Zebrafish Von Willebrand Factor Metadata

Metadata describes a digital item, providing (if known) such information as creator, publisher, contents, size, relationship to other resources, and more. Metadata may also contain "preservation" components that help us to maintain the integrity of digital files over time.

Title

  • Main Title Zebrafish Von Willebrand Factor

Creator

  • Author: Carrillo, Maira M.
    Creator Type: Personal

Contributor

  • Chair: Jagadeeswaran, Pudur
    Contributor Type: Personal
    Contributor Info: Major Professor
  • Committee Member: Padilla, Pamela
    Contributor Type: Personal
  • Committee Member: Conrad-Webb, Heather
    Contributor Type: Personal
  • Committee Member: Dong, Jing-Fei
    Contributor Type: Personal
  • Committee Member: Benjamin, Robert C.
    Contributor Type: Personal

Publisher

  • Name: University of North Texas
    Place of Publication: Denton, Texas
    Additional Info: www.unt.edu

Date

  • Creation: 2012-08

Language

  • English

Description

  • Content Description: In humans, von Willebrand factor (vWF) is a key component in hemostasis and acts as a 'cellular adhesive' by letting the circulating platelets bind to exposed subendothelium. It also acts as a carrier and stabilizer of factor VIII (FVIII). A dysfunction or reduction of vWF leads to von Willebrand disease (vWD), resulting in bleeding phenotype which affects 1% of the population. Currently there are a variety of animal models used for the study of vWF and vWD; however, they do not possess the advantages found in zebrafish. Therefore, we set out to establish zebrafish as a model for the investigation of vWF and vWD through the use of bioinformatics and various molecular techniques. Using bioinformatics we found that the vWF gene is located on chromosome 18, that the GPIb? protein sequence is conserved. Confirmation of vWF production was shown by means of immunostaining and by RT-PCR, in thrombocytes as well as in veins and arteries. Evidence of vWF involvement in hemostasis and thrombosis was shown using MO and VMO technology to produce a vWD like phenotype, resulting in an increase in TTO and TTA, as well as a reduction in FVIII when blood was tested using the kPTT assay, coinciding with a decrease in vWF. Stimate treatment provided opposite results of MO and VMO, showing a decrease in TTO and TTA. Investigation of the role of microparticles in hemostasis and their interaction with vWF resulted in a conclusion that the GPIb? receptor should exist on MPs and that it may interact not only with zebrafish vWF but also with human UL-vWF. Agglutination of MPs in the presence of UL-vWF but in the absence of ristocetin and plasma, treatment with ADAMTS-13 abolishing the interaction between MPs and UL-vWF provided evidence that vWF interacts with MPs probably with the GPIb?. We also found that TMPs agglutinate within the vessel wall in vivo when treated with Stimate. In conclusion, this research provided evidence for the presence of vWF in zebrafish and its conserved role in hemostasis. In addition to this we also showed that MPs also participation in hemostasis.

Subject

  • Keyword: Zebrafish
  • Keyword: von Willebrand factor
  • Keyword: thrombocytes

Collection

  • Name: UNT Theses and Dissertations
    Code: UNTETD

Institution

  • Name: UNT Libraries
    Code: UNT

Rights

  • Rights Access: public
  • Rights Holder: Carrillo, Maira M.
  • Rights License: copyright
  • Rights Statement: Copyright is held by the author, unless otherwise noted. All rights Reserved.

Resource Type

  • Thesis or Dissertation

Format

  • Text

Identifier

  • Archival Resource Key: ark:/67531/metadc177228

Degree

  • Academic Department: Department of Biological Sciences
  • Degree Discipline: Molecular Biology
  • Degree Level: Doctoral
  • Degree Name: Doctor of Philosophy
  • Degree Grantor: University of North Texas
  • Degree Publication Type: disse

Note