


Abstract

This paper is devoted to the problem of statistical mechanics raised by the analysis of an issue of

sociological interest: the teen birth phenomenon. It is expected that these data are characterized by

correlated fluctuations, reflecting the cooperative properties of the process. However, the assessment

of the anomalous scaling generated by these correlations is made difficult, and ambiguous as well, by

the non-stationary nature of the data that show a clear dependence on seasonal periodicity (periodic

component) and an average changing slowly in time (slow component), as well. We use the detrending

techniques described in the companion paper [1], to safely remove all the biases and to derive the genuine

scaling of the teen birth phenomenon.
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I. INTRODUCTION

The difficulty in obtaining a stable and reliable measure of complexity is one of the main

problems of time series analysis. Since the pioneer work of Ref. [2] the measure of complexity

has been determined having in mind Brownian motion as a condition of uncorrelated randomness.

Consequently we expect a significant deviation from Brownian motion when we analyze time series

characterizing complex systems. This deviation reflects the cooperative character of interactions

between the different constituents of a complex system. The analysis of this deviation is carried

out by using the time series fluctuations to generate a diffusion process and the diffusion variable

x is expected to deviate from the condition of ordinary Brownian motion. If the time series

is sufficiently long, the probability distribution function (pdf) of the resulting diffusion process,

p(x, t), is expected to satisfy the scaling condition

p(x, t) =
1

tδ
F (

x

tδ
). (1)

The sociological phenomenon of teen births studied in this paper yields a time series of daily

counts of births to women less than 20 years old in a span of 36 years (from 1964 to 1999), to

which we shall refer, from now on, as the “teen birth data”. The influence of an external bias is

likely to be significant in such data. The analysis of such non-stationary time series encounters the

risk of producing the misleading impression that the underlying process is complex, with no real

connection between the complexity measure and the cooperation among society’s components. One

possible source of ambiguity in the complexity measures is the annual periodicity in the number

of births each day. We do not rule out the possibility that such a periodicity might have a social

origin, rather than being tied to seasonal changes. However, such periodicity might also depend

on biological effects. Yet, if not properly taken into account, the annual periodicity might give the

illusion of strong cooperation that does not exist in the dynamics of the process. Another possible

misleading source of complexity measure is the increase in the daily birth rate over time. We do

not rule out the possibility that this increase might have a complex social origin, either. However,

this increase might also originate from an overall increase in the underlying population and not be

a property of the cohort group at all. We refer to such an increase as demographic pressure.

In other words, the perspective that we adopt in this paper is the following. We imagine that

the time series consists of erratic changes in the number of births embedded in an increasing bias

and an annual periodicity. We imagine that both the bias and perodicity are external to the
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process under study. This separation is assumed for clarity and convenience, since we do not have

any evidence that these properties are dependent on the internal dynamics of the process under

study. We want to establish that annual cycles and demographic pressure need not have anything

to do with cooperation, and system complexity, even if we do not rule out the possibility that both

of them might reflect important sociological influences on the system under study. We intend to

show that the only unquestionable measure of complexity that remains after detrending the annual

cycles and demographic pressure is the correlation.

In Section II we introduce the teen birth data from the State of Texas and discuss some of

the time series most obvious properties. In Sections IIIA and IIIB, using the results of [1], we

eliminate from the teen birth data, the influences of the bias due to the demographic pressure and

of the yearly and weekly periodicities, respectively. In Section IIIC we apply the diffusion entropy

analysis to the remaining signal, that is, to the fluctuations with the bias due to the demographic

pressure, and periodicities removed. The residual scaling in these fluctuations is interpreted in

terms of the intrinsic dynamics of the system. In Section IV we draw some conclusions.

II. TEXAS TEEN BIRTH DATA

The teen birth data, the daily number of births to teenager mothers in the whole state of Texas

from 1964 to 1999, are illustrated in Fig. 1. A closer look to the data reveals immediately an

annual periodicity. It has been pointed out [3] that this kind of periodicity is related to the natural

annual cycle of a woman’s fertility, here we limit ourselves to examining this periodic process with

the methods of statistical mechanics. First of all, we apply to the signal a power spectrum analysis.

The results of this analysis are illustrated in Fig. 2. We see clearly that in addition to the expected

annual periodicity, there are also exist a six month, a one week and a half-week component. The

weekly periodicity can be related to the practice of scheduling inductions and cesarean sections

during the week in order to have fewer births on the weekend. The other important feature of the

teen birth data, the demographic pressure, is evident as well. In fact, looking at Fig. 1, we see how

the annual average of births increases, during the 36 year span considered. For example, starting

from the year 1989, j > 9000 in Fig. 1, there is a steady rise (on average) in the daily count of

births to teens .

On the basis of these remarks, a reasonable attempt at describing the teen birth data is based

on the assumption that the numbers of births per day {ξj} are given by the following expression:
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ξj = S + Φyear
j + Φweek

j + Sj + ζj, (2)

where S is the mean value of the data, Φyear
j and Φweek

j are respectively an annual and a weekly

periodic component satisfying the condition of zero mean [4], Sj the bias due to the demographic

pressure and ζj is an uncorrelated random variable with zero mean and fixed variance σζ . We make

the assumption that all the components of the right-hand side of Eq. (2) are independent of one

another and we shall address, following [1], the function Sj as the ”slow component”.

The main goals of this paper, are to verify the validity of Eq. (2) as a model of the teen birth

phenomenon and to detect the correlation properties of the fluctuation ζ. Both of these goal are

achieved through the application of the detrending procedures discussed in [1].

III. PROCESSING THE TEEN BIRTH DATA

A. Detrending the Slow Component

In [1], we studied the case where we have either a single periodic component or a single slow

component added to noise. In the teen birth data, however, we have the more complicated situation

where both biases are superimposed on the random fluctuations in the number of births, and in

addition there are two periodic components rather than one. Therefore some care must be used in

applying the detrending procedures discussed in [1]. Let us consider, first, the case of a time series

where, in addition to a slow component, a periodic one is present. In this case the two detrending

procedures of [1] do not commute: detrending the periodic component prior to the detrending of

the slow component Sj, would lead to a distorted periodic bias, while the opposite is possible if

the function Sj is constant for an interval of time equal, at least, to the time period of the periodic

component. With two or more periodic components in the data, the function Sj has to be assumed

constant for a time interval equal to the smallest common multiple of the time periods of the

periodic components. In the case of the teen birth data we have a yearly and a weekly periodicity

added to the slow component Sj and considering that a year is equivalent to “almost” 52 weeks,

we can take the length of a year as the smallest common multiple of the two periods of these

two periodic components. Therefore, following [1], we shall adopt the scale 29 when we adopt the

wavelet detrending procedure (here as in [1] we use the Daubechies wavelet number 8 (db8)) and

the characteristic time T = 365 for the step detrending procedure. In this last case, using the fact
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that both Φyear
j and Φweek

j have a zero mean, we can write for the sum of the variable ξ inside the

j-th patch of length 365 (366 in the case of a leap year)

Xj =
k=bj+365∑

k=bj

ξk ≈
k=bj+365∑

k=bj

ζk +
k=bj+365∑

k=bj

Sk, (3)

where bj is the index of the time series relative to the first January of the j-th (starting from the

year 1964) year. Using Eq. (3) we are able to approximate the slow component Sj with a step

function of step length 365 (366 in the case of a leap year). In Fig. 3 we plot both the slow

components obtained with the wavelet smoothing and the step smoothing. It is easy see that these

are the SST
j and SCT

j that we discussed in [1].

Before proceeding further, an important question to address is whether we can really assign

to the slow component Sj the time scale T = 365, when we adopt the step smoothing, and the

time scale T = 29 = 512, when we adopt the wavelet smoothing. We think that Sj has to be

considered fairly smooth because Sj represents a sort of daily average number of the births. This

number depends on the daily total teen population, which, in turns, depends on the number of

births occurring approximately 10 to 19 years earlier, and so on. Moreover we have to take into

account social factors such as immigration or a change of public policy, a Welfare Reform that is

aimed at changing reproductive behavior. We think, therefore, that it is plausible to assume the

time scale relative to the interplay of all these factors to be of the order of one year.

To strengthen these arguments we study the annual moving average. The annual moving average

is defined, [5], by

Γ(j, 365) ≡
1

365

k=j+365−1∑

k=j

ξk ≈
1

365

k=j+365−1∑

k=j

Sk +
1

365

k=j+365−1∑

k=j

ζk, (4)

where j goes from 1 to (13149 − 365 + 1). Using the same arguments as in [1], we write

Γ(j, 365) =
1

365

k=j+365−1∑

k=j

Sk. (5)

where we assume that the intensity of the second contribution to the annual moving window is

given by

σj × 365δsm−1 ≪
1

365

k=j+365−1∑

k=j

Sk. (6)

The expression Eq. (5) for the annual moving average Γ(j, 365) affords interesting, though indirect,

information on the behavior of function Sj. In the top frame of Fig. 4 we plot the function
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Γ(j, 365). We see that this function is not dominated by the noise (it is a smooth function).

Therefore the approximation leading to Eq. (5) is a good one. In the bottom frame of Fig. 4 we

compare the annual moving average of the data with the corresponding quantities provided by the

slow components determined by both the step and the wavelet smoothing. We notice that both

methods yield results in good agreement with the the annual moving average applied to the real

data. Therefore, we are encorouged to think that this slow component is a real property of the

data that ought to be detrended in order to determine the genuine complexity of the time series.

B. Detrending the Periodic Components

After detrending the slow component we can proceed to detrending the two periodic components.

As in the case of the arguments yielding Eqs. (3) and (4), the fact that one year is almost a multiple

of one week simplifies our efforts. In such a case, the periodic component of the bigger period can

be detrended using the procedure described in [1], leaving the periodic component of smaller period

unaffected. In the top frame of Fig. 5 we plot the evaluated yearly periodicity. We notice a sudden

drop in the number of births in correspondence with specific holidays, including the 4th of July

(j = 186), the 1st of September (j = 245) and the 24th and 25th of December (j = 359 and

j = 360). We also notice no appreciable difference between the results of the two different recipes,

used to detrend the slow component, in both the top and the bottom frame. The bottom frame

shows the power spectrum after detrending the yearly component, with only the weekly periodicity

remaining.

We are now, ready to detrend the weekly periodicity. In Fig. 6 we ilustrate the corresponding

results. The top frame shows the evaluated weekly periodicity, with the number 1 representing

Monday, 2 Tuesday, and so on. As expected, on the weekend there is a significant drop in the

number of births. The bottom frame illustrates the power spectrum of the detrended signal. It is

surprising that the power spectrum still shows a sign of a weekly component. The reason for this

unexpected effect is that the result is based on the implicit assumption that the weekly component

is the same throughout all the years: an incorrect assumption. As a matter of fact, the practice

of scheduling deliveries during the week has been increasing in prevalence since the late 1980’s [6].

Therefore we decided to evaluate the weekly component year by year. We expect that in so doing

no sign of weekly periodicity on the power spectrum is left. Fig. 7 shows that this conjecture is

correct. In fact the bottom frame shows no signs of weekly periodicity. Note that the ordinate scale

is smaller than the scale of the previous figures by a factor of 10. In the top frame we show the
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intensity of the weekly component through the years. This intensity increases and this phenomenon

becomes especially significant in the last ten years.

C. The Fluctuations

Finally, we apply the diffusion entropy analysis (DEA) to the data with all possible forms of bias,

seasonal and demographical, detrended. Fig. 8 shows that the first ten days are characterized by

δde = 0.58 and that immediately before the saturation regime, caused by the detrending procedure,

in the time region between 10 and 80, an even larger value of scaling index, δde = 0.67, emerges.

Do these parameters correspond to a proper realization of the scaling definition of Eq. (1)? To

answer this question we apply the DAS and the MS to both time regions. In Figs. 9, 10 and 11 we

show the DAS in the time region of the first ten days, with δde = 0.5, δde = 0.57 and δde = 0.67,

respectively. The same time region is analyzed in Fig. 12 by means of the MS method. These

figures indicate clearly that δde = 0.57 can be considered a genuine scaling parameter. The top

frame of Fig. 13 shows the results of the DAS in the region where δde = 0.67. The result of the

DAS applied to the time series stemming from the step detrending procedure is virtually equivalent

to that of the wavelet procedure. For simplicity in Fig. 13 we report only the case of the wavelet

detrending procedure. We see that this δde does not correspond to a satisfactory realization of Eq.

(1).

On the basis of these results, we would be tempted to conclude that the scaling δ = 0.57 is

genuine and δ = 0.67 is not. However, to be as rigorous as possible, we want to discuss first the

intriguing issue of the difference between real and genuine scaling. By real we mean a scaling

coresponding to a realization of Eq. (1). By genuine we mean a scaling reflecting the cooperative

properties of the process under study. We cannot rule out the possibility that the scaling δ = 0.67

is real, but not genuine. Let us see why. We notice that the length of our time series is 13149. We

generate several artificial sequences, with the same length, with the algorithimic prescription that

Ref. [7] proposes to build up fractional Brownian motion, with H = 0.67. This corresponds to a

real scaling with δ = 0.67. Then we apply the DAS to the same time region where the real data

yield δde = 0.67. The results are reported in the bottom frame of Fig. 13 and should be compared

to top frame, illustrating the analysis of the real data. We see that the results of the artificial

sequences as ”good” or as ”bad” as those of the real data. On the basis of this, we cannot dismiss

the possibility that δ = 0.67 is essentially real scaling.

Would the scaling also be genuine? Here we have to face two different eventualities. The first
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is that the genuine fluctuations remaining after detrending are a generalization of the dynamic

model proposed years ago in Ref. [8]. This model, the Copying Mistake Map (CMM), assumes

that the time series is generated by a composite of two mechanisms. The first, adopted with larger

probability, is a prescription generating uncorrelated fluctuations, and the second, applying with

a much smaller probability, is a prescription generating correlated fluctuations, and consequently

a diffusion process faster than the uncorrelated component. In the large time scale regime the

second component dominates the diffusion process, thereby producing a crossover from normal

to anomalous scaling. If we replace the random component with fluctuations characterized by

anomalous scaling, weaker than the second component, we expect a crossover from a scaling larger

than the ordinary to an even larger scaling. This might be the model behind the results illustrated

in Fig. 13. In this case the scaling δ = 0.67 would be genuine as well as real. However, we canot

rule out the possibility that the effect is not genuine. This effect might be due to the presence

of a residual contribution of the slow component that would generate in the long-time regime a

difffusion faster than that produced by the correlation stemming from the genuine complexity of

the process under study, in the same way as the generalized CMM model would do. However, in

this case the effect might be real or not, but it would not be genuine.

With all these caveates in mind, we can reach the following conclusion. The scaling δ = 0.57

is both real and genuine. At the present time we cannot reach a conclusion about the scaling

δ = 0.67.

IV. CONCLUDING REMARKS

The most important result of this paper is the detection, through the introduction of the model

of Eq. (2) and the use of the detrending techniques of [1], of the genuine scaling δ = 0.57. There

are several indications that this is the real complexity strength of the process. First, the adoption

of two distinct detrending techniques yields the same slow-motion component. Second, the study of

artificial time series with this same kind of slow-motion component explains with sufficient clarity

that the detrending procedure yields a saturation effect, and proves that the time region before

this saturation effect can be safely used to detect the genuine scaling. Third the value δ = 0.57

has been tested with multifractal test and the DAS analysis.

Finally we want to stress again the important difference between real and real and genuine

scaling. This is so because the application of nonlinear dynamical analysis to sociological problems

holds promise for better understanding the complex processes that are responsible for phenomena
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such as teen pregnancy and birth. However, extracting accurate and useful information from

observable events such as births to teens, measured and analyzed in the form of a time series, is

quite difficult. This difficulty arises from the fact that complex cultural, biological and sociological

interactions are embedded within more periodic cycles of events. Thus, their appearance in the

time series is masked in such a way as to make their accurate identification and quantification

major challenges for investigators. One strategy used to disentangle and isolate complexity for

quantification is simply to remove all major, identifiable periodicities from the data, and to assume

that the portion of what remains that cannot be described as ordinary diffusion can be labeled

enuinecomplexity. This paper has shown that such a strategy is not without shortcomings which

increase the danger of over-estimating the genuine complexity of the sociological process. Over-

estimating the genuine complexity of any process leads to errors in constructing a useful theoretical

model for describing, understanding, predicting and controlling the process.
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FIG. 1: The daily number of births from a teenager mother in the whole state of Teaxs, from the 1st January

1964 (j = 1) to the 31 st December 1999 (j = 13149).

FIG. 2: The power P (f) as a function of the frequency f for the teen birth data of Fig. 1.
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FIG. 3: The slow component Sj as a function of time j. The full and dashed lines denote the result produced

by the step smoothing and by the wavelet smoothing, with wavelet db8, respectively.
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FIG. 4: The annual moving average of Eq.(4). The full line indicate the result of the numerical analysis

applied to the teen birth data, as they are. The dashed line denotes the the annual moving average applied

to the slow component determined by the step smoothing method. The dotted line denotes the the annual

moving average applied to the slow component determined by the wavelet smoothing.
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FIG. 5: Top frame: the annual periodicity Φyear
j of the teen birth data. The squares indicate the result of

the wavelet detrending method, while the full line denotes the result of the step smothing method. Bottom

frame: the power spectrum of the signal after detrending the yearly periodicity has been detrended. The

squares and the triangles indicate the results of the wavelet detrending method and of the step smothing

method, respectively.
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FIG. 6: Top frame: the week periodicity Φweek
j as a function of the days of the week, from Monday, 1 to

Sunday 7. Bottom frame: the power spectrum, after detrending the week periodicity. In both frames the

squares and the triangle denote the result obtained using the step smoothing procedure and the wavelet

method, respectively.
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FIG. 7: Effect of detrending the weekly periodicity year by year. The three top frames illustrate how

the weekly periodicity changes overthe years, from 1964 to 1999. For each year we report seven values

corresponding to the seven days of the week, from Monday to Sunday. The squares and the full line denote

the results stemming from the step detrending method and from the wavelet decomposition, respectively.

The bottom frame is the power spectrum of the detrended data.
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FIG. 8: The DE of the detrended data. The squares denotes the results of the DE analysis on the data

detrended with the step smoothing (top frame), and wavelet smoothing (bottom frame).
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FIG. 9: The DAS at work in the time region from 1 to 10. The squares denote the pdf rescaled with δ = 0.5

for the data detrended with the step smmothing ( top frame ) and with the wavelet smoothing ( bottom

frame ), the dashed line correspond to the pdf at time t = 1. The overlap between squares and dashed line

is not so good.
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FIG. 10: The DAS at work in the time region from 1 to 10. The squares denote the pdf rescaled with

δ = 0.57 for the data detrended with the step smmothing (top frame) and with the wavelet smoothing

(bottom frame), the dashed line correspond to the pdf at time t = 1. The overlap between squares and

dashed line is good.
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FIG. 11: The DAS at work in the time region from 1 to 10. The squares denote the pdf rescaled with

δ = 0.67 for the data detrended with the step smmothing (top frame) and with the wavelet smoothing

(bottom frame), the dashed line correspond to the pdf at time t = 1. The overlap between squares and

dashed line is bad in particular in the central part of the pdf.
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FIG. 12: The MS at work in the time region from 1 to 10. The squares denote the results for the data

detrended with the step smmothing (top frame) and with the wavelet smoothing (bottom frame), the dashed

line correspond to a straight line of slope of 0.57.
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FIG. 13: The DAS at work in the time region from 10 to 80. The squares denote the pdf rescaled with δ =

0.67 for the data detrended with the wavelet smmothing (top frame) and for an artificial data corresponding

to a FBM with H = 0.67 (bottom frame) the dashed line correspond to the pdf at time t = 10.
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