Aging and Rejuvenation with Fractional Derivatives Metadata

Metadata describes a digital item, providing (if known) such information as creator, publisher, contents, size, relationship to other resources, and more. Metadata may also contain "preservation" components that help us to maintain the integrity of digital files over time.

Title

  • Main Title Aging and Rejuvenation with Fractional Derivatives

Creator

  • Author: Aquino, Gerardo
    Creator Type: Personal
    Creator Info: University of North Texas
  • Author: Bologna, Mauro
    Creator Type: Personal
    Creator Info: University of North Texas
  • Author: Grigolini, Paolo
    Creator Type: Personal
    Creator Info: University of North Texas; Università di Pisa; Istituto dei Processi Chimico Fisici del Consiglio Nazionale delle Ricerche
  • Author: West, Bruce J.
    Creator Type: Personal
    Creator Info: United States. Army Research Office

Date

  • Creation: 2008-02-02

Language

  • English

Description

  • Physical Description: 11 p.: ill.
  • Content Description: Article on aging and rejuvenation with fractional derivatives.

Subject

  • Keyword: aging order
  • Keyword: fractional derivatives
  • Keyword: Onsager principle
  • Keyword: fractional operators

Source

  • Website: arXiv: cond-mat/0311314

Collection

  • Name: UNT Scholarly Works
    Code: UNTSW

Institution

  • Name: UNT College of Arts and Sciences
    Code: UNTCAS

Rights

  • Rights Access: public

Resource Type

  • Paper

Format

  • Text

Identifier

  • Archival Resource Key: ark:/67531/metadc174699

Degree

  • Academic Department: Physics
  • Academic Department: Center for Nonlinear Science

Note

  • Display Note: This is the author manuscript version of an article published in Physical Review E.
  • Display Note: Abstract: We discuss a dynamic procedure that makes the fractional derivative emerge in the time asymptotic limit of non-Poisson processes. We find that two-state fluctuations, with an inverse power-law distribution of waiting times, finite first moment and divergent second moment, namely with the power index μ in the interval 2 < μ < 3, yields a generalized master equation equivalent to the sum of an ordinary Markov contribution and of a fractional derivative term. We show that the order of the fractional derivative depends on the age of the process under study. If the system is infinitely old, the order of the fractional derivative, ord = μ - 2. If the system is prepared at time -tₐ < 0 and the observation begins at time t = 0, we derive the following scenario. For times 0 < t << tₐ the system is satisfactorily described by the fractional derivative with ord = 3 - μ. Upon time increase the system undergoes a rejuvenation process that in the time limit t >> tₐ yields ord = μ - 2. The intermediate time regime is probably incompatible with a picture based on fractional derivatives, or, at least, with a mono-order fractional derivative.