Less than or equal to <= LEQ GTR

Greater than or equal to >= GEQ LSS

a Unary tokens have no opposite, so they are removed in a mutant
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KLOC for testing. Just compiling the application using Go 1.6.2 takes approximately 180

seconds.

In order to determine if TuranGo would be beneficial during CI, we select an appli-

cation that is on the smaller side, but still has a good ratio of code to tests. For this set

of experiments, we choose plot [127], a Go plotting application composed of 15 KLOC in

14 packages with 3 test KLOC. Running a baseline test in all packages takes 1.1 seconds in

total.

After baseline testing (with coverage) of each package within plot, we run TuranGo

on each package that contains tests and record the results which are presented in Table 7.6.

The overall testing time increases drastically from 1.097s to 9,593s. Of the two main

subpackages, palette and plotter, test coverage is already reasonably high at ≥80%. This

makes mutation testing effective, as the high coverage and large codebase produced many

mutations. While the total mutation testing time of 2.5 hours is well outside of the normal

time cycle of ∼30 minutes for CI, the majority of the mutation testing time takes place in

the plot/plotter package with over 1200 mutations. A higher individual test baseline also

contributes to this mutation testing time since the time-out baseline is a CPU multiple of

that initial baseline. That high time-out combined with the large number of mutations

results in the over 2 hours and 39 minutes in testing.

While testing an entire application is one use case for CI, many developers work on

single packages that do not belong to any one application in particular. To ensure that

we see the larger perspective of CI during development, we sample selected open-source Go

packages, along with some Go standard packages for CI simulation with TuranGo. Results

of those mutation tests are in shown Table 7.7.

Testing the sampled open-source packages resulted in much lower numbers. While

jessevdk/go-flags takes only 0.27s to baseline test, but a staggering 5467s to mutation test,

that package includes 3 KLOC of testing code and run through 1645 mutations. The rest of

the experiment shows that testing time increases, but is still manageable compared to test

frameworks from other languages.
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Table 7.6. gonum/plot Packages and the Test Results of TuranGo

Packages Baselinea KLOC Coverage Mutations Score Timea

gonum/plot 0.030s 1.0 15% 464 100% 609s

../gob 0.035s 0.14 100% 20 0% 54s

../palette 0.127s 5.4 90% 115 84% 540s

../plotter 0.536s 4.3 80% 1219 66% 6180s

../plotutil 0.016s 0.58 1% 12 83% 59s

../vg 0.258s 1.8 79% 92 0% 392s

../vg/draw 0.016s 0.53 12% 303 7% 950s

../vg/recorder 0.032s 0.38 87% 48 100% 112s

../vg/vgimg 0.025s 0.37 48% 125 0% 391s

../vg/vgtex 0.022s 0.28 71% 101 64% 306s

Total 1.097s 14.78 58% 2499 51% 9593s

a Three-run average time in seconds

To get real-world experience with Go CI, we enlist the help of a developer at USAA,

a major American insurance and financial company. This developer is in charge of a medium

size team that is converting all of their internal Node.js and Python backend APIs to Go. On

their team they use JIRA for issue and project tracking, and Jenkins for their CI environment.

Developers in the team run a mixture of operating systems, from Windows 7 to Ubuntu,

and Mac OSX. In the interest of time, they ran TuranGo only on packages that had changed

between commits. When a developer on the team merged a branch, a Jenkins git hook

initiated the TuranGo testing job on the changed package after the normal package test

suite passed. Unfortunately, because of confidentiality on internal non-open source projects,

this developer could not provide any empirical numbers during the developer cycle. Instead,

he completed a survey after using TuranGo for two weeks constituting one Agile sprint.

Evaluation was done on a dual-core Intel Core i7-620M with 8GB memory. An SSD

was used for testing, which reduced the I/O wait-time. The host OS was Mac v10.11.4. This
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Table 7.7. Packages with Baseline TuranGo Test Times

Packages Baselinea KLOCb Mutants Score Timea Time Q

Go standard library packages

image/color 0.095s 0.3 (0.1) 311 53% 353s 3.7k×

hash/crc64 0.011s 0.05 (0.07) 28 71% 89s 8.1k×

hash/crc32 0.011s 0.1 (0.1) 77 27% 141s 12.8k×

html 0.013s 2.4 (0.16) 185 74% 271s 20.8k×

log 0.012s 0.2 (0.2) 131 73% 151s 12.6k×

Open-source packages

gorilla/websocket 0.287s 2.0 (1.0) 678 62% 2310s 8.0k×

jessevdk/go-flags 0.027s 3.0 (3.0) 1645 77% 5467s 202.5k×

gosuri/uitable 0.012s 0.2 (0.1) 47 83% 72s 6.0k×
a Three-run average time.

b Test KLOC in parenthesis.

is representative of a normal Go developer’s day-to-day environment.

7.2.4.2. Has Go Package Testing Improved Over Time?

To determine if the Go standard packages have increased the completeness of their

test suites, we develop an experiment to mutation test the standard packages over releases.

we use the latest Go binaries as of writing, 1.6.2, and use the official github.com Go repo [85]

for the source code.

The program we write first downloads all the selected Go versions through ‘git’, and

then mutation tests each selected package in that version. The results are saved to JSON

for easy parsing into charts or other data manipulation. Since the user must define what

packages and versions to test in a JSON configuration file, the program we write is extensible

enough to test any standard packages, and any repository tags.

To first see how many versions that we need to test, we use ‘git’ to list all the tags for
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Table 7.8. Sample of Go Packages Selected for Version Testing

Package Description

compress/gzip Implements reading and writing of gzip format compressed files.

container/heap Provides heap operations for any type that implements the interface.

container/list Implements a doubly linked list.

crypto/aes Implements AES encryption (formerly Rijndael).

encoding/csv Reads and writes comma-separated values (CSV) files.

hash/crc64 Implements the 64-bit cyclic redundancy check (CRC-64) checksum.

html Provides functions for escaping and unescaping HTML text.

image/color Implements a basic color library.

math/cmplx Provides constants and mathematical functions for complex numbers.

text/scanner Provides a scanner and tokenizer for UTF-8-encoded text.

the repository. Releases are tagged “go$VER”, with $VER representing the short form of

the Go semantic version. We save all the tags that start with “go” and remove all the ‘beta’

or ‘release candidate’ tags since those are not under consideration in semantic versioning.

Previous to Go 1.4, the standard packages were located in ‘src/pkg ’, and starting with 1.4

they moved to ‘src’.

We then run a full test on all the Go standard packages to see if any problems are

encountered during the testing phase. There are 139 total packages, of which there are eight

packages with no tests all. Testing “math/big” takes 446 seconds. It is composed of 310 tests

in 14 files. The “errors” package is tested in 8 ms, and there are only two tests in one file.

Using these testing times as a guide, we decide to mutation test a sample of packages instead

of the full standard library. Because of time limitations, we randomly select 28 packages, first

removing any packages that takes over 10s to test. A sample of the Go standard packages

that we choose to mutate is listed below in Table 7.8.

Once the packages are chosen, we complete the JSON configuration and start the

133



testing phase. Since we are using a larger testing environment, we write this experiment as

a producer/consumer pipeline to take advantage of the greater number of CPUs and main

memory. We limit the number of workers (consumers) to the number of CPUs minus one to

avoid false negatives from mutants erroneously timing out during testing.

The producer loops through each enabled Go version, and git clones down the source

repository tagged with that Go version. It then loops through each enabled package and

passes the version and package name to a worker through a channel.

The workers loop through the job queue channel, pulling messages off, then running

TuranGo on that Go version and package. Since the workers are independent, they can reside

on different CPUs to enable parallel testing and increase the overall throughput. After a

worker has tested a unique combination of Go version and package, the JSON results are

saved to the output directory under that Go version and package name. The results of the

sampled testing are shown in Figure 7.7. A black dotted line shows the average score for

each version. Figure7.8 shows the average score and trend over time of the selected packages.

7.2.5. Discussion

7.2.5.1. Would Mutation Testing Be a Good Fit For a CI Pipeline?

As Table 7.6 shows, the overall testing time increased significantly, moving this from

a CI tool to something more akin to a integration test or special testing phase, rather than

something that is hooked up to run every commit.

TuranGo is a good tool to use during the CI process even though it lengthens the

testing process. The immediate feedback with diffs of codes will greatly benefit finding

faults in tests, and the test suite in general. While testing time was substantially longer

using mutation testing, several factors can mitigate this lengthy testing time.

First, while mutation testing a package may take over 20,000 times slower than a base-

line test (see jessevdk/go-flags), the mutation testing phase will still be within the acceptable

limit for the test phase in CI to provide constructive feedback [71]. In addition, individual

134



Figure 7.7. Mutation scores for each Go version of the sampled packages

Figure 7.8. Average mutation scores over versions with linear trend line
(dashed R2 = 0.0607) of the sampled packages
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packages can be mutation tested in parallel, greatly reducing the overall test phase. Go

specifically gains from this because the design of Go, encourages small, reusable packages

which can be tested independently.

Also, if package tests are one-degree away from the code base, mutation tests are two-

degrees away. Since there is no mutation score without testing coverage, the mutation score

will always be a lower priority than the code coverage. Then project management would

have to dictate what mutation score is acceptable for the QA or production environment.

In this regard, package selection could be used to only mutation test packages that have

changed, or even further to only mutation test packages with a lower mutation score history

or history of breaking builds.

Finally, mutation testing can be viewed as a kind of regression test, where the regres-

sions are actually the coverage of the package’s test suite. A lower mutation score does not

mean that a build is broken, or even that the test suite did not pass. Actually the opposite

is true. So in a CI environment, mutation tests should only be run after the baseline tests

have run and no errors have been found. In a real-world example, a developer would only

need to run mutation tests before a pulled merge, or an environment promotion.

For Table 7.6, the implications are that the plot/plotter package should be broken

up into smaller, more mutation-friendly packages. Each source code file within the package

is responsible for a different kind of chart or graph. It would be trivial to separate those

into individual packages, and retain shared structs/methods/interfaces under the parent

plot/plotter package. That is only single packages that would need to be tested when a

change is made.

The open-source jessevdk/go-flags package suffers from the same problem that plot/-

plotter, namely too much code under one namespace. With 3 KLOC of code under just two

packages, main and flags, jessevdk/go-flags could be broken up into smaller, more testable

packages.

While the developer at USAA could not provide empirical numbers on defects or bugs

found, he felt that TuranGo enabled the team to get a better perspective on how their testing
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suites were being developed. Using TuranGo he was able to show to his management team

their critical backend services were woefully under-tested, and many of the tests they had

previously written were of poor quality. Secondly, he used TuranGo as a benchmark when

choosing between third-party Go libraries that provided the same or similar functionality.

7.2.5.2. Has Go Package Testing Improved Over Time?

As shown by Figure 7.8, the quality of Go standard tests has remained between 60

and 85 since 2012. Even though the results of the experiment show an average downward

trend, this only represents a small sample of all the available standard packages. And while

there are a few trends among subsets of packages, it seems that the overall trend can be

decided by chance since the sample set was small relative to the overall number of standard

packages. Note that the average mutation score is calculated by an average of the packages

scores, with no weight given to number of mutations or package size.

Among the sampled packages, crypto/aes has a strange trajectory. In Figure 7.7,

with Go version 1.0 it scores a 98.3%, but then falls to 24.8% for version 1.1. With version

1.2, it falls further to 0%. Starting with version 1.4 it climbs up to 26.8%, which it has

remained about till version 1.6, dropping again to 24.1%. This should raise some concern

among the Go language contributors, as the crypto/aes package is used widely within the

security community for systems programming and infrastructure services.

Among crypto packages, crypto/x509/pkix is a significant outlier with a score of 0%

across all Go versions. With 195 lines of code among five functions, that package provides

“shared, low level structures used for ASN.1 parsing and serialization of X.509 certificates,

CRL and OCSP”. Examining the package shows that there are actually no tests written

forpkix, which is why every mutant lived. Since there are 18 total crypto packages, writing

simple tests for pkix would raise the overall mutation score of the crypto group almost 5%.

It is evident that every minor Go release has a severe mutation regression, driving

down the average score. The mutation score rises on the next immediate patch release,

so it is prudent to wait for a “dot one” release before updating Go binaries/packages in a

production environment. Also, something in the test suites of several packages starting at
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Go version 1.4 results in a dismal overall mutation score that only recently starts to increase.

Two design decisions at 1.4 could account for those lower scores:

(1) Moving away from the C compiler entirely, forcing optimization in pure Go

(2) Private unexported packages could be relocated into an internal package namespace,

separate from the main package tree

7.2.6. Conclusions

Although not by design, Go is a great language for employing mutation testing. While

mutation testing is not widely used due to expense of both computation and time, Go’s quick

compilation, built-in testing framework, and smaller, modular packaging, mitigates the main

reason mutation testing is not widely used, namely the expense of time. For CI, TuranGo

provides many benefits without slowly down individual developer feedback, since it should

only be run during branch merges.

It is disappointing to observe that Go standard package tests have not improved over

time. However, these results are not statistically significant due to the small sample size.

The scores should be viewed as interesting assessment on what has changed in Go over the

minor revisions since the 1.0.0 release.

As future work, we plan to rewrite TuranGo in a producer/consumer architecture to

reduce the disk I/O required during mutation testing. One of the major bottlenecks during

our performance testing is having to waiting on I/O while iterating writing mutants to disk.

Pipelining these operations will enable concurrency during the testing phase and parallelism

on systems with more than one CPU. On UNIX systems there is also a possibility to use

a memory-based filesystem to speed up large tests. Additionally, there are many planned

features, for example, completely in memory difference engine for source file comparisons,

adding coverage information through cover out and checking line differences, enabling/dis-

abling mutators on the command line or configuration file, blacklisting code sections that

should not be mutation tested or is known equivalents, Jenkins integration utilizing Pitest’s

CI plugin, and smarter test picking ala Mothra [161].
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7.3. Embedded Deep Learning for Vehicular Edge Computing [105]2

The rapid development of deep learning has greatly increased the accuracy of object

recognition, but this deep learning generally requires a massive amount of training data and

the training process is very slow and complex. The complex models generated from this

training can also require more CPU and RAM during inference than resource-constrained

embedded systems are capable of. The following work performs benchmarks on such a

system, a Raspberry Pi® 3 Model B, diagrammed in Figure 7.9 below.

Figure 7.9. The Raspberry Pi® 3 Model B used in my experiments contains
a 1.2 GHz 64-bit quad-core Cortex-A53 (ARMv8) CPU, 1 GB of low-power
DDR2 SDRAM and four USB 2.0 ports via on-board 5-port USB hub. It
draws a maximum of 6.7 W at peak load.[177]

This work includes benchmarks with a novel class of inference hardware, an Intel

Movidius™ Neural Compute Stick, shown in Figure 7.10. This specialized Vision Processing

Unit is used to analyze the objects in the real time images and videos for vehicular edge

2Section 7.3 is reproduced in its entirety from Jacob Hochstetler, Rahul Padidela, Qi Chen, Qing Yang, and
Song Fu, Embedded deep learning for vehicular edge computing, 2018 IEEE/ACM Symposium on Edge
Computing (SEC), pp. 341-343, with permission from IEEE.
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computing. Distinct from a more generalized Graphics Processing Unit, this VPU is designed

for low-power applications such as 32-bit embedded edge nodes and even drones with USB

capability. The results shown in this study explains how the stick performs in conjunction

with different operating systems and processing power.

Figure 7.10. Intel® Movidius™ Neural Compute Stick (NCS)is a tiny fan-
less, USB 3.0 Type-A deep learning device containing a Myriad 2 Vision
Processing Unit producing almost 100 GFLOPS while only using 1 W of
power.[114]

7.3.1. Introduction

The need for low-power but capable inference processors has produced a new class of

computing called edge, or sometimes “fog” computing. These stand-alone, specialized edge-

computing devices has become more and more popular for three main reasons: lower network

delay, energy efficiency, and better privacy protection. The promise of edge computing is

that by processing data at the network edge would result in shorter response time, more

efficient processing, and less congestion on the network [198].
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Connected and Autonomous Vehicles (CAV) are a new class of vehicles that can both

communicate with each other or infrastructure (CV) and employ a number of systems that

enable automated driving functions (AV). The Society of Automotive Engineers (SAE) has

created a six-level hierarchy to categorize AV’s capabilities [8], ranging from no capability

at all to full automation with no driver engagement.

The CV’s communication capability is also categorized as Vehicle to Infrastructure

(V2I), Vehicle to Vehicle (V2V), Vehicle to Cloud (V2C), Vehicle to Pedestrian (V2P) or

the all-encompassing Vehicle to Everything (V2X).

Artificial neural networks (ANNs), or connectionist systems, are computing systems

vaguely inspired by the biological neural networks (NN) that constitute animal brains. Such

systems “learn” (i.e. progressively improve performance on) tasks by considering examples,

generally without task-specific programming. For example, in image recognition, they might

learn to identify images that contain cars by analyzing training images that have been

manually labeled as “car” or “not car” and use those results to identify cars in future,

unseen images. This was demonstrated in the TV show Silicon Valley by a character’s

SeeFood mobile app, which determined through an ANN if photos contained “hotdog or not

hotdog” [169].

This work presents benchmarks from deep learning networks running on an edge

computing node assisted by a Vision Processing Unit (VPU). Our results show that the a

mobile edge device assisted by a VPU is able to process video using a popular NN in real-

time. This is important for a CAV, since it leaves the main CPU and memory free for V2X

communication or other tasks.

7.3.2. Mobile Edge Computing Setup

7.3.2.1. Mobile Edge Device

The Raspberry Pi (RPi) is a small, single-board computer (SBC) [177]. Each RPi is

based around a Broadcom system on a chip (SoC), which contains the ARM CPU, RAM,
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GPU and general purpose input/output controllers (GPIO). Originally intended to just be

used in teaching computer science and basic embedded computing, but through three dif-

ferent models and several iterations, has become widely successful in home automation,

industrial (edge) computing and packaged commercial products.

The RPi3B used in our experiments contains a 1.2 GHz 64-bit quad-core Cortex-A53

(ARMv8) CPU, 1 GB of low-power DDR2 SDRAM and four USB 2.0 ports via on-board

5-port USB hub. It draws a maximum of 6.7 W at peak load.

7.3.2.2. Embedded Deep Learning Device

The Intel® Movidius™ [114] Neural Compute Stick (NCS) is a tiny fanless, USB 3.0

Type-A deep learning device that can be used to learn AI programming at the edge. NCS

is powered by the same low-power, high-performance Myriad 2 VPU) that can be found in

smart security cameras, gesture-controlled drones, industrial machine vision equipment, and

other embedded systems. Ubuntu 16.04 is supported installed on a physical x86 64 system,

or Debian Stretch running on a Raspberry Pi 3 Model B. The Neural Compute SDK comes

with a C++ and Python (2.7/3.5) API [113].

The Myriad 2 VPU within the NCS produces almost 100 GFLOPS using only 1 W

of power and generates between 10 to 15 inferences per second. The VPU includes 4 GB

of low-power DDR3 DRAM, imaging and vision accelerators, and an array of 12 very long

instruction word (VLIW) vector SHAVE processors. The entire NCS draws 2.5 W of peak

power through its USB 3.0 port. A trained Caffe-based or TensorFlow™ CNN is compiled

into an embedded neural network that is optimized to run on the VPU inside the NCS.

7.3.3. Experimental Results

Google’s MobileNets [109] is a Convolutional Neural Network (CNN) that uses depth-

wise separable convolutions to build light weight deep neural networks. MobileNets is tunable

by two hyper-parameters (e.g., size and depth), so that a less powerful embedded system

can trade accuracy for model latency (i.e., time to result). The Top-1 and Top-5 accuracy

in Figure 7.11 is measured against the Large Scale Visual Recognition Challenge [190]. The
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Figure 7.11. Google’s MobileNets Accuracy and Complexity

results from benchmarking MobileNets on a bare RPi3B and assisted with an NCS are shown

in Figure 7.12 below.

The next two experiments, depicted in Figure 7.13, compare a RPi3B to a standalone

Ubuntu Desktop. The Ubuntu 16.04 LTS system used for comparison is powered by a

3.06 GHz dual-core Intel® E7600 CPU, 4 GB of DDR3/1066 MHz RAM. The Linux kernel

used during testing was 4.15.0-23.

The first experiment used video_objects.py from the Movidius™ ncappzoo/apps,

along with the six example videos used for testing and training. The desktop achieved 9.3

frames-per-second (FPS) with a single NCS attached while the RPi3B produced 5.7 FPS. The
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Figure 7.12. MobileNets RPi3B (FPS): CPU only vs. 1 x NCS

second experiment used the GoogLeNet [206] CNN classifier street_cam.py with example

videos. With two sticks the desktop produced 6.6 FPS, while the RPi3B produced 3.5 FPS.

7.3.4. Discussion

In addition to a lower clock speed, the RPi3B only has a 60 MBps USB 2.0 bus, which

is ten times slower than the theoretical maximum of a USB 3.0 bus. This greatly limits the

speed that data can flow into the NCS from the host RPi3B.

KITTI is one of the main open resources for training CAV models and all the examples

are synchronized at 10 Hz (cameras, lidar, and GPS) [77]. The bare RPi3B is not able to

keep up with real-time processing when the depth and size increases in MobileNets. In
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Figure 7.13. Frames per second (FPS) platform comparison running 1 or 2-sticks.

contrast, a single NCS can process a single 10 Hz feed in real-time at the largest size and

depth, producing the most accurate results. Since each NCS is uniquely indexed, different

feeds can be sent to different sticks for independent processing, or independent networks

can be loaded on each stick for processing. Lab tests at Movidius™ show linear performance

increases up to 4 sticks, with validation pending for 6 to 8-stick configurations.

Neither the desktop, nor the RPi3B were able to process video_objects.py or

street_cam.py in real-time, which means that the models used could be further optimized

to produce better results on either platform.

7.3.5. Conclusions

The results show that the RPi3B is capable of processing real time video and rec-

ognizing objects using the embedded deep learning device. Multiple sensor feeds, which

are prevalent in CAVs, can be processed independently by different sticks. This frees the

edge computing device’s CPU and memory for other tasks, like real-time diagnostics, V2X

communication or Advanced Driver-Assistant Systems.
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7.4. Low-Latency High-Level Data Sharing for Connected and Autonomous Vehicular Net-

works [42]3

Autonomous vehicles can combine their own data with that of other vehicles to en-

hance their perceptive ability, and thus improve detection accuracy and driving safety. Data

sharing among autonomous vehicles, however, is a challenging problem due to the sheer vol-

ume of data generated by various types of sensors on the vehicles. In this paper, we propose

a low-latency, high-level (L3) data sharing protocol for connected and autonomous vehicular

networks. Based on the L3 protocol, sensing results generated by individual vehicles will

be broadcasted simultaneously within a limited sensing zone. The L3 protocol reduces the

networking latency by taking advantage of the capture effect of the wireless transmissions

occurred among vehicles. With the proposed design principles, we implement and test the L3

protocol in a simulated environment. Simulation results demonstrate that the L3 protocol

is able to achieve reliable and fast data sharing among autonomous vehicles.

7.4.1. Introduction

For years, the development of connected and autonomous vehicles (CAV) technology

has garnered significant interest from both research institutes and industry alike. CAV in-

corporate a variety of different technologies, ranging from computer vision [78] to wireless

networking [243], to facilitate a safe and efficient movement of people and goods, revolu-

tionizing the current transportation system. It brings a host of benefits such as improved

safety, convenient mobility for the elderly and disabled, and a better public transportation

system [95]. Ideally, CAV could help drive fatalities to near zero, given the technologies

continue to improve.

Autonomous vehicles are typically equipped with high-precision sensing systems, pro-

ducing a healthy amount of sensor data that need to be processed in real time. For example,

the autonomous vehicles developed by companies such as Google, Tesla, Mobileye autopilot

3Section 7.4 is reproduced in its entirety from Qi Chen, Shihai Tang, Jacob Hochstetler, Jingda Guo, Yuan Li,
Jinbo Xiong, Qing Yang, and Song Fu, Low-latency high-level data sharing for connected and autonomous
vehicular networks, 2019 IEEE International Conference on Industrial Internet (ICII), pp. 287-296, with
permission from IEEE.
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systems, are mainly equipped with LiDAR (light detection and ranging), camera, Radar, ul-

trasound, thermal camera, GPS, and IMU (inertial measurement unit ), etc. Currently, the

data generated by these sensors are processed and stored locally on individual vehicles, and

rarely shared among autonomous vehicles. The current solutions, however, come with several

limitations. When driving in the evening, rain, snow, fog or other bad weather conditions,

cameras may not work properly. Similarly with LiDAR and Radar sensors, intersections,

turning corners and other scenarios may witness the sensing systems not functioning prop-

erly. For example, Tesla autonomous car once had a fatal accident on a freeway. The vehicle

failed to identify the white body of a truck under an intense sunshine condition, and there-

fore did not activate the brake system in time. While developing more powerful sensors may

solve these issues, the associated cost will rise to the point where consumers cannot afford

the product, i.e., individual customers aren’t likely to see such vehicles in much volume.

A possible solution to the above mentioned issues is to allow autonomous vehicles

to exchange real-time sensing data to each other, realizing a connected and autonomous

vehicular system. Although data sharing among vehicles is promising, it faces several chal-

lenges that must be adequately addressed before the technology is deployed in real world.

These challenges are related to both data processing and data sharing, e.g., it is difficult

to synchronize the sensing data among vehicles, the networking bandwidth of existing wire-

less technologies is too limited to transmit the data, the large networking delay may be

prohibitive for autonomous driving applications. In summary, without efficient data pro-

cessing and transmission mechanisms, the sheer amount of resources that will be consumed

by autonomous vehicles can dramatically slow the deployment of CAV technologies.

7.4.1.1. Motivations

To achieve data sharing among autonomous vehicles, an effective way is to adopt the

V2X communications [245]. Intuitively, V2X communication connects cars to other cars or

the Internet to form a vehicular networks, including V2V (vehicle to vehicle), V2I (vehicle

to infrastructure), V2N (vehicle to Internet) and V2P (vehicle to people) communications.

V2X communication can be viewed as a means that allows the sensors on vehicles to extend
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their sensing range well beyond what they are physically capable of. By sharing the sensing

results with nearby vehicles and roadside infrastructures, vehicles can greatly enhance the

perception of the surrounding environment and thus enhancing their decision making. Even

though the self-driving function can be partially achieved by the vehicle itself, using V2X

can further improve safety and driving performance by reducing the cost of deploying high-

precision sensors. In addition to improving its own perception and decision making, the

enabled autonomous vehicle can also improve the driving reliability for the normal human

operated vehicles, making it more encouraging for the adoption of more vehicles equipping

V2X devices.

7.4.1.2. Challenges

The challenge of a CAV system comes from the massive deployment of sensors on

the autonomous vehicles and the huge amount of data that they can pick up from the

environment [247]. First of all, it is challenging to synchronize and fuse data generated

from different vehicles which may use different sensors (and algorithms) to perceive the

surrounding environment. Data fusion is the process of combining multiple vehicles’ data

to produce a more consistent, accurate, and reliable perception than what is offered by

an individual vehicle [97]. The data fusion process in CAV is usually classified into three

categories: low-level, intermediate-level, and high-level fusions, depending on the processing

stage at which the fusion takes place [125]. As their names imply, low-level fusion refers

to raw data fusion, which requires the highest network bandwidth to transmit the data.

Intermediate-level fusion, such as feature-based fusion, takes the features extracted from

the raw data before fusion. Finally, high-level fusion takes the processing results, e.g., the

objects detected from cameras, to conduct the fusion. For wireless vehicular networks,

regardless which type of fusion is adopted, the large amount of data generated and shared

among vehicles will pose significant research challenges to existing wireless technologies, e.g.,

dedicated shorte range communication (DSRC) [124] and 5G networks.
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7.4.1.3. Proposed Solution

To facilitate data sharing among autonomous vehicles, high-level fusion is often opted

over the other two levels of fusion, due to the small amount of data exchanged between ve-

hicles. In this way, each vehicle processes its sensing data locally and exchange its sensing

results with nearby vehicles. As long as the format of the sensing results are standardized, it

does not matter what sensing technologies individual vehicles adopt. In this paper, we focus

on the object detection results generated by the perception system on autonomous vehicles.

The object detection function is itself one of key components for autonomous vehicles, as

it allows a vehicle to account for obstacles when considering possible moving trajectories.

The object detection results of a vehicle are represented in a sensing matrix, which pro-

vides an overview of objects existing in the vehicle’s surrounding environment. Each vehicle

will broadcast its sensing matrix to nearby vehicles to achieve a high-level data sharing in

CAV systems. To mitigate the potential collision of packets simultaneously transmitted by

multiple vehicles, a low-latency data sharing mechanism is designed, leveraging the capture

effect that is widely observed in various wireless communication techniques. With the above

design principles, we propose a Low-Latency and high-Level (L3) data sharing protocol for

connected and autonomous vehicles.

7.4.1.4. Contributions

Inaccurate object detection and recognition are major impediments in achieving a

powerful and effective perception system on autonomous vehicles. To address these issues, we

propose the L3 protocol in which an autonomous vehicle combines its own sensing data with

that of other vehicles to help enhance its own perception. We believe that data redundancy,

as mentioned, is the solution to this problem and we can achieve it through data sharing and

combination between autonomous vehicles. The L3 protocol is effective and efficient, which

can improve the detection performance and driving experience thus providing better safety.

Specifically, we make the following contributions. We propose the mechanism to divide a

digital map into sensing zone and vehicles will only exchange sensing data about one zone

in which it current resides, leading to scalable data sharing. The object detection results
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on each vehicle are represented in a sensing matrix, which facilitates a quick information

sharing among vehicle, leveraging the capture effect. The proposed L3 protocol is evaluated

in simulations and it significantly outperforms existing solutions, i.e., offering a lower network

latency in sharing data among vehicles.

7.4.2. Data Sharing for Connected and Autonomous Vehicles

To design an efficient data sharing protocol for connected autonomous vehicle, it

is necessary to first understand the characteristics of data produced by various sensors on

autonomous vehicles. In this section, we investigate the mismatch between the huge amount

of data generated from autonomous vehicles and the limited network bandwidth available

for vehicular communications.

7.4.2.1. Characteristics of Data on Autonomous Vehicles

Autonomous vehicle is typically equipped with various types of sensors to obtain fine-

grained, real-time and accurate information about its surrounding driving environments. The

perception system on an autonomous vehicle usually consists of several LiDAR, Radar, cam-

era sensors, ultrasonic sensors, GPS and IMU (inertial measurement unit) sensors. Through

these sensors, sheer amount of data will be generated and these data must be processed

in real time. Each autonomous vehicle will collect almost 4,000 Gigabytes of data per day,

according to [194]. A LiDAR sensor, e.g., Velodyne LiDAR HDL-64, will generate 9.75 Mbps

of data when it scans at 5Hz, and up to 39 Mbps at 20Hz.

LiDAR is an essential component for autonomous vehicles as as it is used to detect

dynamic and static objects including other cars or pedestrians in order to navigate around

them. LiDAR is also applied to create high-definition maps and achieve high-accuracy

localization of autonomous vehicles. Due to the popularity of installing LiDAR sensors

on autonomous vehicles, in this paper, we use the point cloud data generated by LiDAR as a

case study to illustrate how the proposed L3 protocol works for connected and autonomous

vehicles.

To process the data generated by LiDAR sensors, several methods are proposed, e.g.,
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MV3D [44] and VoxelNet [254], to detect the objects existing in point cloud data. Due to the

sparsity of LiDAR data, it is quite challenging to accurately detect all objects in point cloud

data. Recently, VoxelNet [254] has announced its experiments on the KITTI dataset, i.e., it

offers an acceptable object detection performance on LiDAR data. However, its detection

accuracy is far from the performance of camera-based solutions. The average car detection

precision of VoxelNet is only 81.97%. For smaller objects, e.g., pedestrian and cyclist, its

average precision drops to 57.86% and 67.17%, respectively. While in a hard condition,

VoxelNet’s detection accuracy of car, pedestrian and cyclist further drop to 62.85%, 48.87%,

and 45.11%, respectively.

7.4.2.2. Detection Failures on Autonomous Vehicles

Detection failures occur on autonomous vehicles for various reasons, e.g., objects are

too far away, low-quality sensing data, errors in object detection algorithms. Therefore,

it is critical to share data among autonomous vehicles to achieve cooperative perception

wherein vehicles help each other to gain a better perception of their surrounding environ-

ments. Leveraging the sensing data provided from other vehicles, an autonomous vehicle can

essentially extent its sensing range and enhance its sensing capability, e.g, accurately detect

more objects on roads.

Using LiDAR sensor as an example, we illustrate several cases where detection fail-

ures could happen on individual vehicles that rely only on their own sensors. As shown in

Figure 7.14, we collect LiDAR data on an autonomous vehicle, referred as the sensing vehi-

cle. It stops in front of an intersection and move towards the north direction. In the figure,

we identify four major areas (marked with numbers) that are blocked by obstacles around

the intersection. The area #1 is totally non-observable as it is completely blocked by the

vehicles moving along the west-east direction. These vehicles are indicated by green boxes,

and we can see there is a big truck blocking the sight of our autonomous vehicle. Similar

situations can be found in area #2, in which a car (marked as yellow) is located in front

of the sensing vehicle. The relatively-large objects (e.g., buildings and trees) are the root

cause of the blocked areas #3 and #4. To improve the perception capability of the sensing
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vehicle, it would be beneficial to let other vehicles share what they sense. For example, the

green-boxed vehicle(s) can help provide information within areas #1, #3 and #4. The objects

in area #2 could be detected by the yellow-boxed car, and the information can be shared

with the sensing vehicle.

Figure 7.14. Detection failures occur on individual vehicles because objects
are blocked or exist in the blind zones of sensors.

Detection failures on autonomous vehicles could also happen due to bad recognition,

e.g., sensing data is too weak or is missing. As shown in Figure 7.15, we provide several

driving scenarios that are recorded in the T&J dataset [43]. These are the LiDAR data of

an autonomous vehicle, with each key frame being a time step forward from the previous

scanning position as the vehicles is moving along a straight path. Detected objects/vehicles

are marked by yellow boxes, including driving and parking vehicles. As we can see in

Figure 7.15, in the top two frames, we have vehicle #1 detecting only three objects. When

the vehicle moves forward, however, it is able to detect previous undetected objects. The

same happens with vehicle #2, except in this case, the objects are hidden from the LiDAR

sensor in the previous time step by other objects in the way.

We can imagine how dangerous this situation is should the vehicle still be blind

to those regions in its path. Should the vehicle not detect moving objects on a collusion
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course with itself, then an accident is bound to happen. Similarly, detection failures can

also contribute to the same situation should the camera sensors being obstructed in bad

weather conditions. However, this problem could be fixed if nearby vehicles exchanged

sensing information.

(a) Detected by vehicle #1 at time t. (b) Detected by vehicle #1 at t + 5 s.

(c) Detected by vehicle #2 at t. (d) Detected by vehicle #2 at t + 5 s.

Figure 7.15. Objects (outlined as yellow boxes) detected by different vehicles
at different time instances.

7.4.2.3. Challenges in Vehicular Networks

It is impractical to directly transmit the raw sensing data through current known

wireless networks available to autonomous vehicles. Optimally, the detected objects are la-

beled with detailed sensing information before transmitting out. The information of detected

objects should include when, where and which kind of object is detected by what sensor on

what vehicle, along with what size of this object and its movement conditions. We can image

it will be still challenging even if flooding the high-level object detection results in a high

frequency among vehicles.
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According to the research work [41], tested vehicles are communicating using DSRC

(Dedicated Short Range Communications) and Cellular networks along the Interstate high-

way I-90 in the Montana state, USA. It is found that the DSRC throughput between two

moving vehicles is less than 3 Mbps when the BPSK modulation technique is applied. As

for the cellular network performance, using Verizon and AT&T carriers, it is shown that the

LTE network can support up to 4.5 Mbps throughput, and 3G network only offer < 2 Mbps

throughput. In summary, none of existing wireless network technology would support the

high-level data sharing among autonomous vehicles.

Another technical challenge lie in vehicular networks is the large network latency

introduced by transmitting the sensing data among vehicles. For V2X communications,

especially in V2V communications, low latency is required because of the high mobility of

autonomous vehicles. As shown in Figure 7.16, hundreds of millisecond delay is observed for

cellular networks, while a substantially lower delay for DSRC.

(a) Measurement routes along the I-90 free-
way in USA.
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(b) Throughput and latency of DSRC and
cellular networks.

Figure 7.16. Field tests of V2X networking technologies.

7.4.3. L3 Data Sharing Protocol for Connected and Autonomous Vehicles

The huge amount of data can become impractical to transmit over any existing wire-

less networks due to unacceptable network latency and limited, especially in a mobile envi-
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ronment with a large number of vehicles. In order to develop the low-latency, high-level (L3)

data sharing protocol, the high-volume of data must be reduced appropriately. While the

amount of to-be-shared data is reduced, we must guarantee the useful information obtained

from the raw sensing date is still kept. Another challenge in a CAV system is that what

vehicles share may not be trustworthy [244, 45], which is an important issue but out of the

scope of this paper. Therefore, we assume here that all data exchanged between vehicles are

trustworthy, although detection errors may exist in the data.

7.4.3.1. High-Level Data Sharing

Based on the data shared from others, a vehicle must be able to extend its sensing

range or increase its sensing capability; otherwise, the data transmission would be useless

and should be omitted. For example, blocked areas behind obstacles on the road could

not be sensed, while this can be filled in by collecting “unseen” information from others.

Meanwhile, vehicles in adjacent districts or crowded areas can keep their connections for a

longer duration, hence data sharing can greatly help them get more useful information. In

summary, complementary data are always the most valuable information to share among

vehicles.

7.4.3.2. Sensing Zones on Digital Map

Generally, letting every vehicle report all observations they make would provide

enough information for object detection. However, this is not the case as doing so would

transmit an enormous amount of redundant data. For example, in crowded areas, many ve-

hicles may transmit a slight variant of the same information. The effectiveness drops rapidly

as redundancy increases. To address this issue, we compress sensing results into small data

packets to reduce the network traffic.

We introduce an approach to position every vehicle into a zone pre-indexed on a

digital map. As shown in Figure 7.17, a digital map is divided into equal-sized zones,

depicted as groups of red and blue blocks. Depending on the sizing choices, the sensing area

of a particular sensor could be a few zones or dozens of blocks. For a particular vehicle, it
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will be located in only one zone. Should it occupied two adjacent zones, the one it most

recently touched is considered the zone where it resides in. For this vehicle, the information

of objects within its zone becomes more important than those from other zones.

Figure 7.17. A digital map is divided into equal-sized zones and blocks so
that each vehicle is positioned into one zone and detected objects are placed
into blocks.

7.4.3.3. Sensing Blocks Within a Zone

While vehicles move on roads, each one of them will locates itself (e.g., 10Hz) into

one zone based on its current location informed by its GPS sensor. As each zone is assigned

an index in the pre-installed digital map that is available to all vehicles, vehicles in the

same zone would share information to each other. When a vehicle is moving on the road,

from its sensing data, it can detect various objects, including pedestrians, cars, motorcycles,

and bicycles. These objects are then labeled with their locations and size information. The

smaller the blocks, the more details about the objects, and thus the larger communication

overhead on the vehicular network.

Once a vehicle enters an indexed zone, it maps its sensing information (i.e., the object

detection results) to corresponding blocks. If a block is occupied by a detected object, the

location of this blocked will be marked as object detected. Otherwise, there is either no

object in the block or the vehicle is uncertain about whether an object exists in the block.

It worth noting that in some case a block may be out of the sensing range of a vehicle, and

this case must be considered when we encode the information of each block. To illustrate

the concept of high-level sensing data sharing among autonomous vehicles, we only consider
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one type of objects, e.g., cars, detected by a vehicle. For the blocks within the zone of this

particular vehicle, four possible values will be assigned: No object, Objected detected, Out of

sensing, and Uncertain.

In this way, the value of each block could be represented by two bits, denoted as b1b0.

Here, b1 indicates whether the block is sensed (1) or not (0). If b1 = 1, b0 indicates whether

objects exist (1) or not (0). When b1 = 0 , b0 presents whether this block is blocked (1) or

out of sensing range (0). In summary, we can assign 10 (No object), 11 (Objects detected),

00 (Out of sensing) and 01 (Uncertain) four possible values to each block within the sensing

area of a vehicle.

(a) Three vehicles are located within an intersection where the front view of vehicle
#1 is blocked by vehicle #2. Dashed circle indicates the sensing range and the shaded
area depicts the blind zone of vehicle #1.

(b) Sensing matrices generated by three vehicles. The element with value of (01) in
vehicle #1’s sensing matrix indicates that vehicle #1 has no idea if there is any object in
that block. The element with a value of (00), (11), or (10) indicates the corresponding
block is out of sensing range, contains objects and no objects, respectively.

Figure 7.18. Sensing zones of three vehicles.
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As Figure 7.18 shows, three vehicles are located within one zone, consisted of 5 × 5

blocks. Each vehicle maps its detected objects into a block in its zone. As such, each vehicle

can prepare a 5× 5 matrix, with each element representing the value of a block in vehicle’s

zone.

In this way, instead of sharing raw data, a high-level object detection results captured

in a matrix could be shared among vehicles. Different from the messages defined in the SAE

J2735 standard [124], smaller packets are adopted in L3, and thus smaller network bandwidth

consumption is expected. The SAE J2735 standard defined a DSRC message set dictionary to

support interoperability among DSRC applications through the use of standardized message

sets. However, the SAE J2735 packet size is usually on the level dozens of bytes; therefore,

it is not considered a light-weighted solution to data sharing among autonomous vehicles.

7.4.3.4. Low-Latency Data Sharing

As many vehicles may co-locate within one zone, the information shared among nearby

vehicles will become a huge load of network traffic. In addition, the frequency of data

produced by sensors is usually very high, in order to meet the real-time requirements for

autonomous vehicle’s applications. Given high-frequency and huge-volume of data exchange

among vehicles, network collisions are inevitable and must be carefully addressed. In this

section, we propose a low-latency data sharing protocol for V2V communications, leveraging

the capture effect that widely exists in wireless communications.

After the sensing data is processed, a vehicle will create a matrix to record all objects

it detects and use this matrix to determine whether it needs help from others, or it is the

best vehicle to provide information for others. For example, when a vehicle can clearly sense

its surrounding environment, i.e., the value of b1 of all elements in its sensing matrix is 1, it is

unnecessary for this vehicle to receive or process any information shared from others. On the

other hand, if a vehicle’s sensing matrix contains many elements with b1 = 0, it must request

helps from nearby vehicles to convert these b1’s from 0 to 1. Based on this simple principle,

we design a distributed data sharing protocol for connected and autonomous vehicles. In

the L3 protocol, sensing matrices are shared among vehicles in a synchronous manner where
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vehicles can only send data within pre-defined slotted time intervals. Because a vehicle’s

local clock is continuously synchronized with the atomic clocks on the satellites, here we

assume all vehicles within a zone is well synchronized.

7.4.3.5. Synchronous Data Communication Based on Capture Effect

As DSRC was standardized as the V2V communication protocol in USA [124], in

this paper, we focus on designing a synchronous data transmission mechanism for DSRC.

Based on the distributed coordination function (DCF) defined in the IEEE 802.11p protocol,

multiple access control is implemented based on the well-known carrier sense multiple access

with collision avoidance (CSMA/CA) mechanism [16]. The DCF approach is proved to be

efficient for relatively-low network traffics, however, its performance degrades significantly

in the cases where large amount of devices transmitting data simultaneously. In these cases,

as packet collisions occurs frequently, an larger contention window on each vehicle is ex-

pected, which will not only increase the network delay but also reduce the overall network

throughput.

To address the above-mentioned issues, we propose to leverage the capture effect that

was widely studied in IEEE 802.11 protocols [130]. Capture effect enables a receiver to

correctly decode a packet when the received signal is about 3 dB stronger than the sum of

the received signals from all others [9, 62]. As such, given multiple simultaneous wireless

transmissions, only the one with the strongest received signal can be received and decoded.

To ensure capture effect, the strongest signal must arrive no later than the air time of

synchronization header, after the first weaker signal [130]. If these conditions are satisfied,

collided packets (from the strongest signal) can be successfully decoded on the receiver. Due

to the capture effect, vehicles can receive packets despite interference from other vehicles that

are transmitting packets at the same time. As such, the network throughput is improved

and the network latency is reduced.

The synchronous data communication protocol works as follows. Vehicles owning

uncertain blocks initiate the data communication process by sending their sensing matrices

to nearby vehicles. The nearby vehicles overhearing the data will receive these packets with
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a high probability, due to the capture effect. On reception of these packets, the vehicles

combine their own sensing data with the received ones and update their sensing matrices

accordingly. The updated sensing matrices will be again shared with other vehicles. This

data aggregation process continues in a fully distributed manner until all vehicles in the same

zone have the same sensing matrix. When the protocol is executed multiple times, several

vehicles may have the same sensing matrix. In this case, when these vehicles simultaneously

send the same sensing matrix to others, a constructive inference could be observed. Con-

structive inference occurs only when packets are identical and overlap with each other within

500 ns. Apparently, constructive inference would speed up the data sharing process among

vehicles.

We use an example shown in Figure 7.19a to illustrate how capture effect would

facilitate faster data sharing among three vehicles. Here, we assume vehicles #1, #2, and

#3 are within the communication range of each other. The three vehicles are assumed to

reside in a zone containing 25 10 m × 10 m blocks. Based on its sensors, each vehicle could

prepare a sensing matrix. In the example, as vehicle #2 blocks the front view of vehicle #1,

there is an uncertain block in vehicle #1’s sensing matrix. According to the L3 protocol,

vehicle #1 will initiate the data sharing process via sending its sensing matrix in time slot

#1. When vehicles #2 and #3 receive the message from vehicle #1, they will aggregate the

received data with their own data and update their sensing matrices. The updated sensing

matrices are then transmitted from vehicles #2 and #3 simultaneously in time slot #2. Vehicle

#1 will receive the update sensing matrix from vehicle #2, due to capture effect. With the

new information contained in the receive message, vehicle #1 will update its sensing matrix

and send it in time slot #3. As now new information is received, vehicle #2 does not send

anything in time slot #4. At time slot #5, because all vehicles have the same sensing matrix,

the data sharing process stops.

7.4.3.6. Data Aggregation Process

When sensing matrices are received from other vehicles, it is necessary to design a data

aggregation process to combine the received data with the current one. As we are focusing
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(a) Three vehicles are located along a line with vehicle #2 being closer to vehicle #1

than vehicle #3.

(b) The data communication process among three vehicles. Arrowed line indicates a
packet is successfully delivered, due to capture effect. Red cross means a packet is
dropped.

(c) The final sensing matrix on vehicle #1. It starts the data sharing process as it has
a block with a value of (01). After five rounds of data exchange with others, the value
of this block is updated to (10).

Figure 7.19. Illustration of how sensing matrices are exchanged among three
vehicles.
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on enhancing the object detection capability of autonomous vehicles, the data aggregation

must produce a sensing matrix that contains all the objects detected by the sharing vehicles.

The data aggregation process on a vehicle starts from identifying whether the received

data is generated from another vehicle within the same zone. This can be done by comparing

the index of the zones where the vehicles reside. If the received sensing data, denoted as

Rm×n, are for the same sensing zone, the aggregation will be carried out as follows. Here, we

assume there are m×n blocks within the current zone. Similarly, we use Cm×n to denote the

sensing matrix on the current vehicle which takes Rm×n to update its own sensing matrix.

To aggregate two matrices Rm×n and Cm×n, we will compare all elements from these

two matrices one by one. For a particular pair of elements, we use br1b
r
0 and bc1b

c
0 to represent

the sensing data in the received and current sensing matrices, respectively. If br1 = 0, it

implies the received data do not contain any useful information for the corresponding block.

Therefore, the value of bc1b
c
0 will be kept unchanged. On the other hand, if br1 = 1 and bc1 = 0,

the the value of bc1b
c
0 will be replaced by br1b

r
0. If br1 = bc1 = 1 but bc0 6= br0, it means there is

inconsistency on the object detection from the two vehicles. In this case, as it is difficult to

determine which one offers the best detection result, we consider uncertain observations were

made. As a result, the value of bc1b
c
0 becomes 01, which will again trigger the data sharing

process. We believe this case is very rare and only occurs occasionally. The aggregation

process will be applied to all pairs of elements from two sensing matrices. The entire data

aggregation process is summarized in Algorithm 1.

Algorithm 1: Data Aggregation

Result: Sensing matrix Cm×n is updated.
1 for ∀br1br0 ∈ Rm×n do
2 bc1b

c
0 ← Corresponding element in Cm×n;

3 if br1 = 1 ∧ bc1 = 0 then
4 bc1b

c
0 ← br1b

r
0;

5 else if br1 = bc1 = 1 ∧ bc0 6= br0 then
6 bc1b

c
0 ← 01;

7 end
8 end
9 end
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Figure 7.19b illustrates how messages are exchanged among the three vehicles. We

can see that the blocked area from vehicle #1’s perspective is updated based on the sensing

data provided by vehicle #2. Such information is then transmitted to vehicle #3. After five

rounds of communications, the sensing matrix converges to the one shown in Figure 7.19c.

As such, vehicle #1 is able to extend its sensing capability by detecting there is no object

existing in the area blocked by vehicle #2. With the proposed L3 protocol, consistent sensing

results could be derived on individual vehicles which shared their own sensing data to others.

7.4.4. Evaluation and Result Analysis

In this section, we evaluate the performance of L3 protocol in simulations. Although

the capture effect is widely observed on IEEE 802.11 devices, it is not yet implemented in

IEEE 802.11p. As most DSRC devices are not open-source platforms, it is prohibitively

expensive to conduct reverse engineering on these devices to implement capture effect. As

such, we adopt the COOJA [163] simulator to evaluate L3 protocol. Although COOJA is

a Contiki IEEE 802.15.4 network simulator, it can adequately approximate the data com-

munication process among vehicles using DSRC. With the COOJA simulator, we simulate

scenarios where several vehicles communicate with each other to share the object detection

results via the L3 protocol. Particularly, we are interested in how many rounds of data

communications are needed to realize a consistent sensing matrix on all participating vehi-

cles. Next, we use the NS-3 simulator [100] to simulate and measure the network delay and

scalability of the L3 protocol.

7.4.4.1. Simulation Setup

According to the DSRC protocol, we note that the reliable communication range of

DSRC is about hundreds of meters. On the other hand, the effective sensing ranges of regular

sensors, e.g., LiDAR, Radar and camera, are far less than the communication range. In the

simulations, we set a zone as a 100 m2 square, and we assume all vehicles within a zone can

communicate to each other. Meanwhile, we set each vehicle’s sensing range as 25 m. We also

set the block size as 5 m. As such, there will be 400 blocks in one sensing zone, i.e., 800 bits

163



are needed to record the sensing results of each block in a zone. As there are only 800 bits

in each packet, the payload of the L3 protocol is 100 bytes. Overall, the simulation setup

parameters are shown in Table 7.9.

Table 7.9. Simulation Setup Parameters

Parameter Value

Communication Range 100 m

Sensing Range 25 m

Payload Size 100 bytes

Zone Size 100 m2

Block Size 5 m2

7.4.4.2. Convergence Time

L3 is designed to realize low-latency data sharing among autonomous vehicles, there-

fore, it is important to evaluate how long it takes to ensure all participating vehicles have

the consistent sensing matrix. The latency can be measured in two dimensions: (1) number

of time slots taken and (2) the actual time taken to reach a consistent sensing matrix on

vehicles. In this section, we evaluate the how many time slots are needed to complete the

data sharing process among vehicles.

In the simulation, we place nine vehicles in a grid using the COOJA simulator, as

shown in Figure 7.20a. The horizontal/vertical distance between two adjacent vehicles is set

to be 10 m. We first let vehicle #1 to initiate the data sharing process, which represents the

cases where vehicles located around the corners of the grid to start communications. We

then record how many time slots a vehicle is in its transmission or reception modes, until

all nine vehicles have the same sensing matrix. As shown in Figure 7.20c, after a total of 15

rounds of data exchange, all vehicles reach the same sensing matrix, i.e., the sensing results

converge. For vehicle #1, it transmits its original (or updated) sensing matrix for seven time

slots and receive data from others in eight time slots. For vehicles #2 and #3, as they are in

the perfect location of receiving sensing data, their sensing matrix converges after the 12th

round of data exchange. After that, they simply broadcast the converged sensing matrix one
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more time. Due to constructive interference, their transmissions will not collide even though

two packets are transmitted during the same time slot. After the 13th time slot, vehicles #2

and #3 finish the data sharing process and they do not send or receive any new data. At

the 14th time slot, vehicle #6 receives the message from vehicle #3, due to capture effect as

vehicle #6 is closer to vehicle #3. As such, vehicle #3 received the converged sensing matrix

and concludes its data sharing process as well. The remaining vehicles will finish the sensing

matrix updating process in a similar manner. After 15 rounds of data exchange, all vehicles

obtain the same sensing matrix for the targeted sensing zone.

Next, we make vehicle #5 serve as the initiator, which represents the cases where

vehicles in the middle of a sensing zone starts the data sharing process. As shown in Fig-

ure 7.20b, vehicle #5 starts sending and collecting sensing data from others. Different from

our expectation, in this case, it takes a total of 17 time slots to finish the data sharing

process. This is mainly because it takes a longer time for data from vehicles at one side to

propagate to those at the other side. The distribution of transmission and reception activi-

ties of each vehicle is plotted in Figure 7.20d. As we can see, vehicle #3, #5, #6 and #9 receive

the converged sensing matrix after the 14th time slot. They broadcast the sensing result one

more time and then keep silent. Vehicles #1, #2, and #4, on the other hand, receive vehicle

#5’s message at the 15th time slot, due to capture effect. As the message contains the final

sensing matrix, they all halt the sharing process after one more round of broadcasting. The

last two vehicles (#7 and #8) complete their updating process at the 17th time slot, and the

entire sharing process is finished.

Besides the above simulations, we also conduct experiments with different number of

vehicles that are randomly deployed in a certain area. The convergence times of different

scenarios, i.e., deploying three to 15 vehicles randomly in a zone, are summarized and plotted

in Figure 7.21. We first deploy three vehicles in a zone and it takes four time slots to finish

the data sharing among the three vehicles. The convergence time grows as more and more

vehicles join in the data sharing process. The total number of rounds increases up to 26 time

slots when there are 15 vehicles in the network.
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(a) Vehicle #1 located at top-left
corner initiates the data sharing pro-
cess.

(b) Vehicle #5 located in the middle
initiates the data sharing process.
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(c) The distribution of time slots
in which vehicles are in transmission
and reception modes, respectively.
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(d) The distribution of time slots
in which vehicles are in transmission
and reception modes when vehicle #5

is the initiator.

Figure 7.20. Convergence time of nine vehicles exchanging sensing matrices
between each other.
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Figure 7.21. Completion times of data sharing with different number of
vehicles in the network.

7.4.4.3. Network Latency

Networking latency of the L3 protocol highly depends on the setting of the time slot,

i.e., longer the time slot, larger the networking delay. To achieve a low-latency protocol, it

is critical to set the time slot as small as possible. To identify the best setting of time slot,

we need to understand how long it takes to transmit, receive and process 100 bytes of data

in a vehicular network. We adopt NS-3 simulator [100] to find the minimal required time to

finish each round of data transmission between vehicles. To obtain an accurate measurement

of the time, we simulate two vehicles (100m away from each other) communicating to each

other in NS-3. In the simulation, one vehicle transmits a 100 B message to another vehicle,

using the IEEE 802.11p protocol with CSMA/CA disabled. In this case, the time needed

to transmit and receive a 100 B message is similar to that obtained from capture effect.
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Here, the time is what is needed for the receiving vehicle to successfully receive the message

from the transmitting vehicle. In our simulation, it requires less than 2ms to share a 100 B

message between two vehicles. When the vehicles are closer to each other, the time will be a

bit smaller, due to a shorter propagation delay that is neglected in this paper. As such, we

configure the time slot to be 2 ms in our simulations. Figure 7.22 shows the actual delay of

the data sharing process, with different numbers of vehicles in the simulations. In the figure,

there is a notable improvement on latency in L3 over the IEEE 802.11p. This is because the

IEEE 802.11p protocol requires vehicles to compete to access the wireless channels, which

may cause a significant networking delay.
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Figure 7.22. Network delay with different numbers of vehicles.

7.4.4.4. Scalability

With more vehicles, the data sharing among vehicles may take a longer time to

complete. In this section, we conduct experiments to evaluate L3’s scalability, i.e., under-

standing how L3 performs when the number of vehicles increases in the network. As seen in

Figure 7.23, we witness that the network delay of L3 is increases slightly as the number of

participating vehicles increases. On the other hand, the latency of IEEE 802.11p tends to

perform poorly when there are large number of vehicles transmitting packets simultaneously.
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As vehicles benefiting from the shared data and not suffering from the consequences of large

latency, L3 is proved to be effective for up to as many as 225 vehicles in a sensing zone. With

the current traffic infrastructure, there is usually less than 225 vehicle within any reasonable

intersection in any city. In some extremely crowded areas, the number of vehicles could be

larger than 255, which may cause a longer network latency. To address this issue, we could

reduce the size of each sensing zone to include no more than 225 vehicles. The parameter

setting of L3 protocol is not static and needs to be changed based on real-world applications.
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Figure 7.23. Network delay in a large scale vehicular network.

7.4.5. Conclusions

We propose the L3 protocol to support low-latency data sharing among autonomous

vehicles towards the goal of a better detection of objects around autonomous driving cars.

Due to the capture effect, all vehicles transmit their sensing matrices simultaneously and

thus a low-latency data sharing among vehicles is achieved. Although the design of L3

protocol is verified and evaluated in simulations, it is worth noting that the implementation

of L3 on real-world hardware is still a challenging problem. In the future, we will explore

the possibility of integrating L3 into existing DSRC devices and demonstrate how L3 works

in real-world experiments.
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7.5. Reliability Characterization of Solid State Drives in a Scalable Production Data Cen-

ter [134]4

In recent years, NAND flash-based solid state drives (SSD) have been widely used in

data centers due to their better performance compared with the traditional hard disk drives.

However, little is known about the reliability characteristics of SSDs in production systems.

Existing works study the statistical distributions of SSD failures in the field. However, they

do not go deep into SSD drives and investigate the unique error types and health dynamics

that distinguish SSDs from hard disk drives. In this paper, we explore the SSD-specific

SMART (Self-Monitoring, Analysis, and Reporting Technology) attributes to conduct an

in-depth analysis of SSD reliability in a production environment. Data is collected from a

scalable production system having several physical locations. Our dataset contains over a

million records with more than twenty attributes. We leverage machine learning technologies,

specifically data clustering and correlation analysis methods, to discover groups of SSDs

which have different health status and relations among SSD-specific SMART attributes. Our

results show that 1) Media wear affects the reliability of SSDs more than any other factors,

and 2) SSDs transit from one health group to another which infers the reliability degradation

of those drives. To the best of our knowledge, this is the first study that investigates SSD-

specific SMART data to characterize SSD reliability in a production environment.

7.5.1. Introduction

Solid state drive (SSD) based storage systems are receiving wide attention for high

performance computing (HPC) and their deployment is steadily increasing due to their

higher performance and lower power consumption compared with hard disk drive (HDD)

based storage systems. The memory-storage hierarchy has been shift from using HDD as

permanent storage to using SSDs or a fusion of Flash cache and HDD storage. While their

deployment is increasing, the write endurance of SSDs still remains as one of the main

4Section 7.5 is reproduced in its entirety from Shuwen Liang, Zhi Qiao, Jacob Hochstetler, Song Huang,
Song Fu, Weisong Shi, Deesh Tiwari, Hsing-Bung Chen, Bradley Settlemyer, and David Montoya, Relia-
bility characterization of solid state drives in a scalable production datacenter, 2018 IEEE International
Conference on Big Data (Big Data), pp. 3341-3349, with permission from IEEE.
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concerns. As write and erase operations on an SSD wear it out gradually, after a certain

number of operations, the SSD could fail and its data could be lost.

Many studies have investigated the bit error failure behavior of multi-level cells (MLC)

and single-level cells (SLC). They find that the bit error rate of the flash memory increases

with an increased number of Program/Erase (P/E) cycles. These studies model the bit error

rate as an exponential function of the number of P/E cycles that a cell has gone through.

There are also a number of recent studies analyzing the statistical distributions of SSD

failures in the field. They also find that although flash drives offer a lower field replacement

rate than HDDs, they have a significantly higher rate of uncorrectable errors that can impact

the stored data.

However, the existing studies of SSD reliability are either at the circuit level (i.e., MLC

and SLC) or for the entire storage system level using field data. They do not explore the rich

set of performance and reliability related attributes provided by the SSD Self-Monitoring,

Analysis, and Reporting Technology (SMART) at the drive level. Compared with the SSD

failure field data which do not provide insight into how SSD deteriorates and what factors

dominate the process or workload and environment data which complicate SSDs’ failure

analysis, SSD-specific SMART data provide a direct and insightful way to characterize SSD

failures with a generic method.

In this paper, we perform an in-depth analysis of SSD reliability using SSDs’ SMART

data collected from an active, production environment. The SSDs are used as caching de-

vices in storage nodes spread across several data centers. The dataset contains six-months

of SSD SMART data. We use machine learning models and statistical analysis to investigate

more than 20 SSD-specific performance and error related SMART attributes from over a

million complete records. Results from our comprehensive correlation analysis reveal that

1) In a well maintained data center, environmental factors rarely affect the reliability of

SSDs. 2) Certain attributes, e.g., Media Wear which reports the number of cycles that the

NAND media has undergone, influence the reliability of SSDs more significantly than other

attributes. 3) The wear-out process is very slow and the manufacturer-provided flash cell
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endurance rating is conservative. 4) We can identify imbalanced I/O workload by cross-

comparison of certain attributes, such as power-on hours (POH), power cycle count (PCC),

and Average Write/Erase Count (AWEC). By using unsupervised machine learning tech-

niques, we discover latent relationship for the first time, that is we find groups of SMART

records corresponding to different health status of SSDs. We observe the transition of several

SSDs from one group to another, which represents the degradation of their reliability.

To the best of our knowledge, this is the first study of SSD SMART data from a

production data center to characterize SSD reliability. Our analytic results provide a deeper

understanding of SSD reliability and the dominating factors in production environments.

Our findings will help system operators develop countermeasures to extend SSD’s lifetime

and protect the stored data, for example by balancing I/O workload, predicting SSD failures,

and proactive migration of data.

The reminder of the paper is organized as follows. Subsection 7.5.2 presents the

background and an overview of our method. Subsection 7.5.3 describes the SSD-specific

SMART attributes and results from the correlation analysis. Subsection 7.5.4 characterizes

SSD reliability. The related research is discussed in Subsection 8.1.1. Subsection 7.5.5

concludes the paper with remarks on future research.

7.5.2. Fault Modes and SMART Data of SSDs

7.5.2.1. Architecture of SSD

SSD consists of many tightly-coupled flash chips and memory controllers. A NAND

type floating gate forms a Non-Volatile Memories (NVM) cell, whose content can be elec-

trically altered and can be preserved without power. Based on number of bits that each

flash cell stores, flash memory has Single Level Cell (SLC), Multi-Level Cell (MLC), and

Triple-Level Cell (TLC) that store 1, 2, and 3 bits per cell, respectively. Each flash chip

contains arrays of such flash cells which are organized into pages, blocks, planes, dies, and

banks in the corresponding constructive order. An SSD device contains multiple flash chips.
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For example, a typical 32 Gbit flash chip is logically organized into 8192 blocks, and each

block consists of 64 pages with 4K bytes per page in addition to the 128-byte spare space.

In NAND flash memories, a logical page is the smallest addressable unit for read and pro-

gramming, while block is the smallest erasable unit. The spare space is used for storing ECC

parity data and reallocated sectors for bad pages.

Over the past few decades, HDD was used as permanent storage media in the memory-

storage hierarchy. HDDs are organized into sectors, and use Logical Block Addressing (LBA)

to specify the locations of blocks of data. In contrast, SSDs are organized into planes, blocks,

and pages. The Flash Translation Layer (FTL) translates a sector access into a page read or

block write. The FTL manages the mapping between LBAs and physical block addresses.

In addition, FTL 1) employs an aggressive Error Correction Code (ECC) to ensure data

reliability; 2) adopts wear-leveling to distribute erasures and re-writes evenly across cells

since each flash cell can only sustain a certain number of program-erase cycles; 3) performs

garbage collection periodically to reclaim blocks previously deleted by the host system; 4)

enables bad block management to handle invalid blocks that have more uncorrectable errors

than what ECC can fix, and map data to spare blocks.

7.5.2.2. Fault Modes of SSD

SSD manufacturers have their proprietary FTL policies to manage ECC, wear-leveling,

and garbage collection. Thus there exists a variety of reliability characteristics of different

SSDs. For example, reading and writing data causes wear of flash cells, which degrades SSD

reliability gradually. A number of prior works studied the correlation between wear and the

increase of error rate [30] [38] [143] [147] [149] [195]. Wear-leveling is designed to distribute

data across SSD to address this issue.

Retention errors that are caused by the leakage current increase with usage [13] [31]

[27] [56] [131] [241]. If not confined or corrected in time, retention errors quickly propagate.

As read and programming operations can affect the threshold voltage of the neighboring

blocks [23] [26] [117] [122] [209], causing untouched cell susceptible to read disturb errors

and program disturb errors. Besides wear-leveling, FTL uses ECC as a countermeasure to
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prevent the above-mentioned error propagation to the upper data hierarchy, that is checksum

in each page of the spare space is used by ECC to protect against these errors. If the

number of bit errors exceeds the capability of page-level ECC, SSD controller performs error

correction at the host driver level by using more complex error correction algorithms. From

the SSD’s perspective, page-level ECC are correctable errors, while host driver level ECC are

uncorrectable errors. When the number of uncorrectable errors in a block exceeds a preset

threshold, FTL marks it as a bad block and remaps the data to a reallocated block in the

spare space. SSD manufacturers are conservative about the endurance rating and reserve a

considerable amount of space for remapping data from bad blocks.

7.5.2.3. SSD Caching and Flash Storage

Server-side flash or SSD caching refers to the deployment of SSDs as flash memory

for caching and tiering data between the main memory and the storage system. As a cost-

effective alternative to flash storage, it is often coupled with slower HDDs to improve the

read and write throughput. When using SSDs as read cache, compute nodes retrieve data

from permanent storage (HDDs) or via a storage area network (SAN), and store temporary

copies of active data on NAND flash memory. Thus, data can be accessed quickly when

needed. When used as write cache, SSDs buffer data until the slower and persistent storage

has space and bandwidth to complete write operations. SSD caching is managed by system’s

storage controllers and is secondary to the main memory. Because the footprint of active

data is relatively small, the capacity requirement of SSDs is lower than that of a full flash

storage. Flash storage is getting popular in high performance storage appliances that use

flash memory based technologies as the permanent storage media. It has higher capacity and

reliability requirements, while the access frequency is usually less than that of SSD caching.

In this paper, we study the reliability of SSDs as caching/buffering devices, which is similar

to the use of SSDs as burst buffers in HPC systems.
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7.5.2.4. SSD SMART Data

Our SSD SMART dataset was collected from several active production data centers

owned by a major financial service provider. Each server in the data center has 2 sockets,

10-18 cores per socket, 1.5 TB of DRAM, 1-2 SSDs, and 8-45 HDDs. SSDs are used as a data

buffer between the main memory and the storage subsystem. They accelerate data accesses,

improve I/O throughput, and reduce access latency from main disks in a Ceph storage node.

The workloads run on the servers include investment/portfolio management, brokerage order

management systems, and financial planning management. This represents a wide range of

operating system main disks, persistent database storage, and sequential message queues.

The SMART monitoring system is employed for both HDDs and SSDs to collect

access information and fault/error indicators. SSD SMART data are collected hourly at

runtime. By the time of this study, we have six months of SMART records from both HDDs

and SSDs. We pre-process the raw SMART data by extracting SMART attributes and their

values and removing incomplete records. Over half of a million SSD records are kept with

over 20 attributes from two SSD brands and models. Then, we analyze the correlation among

these attributes and further explore machine learning technologies to characterize and study

SSD reliability. The results are presented in the following subsections.

7.5.3. Correlations Analysis of SSD SMART Data

The SMART technology monitors drives’ accesses and errors, and provides various

attributes, many of which are particularly designed for SSDs. An SSD manufacturer adopts

a subset of all SMART attributes which may be different from that of another manufacturer.

Even among drives produced by the same manufacturer, those of different models may have

different sets of SMART attributes. In general, we group the SMART attributes into three

categories, i.e., environmental factors (e.g., temperature and power-on hours), workload

related statistics (e.g., the amount of data read from or written to flash chips), and error

attributes (e.g., the number of seek errors and the number of uncorrectable errors). In the

data center that we study, two SSD models from different vendors are found. Table 7.10 lists

the SMART attributes provided by the SSDs.

175



Table 7.10. SSD SMART Attributes and Description

SMART ID Attribute Description

Environmental Attributes

9 c POH Power On Hour

12 c PCC Power Cycle Count

174 c UPLC Unexpected Power Lost

194 c TC Temperature Celsius

Workload Related Attributes

166 a MWEC Min Write/Erase Count

168 a MEC Max Erase Count

173 c AWEC Average Write/Erase Count

180 b URNB Unused Reserve NAND Blocks

202 b PLR Percent Lifetime Remaining

230 a PWEC % of Write/Erase Count

232 a PARS % Avaliable Reserved Space

233 a TNWG Total NAND Write(GB)

241 a TWG Total Write(GB)

242 a TRG Total Read(GB)

246 b CHSW Cumulative Host Sectors Written

247 b NONPWYTH Number of NAND page written by Host

248 b NONPWNTF Number of NAND page written by FTL

Error Related Attributes

4 b RRER Raw Read Error Rate

5 c RSC Reallocated Sector Count

167 a MBB Min Bad Block/Die

169 a TBB Total Bad Block

171 c PFC Program Fail Count

172 c EFC Erase Fail Count

183 b SID SATA Interface Downshift

184 b ECC Error Correction Count

187 c RU Reported Uncorrected

196 b REC Reallocation Event Count

197 b CPEC Current Pending ECC Count

206 b WER Write Error Rate

212 a SPE SATA Physical Error

a Attributes exclusive to Model A SSDs [colored in red]
b Attributes exclusive to Model B SSDs [colored in blue]
c Attributes common to Model A and Model B SSDs models.
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Compared with several decades of deployment of HDDs in the field, SSDs are still

at the early stage of usage as the mainstream storage media in production systems. Little

is known about SSDs’ reliability characteristics in real-world settings. Most recently, large-

scale field studies, such as [195], identify substantial differences from those SSD fault data

collected in controlled environments. Production systems involve a wide range of conditions,

e.g., real-world applications display a variety of access patterns and frequencies compared

with synthetic benchmarks. Additionally, the entire software stack on top of a flash storage

also affects data accesses, SSD performance degradation, and lifespan.

In this subsection, we investigate the relationship among SMART attributes by quan-

tifying pair-wise correlation coefficients. We also use boxplot to visualize the distributions

of SSD SMART data. By analyzing the correlation among SSD SMART attributes, we

obtain a better understanding of the influence among various factors and their criticalness

for characterizing SSD reliability. We compare several correlation coefficients, i.e., Pearson,

Spearman, and Kendall. We select the Spearman rank correlation coefficient, because it

provides the best modeling of monotonic linear/non-linear relations which are common for

SMART attributes. To prevent invalid correlation, we remove SMART attributes whose

values remain constant over time. Figure 7.24 shows the pair-wise correlation calculated by

using Spearman coefficients for the two SSD models in our dataset. Values of the Spearman

correlation coefficients range from −1 (i.e., strong negative monotone correlation) to +1

(i.e., strong positive monotone correlation), while 0 indicates no correlation. We compare

the correlations of environmental attributes with workload-related attributes, and also with

error related attributes. We show the results with over 95% of confidence. In the correlation

heat-map (Figure 7.24), redder colors indicate stronger correlations. Note that the solid red

blocks along the diagonal show the correlation of an attributes with itself, which is not con-

sidered in our analysis. Other blocks with a correlation coefficient greater than a threshold,

say 0.9, infer that the corresponding attribute pairs are significantly correlated. The major

findings on the correlations of SSD SMART attributes are as follows.
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(a) Attributes of Model-A SSDs. (b) Attributes of Model-B SSDs.

Figure 7.24. Spearman correlation among SSD SMART attributes.

7.5.3.1. Finding 1: Environmental Attributes Barely Affect SSD Reliability

After removing constant-valued attributes, we use 13 SMART attributes to calculate

the correlation coefficients for Model-A SSDs, and 12 attributes for the Model B. Among

these attributes, environmental attributes, i.e., Temperature in Celsius (TC), Power On

Hours (POH), Power Cycle Count (PCC), and Unexpected Power Lost Count (UPLC),

do not possess strong correlations with other attributes. If the threshold for the correlation

coefficient is set to 0.6, the correlation between the following attributes needs analysis. Power

On Hours (POH) and the Number of NAND Page Write by FTL (NONPWNTF) for Model-B

SSDs have a correlation of 0.84, 0.67 between POH and Total Read in GB (TRG) for Model

A, and 0.53 between POH and Total Write in GB (TWG). This is because older SSDs (i.e.,

higher POH values) are more likely to experience more read/write/erase operations. Thus,

environment related SMART attributes do not significantly influence SSD reliability, which

confirms with prior studies [147, 195].

7.5.3.2. Finding 2: Workload Related Attributes Do Not Directly Indicate Occurrences of

SSD Failures

Flash cells can endure a limited number of program and erase (PE) cycles. I/O

workloads could provide useful information about the wear level of flash cells. Early research
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reported an exponential growth of the Raw Bit Error Rate (RBER) with the increase of PE

cycles [149][30][31]. However, recent field studies show the contradictory results, that is the

increase of RBER is linear[195].

(a) Write Amplification (b) Host writes vs. NAND writes

Figure 7.25. Relationship of write operations.

In Figure 7.24a, we observe that those attributes that are related to write and erase

operations of SSDs, such as Max Erase Count (MEC), Percentage of Write Erase Count

(PWEC), Average Write Erase Count (AWEC), Total NAND Write in GB (TNWG), and

Total Write in GB (TWG), have significant correlations which are higher than 0.9 between

each other. However, the dataset does not show any correlation between these wear related

attributes with failure symptoms such as the Raw Bit Error Rate and Bad Blocks. Since the

dataset contains six months of SSD SMART records, it is possible that flash chips have not

experienced failures during that period of time.

The raw values of TNWG and TWG of Model A, as well as the Number of NAND

Page Written by Host (NONPWYTH) and Number of NAND Page Written by FTL (NON-

PWNTF) of Model B can be used to calculate flash memory’s write amplification ratio.

Figure 7.25a shows the linear regression that fits the correlation data between TNWG and

TWG. We observe a 1.3X write amplification from host initiated writes to the actual NAND

page writes by FTL. Note the ideal write amplification is 1X. The workload related attributes

do not directly indicate the occurrences of SSD failures.
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A similar pattern is observed for Model-B SSDs. As illustrated in Figure 7.24b, Av-

erage Write Erase Count (AWEC) has a strong correlation with Percent Lifetime Remaining

(PLR), Cumulative Host Sectors Written (CHSW), Number of NAND Page Written by Host

(NONPWYTH), and Number of NAND Page Written by FTL (NONPWNTF). Among these

attributes, PLR indicates the estimated percentage of lifetime remaining based upon the av-

erage number of block erase operations and the number of rated block erase operations. The

average number of block erase operations has a positive correlation with AWEC. Henceforth,

PLR becomes positively correlated with AWEC. We also find that 90.8% of SSDs in the data

center have PLR equal to zero, which means those SSDs reach the end of their lifetime ac-

cording to the specification of PLR. However, the error related SMART attribute for those

SSDs show no significant difference from other SSDs whose PLRs are greater than zero. In

addition, those SSDs run smoothly for a long period of time with PLR remaining as 0%.

This finding also confirms that manufacturers’ rated block erase count is conservative, and

SSDs’ actual lifetime in field is longer than that provided by the manufacturers.

Our results also show that Cumulative Host Sectors Written (CHSW) and NAND

Page Written by Host (NONPWYTH) have a correlation coefficient as 1.0. CHSW indicates

the amount of data that the host writes to the LBA device. FTL then translates and maps the

LBA sector requests to physical pages on an SSD. The number of pages written is recorded

by NONPWYTH. The number of bytes written to the SSD recorded by the two attributes

should be the same. A typical sector size is 512 bytes, and the page size of Model-B flash

memory is 16 KB. This corresponds to our observation that the mapping from sectors to

pages has a ratio around 30:1 as shown in Figure 7.25b. The correlation results between

PLR and error related attributes from Model-B SSDs also confirm that not every workload

related SMART attribute, such as PLR, directly indicates that SSDs fail.

7.5.3.3. Finding 3: I/O Workloads Are Not Evenly Distributed in the Data Center

We also investigate the distributions of environmental attributes and their strongly

correlated attributes. The cross-comparison identifies two models for workload, wear level,

and cumulative failure symptoms. In this study, we use boxplot to illustrate the attributes’
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(a) Model A

(b) Model B

Figure 7.26. Distributions of Environmental Attributes from SSDs.

distributions for ease of visualization and analysis. Figure 7.26 shows the environmental

attributes from both SSD models. After removing negligible outliers, the box region shows

the 95th percentile of raw values for environmental attributes, that is Power On Hours

(POH), Power Cycle Count (PCC), and Temperature Celsius (TC). In these figures, solid

and dash lines represent the median value and arithmetic mean of each attribute respectively.

We analyze the median values in the following discussion as medians represent the values of

those attributes from the majority of SSDs in the data center.

The median TC value for both SSD models is relatively close, i.e., around 23 Celsius

with a variance of ±2. This is because 1) the cooling system in the data center functions well,

and 2) the internal thermal management of SSDs keeps drives under a stable temperature.

Meanwhile, we observe that about Model-A SSDs have two times longer operation time

than Model-B drives based on the POH. The variance of POH is high, ranging from 2,000
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to 19,000 for Model A, and from 2,000 to 11,000 for Model B. Considering the median PCC

for both models is close (i.e., around 20-22), we consider that the value of POH is not solely

determined by the operation time. After checking manufacturers’ documents, we find that

the raw value of POH reflects a device’s online hour (i.e., under power), and excludes the

increment in offline states such as SATA Partial, SATA Slumber, and SATA Device Sleep.

We also consulted with system administrators working at the data center who confirmed

that both SSD models in the system were deployed in the same time frame. Despite less

than 5% of the SSDs experienced infant mortality and were replaced, the majority of SSDs

operates in an active system since their deployment. Since enterprise data centers employ

more aggressive power saving policies, we believe that Model-B SSDs have experienced less

workload as the time spent in offline states is about two times more than Model-A SSDs. We

also notice that this workload imbalance not only happens between different models of SSDs,

but also among drives of the same model. The difference between PCC median and PCC

mean is caused by a few drives (< 10% of SSD population) have very high PCC values. All

these observations show that the I/O workloads are not uniformly distributed among SSDs.

In summary, we find that 1) write and erase operations have a strong correlation

between each other; 2) environmental attributes do not directly affect SSDs’ health; 3)

workload related attributes do not directly indicate the occurrences of SSD failures; 4) I/O

operations are not evenly distributed in the system.

7.5.4. Characteristics of SSD Reliability

In order to understand SSD’s reliability and discover the relations between SMART

attributes and SSD’s health status at the drive level, we analyze the SSD SMART dataset

by using machine learning methods. Specifically, we explore K-means clustering on SMART

records. K-means is an unsupervised machine learning method, which is used to discover

groups of data items with similar feature patterns. It can help us establish a dynamic view

of SSD’s health status with possible transitions over time.

Base on the material composition and architecture of SSDs, I/O operations, including

read, write and erase, can influence the health status of SSDs. We analyze the categories of
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Figure 7.27. Clustering method produces five groups of SSD SMART
records (Model A). SMART attributes MEC, WEC, PWEC, TNWG and TWG
are used in clustering.

SSD health states and their possible transitions over time. Experimental results show that

the SSD SMART records can be grouped into five clusters for both Model A and Model

B, which is shown in Figure 7.27 and Figure7.28. For Model-A SSDs, SMART attributes

MEC, WEC, PWEC, TNWG and TWG etc. are selected for clustering, while AWEC and

NONPWNTF, CHSW and NONPWYTH etc. are used to cluster SMART records for Model

B. Due to the high dimensionality, we do not plot the five clusters in this paper. With the

euclidean distance cost function, Model-A SSDs have a distortion value lower than 0.03,

while Model-B drives have a lower than 0.01 distortion value.

An important finding from our experimental results is that, for both models of SSDs,

the health states of SSDs may change from one group to another as the wear level changes.

In several cases, such transitions happen more than once. In our study, a maximum of three
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Figure 7.28. Clustering method produces five groups of SSD SMART
records (Model B). SMART attributes AWEC and NONPWNTF, CHSW and
NONPWYTH are used in clustering.

transitions is observed for Model-A SSDs and a maximum of nine transitions is observed

for Model-B SSDs. For Model A, over 84% of SSDs experience health state transitions,

which we call reliability degradation. Model-B SSDs also have over 36% drives experience

health state transitions. Table 7.11 and Table 7.12 present the relative size of each SMART

record cluster and the frequency of reliability degradation. From the tables we can see the

patterns of reliability degradation between the two models of SSDs are different. Specifically,

the majority of Model-A SSDs have reliability degradation, while Model-B SSDs have more

stable health states. As we discuss before that I/O workload is unbalanced between Model-A

and Model-B SSDs, those drives of Model B with less workload are more likely to stay in

one health state.

To analyze the wear levels and relationship between SMART records and SSD health

states, we investigate each cluster produced by K-Means. We find each SSD model has

its own reliability characteristics and has some properties in common. The distributions of
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Table 7.11. Groups of SSD SMART Records and Transitions of SSD Health
States: Model-A Drives.

Categories Clusters Percentage of SSDs in Category

Cluster Cluster 0 10.7%

Cluster 1 0.0%

Cluster 2 1.3%

Cluster 3 2.0%

Cluster 4 2.0%

Cluster Transition Cluster 1 → 4 27.3%

Cluster 3 → 1 18.0%

Cluster 3 → 1 → 4 38.0%

Cluster 3 → 1 → 4 → 0 0.7%

Table 7.12. Groups of SSD SMART Records and Transitions of SSD Health
States: Model-B Drives.

Categories Clusters Percentage of SSDs in Category

Cluster Cluster 0 19.8%

Cluster 1 27.0%

Cluster 2 0.7%

Cluster 3 15.6%

Cluster 4 0.7%

Cluster Transition Cluster 3 → 0 29.8%

Cluster 0 → 3 0.7%

Cluster 3 ←→ 0 4.3%

Cluster 3 → 0 → 1 0.7%

Cluster 1 → 0 → 3 0.7%

the selected attributes among different SSD groups are shown in Figure 7.29. For Model-A

SSDs, we find that 1) drives in Cluster 2 experience I/O intensive operations. The number

of read operations is the highest, and the number of write and erase operations (as shown

by 5Combine in Figure 7.29) is lower than those in other clusters. 2) Drives in Cluster

0 experience the highest number of write and erase operations, while the number of read
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(a) Model A

(b) Model B

Figure 7.29. Attributes’ Values of Cluster Centroids.

operations is the average. (3) Clusters 1, 3 and 4 include the majority of drives which

experience the average number of I/O operations. However, the reliability degradation of

SSDs in the three clusters follows similar transition patterns, i.e., Cluster 3 → Cluster 1 →

Cluster 4. Along this transition, the value of Total Bad Block (TBB) decreases while the

number of write and erase operations increases. Based on the preceding findings, we infer

that the health states of SSDs in Clusters 2 and 0 is worse than other drives which are still

in good shape. Those good SSDs will experience reliability degradation, i.e., transition to

Clusters 1 and 4, as more I/O operations and P/E cycles cause wear and errors.

For Model-B SSDs, we find that 1) drives in Cluster 0, 2 and 3 experience similar

write and erase operations for both FTL and host. 2) Drives in Cluster 4 experience the

highest number of FTL write operations (as shown by 2COMBINE 1 in Figure 7.29), while

drives in Cluster 1 experience the lowest number of FTL writes. 3) For Host write operations
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(i.e., 2COMBINE 2 in Figure 7.29), drives in Cluster 1 experience the highest number while

those in Cluster 4 have the lowest Host writes. 4) Counter-intuitively, PLR cannot indicate

the remaining lifetime of an SSD. Only SSDs in Clusters 2 and 4 have PLR > 0, while PLR

of SSDs in other clusters remains 0. 5) Clusters 3 and 0 have the majority of drives (that is

70.2% as see in Table III). A half of the drives experiences reliability degradation. Among

them, 85.8% of SSDs follow a similar degradation pattern, that is Cluster 3 → Cluster 0.

Drives in Cluster 3 have more unused NAND blocks than those in Cluster 0. Based on the

preceding findings, we believe that SSDs in Clusters 0, 2 and 3 experience the similar write

workloads. SSDs in Cluster 3 are in a better health state than those in Cluster 0.

For both models, I/O operations affect SSDs’ health status, and even cause reliability

degradation of the drives. Workload related attributes play an important role for SSD

reliability analysis. As a characteristic of SSD reliability, we discover that the reliability

degradation of SSDs follows certain patterns which depend on the model of a drive and I/O

workload that the drive performs.

7.5.5. Conclusions

We study SSD-specific SMART data collected from an active production data center.

We find that SSDs have many unique attributes compared with HDDs. By analyzing these

SSD-specific attributes, we find that they are very useful for characterizing and modeling

the health status SSDs at the device level. Our analytic results show that the volume of

I/O operations and P/E cycles has a significant impact on the wear level of SSDs. Write

and erase related attributes display strong correlations. In a well maintained data center,

environmental attributes do not have directly influence SSD reliability. We also observe

health state transitions which correspond to SSD reliability degradation. As a future work

we plan to further study the reliability degradation process of SSDs and accurately model

this process for a deeper understanding and better characterization of SSD reliability in

production environments.
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7.6. Incorporate Proactive Data Protection into ZFS for Reliable Storage Systems [175]5

Disk drive failure related data lost remains a major threat to storage system reliability.

Current counter-measurement all focused on reactive data protection, such as using RAID or

erasure coding to reconstruct data after failure occurs. We argue that post-failure recovery

will not scalable when the storage demand keep increase. In this paper, we present a proactive

data protection (PDP) framework within the ZFS file system to rescue data from disks before

actual failure onset. By reducing the risk of data loss and mitigating the prolonged disk

rebuilds caused by disk failures, PDP is designed to enhance the overall storage reliability. We

extensively evaluate the recovery performance of ZFS with diverse configurations, and further

explore disk failure prediction techniques to develop a proactive data protection mechanism

in ZFS. We further compare the performance of different data protection strategies, including

post-failure disk recovery, proactive disk cloning, and proactive data recovery. We propose

an analytic model that uses storage utilization and contextual system information to select

the best data protection strategy that can save up to 70% of data rescue time.

7.6.1. Introduction

The big data and machine learning applications have driven the storage demand

to exabyte of capacity, which supplied by millions of disk drives. At such a scale, disk

failures become the norm. Redundant array of inexpensive disks (RAID) is widely used

to enhance the performance and reliability of storage system. However, RAID recovery is

a time-consuming process which demands considerable computing resources and stalls user

applications due by bringing the RAID system offline for repair or consuming a large portion

of the I/O bandwidth. In recent years, the dramatic growth of disk capacity far outpaces

the improvement of disk speed, resulting in an even longer RAID recovery time. It takes

days and even weeks, to recover an enterprise-grade RAID group composed of helium-filled

5Section 7.6 is reproduced in its entirety from Zhi Qiao, Jacob Hochstetler, Shuwen Liang, Song Fu, Hsing-
bung Chen, and Bradley Settlemyer, Incorporate proactive data protection in ZFS towards reliable storage
systems, 2018 IEEE 16th International Conference on Dependable, Autonomic and Secure Computing,
16th International Conference on Pervasive Intelligence and Computing, 4th International Conference on
Big Data Intelligence and Computing and Cyber Science and Technology Congress (DASC/PiCom/Data-
Com/CyberSciTech), pp. 904-911, with permission from IEEE.

188



large-capacity hard drives. Furthermore, the RAID recovery process places additional stress

on the remaining disk drives due to the intensive read and write activities. During the

day or week-long RAID recovery, it becomes increasingly likely that other disk drives(s) in

the same RAID group may become failed. Such multiple disk failures can cause data loss

and high monetary cost. The prolonged disk rebuilds also compromise the overall system

performance, as data accesses to the affected RAID system are delayed for a long period of

time.

The existing methods and products are mostly reactive, providing disk or storage

remediation after failures occur. Reactive data protection schemes suffer from high recovery

overhead which affects storage availability and system performance. Proactive data protec-

tion (PDP), on the other hand, can explore the lead time prior to disk failures to overlap

data rescue with regular storage operations. From the system’s perspective, the disk drives

and storage system continuously service I/O requests without obvious disruptions. Failure

prediction is an enabling technology for proactive data protection, as it allows data rescue

mechanisms to be performed before failures truly happen. Disk manufacturers embedded

SMART (Self-Monitoring Analysis and Reporting Technology) monitoring in their prod-

ucts, which reports the health status of a disk. Using such data, studies leveraging advanced

statistic models and machine learning technology show promising results of predicting disk

failures ahead of their actual occurrences. Recently, many researchers used advanced ma-

chine learning algorithms and obtained accurate prediction results. Mahdisoltani et. al.

[141] evaluated the effectiveness of a set of machine learning techniques and discussed the

proactive error prediction method that aims to improve storage reliability. Their work in-

spires us to incorporate failure prediction in ZFS file systems to develop a cost-effective data

protection solution with important contextual information.

In this paper, we propose a proof-of-concept, proactive data protection scheme that

explores failure prediction in ZFS file systems to enhance the storage reliability and reduce

the risk of data loss caused by disk failures. By performing counter measures prior to disk

failures, PDP mitigates the performance impact caused by lengthy disk rebuilds. Due to
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the popularity in both the research and industrial communities, we choose the ZFS file

system to implement a prototype proactive data protection system. This combination of

file-system-level control and data protection with disk-drive-level reliability monitoring and

failure prediction provides a pragmatic and holistic approach to build highly reliable storage

systems. The disk-drive failure prediction technologies enable ZFS to proactively move

or re-compute data from a failing disk to an available and healthy drive. Since there are

many factors that affect ZFS’ recovery performance, we first evaluating the I/O and recovery

performance of ZFS (in Section 7.6.3) using different system configurations. We then propose

three PDP strategies (in Section 7.6.4) designed for ZFS. Our performance evaluation of

these strategies shows that ZFS can make an optimal decision with the help of contextual

file-system information. That is, ZFS can determine the best PDP strategy based on the

current system state.

7.6.2. Data Protection in ZFS

ZFS is a state-of-the art open sourced file system that provides unparalleled storage

capability, efficiency, and reliability. It is a 128 bit addressed filesystem that can store upto

16 exbibyte (264 bytes) files. ZFS has been widely adopted in HPC storages, data centers,

and Network Attached Storages(NAS). It features copy-on-write transactional model, pooled

storage, deduplication, filsystem snapshot and clone, etc. In addition, it also provide many

reliability centric design such as data block hierarchical checksums, automatic data recovery,

and software RAID implementation. We only interested at ZFS’s software RAID in this

discussion. In terms of ZFS, Stripe is equivalent to RAID 0, whereas Mirror corresponds to

RAID 1 and RAID-Z or RAIDZ-1 and RAIDZ-2 are equivalent to the standard RAID 5

and RAID 6, respectively.

In ZFS the RAID rebuild process is called resilvering. This comes from the word

used for the actual repairing of physical mirrors. Resilvering occurs when a disk needs to

be replaced due to either failure or data corruption. If a disk fails unexpectedly, the ZFS

rebuild algorithm reassembles data on a new disk using either mirrored or parity data. The

resilvering process can take an extended period of time, depending on the size of the drive
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and the amount of data that needs to be recovered.

During resilvering, the performance of a RAID array is degraded because 1) the system

resources are usually prioritized for data recovery, and 2) the rest of the disks in the group

cannot provide optimal data redundancy for the configured RAID level. The resilvering

process causes extra wear and accelerates the failure of the remaining healthy disks. Two or

more disk failures can occur when I/O workloads stress individual disks too much. Therefore,

the total number of disk failures might exceed the maximum fault tolerance for the RAID

level, which causes resilvering to fail. The RAID array then becomes unavailable once such

nested failures occur. If no additional backup exists, data on that array will become lost.

7.6.3. How ZFS Performs: Expected and Unexpected

ZFS has been widely used in production storage systems, due to its support for high

storage capacity, efficient data compression, integrated volume management and reliability

management features. Data resilvering in ZFS is reactive, that is, data and parity blocks

are read, regenerated, and stored after failures are detected. Although there are a few works

that evaluate the performance of ZFS [99] [166] [150], they focus on certain features such as

data compression or the read/write speed as a file system. Little work has been conducted to

understand the performance of the new fault management techniques in ZFS. In this section,

we evaluate the performance of ZFS’ software RAID and the cost of the resilvering process.

These results help us obtain a deeper understanding of ZFS’ fault management mechanisms

influencing the design of our proactive data protection scheme.

7.6.3.1. Test Platform Configuration

Table 7.13 shows the parameters and their values used in our experiments. The

storage servers we used in this test were equipped with eight Intel Xeon cores (3 GHz),

32 GB DRAM, Ubuntu 16.04 LTS, and ZFS version 0.6.5.11. The disk drives model we

used in the tests are Seagate BarraCuda ST2000DMs (magnetic HDD) and Intel DC3520s

(data-center class SSD). The HDDs and SSDs are installed on separate storage server. We

use the Bonnie++ benchmark suite to test ZFS’ I/O performance. Specifically, we use
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Table 7.13. Test Platform Configuration and Experiment Setting

System Configuration Setting

Disk Media HDD (magnetic spinning),
SSD (solid-state flash)

RAID (ZFS) Level 0 (stripe), 1 (mirror), 5 (raidz ), 6 (raidz2 )

RAID stripe size 2 - 6

DRAM Size for ZFS 8, 16, 32 GB

Storage Utilization 0% - 90%

the three subtests ’sequential output’, ’sequential input’, and ’rewrite’ to evaluate the file

system functions write, read, and modify. Note that we use the sequential I/O to simulate

the workload of typical Big Data application, where terabytes of data were reads and writes

intensively. Since ZFS is memory intensive, we vary the system DRAM size to characterize

its performance.

To evaluate the resilvering performance of ZFS, we first developed a tool that sys-

tematically recreate the disk failure without physical contact with hardware. By default,

the first and last 1MB of each disk is reserved by system. In addition, ZFS formats the

disk appropriately by assigning its own partition table and meta-data blocks. This reserved

area is usually the last 214 byte, or 8MB, next to system reserved blocks in each disk. We

inject a stream of zeros into target disk, until the entire ZFS reserved area was flushed. As

illustrated in Figure 7.30, the compromised ZFS reserve area disconnected the IO channel

of ZFS from host system, thus mimic a disk logical failure signal and OS will consider it

as a failure disk. Then we immediately issue a system scrub to activate the default ZFS

resilvering process. We measure the turnaround time of resilvering and the amount of data

that ZFS recovers. During two month of our experiment period, we’ve simulated hundreds

of disk drive failures event, which would take a real world data center few years to generate

the equivalent amount of failures with normal operation.
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Figure 7.30. Injecting errors to disk drive creates a false alarm of disk failure.

7.6.3.2. Performance Modeling of I/O and Resilvering in ZFS

We run each benchmark five times and compute the average of results. Each of the

five runs is within 5% of the average. Thus we believe the experimental results are relatively

stable. We present the average values of the results in the following figures for a clear

presentation and interpretation.

Figure 7.31 shows a list of finding from our I/O performance experiments. We start

our discussion with a counter-intuitive result. Figure 7.31a compares the I/O throughput us-

ing different memory size. The experiment is conducted on two storage server that equipped

with either HDD or SSD. ZFS requires a large amount of DRAM for file caching and meta-

data management. But during our sequential I/O benchmarking, larger DRAM size leads

to about 10% of improvement in HDD-based RAID array, where SSD-based array does not

show significant benefit from using more DRAM. However, we cannot simply assume DRAM

size is not important for ZFS, since our synthetic benchmark only consider sequential I/O

performance. Real-world workload consist of both random and sequential I/Os. The ran-

dom data access pattern in ZFS might gain huge benefit from larger DRAM size. Similarly,

Figure 7.31a also reveals that for sequential I/O, SSD only outperform HDD slightly. If work-

load consist of mostly large I/O, such as full system check-pointing or write-out petabyte of

data to archive storage, using SSD as storage media may not cost-effective. Instead, current
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Figure 7.31. I/O throughput comparison between each RAID configurations

best practices, which using SSD as Separate Log Devices (SLOG) and Level 2 Adaptive

Replacement Cache (L2ARC) to improve read/write performance, can leverages the SSD’s

benefit of high random I/O throughput.

The rest of the findings are much straightforward and similar to what we can observed

from system with hardware RAID controller. For example, our experimental results as

presented in Figure 7.31b show that for the software RAID in ZFS, increased stripe width

improves I/O throughput and the improvement is super-linear. The striping process

distributes file chunks across multiple disks, which means a file access request is served by all

disks within the stripe. The x-axis in the figure is the stripe width of RAID array. When the

stripe width is increased from 2 to 5 in a RAIDZ1 array, or from 3 to 5 in a RAIDZ2 array,
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the overall I/O throughput increases linearly. Figure 7.31c compares the ZFS mirroring

performance of using full hard drives versus using partitions. When mirroring two partition

on one disk drives, both I/O bandwidth and data management processor are shared by each

partitions. As a result, the overall throughput degraded significantly. For ZFS, if one have

to use partition instead of full disk drives, placing partitions on different drive can avoid

compromising the performance. Figure 7.31d shows the average throughput of ZFS using

different RAID configurations. To choose the appropriate RAID level, we often need to

trade off the performance and available capacity for added reliability. For example, this

figure shows that RAIDZ1 and RAIDZ2 configuration have the same amount of available

capacity (3 HDD), but the performance of RAIDZ2 is lower than RAIDZ1 for double failure

tolerance.

Our finding reveals that the software RAID in ZFS generally follows the similar

performance pattern as we can expected from system with hardware RAID controller. As

a result, administrator’s domain knowledge still plays an important role in managing ZFS

storage. And this similar performance pattern also allows minimum learning curve and ease

the transition to software based RAID.

Figure 7.32 illustrate the performance decrease of ZFS I/O and recovery shows pos-

itive correlation with the increased storage utilization rate. ZFS employs copy-on-write

(COW), that is a new copy is created only when the data is modified. It efficiently shares

duplicate data to avoid unnecessary resource consumption. However, COW causes more

fragmentations as the utilization of the storage increases. Moreover, when the storage usage

increases to approximately 80%, ZFS switches to a space-conserving (rather than speed-

oriented) mode to preserve working space on the volume. In our experiment, we profile ZFS

and measure its throughput as we ramp up zpool’s utilization from 0% to 90%. Figure 7.32a

presents the experimental results. The solid curve shows the average throughput of ZFS un-

der the RAIDZ1 configuration, and the dashed curve is the corresponding trend-line using a

linear regression. From the figure, we can see that as the utilization of zpool increases,

the throughput of ZFS decreases significantly in the RAID array using HDDs.
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Figure 7.32. Storage utilization influences ZFS’ I/O and Recovery performance.

As a zpool becomes fully used, ZFS’ throughput drops by up to 25%. Similar to the preced-

ing results, the recovery throughput degrades as the zpool utilization increases.

Figure 7.32b shows the recovery throughput under different zpool utilization for both HDDs

and SSDs based array. The least-squares linear regression model fits the results the best. We

observe that the recovery performance decreases as the zpool utilization increases. When

the storage array is close to a full utilization, the recovery speed is about 37% slower than

the average throughput, and 47% slower than the peak speed. The first and last steps of the

resilvering process consist of reads and writes. Therefore the performance degradation due

to increased zpool utilization plays a major role for the reduced recovery speed.

The results from the RAID recovery experiments show that adding more DRAM

does not always improve ZFS’ recovery performance. Figure 7.33a shows that using

more DRAM for an HDD-based array improves the recovery speed by 3.8% on average, while

the performance on an SSD-based array drops by 5.6%. In order to explain this phenomenon,

we decompose the resilvering process of ZFS into three steps: 1) reading data and parity
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Figure 7.33. Recovery Performance Com-
parison

blocks, 2) computing the data that is lost, and 3) writing the recovered data to a spare.

The performance of the second stage (data recovery computation) significantly influences the

overall resilvering speed. We can compare the resilvering process with the rewrite operations

that Bonnie++ performs, which also consists of reading, modifying, and writing blocks of

data. From Figure 7.33b, we can see that the recovery is a time-consuming process and

the CPU performance is a dominant factor. Although larger DRAM accommodates

more metadata and file caching for regular I/O operations, the resilvering process rarely uses

cached files. Hence, the DRAM size does not significantly affect the recovery performance of

ZFS. Unlike I/O workload which can be serviced in parallel, resilvering is more computation

intensive that reconstructs data sequentially. Although employing more disks in the rebuild
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process can improve the aggregated I/O throughput, the wider stripe increases the amount

of data and parity used during the resilvering calculation which offsets the throughput gain.

Figure 7.33c shows the recovery speed does not monotonically decrease as the stripe

expands.

7.6.4. Proactive Data Protection

Disk access speed has been outpaced by the increasing capacity. The stripe width

of RAID arrays have grown to fill the gap between disk speed and capacity. Unfortunately,

the probability of having double and even triple failures also increases as the disk recovery

time is significantly prolonged. Although ZFS supports RAID 6 and RAID 7 (triple parity)

to handle disk failures, the longer performance degradation and even unavailability of disk

arrays compromise the overall system performance and users’ satisfaction. Complementary

to post-failure disk rebuilds, data can be rescued proactively prior to disk failures. This

is enabled by disk failure prediction techniques [83] [111] [22] which forecast when failures

will happen on which drives with promising accuracy. We aim to incorporate disk failure

prediction methods in ZFS so that ZFS becomes capable of replacing a failing drive before

the failure actually happens. Data on the failing drive (in contrast to failed drive) can be

moved to a spare drive without the expensive disk rebuild process, thereby avoiding service

disruption of the storage system. In addition, proactive data protection can be scheduled to

perform during off-peak hours, which can further improve storage availability and achieve

service-level objectives (SLO). Disk failure prediction remains an active research topic. In

this work, we leverage the existing techniques of prediction disk failures and explore them

in ZFS to develop proactive data protection. Research on the prediction methods is not the

focus of this paper. Table 7.14 lists the variables that we use in the following discussion and

analysis.

7.6.4.1. Proactive Strategies for Handling Disk Failures

A disk failure prediction model (FPM) uses monitored, real-time status data of disk

drives to compute the probability at which the drives will fail in the future. At time ti, if
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Table 7.14. Variables Used in the Analysis of Proactive Data Protection and
Strategy Selection

Variables Description

tl Lead time of a failure prediction

ti Time when a failure prediction is performed

tf Time when a disk failure is predicted to happen

tv Validation period of a prediction

T Duration of the data rescue process

S Data rescue speed

A Amount of data to be rescued

W Wasted time due to failure misprediction

p Precision of failure prediction

FPM predicts that a disk is going to fail, it reports the predicted failure occurrence which

will happen at time tf . We use lead time tl, i.e., the length of time between the point when

FPM makes prediction and the predicted failure occurrence time, to represent the urgency

of a failure. We can calculate the lead time using tl = tf − ti. Proactive data rescue from the

failing disk to a spare or available disk also takes time. We use T to denote the time that

a proactive strategies uses to rescue data. If tl > T , then proactive data rescue can ensure

the safety of the data on the failing drive(s). In this paper, we discuss several proactive

strategies to handle disk failures. To proactively rescue data on a failing disk, we need to

calculate the estimated recovery time T for each proactive strategy and compare it with the

lead time tl.

(1) Proactive Disk Cloning (P-DISCO)

(2) Proactive Active-data Recovery (P-ADAR)

(3) Proactive Active-data Cloning (P-DACO)

The Proactive Disk Cloning, or P-DISCO, migrates data on a predicted, failing drive

to a hot spare using disk cloning. In the conventional RAID rebuilds, data reconstruction

involves massive data movement and intensive parity computation using data and parity

blocks from all of the other disks in an array. CPU and interconnect become the performance
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bottleneck as they determine the recovery throughput. Disk cloning, on the other hand,

moves the data from the failing disk only to a spare one without involving other disks

or calculating parities. Theoretically, proactive disk cloning can achieve a much higher

throughput. Moreover, the recovery speed is independent of the disk space utilization. In

contrast, the performance of ZFS’ resilvering process is affected by disk utilization as shown

in Section 7.6.3.2. Figure 7.34 compares the two recovery strategies, i.e., ZFS’ resilvering

and proactive disk cloning, for a fully used drive. From this figure, we can see P-DISCO

completed the data rescue in 17.59 hours for an 8TB HDD, and in 4.17 hours for a 3.2TB

SSD. More importantly, the data rescue happened before the actual disk failure, thereby

avoiding operating in a degraded state. On the other hand, after a disk failure, the default

ZFS data recovery took over two times longer to rebuild the same disk. As a result, the data

reconstruction process had to compete with other workloads for limited system resources,

which prolong the recovery time and the dangerous time spent in a degraded state. However,

the volume manager masks the data location to make it transparent to the system. Without

knowing which disk sectors contain useful data, disk cloning has to copy everything from

each sector to the spare drive. For a nearly empty disk, P-DISCO may not be time or

resource optimal.

(7.5) TP−DISCO =
Adisk capacity

Scloning

ZFS, combining both a file system and volume manager, has the advantage of keeping

track of ”active data” and the ability to only recovery those tagged data areas when a disk

fails. This results in an efficient data rescue in a controlled manner. Proactive Active-data

Recovery, or P-ADAR, enables ZFS to proactively rescue only active-data to the spares.

Although resilvering is a computationally intensive process, recovering only the minimum

amount of necessary data can save time. Because the amount of active data in a disk is

always less than its capacity, Aactive data < Adisk capacity. Additionally, ZFS resilvering is

safe to interrupt. If power loss or reboot occurs during data rescue, the resilvering process

resumes at the exact location where it left off without manual intervention. However, the
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Figure 7.34. Time used for proactive disk cloning and post-failure disk re-
covery for a fully-utilized zpool. 0H denotes the disk failure occurrence.

resilvering process is much more complex than cloning, which involves a full disk scan to

gather active data locations, followed by CPU-intensive data reconstruction. Therefore,

Sresilvering < Scloning. The actual recovery time T equals

(7.6) TP−ADAR =
Aactive data

Sresilvering

Further improving the speed of recovery, we leveraged the computationally-light

cloning process to handle the minimum necessitated data marked with the ZFS active-data

tag. The proposed Proactive Active-data Cloning, or P-DACO, only clones the active data

during rescue, and eliminates the need to compute parity. It combines the benefits from the

previous two strategies, so the recovery times equals to

(7.7) TP−DACO =
Aactive data

Scloning

To measure the value of S and A, a set of daemons will frequently check all disk’s

SMART data and the zpool utilization percentage. A daemon also runs a series of micro-

benchmarks to determine the runtime I/O performance and data recovery speed S. The

amount of data to rescue A will be determined when the proactive strategies starts to rescue

data. Meanwhile, the SMART data of each disk in the system will be streamed to FPM for

failure prediction and health status analysis. Since FPM uses a pre-built disk failure model,
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Figure 7.35. Time used by each proactive strategies for data rescue.

runtime SMART data constantly improves the performance of the prediction.

7.6.4.2. Selecting the Optimal Strategies

From the previous discussion, we can see that each proactive strategy is only suitable

for a specific system condition. How to choose the appropriate strategy to handle disk failure

becomes critical, and can yield up to 70% faster recovery time. Figure 7.35 illustrates the

performance of each proactive strategy for recovering data on an 8TB enterprise-grade HDD

with different storage utilizations. We observed that P-ADAR is more efficient when the

zpool is lightly used (below 15%). As more active data is stored, P-DISCO becomes a better

choice. P-DACO seems like a promising proactive strategy that yields better result than

P-ADAR and P-DISCO most of the time, but P-DACO cannot tolerate interrupts during

data rescue, so it trade-off the dependability for the performance gain.

To systematically pick the optimal strategies to handle disk failure, we set two con-

straints for the selection process: the urgency, and the dependability. The prior indicates how

fast each proactive strategy completes data rescue, where the latter measures if proactive

strategy is safe to interrupt. For example, to minimize the system downtime caused by disk
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failure, we can prioritize urgency over dependability. In this case, if FPM provides enough

lead time, where tl > min(TP−DISCO, TP−ADAR, TP−DACO), then we can select the strategy

with shortest data rescue time T , as illustrated by shaded area. For a system that prioritizes

dependability over urgency, we adopt a simpler approach to narrow down the strategy selec-

tion set, since active-data resilvering is the only strategy that is safe for interrupt. Therefore,

if FPM provides enough lead time for P-ADAR, we choose it as the proactive strategy to

handle disk failure. Otherwise, the default reactive data rescue, or R-ADAR, will take over

the data rescue.

7.6.4.3. Cost Analysis

In practical use, each FPM only performs well for certain drives. Others may generate

excessive false alarms that introduce considerable amount of overhead to the system. We

dedicate this subsection to discuss the effectiveness and cost of proactive data protection.

When FPM predicts a failure at time tf , it also provides a valid period tv, which

indicates the failure occurrence is likely within tf ± 1
2
tv. We can calculate the adjusted

lead time as t′l = tf − 1
2
tv − ti. If the disk is still healthy beyond tf + 1

2
tv, we say this

is a false positive. For proactive data protection, the cost of a false positive is a wasted

healthy disk, in addition to the wasted system resources used during data rescue. If the

actual failure occurs before tf − 1
2
tv, or FPM didn’t report such a failure, we say this is a

false negative. In this discussion, we assume the worst case of false negative, i.e., there is

no proactive strategy to rescue data at all. Since proactive data protection should always

use reactive data rescue (R-ADAR) as backup, the cost of false negative becomes the cost

of R-ADAR, which is identical to the system that did not use proactive data protection.

The default R-ADAR and proactive strategy P-ADAR takes the same time to complete

data rescue (TP−ADAR = TR−ADAR), the only difference is their starting time. At time ti, if

FPM predicts a failure will occur by time tf , P-ADAR will start data rescue immediately,

and complete by t′l − TP−ADAR. This is equivalent to tf − 1
2
tv − TP−ADAR. For R-ADAR,

the rescue process starts only after the actual disk failure occurrence t′f , and completes by

t′f + TR−ADAR. From the definition of the precision, we know there are p possibility that
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tf = t′f . Once the FPM provides enough lead time for proactive strategies, or t′l > T , we can

conclude that proactive strategy can complete data rescue even before reactive data rescue

starts. For the (1− p) possibility that FPM made a wrong prediction, the cost is not worse

than the default reactive strategy. Therefore, proactive data rescue improves the overall

system reliability by minimizing the data lost risk caused by disk failure.

As Eckart et al. discussed in [63], proactive data rescue can improve overall system

reliability even if the failure prediction rate is as low as 40-50%. Moreover, proactive data

rescue is not a replacement of the default ZFS resilvering process, but rather an approach to

enhance overall system reliability. It can resolve the bandwidth competition between ZFS

resilvering processes and the regular I/O workload. Proactive data rescue is complementary

to reactive action for handling disk failures and as reactive action are always applicable,

proactive data rescue should be combined with reactive action to address false negative

prediction.

7.6.5. Conclusions

Ensuring the reliability and availability of storage systems is crucial. Currently fault

management such as hardware or software RAID, are reactive, meaning the data recov-

ery process onset after the failure. In this paper, we proposed a proactive data protection

scheme that combines machine learning based disk failure prediction techniques in to ZFS

filesystem. We use our finding from performance benchmarks to develop an analytic model

that derives the optimal data rescue strategy. Our analytic model uses contextual informa-

tion of the storage system to find the best proactive data recovery strategy that suits the

storage array in a cost-effective way. In this proof-of-concept work, we demonstrate that

proactive data protection can effectively rescue data ahead of disk failure. It also reduce the

chance of data lost during failure recovery. And system level scheduling for data protection

also helps to avoid I/O conflict between workload and recovery process. Integrate proactive

data protection into ZFS provides additional reliability measurement beyond reactive failure

recovery.
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7.7. Developing Cost-Effective Data Rescue Schemes to Tackle Disk Failures in Data Centers

[174]6

Ensuring the reliability of large-scale storage systems remains a challenge, especially

when there are millions of disk drives deployed. Post-failure disk rebuild takes much longer

time nowadays due to the ever-increasing disk capacity, which also increases the risk of service

unavailability and even data loss. In this paper, we present a proactive data protection

(PDP) framework in the ZFS file system to rescue data from disks before actual failure

onset. By reducing the risk of data loss and mitigating the prolonged disk rebuilds caused

by disk failures, PDP is designed to enhance the overall storage reliability. We extensively

evaluate the recovery performance of ZFS with diverse configurations, and further explore

disk failure prediction techniques to develop a proactive data protection mechanism in ZFS.

We further compare the performance of different data protection strategies, including post-

failure disk recovery, proactive disk cloning, and proactive data recovery. We propose an

analytic model that uses storage utilization and contextual system information to select the

best data protection strategy to achieve cost-effective and enhanced storage reliability.

7.7.1. Introduction

Nowadays, big data applications require storage systems to possess exabytes of ca-

pacity, provided by millions of hard disk drives. At such a scale, disk failures become the

norm. Redundant array of inexpensive disks (RAID) is a common practice in most large-

scale storage systems for redundancy and performance[79]. In the face of disk failures, a

RAID system uses parity data on the remaining, working disk drives to compute and recover

the lost data on a spare drive. However, RAID recovery is a time-consuming process which

demands considerable computing resources and stalls user applications due by bringing the

RAID system offline for repair or consuming a large portion of the I/O bandwidth. In recent

6Section 7.7 is reproduced in its entirety from Zhi Qiao, Jacob Hochstetler, Shuwen Liang, Song Fu, Hsing-
bung Chen, and Bradley Settlemyer, Developing cost-effective data rescue schemes to tackle disk failures in
data centers, International Conference on Big Data, (Francis Y. L. Chin, C. L. Philip Chen, Latifur Khan,
Kisung Lee, and Liang-Jie Zhang, eds.), 2018, pp. 194-208, with permission from Springer International
Publishing.

205



years, the dramatic growth of disk capacity far outpaces the improvement of disk speed,

resulting in an even longer RAID recovery time. It takes days and even weeks, to recover

an enterprise-grade RAID group composed of helium-filled large-capacity hard drives. Fur-

thermore, the RAID recovery process places additional stress on the remaining disk drives

due to the intensive read and write activities. During the day or week-long RAID recov-

ery, it becomes increasingly likely that other disk drives(s) in the same RAID group may

become failed. Such multiple disk failures can cause data loss and high monetary cost. The

prolonged disk rebuilds also compromise the overall system performance, as data accesses to

the affected RAID system are delayed for a long period of time.

The existing methods and products are mostly reactive, providing disk or storage

remediation after failures occur. Reactive data protection schemes suffer from high recovery

overhead which affects storage availability and system performance. Proactive data protec-

tion (PDP), on the other hand, can explore the lead time prior to disk failures to overlap

data rescue with regular storage operations. From the system’s perspective, the disk drives

and storage system continuously service I/O requests without obvious disruptions. Failure

prediction is an enabling technology for proactive data protection, as it allows data rescue

mechanisms to be performed before failures truly happen. Disk manufacturers embedded

SMART (Self-Monitoring Analysis and Reporting Technology) monitoring in their products,

which reports the health status of a disk. But they set the thresholds of SMART attributes

for disk failure detection as low as possible in order to minimize the false alarm rate. As a

result, disk drives fail way before these thresholds are reached in the field, which makes the

proactive RAID controllers inefficient to protect data.

Studies leveraging advanced statistic models and machine learning technology show

promising results of predicting disk failures ahead of their actual occurrences. For early at-

tempts such as [151] [152], the effectiveness of failure prediction was questioned, for example

in [167]. Recently, many researchers used advanced machine learning algorithms and ob-

tained accurate prediction results. Mahdisoltani et. al. [141] evaluated the effectiveness of a

set of machine learning techniques and discussed the proactive error prediction method that
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aims to improve storage reliability. Their work inspires us to incorporate failure prediction

in file systems to develop a cost-effective data protection solution with important contextual

information.

As an open-source high performance file system, ZFS has been used by data centers

in their production storage systems, as well as by industry vendors in their software-defined

storage products. ZFS implements software RAID and efficient data compression. It was

designed from scratch to address fault management issues in storage systems. ZFS can detect

and repair silent disk corruptions[19], and rebuild software RAID from disk failures. The

performance of RAID recovery in ZFS is affected by many factors, including:

• storage pool utilization,

• the number of virtual disks in a RAID group,

• software RAID configuration,

• the amount of corrupted data that needs to be recovered.

Hardware configuration of the storage system also affects the performance of ZFS recovery

through

• the use of flash drives,

• the amount of DRAM available,

• CPU cycles available.

In this paper, we propose a proof-of-concept, proactive data protection scheme that

explores failure prediction in file systems to enhance the storage reliability and reduce the

risk of data loss caused by disk failures. By performing counter measures prior to disk

failures, PDP mitigates the performance impact caused by lengthy disk rebuilds. Due to

the popularity in both the research and industrial communities, we choose the ZFS file

system to implement a prototype proactive data protection system. This combination of

file-system-level control and data protection with disk-drive-level reliability monitoring and

failure prediction provides a pragmatic and holistic approach to build highly reliable storage

systems. The disk-drive failure prediction technologies enable ZFS to proactively move or

re-compute data from a failing disk to an available and healthy drive. Since there are
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many factors that affect ZFS’ recovery performance, we first present an analytic model (in

Section 7.7.3) for evaluating the I/O and recovery performance of ZFS using different system

configurations. Due to the increasing adoption of flash drives in storage systems, we conduct

our experiments in a heterogeneous storage environment that consists of both magnetic hard

disk drives (HDD) and solid-state drives (SSD). We then propose three PDP strategies (in

Section 7.7.4) designed for ZFS. Our performance evaluation of these strategies shows that

ZFS can make an optimal decision with the help of contextual file-system information. That

is, ZFS can determine the best PDP strategy based on the current system state. The major

contributions of our paper are as follows.

• We extensively evaluate the performance of software RAID and observe that the

performance of I/O and data recovery in ZFS degrades as the storage utilization

increases, which influences the selection of data protection strategies.

• As far as we know, we are the first to integrate proactive data protection with

file systems and leverage the strengths of both to enhance storage reliability. The

contextual file-system information enables the maintenance (such as disk drives

early retirement and proactive data migration) to be scheduled at off-peak time,

thus preserves the valuable I/O and network bandwidth for user’s request.

• We provide a quantitative analysis of each proactive data protection strategy and

design a method to select the optimal strategy by exploring the run-time system

status and cost functions to best protect storage data.

7.7.2. Background

7.7.2.1. RAID, Striping, and Levels

RAID (Redundant Array of Independent Disks, originally Redundant Array of Inex-

pensive Disks) is a virtualized storage subsystem that combines multiple physical disk drives

into one or more logical units to improve the performance and fault tolerance of storage sys-

tems. Over the years of development, several RAID levels have evolved. These include the
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standard schemes such as mirroring data and striping data, as well as other variations such

as nested levels and proprietary schemes. Depending on the specific RAID level, an array of

multiple disks can be configured to achieve a balance between performance, reliability, and

capacity. Many RAID levels employ an error protection scheme called parity, which uses a

relatively small amount of data recover more user data. Striping is the underlying concept

of all RAID levels other than RAID 1 (mirroring). Striping is a mechanism to split up disk

partitions into stripes of contiguous sequences of disk blocks. A RAID Stripe usually con-

sists of multiple data blocks and one or more parity blocks. Disk striping without any data

redundancy (or parity) is RAID 0 and is used for increasing the I/O performance. Different

RAID levels organize the stripes and parity data differently. RAID 5 uses a distributed

parity block with a disk stripe, while RAID 6 employs two parity blocks distributed across

all disks in the stripe. In terms of ZFS, Stripe is equivalent to RAID 0, whereas Mirror

corresponds to RAID 1 and RAID-Z and RAIDZ-2 are equivalent to the standard RAID 5

and RAID 6, respectively.

7.7.2.2. RAID Rebuild in ZFS

In ZFS the RAID rebuild process is called resilvering. This comes from the word

used for the actual repairing of physical mirrors. Resilvering occurs when a disk needs to

be replaced due to either failure or data corruption. If a disk fails unexpectedly, the ZFS

rebuild algorithm reassembles data on a new disk using either mirrored or parity data. The

resilvering process can take an extended period of time, depending on the size of the drive

and the amount of data that needs to be recovered. During resilvering, the performance of

a RAID array is degraded because 1) the system resources are usually prioritized for data

recovery, and 2) the rest of the disks in the group cannot provide optimal data redundancy

for the configured RAID level. The resilvering process causes extra wear and accelerates

the failure of the remaining healthy disks. Two or more disk failures can occur when I/O

workloads stress individual disks too much. Therefore, the total number of disk failures

might exceed the maximum fault tolerance for the RAID level, which causes resilvering

to fail. The RAID array then becomes unavailable once such nested failures occur. If no
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additional backup exists, data on that array will become lost.

ZFS provides two different redundancy strategies, i.e., data mirroring and parity.

Data mirroring used in mirror is a relatively simply method for rebuilding a RAID group.

Since data is simultaneously stored on each component disk in the array, the content of any

disk is identical to the rest. In the case of a disk failure, ZFS copies blocks of data from

the remaining healthy disks to a spare disk. Although this type of redundancy provides

fast RAID rebuild, it suffers from a low space utilization. The cost of scaling such an array

increases linearly as a full drive is needed for every copy of the data. On the other hand,

parity is more computationally expensive, but has a lower disk cost since it does not need a

full set of duplicated disks to operate. Raidz uses simple logical operations, such as exclusive

or (XOR), across the stripe to compute parity P

(7.8) P =
⊕
i

Di = D0 ⊕D1 ⊕D2 ⊕ · · · ⊕Dn−1

where Di is a data block within a stripe.

If one disk fails, ZFS performs XOR operations on the data and parity blocks from

the remaining healthy stripes to recover the original data. However, XOR operations do

not specify the exact location of each data block in the stripe. If two disks fail in a raidz2

array, applying XOR twice would be useless, since ZFS cannot determine which data block

belongs to which failed disk. To handle this problem, raidz2 utilizes the Reed-Solomon

coding method and Galois field GF (m) to generate the second parity Q and embeds the

ownership information in the block.

(7.9) Q =
⊕
i

giDi = g0D0 ⊕ g1D1 ⊕ · · · ⊕ gn−1Dn−1

Calculating parities and data recovery (i.e., resilvering) based on Galois field GF (m)

are more compute-intensive than performing XOR in raidz. On the other hand, raidz2

achieves a better redundancy.
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7.7.3. Performance Modeling of I/O and Resilvering in ZFS

ZFS has been widely used in production storage systems, due to its support for high

storage capacity, efficient data compression, integrated volume management and reliability

management features. Data resilvering in ZFS is reactive, that is, data and parity blocks

are read, regenerated, and stored after failures are detected. Although there are a few works

that evaluate the performance of ZFS [99] [166] [150], they focus on certain features such as

data compression or the read/write speed as a file system. Little work has been conducted to

understand the performance of the new fault management techniques in ZFS. In this section,

we evaluate the performance of ZFS’ software RAID and the cost of the resilvering process.

These results help us obtain a deeper understanding of ZFS’ fault management mechanisms

influencing the design of our proactive data protection scheme.

7.7.3.1. Test Platform Configuration

Table 7.15 shows the parameters and their values used in our experiments. The

servers in the test platform were equipped with eight Intel Xeon cores (3 GHz), 32 GB

DRAM, Ubuntu 16.04 LTS, and ZFS version 0.6.5.11. The disk drives model we used in

the tests are Seagate BarraCuda ST2000DMs (magnetic HDD) and Intel DC3520s (data-

center class SSD). We use the Bonnie++ benchmark suite to test ZFS’ I/O performance.

Specifically, we use the three subtests ’sequential output’, ’sequential input’, and ’rewrite’

to evaluate the file system functions write, read, and modify. As ZFS is memory intensive,

we vary the DRAM size allocated to ZFS to characterize its performance. To evaluate the

resilvering performance of ZFS, we create a disk logical error to activate the resilvering

process, then we measure the turnaround time of resilvering and the amount of data that

ZFS recovers. The disk logical failure is created by injecting an error into ZFS’ reserved area

on a target disk to disable the communication channel between ZFS and the target disk.

7.7.3.2. ZFS Performance Characterization

We run each benchmark five times and compute the average of results. Each of the

five runs is within 5% of the average. Thus we believe the experimental results are relatively
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Table 7.15. Test Platform Configuration and Experiment Setting

System Configuration Setting

Disk Media HDD (magnetic spinning), SSD (solid-state flash)

RAID (ZFS) Level 0 (stripe), 1 (mirror), 5 (raidz ), 6 (raidz2 )

RAID stripe size 2 - 6

DRAM Size for ZFS 8, 16, 32 GB

Storage Utilization 0% - 90%

stable. We present the average values of the results in the following figures for a clear

presentation and interpretation. We expect to address the following important questions in

our experiments.

7.7.3.3. How Does Strip Width Affect ZFS’ Performance?

As discussed in Section 7.7.2.1, the striping process distributes file chunks across

multiple disks, which means a file access request is served by all disks within the stripe. Our

experimental results as presented in Figure 7.36 show that for the software RAID in ZFS,

increased stripe width improves I/O throughput and the improvement is super-

linear. The x-axis in the figure is the stripe width of RAID array. 4+1 denotes that a stripe

consists of four data blocks and one parity block. When the stripe width is increased from 2

to 5 in a raidz array, or from 3 to 5 in a raidz2 array, the overall I/O throughput increases

linearly. Note that a RAID array using SSDs does not always outperform an HDD-based

RAID array. For sequential I/O, SSDs arrays only outperforms the HDD-based array in the

largest stripe size (i.e., 4+1 and 3+2 on raidz and raidz2, respectively).

Unlike I/O workload which can be serviced in parallel, resilvering is more computation

intensive that reconstructs data sequentially. Although employing more disks in the rebuild

process can improve the aggregated I/O throughput, the wider stripe increases the amount

of data and parity used during the resilvering calculation which offsets the throughput gain.

Fig. 7.37a shows the recovery speed does not monotonically decrease as the stripe

expands. This finding inspires us to explore the search space of different hardware and

environment settings to achieve the best recovery performance.
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Figure 7.36. I/O throughput under different RAID level, Stripe width, and
DRAM size.

7.7.3.4. How Does the Size of DRAM Affect ZFS’ Performance?

ZFS requires a large amount of DRAM for file caching and metadata management.

A common practice for system configuration is to provide 5 GB of DRAM for each terabyte

of storage. As shown in Figure 7.36, we test three DRAM sizes: 8, 16, and 32 GB for each

stripe width and RAID level. From the figure we can see that larger DRAM size leads to

about 10% of improvement of sequential I/O performance in HDD-based RAID array. But

SSD-based array does not show significant benefit from using more DRAM. However, we

cannot simply assume DRAM size is not important for ZFS, since our synthetic benchmark

only consider sequential I/O performance. Real-world workload consist of both random and
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sequential I/Os. The random data access pattern in ZFS will gain huge benefit from large

DRAM size.

The results from the RAID recovery experiments show that adding more DRAM

does not always improve ZFS’ recovery performance. Figure 7.37b shows that using

more DRAM for an HDD-based array improves the recovery speed by 3.8% on average, while

the performance on an SSD-based array drops by 5.6%. In order to explain this phenomenon,

we decompose the resilvering process of ZFS into three steps: 1) reading data and parity

blocks, 2) computing the data that is lost, and 3) writing the recovered data to a spare.

The performance of the second stage (data recovery computation) significantly influences the

overall resilvering speed. We can compare the resilvering process with the rewrite operations

that Bonnie++ performs, which also consists of reading, modifying, and writing blocks of

data. From Figure 7.37c, we can see that the recovery is a time-consuming process and

the CPU performance is a dominant factor. Although larger DRAM accommodates

more metadata and file caching for regular I/O operations, the resilvering process rarely uses

cached files. Hence, the DRAM size does not significantly affect the recovery performance

of ZFS.

7.7.3.5. Does the Storage Utilization Affect ZFS’ Performance?

ZFS employs copy-on-write (COW), that is a new copy is created only when the

data is modified. It efficiently shares duplicate data to avoid unnecessary resource consump-

tion. However, COW causes more fragmentations as the utilization of the storage increases.

Moreover, when the storage usage increases to approximately 80%, ZFS switches to a space-

conserving (rather than speed-oriented) mode to preserve working space on the volume. In

our experiment, we profile ZFS and measure its throughput as we ramp up zpool’s utilization

from 0% to 90%. Figure 7.38a presents the experimental results. The solid curve shows the

average throughput of ZFS under the RAIDZ configuration, and the dashed curve is the

corresponding trendline using a linear regression. From the figure, we can see that as the

utilization of zpool increases, the throughput of ZFS decreases significantly in

the RAID array using HDDs. As a zpool becomes fully used, ZFS’ throughput drops
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Figure 7.37. The I/O and recovery performance of ZFS.
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by up to 25%.

Similar to the preceding results, the recovery throughput degrades as the zpool

utilization increases. Figure 7.38b shows the recovery throughput under different zpool

utilization for both HDDs and SSDs based array. The least-squares linear regression model

fits the results the best. We observe that the recovery performance decreases as the zpool

utilization increases. When the storage array is close to a full utilization, the recovery speed

is about 37% slower than the average throughput, and 47% slower than the peak speed.

The first and last steps of the resilvering process consist of reads and writes. Therefore the

performance degradation due to increased zpool utilization plays a major role for the reduced

recovery speed.

7.7.4. Proactive Data Protection

Disk access speed has been outpaced by the increasing capacity. The stripe width

of RAID arrays have grown to fill the gap between disk speed and capacity. Unfortunately,

the probability of having double and even triple failures also increases as the disk recovery

time is significantly prolonged. Although ZFS supports RAID 6 and RAID 7 (triple parity)

to handle disk failures, the longer performance degradation and even unavailability of disk

arrays compromise the overall system performance and users’ satisfaction. Complementary

to post-failure disk rebuilds, data can be rescued proactively prior to disk failures. This

is enabled by disk failure prediction techniques [83] [111] [22] which forecast when failures

will happen on which drives with promising accuracy. We aim to incorporate disk failure

prediction methods in ZFS so that ZFS becomes capable of replacing a failing drive before

the failure actually happens. Data on the failing drive (in contrast to failed drive) can be

moved to a spare drive without the expensive disk rebuild process, thereby avoiding service

disruption of the storage system. In addition, proactive data protection can be scheduled to

perform during off-peak hours, which can further improve storage availability and achieve

service-level objectives (SLO). Disk failure prediction remains an active research topic. In

this work, we leverage the existing techniques of prediction disk failures and explore them

in ZFS to develop proactive data protection. Research on the prediction methods is not the
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Figure 7.38. Storage utilization influences on ZFS’ performance.

focus of this paper. Table 7.16 lists the variables that we use in the following discussion and

analysis.
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Table 7.16. Variables Used in the Analysis of Proactive Data Protection and
Strategy Selection.

Variables Description

tl Lead time of a failure prediction

ti Time when a failure prediction is performed

tf Time when a disk failure is predicted to happen

tv Validation period of a prediction

T Duration of the data rescue process

S Data rescue speed

A Amount of data to be rescued

W Wasted time due to failure misprediction

p Precision of failure prediction

7.7.4.1. Proactive Strategies for Handling Disk Failures

A disk failure prediction model (FPM) uses monitored, real-time status data of disk

drives to compute the probability at which the drives will fail in the future. At time ti, if

FPM predicts that a disk is going to fail, it reports the predicted failure occurrence which

will happen at time tf . We use lead time tl, i.e., the length of time between the point when

FPM makes prediction and the predicted failure occurrence time, to represent the urgency

of a failure. We can calculate the lead time using tl = tf − ti. Proactive data rescue from

the failing disk to a spare or available disk also takes time. We use T to denote the time

that a proactive action uses to rescue data. If tl > T , then proactive data rescue can ensure

the safety of the data on the failing drive(s). In this paper, we discuss several proactive

strategies to handle disk failures. To proactively rescue data on a failing disk, we need to

calculate the estimated recovery time T for each proactive strategy and compare it with the

lead time tl.

(1) Proactive Disk Cloning (P-DISCO)

(2) Proactive Active-data Recovery (P-ADAR)
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(3) Proactive Active-data Cloning (P-DACO)

The Proactive Disk Cloning, or P-DISCO, migrates data on a predicted, failing drive

to a hot spare using disk cloning. In the conventional RAID rebuilds, data reconstruction

involves massive data movement and intensive parity computation using data and parity

blocks from all of the other disks in an array. CPU and interconnect become the performance

bottleneck as they determine the recovery throughput. Disk cloning, on the other hand,

only migrates the data from the failing disk to a spare one without involving other disks

or calculating parities. Theoretically, proactive disk cloning can achieve a much higher

throughput. The additional workload might accelerate the death of the already failing drives,

but other disk drives in the same RAID array stays intact. Moreover, the recovery speed is

independent of the disk space utilization. In contrast, the performance of ZFS’ resilvering

process is affected by disk utilization as shown in Section 3.2. Fig. 7.39a compares the two

recovery strategies, i.e., ZFS’ resilvering and proactive disk cloning, for a fully used drive.

From this figure, we can see P-DISCO completes data rescue in 17.59 hours for an 8TB

HDD, and in 4.17 hours for a 3.2TB SSD. Most importantly, data rescue happens before

a disk failure happens, thereby preventing a storage system from operating in a degraded

state and nested disk failures. In contrast, after the disk fails, the default ZFS data recovery

process takes over two times longer period of time to rebuild the same disk. During this

period, the data reconstruction process competes with regular I/O workloads for system

resources, which prolongs the recovery time and the vulnerable period spent in a degraded

state. The volume manager masks data locations to make the recovery process transparent

to the system. Without knowing which disk sectors contain useful data, disk cloning has to

copy everything from every sector to the spare drive. For a nearly empty disk, P-DISCO

may not be time and resource efficient.

(7.10) TP−DISCO =
Adisk capacity

Scloning

ZFS combines a file system and volume manager. It keeps tracking ”active data” and

provides the opportunity to recover only those tagged data areas when a disk fails. This
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results in an efficient data rescue strategy. Proactive Active-data Recovery, or P-ADAR,

enables ZFS to proactively rescue only active-data instead of the entire disk to the spares.

Although resilvering is computationally intensive, recovering the minimum amount of nec-

essary data can save time. The amount of active data on a disk is no more than the disk’s

overall capacity, that is Aactive data < Adisk capacity. Additionally, ZFS’ resilvering is safe

to interrupt. If power outage or reboot occurs during data rescue, the resilvering process

resumes at the exact location where it is interrupted without human intervention. How-

ever, the resilvering process is more complex than cloning, which involves a full disk scan to

gather active data locations, followed by compute-intensive data reconstruction. Therefore,

Sresilvering < Scloning. The actual recovery time T equals

(7.11) TP−ADAR =
Aactive data

Sresilvering

To further speed data recovery, we leverage computation-light cloning to rescue the

necessary data tagged by ZFS. The proposed Proactive Active-data Cloning, or P-DACO,

only moves the active data during recovery, and avoids parity computation. It combines the

advantages of the preceding two strategies. Thus the recovery time equals to

(7.12) TP−DACO =
Aactive data

Scloning

To obtain the value of S and A, a set of daemons frequently check disk’s SMART (Self-

Monitoring Analysis and Reporting Technology) data and zpools’ utilization. A daemon

process also runs a set of micro-benchmarks to determine the I/O performance and data

recovery speed S at runtime. The amount of data to be rescued A is determined when the

proactive action starts to rescue data. Meanwhile, the SMART data of each disk in the

system is transferred to FPM for failure prediction and disk health analysis.

7.7.4.2. Selecting the Best Data Rescue Strategy

From the preceding discussion, we can see each proactive data resue strategy is only

suitable for some specific situations. How to select the appropriate strategy to handle disk
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Figure 7.39. Effects of storage utilization on ZFS’ performance.

failures is critical. Figure 7.39b illustrates the performance of each proactive data rescue

strategy to recover data from an 8TB enterprise-grade HDD with different disk utilization.

From the figure, we find that P-ADAR is more efficient when the zpool is lightly used (i.e.,

below 15%). As more active data is stored, P-DISCO becomes a better choice. P-DACO

is a promising strategy that yields better results than P-ADAR and P-DISCO most of the

time. However, P-DACO cannot tolerate interrupts during data rescue, which needs trade-off
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between dependability and performance.

To select the best data rescue strategy systematically and accurately to handle disk

failures, we design two constraints for the selection process: urgency and dependability.

Specifically, the urgency indicates how fast a data rescue strategy can complete data recovery,

while the dependability measures to what extent the data rescue strategy is tolerant to

interruptions. For example, to minimize storage downtime caused by disk failures, we can

prioritize urgency over dependability. In this case, if failure predictions provide enough lead

time, where tl > min(TP−DISCO, TP−ADAR, TP−DACO), then we can select the strategy with

shortest data rescue time T . For a storage system that prioritizes dependability over urgency,

we adopt a simpler approach to narrow down the strategy selection set, since active-data

resilvering is the only one that is safe to interruptions. Therefore, if FPM provides enough

lead time for P-ADAR, we choose active-data resilvering as the proactive data rescue strategy

to handle disk failures. Otherwise, the default reactive data rescue, or R-ADAR, is employed.

7.7.4.3. Analysis of Data Rescue Cost

In practice, each FPM only performs well for certain model and type of disk drives.

For drives of a different model or type, it may generate many false alarms that incur un-

necessary data rescues, and false negatives which need the expensive disk rebuild. In this

section, we analyze the effectiveness and cost of proactive data protection strategies.

When FPM predicts a failure to occur at time tf , it also provides a valid period tv,

which indicates the failure occurrence is likely within tf± 1
2
tv. We can calculate the adjusted

lead time as t′l = tf − 1
2
tv − ti. If the disk is still healthy beyond tf + 1

2
tv, we say the

prediction is a false positive. For proactive data protection, the cost of a false positive is a

replacement of a healthy disk, in addition to the wasted resources used during data rescue. If

the failure actually happens before tf − 1
2
tv, or FPM does not report that failure, we say the

prediction is a false negative. In our discussion, we assume the worst case of false negative

is that there is no proactive action to rescue data. Since proactive data protection should

be complemented by reactive data rescue (R-ADAR) to address mis-predictions, the cost

of false negatives becomes the cost from performing R-ADAR. The default R-ADAR and
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proactive strategy P-ADAR take the same time to do data rescue (TP−ADAR = TR−ADAR).

The difference is their start time. At time ti, when FPM predicts that a failure will occur by

time tf , P-ADAR starts data rescue and complete it by t′l − TP−ADAR. This is equivalent to

tf − 1
2
tv−TP−ADAR. For R-ADAR, the rescue process starts only after the actual disk failure

occurrence at t′f , and completes by t′f + TR−ADAR. Assume the probability that tf = t′f is p.

Once FPM provides enough lead time for proactive data rescue, i.e., t′l > T , we say that the

proactive data rescue strategy can be completed before the reactive action starts. With a

probability of (1−p) that FPM makes a wrong prediction, the cost is no higher than that of

the default reactive strategy. Therefore, proactive data rescue improves the overall storage

reliability by reducing the risk of data loss risk and the cost of data recovery.

We note that proactive data rescue strategies are not to replace the conventional

resilvering process in ZFS. They are complementary to resilvering, aiming to enhance the

storage reliability further. When failure predictions are sufficiently accurate, that is the

majority of disk failures can be handled by proactive data rescue strategies prior to failure

occurrences, the data recovery time is significantly shortened and the storage availability

is improved. The probability of nested/multiple disk failures can also be reduced, which

mitigates the risk of data loss.

7.7.5. Conclusions

Storage reliability imposes a major challenge to big data systems and applications.

In this paper, we characterized storage performance under disk failures with a variety of ZFS

configurations. We propose a proactive data protection scheme that leverages promising disk

failure prediction techniques and rescues data prior to disk failure occurs. We explore the

findings from our experiments to design an analytic model that aims to find the optimal

data rescue strategy. Our analytic model uses zpool utilization and the configuration of a

storage system to select the best strategy that minimizes the data rescue cost and maximize

storage availability.
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7.8. An Empirical Study of Quad-Level Cell (QLC) NAND Flash SSDs for Big Data Appli-

cations [135]7

As the SSD technology develops, quad-level cell (QLC) NAND based SSD is gradually

being introduced to the market. And as such, we evaluate the QLC technology’s impact on

the landscape of modern data centers. Since a large number of applications and workloads

in the modern data centers have far more read requests than they write requests, QLC SSD

provides a promising solution. For example, real-time analytics and big data, machine and

deep learning, and read-intensive AI applications are all read hungry perfectly suited for

the QLC. Its favorable performance (especially in reads), high capacity and density greatly

help modern data centers to provide more efficient services to their customers. At the same

time, the low cost of QLC SSD also helps to lower the cost of operation for data centers.

Additionally, we explore the state-of-art QLC SSD from the system architecture point of view

to shows its key advancements from previous technologies. By conducting a comprehensive

performance evaluation of QLC SSD, we are able to compare it with other types of SSD and

analyze factors that impact its performance.

7.8.1. Introduction

The booming onset of Big Data analysis and data-driven Artificial Intelligence tasks

requires fast data access and data storage. Faster storage facilitates the data-intensive tasks

to keep up with the ever-growing data sets. Solid state drives (SSD), or flash storage,

are now the mainstay for mission-critical workloads such as business intelligence (BI) and

content distribution. Since computers can only “learn” as quickly as it can read and analysis

data, flash storage dramatically improve the machine learning efforts. But, as flash-based

block device has limited per drive capacity and a much higher price-tag, they are commonly

designated as a caching layer, which bridges memory and HDD-based permanent storage.

Ever since SSD were introduced to the enterprise market many years ago, its density

7Section 7.8 is reproduced in its entirety from Shuwen Liang, Zhi Qiao, Sihai Tang, Jacob Hochstetler, Song
Fu, Weisong Shi, and Hsing-Bung Chen, An empirical study of quad-level cell (QLC) NAND flash SSDs for
big data applications, 2019 IEEE International Conference on Big Data (Big Data), pp. 3676-3685, with
permission from IEEE.
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continues to improve thanks to the advances of semi-conductor technology. DRAM based

and 3D XPoint based SSD offers higher performance, but NAND flash are still the most

commonly used technology in SSD due to its lower cost. Depending on the number of bits

stored in each flash cell, there are four basic types of NAND flash used in an SSD. Each type

have its own distinct performance, cost, endurance, and density trade-offs. Single-level cell

(SLC) requires 2 voltage levels (i.e., 0 and 1) to store 1 bit of data, offering highest write

performance and endurance at the cost of price and density. Multilevel cell (MLC) requires

4 voltage levels to represent 2 bits of data (i.e., 00, 01, 10, and 11). Triple-level cell (TLC)

and Quadruple-level cell (QLC) requires 8 and 16 levels of voltage to store 3 and 4 bits of

data, respectively. As the data density increase, the price per bit lowers, but the endurance

and write performance decreases as a result.
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Figure 7.40. Example of an SSD Physical Layout.

Because endurance is such a vital component to the SSD, it is the primary concern

to many data centers that are adopting SSDs. As SSD technology uses NAND flash, the

inherent wear-out characteristics of the NAND flash directly effects the durability of the

SSD. NAND flash chips are non-volatile, meaning they retain data without a constant power

supply. Furthermore, because NAND flash based SSDs does not have moving parts involved

during operation, they are more resistant to sudden shocks and extreme environments than

their HDD counterparts. On the flip side, the NAND flash will eventually wear out as data

writes accumulate overtime. If the amount of data written to the device exceeds its life

225



span, NAND flash based SSD will gradually lose the ability to retain charge and the ability

to retain data integrity. SSD employs several techniques to improve endurance, e.g., wear

leveling, garbage collection, and chip-level RAID.

While the write endurance of NAND flash generally decreases as the number of bits

stored per cell increases, a large number of applications and workloads in modern data centers

have far more reads than writes. Typical read-intensive workloads such as streaming, content

distribution, guided navigation, user profile access, and business intelligence/analysis are all

capable of taking advantage of the cost-effective QLC SSD for its immense storage density

compared with other types of SSD. In addition to the storage benefits of QLC SSD, the high

performance of flash storage also supersede the legacy HDD based storage. For real-time

analytics and big data applications such as Spark or Flink, QLC based storage uplift the

performance of HDFS (Hadoop Distributed File System) and delivers massive data sets with

high capacity storage that other types of SSD cannot provide.

QLC based storage allows deeper queries to build more detailed analytic and better

insights for decision support systems. It also provides the low latency that machine/deep

learning algorithms depend upon at an affordable price point. In addition, increased storage

density consolidates the platform, reducing the total cost of ownership (TCO).

In this paper, we comprehensively evaluate the QLC technology’s impact to the land-

scape of modern data centers. In Section 7.8.2 and Section 7.8.3, we study the latest QLC

technology, which improves the SSD economics and fills the much-needed gap between ML-

C/TLC SSD and legacy HDD storage, from an architecture level to evince its key advance-

ments over previous technologies. This storage paradigm transition enables more read-

focused workloads to be migrated from dated HDD based storage to flash, thus releasing the

expensive and limited MLC/TLC resources for write-centric applications. We evaluate two

real-world QLC SSDs performance and compare them against state-of-art SSDs using MLC

and TLC technology in Section 7.8.4. Our evaluation gives IT professionals and system de-

signers valuable insight towards identifying the appropriate use cases of QLC SSD and how

they can modernize data centers while reducing the TCO.
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7.8.2. SSD Architecture

This section discusses the general architecture of SSD. From physical to logical, this

section mainly focuses on the construction of the SSD and the main procedures of the data

process in SSD.

Referencing Figure 7.40, an SSD is composed of, from left to right:

• A Connector interface.

• A Controller.

• NAND flash memory chips.

• Integrated Circuits (ICs).

• Resistors, inductors, and capacitors.

• Printed Circuit Board (PCB) substrate

7.8.2.1. Connector

The connector mediates data transfer between the SSD and the host computer. The

universal connectors are SATA and NVMe. SATA has three major revisions. Most of

the consumer-graded SSD supports SATA 3.0 or above. SATA 3.0 can support a burst

throughput up to 6 Gbit/s [231]. In contrast, enterprise-graded and high-end SSD usually

embeds the NVMe connector. It is a logical device interface to access NAND flash memory via

a PCIe bus. Theoretically, the throughput of NVMe based SSD can be up to 32 Gbit/s [230].

7.8.2.2. Controller

An SSD controller works like a central manager that in-charge of all the NAND chips

in the drives. The modern SSD controller is also a powerful “brain” as it is capable of

managing different kinds of jobs; it executes firmware-level code, manages I/O requests, and

ensures data integrity and storage efficiency. In particular, it manages bad blocks, enforce

wearing leveling, monitors disk health, and handles garbage collection. Table 7.17 summa-

rizes universal features that are supported by most SSD controllers. Each SSD manufacturer

also has its own unique tweaks or features to the SSD controllers that boost the performance

and reliability.
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Table 7.17. SSD Controller Features

Feature∗ Description

Flash

Translation

Layer (FTL)

Map logical address (LBA) to physical address in the flash memory [139].

Bad Block

Mapping

Map the bad block’s logical sector to reserved sector when bad block is

detected [233].

Wear Leveling The mechanism that maps re-writed/updated data to a new location and

marks the previous location as “invalid”. Meanwhile, cold data will also be

moved around periodically to provide evenly wear among each cell [29].

Error

Correction

Code (ECC)

Detect and correct memory bit errors (soft errors). Hamming code and

parity bit error detection schemes are widely used in SSD [233].

S.M.A.R.T. Monitor and report SSD health status. Some SSD S.M.A.R.T. attributes are

pre-defined, some are manufacturer defined [232].

Encryption/

Decryption

Controller support encryption/decryption to ensure data security; it typically

uses the 256 AES encryption. Encryption can be applied to partial or whole

drive [233].

Garbage

Collection

The controller erases invalid data blocks periodically to ensure the available

space for new write request. Garbage collection typically runs in the

background during idle time [233].

I/O Caching Store frequently used or recently used data to exploit spatial and temporal

locality.

Data scrubbing The mechanism that verifies the integrity of each memory block periodically.

If a bit error is detected, controller will invoke ECC to correct in the same

memory location. Data scrubbing is usually operated in disk idle time [233].

Power

Management

To improve power efficiency for SSD, especially when used in mobile devices,

the controller manages power consumption for the SSD in different states:

active, idle, and slumber.

Trim Support Enables the operating system to notify SSD on which data blocks can be

erased [234].

Thermal

Throttling

With the internal thermal sensors monitoring the environment temperature,

SSD controller will reducing the I/O speed when overheating.

∗Proprietary controller features not included.
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7.8.2.3. NAND Flash Memory Chip

NAND chips are important components to the SSD. Thus far, an SSD can have 4-16

NAND chips [139]. An individual NAND chip can be decomposed from top to down in the

following order (Also see Figure 7.40):

• Die: Each NAND chip can contain several NAND memory dies.

• Plane: Each die can contain 1-4 planes [139].

• Block: Each plane has thousands of flash blocks:

– Page/Wordline1: Contains hundreds to thousands of rows of pages (horizontal).

– String/Bitline2: Contains hundreds to thousands of columns of strings (vertical).

• Cell: Each page or string contains thousands of flash cells.

In 2D NAND, A flash block is the cluster of wordlines and bitlines. Figure 7.41 shows

the details on the architecture of a block. A row is called a wordline, and a column is called

a bitline. In the block level, transistors are neatly arranged.

The Page is the smallest data storage unit that can be read and wrote to, while the

Block is the smallest data storage unit that can be erased. A page can typically contain 2K,

4K, 8K or 16KB data. And, the size of a block can vary between 256KB and 4MB [139].

But as technology develops rapidly, we can expect these numbers update quickly.

7.8.2.4. PCB, ICs and Other Components

All components, including controller, NAND chips, and connector, are on the printed

circuit board (PCB), connecting with integrated circuits (ICs). Besides, there are sensors

and counters tied to the PCB such as the thermal sensor and physical event counters. All

components work together to make the SSD work appropriately as a whole.

7.8.2.5. How SSD work with Data

NAND flash SSD supports three possible data operations: write, read, and erase.

1“page” is preferred when referring to data, while “wordline” is used when referring to architecture.

2“string” is preferred when referring to data, while “bitline” is used when referring to architecture.
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7.8.2.6. Write

Data from the file system goes through the SSD connector before arriving at the

controller. Since data can only be written to empty blocks, the controller maintains a pool

of empty blocks. If the drive runs out of empty blocks, the controller will perform garbage

collection to reclaim “invalid” data blocks before writing data to the NAND memory. Other-

wise, the FTL runs the address mapping algorithm and determines the physical addresses in

NAND chips – the FTL maps the logical data blocks into the NAND page and then written

into a block. Specifically, the controller applies a high positive voltage to responsive NAND

pages and strings. Voltages of selected cells will be changed to logical “0”. After related

cell voltages are updated, the ECC will verify the written data before return the “success”

signal to the OS.

7.8.2.7. Read

Reading data from SSD is similar to the writing process. The file system issues the

read request. The request goes through the connector and enters the SSD controller. The

controller processes the request and communicates with the NAND interface. FTL locates

the physical addresses of the request data. Then, the controller applies the read voltage
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(intermediate positive voltage) to related NAND pages and strings. Since medium positive

voltage won’t change the logical representation of NAND cells, the selected NAND cells will

respond with the corresponding stored logical 0 and 1. Raw data then goes through the

NAND decoders. After decoding and verifying, data stream sends back to the file system.

7.8.2.8. Erase

Erasing data in SSD is quite different from erasing data on a HDD. In SSD, the erase

process can only be performed in block-level while writing and reading process can perform

at page-level. An erase operation is the process of removing electrons from the storage layer

to change the state of the cell to logical 1. Typically, delete request sent from the file system

won’t immediately remove the data from flash memory; the controller only marks the “erased

data” as “invalid.” The garbage collection algorithm run in the background decides when

to issue a large negative voltage to erase the whole block.

7.8.2.9. Data Placement

In general, SSD has two storage areas: main area and spare area. Main area stores

user data and the spare area contains bad block marker, ECC and may have some metadata.

Usually, the spare area is reserved and user cannot get access to it.

Data in SSD, including data placement, are specified and managed by the controller.

SSD only write to one page each time and block marked as “bad block” will not be used.

But, determining which page will be written and how to skip the bad block are defined by

the related algorithms embedded in the SSD controller. The controller also defines other

jobs related to data placement. For example, wear-leveling algorithms and I/O algorithms

in the controller will divide large files and store each part in different flash chips. The data

integrity algorithm writes data parities to a separate flash chip.

7.8.3. State of Art of Quad-Level SSD Architecture

The quad-level cell(QLC) technology was first introduced by NEC in 1996 [229].

Compared with prior generation, i.e., SLC, MLC, and TLC, QLC technology enables larger

per bit capacity while lowering the cost. This technology was initially developed for the
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Figure 7.42. Charge Trap (CT) cell vs. Floating Gate (FG) cell.

dynamic random-access memory(DRAM) chip. In the 2000s, QLC technology applied to

NOR flash memory cells and NAND flash chips. Later on in the winter of 2018, the first

commercial QLC NAND-based SSD became available [229]. In this section, we present the

key advancements of QLC technology that uplift the storage density, and bridge the gap of

performance and cost between flash and legacy HDD storage. The main difference between

QLC and other types of SSD lies at the cell level and block level. We highlight the main

features of QLC technology in Table 7.18, then explore them in detail and compare them

against competitive SSD technologies.

7.8.3.1. Cell Level Architecture

7.8.3.2. Physical Architecture

NAND-based SSD generally employs one of the two transistor technologies: Charge

Trap (CT) MOSFET (Metal Oxide Semiconductor Field Effect Transistor) and Floating

Gate (FG) MOSFET. Manufactures like Samsung, Toshiba, SanDisk, and Western Digital
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Table 7.18. Specifications of SLC, MLC, TLC, and QLC

Types SLC MLC TLC QLC

P/E Cycle 90-1000k 8-30k 3-5k 500-1k

Bit per Cell 1 2 3 4

Reliability FFFFF FFFF FFF FF

Endurance FFFFF FFFF FFF FF

Cell Density F FF FFF FFFF

Power∗ 0.1-3.6W 0.6-2.6W 0.7-3.6W 1.5-3.6W

Voltage Levels 2 4 8 16

NAND Architecture 2D/3D 2D/3D 3D 3D

Latency / QoS [237]

Read 25µs 50µs 75µs ≈100µs

Write 200-300µs 600-900µs 900-1350µs ≈1500µs

Erase 1.5-2ms 3ms 5ms ≈6ms

∗Ranging from idle to active power consumption.

develop their SSD architecture using the CT MOSFET, while Micron and Intel adopt the

FG MOSFET. Figure 7.42 illustrates the difference between CT cell and FG cell. The

storage layer of CT cell uses the silicon nitride while the FG cell uses floating gate [199].

Additionally, the charged storage layer in CT is shared among all cells while in FG they are

isolated. According to Micheloni’s study [188], the majority of SSD relying on CT cells but

FG cell also have its market share.

7.8.3.3. Data Programming

One QLC cell can store four bits of information, which is 33% more than TLC tech-

nology. As illustrated in Figure 7.43, it requires 24 different electric voltage levels to program

a QLC cell (represented by 0000 - 1111). A logical QLC cell data (4 bits) are mapped to

four pages. Thus, it takes four cycles to raise the voltage level to the desired state.

There are many QLC programming algorithms. Traditional method named Binary

Code is illustrated in the upper portion of Figure 7.43. For a narrower and tighter voltage

233



Vth

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0

1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

page 0

page 1

page 2

page 3

1111

1110

1101

1100

1011

1010

1001

1000

0111

0110

0101

0100

0011

0010

0001

0000

Binary 
coding

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0

0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0

0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

page 0

page 1

page 2

page 3

1000

1001

1011

1010

1110

1111

1101

1100

0100

0101

0111

0110

0010

0011

0001

0000

Gray 
coding

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15Voltage 
Level

Figure 7.43. QLC Voltage Levels and Data Mapping in Binary Code vs.
Gray Code.

range, traditional data mapping based on Binary Code becomes inefficient and can easy

introduce data error [137]. Thus, more sophisticated programming algorithms have been

proposed. Since QLC SSD is designed for read-intensive workloads, data reading based on

Gray Code method provides a better solution (refer to lower portion of Figure 7.43). The

most obvious benefit to this is that two successive values differs in only one bit [228]. Thus,

if voltage shift and data retention error occurs, Binary Coding may encounter up to 4 bits

data error (i.e., voltage level 7 to 8 in Figure 7.43), Gray coding only yields 1-bit data error.

There are many Gray Code variants [137], but all of them retain the 1-bit differ rule for

sibling values.

7.8.3.4. Block Level Architecture

Starting from the TLC technology, block-level design shifted from 2 to 3 dimensional.

Each generation of 2D NAND architecture shrinks the size and increases the number of

transistors in the chips to accommodate the Moore Law. However, 2D NAND design has

reached the lithographic limitation [188]. The new 3D flash architecture extends the vertical

space to achieve a higher density and capacity. Thus, QLC SSD continues the trend of using
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3D NAND architecture in block level design.

Each manufactures has its proprietary 3D NAND designs. Toshiba developed a 3D

NAND technology named Bit-Cost Scalable NAND technology (BiCS) then later improved

to Pipe-shaped Bit Cost Scalable (P-BiCS). Samsung introduced several vertical gate (with

either horizontal or vertical channels) designs, namely V-NAND architecture. The V-NAND

family includes the Vertical Recess Array Transistor (VRAT), the Vertical Stacked Array

Transistor (VSAT), and the Terabit Cell Array Transistor (TCAT) [188]. SK Hynix proposed

designs based on FG cell, named Dual Control-gate with Surrounding Floating-gate (DC-SF)

and its variant called Advanced DC-SF [225].

3D NAND design is an extension of 2D NAND that adds the vertical dimension.

Figure 7.44 illustrates a typical way to convert a 2D string to a 3D string. Imagine when all

the strings in a 2D block are folded over then stood vertically, essentially transitioning the

2D planar block into a 3D block. Samsung’s TCAT and SK Hynix’s DC-SF uses different

approaches. In a nut shell, TCAT and DC-SF don’t fold over the string, but add a “z” axle

to the 2D planar instead. Figure 7.45 shows this type of 3D NAND block construction. Both

CT and FG cells presented in Figure 7.42 can be applied to this type of 3D architecture.

Bitline

Bitline

Source
Line

(a)

(b)

Bitline Source
Line

(c)

Source 
Line

Figure 7.44. P-BiCS Converts a 2D NAND String to 3D NAND String: (a)
The 2D NAND string (b) 2D string is stretched out in the middle and folded
over (c) Make it stand vertical and it becomes a 3D string.

Transitioning from 2D to 3D block, we encounter a new concept called “layer.” The

number of layers defined by the number of vertical Control Gates (CG). In QLC, the number
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Figure 7.45. TCAT and DC-SF Construct a 3D NAND Block.

of layers are usually the multiple of 4. The common construction of 3D NAND flash uses

32, 36, 48, 56 and 96 layers. More layers usually means higher storage density. In the year

of 2019, 96 layer 3D NAND dominates the QLC market share. Meanwhile, the 3D NAND

flash of over 100 layers (e.g., 128 layers) is just around the corner.

7.8.4. Evaluating Performance and Value of Qlc Ssd for Modern Data Centers

Historically, performance-sensitive and read-centric workloads have relied on paral-

lel arrays of HDDs to deliver the required capabilities that service-level agreement (SLA)

demand. With the advance of QLC technology, can these new SSD achieve the storage per-

formance and capacity requirement? In this section, we evaluate the real-world performance

of the latest QLC SSDs and compare its performance with state-of-art SSDs using MLC

and TLC technologies. We try to answer the question: Can QLC SSD offers flash storage

performance at more approachable price? Table 7.19 highlights the main features of each

SSD used in our experiment.

7.8.4.1. Experiment Setup

Our evaluation comprises of several factors that might impact SSD performance.

All of our experiments are performed on two HP Proliant ML110 G6 Storage servers with

identical configuration. Each server is equipped with an eight core Intel Xeon (3 GHz), 8

GB DRAM, and Ubuntu 18.04 LTS. All HDDs and SSDs are physically attached to the

sever machine via SATA 3.0 connectors. We use the fio (aka., Flexible I/O) synthetic

trace to simulate various types of workloads. During the experiment, fio was set to use
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Table 7.19. Types of SSD in This Evaluation

Brand Name∗ Cell Type+ Architecture Capacity (GB) Cost per bit

Brand A eMLC 2D 240 $$$

Brand B TLC 3D 480 $$

Brand C QLC 3D 480 $

Brand D eQLC 3D 1920 $

∗ For each brand, the logical sector size are 512 byte; physical sector size may vary.

+ The “e” in front of a cell type denotes the enterprise grade drive.

asynchronous engine for non-buffered I/O, and the I/O depth were set to 64 to saturate

the bandwidth. The broad range of factors that might affect the performance of SSD in

production environment includes read-write ratio, data access patterns, block size, garbage

collecting operations, bad block managements and reserved block replacement policy, etc.

The total workload size exceeds available memory to ensure a storage-centric workload. We

repeat each test five times then report the average.

Note that new SSD needs to break-in before the experiments. Since brand new SSDs

shipped with empty flash blocks, I/O latency measured at empty blocks will differ from non-

empty blocks. The break-in process fills the new drive with nonzero data. I/O performance

measured from non-empty block represents real-world results from production environment.

7.8.4.2. Performance Evaluation

In production storage systems, different applications exhibit distinct I/O patterns

and characteristics. We can categorized them into two types: small reads/writes and large

reads/writes. The former is typically measured by IOPS, while the latter is evaluated by

throughput. In our preliminary testing, we adopted the widely used benchmark configu-

ration and procedures to evaluate the performance of an SSD. We selected the following

three metrics to quantitatively measure the performance. The objective of each metric is

highlighted as follows.

(1) Sequential Write/Read with 1MB block size. This test measures I/O band-
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width for large I/O requests. In this test, sequential write/read are performed in

multiple parallel streams, using 1MB I/O size to simulate large data writes/reads.

(2) Write/Read IOPS with 4KB block size. This test measures the ability of a

block device to handle small I/O requests. Following the industrial best-practice,

we set I/O size to 4KB. Write/read are only performed in single stream, so the

number of concurrent request is adjusted to a larger number to generate sufficient

requests before they saturate the I/O bandwidth.

(3) Write/Read Latency with 4KB block size. This test evaluates the latency of

a block device completing a I/O request. The write/read are performed in single

stream and I/O array size is set to a small number, so the number of concurrent

request is adjusted down to prevent reaching the maximum bandwidth or maximum

IOPS.

Table 7.20. Benchmark Results

Metrics Brand A Brand B Brand C Brand D

Write

Throughput (MB/s) 247 250 191 231

IOPS 9663 10400 6853 8852

Latency (µs) 406.1 378.9 574.7 446.3

Read

Throughput (MB/s) 210 249 241 192

IOPS 4468 5337 2441 3338

Latency (µs) 896.9 763.4 1631.9 1195.1

Table 7.20 shows the preliminary results in these experiments. Overall, the write/read

of both QLC drives performs worse than that of other drives. The brand C QLC drive has

the lowest writing speed at 191 MB/s. Brand D QLC drive performs better at 231 MB/s.

However, the write IOPS of both QLC drives can only achieve 66% - 90% of its MLC and

TLC competitor, while the write latency are also 40µs-200µs higher than Brand A and Brand
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B drives. Similarly, the sequential read IOPS of QLC drives are 25% - 55% lower than its

competitors and the read latency almost doubles the MLC and TLC drives. We cannot

simply conclude that all QLC drives performs worse than TLC or MLC drives, but from the

result we can extrapolate that SSD performance will degrade when the data bits per cell are

increased. This result is intuitive as the increase of bit per cell require advanced architecture

design and complicated electron level controls. In addition, QLC only have around 500 to

1000 P/E cycles. To prolong its lifespan, some QLC SSDs throttle the write performance by

design.

On the other hand, QLC SSD packs 33% more data per cell (4 bits rather than 3) and

adopts more sophisticated algorithms to encode data. Hence, they might exhibit different

I/O characteristic than industry best-practice for MLC and TLC drives. In the following

sections, we explore a range of factors to optimize the storage configurations that yield better

read performance for QLC SSDs.

7.8.4.3. Block Size Matters

Our preliminary test uses 4KB data block size. However, this block size may arti-

ficially inflate the total I/O number that the drives are capable of handling [212], and the

I/O patterns in real-world scenarios are also more complicated. We may encounter different

data block sizes with a mix of reads and writes requests. To better understand the QLC I/O

characteristics for read-centric workloads, we test various block sizes with the read/write

ratio at 75/25. The read and the write operations are also randomly mixed to simulate

real-world scenarios. Figure 7.46 - 7.48 shows the experiment results. We increase the block

sizes from 4KB to 10MB, and tested both sequential and random I/O operations. From the

results, we have the following observations.

• I/O speed increases with the block size. Overall, the performance of sequential

and random write/read operations of QLC SSD increases with the block size. We

observed a similar trend in SLC, MLC and TLC SSDs. Since the logical block size

of each drive is 512KB, write requests can only be handled per block unit, we believe

the writing performance degradation, when block size exceed 1 MB, is due to data

239



buffering or write aggregation. We conclude that for the write process, SSD logical

block size positively impacts the I/O performance.

• I/O speed increases faster when block sizes are smaller. Its obvious that

sequential I/O speed increases faster when the block size is less than 16KB. The

random read performance increases rapidly until the block size reaches 1MB. How-

ever, for random write request, each drive have a different optimal block size. The

experiment results also indicate that too many tiny files or massive files may hurt

SSD performance. The optimal block size should be in the range of 16KB to 1MB.

• Performance of enterprise-grade QLC SSD is more stable and predictable

than consumer-grade QLC SSD. In this experiment, we evaluated a consumer-

grade QLC SSD (Brand C) and an enterprise-grade QLC SSD (Brand D). In both

write and read tests, Brand D QLC SSD strictly follows the increasing trend as

other MLC and TLC drives. But the I/O performances of Brand C SSD has more

fluctuations, especially during the write tests. For the sequential write test, the

throughput of Brand C SSD peaks at 1MB block size before it starts to degrade.

For a random write test, the throughput of Brand C SSD rapidly grows at first

but then degrades after the block size exceeds 64KB. We still need further study to

fully explain the fluctuating performance of Brand C SSD, but we believe the SSD

controller design has a major impact on I/O performance.

7.8.4.4. Garbage Collection Matters

In SSDs, the garbage collection (GC) process releases the blocks that were occupied

by invalid data. Recall that GC is usually performed at background when the drive is idle,

so it minimize the performance impact while ensures the available drive capacity. Such a

strategy is typically useful for consumer environment as they tend to have more idle time.

However, enterprise environment have a much more intensive storage usage, causing the

GC procedure to lack having sufficient time to perform its task in the background. When

GC is eventually forced to run in the foreground alone with the application I/O payload, it

imposes a significant performance and endurance impact to the system, especially for the
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Brand A Brand B Brand C Brand D
4K 208 210 94.1 203 Brand A 
8K 228 226 97.4 216 Brand B
16K 242 238 102 220 Brand C
32K 243 240 102 221 Brand D
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(a) Sequential Write

Brand A Brand B Brand C Brand D
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32K 207 242 229 191
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Figure 7.46. Sequential Write and Read: Throughput (MB) vs. Block Size.

Brand A Brand B Brand C Brand D Brand A(test 2) Brand A(test 1)
4K 39 44.8 30.1 38.2 39 42.3
8K 57.9 56.3 53.7 65.7 57.9 64.3
16K 77.4 62.8 74.3 103 77.4 98.9
32K 88.6 64.3 106 136 88.6 133
64K 92.1 67 124 167 92.1 162
128K 95.2 68 103 194 95.2 196
256K 99.1 69.9 109 212 99.1 196
512K 98.9 68.4 110 222 98.9 188
1M 96.8 73.8 110 231 96.8 69.6
4M 93.2 72.7 107 230 93.2 66.3
10M 90.3 74.4 79.3 233 90.3 69.3

0

50

100

150

200

250

300

4K 8K 16K 32K 64K 128K 256K 512K 1M 4M 10M

Brand A Brand B Brand C Brand D

(a) Random Write

Brand A Brand B Brand C Brand D
4K 16.5 21.8 10.4 14.1
8K 28.7 39.7 18 24.8
16K 35.3 67.1 31.7 35.1
32K 41.7 103 54.7 54.8
64K 58.8 136 83.1 84.8
128K 79.4 175 118 119
256K 108 207 158 146
512K 139 233 196 168
1M 167 250 224 186
4M 167 250 224 187
10M 171 263 233 194
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(b) Random Read

Figure 7.47. Random Write and Read: Throughput(MB) vs. Block Size.

Read Write Read Write Read Write Read Write
4K 14.2 4.756 15 5.03 8.932 2.993 11.9 3.976
8K 23 7.688 28.7 9.53 15.8 5.244 19.9 6.654
16K 31.4 10.5 43.7 14.4 26.1 8.721 29.2 9.681
32K 39.9 13.3 69.4 23.2 44.5 14.8 44.5 15
64K 54.2 18 94.3 31.2 65 22.1 67.8 22.5
128K 71.9 24.3 120 40.3 93.5 31.1 93.7 31.2
256K 93.7 31.1 146 49.6 122 41 114 37.4
512K 118 40.9 166 52.9 149 50 131 44.2
1M 143 49.6 172 56.6 169 53 143 49.6
4M 143 49.4 172 57.3 169 56.7 143 52.2
10M 129 40.1 161 57.3 172 60.5 147 52
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(a) Read/Write = 75/25

Read Write Read Write Read Write Read Write
4K 16 1.794 15.2 1.671 9.722 1.08 12 1.431
8K 25.4 2.84 27.6 3.034 17.8 1.986 23.3 2.477
16K 35.8 3.974 52.7 5.851 29.7 3.297 32.2 3.56
32K 44.8 5.003 79.8 8.997 51.1 5.643 49.8 5.483
64K 61.3 6.805 113 12.6 75.9 8.44 76.5 8.569
128K 81.6 8.959 138 15.7 108 11.7 107 12
256K 108 12.3 174 19.5 142 16.3 131 14.9
512K 140 15.5 200 22.2 174 19.7 153 17.3
1M 168 19.4 218 25 200 22.6 169 18.6
4M 167 19.6 218 25.5 199 21.8 171 18
10M 170 22.5 221 27.5 205 23.9 175 19.7
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(b) Read/Write = 90/10

Figure 7.48. Read and Write in Mixed Ratios: Throughput (MB) vs. Block Size.

write performance.

GC activities may have distinct performance impact for different SSDs, as it is effected

by the embedded GC algorithm, the wear-leveling algorithm, the SSD controller policy, the

amount of SSD empty blocks, capacity, block size, and other factors. Theoretically, QLC
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Figure 7.49. Garbage Collection Effects on Random Write: Throughput
(MB) vs. Block Size.

SSD needs to spend more efforts on GC than other types of SSD due to the complexity of

NAND cells design. To measure the performance impact of GC for our QLC SSDs, we first

fill up the SSD with random data then immediately issue burst I/O workloads. This will

invoke the GC to release the invalid data blocks before handling new write request. Fig

7.49 shows the I/O performance difference between QLC SSD with GC and without GC in

different I/O size. On average, Brand C SSD random write performance drops 90% when

garbage collection onset, while Brand D SSD drops about 76%. Garbage collection activity

not only impact write performance, but also affects read operations. Recent studies [205]

found that read performance also degrades significantly when garbage collection is engaged;

the read request will also be blocked until garbage collection process finish.

7.8.4.5. Bad Block and Reserved Block Matters

SSD is a masterpiece of complex industrial products that comprises of thousands of

sub-components. So, besides the block sizes and garbage collection, SSD performance might

also affected by the number of bad blocks and reserved blocks. A block is marked as a bad

block when its P/E cycle reaches a preset threshold or it becomes inaccessible. When a

block is marked as a bad block, the SSD controller will map its logical address to a spare

block from the reserved block area. Data in the inaccessible bad block is considered as lost

since read and write requests cannot be completed. However, if the SSD supports block level

redundancy such as Erasure coding or internal RAID, then the SSD controller can initiate
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the recovery procedure that reconstruct the lost data to the spare blocks. The recovery

procedure will impact I/O performance as it requires additional I/O resources. Moreover,

as the number of bad blocks accumulates, the number of reserved blocks will be exhausted.

As a result, the available capacity of the SSD eventually shrinks. QLC SSD is more likely

to encounter this problem as it has much lower P/E cycles.

7.8.4.6. Environment Matters

Like other types of SSD, environment factors such as power surge, radiation and

operating temperature also impact the QLC SSD performance.

• Power: QLC SSD is a NAND flash based drive that are non-volatile. It can retain

data even without power supply. However, study [253][215] shows that sudden power

outage (and the associated power surge) will flip the bits and cause data corruption.

Even in data center environment where power supply is generally stable, long power-

on hours might lead to electron discharge and cause NAND flash to lose its data

retention ability. When any bit errors are detected, the SSD controller will engage

built-in error correction code (ECC) mechanisms to resolve the silently corrupted

data. As a result, I/O performance will also be significantly affected by the ECC

activity.

• Radiations: Cosmos radiation can disrupt the NAND flash cell energy level and

causing soft errors. It can also permanently damage the semiconductor, leading to

malfunction. Radiation problems not only occurs to SSD drives used in space flights

but also impact data centers at higher altitude.

• Temperature: Temperature has significant impact on the physical characteristics of

NAND flash cell, hence indirectly affects the SSD’s I/O performance. As the working

temperature increasing, the oxide tunnel in NAND gates loses the ability to retain

its charge level. Electrons will be able to escape from the tunnels much easier, which

leads to bit flipping and soft errors. To tackle this problem, most SSD controllers

implement thermal throttling mechanisms that artificially decrease the I/O resource

quota when it detects temperature increase nearing the set threshold. This gives
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ECC mechanisms more time to correct the increasing number of corrupted bits.

However, thermal throttling significantly degrades the SSD performance. When

storage systems on heavy workloads or storage rack are placed at areas that has

bad air circulation or ventilation, thermal throttling might be triggered much more

frequently and will greatly impact the overall performance of the storage system.

7.8.4.7. Economic Analysis

With the ever-increasing data load and read-centric requests, data centers are pressed

to meet the increasing storage and service demands. When upgrading the storage infras-

tructure from the existing one or building a new one, IT professionals are constrained to the

binary options of: performance-oriented 2.5-inch 10K RMP HDDs that offers higher per-

formance but smaller capacity (e.g., 2.4TB), or 3.5-inch 7200 RPM HDDs that have higher

capacity (e.g, 14TB) but lower read IOPS. Therefore, we can transitioning the standard

twelve-bay 2U storage server into high-performance node that have 29TB raw capacity, or

high-capacity node that have 168TB of raw capacity. QLC SSDs from major manufactures

offers up to 7.6TB capacity (available in Brand D) per 2.5-inch drive that transitioning the

same 2U server into 184TB raw capacity (i.e., 10% more than capacity tier HDDs). New

QLC SSD offers a higher-density and higher-performance storage for the same data center

footprints. In addition, QLC SSD has the following advantages that makes it beneficial to

replace HDDs for read-intensive workloads (data listed in Table 7.21).

• Power efficient: the HDD power consumption is around 8-11 watts while QLC

SSD is around 3 watts (3X less). However, the read IOPS per watts shows QLC

SSD has 38X higher power efficiency for the real-world power consumption.

• Reliable: the maximum data bytes that passed through the HDD drive interface

(both read and write) is typically 2.5 - 3.5 petabyte (PB) while the QLC SSD have

estimated 450 TB of total write byte (TBW). Since QLC SSD is targeted at read-

intensive workloads (e.g., 90%+ reads), it can endure up to 4.5PB data bytes that

passed through the SSD interface within life-cycle, that is 28.5% higher than HDDs.
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• Cost-effective: HDDs are still the most affordable storage solution in terms of the

dollar per GB of storage (i.e., $ / GB). But in order to support the quality of service

(QoS) demand that are essential to data center operation, a large number of HDD

arrays is required to achieve the desired read performance. Our previous study [175]

indicates that a RAID-5 array comprises of five HDDs or a RAID-6 array comprises

of seven HDDs provide similar read performance to a single QLC SSD. Therefore,

QLC SSD and HDD ended up having similar investment per GB to reach same level

of performance. Consider the cost per GB for management and maintenance such

as cooling and rack space, QLC SSD becomes more cost-effective than HDD, which

leads to a higher investment gain.

Table 7.21. Per Drive Cost vs. Performance

Characteristics HDD eMLC TLC eQLC

Random I/O MB/s 50 167 250 186

Read IOPS 189 4468 5337 2441

$ / GB 0.02 0.67 0.2 0.12

7.8.5. Conclusions

In this paper, we study the QLC SSD performance, as well as its economic effects

on the landscape of data centers. Our research indicates that QLC SSD is a promising

contender when comparing against other types of SSDs and HDDs. While QLC has the

worst write/read IOPS when compared to other SSDs, it does not detract from the fact that

QLC SSD is more suitable for large data workloads compared with small data workloads.

QLC SSD can also provide a favorable solution to data centers with its high capacity and

density. In the cost-effective analysis, we concluded that one QLC SSD is equivalence in

performance as a 5-7 HDDs RAID array at a similar cost. Also, QLC SSD has lower power

consumption while retaining higher reliability than HDD.
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CHAPTER 8

RELATED WORK

8.1. Cloud Computing

8.1.1. SSD Reliability

Many existing works study the reliability of raw flash chips. Their evaluations are

performed in controlled lab environments with only a limited number of models and devices.

In general, they use synthetic benchmarks to stress individual flash components, and iden-

tify error symptoms and sources. For example, [23][122][117][149][28][26] found that flash

reliability is attributed to read disturb error and program disturb error which are caused

by the tunneling effect where data in the untouched blocks are affected by read or program

operations in the surrounding blocks. Data retention error is caused by detrap current that

erratically changes the data at threshold voltage[241][242][13][131]. The error prediction

and recovery methods are discussed in [148]. The reliability of flash cells deteriorate over

a number of P/E cycles [33][201]. In [92], the cost, performance, capacity, and reliability

trend of flash memory are studied. In the controlled environment, tests focusing on certain

aspects of flash memory aim to eliminate unwanted effects. Results from these works provide

a knowledge base on flash reliability, and are complementary to our work.

The aforementioned studies provide insights to chip-level flash reliability. It is also ur-

gent to understand flash reliability in large-scale data centers under real-world workloads. Re-

cent works from Facebook[147], Google[195], and Microsoft[153] study field datasets. Their

studies discover important differences in the field compared with those in the controlled en-

vironments. SSDs in their studies are used as permanent storage devices. In contrast, SSDs

in the data center that we study are used as caching devices, which resembles the burst

buffer as used in HPC systems. In addition, our dataset includes six months of detailed

SSD-specific SMART records, which are valuable for characterizing SSD reliability at the

device level with rich semantic information.
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8.1.2. Proactive Data Protection in ZFS

To improve storage reliability, some researches utilizes erasure coding based redun-

dancy scheme for cost-effective error tolerant. Although we have seen its application in

Windows Azure storage [110] and NEC HYDRAstor [60], the usage of erasure coding in pri-

mary storage, which requires high throughput and low latency, has not been widely adopted

yet. To address such issue, our previous work [39] [40] leverages the parallelism to improve

Jerasure’s [168] coding performance for storage systems. That been said, erasure code is still

a reactive solution to improve the storage reliability.

Other researches focus on RAID related technologies. For example, early works for

tolerating multiple failures in an RAID array include [18], [6] and [52]. Researchers have also

investigated remediation mechanisms to mitigate performance degradation caused by RAID

recovery. For example, in [214], the authors presented a new RAID organization called multi-

partition RAID to reduce the performance degradation during RAID rebuilds. In [238], the

workload that targeting degraded RAID sets were outsourcing to surrogate RAID sets, hence

improving the overall availability of a storage system. Parity declustering [108] [37] recently

gained attention as it could reduce the reconstruction time of RAID 5 and 6. However, as

we mentioned in Section 7.6.1, most of the problems these researches tries to addressed can

be eliminated if we can proactively rescue data prior to disk drives failure.

8.1.3. Cost-Effective Disk Failure Data Rescue Schemes

To improve storage reliability, existing research mainly focus on RAID related tech-

nologies. For example, early works for tolerating multiple failures in an RAID array in-

clude [18], [6] and [52]. Goel and Corbett proposed a RAID technique that supports triple

parity in [80]. Works in [112], [136], and [141] presented methods such as disk scrubbing to

improve storage reliability. In [238], the workload that targeting degraded RAID sets were

outsourcing to surrogate RAID sets, hence improving the overall availability of a storage sys-

tem. Researchers have also investigated remediation mechanisms to mitigate performance

degradation caused by RAID recovery. For example, in [214], the authors presented a new

RAID organization called multi-partition RAID to reduce the performance degradation dur-
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ing RAID rebuilds. As a result, system performance was improved during the disk rebuild

process, thereby improving the I/O throughput of user applications. Parity declustering [108]

recently gained attention as it could reduce the reconstruction time of RAID 5 and 6. In [37],

a new layout method for declustered RAID was presented. Improving disk reliability also

attracts much attention, as it provides a solution to confine disk failures to an isolated re-

gion instead of causing the entire disk to be unavailable. Wan et al. proposed a data rescue

scheme where data was migrated from bad sectors to a buffer zone on disk drives [223]. The

Intelligent Storage Element (ISE)[211] implemented a similar mechanism by which malfunc-

tioned disk drives were kept in service but at a reduced capacity. ISE requires proprietary

software and hardware which affects its openness and wide adoption.

8.1.4. An Empirical Study of Quad-Level Cell SSDs

QLC SSD is a new product targeted at read-intensive workloads for use in data

centers. As far as we know, there are only two related research papers focus on this aspect.

The research conducted by Yoshiki et al. [208] focuses on QLC NAND flash memory power

consumption and performance analysis on different heterogeneous SSD configurations. Their

research points out that SCM(Storage Class Memory)/TLC configuration is optimal for

cold workloads; while SLC/QLC configuration is recommended for hot workloads. Another

research is purposed by Liu et. [137]. This paper studies efficient coding methods for QLC

NAND flash. Their paper presents four enhanced Gray codings to QLC NAND to improve

efficiency for read operations and data error correction. To distinct our work from the

previous researches, our paper emphasize the performance evaluation of QLC SSD as a

contender for HDD and other types of SSDs in data center storage systems. Our evaluation

also compares QLC SSD against MLC or TLC SSD in terms of the economic aspects and

analyzes how QLC SSD will change the landscape of modern data centers.

The 3D NAND QLC is by far the most promising solution to achieve the “high

capacity, high reliability , low cost” goal in SSD storage. But it is not the only solution.

Another famous storage technology is called 3D XPoint [233] by Intel. Intel integrated this

technology in its Optane memory, as well as applying this technology to its SSDs, namely
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Optane SSD. Micron also has its own 3D XPoint brand, named QuantX. But Micron does

not has any SSDs available that come embedded with this technology. The performance

evaluation shows that 3D XPoint SSD achieve better write latency and I/O speed than

most 3D NAND SSDs in the market, according to the research [227]. However, the price of

Optane SSD is still 4-5X greater.

8.2. Edge Applications

8.2.1. Popular Mutation Testing Tools

There are mutation tools for every major language. Some of widely used tools for

Java include muJava[140] and PIT [51]. While muJava is not under active development,

both tools have been used extensively in the industry. Python has MutPy [58], although it is

only for Python 3.3 and above. For C and C++, there exists a number of tools. MUSIC was

recently introduced in 2018 and was tested against complex industry software and a large

open-source program [165]. MuCPP was introduced in 2014 [57], and uses similar methods in

mutation testing as our work, namely abstract syntax tree traversal. The popular Javascript

mutation testing tool Stryker [156] just reached version 2.0 and supports a wide variety of

JS frameworks and language features. The same group that produced Stryker, also make

Stryker.NET, which is a mutation tool for C# (.NET Core and .NET Framework projects).

All of the tools suffer from expensive testing time on larger testsuites due to their longer

preprocessing, compilation and linking phases.

8.2.2. Smart Police Patrolling

There has been a recent explosion in Smart City research. The novelty of the field

lends itself to vastly different topics and solutions, while still under the “umbrella” of Smart

City issues. Many safety-related Smart City research has been focused on mass surveil-

lance and big data analysis, and not predictive/preemptive policing strategies. While many

cities have heavily invested in surveillance networks, without combining this technology with

“smarter” strategies, it provides both challenges and opportunities for smart city planning.
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8.2.2.1. Predictive Policing

R. van Brakel and P. De Hert surveyed some of the work in predictive policing in their

2013 paper [221]. Their goals were to both determine the latest developments and technology

in use for policing, namely the huge increase in surveillance and the viewpoint that using

such technology can predict crime. Additionally, they sought to discover the inadvertent

consequences that came about because of these “preemptive policing” programs.

Starting in July 2011 [12], the Santa Cruz police department implemented the first

law-enforcement predictive policing program in the United States. The program processed

burglary hotspots within the city, and published a “Top 10” list each day for units to patrol.

The goal was to prevent crime, not to increase overall arrests, and 13 arrests were made

during the program. While in six months they only showed a 4% reduction in burglaries

compared to the same time-period the previous year, the program was innovative in the way

it profiled the city for crime-prediction.

One of the main problems with both predictive and proactive policing strategies is

how to measure “success”. Since overall crime has been statistically on the decline in the

United States, it is hard to empirically say a certain policing strategy has had a positive or

even negative effect.

8.2.2.2. Entropy-Based Resource Consumption

In addition to the work on smarter water-distribution [46], many other researchers

have explored resource planning based on entropy [164]. Since 100% coverage of resource

utilization is infeasible due to both environmental and monetary factors, information-gain

systems are a popular way to find optimal solutions.

J. H. Lee describes an entropy-based system for placing water-quality sensors in sewer

systems [132]. After gathering data from monitoring points, a genetic algorithm was used

to select from 80 points based on information gain. These 80 points represented a real sewer

network in a small-subsection of Seoul, South Korea.

A similar technique [55] was used by Xiaoting et al. in Fujian province, China, to

timely and accurately classify electric power marketing. Their results showed that using their
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entropy-based method was a better predictor of usage than the current system in place.

The requirements and results of entropy systems should be very attractive to smart

city ventures. For city-planners, entropy systems have basic inputs that are easy to under-

stand, and notably these inputs may already be available for collection. For policy-makers,

entropy-based algorithms show a clear and reasonable path to their outcomes, as opposed

to the complex neural networks of “deep learning.”

8.3. Connected Autonomous Vehicles

8.3.1. Embedded Deep Learning for Vehicular Edge Computing

Recent benchmarks/surveys on embedded systems has narrowed to specialized acce-

larators like VPUs. Recent research by Qasaimeh et al. [172] compared the ARM57 CPU,

Nvidia Jetson TX2 GPU and Xilinx ZCU102 FPGA, using their own platform’s vision kernels

for deep-learning. Work by Karki et al. [121] created Tango, a deep neural network bench-

mark suite. Tango supports any platform that can run CUDA or OpenCL, and includes

simulators for server-GPU, mobile-GPU, and a mobile FPGA.

An extensive survey by Reuther et al. [187] covers everything from very low power

learning accelerators, to high-power data center systems. Their work focused on Opera-

tions/Watt as their metric, and selected two commercially available low size, weight, and

power (SWaP) accelerators to benchmark: the Google Edge TPU and the Intel® Movidius™

X Neural Compute Stick 2 (a successor to the VPU I benchmarked in Section 7.3).

8.3.2. Low-latency Data Sharing with L3

Object detection failures and visual obstructions are both core difficulties that all

autonomous vehicle must face. Techniques such as cooperative perception (COOPER) [43]

and others address this problem from a fundamental level through fusion. While detection

results are improved, the wireless bandwidth available for V2X communications is too limited

to support huge amount of data transmission among vehicles.

Currently-known fusion methods for connected and autonomous vehicles are catego-

rized into three types: low-level, middle-level and high-level fusions. Low-level fusion is also
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called raw data fusion in which the original sensing data produced by vehicles are transmit-

ted and shared among vehicles [128, 43]. While middle-level fusion methods make use of the

extracted features from raw data to conduct fusion [118], high-level fusion mainly combines

the sensing results processed by individual vehicles [2]. Other approaches like [240] and [173],

marry the different sensors from the same vehicle to improve their object detection accuracy.

With the current works detailing the ground work, we know that communication

in between vehicles plays an important limiting role based on the type of fusion methods

being utilized. Taking COOPER [43] for example, while this method improves detection

by merging point cloud data, it is limited by the narrow bandwidth available in vehicular

networks. Not only does using higher quality sensors increase the amount of data that gets

generated, using higher quality data also posses the risk that the data being generated will be

too big to be transferred efficiently. Works exploring the sharing data between autonomous

vehicles such as [103], discusses the uses of implementing V2X and identifies the requirements

for doing so. The fundamental issue here is that existing vehicular network standards are

design to exchange short messages among vehicles, rather than sensing data which could

potentially be very large.
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CHAPTER 9

SUMMARY

9.1. Conclusion

The Connected Autonomous Vehicle ecosystem is one of the most complicated en-

vironments in all of computing. Not only is the hardware scaled all the way from 16 and

32-bit microcontrollers, to multi-CPU Edge nodes, and multi-GPU Cloud servers, but the

networking also encompasses the gamut of modern communication transports. Hypotheti-

cally, camera video recorded on a CAV could be transferred through 4G to an Edge server

in a telecom cell site. From there it is transcoded to a ‘human’ appropriate color palette,

and transferred over microwave to another cell site, where it’s sent over fiber to a backbone

and ingested into a specialized Cloud service queue for training machine learning models.

From there, a customer can use their mobile phone to access and download this video. This

scenario spans multiple manufacturers and many formats and protocols. For them all to

work together, a CAV-focused approach needs to be applied. This includes major facets

of extensibility and compatibility, as CAV development is increasingly accelerating, so ver-

sionless compatibility is paramount for platforms that may be on the road for a decade or

more. Manufacturers will also be opening up their CAVs to deployment of applications they

never designed or envisioned. This is a natural progression from current vehicle entertain-

ment systems utilizing web APIs to access services like Spotify, or even fully embedding

Apple CarPlay. Future applications will no doubt need direct access to local CAV data and

manufacturers will need a safe, isolated environment to run these 3rd-party applications in.

9.1.1. Major Contributions

In this dissertation my major contribution is the creation of a framework for CAV

communication that can be used today, by developers at vehicle manufacturers, the network

Edge, and cloud service providers. This design uses industry standards and ‘battle-proven’

components, deployed at the largest and smallest scale of computing. As detailed in Chap-

ter 3, this framework is composed of a data format, protocol and application orchestration

253



layer to overcome the challenges listed in Chapter 2. As shown in Chapters 4, 5 and 6,

this framework is both technically superior and meets the other architecture requirements of

the CAV system. Those chapters contain component benchmarks using modern tools, and

explain integrations into developer workflows. I also provided detailed comparisons to other

competing components and explained why those technologies do not meet the requirements

of the CAV ecosystem.

9.1.2. Example Platform

Using this framework, an example edge management platform is shown in Figure 9.1.

This platform uses the data format and protocol in Chapters 4 and 5. This management

plane is deployed to any Cloud provider supporting Kubernetes, and controls Edge nodes

built upon the orchestration platform described in Chapter 6. On top of the edge manager is a

job queue, appropriate for distributing job requests across the clusters. An example job order

flow is shown in Figure 9.3. A detailed view of a roadside Edge node is shown in Figure 9.2.

Each Edge node is running Kubernetes operating system and includes a userspace job queue

and scheduler for receiving job requests from the control plane. These road-side nodes also

have an event bus, collecting events from passing vehicles, aggregating/processing them if

needed, and passing the data back to the node manager. While communication within the

platform is using gRPC from Chapter 5, a gRPC-Gateway is deployed for both the UI and

also direct API end-users to consume. This Gateway uses the protobuf service definitions

and generates a reverse-proxy server which translates the RESTful HTTP/JSON API calls

into gRPC methods, as previously discussed in Section 5.3, allowing legacy clients an API

entry point.

9.2. Published Work

My prior published work is focused on dependable computing, from hardware surveys,

to predictive storage monitoring to produce reliable storage systems, and a mutation testing

framework to produce complete and correct application tests. Other work has been focused

on Smart City developments, like using data mining to create optimal police patrols based
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on information entropy. Finally, my latest work has been researching edge devices to further

machine learning on embedded systems.

9.3. Intended Future Work

With the arrival of k3os, easily deploying clusters of single-board computers (SBC)

is feasible for large-scale testing of edge clusters. Combined with redundant switches and

power-over-Ethernet (PoE), a 100 m of roadside can be covered by five SBCs (one every

10 m), and three PoE switches. Combined with the lower cost of administration, real-life

experiments with smaller, dynamic clusters of edge devices are possible using off-the-shelf

components. With container-enabled Edge nodes immediately available, more research can
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focus on actually developing experimental applications, and not spend time on how to deploy

or configure them.

End-user privacy is a major concern for CAV applications, and I will be researching

the creation of an Edge-focused Trust Management System. This system will be based on

security features found in the CoAP/Thread protocol, as the ‘Project Connected Home over

IP’ has been established with a focus on security, and faces many of the same vulnerabilities

and attack surfaces that CAVs/Edge devices do.

9.4. List of Prior Publications

• Jacob Hochstetler, Rahul Padidela, Qi Chen, Qing Yang, and Song Fu, Embedded
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• Qi Chen, Shihai Tang, Jacob Hochstetler, Jingda Guo, Yuan Li, Jinbo Xiong,

Qing Yang, and Song Fu, Low-latency high-level data sharing for connected and

autonomous vehicular networks, 2019 IEEE International Conference on Industrial

Internet (ICII),IEEE, 2019

• Shuwen Liang, Zhi Qiao, Jacob Hochstetler, Song Huang, Song Fu, Weisong Shi, De-

esh Tiwari, Hsing-Bung Chen, Bradley Settlemyer, and David Montoya, Reliability

characterization of solid state drives in a scalable production datacenter, 2018 IEEE

International Conference on Big Data (Big Data), IEEE, 2018

• Shuwen Liang, Zhi Qiao, Sihai Tang, Jacob Hochstetler, Song Fu, Weisong Shi, and
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Buffers for Embedded Systems, 2021, https://github.com/nanopb/nanopb.

[5] Yahya Al-Dhuraibi, Fawaz Paraiso, Nabil Djarallah, and Philippe Merle, Elasticity in

Cloud Computing: State of the Art and Research Challenges, IEEE Transactions on

Services Computing 11 (2017), no. 2, 430–447.

[6] Guillermo A Alvarez, Walter A Burkhard, and Flaviu Cristian, Tolerating multiple

failures in RAID architectures with optimal storage and uniform declustering, Pro-

ceedings of the 24th annual international symposium on Computer architecture, 1997,

pp. 62–72.

[7] Paul Ammann and Jeff Offutt, Introduction to Software Testing, Cambridge University

Press, 2008.

[8] James M. Anderson, Kalra Nidhi, Karlyn D. Stanley, Paul Sorensen, Constantine

Samaras, and Oluwatobi A. Oluwatola, Autonomous vehicle technology: A guide for

policymakers, Rand Corporation, 2014.

[9] JENSC Arnbak and Wim Van Blitterswijk, Capacity of slotted ALOHA in Rayleigh-

fading channels, IEEE Journal on Selected Areas in Communications 5 (1987), no. 2,

261–269.

259

https://github.com/nanopb/nanopb


[10] K3OS Project Authors and the Cloud Native Computing Foundation, The Kubernetes

Operating System, https://k3os.io/.

[11] K3s Project Authors and the Cloud Native Computing Foundation, K3s: Lightweight

Kubernetes, https://k3s.io/.

[12] Stephen Baxter, Modest gains in first six months of Santa Cruz’s predictive police

program, Santa Cruz Sentinel.—2012.—Retrieved (2015), 05–26.

[13] H. P. Belgal, N. Righos, I. Kalastirsky, J. J. Peterson, R. Shiner, and N. Mielke, A new

reliability model for post-cycling charge retention of flash memories, Proc. 40th Annual

(Cat. No.02CH37320) 2002 IEEE Int Reliability Physics Symp, April 2002, pp. 7–20.

[14] M. Belshe, R. Peon, and M. Thomson, Hypertext transfer protocol version 2 (http/2),

RFC 7540, RFC Editor, May 2015, http://www.rfc-editor.org/rfc/rfc7540.txt.

[15] Michael Bernstein, 5 Reasons to Use Protocol Buffers Instead of JSON for Your Next

Service, June 2014, https://codeclimate.com/blog/choose-protocol-buffers/.

[16] Giuseppe Bianchi, Luigi Fratta, and Matteo Oliveri, Performance evaluation and en-

hancement of the CSMA/CA MAC protocol for 802.11 wireless LANs, Proceedings of

PIMRC’96-7th International Symposium on Personal, Indoor, and Mobile Communi-

cations, vol. 2, IEEE, 1996, pp. 392–396.

[17] Mike Bishop, Hypertext transfer protocol version 3 (http/3), Internet-Draft

draft-ietf-quic-http, Akamai, February 2021, https://tools.ietf.org/html/

draft-ietf-quic-http-34.

[18] Mario Blaum, Jim Brady, Jehoshua Bruck, and Jai Menon, EVENODD: An efficient

scheme for tolerating double disk failures in RAID architectures, IEEE Transactions

on Computers 44 (1995), no. 2, 192–202.

[19] Jeff Bonwick, Matt Ahrens, Val Henson, Mark Maybee, and Mark Shellenbaum, The

Zettabyte File System, Proceedings of the 2nd Usenix Conference on File and Storage

Technologies, vol. 215, 2003.

[20] Carsten Bormann, Angelo P Castellani, and Zach Shelby, CoAP: An Application Pro-

260

https://k3os.io/
https://k3s.io/
http://www.rfc-editor.org/rfc/rfc7540.txt
https://codeclimate.com/blog/choose-protocol-buffers/
https://tools.ietf.org/html/draft-ietf-quic-http-34
https://tools.ietf.org/html/draft-ietf-quic-http-34


tocol for Billions of Tiny Internet Nodes, IEEE Internet Computing 16 (2012), no. 2,

62–67.

[21] Jon Bosak, XML, Java, and the future of the Web, World Wide Web Journal 2 (1997),

no. 4, 219–227.

[22] Mirela Madalina Botezatu, Ioana Giurgiu, Jasmina Bogojeska, and Dorothea Wies-

mann, Predicting Disk Replacement towards Reliable Data Centers, Proceedings of

the 22nd International Conference on Knowledge Discovery and Data Mining ACM

SIGKDD, ACM, 2016, pp. 39–48.

[23] A. Brand, K. Wu, S. Pan, and D. Chin, Novel read disturb failure mechanism induced by

FLASH cycling, Proc. 31st Annual Reliability Physics 1993, March 1993, pp. 127–132.

[24] CW Bruce, Police strategies and tactics: What every analyst should know, International

Association of Crime Analysts: 11 (2008), 1.

[25] Kevin Butler, FMV 1.3 is now available!, February 2016, https://www.esri.com/

arcgis-blog/products/product/announcements/fmv-1-3-is-now-available/

Esri grants the recipient of the Esri information contained within the esri.com Web site the right

to freely reproduce, redistribute, rebroadcast, and/or retransmit this information for personal,

noncommercial purposes, including teaching, classroom use, scholarship, and/or research, subject to

the fair use rights enumerated in sections 107 and 108 of the Copyright Act (Title 17 of the United

States Code).

[26] Y. Cai, Y. Luo, S. Ghose, and O. Mutlu, Read Disturb Errors in MLC NAND Flash Memory: Char-

acterization, Mitigation, and Recovery, Proc. 45th Annual IEEE/IFIP Int. Conf. Dependable Systems

and Networks, June 2015, pp. 438–449.

[27] Y. Cai, Y. Luo, E. F. Haratsch, K. Mai, and O. Mutlu, Data retention in MLC NAND flash mem-

ory: Characterization, optimization, and recovery, Proc. IEEE 21st Int. Symp. High Performance

Computer Architecture (HPCA), February 2015, pp. 551–563.

[28] Y. Cai, O. Mutlu, E. F. Haratsch, and K. Mai, Program interference in MLC NAND flash memory:

Characterization, modeling, and mitigation, Proc. IEEE 31st Int. Conf. Computer Design (ICCD),

October 2013, pp. 123–130.

[29] Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and Onur Mutlu, Errors in Flash-Memory-

Based Solid-State Drives: Analysis, Mitigation, and Recovery, CoRR abs/1711.11427 (2017), 11427,

https://dblp.org/rec/bib/journals/corr/abs-1711-11427.

261

https://www.esri.com/arcgis-blog/products/product/announcements/fmv-1-3-is-now-available/
https://www.esri.com/arcgis-blog/products/product/announcements/fmv-1-3-is-now-available/
https://dblp.org/rec/bib/journals/corr/abs-1711-11427


[30] Yu Cai, Erich F Haratsch, Onur Mutlu, and Ken Mai, Error patterns in MLC NAND flash memory:

Measurement, characterization, and analysis, Proceedings of the Conference on Design, Automation

and Test in Europe, EDA Consortium, 2012, pp. 521–526.

[31] Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F Haratsch, Adrian Cristal, Osman S Unsal, and Ken Mai,

Flash correct-and-refresh: Retention-aware error management for increased flash memory lifetime,

Computer Design (ICCD), 2012 IEEE 30th International Conference on, IEEE, 2012, pp. 94–101.

[32] Canonical, Jujucharms — Juju, August 2018, https://jujucharms.com/.

[33] P. Cappelletti, R. Bez, D. Cantarelli, and L. Fratin, Failure mechanisms of flash cell in program/erase

cycling, Proc. IEEE Int. Electron Devices Meeting, December 1994, pp. 291–294.

[34] Francois Caron, Emmanuel Duflos, Denis Pomorski, and Philippe Vanheeghe, GPS/IMU data fusion

using multisensor Kalman filtering: introduction of contextual aspects, Information fusion 7 (2006),

no. 2, 221–230.

[35] Nicolas Chaillan, How the Department of Defense Moved to Kubernetes and Istio, 2019.
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tems, Annales des Télécommunications 70 (2014), no. 3-4, 137–148, https://doi.org/10.1007/

s12243-014-0445-4.

[58] Anna Derezinska and Konrad Ha las, Improving mutation testing process of python programs, Software

Engineering in Intelligent Systems, Springer, 2015, pp. 233–242.

[59] Michael Droettboom, Understanding JSON Schema – Understanding JSON Schema 7.0 documenta-

tion, https://json-schema.org/understanding-json-schema/.

[60] Cezary Dubnicki, Leszek Gryz, Lukasz Heldt, Michal Kaczmarczyk, Wojciech Kilian, Przemyslaw

Strzelczak, Jerzy Szczepkowski, Cristian Ungureanu, and Michal Welnicki, HYDRAstor: A scalable

secondary storage., FAST, vol. 9, 2009, pp. 197–210.

[61] Olivier Dubuisson, ASN.1 Communication Between Heterogeneous Systems, Morgan Kaufmann, 2000.

[62] Prabal Dutta, Stephen Dawson-Haggerty, Yin Chen, Chieh-Jan Mike Liang, and Andreas Terzis,

Design and evaluation of a versatile and efficient receiver-initiated link layer for low-power wireless,

Proceedings of the 8th ACM Conference on Embedded Networked Sensor Systems, ACM, 2010, pp. 1–

14.

[63] Ben Eckart, Xin Chen, Xubin He, and Stephen L Scott, Failure prediction models for proactive fault

tolerance within storage systems, IEEE MASCOTS, 2008, pp. 1–8.

[64] Envision America, 10 U.S. Cities Selected to Kickoff Envision America Smart Cities Acceleration Ini-

tiative, April 2016, http://www.dallasinnovationalliance.com/news/?offset=1449593130557.
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[128] Raphaël Labayrade, Cyril Royere, Dominique Gruyer, and Didier Aubert, Cooperative fusion for

multi-obstacles detection with use of stereovision and laser scanner, Autonomous Robots 19 (2005),

no. 2, 117–140.

[129] Redis Labs, Redis Cluster Specifications, https://redis.io/topics/cluster-spec.

[130] Olaf Landsiedel, Federico Ferrari, and Marco Zimmerling, Chaos: Versatile and efficient all-to-all data

sharing and in-network processing at scale, ACM Embedded Networked Sensor Systems, November

2013.

[131] Jae-Duk Lee, Jeong-Hyuk Choi, Donggun Park, and Kinam Kim, Degradation of tunnel oxide by FN

current stress and its effects on data retention characteristics of 90 nm NAND flash memory cells,

Proc. 41st Annual 2003 IEEE Int. Reliability Physics Symp, March 2003, pp. 497–501.

[132] Jung Ho Lee, Determination of optimal water quality monitoring points in sewer systems using entropy

theory, Entropy 15 (2013), no. 9, 3419–3434.

[133] Steven Legg, RFC3641: Generic String Encoding Rules (GSER) for ASN. 1 Types, 2003.

[134] Shuwen Liang, Zhi Qiao, Jacob Hochstetler, Song Huang, Song Fu, Weisong Shi, Devesh Tiwari,

Hsing-Bung Chen, Bradley Settlemyer, and David Montoya, Reliability characterization of solid state

drives in a scalable production datacenter, 2018 IEEE International Conference on Big Data (Big

Data), IEEE, 2018, pp. 3341–3349.

[135] Shuwen Liang, Zhi Qiao, Sihai Tang, Jacob Hochstetler, Song Fu, Weisong Shi, and Hsing-Bung Chen,

An Empirical Study of Quad-Level Cell (QLC) NAND Flash SSDs for Big Data Applications, 2019

IEEE International Conference on Big Data (Big Data), IEEE, 2019, pp. 3676–3685.

[136] Junping Liu, Ke Zhou, Zhikun Wang, Liping Pang, and Dan Feng, Modeling the Impact of Disk

Scrubbing on Storage System, Journal of Computers 5 (2010), no. 11, 1629–1637.

[137] Shijun Liu and Xuecheng Zou, QLC NAND Study and Enhanced Gray Coding Methods for Sixteen-

level-based Program Algorithms, Microelectron. J. 66 (2017), 58–66.

[138] Los Angeles Open Data, Information, Insights, and Analysis from the City of Los Angeles, April 2016,

https://data.lacity.org/.

[139] Yixin Luo, Architectural Techniques for Improving NAND Flash Memory Reliability, Ph.D. thesis,

School of Computer Science Carnegie Mellon University, 2018.

[140] Yu-Seung Ma, Jeff Offutt, and Yong-Rae Kwon, MuJava: A Mutation System for Java, Proceedings

269

https://www.gonum.org/
https://www.gonum.org/
https://redis.io/topics/cluster-spec
https://data.lacity.org/


of the 28th International Conference on Software Engineering (New York, NY, USA), ICSE ’06, ACM,

2006, http://doi.acm.org/10.1145/1134285.1134425, pp. 827–830.

[141] Farzaneh Mahdisoltani, Ioan A. Stefanovici, and Bianca Schroeder, Proactive error prediction to

improve storage system reliability, USENIX Annual Technical Conference, 2017.

[142] Mugur Marculescu, Introducing gRPC, a new open source HTTP/2 RPC Framework, February 2015,

https://developers.googleblog.com/2015/02/introducing-grpc-new-open-source-http2.

html.

[143] F. Margaglia and A. Brinkmann, Improving MLC flash performance and endurance with extended

P/E cycles, Proc. 31st Symp. Mass Storage Systems and Technologies (MSST), May 2015, pp. 1–12.

[144] Carl Mastrangelo, Visualizing gRPC Language Stacks, December 2018, https://grpc.io/blog/

grpc-stacks/.

[145] Anne McCrory, Ubiquitous? Pervasive? Sorry, they don’t compute, Computerworld (2000), 1.

[146] Peter Mell and Tim Grance, Special Publication 800-145: The NIST definition of Cloud Computing,

Tech. report, National Institute of Standards and Technology, Gaithersburg MD, 20899, September

2011.

[147] Justin Meza, Qiang Wu, Sanjev Kumar, and Onur Mutlu, A large-scale study of flash memory failures

in the field, ACM SIGMETRICS Performance Evaluation Review, vol. 43, ACM, 2015, pp. 177–190.

[148] C. Miccoli, J. Barber, C. M. Compagnoni, G. M. Paolucci, J. Kessenich, A. L. Lacaita, A. S. Spinelli,

R. J. Koval, and A. Goda, Resolving discrete emission events: A new perspective for detrapping

investigation in NAND Flash memories, Proc. IEEE Int. Reliability Physics Symp. (IRPS), April

2013, pp. 3B.1.1–3B.1.6.

[149] N. Mielke, T. Marquart, Ning Wu, J. Kessenich, H. Belgal, E. Schares, F. Trivedi, E. Goodness, and

L. R. Nevill, Bit error rate in NAND Flash memories, Proc. IEEE Int. Reliability Physics Symp,

April 2008, pp. 9–19.

[150] Rick Mohr and Paul Peltz Jr, Benchmarking SSD-based Lustre file system configurations, Proceedings

of the 2014 Annual Conference on Extreme Science and Engineering Discovery Environment, ACM,

2014, p. 32.

[151] Joseph F Murray, Gordon F Hughes, and Kenneth Kreutz-Delgado, Hard drive failure prediction using

non-parametric statistical methods, Proceedings of the ICANN/ICONIP, 2003.

[152] , Machine learning methods for predicting failures in hard drives: A multiple-instance applica-

tion, Journal of Machine Learning Research 6 (2005), no. May, 783–816.

[153] Iyswarya Narayanan, Di Wang, Myeongjae Jeon, Bikash Sharma, Laura Caulfield, Anand Sivasubra-

maniam, Ben Cutler, Jie Liu, Badriddine Khessib, and Kushagra Vaid, SSD failures in datacenters:

270

http://doi.acm.org/10.1145/1134285.1134425
https://developers.googleblog.com/2015/02/introducing-grpc-new-open-source-http2.html
https://developers.googleblog.com/2015/02/introducing-grpc-new-open-source-http2.html
https://grpc.io/blog/grpc-stacks/
https://grpc.io/blog/grpc-stacks/


What? When? and Why?, Proceedings of the 9th ACM International on Systems and Storage Con-

ference, ACM, 2016, p. 7.

[154] Paolo Neirotti, Alberto De Marco, Anna Corinna Cagliano, Giulio Mangano, and Francesco Scorrano,

Current trends in Smart City initiatives: Some stylised facts, Cities 38 (2014), 25–36.

[155] H Michael Newman, BACnet [R] explained: Part one, ASHRAE Journal 55 (2013), no. 11, B2–B2.

[156] Simon de Lang Nico Jansen and Alex van Assem, Announcing Stryker 2.0, https://

stryker-mutator.io/blog/2019-05-17/announcing-stryker-2-0.

[157] NOAA and National Weather Service, NOWData - NOAA Online Weather Data, April 2016, http:

//w2.weather.gov/climate/xmacis.php.

[158] Nurzhan Nurseitov, Michael Paulson, Randall Reynolds, and Clemente Izurieta, Comparison of JSON

and XML data interchange formats: a case study., ISCA 22nd International Conference on Computer

Applications in Industry and Engineering (CAINE) 9 (2009), 157–162.

[159] A. Jefferson Offutt, A Practical System for Mutation Testing: Help for the Common Programmer,

Proceedings IEEE International Test Conference 1994, TEST: The Next 25 Years, Washington, DC,

USA, October 2-6, 1994, 1994, https://doi.org/10.1109/TEST.1994.528535, pp. 824–830.

[160] A. Jefferson Offutt and Roland H. Untch, Mutation 2000: Uniting the Orthogonal, 2001, pp. 34–44.

[161] Jeff Offutt, A Mutation Carol: Past, Present and Future, Information & Software Technology 53

(2011), no. 10, 1098–1107, https://doi.org/10.1016/j.infsof.2011.03.007.

[162] Andy Oram and Greg Wilson, Beautiful Code: Leading Programmers Explain How They Think,

O’Reilly Media, Inc, December 2008.
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