Nonparametric Estimation of Receiver Operating Characteristic Surfaces Via Bernstein Polynomials

Use of this dissertation is restricted to the UNT Community. Off-campus users must log in to read.

Description

Receiver operating characteristic (ROC) analysis is one of the most widely used methods in evaluating the accuracy of a classification method. It is used in many areas of decision making such as radiology, cardiology, machine learning as well as many other areas of medical sciences. The dissertation proposes a novel nonparametric estimation method of the ROC surface for the three-class classification problem via Bernstein polynomials. The proposed ROC surface estimator is shown to be uniformly consistent for estimating the true ROC surface. In addition, it is shown that the map from which the proposed estimator is constructed is Hadamard differentiable. ... continued below

Creation Information

Herath, Dushanthi N. December 2012.

Context

This dissertation is part of the collection entitled: UNT Theses and Dissertations and was provided by UNT Libraries to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 48 times . More information about this dissertation can be viewed below.

Who

People and organizations associated with either the creation of this dissertation or its content.

Chair

Committee Members

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Herath, Dushanthi N.

Provided By

UNT Libraries

With locations on the Denton campus of the University of North Texas and one in Dallas, UNT Libraries serves the school and the community by providing access to physical and online collections; The Portal to Texas History and UNT Digital Libraries; academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this dissertation. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

Receiver operating characteristic (ROC) analysis is one of the most widely used methods in evaluating the accuracy of a classification method. It is used in many areas of decision making such as radiology, cardiology, machine learning as well as many other areas of medical sciences. The dissertation proposes a novel nonparametric estimation method of the ROC surface for the three-class classification problem via Bernstein polynomials. The proposed ROC surface estimator is shown to be uniformly consistent for estimating the true ROC surface. In addition, it is shown that the map from which the proposed estimator is constructed is Hadamard differentiable. The proposed ROC surface estimator is also demonstrated to lead to the explicit expression for the estimated volume under the ROC surface . Moreover, the exact mean squared error of the volume estimator is derived and some related results for the mean integrated squared error are also obtained. To assess the performance and accuracy of the proposed ROC and volume estimators, Monte-Carlo simulations are conducted. Finally, the method is applied to the analysis of two real data sets.

Language

Collections

This dissertation is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this dissertation?

When

Dates and time periods associated with this dissertation.

Creation Date

  • December 2012

Added to The UNT Digital Library

  • Aug. 13, 2013, 2:47 p.m.

Description Last Updated

  • Nov. 16, 2016, 1:16 p.m.

Usage Statistics

When was this dissertation last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 48

Interact With This Dissertation

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Herath, Dushanthi N. Nonparametric Estimation of Receiver Operating Characteristic Surfaces Via Bernstein Polynomials, dissertation, December 2012; Denton, Texas. (digital.library.unt.edu/ark:/67531/metadc177212/: accessed September 24, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; .