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Abstract

A complex process is often a balance between non-stationary and sta-
tionary components. We show how the non-extensive Tsallis g-entropy
indicator may be interpreted as a measure of non-stationarity in time se-
ries. This is done by applying the non-extensive entropy formalism to the
Diffusion Entropy Analysis (DEA). We apply the analysis to the study
of the teen birth phenomenon. We find that the unmarried teen births
are strongly influenced by social processes with memory. This memory is
related to the strength of the non-stationary component of the signal and
is more intense than that in the married teen time series. By using the
wavelet multiresolution analysis we attempt to give a social interpretation
of this effect.

Introduction

One of the most exciting and rapidly developing areas of modern research is the
quantitative study of “complexity.” Complexity has special interdisciplinary im-
pact in the fields of physics, mathematics, information science, biology, sociology
and medicine. No definition of complex system has been universally embraced,
so here we adopt the working definition “an arrangement of parts so intricate as
to be hard to understand or deal with.” Therefore, the main goal of the science
of complexity is to develop mathematical methods able to discriminate among
the fundamental microscopic and macroscopic constituents of a complex system
and to describe their interrelations in a concise way.



Experiments usually yield results in the form of time series for physical ob-
servables. Typically these time series contain both a slow regular variation,
usually called “signal,” and a rapid erratic fluctuation, usually called ”noise.”
Historically the techniques applied to processing such time series have been
based on equilibrium statistical mechanics and, therefore, they are not appli-
cable to phenomena far from equilibrium. Among the most egregious of the
limitations of these popular methods are the assumptions of stationarity of the
two time correlation function and Markovian memory.

In this paper we show that the non-extensive Tsallis g-entropy indicator may
be interpreted as a measure of the strength of the non-stationary component of
a time series. This is done by applying the non-extensive entropy formalism to
Diffusion Entropy Analysis (DEA). DEA is a recent and very efficient method
developed to detect the scaling of a stationary complex process; The scaling of
the probability density function (pdf) of the diffusion process generated by time
series imagined as a physical source of fluctuations, see Ref. [EI, E, E, E, B, E]

We apply the above analysis to the study of the teen birth phenomenon. The
daily birth data cover the number of births to married and unmarried teens in
Texas during the period 1994 to 1998. Time series analysis in the social sciences
is traditionally done using linear models, such as analysis of variance and linear
regression. Underlying these techniques is the assumption that the phenomena
of interest, such as adolescent sexuality, pregnancy and other developmental
processes, are stationary, [ﬁ] However, this is not a comprehensive approach
because the births by teenagers are characterized by a complicated annual cycle
that is the source of non-stationarity. We find that unmarried teens seem to
be more strongly influenced by social processes than are the married teens.
Finally, by using the wavelet multiresolution analysis we attempt to give a
social interpretation of this effect.

2 Non-extensive diffusion entropy analysis and
its non-stationary meaning

DEA detects the scaling of a stationary process through the study of the time
evolution of the Shannon entropy of the pdf in terms of the diffusion process
generated by the time series. A time series {;} may be interpreted as diffusion
fluctuations. As in a random walk, we define diffusion trajectories by
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where z = 1, 2, 3,... . These trajectories generate a diffusion-like process
that is described by a pdf p(z,t), where = denotes the variable collecting the
fluctuations and ¢ is the diffusion time. The pdf of a stationary diffusion process
is expected to have the fundamental scaling property
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where the coefficient § is the scaling exponent.
The Shannon entropy is defined by
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Using the stationary condition of Eq(ﬁ) we obtain
S(t)=A+4 In(t), (4)
with -
=- [ aro)wirw). )
where y = x/t%. Eq. (@) indicates that in the case of stationarity, the entropy
S(t) increases linearly with In(¢). Numerically, the scaling exponent § can be
evaluated by using fitting curves with function of the form fg(t) = K + ¢ 1In(t)
that, when graphed on linear-log graph paper yields straight lines.
The breakdown of the stationary condition may be simulated by assuming

that the scaling exponent ¢ of Eq. (E) changes with time. This can be imple-
mented by assuming Eq. (E) has the non-stationary general form
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If we assume that
5(t) = do + n1n(t), (7)

where §y and 7 are two constants, we notice that, in the new non-stationary
condition, the traditional entropy () yields:

S(t) = A+ 6o In(t) + 7 [In(t)]%. (8)

The quadratic form of Eq. (§) suggests that the choice of §(¢) given by Eq. ()
has the mathematical meaning of the quadratic term in the Taylor expansion of
the diffusion entropy (E) As a consequence, we should expect that, in general,
5(t) always assumes the form of Eq. (f]), at least for small values of In(t).

Let us see how all this may be related to the non-extensive Tsallis g-indicator
[E] The Tsallis non-extensive entropy reads
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It is straightforward to prove that this entropic indicator coincides with that of
Eq() in the limit where the entropic index ¢ — 1. Let us make the assumption
that in the diffusion regime the departure from this traditional value is weak

and assume € = ¢ — 1 < 1. This allows us to use the following approximate
expression for the non-extensive entropy

Sq(t)

(9)
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In the specific case where the non-stationary condition of Eq(ﬁ) applies, this
entropy yields the form

S, =A—eB+(1—eA)dt)In(t) — < [5(t) ()], (11)
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where A and B are two constants related to F(y) of Eq. (). The regime of
linear increase in In(t) is recovered when ¢ is assigned the value

n
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These theoretical remarks demonstrate that the non-extensive approach to
the diffusion entropy makes it possible to detect the strength of the deviation
from the stationary condition. In fact, Eq(@) establishes that e = ¢ —1 =10
implies 7 = 0 that, according to Eq. (ﬂ), indicates the stationary condition.
The conclusion of this Section is that the breakdown of the stationary property
of Eq() can be revealed by the DEA under the form of an entropic index ¢
departing from the condition of ordinary statistical mechanics, namely ¢ = 1.
However, the breakdown of the stationary property in a diffusion process will
not last for ever. The Central Limit Theorem [E] states that for ¢ — oo the
diffusion pdf converges to a stationary Gaussian form. Therefore, we expect,
for large t, to recover the stationary condition that is manifest when ¢ = 1.

Fig. 1 shows the effect of the non-extensive Tsallis g-entropy indicator as
a function of time ¢ applied to the binomial distribution generated by a simple
random walk: ¢ =1 (solid line), ¢ = 1.2 (dotted line) and ¢ = 0.8 (dashed line).
The figure shows clearly the relation between ¢ and the bending shape of the
entropic curve, typical of the non-stationary condition expressed by Eq. (E) Oof
course, in the case of a random walk, the linear increase in In(t) of the entropy
Sq(t) is recovered when g = 1 and the scaling exponent is § = 0.5. This is the
value of the scaling exponent of the Gaussian distribution to which the binomial
distribution converges after few diffusion steps.

A curiosity: What happens if we adopt the Rényi entropy [@] instead of
the Tsallis entropy? It is easy to prove that the Rényi g-entropy indicator has
a simple parallel shifting effect instead of a bending effect upon the diffusion
entropy and, therefore, it is not useful for our goal.

3 The teen birth phenomenon analysis

Texas is second only to California in the number of births to teens in the United
States. Rates of birth to teens of all ages and racial/ethnic groups have been
dropping in the United States since 1990, } However, the size of the problem
in Texas remains significant. In 1996, in Texas there were 80,490 pregnancies
and 52,273 births to girls 15-19 years old, [@] The U.S. rate of pregnancy
among young women 15 to 19 years old was 97 per 1000 girls of that age, the
rate in Texas was 113 per 1000. The mean age of teens giving birth was 17.62
years in Texas. Approximately 66% of births to teenagers in Texas were out



of wedlock and 24% of births to teens were to girls who had given birth at
least once previously. Data for the study reported here were abstracted from
birth certificates obtained from the Texas Department of Health. The original
time series was constructed from the daily count of births from January 1, 1994
through December 31, 1998. Every recorded birth to a woman under the age of
20 was included. Data on the marital status of the mother allowed us to analyze
married and unmarried births separately. Reliable and valid birth certificate
information regarding marital status did not become available in Texas until
January 1, 1994. More information about the data may be found in Ref. [m]
The DEA of the data is preceded by a preliminary detrending to free the data
from easily understandable linear and cyclical deterministic trends. In fact, the
data show a slight linear decrease (for married teen, Fig. 2a) and increase (for
unmarried teen, Fig. 2b) trends and two strong periodicities: the annual trend
due to the seasonal cycle and the weekly cycle due to social organization of the
week into workdays and weekends. The weekends consistenly record a lower
rate of births. We eliminate the data associated with weekends and holidays,
and detrend the linear ramp and annual frequency through the fitting curve:

=(t) = A+ Bt + C cos(wt) + D sin(wt). (13)

In the case of the unmarried teens the fit gives A = 97.5, B = 0.00893, C =
1.29, D = -6.30 and w = 27/365.25. In the case of the married we set A = 57.8,
B =-0.00353, C =- 0.277, D = -4.14 and w = 27/365.25. Figs. 2a and 2b show
the original data as well as the detrended ones for the two groups.

Before applying the diffusion entropy algorithm to the two detrended datasets,
we dichotomize the two signals, and associate the positive values to +1 and the
negative values to -1. In this way, an easy confrontation with the random walk
theory is possible. In fact, if the new dichotomous series of +1 and -1 is random,
the diffusion produced by its walks gives the binomial distribution of the ran-
dom walk that corresponds to the stationary condition with ¢ = 1 and ¢ = 0.5.
By the other side, if the new dichotomous series is not completely random but
modulated by some type of memory, the correspondent diffusion process shows
some type of non-stationary behavior and we expect ¢ # 1.

Let us apply the non-extensive DEA to the two dichotomous detrended
datasets. First, we build the diffusion trajectories according to the prescrip-
tion of Eq. (|l). Second, as done in the random walk model, we calculate the
probabilities /frequencies p;(t) that a trajectory occupies the i*" position at the
diffusion time ¢t. Finally, we evaluate the discrete non-extensive Tsallis entropy

_ ($)4
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and we look for the magic ¢ = @ that makes S,(¢) increase linearly in In(t), at
least in the first decades of the diffusion steps. Figs. 3a and 3b show the diffusion
entropy curves for ¢ = 1 and for ¢ = Q). For married teens we get a magic Q
close to 1; this means that the correspondent dichotomous series is random.
Instead, for unmarried teens we get Q = 1.257 that reveals a non-stationary
diffusion process and, therefore, a memory component in the signal.



To investigate the nature of the memory in the unmarried teen data, left
after the detrending of the linear and cyclical annual trends, we use the wavelet
analysis [@] The wavelets are a powerful method of analysis that localizes
a signal simultaneously in time and frequency. With a judicious use of the
multiresolution wavelet transform, as explained in detail in Ref. [ﬂ], we can
obtain an approximated distribution of conceptions which result in birth during
the year for both married and unmarried teenagers. The estimated errors are
£2 births against +2 weeks. Moreover, we point out that identifying conception
distribution from delivery dates among teens may be imprecise because of the
high number of miscarriages or abortions, almost %49 of conceptions, and a
sensitive seasonal dependency pre-term delivery in teens. Fig. 4 shows our
estimation of the daily number of conceptions, relative to the annual mean
value, for married (“+7) and unmarried (“x”) teenagers. The standard error is
2 births. The conception rate in married teens changes regularly following the
annual seasonal temperature cycle with a higher rate during the cold months and
a lower rate during the hot months. Instead, the conception rate in unmarried
teens seems more strongly influenced by the school-holiday yearly calendar. For
example, there is a sharp drop of conceptions during the summer due probably
to the fact that the schools are closed and the interactions with other teenagers
is greatly reduced. It is the complex social component of the births to unmarried
teens that is detected as non-stationarity by the DEA.

4 Conclusion

The new technique of analysis, based on the entropy of diffusion process, and
consequently called DEA, has been proved by Refs. , E, E, E, E, E] to be a very
efficient method of scaling detection, which ensures the possibility of measuring
the correct scaling coefficient § when the property of Eq. (E) applies. This
paper shows that the adoption of the Tsallis entropy rather than the Shannon
entropy, as an entropy measure of the diffusion process, allows us to interpret the
deviation of the Tsallis index q from the ordinary value ¢ = 1, as an indicator
of memory strength.
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Figure 1: The non-extensive Tsallis entropy as a function of time ¢ applied to
the binomial distribution generated by the random walk: ¢ = 1 (solid line),
g = 1.2 (dotted line) and ¢ = 0.8 (dashed line).
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Figure 2: Number of births (“+” symbol) to (a) married and (b) unmarried

teenagers from January 1, 1994 through December 31, 1998. The “x” symbol

indicate the data detrended of the non-working days and of the linear and of
the seasonal trends.
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Figure 3: Non-extensive DEA for (a) married and (b) unmarried teenagers. The
symbol “+” indicate the curves for ¢ = 1. The married teens Q=0.995 and the
unmarried teens Q=1.257 curves are indicated by the symbol “x”. The fitting
straight lines are shown as well.
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Figure 4: Approximated daily number of conceptions which result in birth rela-
tive to the annual mean value in married (symbol “+”) and unmarried (symbol
“x”) teenagers. The standard errors are 2 births against 2 weeks.
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