Theoretical and Experimental Investigations of Peg Based Thermo Sensitive Hydro Microgel

PDF Version Also Available for Download.

Description

Poly ethylene glycol (PEG) based microgels were synthesized and investigated. The PEG microgel has the same phase transition as the traditional poly N-isopropylacrylamide (PNIPAM). As a good substitute of PNIPAM, PEG microgel exhibits many advantages: it is easier to control the lower critical solution temperature (LCST) of the microgel by changing the component of copolymers; it has a more solid spherical core-shell structure to have a double thermo sensitivity; it is straightforward to add other sensitivities such as pH, magnetic field or organic functional groups; it readily forms a photonic crystal structure exhibiting Bragg diffraction; and, most importantly, the PEG ... continued below

Creation Information

Chi, Chenglin December 2012.

Context

This dissertation is part of the collection entitled: UNT Theses and Dissertations and was provided by UNT Libraries to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 535 times . More information about this dissertation can be viewed below.

Who

People and organizations associated with either the creation of this dissertation or its content.

Author

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Chi, Chenglin

Provided By

UNT Libraries

With locations on the Denton campus of the University of North Texas and one in Dallas, UNT Libraries serves the school and the community by providing access to physical and online collections; The Portal to Texas History and UNT Digital Libraries; academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this dissertation. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

Poly ethylene glycol (PEG) based microgels were synthesized and investigated. The PEG microgel has the same phase transition as the traditional poly N-isopropylacrylamide (PNIPAM). As a good substitute of PNIPAM, PEG microgel exhibits many advantages: it is easier to control the lower critical solution temperature (LCST) of the microgel by changing the component of copolymers; it has a more solid spherical core-shell structure to have a double thermo sensitivity; it is straightforward to add other sensitivities such as pH, magnetic field or organic functional groups; it readily forms a photonic crystal structure exhibiting Bragg diffraction; and, most importantly, the PEG microgel is biocompatible with human body and has been approved by FDA while PNIPAM has not. PEG microgels with core-shell structure are synthesized with a two-step free radical polymerization and characterized with DLS, SLS and UV–Vis. The dynamic mechanics of melting and recrystallizing of the PEG core-shell microgel are presented and discussed. Photonic crystals of PEG microgels were synthesized and characterized. The crystal can be isolated in a thin film or a bulk column. The phase transition of PEG microgel was simulated with the mean field theory. The enthalpy and entropy of phase transition can be estimated from the best fit to theoretical calculation with experimental data.

Subjects

Keywords

Language

Collections

This dissertation is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this dissertation?

When

Dates and time periods associated with this dissertation.

Creation Date

  • December 2012

Added to The UNT Digital Library

  • Aug. 13, 2013, 2:47 p.m.

Description Last Updated

  • Nov. 16, 2016, 1:17 p.m.

Usage Statistics

When was this dissertation last used?

Yesterday: 0
Past 30 days: 3
Total Uses: 535

Interact With This Dissertation

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Chi, Chenglin. Theoretical and Experimental Investigations of Peg Based Thermo Sensitive Hydro Microgel, dissertation, December 2012; Denton, Texas. (digital.library.unt.edu/ark:/67531/metadc177187/: accessed December 14, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; .