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then it moves to another condition of local equilibrium, and so on, in such a way that the resulting distribution will
turn out to be distinctly non-exponential, insofar as the superposition of many exponential functions with different
probabilistic weights is not an exponential function. The sojourn in a condition of local equilibrium must be extended
in time enough for the system to adapt itself to this condition. For this reason superstatistics is equivalent to a form
of very slow modulation.

The model discussed in Ref. [15] might be thought of as a form of superstatistics. In fact, these authors propose a
two-state model with barrier height or barrier width fluctuation. This automatically yields a waiting time distribution
as a sum of infinitely many exponential functions, one exponential for each of the barrier heights or widths. However,
as the authors point out, these fluctuations cannot be slow. In fact, the case of slow fluctuations would produce a
correlation between two successive on-times or two successive off-times, while the analysis of Ref. [15] shows that no
significant correlation of this kind exists. Similar remarks apply to the model of Refs. [16, 17, 18]. In all these models
there are traps with exponential waiting times distribution densities. However, the system resides in each exponential
trap corresponding to a given state, for instance the state “off”, only once, and it jumps back to the state “on” before
being trapped again in the state “off”. This property ensures the renewal property. In conclusion, superstatistics is
a form of very slow modulation, whereas renewal is compatible with a theory based on non-exponential distribution
densities emerging from the superposition of many exponential waiting time distributions, provided that the system
does not adopt the same exponential well for too many successive trapping events.

As an example of physical process that might be conveniently described by the slow modulation perspective, we
quote the interesting recent papers [19] and [20]. These authors find [19] that their experimental result cannot be
described by the two-state semi-Markov models proposed in Refs. [21, 22], being therefore incompatible with the
renewal perspective. The chronological ordering of the off waiting times suggests the occurrence of a modulation
corresponding to molecular conformational changes.

It is therefore convenient to develop a technique of analysis of the experimental data that might help the investigators
to establish the real nature of the process under study, namely whether renewal, slow modulation, or an intermediate
condition, applies. This is the main purpose of this paper. We shall show that, although renewal and superstatistics
can be used to produce the same waiting time distribution density, the former approach to complexity generates
renewal aging, while the latter does not. The aging technique has already been adopted by Brokmann et al. [23] to
prove that the physics of BQD is characterized by renewal. In this paper, in addition to confirming the conclusions
of this earlier work, using the same aging technique, we make also an attempt at assessing if a condition intermediate
between renewal and very slow modulation (superstatistics) might exist.

The outline of the paper is as follows. In section II we show that renewal rests on resetting the system’s memory after
any event (collision). In Section III we define modulation as a condition of time dependent rate, with no renewal. We
explain the form of modulation adopted in this paper, and we show that in the fast condition it becomes compatible
with non-Poisson renewal. We devote Section IV to reviewing the phenomenon of renewal aging and we explain why
the condition of very slow modulation should yield no aging. In Section V, with the help of artificial sequences, we
illustrate the aging experiment that we propose for the analysis of experimental sequences. At the same time we
explore the unknown region between renewal and very slow modulation. We examine and discuss real experimental
data in Section VI. Finally, we devote Section VII to concluding remarks.

II. RENEWAL

Let us consider a two-state renewal process, and, for simplicity, let us assume that the distribution of sojourn times
in the state “on” is the same as the distribution in the state “off”. This assumption will prevent us from discussing
with our techniques the interesting effect recently discussed by Verberk et al. [24]. These authors discussed the case
where both distributions have an inverse power law form with different indexes, µoff and µon and found that a Gibbs
ensemble of trajectories moving from the beginning of the state ”on”, produce a fluorescence intensity decaying in
time as a function proportional to 1/tµoff−µon , with µoff > µon. We leave the discussion of this interesting effect as
a subject for future work.

We assign to the Survival Probability (SP) of this process, Ψ(t), the inverse power law form

Ψ(t) =

(

T

T + t

)µ−1

, (1)

with µ > 1. This corresponds to the joint action of the time dependent rate [25] r(t) = r0/(1+r1t), with r0 = (µ−1)/T
and r1 = 1/T , and of a resetting prescription. To illustrate this condition, let us imagine the random drawing of a
number from the interval I = [0, 1] at discrete times i = 0, 1, 2.... The interval I is divided into two parts, I1 and I2,
with I1 ranging from 0 to pi, and I2 from pi to 1. Note that pi = 1 − qi < 1 and qi << 1, and, as a consequence, the
number of times we keep drawing numbers from I1, without moving to I2, is very large.
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Let us evaluate the distribution of these persistence times, and let us discuss under which conditions we get the SP
of Eq. (1). The SP function is the probability of remaining in I1 after n drawings, and is consequently given by

Ψ(n) =

n
∏

i=1

pi. (2)

Using the condition qi << 1, and evaluating the logarithm of both terms of Eq. (2), we obtain:

log(Ψ(n)) = −

n
∑

i=1

qi. (3)

The condition qi << 1 implies that i and n of Eq. (3) are so large as to make qi virtually identical to a function of the
continuous time t, qi = r(t) = r0η(t), with η(t) = 1/(1 + r1t). Therefore r(t) is a time dependent rate, with resetting
as we hereby shall see. Thus, Eq. (3) yields the SP of Eq. (1), and the corresponding waiting time distribution
density, ψ(τ), reads

ψ(τ) = (µ− 1)
T µ−1

(τ + T )µ
. (4)

We denote as collisions the rare drawings of a number from I2, followed by resetting. Thus the collisions occurring
at times τ1, τ1 + τ2, ..., yield: η(t) = 1/(1 + r1t), 0 < t < τ1; η(t) = 1/(1 + r1(t − τ1)), τ1 < t < τ1 + τ2, and so on.
Note that η(0) = 1 means that we prepare the system at time t = 0. We might adopt a coin tossing prescription to
decide whether to keep or to change sign, after any collision. However, in this paper, as earlier pointed out, we do
not pay attention to the problem of fluorescent intensity changing in time as an effect of ensemble average. Thus, for
simplicity, our theoretical remarks refer to a sequence {τi}, where the times τi are randomly drawn so as to yield the
analytical form of Eq. (4), without assigning to them either an “on” or an “off” symbol.

III. MODULATION

The renewal condition described in Section II must not be confused with the case of a time dependent rate, with
no renewal. The time dependence of r(t), with no renewal, might obey a deterministic or a stochastic prescription.
An example of the former case is q(t) = A +Bcos(ωt), with no renewal. We think that the physical process studied
by the authors of Refs. [19, 20], might be adequately described by a prescripion of this kind, not necessarily periodic,
or quasi periodic, reflecting however the molecular conformational changes in time.

The specific cases discussed in this paper are closer in spirit to the condition of stochastic dependence on time.
This means that r(t) is a stochastic function of time, so that we have to study:

Ψ(t) =< exp

(

−

∫ t

0

dt′r(t′)

)

> . (5)

An interesting example of treatment of this kind is offered by the recent work of Brown [26]. It has to be pointed
out that the evaluation of the characteristic function of Eq. (5) might be a difficult problem, but in the limiting cases
of very fast or very slow modulations. The first condition departs from the non-Markov condition of interest for us in
this paper. The latter condition does not, and can be adopted to derive the non-exponential behavior of Ψ(t).

Let us assume that the fluctuation r(t) has an equilibrium distribution, peq(r). In the special case where the time
scale of the fluctuation r(t) is virtually infinite, the SP Ψ(t) becomes:

Ψ(t) =

∫ ∞

0

drp(r)exp(−rt). (6)

In fact, let us consider a Gibbs ensemble of identical systems, obeying Eq. (5). At the moment when the observation
begins, at time t = 0, each of these systems has a rate r, given by the distribution peq(r). If the time scale of the rate
fluctuations is virtually infinite, during the observation process each system will keep unchanged its own rate, thereby
producing Eq. (6). This makes this picture essentially identical to the approach to complexity recently proposed by
Beck [27].
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According to a mathematical prescription borrowed from Beck [27], we find that the analytical expression of Eq. (1)
is recovered by using the following form:

peq(r) =
T µ−1

Γ(µ− 1)
rµ−2exp(−rT ). (7)

This proposal was used in a later paper [7] to develop a new approach to complexity, denoted as superstatistics. This
approach is attracting the attention of an increasing number of researchers (see, for instance, [28, 29, 30]), and for
this reason is worth of consideration.

Note that once the inverse power law form of Eq. (1) for the SP Ψ(t) is realized, the corresponding waiting time
distribution density is given by

ψ(t) =

∫ ∞

0

drp(r)rexp(−rt). (8)

In principle, the adoption of the time-dependent rate prescription of Section II would make it possible to describe
modulation processes of any kind. It would be enough to set r1 = 0 and replace r0 with q(t), and make it either
deterministic or stochastic. However, to generate the time series {τi} corresponding to the modulation prescription,
fast, slow or of intermediate speed, we adopt a different procedure. We select from the distribution of Eq. (7) the

sequence {rj}. For any exponential waiting time distribution ψj(t) = rjexp(−rjt), we select N j
m times, τ j

1
, ...., τ j

N
j
m

.

A more realistic picture might allow N j
m to fluctuate. We expect, however, that for ordinary fluctuations about a

common value < N j
m >= Nm, the physics of the process does not change. Thus, for simplicity we assign to all

the numbers N j
m the same value Nm. The time series to compare to the one derived according to the prescription

of Section II is defined by {τi} = τ1

1
, ....τ1

Nm
, τ2

1
, ....τ2

Nm
, .... The benefit of this criterion is that Nm = 1 makes the

resulting time series equivalent to that generated by the models of Refs.[15, 16, 17, 18] and, consequently, to the
renewal prescription of Section II.

It is important to stress that the ideal condition of totally renewal process and the ideal condition of infinitely
slow modulation are characterized by a marked difference concerning ergodicity. This important issue has been
recently discussed by Margolin and Barkai [31]. In the totally renewal case, with µ < 2, the system does not admit
any stationary condition [32] and the stationary correlation function does not exist. The non-stationary correlation
function can be defined making an ensemble average, as illustrated, for instance, by the authors of Ref. [33]. The
authors of Ref. [31], on the contrary, adopt a single trajectory picture and study the time averaged intensity correlation
function of the BQD signal, supposed to be totally renewal, as well as with identical “on” and “off” distribution,
as assumed in this paper. The correlation function is a stochastic property characterized by U- and W-shaped
distributions.

The case of infinitely slow modulation would suggest the adoption of an ensemble rather than individual trajectory
treatment. However, in this paper we adopt the individual trajectory treatment also for the case of slow, but not
infinitely slow, modulation. It is expected that in this case ergodicity is not violated, in a striking contrast with the
condition of total renewal [31].

We think that moving from Nm = 1, where the properties found by Margolin and Barkai [31] apply, to Nm = ∞,
where only the ensemble treatment is possible, implies the exploration of an unknown region, of which this paper
affords a preliminary treatment. For the reader to appreciate this aspect, we would like to introduce the concept of
pseudo event. This concept is similar to that proposed in an earlier publication [34]. The authors of this paper [34]
found that in some problems of medical interest the connection between scaling and waiting time distribution does
not correspond to the prescription of the renewal theory. This is so as a consequence of the fact that the times of the
series under study turned out to be correlated [34].

In the case of modulation, we define as pseudo events all the drawings of waiting times from the same Poisson
distribution, after the first drawing. In the case Nm = 1 there are no pseudo events. In the case Nm = 2 there
is one pseudo event, and so on. The quantity Nm − 1 defines the number of pseudo events per critical event. By
critical event, we denote the drawing of a given Poisson parameter r. In practice, the occurrence of a critical event
corresponds to the first drawing of a waiting time from a Poisson distribution with rate rj , namely the time τ j

1
.

The drawing of the next waiting times from the same distribution, implies a subtle deviation from renewal. This
form of correlation is not easy to detect. In fact, although consecutive sojourn times are drawn from the same Poisson
distribution, they are by definition independent one from the other. If the time correlation function is < τ̃iτ̃j >, with
τ̃ ≡ τ− < τ > for a finite portion of the sequence, we expect it to yield (< τ2 > − < τ >2)δi,j , with δi,j is the delta
of Kronecker.

It is a striking and surprising fact that the correlation produced by modulation is invisible to the ordinary correlation
test. This is so because the sojourn times, although derived for an extended period of time from the same Poisson
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distribution, are randomly drawn. The aging experiment reveals this subtle form of correlation. We refer to the times
that are correlated the ones to the other as pseudo events, regardless the origin of this correlation, which might occur
in the form discussed in the earlier publication [34] or in the even more subtle form of this paper. We think that the
aging reduction depends on the ratio of pseudo to critical events, regardless the origin of correlation. In this paper we
find that the aging reduction depends indeed on the ratio of pseudo to critical events, of the type here introduced. On
the basis of this result with artificial sequence, we make also an attempt at evaluating the amount of pseudo events
that might be present in the real BQD time series.

IV. AGING AND MODULATION

For an intuitive description of the concept of aging we shortly review the treatment of the earlier work of Ref. [35].
The renewal condition of Section II can also be realized with the following dynamical model. A particle moves in the
interval I ≡ [0, 1] driven by the equation of motion

dy

dt
= αyz, (9)

with 0 < α << 1 and z > 1. When it reaches the point y = 1 it is injected back in a random position between 0 and 1
with uniform probability, thereby producing another extended time of sojourn within the interval I. The connection
between the waiting time distribution density and the uniform initial distribution is given by

ψ(t)dt = p(y0)dy0. (10)

It is easy to prove that the resulting time distribution density is given again by Eq. (4) with

µ ≡
z

z − 1
(11)

and

T ≡
µ− 1

α
. (12)

The uniform back injection is equivalent to the resetting prescription of Section II, and, in fact, this model is
renewal, and it is equivalent to the model of Section II, but its adoption in this section serves better the purpose of
explaining renewal aging and the lack of aging in the case of very slow modulation.

The waiting time distribution density given by Eq. (10) corresponds to beginning the observation at the moment
when the system is prepared in the uniform distribution p(y0) = 1. As a result of the injection back process this
distribution changes upon time change. If the observation of the first times of sojourn is made at a later time ta > 0,
the corresponding waiting time distribution density is given by

ψta
(t)dt = p(y0, ta)dy0. (13)

The dependence of ψta
(t) on ta is the renewal aging that we want to assess in this paper by means of a suitable

numerical experiment. An exact expression for ψta
(t) is available [35, 36], but, since it is not expressed as a simple

analytical formula, it is not suitable for the practical purposes of this paper. For this reason, we prefer to adopt the
expression:

ψta
(t) =

∫ ta

0
dyψ(t+ y)

Kta

, (14)

where Kta
is a suitable normalization constant. The meaning of this approximated expression is evident. We assume

that the first sojourn times observed might have begun prior to t = ta, anywhere between t = 0 and t = ta, with the
restrictive condition that the earlier laminar region, only one, began at t = 0. Actually, the last laminar region might
be at the end of a sequel of an arbitrarily large number of jumps, thereby generating corrections to Eq. (14). In Ref.
[37] the accuracy of this approximation, in the case of inverse power law waiting time distributions, was examined,
and found to be very good. In this paper we shall make a discussion of the key results on the aging experiment on
BQD systems, taking into account the error associated to this approximated formula.

It is possible to predict that the case of very slow modulation does not yield aging. In the case of a modulated
Poisson process, we replace the model of Eq. (9) with

dy

dt
= r(t)y. (15)
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This means that we set z = 1 and we replace the parameter α with the time dependent rate r(t). The equation of
motion for p(y, t) is given by

∂

∂t
p(y, t) = r(t)

[

−
∂

∂y
yp(y, t) + p(1, t)

]

. (16)

Note that the second term of on the right hand side of this equation corresponds to the back injection of the particle,
when it reaches the border y = 1, and thus to the resetting process of the renewal model of Eq. (9). When r(t) does
not depend on time, Eq. (16) represents a Poisson process. Let us focus our attention on the case where r(t) is a
stochastic function of time. If it is very fast, r(t) must be replaced by < r(t) >, the process becomes Poisson again
and it departs from the modulation model adopted in this paper (see Section III). Anyway, in accordance to a well
known notion, this Poisson process does not yield aging. The model of Eq. (16) becomes equivalent to the modulation
model of this paper when the fluctuation of r(t) is very slow. We see that the equilibrium distribution coincides with
the initial flat distribution. Thus, we cannot adopt the departure from the initial distribution as a way to define the
system’s age. In the case of a virtually infinitely slow modulation, the system leaves for a virtually infinite time in a
Poisson condition, with no aging whatsoever.

V. AGING EXPERIMENT ON ARTIFICIAL DATA

This section is devoted to illustrating, with the help of artificial data, a technique of analysis aiming at a quantitative
evaluation of the degree of renewal properties of a given time series. We refer to this kind of analysis as aging

experiment.
It is important to notice that the analysis of real data implies the observation of only one single sequence. In this

case we must turn a single sequence into a very large number of sequences of the same age. The first sequence is
the sequence, artificial or experimental, to analyze, beginning at time t = 0 with the system being located at the
beginning of a state, either “on” or “off”. The second sequence is obtained from the first, canceling the first state,
namely, shifting the first sequence towards the time origin by the quantity equal to the time duration of the first
state, so that the second sequence begins at time t = 0, when the system begins sojourning in the second state of
the first, or original, sequence. On the same token, the third sequence begins at time t = 0, when the system begins
sojourning in the third state, and so on. Thus the waiting time distribution ψ(t), ta = 0, is the distribution of the
time durations of the first states. To do the aging experiment we set ta > 0 and we record the time lengths of the first
states observed in that time position. With this prescription we define ψta

(t). A quantitative definition of amount of
aging is more properly done using the SP, defined by

Ψta
(t) ≡

∫ ∞

t

ψta
(t′)dt′, (17)

rather than ψta
(t).

From now on we denote by ψexp(t) and Ψexp(t) the waiting time distribution densities and the SPs, respectively,
derived from the experimental data. Of course, in the case of artificial data, where the sequence is realized for the
specific purpose of producing the function Ψ(t) of Eq. (1) and ψ(t) of Eq. (4), the experimental functions coincide
with the corresponding theoretical prescriptions. Then, we define the corresponding aged distributions using Eq. (14).
This expression is not exact. However, it is convenient for the purposes of this paper, where the experimental error
is expected to be larger than the discrepancy between Eq. (14) and the exact prescription. Then, we denote with
Ψren

ta
(t) the SP derived from the experimental observation, namely from Ψexp

0
(t) ≡ Ψexp

ta=0
(t), by means of Eq. (14).

The prescription adopted in Section III to produce the time series {τi} with a changing Nm for Nm → ∞ becomes
coincident with the slow modulation of Eq. (16). Thus, we expect no aging in this limiting case. In the opposite limit
with Nm = 1, the sequence is renewal. Thus, we expect the maximum amount of aging. In other words, the renewal
condition should yield

Ψexp
ta

(t) = Ψren
ta

(t), (18)

whereas the condition of very slow modulation should produce no aging, a property described by:

Ψexp
ta

(t) = Ψren
0

(t) ≡ Ψexp
0
. (19)

Eqs. (18) and (19) refer to two limiting conditions: the condition of Eq.(18) corresponds to total aging, with no
pseudo events, while the condition of Eq. (19) stems from a process dominated by Poisson pseudo events, with a total
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FIG. 1: The SP Ψexp

ta
(t) as a function of time. The three figures Fig. 1(a), 1(b) and 1(c) refer to Nm = 1, Nm = 10 and

Nm = 100, namely to 0, 9 and 99 pseudo events per critical event, respectively. The curves of each figure are obtained from
artificial sequences yielding for the waiting time distribution density the same inverse power law form of Eq. (1), with µ = 1.8.
For each figure the three distinct ages ta = 0, 20, 60 (from the bottom to the top) are considered. The renewal predictions and
the modulation results are denoted by full lines and circles, respectively.

lack of aging. It is important to point out that the results presented in Section VI, do not involve any assumption on
the form of the waiting time distribution.

Let us introduce here another important ingredient of our analysis, the aging intensity function:

Ia(τ) =
Ψexp

ta
(τ) − Ψexp

0
(τ)

Ψren
ta

(τ) − Ψexp
0

(τ)
. (20)

Eqs. (18) and (19) yield Ia(τ) = 1, and Ia(τ) = 0, respectively, thereby indicating that Eq. (20) is a proper aging
intensity indicator, with 1 and 0 representing total aging and lack of aging, respectively. In principle, this function
should decrease from 1 to 0 upon increase of the number of pseudo events.

The numerical results of Figs. 1(a) to 1(c) confirm the expectation that the larger the number of pseudo events, the
smaller the aging intensity. In fact, in accordance with the earlier theoretical remarks, we see that in the case of no
pseudo event, Nm = 1, reported in Fig. 1(a), modulation and renewal yield the same amount of aging. The occurrence
of 9 pseudo events, namely the case Nm = 10 illustrated in Fig. 1(b), is already enough to significantly reduce
modulation aging. Fig. 1(c) shows that Nm = 100 yields an even larger aging intensity reduction. In conclusion, these
numerical results confirm the theoretical expectation that the infinitely slow modulation, Nm = ∞, should produce
no aging.

The adoption of the aging intensity function of Eq. (20) allows us to express the aging reduction illustrated by
the earlier figures in a quantitative way. The analysis of the numerical simulations of both renewal and modulation
models shows that the aging intensity function Ia(τ) for τ → ∞ tends to an asymptotic value, Ia(∞). This property
is shared by the real data analyzed in Section VI. We estimate this value and we use it, in both the case of artificial
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ta = 220ta = 180ta = 140ta = 100ta = 60ta = 20
hIai

Nm 100101

10110010�110�2
FIG. 2: The aging intensity indicator Ia(∞) as a function Nm, namely Nm − 1 pseudo events per critical event, at different
age, namely different values of ta. The aging intensity is defined by Eq. (20). These results refer to artificial sequences with
µ = 1.8. Physical conditions with different ages and the same number of pseudo events collapse into the same Ia(∞), thereby
becoming indistinguishable in the scale of this figure.

sequences of this section and in the case of real data of Section VI to define the time asymptotic intensity of the aging
indicator.

Fig. 2 illustrates the application of this procedure to the case of artificial sequences. We see that the aging intensity
decreases with the increase of the number of pseudo events per critical event. We fit Ia(∞), as a function of Nm, with
the inverse power law (Nm)−α, with α = 0.70 ± 0.02. The aging intensity indicator, Ia(∞), which should hold the
value of 1 when there are no pseudo events, actually slightly exceeds this value with no pseudo event and decreases
by a factor of 10, with increasing the number of pseudo events per critical event from 0 to 99. In Section VI, we shall
refer to Fig. 2 to estimate the amount of pseudo events per critical event present in the real BQD data.

The aging intensity overestimation, with no pseudo events, is a consequence of the fact that Eq. (14) is not exact.
Let us study the effects of this inaccuracy by means of artificial sequences. We use artificial sequences derived from
the renewal prescription, namely, by random drawings of numbers from the inverse power law distribution of Eq. (4),
yielding a SP of the form of the Eq. (1). We use the values µ = 1.65 and µ = 1.8, which are typical values of the “off”
sequences studied in Section VI. We make a Monte Carlo simulation and we produce curves of the kind illustrated
in Fig. 3, showing the time dependence of the aging intensity function. We see that Ia(τ) becomes virtually time
independent after a short transient. Let us notice that the levels of these plateaus exceed the maximum value of 1.
However, we see that this level becomes closer to 1 with the age increase from ta = 20 to ta = 220. Of course, the

ta = 220ta = 20
hIai(�)

� 300025002000150010005000

1.41.351.31.251.21.151.11.051
FIG. 3: The aging intensity Ia(τ ) of Eq. (20) as a function of τ . We study the case of renewal artificial sequences with an
inverse power law form, with µ = 1.8. We study the time evolution of this indicator at two different ages, ta = 20 and ta = 220.
The attenuation of the overestimation effect with the increasing ta is evident.
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µ = 1.65 µ = 1.8

ta Ia(∞) σren(Ia) Ia(∞) σren(Ia)

20 1.3734 0.0011 1.3378 0.0047

60 1.31828 0.00070 1.2765 0.0026

100 1.3007 0.0012 1.2608 0.0017

140 1.29325 0.00040 1.2502 0.0014

180 1.28764 0.00036 1.2420 0.0014

220 1.28243 0.00037 1.2344 0.0012

TABLE I: This table summarizes the results of Monte Carlo simulations done to evaluate the aging intensity Ia(∞). These
results refer to the case of renewal artificial sequences, with an inverse power law form. The values of µ adopted, µ = 1.65 and
µ = 1.8, are the typical values of the real BQD sequences of “off” states. σren is the standard deviation.

property of a fast attainment of a plateau is shared also by the cases, not shown here, of a non vanishing number
of pseudo events, with the plateau height significantly smaller than 1 for Nm of the order of 10: the results of Fig.
(2) have been obtained by evaluating the level of this plateau. Applying the same criterion to the case of no pseudo
events, we get the asymptotic values Ia(∞), illustrated by Table I.

In conclusion, the aging indicator Ia(∞) should be independent of the system age and equal to 1: in fact, we are
analyzing artificial sequences corresponding to the renewal model. We see, on the contrary, that the aging intensity
indicator exceeds the maximum value of 1. This is due to the inaccuracy of the formula of Eq. (20), which is known
[35] to become accurate for ta → ∞. In accordance with this fact, we see from Table I that the aging intensity
overestimation tends to vanish with increasing values of ta.

VI. AGING EXPERIMENT ON REAL DATA

We are now in a position to analyze the experimental results on real BQD data sequences. The experimental
data discussed in this Section have been obtained by Prof. M. Kuno and V. Protasenko, Dept. of Chemistry and
Biochemistry, University of Notre Dame. Our data set consists of 32 sequences of BQD fluorescence intensities. Each
sequence contains 1 hour of records, sampled every ms, for a total amount of 360000 data per sequence. A sample of
the data studied in this section is shown in Fig. 4.

FIG. 4: A sample of the BQD data examined in this section.

In order to separate the “on” from the “off” state it is necessary to define a threshold intensity, above which the
signal corresponds to a “ on” state and below which it signals the “off” state. We establish this separation along the
lines adopted in an earlier work (see [15]), namely with an iterative procedure for the search of a repartition that
make it possible for the fluctuations of the two states not to intersect with the separation line. At the end of this
iteration process the variances of the two states get a well defined value, with σ denoting the variance of the “off”
state: the threshold turns out to be located at the value 2σ over the “off” state.

After defining an alternate sequence of “on” and “off” states, we make the aging experiment with the criterion
described in Section IV. Actually, we make three different kinds of aging experiment. The first and second, considering
the waiting times only of the “on” and “off” states, respectively. This means that we sew the beginning of “on” (“off”)
state to the end of the immediately preceding “on” (“off”) state. The third experiment is done on the whole sequence
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of waiting times, with the jump from one state to the other signaling the presence of an event, whose statistical
properties are studied regardless of whether it corresponds to jumping from the “on” to the “off” state, or vice-versa.

A. Aging of the “on” state

Here we discuss the results of the first kind of aging experiments, on the “light on” state. Fig. 5 shows an example
of these aging experiments. This figure refers to a case where the aging experiment on the BQD sequence is done for
several values of ta, ranging from 20 to 220 in steps of 40. The thin continuous line represents Ψexp

0
, the dotted line

refers to Ψexp
ta

, while the thick continuous line represents Ψren
ta

. We see that in this case the condition of Eq. (18) is
fulfilled with a very good accuracy. The systems ages and it does according to the non-Poisson renewal theory. In
fact, aging implies that the system obeys a non-Poisson statistics, and the fulfillment of Eq. (18) means that this
non-Poisson statistics is renewal. It is also worth pointing out again that this observation does not involve that the
deviation from Poisson statistics is realized through inverse power laws, as assumed for simplicity in Section II. In
fact, the experimental waiting time distribution and SP are not inverse power law, or, at least do not correspond to
an inverse power law with a well defined index. However, they depart from the exponential condition enough as to
generate the aging effects illustrated by Fig. 5.

 0.001

 0.01

 0.1

 1

 0.1  1  10  100  1000

Ψ
(τ

)

τ

Aging experiment for the ’’light on’’ state

Ψ0
Ψexp
Ψren

FIG. 5: The SP Ψ(t) as a function of time. The experiment is carried using only the “light on” waiting time distribution. The
thin continuous line indicate Ψexp

0
(t), the dotted line refers to Ψexp(t), and the thick continuous line is Ψren. From the bottom

to the top the curves refer to ta with the values 20, 120 and 220.

B. Aging of the “off” state

Let us discuss aging for the sequence of waiting times in “off” state. A sample of these results is shown by Fig. 6.
Also in this case, the system is aging and its behavior is very well described by the renewal theory.

By visual inspection, we can stress some differences between the result of the latter and the former experiment.
The main difference seems to be that the distribution of the time of sojourn in “light on” state is truncated after
about two decades, while the inverse power law distribution of the “off” states holds longer. This result confirms the
earlier observation of Chung and Bawendi [5]. For this reason, it turns out to be difficult for us to estimate the index
of the waiting time distribution of the “on” states. In the case of the “off” states, instead, we can do that, since the
power law behavior is more distinct that in the earlier case. Our estimations of the power law exponent, in this case,
ranges from 1.65 ± 0.02 to 1.80 ± 0.05. We note that the artificial sequences of Table I refer to these values.
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Aging experiment for the ’’light off’’ state

Ψ0
Ψexp
Ψren

FIG. 6: The SP Ψ(t) as a function of time. The experiment is carried using only the “off” waiting time distribution. The thin
continuous line indicate Ψexp

0
(t), the dotted line refers to Ψexp(t), and the thick continuous line is Ψren. From the bottom to

the top the curves refer to ta with the values 20, 120 and 220.

C. Aging of the “on-off” state

Let us discuss now the result of the third aging experiment, done on the whole sequence, with the transitions from
the “on” to the “off” states as the markers of the significant events to analyze with the aging experiment. Fig. 7
shows a sample of this third kind of aging experiment. Also in this case it is evident how the theoretical predictions
of the renewal theory fit very well the experimental results.

In order to support quantitatively the conjecture made on the basis of visual inspection of the results, in the next
subsection we shall adopt the aging intensity indicator introduced in Sec. V.

D. Aging intensity

We recall that the adoption of Eq. (14) yields for the aging indicator Ia(∞) values larger than 1, namely, we find
that Eq. (14) overestimates the aging intensity (see Table I). With Fig. 2 we also found that a number of pseudo
events of the order of ten significantly reduces the aging intensity.

We can now use these indications for a rough estimation of the number of possible pseudo events present in the
sequences of sojourn times in the “light on” state. To make the evaluation of the aging intensity value as statistically
accurate as possible, we adopt a Gibbs ensemble average. In other words, we make an average over all the sequences
at our disposal, after assigning to them the same age ta. This is done by preparing all the sequences in such a way
that at t = 0 each of them begin at the beginning of the time of sojourn in the “on” state, the “off” state, or the
“on” or “off” state, according to the kind of experiment under study, of the first, second and third type, respectively.
Then we set for all sequences the beginning of the observation process at the same time ta. We obtain the mean aging
indicator, indicated by < Ia >. We do the same experiment for different values of ta. Fig. 8 shows the time evolution
of Ia(τ) for a given sequence of ”light on” states corresponding to that used to derive the results of Fig. 5. The aging
indicator Ia(∞) for any sequence of this kind is obtained by making an average on τ , and the fluctuations around
this mean value are used to define the measurement error.

The average on all the sequences of the Gibbs ensemble are used to obtain the values of < Ia > reported in the
tables. Tables II, III and IV report the value of < Ia > for the “on”, “off” and “on-off” waiting time distributions,
respectively. In these tables, σ represents the maximum likelihood estimation of the standard deviation of < Ia >.

These results show that the aging of both the “off” and “on-off” waiting time distributions are very well described
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Aging experiment for the ’’on-off’’ state
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FIG. 7: The SP Ψ(t) as a function of time. The experiment is carried using both the “on” and “off” waiting time distribution.
The thin continuous line indicate Ψexp

0
(t), the dotted line refers to Ψexp(t), and the thick continuous line is Ψren. From the

bottom to the top the curves refer to ta with the values 20, 120 and 220.

FIG. 8: Example of the aging intensity function Ia(τ ) for the “light on” state.

ta < Ia > σ(Ia)

20 0.676 0.026

60 0.690 0.023

100 0.810 0.021

140 0.795 0.020

180 0.740 0.022

220 0.868 0.019

TABLE II: This table shows the intensity of aging Eq. (20) for the “light on” state, for different values of ta, averaged over the
ensemble.
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ta < Ia > σ(Ia)

20 1.040 0.020

60 0.992 0.012

100 1.030 0.014

140 1.010 0.014

180 0.947 0.013

220 0.962 0.015

TABLE III: This table shows the mean aging intensity of Eq. (20) for the “off” state, at different values of ta. The average is
carried out on the whole experimental sequences.

ta < Ia > σ(Ia)

20 0.949 0.013

60 0.894 0.011

100 0.914 0.011

140 0.865 0.011

180 0.823 0.012

220 0.810 0.011

TABLE IV: This table shows the mean aging intensity Eq. (20) for the “on-off” state, at several values of ta. The average is
carried out on all the experimental sequences.

by the means of the renewal theory. The accuracy of the renewal prediction, become worse for the “light on” state,
especially for low values of the parameter ta, and it improves with the increase of ta. By comparing these values to
the curve of Fig. 2, and taking into account that with Nm = 1 the aging intensity indicator overestimates the aging
intensity of the artificial sequences, we cannot rule out the possibility that the “light on” state might involve the
presence of from 5 to 6 pseudo events.

VII. CONCLUDING REMARKS

The main result of this paper is the proof that BQD data obey non-Poisson renewal with a good accuracy. This
complexity condition does not stem from modulation (superstatistics). The statistics of the “on” states is not identical
to the statistics of “off” states. The latter case is closer than the former to the inverse power law picture of Section
II. However, both waiting time distributions depart significantly from the exponential form and produce significant
aging effects.

We confirm the general opinion that the BQD phenomenon obeys renewal prescription, leaving open, however, the
possibility that a finite amount of pseudo events might be involved, especially for the “light on” state. This suggestion
emerges from the results of Tables II and III compared to those of Fig. 2.

We have to point out that the field of single-system spectroscopy is wide and there are examples of process where
slow modulation conditions seem to apply [19, 20, 38]. This paper affords prescriptions of statistical analysis that
might turn out to be useful to study the unknown territory between totally renewal and infinitely slow modulation.
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