DISPL1: A SOFTWARE PACKAGE FOR
ONE AND TWO SPATIALLY DIMENSIONED
KINETICS-DIFFUSION PROBLEMS

by

G. K. Leaf and M. Minkoff

Mathematics and Computer Science Division

September 1984

(Supersedes ANL-77-12 Rev. 1, November 1978)

Work supported by the Applied Mathematical Sciences subprogram of the
TABLE OF CONTENTS

ABSTRACT ... 1

INTRODUCTION .. 1

1. NATURE OF THE PARTIAL DIFFERENTIAL EQUATIONS .. 4
 1.1 Domain of the Equation ... 6
 1.2 Boundary Conditions ... 7
 1.3 Interface Conditions .. 8
 1.4 Initial Conditions .. 10

2. APPROXIMATION PROCEDURE ... 12
 2.1 Weak Form of the Equation .. 12
 2.2 Approximating Subspace ... 16
 2.2.1 B-Spline Basis .. 16
 2.2.2 Tensor Product Basis .. 19
 2.3 Galerkin Approximation .. 21
 2.3.1 Non-Conservative Convection Terms ... 22
 2.3.2 Divergence Term ... 23
 2.3.3 Non-Essential Boundary Terms ... 23
 2.3.4 Gap Interface Term ... 25
 2.3.5 Distributed Source Term ... 27
 2.3.6 Essential Boundary Condition Terms .. 27
 2.3.7 Initial Conditions .. 29
 2.4 Evaluation of Integrals ... 30

3. PROBLEM DESCRIPTION ... 32
 3.1 Domain .. 32
 3.2 Geometry .. 32
 3.3 Interfaces .. 32
 3.4 Additional Mesh Points .. 32
 3.5 Partial Differential Equations ... 33
 3.6 Interface Conditions .. 34
 3.6.1 Continuity Condition .. 34
 3.6.2 Gap Condition ... 35
 3.7 Boundary Conditions ... 37
 3.8 Initial Conditions .. 39
4. DESCRIPTION OF USER-SUPPLIED SUBROUTINES 41
 4.1 DIFUSE (Diffusion term) .. 41
 4.2 VEL (Velocity term) ... 43
 4.3 BRHØ (Boundary term) .. 43
 4.4 BDFRD (Boundary Fréchet derivative term) 45
 4.5 BRHØDT (Boundary time derivative term) 46
 4.6 BDFRDT (Boundary time derivative Fréchet derivative term) 47
 4.7 EXTSRC (Distributed source term) .. 48
 4.8 FDEXTU (Distributed source derivative term) 50
 4.9 INDATA (Input data for initial fit) .. 53
 4.10 RHØCP (Heat capacity term) .. 54
 4.11 ANAL (Analytic solution) .. 54
 4.12 MASTER DRIVER (Highest level calling program) 55

5. DESCRIPTION OF USER-SUPPLIED DATA 60
 5.1 Mortran Macros and Unit Assignments 62
 5.2 Namelist GRID ... 66
 5.3 Namelist DATA ... 74
 5.4 Namelist FORMAT ... 79
 5.5 Namelist CSPIN ... 81
 5.6 Namelist CNTRIN ... 84
 5.7 Namelist DIM3IN ... 85
 5.8 Summary of Restart Procedures ... 86
 5.9 DISPL1 Files ... 87
 5.10 Error Messages .. 88

6. DESCRIPTION OF PRINTED AND GRAPHICAL OUTPUT 92
 6.1 Printed Output ... 92
 6.2 Cross Section Plotting ... 95
 6.3 Contour Plotting .. 97
 6.4 Perspective Plotting of Solution Surfaces 97

7. SAMPLE PROBLEMS ... 99
 7.1 Two-Dimensional Heat Conduction in a Plate 99
 7.2 Water Hammer ... 128
 7.3 Diurnal Chemical Kinetics .. 161
 7.4 Cooling of a Sphere in a Well Stirred Fluid 193
 7.5 Heat Conduction with Chemical Heat Source 208
 7.6 A Defect-Diffusion Problem in One-Dimensional Spherical Geometry 225
APPENDIX - List of Symbols ...245
ACKNOWLEDGEMENTS ... 253
REFERENCES .. 254

LIST OF FIGURES
1 Interface partition of a domain ... 7
2 Sample breakpoint and knot distribution .. 25
3 Interface conditions before refinement .. 36
4 Interface conditions after refinement ... 36
7.1.1 Contour plot at t=0.75 (Frame 4) ... 123
7.1.2 Contour plot at t=3.0 (Frame 5) ... 124
7.1.3 Three-dimensional perspective surface for heat conduction problem .. 126
7.1.4 Three-dimensional perspective surface for heat conduction problem .. 127
7.2.1 Graph of pressure and velocity for water hammer problem 158
7.2.2 Graph of pressure and velocity for water hammer problem 159
7.2.3 Graph of pressure and velocity for water hammer problem 160
7.3.1 Time graphs of the species concentrations via CSP 188
7.3.2 Time graph of the first species via CONTOUR 189
7.3.3 Time graph of the second species via CONTOUR 190
7.3.4 Time graph of the first species via THREED 191
7.3.5 Time graph of the second species via THREED 192
7.6.1 Graph of concentrations at 141st time step 244

LIST OF TABLES
7.2.1 Output from method of characteristic solution 135
7.3.1 Finite difference solution for atmospheric model 166
7.4.1 First 15 non-zero roots ... 194
7.4.1 Effect of quadrature order on approximation error 198
7.5.1 Approximation errors ... 214
DISPL1: A Software Package for One and Two Spatially Dimensioned Kinetics-Diffusion Problems

by

G. K. Leaf and M. Minkoff

ABSTRACT

DISPL1 is a software package for solving some second order nonlinear systems of partial differential equations including parabolic, elliptic, hyperbolic, and some mixed types such as parabolic-elliptic equations. Fairly general nonlinear boundary conditions are allowed as well as interface conditions for problems in an inhomogeneous media. The spatial domain is one or two dimensional with Cartesian, cylindrical, or spherical (in one dimension only) geometry. The numerical method is based on the use of Galerkin's procedure combined with the use of B-splines in order to reduce the system of PDE's to a system of ODE's. The latter system is then solved with a sophisticated ODE software package. Software features include extensive dump/restart facilities, free format input, moderate printed output capability, dynamic storage allocation, and three graphics packages.

Introduction

DISPL1 is a computer software system for solving a broad class of partial differential equations. This class includes problems which arise from the simulation of: time dependent heat conduction in nonhomogeneous media; the chemical kinetics-diffusion (or transport) of minor chemical species in the upper atmosphere; the steady state behavior of the boundary layer of a gas bubble immersed in a moving fluid; a water hammer; tertiary recovery of oil by thermal methods; steady state heat conduction; and chemical concentrations in both steady and unsteady tubular chemical reactors (packed or empty). This class then includes certain systems of partial differential equations of the following types: parabolic, elliptic, hyperbolic and certain mixed systems of these three types. Fairly general nonlinear boundary conditions are allowed and include those for which the solution, its flux or combinations of these are specified at the boundary, in perhaps a very complicated functional relationship. The basic set of equations consists of a substantial subset of
of the class of second order nonlinear systems of partial differential equations in one or two space-like variables and one time-like variable. The spatial domain is rectangular in either Cartesian, cylindrical or spherical (one dimension only) geometry. \textsc{displ1} permits the presence of several material interfaces so that a variety of problems involving non-homogeneous media can be easily solved.

The numerical method used in \textsc{displ1} can be described as follows. The system of partial differential equations is discretized in the space-like variables. This discretization is achieved by using a Galerkin procedure in conjunction with B-splines of a specified order and smoothness. This leads to a system of first order ordinary differential equations (ODE's) in the time-like variable which is solved by a sophisticated ODE software package. Currently, the ODE solver is a variation of GEAR.

The software aspects in \textsc{displ1} of interest to the user are as follows. Input is via namelist which implies a free field format. An extensive dump and restart facility is available which has the following features. During either a steady-state or a transient calculation, a dump occurs automatically when the computer time allotted for the job has been exceeded. A dump can also be made at the normal conclusion of a steady-state calculation for use in starting a subsequent transient calculation. Furthermore, when time is exceeded, the dump is made in such a way that the internal routines can be restarted without any significant numerical effect. The restart is effected via a four-card change in the input deck. There are also extensive output capabilities including printed output and three graphics packages (one-dimensional slices, contours, and three-dimensional perspectives). Further the coding, other than that in the B-spline and ODE packages, and the user routines, is in \textsc{mortran}. This language is a FORTRAN preprocessor which uses macro-instructions, adjusts the dimension of internal arrays at compile time, and allows structured programming.

In the sequel, we describe the problem types which can be solved by \textsc{displ1} in §1. In §2, we describe the numerical methods used in this code. The package is treated in §§3,4,5,6, while sample problem coding and input are given in §7. Thus §§1 and 2 describe the underlying methods and strategies used in \textsc{displ1}, while §§3-7 constitute a user's guide with examples.
To solve a given problem, the following two-tier approach to using this report is recommended.

I. Initial Use of the Package

1. Study §§ 1 and 3. This will provide a basic introduction to the form of the equation and terminology.
2. Use a previous deck (there are two sample decks provided with the code) as a basis for the current deck. That is, rather than developing the user deck from scratch, modify a previous one.
3. Use § 4 to determine the form of the user routines.
4. Use the Machine Readable Documentation listing to determine Namelist data.

II. Further Use of the Package

1. Refer to § 5 for assistance in modifying the macro variables, using the restart features, and interpreting error messages.
2. Refer to § 6 for interpretation of printed and graphical output.
3. Refer to § 7 for further examples.
4. Users interested in the mathematical and numerical procedures used should study § 2.

Finally, some cautionary remarks concerning this code. First, the code is designed as an engineering tool for use on a reasonably large class of practical problems. The code is not designed to replace either special purpose programs or production codes. Second, this code will not solve every second-order partial differential equation. Some of the more obvious restrictions include such aspects as rectangular spatial domains, no cross-derivatives, any side is of one boundary condition type, and second derivative information is not available for use in boundary conditions. Third, this program is primarily designed for nonlinear systems of parabolic equations. However, the program can solve some problems from other classes of PDE's including elliptic, hyperbolic, and mixed type problems such as parabolic-elliptic types (cf. § 7). This generality means that the user can specify ill-posed problems either through a conceptual error or an input error. Moreover, for some hyperbolic problems, the numerical method used in this code (Galerkin combined with a stiff ODE solver) will not be stable. Thus when using this code, the user has an obligation to see that he has formulated a meaningful problem for which a solution exists.
1. NATURE OF THE PARTIAL DIFFERENTIAL EQUATIONS

This program is designed to approximate the solution of a class of non-linear parabolic systems of partial differential equations in one dimension (Cartesian, cylindrical, or spherical geometry) or two dimensions (Cartesian or cylindrical geometry). The approximation is based on the use of a Galerkin procedure to reduce the system of partial differential equations to a system of ordinary differential equations. This system of ordinary differential equations is then solved by means of a variant of the ANL version of the GEAR code [1]. In the Galerkin procedure, the class of approximating functions is generated from a tensor product basis of one-dimensional B-splines generated by subroutines developed by de Boor [2].

The starting point for this work was a desire to provide the capability for solving some simplified forms of the equation of continuity for a multi-component chemically reactive fluid. Of course, in most fluid dynamics problems involving chemical reactions, it is necessary to carry out the simultaneous solution of the coupled equations of mass, momentum, and energy. However, there is a substantial class of problems for which a solution of the equation of continuity will suffice; it is for some of these problems that this code is intended.

The system of PDE's treated in this program does not have to be considered in any particular context; however, it may be helpful to use a physical model in order to provide some motivation for the choice of the class of PDE's treated here. To this end, consider a multicomponent fluid of \(M \) species with mass concentration \(\rho_i \) for the \(i \)-th species, and total mass concentration \(\rho = \sum_{i=1}^{M} \rho_i \). Let \(\mathbf{v}_i \) denote the velocity of the \(i \)-th species with respect to fixed coordinate axes, and \(\mathbf{V} = \sum_{i=1}^{M} \rho_i \mathbf{v}_i / \rho \) denotes the local mass averaged velocity. Let \(q_i \) denote the rate of production of the \(i \)-th species from chemical reactions and other volume distributed sources, and \(\mathbf{J}_i = (\mathbf{v}_i - \mathbf{V}) \rho_i \) denote the mass flux relative to the mass averaged velocity. The equation of continuity for the \(i \)-th species is then given by

\[
\frac{\partial \rho_i}{\partial t} + \nabla \cdot (\rho_i \mathbf{v}_i \mathbf{J}_i) = q_i, \quad 1 \leq i \leq M
\]

where \(\nabla \cdot \) denotes the divergence operator. If the flux \(\mathbf{J}_i \) can be approximated
by
\[\dot{j}_i = -\rho D_1 \nabla (\rho_i / \rho) \] (Fick's law of diffusivity)

then we have
\[(1.2) \quad \frac{\partial \rho_i}{\partial t} + \nabla \cdot (\rho_i \dot{\psi}) = \nabla \cdot (\rho D_1 \nabla (\rho_i / \rho)) + q_i, \quad 1 \leq i \leq M. \]

If we assume that the total mass density \(\rho \) is constant, then \(\nabla \cdot (\rho D_1 \nabla (\rho_i / \rho)) = \nabla \cdot (D_1 \nabla \rho_i) \). Moreover, since \(\sum_{i=1}^{M} j_i = \sum_{i} q_i = 0 \), we find by summing Eq. (1.2)
\[\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \dot{\psi}) = 0. \] When \(\rho \) is constant this reduces to \(\nabla \cdot \dot{\psi} = 0 \). Now \(\nabla \cdot (\rho_i \dot{\psi}) = \nabla \cdot \nabla \rho_i + \rho_i \nabla \cdot \dot{\psi} \); thus when \(\rho \) is constant, Eq. (1.2) reduces to
\[(1.3) \quad \frac{\partial \rho_i}{\partial t} + \nabla \cdot \nabla \rho_i = \nabla \cdot (D_1 \nabla \rho_i) + q_i, \quad 1 \leq i \leq M. \]

or since \(\nabla \cdot \dot{\psi} = 0 \) we can write this equation in its conservative form
\[(1.4) \quad \frac{\partial \rho_i}{\partial t} + \nabla \cdot \nabla \rho_i = \nabla \cdot (D_1 \nabla \rho_i) + q_i, \quad 1 \leq i \leq M. \]

Note: If \(\rho \) is not constant, we can set \(\psi_i = \rho_i / \rho \) and using the continuity equation for \(\rho \), replace equation 1.2 by
\[(1.3') \quad \rho \frac{\partial \psi_i}{\partial t} + \rho \nabla \cdot \nabla \psi_i = \nabla \cdot (\rho D \nabla \psi_i) + q_i, \quad 1 \leq i \leq M. \]

Equations (1.3) or (1.3') and (1.4) provide a basis for the selection of a class of PDE's treated by the program. With this physical model in mind, we consider the following system of nonlinear parabolic equations.

\[(1.5) \quad [\rho c_p]_m(t,r,z,u) \frac{\partial u_m}{\partial t} + \theta \nabla \cdot (\dot{j}_m(t,r,z,u) u_m) + (1-\theta) \dot{j}_m(t,r,z,u) \cdot \nabla u_m \\
= \nabla \cdot (\dot{j}_m(t,r,z,u,\nabla \rho) \nabla u_m) + \sum_{m'=1}^{M} \sum_{m''=1}^{M} c_{mm'} u_m u_{m''} + f_m(t,r,z,u,\nabla \rho) \text{ for } 1 \leq m \leq M. \]

Here \(u_m = u_m(r,z,t) \) denotes the dependent variable (e.g. concentration of the \(m \)-th species), and we have included the option of considering a system in the substantial derivative form \((\theta = 0) \) or in the conservative form \((\theta = 1) \). The
Mass averaged velocity has been somewhat generalized by the inclusion of a two-component $\mathbf{V}_m = (V^r_m, V^z_m)^T(t, r, z, \mathbf{u})$ user supplied function which, as indicated, may depend on the species index m as well as (t, r, z) and $u(t, r, z) = (u_1, u_2, \ldots, u_M)^T(t, r, z)$. The coefficient of diffusivity $D_m = (D^r_m, D^z_m)^T$ is a two component user supplied function with the indicated dependencies. The expression $(D_m \mathbf{V}_m)$ is interpreted as the two component vector

$$(D^r_m \frac{\partial u_m}{\partial r}, D^z_m \frac{\partial u_m}{\partial z})^T$$

so that anisotropic diffusion can be taken into account. The heat capacity coefficient $[\rho C_p]_m(t, r, z, u)$ is included for heat conduction problems when $n = 1$ and $u(t, r, z)$ represents the temperature. Note, however, that this system allows ρC_p to depend on the species index m when $M > 1$; in particular $[\rho C_p]_m$ can be identically zero. As indicated, first and second order reaction rate coefficients are assumed to be constant. These rate constants are provided to the program through the input. The distributed source $f_m(t, r, z, u, \mathbf{u}_m)$ is user supplied, and it can have the indicated dependencies when $\mathbf{u} = (u_1, \ldots, u_M)^T(t, r, z)$ and $\mathbf{u}_m = (u^1_m, \ldots, u^M_m)^T(t, r, z)$. The convection velocity $V^*_m(t, r, z, \mathbf{u})$, diffusivity $D_m(t, r, z, \mathbf{u}, \mathbf{u}_m)$, heat capacity $[\rho C_p](t, r, z, \mathbf{u})$, and the distributed source $f_m(t, r, z, \mathbf{u}, \mathbf{u}_m)$ are made available to the program by means of user supplied subroutines (VEL, DIFUSE, RHOCP, and EXTSRC, respectively).

1.1 Domain of the Equation

Equation (1.5) is considered over a domain $\mathcal{R} = [R^-R^+] \times [Z^-Z^+]$ which is rectangular with sides parallel to the coordinate axes. The geometry can be either Cartesian, cylindrical or spherical. In order to allow for diffusion in an inhomogeneous medium, the domain \mathcal{R} can be composed of subrectangles where each subrectangle can have its own material properties. It is assumed that these subrectangles are formed by a set of NTIR vertical interfaces and a set of NTIZ horizontal interfaces as shown in Fig. 1.

Here the four sides of the domain \mathcal{R} are indexed from 1 to 4 counterclockwise starting on the left hand side of \mathcal{R} as indicated by the symbols $[I^1, \ldots, I^4]$ in Fig. 1. This indexing scheme for the sides is used throughout this report.

Here T denotes the transpose.
1.2 **Boundary Conditions**

This code does not require boundary conditions to be imposed on each of the four sides for each species. Thus, in principle, this code can deal with a larger class of problems than the set of coupled nonlinear parabolic equations. However, this larger class includes problems which are not well posed as well as problems for which the numerical method used in this code is unstable. For this reason, the discussion is primarily concerned with the class of parabolic type problems.

For each species m, a boundary condition of the following form may be specified on each of the four sides of the domain \mathcal{R}.

$$(1.6) \quad \alpha u_m + \beta \phi_m \nu u_m \cdot \mathbf{n} = \gamma \Phi_m^0$$

where $\alpha = \alpha(m,s)$, $\beta = \beta(m,s)$, $\gamma = \gamma(m,s)$, $1 \leq m \leq M$, $1 \leq s \leq 4$ are specified constants which depend on the species index m and the side index s. On the left hand side of \mathcal{R} (side 1), we have $h = h_1(J,m)$, $1 \leq J \leq \text{NTIZ}+1$, $1 \leq m \leq M$; and on side 3, we have $h = h_3(J,m)$, $1 \leq J \leq \text{NTIZ}+1$, $1 \leq m \leq M$. On sides 2 and 4, we have $h = h_2(I,m)$ and $h = h_4(I,m)$ respectively for $1 \leq I \leq \text{NTIR}+1$.
1 ≤ m ≤ M. Recall that NTIR(NTIZ) is the number of vertical (horizontal) interfaces in R; so that for each species m, these mass transfer coefficients \(h \) can depend on the materials which are present on the boundary of R. The function \(p_0^0 = p_0^0(t,m,s,x) \) is specified by the user as functions of time t, species m, side s, and the position x on side s (thus, if s = 1 or 3, x = z and if s = 2 or 4, x = r). In addition, the function \(p_0^0 \) can depend on \(\vec{v} \) and the derivative \(\nu \cdot |\vec{n}| \), each evaluated at x on side s. Thus the code can handle nonlinear boundary conditions as well as boundary conditions involving relationships between the species at the boundary. Here \(\vec{n} = \vec{n}(s) \) denotes the exterior unit normal for the boundary 3R of R. Thus if \(\vec{r} \) and \(\vec{z} \) are the unit coordinate vectors, we have \(\vec{n}(1) = -\vec{r}, \vec{n}(2) = -\vec{z}, \vec{n}(3) = \vec{r}, \) and \(\vec{n}(4) = \vec{z} \). In addition, we allow for the possibility that \(p_0^0 \) may depend on the sign of the normal component \(\nu \cdot \vec{m} \cdot \vec{n} \) of the convection velocity on the boundary, e.g. \(p_0^0 = 0 \) if \(\nu \cdot \vec{n} < 0 \).

Since \(\nu \cdot \vec{n} \) is available, boundary conditions of the form
\[
\alpha u_m - \beta (u_m \nu - \nu u_m) \cdot \vec{n} = \gamma h_0^0
\]
can be treated in this code by writing this condition in the form
\[
\alpha u_m + \beta \nu_m \nu_m \cdot \vec{n} = \gamma h_0^0 + \beta u_m \nu \cdot \vec{n}
\]
and supplying the r.h.s. in subroutine BRH0. The motivation for this type of condition is provided by the mass transport model where \((u_m \nu_m - \nu_m u_m) \cdot \vec{n} \) is the normal component of the total mass flux.

1.3 Interface Conditions

Let NTIR denote the number of vertical interfaces and NTIZ the number of horizontal interfaces in R as shown in Fig. 1. Note that an interface extends from one external boundary of R to the opposite external boundary. Let \(\Gamma \) denote any one of these interfaces and let \(|\vec{n}| \) denote the positive unit vector \(\vec{n} \) if \(\Gamma \) is vertical and the positive unit vector \(\vec{z} \) if \(\Gamma \) is horizontal. If \(F(t,r,z) \) is any given function, \(F|_{\Gamma} \) will denote the limiting value of F on \(\Gamma \).
from the left (below) if \(\Gamma \) is vertical (horizontal) while \(F_{\Gamma\Gamma} \) denotes the limiting value from the right (above) if \(\Gamma \) is vertical (horizontal).

This program allows for two possible types of interface conditions to be imposed on \(u_m \) at an interface \(\Gamma \).

A. **Continuous Interface Condition**

Before stating this interface condition, we impose the following restriction on the behavior of \(\nabla_m \) across an interface.

\[(H1.1) \quad \hat{\nabla}_m(t,r,z,\hat{u}) \text{ as a function of } (r,z) \text{ is continuous across an interface } \Gamma.\]

The continuous interface condition on \(\Gamma \) requires that the concentration and the normal component of the total flux be continuous across the interface \(\Gamma \), that is

\[(1.7) \quad u_m(t,r,z)|_{\Gamma^-} = u_m(t,r,z)|_{\Gamma^+},\]

\[(\hat{\nabla}_m u_m - \hat{\nabla}_m v_m) \cdot \hat{n} |_{\Gamma^-} = (\hat{\nabla}_m u_m - \hat{\nabla}_m v_m) \cdot \hat{n} |_{\Gamma^+}.\]

Since \(\hat{\nabla}_m \) is assumed to be continuous across \(\Gamma \), this last condition reduces to

\[(1.8) \quad \hat{\nabla}_m v_m \cdot \hat{n} |_{\Gamma^-} = \hat{\nabla}_m v_m \cdot \hat{n} |_{\Gamma^+}.\]

B. **Gap Interface Condition**

The gap interface condition is intended for use in problems of heat transfer between solids of different material properties. For this reason it is assumed in this case that \(\hat{\nabla}_m \equiv 0 \), and the conditions are of the following form.

\[(1.9) \quad \begin{align*}
 a) \quad & - \hat{\nabla}_m v_m \cdot \hat{n} |_{\Gamma^-} = h_g(u_m |_{\Gamma^-} - u_m |_{\Gamma^+}) \\
 b) \quad & \hat{\nabla}_m v_m \cdot \hat{n} |_{\Gamma^-} = \hat{\nabla}_m v_m \cdot \hat{n} |_{\Gamma^+}
\end{align*}\]

Note that if \(\Gamma \) is a vertical interface, then \(\hat{\nabla}_m v_m \cdot \hat{n} = \rho_m \frac{\partial u_m}{\partial r} \); while
\[\delta_m \nabla u_m \cdot \hat{n} = D^Z_m \frac{\partial u_m}{\partial z} \]

if \(\Gamma \) is a horizontal interface. The gap interface is intended primarily for problems in heat transfer when the number of species \(M \) is equal to one. Although the condition (1.9) can be used when \(M > 1 \), the program imposes the following restriction on gap interfaces.

\[(H1.2) \text{ If } \Gamma \text{ is a gap interface for one species then it must be a gap interface for all species.}\]

Thus the classification of interfaces into two types -- continuity and gap -- is independent of species.

The gap coefficients \(h^g \) can depend on the following parameters. First consider the set of all vertical gap interfaces and let this set be indexed by \(I, 1 < I < N_{\text{IGAP}} < N_{\text{TR}} \). The \(I \)-th vertical gap will intersect a set of \(N_{\text{ITZ}} \) horizontal interfaces. This horizontal set will subdivide the vertical gap into a set of \(N_{\text{ITZ}} + 1 \) subintervals. The vertical gap coefficients can depend on the following parameters.

\[(1.10) \quad h^V_g = h^V_g(m, I, J) \quad \text{where} \quad 1 < m < M, 1 < I < N_{\text{IGAP}}, \quad \text{and} \quad 1 < J < N_{\text{ITZ}} + 1.\]

In the same way, if \(N_{\text{HGAP}} \) denotes the number of horizontal gaps, then the horizontal gap coefficients can depend on the following parameters.

\[(1.11) \quad h^H_g = h^H_g(m, J, I) \quad \text{where} \quad 1 < m < M, 1 < J < N_{\text{HGAP}}, \quad \text{and} \quad 1 < I < N_{\text{TR}} + 1.\]

1.4 Initial Conditions

The system (1.5) - (1.9) will be complete when a set of initial conditions are specified. This program allows for two possibilities. First, an arbitrary initial distribution \(\{u^0_m(r,z): 1 < m < M\} \) can be specified by the user. The second possible approach is to start from a steady-state or equilibrium distribution \(\{\tilde{u}^0_m(r,z): 1 < m < M\} \). The program computes this steady-state distribution (prior to the start of the transient calculation) as the asymptotic solution (i.e., as the time \(t \) goes to infinity) corresponding to specified time-independent convection velocities \(\tilde{v}_m \), diffusion
coefficients \(\tilde{\rho}_m \), heat capacity coefficients \([\rho C_p]_m \), distributed sources \(f_m \), and external boundary source \(\rho_m^0 \). Since the program calculates the steady-state solution as an asymptotic solution in time of a system of first order ODE's, the program requires an initial estimate for the steady-state solution. The program allows for two possibilities. First, the user may provide an initial estimate for the steady-state distribution just as he would provide an initial distribution for a transient calculation. The second option is to let the program generate an initial estimate for the steady-state solution.

In summary, this program approximates the solution to the nonlinear parabolic system (1.5), (1.6), (1.8), and (1.9) over a two-dimensional rectangular domain in either Cartesian, cylindrical, or spherical (one-dimensional) geometry. The domain may be subdivided into subrectangles having different material properties with specified interface conditions. The user supplies the convection velocities \(\tilde{V}_m(t,r,z,\mu) \), the diffusion coefficient \(\tilde{D}_m(t,r,z,\mu,\overline{\nu}) \), the heat capacity coefficients \([\rho C_p]_m(t,r,z,\mu) \), the distributed sources \(f_m(t,r,z,\mu,\overline{\nu}) \), and the external boundary source \(\rho_m^0(t,m,s,x) \). First and second order constant reaction rates can be specified on input. Higher order and variable reaction rates are specified in the distributed sources. The program can perform either a transient calculation, or a steady-state calculation, or a steady-state calculation followed by a transient calculation. The program also has a restart capability which will be described in a later section.
2. APPROXIMATION PROCEDURE

This program approximates the solution to Eqs. (1.5) - (1.9) by means of a Galerkin type procedure based on the use of a tensor product basis of one-dimensional B-splines. The integrals which arise from the Galerkin procedure are evaluated by means of product Gauss-Legendre quadrature formulas.

2.1 Weak Form of the Equation

The Galerkin procedure used in this program starts from a weak form of Eqs. (1.5), (1.6), (1.8), and (1.9). In order to simplify the notation, we will drop the species index m in this discussion. For each species, Eq. (1.5) has the general form

$$
[pC_p] \frac{\partial u}{\partial t} = -\nabla \cdot (\bar{v} u) - (1-\theta)\bar{v} \cdot \nabla u + \nabla \cdot (\nabla u) + F(t,r,z,u,\bar{v} u),
$$

where $\rho C_p = \rho C_p(t,r,z,u)$, $\bar{v} = \bar{v}(t,r,z,u)$ and $\bar{v} = \bar{v}(t,r,z,u)$. Here we have grouped the reaction sources and the distributed source into the general term F. Recall that the rectangular domain R is the union of material subrectangles $\{R_s\}$ defined by a set of vertical and horizontal interfaces. Let $\omega = \omega(r,z)$ be any function belonging to the class $C^1(R_s)$ for each s and, for the moment, satisfying no other constraints. To obtain a weak form, we multiply Eq. (2.1) by ω and integrate the resulting equation over the domain R. If $\langle u,\omega \rangle = \int_R u \omega$, we obtain the expression

$$
\langle \rho C_p \frac{\partial u}{\partial t}, \omega \rangle = -(1-\theta)\langle \bar{v} \cdot \nabla u, \omega \rangle + \langle \nabla \cdot (\nabla u - \theta \bar{v} u), \omega \rangle + \langle F, \omega \rangle.
$$

To obtain the weak solution, we first apply Green's theorem to the divergence term over each subrectangle R_s. Before doing this we will introduce some notation for boundaries and interfaces. Let ∂R_1 denote that part of the external boundary ∂R for which $\beta \neq 0$ in the boundary condition (1.6), let ∂R_2 denote that part of the external boundary where no boundary condition is imposed, and let ∂R_0 denote that part where $\beta = 0$ in condition (1.6). Thus $\partial R = \partial R_0 \cup \partial R_1 \cup \partial R_2$, and each part ∂R_0, ∂R_1, and ∂R_2 may be different for different species. For the moment we set $\partial R = \partial R_1 \cup \partial R_2$. Boundary conditions on ∂R_0 are usually referred to as essential conditions. If ∂R_s denotes the
boundary of a material subrectangle R_s, then let r_s denote that part of ∂R_s which is an interface, that is r_s is not part of the external boundary ∂R.

Now $r_s = r^g_s \cup r^c_s$ where r^g_s is that part of r_s which is a gap interface and r^c_s is that part which is a continuity interface.

Consider the divergence term in Eq. (2.2) and apply Green's theorem over each subrectangle R_s.

\begin{align}
\langle \nabla \cdot (\partial u - \partial \tilde{u}), \omega \rangle &= \sum_{\bar{R}_s} \iint_{R_s} \omega \nabla \cdot (\partial u - \partial \tilde{u}) \\
&= \sum_{\bar{R}_s} \int_{r_s} \omega (\partial u - \partial \tilde{u}) \cdot \vec{n}_s + \int_{\partial R} \omega (\partial u - \partial \tilde{u}) \cdot \vec{n} + \int_{\partial R_0} \omega (\partial u - \partial \tilde{u}) \cdot \vec{n} \\
&\quad - \int_{\bar{R}} (\partial u - \partial \tilde{u}) \cdot \nabla \omega.
\end{align}

For each r_s, the integral over r_s appears twice in the above sum with the direction of integration reversed; therefore, terms of the following form will appear in the above sum.

\begin{align}
\int_{r_s} \omega^{-} (\partial u - \partial \tilde{u})^{-} |\vec{n}_s| - \omega^{+} (\partial u - \partial \tilde{u})^{+} |\vec{n}_s|.
\end{align}

Here $|\vec{n}_s|$ denotes the unit normal to the interface r_s oriented in the positive coordinate direction; thus $(\partial u - \partial \tilde{u}) \cdot |\vec{n}_s| = \partial^r \frac{3u}{3r} - \partial^r \tilde{u} r$ if r_s is a vertical interface and $(\partial u - \partial \tilde{u}) \cdot |\vec{n}_s| = \partial^z \frac{3u}{3z} - \partial^z \tilde{u} z$ if r_s is a horizontal interface. The symbol \int_{r_s} indicates that the integral is taken in the positive coordinate direction. As usual, ω^{-} and ω^{+} indicate limiting values on r_s taken from the left (below) and from the right (above) respectively if r_s is a vertical (horizontal) interface. Now $r_s = r^c_s \cup r^g_s$, so consider a continuous interface r^c_s. If $\theta = 1$, then condition (1.8) states that

\begin{align}
(\partial u - \partial \tilde{u})^{-} |\vec{n}_s| &= (\partial u - \partial \tilde{u})^{+} |\vec{n}_s|.
\end{align}

Thus in either case $\theta = 0$ or 1, we find that the integral in (2.4) has the following form on r^c_s.
Hence if we assume, as we shall, that \(\omega \) is continuous across each continuity interface \(r^C_s \), then these integrals over \(r^C_s \) will not contribute to the sum appearing in Eq. (2.3).

Next we consider a gap interface \(r^g_s \). At such an interface we have assumed that \(\hat{V} = 0 \) or at least that \(\hat{V} \cdot [\hat{n}_s] = 0 \); hence using conditions (1.9), we find that integral (2.4) on \(r^g_s \) has the following form.

\[
(2.6) \quad -\int_{r^g_s} (\omega^- - \omega^+) h^g (u^- - u^+) .
\]

Next, we consider the integral over \(aR \) appearing in Eq. (2.3). On \(aR_1 \), \(\beta \neq 0 \); thus we can use the boundary condition (1.6) to eliminate \(\hat{\nabla}u \).

From (1.6), we have

\[
(2.7) \quad \hat{\nabla}u \cdot \hat{n} = -\beta^{-1} h (\omega u - \gamma p^0),
\]

which gives

\[
(2.8) \quad \int_{aR} \omega (\hat{\nabla}u - \theta u \hat{V}) \cdot \hat{n} = \int_{aR_1} \omega [(-\theta) u \hat{V} \cdot \hat{n} - \beta^{-1} h (\omega u - \gamma p^0)]
\]

\[
+ \int_{aR_2} \omega [\hat{\nabla}u - \theta u \hat{V}] \cdot \hat{n}.
\]

Next we consider the integral over \(aR_0 \) appearing in Eq. (2.3). On \(aR_0 \) we have \(\beta = 0 \), so that \(u = \gamma p^0 / \alpha \) on \(aR_0 \). Since this form does not help in simplifying the integral appearing in Eq. (2.3), we will restrict the class of test functions from which \(\omega \) is selected by requiring that \(\omega \equiv 0 \) on \(aR_0 \). Then this integral will not contribute to Eq. (2.3). The essential condition \(u = \gamma p^0 / \alpha \) will then be applied in a weak form by requiring

\[
(2.9) \quad \int_{aR_0 \setminus aR_0} \omega u = \int_{aR_0} \frac{\gamma p^0}{\alpha} \omega .
\]
From (2.6) and (2.8), we find that Eq. (2.3) takes the form

\begin{equation}
\langle \psi \cdot (Dv_u - \delta v_u), \omega \rangle = -\sum_S \int_S \left((\omega^- - \omega^+) g(u^- - u^+) \right) \nonumber \\
+ \int_{\partial R_1} (\omega^- u \cdot \hat{n} - \beta^{-1} h(au - \gamma p_0)) + \int_{\partial R_2} \omega [\delta v_u - \theta v_u] \cdot \hat{n} \nonumber \\
- \int_R (\psi v_u - \delta v_u) \cdot \nu \omega . \nonumber
\end{equation}

Using this expression in Eq. (2.2), we find

(a) \(\langle [\partial_u] \frac{\partial u}{\partial t}, \omega \rangle = - (1-\epsilon) \langle \psi \cdot v_u, \omega \rangle - \sum_S \int_S \left((\omega^- - \omega^+) g(u^- - u^+) \right) \nonumber \\
- \epsilon \int_{\partial R_1} \omega u \cdot \hat{n} - \beta^{-1} \int_{\partial R_1} \omega (au - \gamma p_0) + \int_{\partial R_2} \omega [\delta v_u - \theta v_u] \cdot \hat{n} \nonumber \\
- \int_R (\psi v_u - \delta v_u) \cdot \nu \omega + \int_R F \omega , \nonumber
\end{equation}

(b) \[\int_{\partial R_0} \omega u = \frac{\chi}{\alpha} \int_{\partial R_0} \rho \omega , \]

(c) \[\int_R u(t=t_0) \omega = \int_R u^0 \omega , \]

(d) \[\int_{\partial R_0} \omega u(t=t_0) = \frac{\chi}{\alpha} \int_{\partial R_0} \omega \rho^0(t=t_0) . \]

In Eq. (2.11a), \(\omega \) is allowed to range over the set of all functions which are continuous together with their first derivatives in each material sub-rectangle \(R_s \), and which are continuous across each continuous interface, and which vanish on the essential boundary \(\partial R_0 \). In Eq. (2.11b), \(\omega \) is allowed to range over the set of functions \(\omega \) defined on \(\partial R_0 \) which are continuous together with their first derivatives in each material subrectangle on \(\partial R_0 \) and which are continuous across every continuous interface on \(\partial R_0 \). In Eq. (2.11c), \(\omega \)
ranges over the same set of functions as in Eq. (2.11a), and in Eq. (2.11d), \(\omega \) ranges over the same set as in Eq. (2.11b). The system (2.11) represents the weak form to which the Galerkin approximation is applied.

2.2 Approximating Subspace

A Galerkin procedure seeks a solution in a subspace spanned by a given basis set. The basis sets used in this program are tensor product basis generated from one-dimensional B-splines. The B-splines are calculated using a subroutine package written by de Boor [2]. For completeness, we will describe B-splines in one dimension. This presentation is based on the work of de Boor in [2,3].

2.2.1 B-Spline Basis

Let an interval \([a,b]\) be subdivided by a mesh

\[
p: a = X_1 < X_2 < ... < X_r < X_{r+1} = b.
\]

The points \(X_i\) will be referred to as breakpoints. In this subsection we develop a basis for spaces of functions which are piecewise polynomials over this mesh \(\pi\). Let

\[
P_{k,\pi} = \{ f(x): \text{in each interval } [X_i, X_{i+1}], 1 \leq i \leq r, f(x) \text{ is equal to a polynomial of order } k \text{ (degree at most } k-1) \}.
\]

Since there are \(r\) subintervals, it is clear that the dimension of \(P_{k,\pi}\) is \(kr\). Observe that any function in \(P_{k,\pi}\) may be discontinuous at the interior breakpoints \(\{x_i: 2 \leq i \leq r\}\). We now consider subspaces of \(P_{k,\pi}\) generated by imposing smoothness constraints on elements in \(P_{k,\pi}\) at these interior breakpoints. Let \(v = (v_2, ..., v_k)\) be a set of specified integers with \(0 \leq v_i \leq k-1\), and let \(S_{k,\pi,v}\) denote the space of function \(f(x)\) in \(P_{k,\pi}\) for which \(f(j)(X_i^-) = f(j)(X_i^+), 0 \leq j \leq v_i-1, \text{ for } 2 \leq i \leq r\). At each breakpoint \(X_i\) we have imposed a set of \(v_i\) constraints on a function in \(P_{k,\pi}\). Thus the dimension of the subspace \(S_{k,\pi,v}\) will be

\[
k_r = \sum_{i=2}^{r} v_i = k + \sum_{i=2}^{r} (k-v_i).
\]
We now consider the construction of a basis for $S_{k,v}$ such that each element of the basis has local support; i.e., is non-zero on only a few subintervals, and furthermore each element is non-negative. The space $S_{k,v}$ is a space of polynomial splines and a basis of the above type is called a B-spline basis. To generate such a basis, we will consider divided differences of order k of the truncated power functions $g_k(\sigma;s) = (\sigma-s)^{k-1}$. To this end, let $\{\xi_i\}$ be any non-decreasing sequence of points (they will be referred to as knots) subject to the condition that $\xi_i \leq \xi_{i+k}$ for all i. Let $M_i(s)$ denote the k-th divided difference of $g_k(\sigma;s)$ with respect to the knots ξ_i, \ldots, ξ_{i+k}, that is $M_i(s) = g_k[\xi_i, \ldots, \xi_{i+k};s]$. Assuming for the moment that the knots ξ_i, \ldots, ξ_{i+k} are distinct, then the divided difference $M_i(s)$ would have the representation

$$M_i(s) = \sum_{j=0}^{k} \frac{g_k(\xi_{i+j};s)}{\prod_{m=0}^{k} (\xi_{i+j} - \xi_{i+m})/m!^j}.$$

If two of the knots ξ_i, \ldots, ξ_{i+k} coincide, then the above representation will involve first derivatives of $g_k(\sigma;s)$ with respect to σ; if three knots coincide, then derivation of order up to two will appear, and so on. In general, if ξ_1, \ldots, ξ_J are the distinct points among the knots $\{\xi_i\}$ and if each ξ_j appears d_j times, then $M_i(s)$ will be a linear combination of the functions $(\xi_j-s)^{k-m}$, $1 \leq m \leq d_j$, $1 \leq j \leq J$. Note that if v_j is the smoothness index of $M_i(s)$ at ξ_j (i.e., $M_i(s)$ has continuous derivatives at ξ_j through order v_j-1), then $k = d_j + v_j$. It is easily seen that each $M_i(s)$ is a piecewise polynomial of order k with breakpoints ξ_1, \ldots, ξ_J at which

$$M_i^{(m)}(\xi_j^+) = M_i^{(m)}(\xi_j^-) \quad \text{for} \quad 0 \leq m \leq k-\delta_j = v_j-1, \ 1 \leq j \leq J,$$

$M_i(s)$ has its support in $[\xi_i, \xi_{i+k}]$, and each $M_i(s)$ is non-negative.

Now consider the subspace $S_{k,v}$. Define the set of knots $\{\xi_i; \ 1 \leq i \leq n+k\}$ where $n = k + \sum_{i=2}^{J} d_i$, $d_i = k - v_i$, and
\[
\begin{align*}
\xi_1 & = \ldots \ldots \ldots \ldots \ldots \ldots \xi_k = x_1 \\
\xi_{k+1} & = \ldots \ldots \ldots \ldots \ldots \ldots \xi_{k+d_2} = x_2 \\
& \ldots \\
\xi_{k+d_2} + \ldots + d_j + 1 & = \ldots \ldots \xi_{k+d_2} + \ldots + d_j = x_j, j \leq \ell, \\
\text{and} \\
\xi_{n+1} & = \ldots \ldots \ldots \ldots \ldots \ldots \xi_{n+k} = x_{\ell+1}.
\end{align*}
\]

That is, the first and last breakpoints have multiplicity \(k\) while the breakpoint \(x_j\) has multiplicity \(d_j\); for \(2 \leq j \leq \ell\). For each \(i, 1 \leq i \leq n\), we can form the divided difference \(M_i(x)\), and the B-spline basis for \(S_k, \pi_x\) is taken to be the so-called normalized B-splines \(N_{i,k}(x): 1 \leq i \leq n\) where
\[
N_{i,k}(x) = (\xi_{i+k} - \xi_i)M_i(x) = (\xi_{i+k} - \xi_i)g_{k}[\xi_i, \ldots, \xi_{i+k}; x].
\]

Explicit representations of the normalized B-splines are generally rather involved due to possible multiplicity of knots; however the following properties are useful in applications of these functions.

(1) \(\sum_{i=1}^{n} N_{i,k}(x) = 1 \text{ for } a \leq x \leq b\),

(ii) \(N_{1,k}(x_1) = N_{n,k}(x_{\ell+1}) = 1; N_{1,k}(x_1) = 0 \text{ for } i > 1,\)
\[
N_{i,k}(x_{\ell+1}) = 0 \text{ for } i < n,
\]

(iii) \(N_{1,k}^i(x_1) + N_{2,k}^i(x_1) = 0, N_{1,k}^i(x_1) = 0 \text{ for } i > 2,\)
\[
(2.12) \quad N_{n-1,k}^i(x_{\ell+1}) + N_{n,k}^i(x_{\ell+1}) = 0, N_{i,k}(x_{\ell+1}) = 0 \text{ for } i < n-1,
\]
\[
N_{1,k}^i(x_1) = -\frac{(k-1)}{x_{\ell+1}^2 - x_1^2}N_{n,k}^i(x_{\ell+1}) = \frac{(k-1)}{x_{\ell+1}^2 - x_1^2},
\]

(iv) \(N_{i,k}(x) = 0 \text{ if } x \notin [\xi_1, \xi_{i+k}]\),

(v) \(N_{i,k}(x) > 0 \text{ for } a \leq x \leq b\).
2.2.2 Tensor Product Basis

We now consider the two-dimensional domain \(\mathbb{R} = [\mathbb{R}, \mathbb{R}] \times [\mathbb{Z}, \mathbb{Z}] \). Recall that this domain may be subdivided by a set of NTIR vertical interfaces and a set of NTIZ horizontal interfaces. In addition, we will allow for an additional set of NMR vertical mesh lines and an additional set of NMZ horizontal mesh lines. The set of interfaces and the set of additional mesh lines are interior to \(\mathbb{R} \); so that the interval \([\mathbb{R}, \mathbb{R}]\) is subdivided by a set of NTIR+NMR interior (not including \(\mathbb{R} \) or \(\mathbb{R} \)) points. Thus we have a partition

\[
\pi_r: \mathbb{R} = r_1 < r_2 < \ldots < r_{\ell_r} < r_{\ell_r+1} = \mathbb{R}
\]

of the interval \([\mathbb{R}, \mathbb{R}]\) with \(\ell_r = 1 + \text{NTIR} + \text{NMR} \). In the same way, we have a partition

\[
\pi_z: \mathbb{Z} = z_1 < z_2 < \ldots < z_{\ell_z} < z_{\ell_z+1} = \mathbb{Z}
\]

of the interval \([\mathbb{Z}, \mathbb{Z}]\) with \(\ell_z = 1 + \text{NTIZ} + \text{NMZ} \). Let \(k_r, k_z \) be integers greater than or equal to 2 specifying the order of the B-splines basis in the \(r \) variable and in the \(z \) variable, respectively. Consider the \(r \) variable first; we must specify a smoothness index \(\nu^r = (\nu^r_2, \ldots, \nu^r_{\ell_r}) \). These indices are subject to the following restrictions:

(i) \(0 \leq \nu^r_\sigma \leq k_r - 1 \),

(ii) if \(r^o \) corresponds to a vertical gap interface, then as we have seen, the solution can be discontinuous across this interface; hence we must have \(\nu^r_\sigma = 0 \),

(iii) if \(r^o \) corresponds to a continuity interface, then as we have seen, the solution is continuous across this interface but the first derivative may be discontinuous across this interface; hence we must have \(\nu^r_\sigma = 1 \).

A similar set of restrictions is placed on the horizontal smoothness indices \(\nu^z = (\nu^z_2, \ldots, \nu^z_{\ell_z}) \). Let \(\{ A_i(r): 1 \leq i \leq N_r \} \) be the set of normalized B-splines
relative to k_r, π_r, and v^r; and let \(\{ B_j(z) : 1 \leq j \leq N_z \} \) be the set of normalized B-splines relative to k_z, π_z, and v^z. Here

\[
N_r = k_r + \sum_{o=2}^{k_r} (k_r - v^r_o) \quad \text{and} \quad N_z = k_z + \sum_{r=2}^{k_z} (k_z - v^z_r) .
\]

Let the four sides of the domain R be numbered consecutively from 1 to 4 in the counterclockwise direction starting on the left side. Set

\[
s_i = \begin{cases}
1 & \text{if side } i \text{ has an essential boundary condition (} \beta = 0 \text{ in Eq. 1.6)} \\
0 & \text{if side } i \text{ has a non-essential boundary condition (} \beta \neq 0 \text{ in Eq. 1.6)}
\end{cases}
\]

\[
\hat{n}_r = 1 + s_1 = \begin{cases}
2 & \text{if side 1 has an essential condition}, \\
1 & \text{otherwise}.
\end{cases}
\]

\[
\hat{N}_r = N_r - s_3 = \begin{cases}
N_r - 1 & \text{if side 3 has an essential condition}, \\
N_r & \text{otherwise}.
\end{cases}
\]

\[
\hat{n}_z = 1 + s_2, \\
\hat{N}_z = N_z - s_4.
\]

For each species m, we seek an approximate solution of the following form

\[
u_m(r,z,t) = \sum_{i' = 1}^{N_{r'}} \sum_{j' = 1}^{N_{z'}} U_{i',j'}^m(t) A_{i'}(r) B_{j'}(z) .
\]

\[
\begin{aligned}
\hat{N}_z \sum_{j' = n_z}^{N_z} U_{1,j'}^m(t) A_1(r) B_j(z) + s_2 \sum_{i' = 1}^{N_{r'}} U_{i',1}^m(t) A_{i'}(r) B_1(z) \\
+ s_3 \sum_{j' = n_z}^{N_z} U_{N_{r},j'}^m(t) A_{N_r}(r) B_{j'}(z) + s_4 \sum_{i' = 1}^{N_{r'}} U_{i',N_z}^m(t) A_{i'}(r) B_{N_z}(z) \\
+ \sum_{i' = n_r}^{\hat{N}_r} \sum_{j' = n_z}^{\hat{N}_z} U_{i',j'}^m(t) A_{i'}(r) B_{j'}(z) .
\end{aligned}
\]

In the second expression, we have grouped the basis functions by identifying
the set which is associated with the essential boundary \(\partial R_0 \). That is, the set

\[(2.14) \quad T_0 = \{ \text{s}_1 A_i (r) B_{j'} (z), \text{s}_2 A_i (r) B_{j} (z), \text{s}_3 A_{N_r} (r) B_{j'} (z), \text{s}_4 A_i (r) B_{N_z} (z): 1 \leq i' \leq N_r, \hat{n}_r \leq j' \leq \hat{n}_z \} \]

when restricted to \(\partial R_0 \) provides a basis for functions defined on \(\partial R_0 \). Moreover, the set

\[(2.15) \quad T = \{ A_i (r) B_{j} (z): \hat{n}_r \leq i' \leq N_r, \hat{n}_z \leq j' \leq \hat{n}_z \} \]

will provide a basis for functions defined on \(R \) which vanish on \(\partial R_0 \).

2.3 Galerkin Approximation

Given the basis sets \(T \) and \(T_0 \) defined in the last subsection, the Galerkin approximation applied to the system (2.11) proceeds as follows. For each species \(m \), we seek an approximation to the concentration \(u_m (t,r,z) \) of the form given in Eq. (2.13). Each species \(m \) has a weak equation of the form (2.11); thus for each species, we use the expansion (2.13) in equations of the form (2.11a) and (2.11b). Then in Eq. (2.11a), we let the functions \(\omega \) range over the set of basis functions \(T \) defined in (2.15). From the definition of these B-splines, it is clear that every member of \(T \) satisfies the required continuity conditions and each member of \(T \) vanishes on \(\partial R_0 \). In Eq. (2.11b), we let the functions \(\omega \) range over the set \(T_0 \) defined in 2.14. Again we see from the definition of these B-splines, that each member of \(T_0 \) when restricted to \(\partial R_0 \) satisfies the required continuity properties. For the approximation of the initial conditions we proceed in the same way in the sense that we seek an approximation for the initial conditions of the form given in Eq. (2.13). We then use this expression in (2.11c) and (2.11d) with \(\omega \) ranging over the set \(T \) in (2.11c) and \(\omega \) ranging over the set \(T_0 \) in (2.11d). Note that with this procedure, the approximation to the initial condition is required to satisfy the essential boundary conditions (in weak form) at the initial time \(t = t_0 \).

Next we consider the form of the equations generated by this procedure. First we consider the left hand side of Eq. (2.11a). For each species \(m \), the
left hand side of Eq. (2.11a) has the following form.

\[
\frac{\partial}{\partial t} (\rho C_p)_m(t, r, z, u) \frac{\partial u}{\partial t}, A_i B_j
\]

\[
= \frac{N_r}{\sum_{i=1}^{N_r}} \sum_{j=1}^{N_z} \int_{R} (\rho C_p)_m(t, r, z, u) A_i(r) B_j(z) A_i(r) \partial_j(z) du_r du_z
\]

for \(\hat{n}_r \leq i \leq \hat{N}_r, \hat{n}_z \leq j \leq \hat{N}_z \).

The measures are defined by \(du_z = dz \) and

\[
du_r = \begin{cases}
 dr, & \text{Cartesian geometry,} \\
 2\pi r dr, & \text{cylindrical geometry,} \\
 4\pi r^2 dr, & \text{spherical geometry (one dimensional only).}
\end{cases}
\]

For each species \(m \), the right hand side of Eq. (2.16) has the form \(\tilde{A}_m(t, U)U^m \) where \(\tilde{A}_m(t, U) \) is a rectangular matrix having \((\hat{N}_r - \hat{n}_r + 1)(\hat{N}_z - \hat{n}_z + 1) \) rows and \(N_r N_z \) columns with

\[
U^m = U^m(t) = \{U_{i', j'}^m(t): 1 \leq i' \leq N_r, 1 \leq j' \leq N_z \} \text{ with } U = \{U^m: 1 \leq m \leq M\}.
\]

Here \(\frac{d}{dt} U_{i', j'}^m(t) \), and the notation \(\tilde{A}_m(t, U) \) indicates that the elements of \(\tilde{A}_m \) may depend on \(t \) and \(U \) through the presence of the heat capacity coefficient \([\rho C_p]_m(t, r, z, u) \).

Next we consider the right hand side of Eq. (2.11a). For each species, the right hand side is the sum of several terms. The form of each of these terms will be displayed.

2.3.1 Non-Conservative Convection Terms

Recall that \(\theta \) can have either one of two values in Eq. (1.5). When \(\theta = 0 \) we have Eq. (1.5) in substantive derivative (non-conservative) form.

In this case, the following convection term is present on the right hand side of Eq. (2.11a).
Recall that when \(\theta = 1 \), Eq. (1.5) is in conservative form so that the divergence term will include both diffusion and convection terms when \(\theta = 1 \).

From the right hand side of Eq. (2.11a), we have

\[
\begin{align*}
\nabla & \cdot (\mathbf{v}_m - \mathbf{u}_m) = \\
& = - \sum_{i=1}^{N_r} \sum_{j=1}^{N_z} u_{i,j}^m \int_{R} (A_i(r)B_j(z)\mathbf{v}_m \cdot \nabla(A_i(r)B_j(z))) \, d\mu_r \, d\mu_z,
\end{align*}
\]

where the explicit form of the integrand is

\[
(2.19) \quad (\mathbf{v}_m^r A_i^r B_j^r - \partial A_i^r B_j^r)A_i^r B_j^r + (\mathbf{v}_m^z A_i^z B_j^z - \partial A_i^z B_j^z)A_i^z B_j^z.
\]

Here, \(A_i^r = \frac{d}{dr} A_i^r(r) \), \(B_j^z = \frac{d}{dz} B_j^z(z) \); and, of course, \(\mathbf{v}_m = \mathbf{v}_m^r(t,r,z,u) \).

2.3.3 Non-Essential Boundary Terms

Recall that \(\partial R_1 \) is the union of the sides where \(\beta \neq 0 \); thus the integral in (2.11a) over \(\partial R_1 \) is the sum of integrals over the sides where \(\beta \neq 0 \).

If \(\beta \neq 0 \) on side 1, then we have a contribution of the form
Here we have used the fact that on side 1, we have \(\hat{V}_m \cdot \hat{n} = -V_m^r \). Note also that the transfer coefficient \(h_1 \) may depend on the materials which are present on side 1, so that \(h_1 \) is a piecewise constant function on side 1. The factor \(S^\delta(R) \) is defined by

\[
S^\delta(R) = \begin{cases}
1 & \text{Cartesian geometry} \\
2\pi R & \text{cylindrical geometry} \\
4\pi R^2 & \text{spherical geometry (one dimension only)}.
\end{cases}
\]

If \(\beta \neq 0 \) on side 3, then we will have a contribution from this side whose form is very similar to Eq. (2.20). In fact, we just replace \(U_{1j}^m \), by \(U_{1j}^m \), subscript 1 by 3, \(R \) by \(\bar{R} \) and \(-V_m^r \) by \(V_m^r \) in the above expression.

If \(\beta \neq 0 \) on side 2, we have a contribution of the following form.

\[
(2.21) \quad \int_{S_2} A_i \left[(-\alpha)V_m^z u_m - \beta_2^{-1}(\alpha_2 h_2 u_m - \gamma_2 h_2^0) \right] du_r
\]

\[
= \sum_{i'=1}^{N_2} U_{i',1}^m \left[\int_{\bar{R}} \left[(-\alpha)V_m^z - \beta_2^{-1}\alpha h_2 \right] A_{i',i}(r) A_i(r) du_r \right]
\]

\[
+ \beta_2^{-1} \gamma_2 \int_{\bar{R}} h_2 A_i(r) \rho_0(t,r,z) du_r \quad \text{for } \hat{n}_r \leq i \leq \hat{n}_r.
\]

Again, if \(\beta \neq 0 \) on side 4 then we have a contribution from this side which has the same form as Eq. (2.21) with \(U_{i',1}^m \) replaced by \(U_{i',1}^m \), subscript 2 replaced by 4, \(z \) by \(\bar{z} \), and \(-V_m^z \) by \(V_m^z \). In Eqs. (2.20) and (2.21), the convection velocity \(\hat{V}_m \) is evaluated on the appropriate boundary. Thus, for example, on side 1 in Eq. (2.20), \(V_m^r = V_m^r(t,R,z,\hat{u}(t,R,z)) \).

The integral over \(\partial R_2 \) in Eq. (2.11a) is treated in a manner similar to the above integrals.
2.3.4 Gap Interface Term

The gap interface term has the following form.

\[
(2.22) \quad \sum_{s} \left\{ \sum_{\sigma \in \mathcal{G}} \left[(A_{i}B_{j})^{+} - (A_{i}B_{j})^{-} \right] h_{s}^{g} \sum_{i=1}^{N} \sum_{j=1}^{N_{Z}} \left[(A_{i}B_{j})^{+} - (A_{i}B_{j})^{-} \right] \right\} \\
= -\sum_{s} \sum_{i=1}^{N} \sum_{j=1}^{N_{Z}} \left\{ \sum_{\sigma \in \mathcal{G}} \left[(A_{i}B_{j})^{+} - (A_{i}B_{j})^{-} \right] h_{s}^{g} \left[(A_{i}B_{j})^{+} - (A_{i}B_{j})^{-} \right] \right\} \\
\text{for } \hat{n}_{r} \leq i \leq \hat{n}_{r}, \hat{n}_{z} \leq j \leq \hat{n}_{z}.
\]

We consider vertical and horizontal gaps separately. Let \(\{ \sigma^{q}(p) : 1 \leq p \leq NTIR \} \) denote the set of vertical gap indices, that is, \(\sigma^{q}(p) \) is a vertical gap interface (when \(y_{r}^{\sigma} = 0 \)), and let \(\{ r^{g}(q) : 1 \leq q \leq NTIZ \} \) denote the set of horizontal gap indices. Recall that each breakpoint \(r_{\sigma} \) has multiplicity \(d_{\sigma} = k_{\sigma} - v_{\sigma} \) and a set of knots \(\{ \xi_{i}^{\sigma} : IL(\sigma) - d_{\sigma} + 1 \leq i \leq IL(\sigma) \} \) associated with \(r_{\sigma} \) where \(IL(\sigma) \) is the index of the last knot associated with \(r_{\sigma} \). For example, in Fig. 2 we show a set of 5 breakpoints (\(k = 4 \)) with the knots distributed on the breakpoints as indicated by the symbol \(x \) above the breakpoints. In this example, \(k = 4 \) so that the breakpoint \(r_{3} \) could be a gap interface. For this example we have:

\[
\begin{align*}
\xi_{1} &= \xi_{2} = \xi_{3} = \xi_{4} = r_{1}, \quad IL(1) = 4, \quad d_{1} = 4, \quad v_{1} = 0, \\
\xi_{5} &= \xi_{6} = r_{2}, \quad IL(2) = 6, \quad d_{2} = 2, \quad v_{2} = 2, \\
\xi_{7} &= \xi_{8} = \xi_{9} = \xi_{10} = r_{3}, \quad IL(3) = 10, \quad d_{3} = 4, \quad v_{3} = 0, \\
\xi_{11} &= \xi_{12} = r_{4}, \quad IL(4) = 12, \quad d_{4} = 2, \quad v_{4} = 2, \quad N = 12, \\
\xi_{13} &= \ldots = \xi_{16} = r_{5}, \quad d_{5} = 4, \quad v_{5} = 0.
\end{align*}
\]

![Figure 2](image.png)

Sample breakpoint and knot distribution
For each vertical gap interface \(r^{g(p)} \), let \(I^{g(p)} \) denote the index of the last knot associated with the breakpoint \(r^{g(p)} \), i.e., set \(I^{g(p)} = IL(g^{(p)} - 1) \). In the same way, for each horizontal gap interface \(z^{g(q)} \), set \(J^{g(q)} = JL(g^{(q)} - 1) \).

Consider a vertical gap with index \(g^{(p)} \), then at this gap

\[
(A_i B_j)^{-} - (A_i B_j)^{+} = \left[A_i (r_{g^{(p)}}^{-}) - A_i (r_{g^{(p)}}^{+}) \right] B_j(z) = 0
\]

unless \(i = I^{g(p)} \) or \(i = I^{g(p)} + 1 \), in which case

\[
A_i (r_{g^{(p)}}^{-}) - A_i (r_{g^{(p)}}^{+}) = \begin{cases} 1 & \text{if } i = I^{g(p)}, \\ -1 & \text{if } i = I^{g(p)} + 1. \end{cases}
\]

Consider the contribution to Eq. (2.11a) from the vertical gaps. With \(i_0 = I^{g(p)} \), we have

\[
(2.23a) \quad \sum_{p=1}^{NTIR} \sum_{r=1}^{N_r} \sum_{i=1}^{N_i} \sum_{j=1}^{N_j} \sum_{i,j} \int_{Z}^{Z} \left[A_i (r_{g^{(p)}}^{-}) - A_i (r_{g^{(p)}}^{+}) \right] B_j(z) h_p^{Vg}
\]

\[
\cdot \left[A_i^{+} (r_{g^{(p)}}^{-}) - A_i^{+} (r_{g^{(p)}}^{+}) \right] B_j^{+}(z) S^S(g^{(p)}) dz
\]

\[
= \begin{cases} \sum_{p=1}^{NTIR} \sum_{j=1}^{N_j} \left(u_{i_0}^{m} d_{i_0}^{+} - u_{i_0}^{m} d_{i_0}^{-} \right) S^S(g^{(p)}) \int_{Z}^{Z} h_p^{Vg} B_j^{+} B_j, dz & \text{if } i = i_0, \\
\sum_{p=1}^{NTIR} \sum_{j=1}^{N_j} \left(-u_{i_0}^{m} d_{i_0}^{+} + u_{i_0}^{m} d_{i_0}^{-} \right) S^S(g^{(p)}) \int_{Z}^{Z} h_p^{Vg} B_j^{+} B_j, dz & \text{if } i = i_0 + 1 \end{cases}
\]

for \(\hat{n}_z \leq j \leq \hat{N}_z \).

In the same way, we find that horizontal gaps will contribute terms of the following form.
\begin{align*}
\sum_{q=1}^{N_T} \sum_{i'=1}^{N_r} (U_i^m, j_0 - U_{i'}, j_0+1) \int_{R} h_q A_i A_j, du_r & \quad \text{if } j = j_0 \\
\sum_{q=1}^{N_T} \sum_{i'=1}^{N_r} (-U_i^m, j_0 + U_{i'}, j_0+1) \int_{R} h_q A_i A_j, du_r & \quad \text{if } j = j_0+1 \\
\text{for } \hat{n}_r < i \leq \hat{n}_r .
\end{align*}

2.3.5 Distributed Source Term

Recall from Eq. (1.5) that

\begin{equation}
F_m(t, r, z, \hat{u}, \hat{v}) = \sum_{m'=1}^{M} \sum_{m''=1}^{M} C_{mm'm''} u_{m'}, + \sum_{m'=1}^{M} \sum_{m''=1}^{M} C_{mm'm''} u_{m''} + f_m(t, r, z, \hat{u}, \hat{v})
\end{equation}

where

\begin{align*}
f_m(t, r, z, \hat{u}, \hat{v}) &= f_m(t, r, z, u_1(t, r, z), \ldots, u_m(t, r, z), \\
&= \frac{3u_1}{3r}(t, r, z), \frac{3u_1}{3z}(t, r, z), \ldots, \frac{3u_m}{3r}(t, r, z), \frac{3u_m}{3z}(t, r, z) .
\end{align*}

Thus

\begin{equation}
\langle F_m, A_j B_j \rangle = \int_{R} F_m(t, r, z, \hat{u}, \hat{v}) A_i B_j du_r dz \quad \text{for } \hat{n}_r < i \leq \hat{n}_r, \hat{n}_z < j \leq \hat{n}_z
\end{equation}

We have now accounted for each term which contributes to the right hand side of Eq. (2.11a). For each species m, the right hand side of Eq. (2.11a) has a total of \((\hat{n}_r - \hat{n}_r + 1)(\hat{n}_z - \hat{n}_z + 1)\) components. If we denote by \(\hat{\alpha}^m\) the vector with these components, then Eq. (2.11a) can be written as a system of \((\hat{n}_r - \hat{n}_r + 1)(\hat{n}_z - \hat{n}_z + 1)\) differential equations

\begin{equation}
\widetilde{\alpha}_m(U) \dot{U}^m = \hat{\alpha}^m
\end{equation}

for the \(N_r N_z\) functions \(U^m = \{U_i^m, j, (t) : 1 \leq i' \leq N_r, 1 \leq j' \leq N_z\}\).

2.3.6 Essential Boundary Condition Terms

This system is augmented by the weak form of the essential boundary
conditions (2.11b) which generates an additional system of algebraic equations as \(\omega \) ranges over the set \(T_0 \). Thus if \(s_1 = 1 \), then the set
\[\{ A_1(r)B_j(z) : \hat{n}_z \leq j \leq \hat{N}_z \} \]

is part of \(T_0 \) and Eq. (2.11b) will provide the following equations.

\[
\sum_{j=1}^{N_z} \int_{Z} B_j \cdot B_j dz = \frac{\gamma_1}{\omega_1} \int_{Z} B_j \rho_0(t, R, z) dz
\]

for \(\hat{n}_z \leq j \leq \hat{N}_z \).

If \(s_2 = 1 \) then the set \(\{ A_1B_j : 1 \leq i \leq N_r \} \) is part of \(T_0 \); so that Eq. (2.11b) will provide the following equations.

\[
\sum_{i=1}^{N_r} \int_{R} A_i, A_i d\nu_r = \frac{\gamma_2}{\alpha_2} \int_{R} A_i \rho_0(t, r, z) d\nu_r \quad \text{for} \quad 1 \leq i \leq N_r.
\]

If \(s_3 = 1 \), we obtain the set

\[
\sum_{j=1}^{N_z} \int_{Z} B_j \cdot B_j dz = \frac{\gamma_3}{\alpha_3} \int_{Z} \rho_0(t, R, z) B_j dz
\]

for \(\hat{n}_z \leq j \leq \hat{N}_z \).

If \(s_4 = 1 \), we obtain the set

\[
\sum_{i=1}^{N_r} \int_{R} A_i, A_i d\nu_r = \frac{\gamma_4}{\alpha_4} \int_{R} A_i \rho_0(t, r, z) d\nu_r \quad \text{for} \quad 1 \leq i \leq N_r.
\]

Equations 2.27 provide an additional system of \((s_1+s_3)(N_z-\hat{n}_z+N)+s_2+s_4\) \(N_r \) algebraic equations which when considered together with the system of differential equations in (2.26) provides us with a mixed system of algebraic and differential equations whose total number is \(N_r N_z \).

The algebraic equations (2.27) can be avoided if in the essential boundary condition \(u = \gamma_0 \rho_0 \), we take the partial derivative with respect to time of both sides of this equation. We then have

\[
\dot{u} = \gamma_0 \dot{\rho}_0.
\]
and the weak form

\[
(2.28) \quad \oint_{\partial\Omega} \mathbf{u} \cdot \mathbf{n} = \int_{\Omega} \sum_{\alpha} \rho^0 \mathbf{\phi} \cdot \mathbf{n}.
\]

From this expression we then obtain a system of differential equations which have the same form as the system (2.27) with \(U_{i,j}^m \) replaced by \(\hat{U}_{i,j}^m \), and \(\rho^0 \) replaced by \(\hat{\rho}^0 = \partial \rho^0 / \partial t \). When this differential system is combined with the system (2.26) we obtain a system of \(N_r N_z \) differential equations in \(N_r N_z \) unknown functions for each species. This system can be written in the form

\[
(2.29) \quad A_m(U)\mathbf{u}^m = G^m, \quad m=1,\ldots,M
\]

where \(A_m(U) \) is now a square matrix.

The mixed differential and algebraic system will be called the mixed or algebraic boundary condition version. The differential system \((2.29) \) will be called the differential boundary condition version. Both versions have been implemented in the same program, and either can be selected on input.

2.3.7 Initial Conditions

The initial conditions are generated from the weak form given by Eqs. (2.11c,d) as follows. Given an initial distribution \(u_0^0(r,z) \), we seek the projection of this function into the space spanned by the sets \(T \) and \(T_0 \). That is, we seek

\[
(2.30) \quad \hat{u}_m^0(r,z) = \sum_{i' \leq 1 \leq N_r} \sum_{j' \leq 1 \leq N_z} \hat{U}_{i',j'}^m, \quad A_{i'}, B_{j'},
\]

and determine the coefficients \(\hat{U}_{i',j'}^m \) by the following equations.

\[
(2.31) \quad <\hat{u}_0^0, A_i B_j> = \sum_{i' \leq 1 \leq N_r} \sum_{j' \leq 1 \leq N_z} \hat{U}_{i',j'}^m, <A_{i'}, B_{j'}, A_i B_j> = <u_0^0, A_i B_j>
\]

for \(\hat{n}_r \leq i \leq \hat{n}_r, \hat{n}_z \leq j \leq \hat{n}_z \)

and if \(s_1 = 1 \) (side 1 is essential, \(s = 0 \)).
\begin{align}
(2.32) \quad \sum_{j'=1}^{N_z} \hat{U}_{ij}^m, S^\delta (R) \int R B_j B_j', dz &= S^\delta (R) \int R \frac{\gamma_1}{\alpha_1} B_j \rho^0 (t_0, R, z) dz \\
& \text{for } \hat{n}_z \leq j \leq \hat{n}_z,
\end{align}

if \(s_2 = 1 \) (\(\beta = 0 \) on side 2)

\begin{align}
(2.33) \quad \sum_{i' = 1}^{N_r} \hat{U}_{i1}^{\mu}, A_i A_1, du_r &= \int R \frac{\gamma_2}{\alpha_2} A_i \rho^0 (t_0, r, z) du_r \quad \text{for } 1 \leq i \leq N_r,
\end{align}

with similar expressions if \(s_3 = 1 \) and if \(s_4 = 1 \). Note that in determining \(\{ \hat{U}_{ij}^m \} \) we have imposed the initial values of the essential boundary conditions (i.e. \(\rho^0 (t_0) \) on \(\partial R_0 \)) even though the initial distribution \(u^0 \) may or may not satisfy these conditions. Using \(\rho^0 (t_0) \) on \(\partial R_0 \) means that we have selected one of many possible projections of \(u^0 \) into the space spanned by the sets \(T \) and \(T_0 \).

2.4 Evaluation of Integrals

In the case of algebraic constraints on the essential boundaries, the Galerkin procedure leads to a mixed system of ordinary differential equations and algebraic equations. In the case of differential constraints, the Galerkin procedure leads to a system of ordinary differential equations of the form given in Eq. (2.29). In either case, a variety of integrals have to be evaluated. The general procedure for the evaluation is the same for all of these integrals and can be illustrated by considering the integrals appearing in the coefficient matrix of Eq. (2.29) which arise from Eq. (2.16). From this equation, we see that the following integrals have to be computed.

\begin{align}
(2.34) \quad I^A (i, j; i', j') &= \int R \int [\rho C_p] (t, r, z, u) A_i (r) A_i' (r) B_j (z) B_j' (z) du_r dz \\
& \text{for } \hat{n}_r \leq i \leq \hat{n}_r, \hat{n}_z \leq j \leq \hat{n}_z, \text{ and } 1 \leq i' \leq N_r, 1 \leq j' \leq N_z.
\end{align}

First we observe that since \(A_i (r) A_i' (r) = 0 \) for \(|i-i'| > k_r \) and \(B_j (z) B_j' (z) = 0 \) for \(|j-j'| > k_z \), we have \(I^A (i, j; i', j') = 0 \) when \(|i-i'| > k_r \) or \(|j-j'| > k_z \). (Recall from (2.12 iv) that \(A_i (r) \) has its support in the interval \([\epsilon_i^r, \epsilon_i^r + k_r] \).) The computation of the integrals is accomplished by...
accumulating the integrals over each mesh subrectangle. Thus

\[(2.35) \quad I^A(i,j; i', j') = \sum_{\sigma=1}^{\ell} \sum_{\tau=1}^{\ell} I^A_{\sigma, \tau}(i,j; i', j'), \]

where

\[(2.36) \quad I^A_{\sigma, \tau}(i,j; i', j') = \int_{r'_{\sigma}}^{r_{\sigma+1}} \int_{r'_{\tau}}^{r_{\tau+1}} C_p(t, r, z, u) A_1(r) A_1(r) B_1(z) B_1(z) \, du \, dz. \]

If \(IL(\sigma) \) is the index of the last knot associated with \(r_\sigma \) then if \(r \in [r_\sigma, r_{\sigma+1}] \), we have \(A_1(r) = 0 \) for \(i'' \notin [IL(\sigma)-k_r+1, IL(\sigma)] \). Similarly, let \(JL(\tau) \) denote the index of the last knot associated with \(z_\tau \), then if \(z \in [z_\tau, z_{\tau+1}] \), we have \(B_1(z) = 0 \) for \(j'' \notin [JL(\tau)-k_z+1, JL(\tau)] \). Considering the integrals in (2.36), we see then that when \(r \in [r_\sigma, r_{\sigma+1}], A_1(r)A_1(r) \neq 0 \) for \(\hat{i}_\sigma \leq i \leq i_u \) and \(\hat{i}_\sigma \leq i' \leq i_u \) where \(\hat{i}_\sigma = IL(\sigma)-k_r+1, i_u = IL(\sigma), \hat{i}_u = \text{Max}(n_r, i_u) \), and \(\hat{i}_u = \text{Min}(N_r, i_u) \). In the same way, we find that for \(z \in [z_\tau, z_{\tau+1}], B_1(z)B_1(z) \neq 0 \) for \(\hat{j}_\tau \leq j \leq j_u \) and \(\hat{j}_\tau \leq j' \leq j_u \) where \(\hat{j}_\tau, \hat{j}_u \), etc. are defined as above with \(JL(\tau) \) and \(k_z \) in place of \(IL(\sigma) \) and \(k_r \). Thus for each \(\sigma \), \(1 \leq \sigma \leq \ell_r \) and \(\tau, 1 \leq \tau \leq \ell_z \), an integral of the type 2.36 must be evaluated for:

\[\hat{i}_\sigma \leq i' \leq i_u, \quad \hat{i}_\sigma \leq i \leq \hat{i}_u, \quad \hat{j}_\tau \leq j' \leq j_u, \quad \hat{j}_\tau \leq j \leq j_u. \]

Since each integral extends over a rectangular region, a product formula is a natural choice for a numerical quadrature scheme. This program uses a product Gauss-Legendre quadrature scheme with \(NQR \) points in each interval \([r_\sigma, r_{\sigma+1}] \) and \(NQZ \) points in each interval \([z_\tau, z_{\tau+1}] \). The values of \(NQR \) and \(NQZ \) can be selected by the user with the restriction that \(NQR > k_r - 1 \) and \(NQZ > k_z - 1 \). However, \(NQR = k_r \) and \(NQZ = k_z \) are reasonable choices for these values in the sense that for this choice the error due to the use of quadrature formulas is much less than the error due to the Galerkin approximation. The choice \(NQR = k_r - 1 \) and \(NQZ = k_z - 1 \), when it works, appear to be optimal in the sense that the quadrature error is not greater than the Galerkin approximations error. This would be in agreement with the theory for elliptic problems as discussed by Strang in [4]. However, there are problems for which this choice does not work. See, for example, the sample problem in section 7 \(\sigma \); in this case one must use the default values \(NQR = k_r \) and \(NQZ = k_z \) (cf. § 5.2).
3. PROBLEM DESCRIPTION

In this section, we describe the class of problems which can be solved by DISPL1, as well as its capabilities and limitations. We will also describe input and output of the code. In short then, this section and the remainder of this report constitutes a user's guide.

3.1 Domain

\[R = \{(r,z): \text{RLOW} < r < \text{RUP}, \text{ZLOW} < z < \text{ZUP}\} \]

is a rectangular domain with sides parallel to the coordinate axes.

3.2 Geometry

\[\text{DELTA} = \begin{cases} 0, & \text{Cartesian (x,y),} \\ 1, & \text{cylindrical (r,z),} \\ 2, & \text{spherical (one-dimensional only)}. \end{cases} \]

3.3 Interfaces

The domain \(R \) may be composed of subrectangles such that each subrectangle has its own material properties.

\[\text{NTIR} \ldots \text{the number of vertical interfaces.} \]
\[\text{NTIZ} \ldots \text{the number of horizontal interfaces.} \]
\[\text{NTIR} = 0 (\text{NTIZ} = 0) \text{ means that there are no vertical (horizontal) interfaces.} \]
\[\text{RIF}(I), 1 < I < \text{NTIR} \ldots \text{the position of the I-th vertical interface.} \]
\[\text{ZIF}(J), 1 < J < \text{NTIZ} \ldots \text{the position of the J-th horizontal interface.} \]

3.4 Additional Mesh Points

In addition to the interfaces, the domain \(R \) can be subdivided further by additional mesh points.

\[\text{NMR} \ldots \text{the total number of additional vertical mesh points in the domain } R \text{ not including the end points.} \]
\[\text{NMZ} \ldots \text{the total number of additional horizontal mesh points in the domain } R \text{ not including the end points.} \]
RMESH(I), 1 < I < NMR ... the position of the I-th vertical additional mesh point. Here RLOW < RMESH(I) < RUP.

ZMESH(J), 1 < J < NMZ ... the position of the J-th horizontal additional mesh point. Here ZLOW < ZMESH(J) < ZUP.

The program merges the additional mesh points with the interface points to form a mesh over which the B-splines are defined.

3.5 Partial Differential Equations

The basic equation considered by this program can be viewed as a general form of the equation of continuity of a multicomponent fluid under the assumption that the total mass density is constant. This particular physical model provides convenient terminology for describing the equations. From a mathematical standpoint, the equation considered by this program is a system of nonlinear parabolic equations in two spatial variables.

NSPEC ... denotes the number of species (total number of parabolic partial differential equations).

\(u_m = u_m(t, r, z) \) ... denotes the concentration of the m-th species at the point \((t, r, z) \) (dependent variables for the m-th equation).

\(\hat{\mathbf{u}} = (u_1, u_2, \ldots, u_{NSPEC}) \) ... denotes the vector of concentrations.

The system of equations has the following form.

\[
(3.1) \quad [\rho \mathbf{C}_p]_m(t, r, z, \hat{\mathbf{u}}) \frac{\partial u_m}{\partial t} + \nabla \cdot (\mathbf{v}_m(t, r, z, \hat{\mathbf{u}}) u_m) + (1-\epsilon) \mathbf{v}(t, r, z, \hat{\mathbf{u}}) \cdot \nabla u_m = \nabla \cdot (\mathbf{v}_m(t, r, z, \hat{\mathbf{u}}) \cdot \nabla u_m) + \sum_{m'=1}^{NSPEC} c_{mm'} u_{m'} + \sum_{m'=1}^{NSPEC} \sum_{m''=1}^{NSPEC} c_{mm'n''} u_{m'} u_{m''} + f_m(t, r, z, \hat{\mathbf{u}}, \mathbf{\hat{v}})
\]

for \(1 < m < NSPEC \).

When \([\rho \mathbf{C}_p]_m(t, r, z, \hat{\mathbf{u}}) = 1 \) for any \(m \), the program precomputes the integrals \(I^A \) appearing in (2.34) which can result in a substantial reduction in the execution time. In Namelist GRID, the flag IREVLA(m)=T, implies that \([\rho \mathbf{C}_p]_m \) is not identically 1 or 0. IREVLA(m)=F, implies that \([\rho \mathbf{C}_p]_m \) is either
identically 1 or 0. The flag $\text{IRH0}(m) = T$, implies that $[\rho C_p]_m = 0$ while $\text{IRH0}(m) = F$, implies $[\rho C_p]_m \neq 0$. The parameter θ can have either of the values 0 or 1. When $\theta = 1$, we have the conservative form, and when $\theta = 0$, we have the non-conservative form for the equations. The conservative form is used by the program by setting the logical indicator $\text{CNSRV} = T$, in the input namelist GRID.

The following user-supplied subroutines provide the coefficient functions appearing in Eq. (3.1).

- RHOCP - supplies the heat capacity coefficient $[\rho C_p]_m (t, r, z, \vec{u})$.
- VEL - supplies the convection velocity vector coefficients $\vec{V}_m (t, r, z, \vec{u})$.
- DIFUSE - supplies the diffusion vector coefficient $D_m (t, r, z, \vec{u}, \vec{v} u)$.
- EXTSRC - supplies the distributed source $f_m (t, r, z, \vec{u}, \vec{v} u)$.

In addition to the indicated dependence of these functions are the arguments t, r, z, \vec{u}, and $\vec{v} u$, each of these functions can also depend on the material index present at the point (r, z). This dependence on the material index can simplify the task of writing these subroutines when the coefficients depend on the materials which are present.

3.6 Interface Conditions

If interfaces are present in the domain R, then interface conditions must be applied across each interface. Recall that NTIR is the number of vertical interfaces and NTIZ is the number of horizontal interfaces. (If NTIR (NTIZ) is zero, then there are no vertical (horizontal) interfaces in the domain R.) As far as this program is concerned, an interface must extend from one external boundary to the opposite external boundary of R. Let Γ denote an interface, then this program allows for one of two possible interface conditions to be imposed on Γ.

3.6.1 Continuity Condition (continuity of density and flux)

$$
\begin{align*}
(i) & \quad u_m |_{r^-} = u_m |_{r^+} \\
(ii) & \quad \partial_m \frac{u_m}{|n|} |_{r^-} = \partial_m \frac{u_m}{|n|} |_{r^+}, \text{ for } 1 \leq m \leq \text{NSPEC}.
\end{align*}
$$
Here $\bar{\nu}_m = \bar{\nu}_m(t,r,z,u)$ and $\bar{\nu}_m \frac{\partial u_m}{\partial n} = \bar{\nu}_m \frac{\partial u_m}{\partial r}$ if r is vertical; while $\bar{\nu}_m \frac{\partial u_m}{\partial n} = \bar{\nu}_m \frac{\partial u_m}{\partial z}$ if r is horizontal. In addition, the symbol $|_{r}^+$ indicates a limiting value taken from the right (above) if r is vertical (horizontal) with the corresponding meaning for $|_{r}^-$.

3.6.2 **Gap Condition** (Discontinuity in the density and continuity in the flux.)

\[
\left\{ \begin{array}{l}
(i) \quad \frac{\partial u_m}{\partial n}|_{r}^- = h^V_g \{ u_m |_{r}^- - u_m |_{r}^+ \} \\
(ii) \quad \frac{\partial u_m}{\partial n}|_{r}^+ = \bar{\nu}_m \frac{\partial u_m}{\partial n}|_{r}^+
\end{array} \right.
\]

(3.3)

Let NIGAP denote the set of vertical gap interfaces. The I-th vertical gap will intersect a set of NTIZ horizontal interfaces. This horizontal set of interfaces will subdivide the I-th vertical gap into a set of $1 + NTIZ$ subintervals. The vertical gap coefficients h^V_g can then depend on the following parameters.

(3.4i) $h^V_g = HVGAP(m,I,J)$ for $1 < m < NSPEC$, $1 < I < NIGAP$, and $1 < J < 1 + NTIZ$.

In the same way, if NJGAP denotes the number of horizontal gaps, then

(3.4ii) $h^H_g = HHGAP(m,J,I)$ for $1 < m < NSPEC$, $1 < J < NJGAP$, and $1 < I < 1 + NTIR$.

The gap coefficients HVGAP(m,I,J) and HHGAP(m,J,I) are supplied by the user in the input namelist DATA.

With regard to interfaces, this program is restricted by the following requirements.

(R3.1) (i) All interfaces must be parallel to the coordinate axes.

(i) Each interface must extend from one external boundary to the opposite external boundary.

(iii) For a given species and a given interface, the same type of interface condition must be applied everywhere on the interface.
In order to illustrate the last two restrictions, consider the following domain with three different materials labeled I, II, and III as shown in Fig. 3.

Suppose that for a given species, we have a gap condition between materials I and II, and continuity conditions between materials I and III as well as material II and III. As it stands this configuration cannot be handled by this program. However, an approximate problem can be handled by the program. To this end we first extend the interfaces so that they extend from one exterior boundary to the opposite side. This gives a set of NTIR=2 vertical interfaces and a set of NTIZ=1 horizontal interfaces as shown in Fig. 4.
Consider the 1st vertical interface which is divided into two subintervals. The lower subinterval separates materials I and II and across this interface we have a gap condition. But then the program requires a gap condition to be applied across the upper subinterval which separates materials I and III. However, the original problem required a continuity condition across this upper subinterval. In order to approximate the original problem, we observe that the continuity condition is a limiting case of a gap condition as the gap coefficient increases in magnitude. Thus, in order to approximate the original problem, we would impose a gap condition across the first vertical interface. There are two gap coefficients associated with this interface \(h^V_J(m,1,J), \ J=1,2, \) with \(h^V_J(m,1,1) \) the given coefficient for materials I and II, and \(h^V_J(m,1,2) \) an arbitrary but large number. If \(h^V_J(m,1,2) \) is sufficiently large, the original interface condition across the first vertical interface will be approximated as closely as desired. Extending the horizontal interface implies that we have introduced an interface in material I, for example, where in the original problem there was none. Interfaces of this type would cause concern only if very accurate values of the concentration were required in the vicinity of corners.

3.7 Boundary Conditions

For each species \(m \), a boundary condition may be specified on each of the four sides of the domain \(R \). The boundary conditions have the following form.

\[
(3.5) \quad \alpha h^m u_m + \beta \mathbf{\hat{n}} \cdot \mathbf{\hat{u}}_m = \gamma h^0_m
\]

where \(\mathbf{\hat{n}} \) denotes the unit exterior normal on \(R \), and

\[
\alpha = \text{ALPHA}(m,s), \quad \beta = \text{BETA}(m,s) \quad 1 \leq m \leq \text{NSPEC}, \quad 1 \leq s \leq 4, \\
\gamma = \text{GAMMA}(m,s)
\]

are specified in namelist DATA for each species \(m \) and each side index \(s \). The sides are numbered counterclockwise starting with the left hand side. The mass transfer coefficients are indexed as follows.
These coefficients are specified in the input namelist DATA.

The function \(\rho^0(t,m,s,x) \) is specified in the user-supplied subroutine `BRHO` when the algebraic version is used (\(\text{ALGBCS=T} \)). The time derivative of \(\rho^0_m \) is supplied in the user-supplied subroutine `BRHODT` when the differential version is used (\(\text{ALGBCS=F} \)). The value of \(\rho^0_m \) is allowed to depend on the normal component \(\nabla^m \cdot \hat{n} \) of the convection velocity. In addition, the function \(\rho^0 \) can depend on \(\hat{u} \) and the derivatives \(\nabla \cdot (\hat{u} \cdot \hat{n}) \) evaluated at \(x \) on side \(s \). That is,

\[
\rho^0 = \rho^0(t,m,s,x,u_1(x),\ldots,u_M(x), \nabla u_1 \cdot \hat{n}(x), \ldots, \nabla u_M \cdot \hat{n}(x)).
\]

Note that if \(g(t,m,s,x,\hat{u}(x),\nabla \cdot \hat{u}(x)) = 0 \) is a given nonlinear boundary condition, then we can achieve the form of equation (3.5) by setting

\[
\rho^0_m = g(t,m,s,x,\hat{u}(x),\nabla \cdot \hat{u}(x)) + \alpha u_m + \beta (\nabla m \cdot \hat{n})(x) \text{ with } h = 1 \text{ and } \gamma = 1.
\]

It should be emphasized that boundary conditions must be put in the form given by equation (3.5).

In order to avoid any confusion on signs, we write equation (3.5) explicitly for each side.

\[
\begin{align*}
\alpha_1 h_{1,1} u_m - \beta_1 (\frac{\partial u_m}{\partial r}) &= \gamma_1 h_{1,1} \rho^0_1, \\
\alpha_2 h_{2,2} u_m - \beta_2 (\frac{\partial u_m}{\partial z}) &= \gamma_2 h_{2,2} \rho^0, \\
\alpha_3 h_{3,3} u_m + \beta_3 (\frac{\partial u_m}{\partial r}) &= \gamma_3 h_{3,3} \rho^0, \\
\alpha_4 h_{4,4} u_m + \beta_4 (\frac{\partial u_m}{\partial z}) &= \gamma_4 h_{4,4} \rho^0.
\end{align*}
\]

For each species \(m \), the program requires a set of four indicators, provided in the input namelist DATA, with the following meaning.
\[NSJ(m) = \begin{cases}
1 & \text{if side } J \text{ has essential boundary conditions} \\
0 & \text{if side } J \text{ does not have essential boundary conditions} \\
-1 & \text{if side } J \text{ does not have a boundary condition}
\end{cases} \]

for \(J = 1,2,3,4 \); and \(m = 1,NSPEC \).

As an example, consider a boundary condition on side 1 given in laboratory coordinates having the following form.

\[\partial_r \frac{\partial}{\partial r} u_m = g_{1,m} \]

Since we are on side 1, \(\nabla u_m \cdot \hat{n}^+_1 = -\frac{\partial}{\partial r} \) where \(\hat{n}^+_1 \) is the outward pointing normal on side 1; hence the above condition can be written in the form

\[-\partial_r \nabla u_m \cdot \hat{n}^+_1 = g_{1,m} . \]

This is the form which is appropriate for specifying the values of \(\alpha, \beta, \) and \(\gamma \). Thus in this example we would set

\[\alpha_1 = 0 , \quad \beta_1 = -1 , \quad \gamma_1 = 1 , \quad h_1 = 1 , \quad \gamma_0,1,m = g_{1,m} . \]

Then internally the code uses the condition in laboratory coordinates as shown in the first form.

3.8 Initial Conditions

This program allows for two possible types of initial conditions.

A. An arbitrary initial distribution \(\{ u_m^0(r,z): 1 \leq m \leq NSPEC \} \) can be specified in a user-supplied subroutine INDATA. The program will then project this data into the approximating subspace in order to provide the initial data for solving the system of ordinary differential equations. The use of this option is indicated by setting INITSW=T, in the input namelist GRID.

B. The second type of initial condition is for the program to start from some particular steady-state or equilibrium distribution \(\{ u_m^0(r,z): 1 \leq m \leq NSPEC \} \). The program will first compute an approximation to this steady-state distribution in the approximating subspace of B-splines by means of the control subroutine STEADY. The program can then use this steady-state solution as the initial data for a transient calculation which is done under the control of subroutine TIMEX. Recall that if all the coefficients (convection velocity, diffusivity, distributed source, and external
boundary functions) are independent of time, then the steady solution exists and can be found by integrating the differential equations out in time until the solutions are independent of time. The program uses this approach to find a steady-state solution. A steady-state calculation is indicated by setting STEDSW=T, in the input namelist GRID. If this calculation is to be followed by a transient calculation which uses the steady-state solution as its initial data, then this is indicated by setting TRANSW=T, in addition to STEDSW=T. When the program performs a steady-state calculation, it will require an initial estimate for the steady-state solution. There are two options available for providing this initial estimate. First, if the user has an initial estimate, he can provide this estimate in subroutine INDATA and signal the program to use this estimate by setting INITSW=T, in the input namelist GRID. If the user does not wish to provide an initial estimate for the steady-state calculation, the program will generate an initial estimate with the control program GUESS1. This option can be invoked by setting GUESSW=T, in the input namelist GRID.

The four switches TRANSW, STEDSW, INITSW, and GUESSW control the nature of the calculation as well as the nature of the initial conditions. We illustrate this with some examples.

I. GUESSW=F, INITSW=T, STEDSW=T, TRANSW=T. This indicates that a transient calculation is to be done with the initial data provided by the result of a steady-state calculation. Moreover, the initial estimate for the steady-state calculation is provided by the user in the user subroutine INDATA.

II. GUESSW=T, INITSW=F, STEDSW=T, TRANSW=T. This is the same calculation as in I. except that the user does not supply the initial estimate for the steady-state calculation.

III. GUESSW=F, INITSW=T, STEDSW=F, TRANSW=T. This is a transient calculation with the initial data provided by the user in the user subroutine INDATA.

All four switches have default values T; thus each switch must be explicitly set to F if that calculation is not desired.

The physical conditions which initiate a transient can be provided in the appropriate user-supplied subroutines or in the input namelist DATA whichever is applicable for initiating the transient. Note that two different sets of input data can be provided for namelist DATA. The first set is used in a steady-state calculation and the second set is used in the transient calculation.
4. DESCRIPTION OF USER-SUPPLIED SUBROUTINES

This program requires nine user-supplied subroutines each written in FORTRAN. Every one of these routines must be present in at least dummy form.

4.1 Subroutine DIFUSE(IMATL,KSPEC,NSPEC,T,RR,ZZ,SPDEN,SPDENR,SPDENZ,DIFUR, DIFUZ,TO)

Variable Names and Meanings:

KSPEC....Species index.

NSPEC....Total number of species.

T........Current value of the time.

RR.......Value of the abscissa.

ZZ.......Value of the ordinate.

IMATL....Value of the material index at the position (RR,ZZ).

SPDEN....An array SPDEN(K), K=1,NSPEC for which SPDEN(K) = u(K,T,RR,ZZ)
 is the concentration of the K-th species at time T and position (RR,ZZ).

SPDENR...An array SPDENR(K), K=1,NSPEC for which SPDENR(K) = \frac{\partial u}{\partial r}(K,T,RR,ZZ).

SPDENZ...An array SPDENZ(K), K=1,NSPEC for which SPDENZ(K) = \frac{\partial u}{\partial z}(K,T,RR,ZZ).

DIFUR....Output value of the r-component of the diffusion coefficient for
 the species with index KSPEC.

DIFUZ....Output value of the z-component of the diffusion coefficient for
 the species with index KSPEC.

TO.......Initial value of time at which a transient calculation starts.
 This value can be used to distinguish whether a steady-state
 (T < TO) calculation is in progress or whether a transient
 (T \geq TO) calculation is in progress.

Given T, RR, ZZ, IMATL, and \{SPDEN(K),SPDENR(K),SPDENZ(K): K=1,NSPEC\},
this routine returns the two components of the diffusion coefficient for the
species with index KSPEC.

When a steady-state calculation is in progress we have T < TO and this
routine must then return a diffusion coefficient which is independent of time.
Moreover, if the user does not provide an initial estimate (INITSW=F in namelist GRID), then the GUESS1 option (GUESSW=T in namelist GRID) must be used to provide an initial estimate for the steady-state calculation. In the course of the GUESS1 calculation, the program requires that this subroutine provides an initial estimate for the diffusion coefficient. Since the concentrations are not known, this initial estimate cannot depend on SPDEN, SPDENR, SPDENZ, or T. The flag IPHASE=-2 is used to indicate when this initial estimate is to be provided for a GUESS1 calculation. This indicator is transmitted through the COMMON block BNDCOM which can appear in this subroutine.

The general form of DIFUSE could be as follows.

```fortran
SUBROUTINE DIFUSE(IMATL,KSPEC,NSPEC,T,RR,ZZ,SPDEN,SPDENR,SPDENZ, # DIFUR,DIFUZ,TO) INTEGER IMATL,KSPEC,NSPEC DOUBLE PRECISION T,RR,ZZ,SPDEN(NSPEC),SPDENR(NSPEC),SPDENZ(NSPEC), # DIFUR,DIFUZ,TO COMMON/BNDCOM/IPHASE,NS1(MAXSP),NS2(MAXSP),NS3(MAXSP),NS4(MAXSP) INTEGER IPHASE,NS1,NS2,NS3,NS4 IF (IPHASE .EQ. -2) GO TO 10 IF (T .LT. TO) GO TO 5 DIFUR = D(IMATL,KSPEC,T,RR,ZZ,SPDEN(1),...,SPDEN(NSPEC), # SPDENR(1),...,SPDENZ(NSPEC)) DIFUZ = DIFUR RETURN 5 DIFUR = DH(IMATL,RR,ZZ,SPDEN(1),...,SPDENZ(NSPEC)) DIFUZ = DIFUR RETURN 10 DIFUR = DW(IMATL,RR,ZZ) DIFUZ = DIFUR RETURN END
```

where MAXSP in COMMON block BNDCOM is the value used in the MORTRAN macros (cf. §5.1).

Here D is a known expression for the diffusion coefficient which is to be used during a transient calculation (TRANSW=T in namelist GRID). In the same way DH is a known expression to be used during a steady-state calculation (STEDSW=T), and DW is to be used during a GUESS1 calculation (GUESSW=T).
4.2 Subroutine VEL(IMATL, KSPEC, NSPEC, T, RR, ZZ, SPDEN, VELR, VELZ, TO)

Variable Names and Meanings:

KSPEC....Species index.
NSPEC....Total number of species.
T........Current value of the time.
RR........Value of the abscissa.
ZZ........Value of the ordinate.
IMATL.....Value of the material index at the position (RR,ZZ).
SPDEN.....The array \{SPDEN(K): K=1,NSPEC\} of concentrations.
VELR.....Output value of the r-component of the convection velocity.
VELZ.....Output value of the z-component of the convection velocity.
TO........Initial value of time at which a transient calculation starts.

Given T, RR, ZZ, IMATL, and \{SPDEN(K), K=1,NSPEC\}, this routine returns the two components of the convection velocity. Note that in Eq. (3.1), the convection term appears on the left side of this equation; therefore, this routine must return values for VELR and VELZ consistent with these terms appearing on the left side.

All remarks concerning subroutine DIFUSE also apply to subroutine VEL. The general form of VEL would be the same as that of DIFUSE with the obvious changes.

4.3 Subroutine BRH0(T, KSPEC, NSPEC, ISIDE, XX, VLBD, SPDEN, SPDENX, RH0V, TO)

Variable Names and Meanings:

KSPEC....Species index.
NSPEC....Total number of species.
ISIDE....Side index. This index can have any integer value from one to four. The sides of the domain are indexed counterclockwise starting with the left side.
XX.......The position coordinate of a point on the side with index ISIDE. Thus if ISIDE=1 or 3, XX=Z is the ordinate of a point
on either of these sides. If ISIDE=2 or 4, then XX=R is the
abscissa of a point on either of these sides.

VLBD.....Normal component of the convection velocity at the position XX
on side ISIDE for species KSPEC. That is, VLBD=V on sides 1
and 3, VLBD=V^2 on sides 2 and 4.

SPDEN....The array {SPDEN(K), K=1,NSPEC} of concentrations.

SPDENX...The array {SPDENX(K), K=1,NSPEC} of derivatives \(\frac{\partial u}{\partial n}(K,T,XX) \) of
u on side ISIDE evaluated at time T and position XX on ISIDE.
That is, \(\frac{\partial u}{\partial r} \) on sides 1 and 3, \(\frac{\partial u}{\partial z} \) on sides 2 and 4.

RHOV.....Output value of the boundary function on side ISIDE at position
XX for species KSPEC at time T.

TO.......Initial time at which a transient calculation starts.

Given T, KSPEC, ISIDE, XX, VLBD, SPDEN, and SPDENX, this routine returns
the boundary values appearing on the right side of Eq. (3.5), i.e., the user-
supplied function \(\rho^0(T,KSPEC,ISIDE,XX) \). Note that since \{SPDEN(K)\} and
\{SPDENX(K)\} are available, the value for \(\rho^0(T,KSPEC,ISIDE,XX) \) can depend on
the values of the arrays SPDEN and SPDENX; thus nonlinear boundary conditions
are allowed. In problems where convective flow is important, it may be use-
ful to have \(\rho^0 \) depend on the sign of the normal component of the convection
velocity. For example, if on side 1, we require that \(\rho^0(T,KSPEC,1,XX) = 0 \)
wh\-\-n VLBD > 0, and on side 3, we require that \(\rho^0(T,KSPEC,3,XX) = 0 \) when
VLBD < 0; then with \(\alpha=0, \beta=\gamma=1 \), Eq. (3.5) states that there is no incoming
flux on sides 1 and 3.

Recall that when a steady-state calculation is in progress, the boundary
function \(\rho^0(T,KSPEC,ISIDE,XX) \) must be independent of the time T. A steady-
state calculation is in progress when \(T < TO \) and a transient calculation is
in progress when \(T \geq TO \). This routine is called when the algebraic version
(ALGBCS=T, in namelist GRID) is used or when an initial solution estimate via
the user-supplied subroutine INDATA (INITSW=T, in Namelist GRID) is used.
The general form of BRHΩ could be as follows.

```
SUBROUTINE BRHΩ(T,KSPEC,NSPEC,ISIDE,XX,VLBD,SPDEN,SPDENX,RHΩV,TO)
INTEGER KSPEC,NSPEC,ISIDE
DOUBLE PRECISION T,XX,VLBD,SPDEN(NSPEC),SPDENX(NSPEC),RHO/V,TO
IF (T .LT. TO) GO TO 5
101 RHΩV = ρ₁(T,KSPEC,XX)
RETURN
102 RHΩV = ρ₂(T,KSPEC,XX)
RETURN
103 RHΩV = ρ₃(T,KSPEC,XX)
RETURN
104 RHΩ/V = ρ₄(T,KSPEC,XX)
RETURN
5 GO TO(1001,1002,1003,1004),ISIDE
1001 RHΩV = ̂ϕ₁(KSPEC,XX)
RETURN
1002 ...
: RETURN
END
```

Here ρₖ and ̂ϕᵢ, i=1,4 are the known boundary values.

4.4 Subroutine BDFRD(T,KSPEC,NSPEC,ISIDE,XX,VLBD,SPDEN,SPDENX,RHΩUD,RHΩUXD,TO)

Variable Names and Meanings:

KSPEC.....Species index.

NSPEC.....Total number of species.

ISIDE.....Side index. This index can have any integer value from one to four. The sides of the domain are indexed counterclockwise starting with the left side.

XX.......The position coordinate of a point on the side with index ISIDE. Thus if ISIDE=1 or 3, XX=Z is the ordinate of a point on either of these sides. If ISIDE=2 or 4, then XX=R is the abscissa of a point on either of these sides.

VLBD.....Normal component of the convection velocity at the position XX on side ISIDE for species KSPEC. That is, VLBD = Vᵢ on sides 1 and 3, VLBD = V₂ on sides 2 and 4.
SPDEN....The array \{SPDEN(K)\}, K=1,NSPEC of concentrations.

SPDENX...The array \{SPDENX(K)\}, K=1,NSPEC of derivatives \(\partial u/\partial n\) \((K,T,XX)\) of \(u\) on side ISIDE evaluated at time \(T\) and position \(XX\) on ISIDE. That is, \(\partial u/\partial r\) on sides 1 and 3, \(\partial u/\partial z\) on sides 2 and 4.

RHØUD....The output array \{RHØUD(K') = \(\partial \rho(KSPEC)/\partial u(K')\), K'=1,NSPEC\}
where \(\rho\) is the boundary function returned in RHØV in subroutine BRHØ.

RHØUXD...The output array \{RHØUXD(K') = \(\partial \rho(KSPEC)/\partial u|_n(K')\), K'=1,NSPEC\}
where \(\rho\) is the boundary function returned in RHØV in subroutine BRHØ.

Given \(T\), KSPEC, ISIDE, XX, VLBD, SPDEN, and SPDENX, subroutine BRHØ returns \(\rho^0\). Subroutine BDFRD is used to evaluate the Fréchet derivatives of \(\rho^0\) with respect to \(u\) and \(u|_n\). These derivatives are used to provide an accurate Jacobian for DISPL1 (just as BDFRDT provides the Fréchet derivatives of BRHØDT and FDEXTU provides the derivatives for EXTSRC).

4.5 Subroutine BRHØDT(T,KSPEC,NSP,KSPE',ISIDE,XX,VLBD,SPDEN,SPDENX,RHØV,TO)

The variables have the same meaning as in subroutine BRHØ. This routine returns differentiated boundary values on sides with essential boundary conditions and non-differentiated values on sides with non-essential boundary conditions. Recall that if \(\beta = \beta(K',ISIDE) = 0\) for species \(K'\), \(1 < K' < NSPEC\), then we say that the side with index ISIDE has an essential boundary condition for species \(K'\). If \(J = ISIDE\), then an essential boundary condition on side \(J\) is indicated by setting the integer flag \(NSJ(K') = 1\) in the input namelist GRID. When \(T < TO\), this routine is being called from either a GUESS1 initial calculation or a steady-state calculation; in either case, the boundary values are constant in time. Hence if side \(J\) has an essential boundary condition and if \(T < TO\), this routine must return RHØV = 0.DO.

If side \(J\) \((J = ISIDE)\) has non-essential boundary conditions for species \(K'\) \((NSJ(K') = 0)\), this routine must return undifferentiated boundary values on this side just as in subroutine BRHØ.

The common block BNDCØM must be present in this routine in order that the essential boundary indicators NS1, NS2, NS3, and NS4 are available to this routine. This routine is used when the differentiated version \(\text{ALGBCS=F}\), in
The namelist GRID) is used. If the algebraic version is used, this routine is ignored.

The general form of this routine could be as follows.

```fortran
SUBROUTINE BRH0DT(T,KSPEC,NSPEC,ISIDE,XX,VLBD,SPDEN,SPDENX,RH0V,TO)
   INTEGER KSPEC,NSPEC,ISIDE
   DOUBLE PRECISION T,XX,VLBD,SPDEN(NSPEC),SPDENX(NSPEC),RH0V,TO
   COMMON/BNDCOM/IPHASE,NS1(MAXSP),NS2(MAXSP),NS3(MAXSP),NS4(MAXSP)
   INTEGER IPHASE,NS1,NS2,NS3,NS4
   IF (T .LT. TO) GO TO 5
   GO TO (101,102,103,104),ISIDE
101 IF (NS1(KSPEC) .NE. 1) GO TO 111
      RH0V = d/dt \rho_1(T,KSPEC,XX)
      RETURN
111 RH0V = \rho_1(T,KSPEC,XX)
      RETURN
102 IF (NS2(KSPEC) .NE. 1) GO TO 121
      RH0V = \rho_4(T,KSPEC,XX)
      RETURN
121 RH0V = 0.0
      RETURN
1001 IF (NS1(KSPEC) .NE. 1) GO TO 1011
      RH0V = \hat{\rho_1}(KSPEC,XX)
      RETURN
1011 RH0V = \hat{\rho_1}(KSPEC,XX)
      RETURN
   END
```

Here \(\rho_i \) and \(\hat{\rho}_i \), \(i=1,4 \) are the same boundary value functions as in BRH\(\rho \), and MAXSP is the value used in the MORTRAN macros. Note that since the concentrations \(\{SPDEN(K)\} \) and the derivatives \(\{SPDENX(K)\} \), evaluated on ISIDE at the position \(XX \), are available; nonlinear boundary conditions are allowed in this subroutine.

4.6 Subroutine BDFRDT(T,KSPEC,NSPEC,ISIDE,XX,VLBD,SPDEN,SPDENX,RH0UD,RH0UXD,TO)

Variable Names and Meanings:

- KSPEC....Species index.
- NSPEC....Total number of species.
- ISIDE....Side index. This index can have any integer value from one to four. The sides of the domain are indexed counterclockwise starting with the left side.
XX......The position coordinate of a point on the side with index ISIDE. Thus if ISIDE=1 or 3, XX=Z is the ordinate of a point on either of these sides. If ISIDE=2 or 4, then XX=R is the abscissa of a point on either of these sides.

VLBD.....Normal component of the convection velocity at the position XX on side ISIDE for species KSPEC. That is,
 VLBD=V^z on sides 1 and 3,
 VLBD=V^r on sides 2 ar.d 4.

SPDEN....The array {SPDEN(K), K=1,NSPEC} of concentrations.

SPDENX...The array {SPDENX(K), K=1,NSPEC} of derivatives \(\partial u/\partial n(K,T,ZZ) \) of u on side ISIDE evaluated at time T and position XX on ISIDE. That is, \(\partial u/\partial r \) on sides 1 and 3, \(\partial u/\partial z \) on sides 2 and 4.

RHÎ©UD....The output array {RHÎ©UD(K') = \(\partial \rho(KSPEC)/\partial u(K') \), K'=1,NSPEC} where \(\rho \) is the boundary function returned in RHÎ©V in Subroutine BRHÎ©DT.

RHÎ©UXD...The output array {RHÎ©UXD(K') = \(\partial \rho(KSPEC)/\partial u|_n(K') \), K'=1,NSPEC} where \(\rho \) is the boundary function returned in RHÎ©V in Subroutine BRHÎ©DT.

Given T, KSPEC, ISIDE, XX, VLBD, SPDEN, and SPDENX, subroutine BRHÎ©DT returns the time derivative of \(\rho^0 \). Subroutine BDFRD is used to evaluate the Fréchet derivatives of the time derivative of \(\rho^0 \) with respect to u and \(u|_n \). These derivatives are used to provide an accurate Jacobian for DISPL1 (just as BDFRD provides the Fréchet derivatives of BRHØ and FDEXTU provides the derivatives for EXTSRC).

4.7 Subroutine EXTSRC(IMATL,KSPEC,NSPEC,T,RR,ZZ,SPDEN,SPDENR,SPDENZ,VV,TO)

Variable Names and Meanings:

KSPEC....Species index.

NSPEC....Total number of species present.

T........Value of the time.

RR.......Value of the abscissa.
ZZ........Value of the ordinate.

IMATL....Value of the material index at the position (RR,ZZ).

SPDEN....The array \(\{SPDEN(K') = u(K',T,RR,ZZ); K'=1,NSPEC \} \) of concentrations.

SPDENR...The array \(\{SPDENR(K') = \frac{\partial u}{\partial r}(K',T,RR,ZZ); K'=1,NSPEC \} \) of r-direction partials of concentrations evaluated at (T,RR,ZZ).

SPDENZ...The array \(\{SPDENZ(K') = \frac{\partial u}{\partial z}(K',T,RR,ZZ); K'=1,NSPEC \} \) of z-direction partials of the concentrations evaluated at (T,RR,ZZ).

VV........Output value of the distributed source \(f_m(t,r,z,\bar{u},\bar{v}_u), (m=KSPEC) \) appearing on the right hand side of Eq. (1.1).

TO.....Initial value of time at which a transient calculation starts.

Given KSPEC, T, RR, ZZ, IMATL, \{SPDEN(K')\}, \{SPDENR(K')\}, and \{SPDENZ(K')\}, this routine calculates the value of the distributed source appearing on the right hand side of Eq. (1.1). The common block BNDCOM must appear in this subroutine in order to transmit the IPHASE indicator. When IPHASE = -2, this routine is being called during a GUESS1 calculation. Recall that a GUESS1 calculation provides an initial estimate for a steady-state calculation. In this case, this routine must return an estimate for the distributed source which is independent of the concentrations \{SPDEN(K')\} and the gradients \{SPDENR(K')\} and \{SPDENZ(K')\}. When \(T < TO \), a steady-state calculation is in progress. In this case the distributed source must be independent of the time \(T \). The general form of this routine could be as follows.

```fortran
SUBROUTINE EXTSRC(IMATL, KSPEC, NSPEC, T, RR, ZZ, SPDEN, SPDENR, SPDENZ, # VV, TO)
    INTEGER IMATL, KSPEC, NSPEC
    DOUBLE PRECISION T, RR, ZZ, SPDEN(NSPEC), SPDENR(NSPEC), SPDENZ(NSPEC), # VV, TO
    COMMON/BNDCOM/IPHASE, NS1(MAXSP), NS2(MAXSP), NS3(MAXSP), NS4(MAXSP)
    INTEGER IPHASE, NS1, NS2, NS3, NS4
    IF (IPHASE .EQ. -2) GO TO 10
    IF (T .LT. TO) GO TO 5
    VV = f(IMATL, KSPEC, T, RR, ZZ, {SPDEN(K')}, {SPDENR(K')}, {SPDENZ(K')})
    RETURN
  5 VV = f0(IMATL, KSPEC, RR, ZZ, {SPDEN(K')}, {SPDENR(K')}, {SPDENZ(K')})
    RETURN
  10 VV = f0(IMATL, KSPEC, RR, ZZ)
END
```
Here f, f_0, and \hat{f}_0 are the known distributed sources, and MAXSP is the value used in the MORTAN macros.

4.8 Subroutine FDEXTU(IMATL,KSPEC,NSPEC,T,RR,ZZ,SPDEN,SPDENR,SPDENZ, UU,UUR,UUZ,TO)

Variable Names and Meanings:

KSPEC....Species index.
NSPEC....Total number of species.
T........Value of the time.
RR.......Value of the abscissa.
ZZ.......Value of the ordinate.
IMATL....Value of the material index.
SPDEN....Array of concentrations.
SPDENR...Array of partial derivatives with respect to r of the concentrations.
SPDENZ...Array of partials derivatives with respect to z of the concentrations.

When T, RR, and ZZ are fixed, the distributed source f, which is provided by subroutine EXTSRC, is a function of the concentrations $u(1),...,u(NSPEC)$; the r-direction partials $u_r(1),...,u_r(NSPEC)$; and the z-direction partials $u_z(1),...,u_z(NSPEC)$.

UU........The output array $\{UU(K') = \frac{\partial f(KSPEC)}{\partial u(K')}; K'=1,NSPEC\}$ of Fréchet partial derivatives of the distributed source with respect to the concentrations.

UUR.......The output array $\{UUR(K') = \frac{\partial f(KSPEC)}{\partial u_r(K')}; K'=1,NSPEC\}$ of Fréchet partial derivatives of the distributed source with respect to the r-direction partial derivatives of the source.

UUZ.......The output array $\{UUZ(K') = \frac{\partial f(KSPEC)}{\partial u_z(K')}; K'=1,NSPEC\}$ of Fréchet partial derivatives of the distributed source with respect to the z-direction partial derivatives of the source.
TO.....Initial value of time at which a transient calculation starts.

As indicated above, this routine provides the Fréchet derivatives of the distributed source. These quantities are used in the formation of the Jacobian of a nonlinear system which at each time step has to be solved by the ODE solver.

To illustrate the nature of the computations performed by this subroutine, we will consider the following example. Let NSPEC=2, and let the distributed sources be defined as follows.

\[
\begin{align*}
f(1,t,r,z) &= u(1,t,r,z) + u(1,t,r,z)u(2,t,r,z) + u_r(1,t,r,z)u_z(2,t,r,z) \\
f(2,t,r,z) &= u(2,t,r,z) + (u(1,t,r,z))^2 + (u_z(2,t,r,z))^2
\end{align*}
\]

With (t,r,z) fixed, we can write these expressions as follows.

\[
\begin{align*}
f(1) &= u(1) + u(1)u(2) + u_r(1)u_z(2) \\
f(2) &= u(2) + (u(1))^2 + (u_z(2))^2
\end{align*}
\]

Then for KSPEC = 1, we have:

\[
\begin{align*}
UU(1) &= \frac{\partial f(1)}{\partial u(1)} = 1 + u(2) \\
UU(2) &= \frac{\partial f(1)}{\partial u(2)} = u(1) \\
UUR(1) &= \frac{\partial f(1)}{\partial u_r(1)} = u_z(2) \\
UUR(2) &= \frac{\partial f(1)}{\partial u_z(2)} = 0 \\
UUZ(1) &= \frac{\partial f(1)}{\partial u_z(1)} = 0 \\
UUZ(2) &= \frac{\partial f(1)}{\partial u_z(2)} = u_r(1)
\end{align*}
\]

For KSPEC = 2, we have

\[
\begin{align*}
UU(1) &= \frac{\partial f(2)}{\partial u(1)} = 2u(1) \\
UU(2) &= \frac{\partial f(2)}{\partial u(2)} = 0 \\
UUR(1) &= \frac{\partial f(2)}{\partial u_r(1)} = 0 \\
UUR(2) &= \frac{\partial f(2)}{\partial u_r(2)} = 0 \\
UUZ(1) &= \frac{\partial f(2)}{\partial u_z(1)} = 0 \\
UUZ(2) &= \frac{\partial f(2)}{\partial u_z(2)} = 2u_z(2)
\end{align*}
\]

Clearly if the distributed source does not depend on the concentrations or their gradients, then this source is an external source and this routine would return arrays \(UU \equiv 0\), \(UUR \equiv 0\), and \(UUZ \equiv 0\) in this case. The general form of this routine could be as follows.
SUBROUTINE FDEXTU(IMATL,KSPEC,NSPEC,T,RR,ZZ,SPDEN,SPDENR,SPDENZ,#
 UU,UUR,UUZ,TO)
 INTEGER IMATL,KSPEC,NSPEC
 DOUBLE PRECISION T,RR,ZZ,SPDEN(NSPEC),SPDENR(NSPEC),SPDENZ(NSPEC),#
 UU(NSPEC),UUR(NSPEC),UUZ(NSPEC),TO
 COMMON/BNDCOM/IPHASE,NS1(MAXSP),NS2(MAXSP),NS3(MAXSP),NS4(MAXSP)
 INTEGER IPHASE,NS1,NS2,NS3,NS4
 IF (IPHASE .EQ. -2) GO TO 10
 IF (T .LT. TO) GO TO 5
 GO TO (101,102,...,10 NSPEC),KSPEC
101 UU(1) = af(1)/au(1)
 ...
 UU(NSPEC) = af(1)/au(NSPEC)
 UUR(1) = af(1)/aur(1)
 ...
 UUR(NSPEC) = af(1)/aur(NSPEC)
 UUZ(1) = af(1)/auz(1)
 ...
 UUZ(NSPEC) = af(1)/auz(NSPEC)
 RETURN
102 UU(1) = af(2)/au(1)
 ...
 UUZ(NSPEC) = af(2)/auz(NSPEC)
 RETURN
103 ...
 RETURN
5 GO TO (201,202,...,20NSPEC)KSPEC
201 UU(2) = af0(1)/au(1)
 ...
 20NSPEC UU(1) = af0(NSPEC)/au(1)
 ...
 RETURN
10 DO 15 KP=1,NSPEC
 UU(KP) = 0.DO
 UUR(KP) = 0.DO
 UUZ(KP) = 0.DO
15 CONTINUE
END

where MAXSP is the value used in the MORTRAN macros.

Here f and f_0 are the same distributed sources as produced by the subroutine \textsc{extsrc}. Again we emphasize that if f and f_0 are external sources, then this routine returns zeros in the arrays UU, UUR, and UUZ.

4.9 **Subroutine INDATA(KSPEC, RR, ZZ, UU)**

Variable Names and Meanings:

- **KSPEC**....Species index.
- **RR**....Value of the abscissa.
- **ZZ**....Value of the ordinate.
- **UU**....Output value of the initial concentration for species with index **KSPEC** at the position (**RR**, **ZZ**).

This routine allows the user to specify the initial value of the concentrations for each species at the positions (**RR**, **ZZ**). Note that as usual, the values **RR** and **ZZ** passed to this routine are the Gaussian quadrature points used in the Galerkin approximation of the integrals. The values from this routine can be used to start either a steady-state or a transient calculation by setting **INITSW** = T in the input namelist **GRID**. The general form of this subroutine could be as follows.

```
SUBROUTINE INDATA(KSPEC, RR, ZZ, UU)
   INTEGER KSPEC
   DOUBLE PRECISION RR, ZZ, UU
   GO TO (101, 102, ..., 10NSPEC), KSPEC
101  UU = u0(1, PR, ZZ)
       RETURN
102  UU = u0(2, RR, ZZ)
       RETURN
   :   :
   RETURN
END
```

Here \(u_0(\text{KSPEC}, \text{RR}, \text{ZZ})\) is the known initial concentrations. For a steady-state calculation, the user can either use this routine to provide an initial estimate, in which case he sets **INITSW**=T and **STEDSW**=T in namelist **GRID**; or he can use a **GUESS1** calculation to form a starting estimate (**GUESSW**=T, **INITSW**=F, **STEDSW**=T). When **INITSW**=F, this routine is ignored by the program. For a transient calculation, the user again has two choices. He can use this routine if he has initial conditions that he wishes to start from. Alternatively, he performs a steady-state calculation first and uses this solution to start the transient calculation. If this latter option is to be used, then the user has the option of using this routine to start the preliminary steady-state calculation.
4.10 Subroutine RH0CP(IMATL,KSPEC,T,RR,ZZ,SPDEN,RC)

Variable Names and Meanings:

IMATL....Material index.
KSPEC....Species index.
T........Value of time.
RR.......Value of the abscissa.
ZZ.......Value of the ordinate.
SPDEN....Array of concentrations.
RC.......Value of \(\rho C_p \) returned by this subroutine.

For each species KSPEC this routine provides the coefficient \([\rho C_p]_m(t,r,z,u) \) where \(m=KSPEC \) which appears in Eq. (1.1). If \([\rho C_p]_m(t,r,z,u) \equiv 1 \) for some species index \(m \), then the user should set the logical indicator IREVLA\((m) = \)F, and IRH0\((m) = \)F, in namelist GRID. This will save on computer time since the integrals \(I^A \) in Eq. (2.35) are then precomputed. The case when \([\rho C_p]_m(t,r,z,u) \equiv 0 \) for some \(m \) is permitted in this program. In this case one sets IREVLA\((m) = \)F, IRH0\((m) = \)T, and in this routine one returns \(RC=0.00 \) for the species index \(m \). The general form of this subroutine could be as follows.

```
SUBROUTINE RH0CP(IMATL,KSPEC,T,RR,ZZ,SPDEN,RC)
INTEGER IMATL,KSPEC
DOUBLE PRECISION T,RR,ZZ,RC,SPDEN(1)
RC = \rho C_p(IMATL,KSPEC,T,RR,ZZ,\{SPDEN(K')\})
RETURN
END
```

4.11 Subroutine ANAL(KSPEC,T,RR,ZZ,VV)

Variable Names and Meanings:

KSPEC....Species index.
RR........Value of the abscissa.
ZZ........Value of the ordinate.
VV.......Output value.
T........Value of the time.
This routine provides the analytic or true solution if it is known, and is used in testing the program. If the solution is unknown, the following dummy subroutine should be provided.

```fortran
SUBROUTINE ANAL(KSPEC,T,RR,ZZ,VV)
INTEGER KSPEC
DOUBLE PRECISION T,RR,ZZ,VV
RETURN
END
```

4.12 Master Driver

This is the main routine of the program and from the user's point of view serves three important functions.

1. Any preliminary calculations can be done in a call from this routine.
2. If the program DISPL1 is going to be used as a subroutine, then the call is made from this routine.
3. In the DISPL1 program, the bulk of the storage is determined by the size of two arrays, AL and GPW. The size of these arrays can be set at run time in this routine.

The first function is self-evident. The second function can be elaborated on as follows. On each call to EXEC (the main subroutine), the program processes a complete problem. That is, Namelist GRID is read once and Namelist DATA is read twice. Control is then returned to the Master Driver where the user can do further calculations and repeated calls to EXEC. If the user calls EXEC when there is no further Namelist GRID input cards, the program will print

```
END OF INPUT FILE WHILE READING NAMELIST GRID
PROGRAM STOpped IN EXEC
```

and the execution will be terminated. If the user calls EXEC when there are no further Namelist DATA input cards, the program will print

```
END OF INPUT FILE WHILE READING NAMELIST DATA
```

and stop. In some cases the user may wish to change some parameters in the master driver and call EXEC without reading any Namelist input (because Namelists GRID and DATA are unchanged from the previous call to EXEC). To avoid reading Namelist make a common block READIN containing only a logical variable LPWD.
available to the Master Driver. The default value for LREAD is set in DISPL1 and is .TRUE. If EXEC is called with LREAD=.FALSE., DISPL1 will not read any Namelist but will do computation. This feature has been useful in parameter studies and optimization problems involving simulations solved by DISPL1. In addition, all Namelist variables for GRID and DATA are available through COMMON blocks (see the Macro file). Thus, if desired, some Namelist variables can alternatively be set in the Master Driver.

The third function requires some discussion. Recall the following definitions:

\[\text{NSPEC...Total number of species (number of partial differential equations).} \]
\[\text{KR(KZ)...Order of the B-splines in the } r(z) \text{ coordinate direction.} \]
\[\text{LR(LZ)...Total number of subintervals in the } r(z) \text{ coordinate direction.} \]
\[\text{INUR(I)(INUZ(J))...Vector of continuity indices in the } r(z) \text{ coordinate direction. Generally } \text{INUR}(I) = \text{C0NTR} \text{ and } \text{INUZ}(J) = \text{C0NTZ} \text{ with } 0 < \text{C0NTR} < \text{KR}-1 \text{ and } 0 < \text{C0NTZ} < \text{KZ}-1. \]

Let \(\text{NR}(\text{NZ}) \) denote the number of unknowns associated with the \(r(z) \) direction. Then

\[\text{NR} = \text{KR} + \sum_{i=2}^{LR} (\text{KR}-\text{INUR}(i)) \]
\[= \text{KR} \times \text{LR} - \text{C0NTR} \times (\text{LR}-1) \text{ when } \text{INUR}(i) = \text{C0NTR}, \]

and

\[\text{NZ} = \text{KZ} + \sum_{j=2}^{LZ} (\text{KZ}-\text{INUZ}(j)) \]
\[= \text{KZ} \times \text{LZ} - \text{C0NTZ} \times (\text{LZ}-1) \text{ when } \text{INUZ}(j) = \text{C0NTZ}. \]

Then the number of variables associated with each species will be

\[\text{NRNZ} = \text{NR} \times \text{NZ}, \]
and the total number of variables will be

\[(4.3) \quad \text{NVAR} = \text{NSPEC} \times \text{NR} \times \text{NZ} .\]

There are two matrices which dominate the storage requirements, both of which are stored as band matrices. For each species \(k, 1 \leq k \leq \text{NSPEC} \), the first matrix \(\mathbf{A} \) is generated from the integrals \(\mathbf{I}^A \) appearing in Eq. (2.3.4). This matrix has \(\text{NRNZ} \) rows and a band width which will be calculated. Recall that the variables are \(\{U_{ij,k} : 1 \leq i \leq \text{NR}, 1 \leq j \leq \text{NZ}, 1 \leq k \leq \text{NSPEC} \} \). Now the program stores these variables as a singly indexed array, and since there are three indices \(i, j, k \), there are several possible choices for generating the single index used in the program. The species index \(k \) is the most rapidly varying index. The order of the two remaining indices is then selected by the program in such a way that the bandwidth of the matrix \(\mathbf{A} \) is a minimum. This selection is done as follows. Let

\[(a) \qquad \text{H0RHBW} = (\text{KR}-1)+(\text{KZ}-1) \times \text{NR} , \quad \text{and} \quad (4.4) \]

\[(b) \qquad \text{VERHBW} = (\text{KR}-1) \times \text{NZ}+(\text{KZ}-1) . \]

\(\text{H0RHBW} \) is the half bandwidth of \(\mathbf{A} \) when the index \(i \) varies more rapidly than the index \(j \), i.e. the ordering is \((k,i,j) \) with \(k \) the most rapidly varying and \(j \) the slowest varying. \(\text{VERHBW} \) is the half bandwidth of \(\mathbf{A} \) when the index \(j \) varies more rapidly than \(i \), i.e. the order is \((k,j,i) \). Then if \(\text{H0RHBW} < \text{VERHBW} \), the program selects the "horizontal" ordering \((k,i,j) \); otherwise the program selects the "vertical" ordering \((k,j,i) \). For each ordering, define the following parameters.

Horizontal Ordering

\[\text{NI} = \text{NSPEC}, \quad \text{NIH} = 1,\]

\[(4.5) \quad \text{NJ} = \text{NSPEC} \times \text{NR}, \quad \text{NJH} = \text{NR},\]

\[\text{NCC} = -(1+\text{NR}) \times \text{NSPEC}, \quad \text{NCCH} = -\text{NR} .\]

Vertical Ordering

\[\text{NI} = \text{NSPEC} \times \text{NZ}, \quad \text{NIH} = \text{NZ},\]

\[(4.6) \quad \text{NJ} = \text{NSPEC}, \quad \text{NJH} = 1,\]

\[\text{NCC} = -(1+\text{NZ}) \times \text{NSPEC}, \quad \text{NCCH} = -\text{NZ} .\]
In terms of these parameters, the single index \(n \) corresponding to the triple \((i,j,k)\) is given by

\[
(4.7) \quad n = i \cdot NI + j \cdot NJ + k \cdot NCC .
\]

with this ordering for the variables \(U_{ijk} = W(n) \), the matrix \(AL \) is a band matrix with \(NRNZ \) rows and a half bandwidth

\[
(4.8) \quad DM = (KR-1) \cdot NIH + (KZ-1) \cdot NJH .
\]

For storage purposes, the bandwidth of \(AL \) is given by

\[
(4.9) \quad FBW = 3 \cdot DM + 1 .
\]

This gives the storage requirement for \(AL \) as

\[
(4.10) \quad SNAL = FBW \cdot NR \cdot NZ .
\]

If we set \(NAL = SNAL \) where \(SNAL \) is the numerical value stored in \(NAL \), then the storage requirements for the matrix \(AL \) is set at run time with the statements appearing in Master Driver

\[
(4.11) \quad \text{COMMON/ALHS/AL(SNAL)}
\]

\[
\text{COMMON/ALSIZE/NAL}
\]

\[
NAL = SNAL
\]

The second matrix which dominates the storage requirements of the direct version is the Jacobian matrix \(PW \) used by the ODE solver GEAR. This matrix \(PW \) has \(NVAR \) rows and is stored in band form. Note that when \(NSPEC > 1 \), the matrix \(PW \) is larger than the matrix \(AL \). The bandwidth of \(PW \) is computed as follows. With \(DM \) defined by Eq. (4.8), the half-bandwidth of \(PW \) is given by:

\[
(4.12) \quad MBW = (1+DM) \cdot NSPEC - 1 .
\]

For storage purposes, the bandwidth of \(PW \) is given by:

\[
(4.13) \quad MFBW = 3 \cdot MBW + 1 .
\]
One might expect $MFBW = 2\cdot MBW + 1$; however, pivoting is required in the decomposition of PW. Therefore a factor of 3 is required rather than the factor 2. The storage requirement for PW is then determined by setting

(4.14) $SNPW = MFBW\cdot NVAR$,

and using the statements

(4.15) $\text{COMMON/GEAR6/GPW(SNPW);}$
COMMON/PWSIZE/NPW

(4.16) $NPW = SNPW$

in Master Driver. Here $SNPW$ is the number determined by the user from Eq. (4.14).

The Master Driver should have the following basic form.

C THIS IS THE MASTER DRIVER FOR DISPL1.
C SPACE is ALLOCATED FOR AL and PW HERE. ANY PRELIMINARY
C CALCULATIONS CAN BE DONE IN A CALL FROM HERE.
DREAL AL,GPW
COMMON/AlHS/AL(SNAL)
COMMON/GEAR6/GPW(SNPW)
COMMON/PWSIZE/NPW
COMMON/AlSIZE/NAL
NAL = SNAL
NPW = SNPW
CALC EXEC
RETURN
END
5. DESCRIPTION OF USER-SUPPLIED DATA

For the computational phase of DISPL1, the program requires the user-supplied subroutines discussed in section 4, certain Mortran macro input, unit assignments, and input data. In this section we discuss this additional information as well as the corresponding needs of all three of the optional graphics programs. In section 5.1 we discuss the Mortran macros and unit assignments for the computational and graphics programs in DISPL1. The namelist input for the computational phase is discussed in section 5.2 and 5.3, i.e. namelists GRID and DATA. The graphics namelists are discussed in sections 5.4-5.7. Specifically, namelist FORMAT is used in all three graphics packages and is discussed in section 5.4. Namelist CSPIN (section 5.5) provides the remaining input for the cross-section plot package; namelist CNTRIN (section 5.6) provides the remaining data for the contour graphics package; and namelist DIM3IN (section 5.7) provides the remaining data for the three-dimensional perspective plotting package. The only user-supplied subroutine in the graphics packages occur in the cross-section plotting package. In this program the user can plot the analytic solution and, in this case, he must provide a single precision version of subroutine ANAL.

In section 5.8 we discuss restart procedures used in the computational phase of the code. Finally, in section 5.9 we describe the organization of the files containing the DISPL1 code.

Before discussing the macros, unit assignments, and namelists, we begin with a general discussion of the namelist feature for users unfamiliar with it. For concreteness we discuss namelist feature in connection with the input data for the computational phase of the code.

For each problem, three sets of input data cards are required. Recall that a complete problem may consist of:

(a) a steady-state calculation, or
(b) a transient calculation, or
(c) a steady-state followed by a transient calculation.

Consider the last situation. We divided the input data into three sections.
The first section consists of that data which is unchanged in passing from a steady-state to a transient calculation (e.g. specification of the domain including the approximation grid and interfaces, number of species, order of the approximating piecewise polynomials, etc.). The second section consists of the remaining data necessary to specify the problem (e.g. boundary values, gap data, reaction coefficients, essential side indicators, output control, etc.). Some or all of the data in the second section can be changed just prior to a transient calculation by resetting this data in the third input data section. Thus, for example, in situation (c), the program uses the first two sections of input data for the steady-state calculation, and the first two sections subject to modifications in the third section for the transient calculation.

These three sections of input data are communicated to the program via the Nam-list feature of Fortran. Namelist uses a free-format similar to ordinary assignment statements and is described in [11, pp. 54-55]. In Namelist terms, the first input section is called GRID, while the other two are called DATA. The data cards thus have the form

```
&GRID free-format statements
free-format statements
...
&END
&DATA free-format statements
free-format statements
...
&END
&DATA free-format statements
free-format statements
...
&END
```

The "&GRID" and "&DATA" must begin in column 2 and must be followed by a blank, i.e. the "b" indicated above. All other cards may begin in any column other than column 1. The "&END" can be on a separate card or at the end of the last free-format card. The free-format cards have the following form.

```
A=1.,B=2.,3.,B(3)=4.,
```

where, in this case, A is a variable set to 1. and the first three elements of the vector B are set to 2., 3., and 4., respectively. Any number of blank columns can follow each comma. Thus, one convenient way of using the namelist format is to put only one variable or vector component on a card, e.g.
A=1.,
B=2.,
3.,
B(4)=4.,

and so allow for easy modification of the input cards. It is recommended that two- and three-dimensional data be entered with explicit subscripts for readability.

The three namelist groups must be provided even if they are not used, i.e. even if there are no variables to be read in, the "&DATA" and "&END" must be provided for the third set of data cards. The variables within a given namelist input can be in any order.

5.1 Mortran Macros and Unit Assignments

Before describing these namelist variables we discuss some other inputs the user must provide which are referred to in the definition of these variables. First, the computational phase of the program has the ability to dump information on unit 11 which can be used for later restart calculation. The restart reads data from unit 10 and when it dumps, the dump is on unit 11. Notice that this procedure will allow multiple restarts from a fixed set of dump information. The user must therefore assign units 10 and 11 (to disk or tape datasets). The program also writes data on unit 12, optionally, for use in later graphical analysis. Again, the user must assign this unit. The assignment of units 10, 11 and 12 must be done even if the program does not use these units.

One of the advantages of using MORTRAN is that the size of storage arrays are specified in macro variables. By changing the values of the following macro integer variables, the Fortran code produced by the Mortran processor will be correspondingly changed.

MAXBRK....integer macro for the maximum number of breakpoints in either the r or z direction. In either direction this number is a bound on the sum of the interior mesh points, interface points, and end points.
MAXTQD....integer macro for the maximum total number of quadrature points per mesh interval in either the r or z direction.

MAXSP.....integer macro for the maximum number of species.

MAXGAP....integer macro for the maximum number of gap interfaces in either coordinate direction.

MAXK......integer macro for the maximum order of splines in either direction.

MAXNØT....integer macro for the maximum number of spline knots in either direction.

MXNRMNZ....integer macro for the maximum number of variables permitted for any single species.

MXNVAR....integer macro for the maximum number of total variables.

MXRGRD....integer macro for the maximum number of points in the r direction for the user-specified grid.

MXZGRD....integer macro for the maximum number of points in the z direction for the user-specified grid.

INFILE.....integer macro for the standard input unit.

DUMPRD....integer macro for the unit from which a restart is read.

DUMPWR....integer macro for the unit on which a dump is written.

GRAPHWR....integer macro for the unit on which the unformatted graphics information is written.

At the time of compilation, these macros should be selected with some care since they determine some of the core requirements of the code. In order to judge the effect of changing these macros, we list the arrays which depend on these macros.
Real arrays

A(MAXK,MAXTQD,MAXBRK), APRIM(MAXK,MAXTQD,MAXBRK), B(MAXK,MAXTQD,MAXBRK), BPRIM(MAXK,MAXTQD,MAXBRK)
AINT(MAXK,MAXBRK), BINT(MAXK,MAXBRK)
AAINT(MAXK,MAXK,MAXBRK), BBINT(MAXK,MAXK,MAXBRK)
HVGAP(MAXGAP,MAXBRK,MAXSP), HHGAP(MAXGAP,MAXBRK,MAXSP)
H1(MAXBRK,MAXSP), H2(MAXBRK,MAXSP), H3(MAXBRK,MAXSP), H4(MAXBRK,MAXSP)
RGAU(MAXTQD,MAXBRK), ZGAU(MAXTQD,MAXBRK), R2PI(MAXTQD,MAXBRK)
CK(MAXSP,MAXSP), CKK(MAXSP,MAXSP,MAXSP)
ALPHA(MAXSP,4), BETA(MAXSP,4), GAMMA(MAXSP,4)
R(MAXBRK), Z(MAXBRK), WR(MAXTQD), WZ(MAXTQD)
HSIG(MAXBRK), HTAU(MAXBRK), RG2PI(MAXBRK), RIF(MAXBRK), ZIF(MAXBRK), RMESH(MAXBRK), ZMESH(MAXBRK)
RKN0T(MAXN0T), ZKN0T(MAXN0T)
RGRID(MAXGRD), ZGRID(MAXGRD)

Integer arrays

IL(MAXBRK), JL(MAXBRK)
SVGAP(MAXBRK), THGAP(MAXBRK)
MLTAB(MAXBRK,MAXBRK), NATL(MAXBRK,MAXBRK)
IFTYPR(MAXBRK), IFTYPZ(MAXBRK)
NS1(MAXSP), N2(MAXSP), NS3(MAXSP), NS4(MAXSP)
IGDSIG(MAXGRD), JGDTAU(MAXZGRD)

We now consider the unit assignments and macro variables associated with the graphics programs. In all three cases the graphics programs read the graphics dataset created on unit 12 by the computational phase of DISPL1. For a particular graphics run this dataset must be again assigned to unit 12. The graphics programs are all written in Mortran and utilize the same macro dataset as was used in the computational phase. This dataset must be assigned to
unit 2. Except for the assignment of graphics JCL [9] there are no other units required.

The Macro variables used in a given execution of a graphics program must be compatible with the Macros used in the computational phase of DISPL1. That is, certain Macro variables used in generating the graphics dataset on unit 12 during the computational phase must have the same value when used in a graphics execution. These variables are MAXSP, MAXK, MXNRNZ, MXNVAR, MAXBRK, and MAXNOT. In addition, other Macro variables must be set. The Macro dataset which is on the first file of the tape is designed to simplify this task. This dataset is compatible with all of the graphics programs as well as the computational phase of DISPL1. Thus, by using the same version of this dataset for all of the programs in DISPL1 we assure the compatibility of MAXSP, MAXK, MXNRNZ, MXNVAR, MAXBRK, and MAXNOT. The following Fortran variables are used only by the graphics programs and must be set for a given compilation of a graphics program.

MAXFRM....integer Macro for the maximum number of duplicate graphs to be created by the CSP program. These duplicate frames are generated only in CSP and only in the cinema mode.

MAXINT....integer Macro which must be set to twice MAXBRK. This number is only used in the CSP program.

NRES1.....integer Macro for the maximum number of points to be plotted on curves in the CSP program. Notice that this value is an upper bound on the Namelist FORMAT variable NRESIN when used in the CSP program.

MRES.....integer Macro which must be set to NRES1+2. This value is used only in CSP.

NRESD.....integer Macro for the maximum number of grid points used along each axis in the CONTOUR and THREED programs. This value is used only in those two programs and is an upper bound on NRESIN when used in connection with these programs.

NWORK.....integer Macro for the size of a workspace array used only in the THREED program. NWORK should be 2*NRESD+4.
MXGNUM....integer Macro for the maximum number of time plots generated by CONTOR or THREED. This macro is used only in those two programs and is associated with arrays which are used only if ITIME in Namelist CNTRIN or DIM3IN is true. In this situation MXGNUM is an upper bound on the Namelist FORMAT variable IGNUM.

MXGRP.....integer Macro for the maximum number of frames to be plotted for a given time value in the CSP program.

5.2 Namelist GRID

We next describe the input variables in GRID and their default values, i.e. values used if not specified.

KR........integer variable for the order of the spline approximation in the r-direction.
KR=4, (Default value) (1 < KR < MAXK < 12)

KZ........integer variable for the order of the spline approximation in the z-direction.
KZ=4, (1 < KZ < MAXK < 12)

NQR.......integer variable for the order of quadrature formula used for r-direction integration.
NQR=MAX(KR,1) (1 < NQR < MAXTQD < 12)

NQZ.......integer variable for the order of quadrature formula used for z-direction integration.
NQZ=MAX(KZ,1) (1 < NQZ < MAXTQD < 12)

However, these are conservative choices. The choices NQR=KR-1 and NQZ=KZ-1 seem to be optimal. See Sample problem 7.4 for a further discussion.

NSPEC.....integer variable for the total number of chemical species.
NSPEC=1, (1 < NSPEC < MAXSP)

DELTA.....integer variable for geometry selection. Use 0 for rectangular geometry, 1 for cylindrical geometry, and 2 for spherical geometry (one dimension only).
DELTA=0,
RLOW......real variable for the left hand boundary of the domain.
 RLOW=0.0,
RUP.......real variable for the right hand boundary of the domain.
 RUP=1.0,
ZLOW......real variable for the lower boundary of the domain.
 ZLOW=0.0,
ZUP.......real variable for the upper boundary of the domain.
 ZUP=1.0,
NTIR......integer variable for the total number of interfaces along the
 R axis.
 NTIR=0, (0 < NTIR < MAXBRK)
NTIZ......integer variable for the total number of interfaces along the
 Z axis.
 NTIZ=0, (0 < NTIZ < MAXBRK)
RIF.......real vector of interface mesh points (R coordinate).
 RIF=0.0,0.0,... (vector is initialized to zero) (Dimension is
 NTIR)
ZIF.......real vector of interface mesh points (Z coordinate).
 ZIF=0.0,0.0,... (vector is initialized to zero) (Dimension is
 NTIZ)
IFTYPR....interface type indicator integer for r-direction. Use 0 for
 a gap interface, or 1 for a continuous interface. (Notice
 that all r-direction interfaces at a particular r-coordinate
 are therefore of the same type.)
 IFTYPR=1,1,... (Dimension is NTIR)
IFTYPZ....interface type indicator integer for z-direction. Use 0 for
 a gap interface or 1 for a continuous interface. (Notice that
 all z-direction interfaces at a particular z-coordinate are
 therefore of the same type.)
 IFTYPZ=1,1,... (Dimension is NTIZ)
NMR.......integer variables of the total number of non-interface mesh
 points in the r-direction (not including the end points RLOW
 and RUP).
 NMR=0, (0 < NMR < MAXBRK)
NMZ......integer variable of the total number of non-interface mesh points in the z-direction (not including the end points ZLOW and ZUP).
NMZ=0, (0 ≤ NMZ ≤ MAXBRK)

RMESH.....real vector of non-interface mesh points (r-coordinate). If the vector RMESH is omitted, the code will use NMR to generate a set of equally spaced interior points.
RMESH(I), I=1,NMR

ZMESH.....real vector of non-interface mesh points (z-coordinate). If the vector ZMESH is omitted, the code will use NMZ to generate a set of equally spaced interior points.
ZMESH(J), J=1,NMZ

CONTR.....integer variable of continuity (in the r-direction) across mesh points. (0 < CONTR < KR-1)
CONTR=KR-1, (the default value is set to KR-1)

CONTZ.....integer variable of continuity (in the z-direction) across mesh points. (0 < CONTZ < KR-1)
CONTZ=KR-1,

INUR......integer vector of continuity indices (in the r-direction) at non-interface mesh points. These values can be used to override the continuity value CONTR at specified non-interface mesh points.
INUR=CONTR,CONTR,... (the default value of CONTR is set by the code) (Dimension is NMR)

INUZ......integer vector of continuity indices (in the z-direction) at non-interface mesh points. These values can be used to override the continuity value CONTZ at specified non-interface mesh points.
INUZ=CONTZ,CONTZ,... (Dimension is NMZ)

MATL......two-dimensional integer array of material indices. MATL is dimensioned (MAXBRK,MAXBRK) and is defined for
MATL(I,J) I=1,...,NTIR+1
J=1,...,NTIZ+1
The default is MATL=1,1,...
ALGBCS....logical indicator for selecting method of treating algebraic boundary conditions. If ALGBCS is true, the values of the boundary conditions as provided through the user-supplied subroutine BRHØ are used. If ALGBCS=F, the user routine BRHØDT is used to provide the boundary conditions. Note that in BRHØDT one must provide the time derivative of the essential boundary values. If ALGBCS=F, BRHØ can be a dummy routine, while if ALGBCS=T, BRHØDT can be a dummy routine.

ALGBCS=T,

CØNSRV....logical indicator of selecting conservative or substantial derivative form of convection term. If CØNSRV is true, the conservative form is used. If CØNSRV is false the substantial derivative form is used.

CØNSRV=T,

IREVLA....vector of logical variables for indicating the presence of a heat capacity coefficient in the time derivative term. IREVLA has dimension NSPEC and IREVLA(K)=T, indicates that \([\rho C_p]_K(T,P,Z,\Omega) \neq 1.0\); in this case the left hand side of Eq. (3.1) is reevaluated at each time step unless IRHØ(K)=T. IREVLA=F,F,...

IRHØ......vector of logical variables for indicating whether \([\rho C_p]_K \equiv 0\) or not. IRHØ(K)=T, implies that \([\rho C_p]_K \equiv 0\). IRHØ(K)=F, implies that \([\rho C_p]_K \neq 0\). See Note at end of namelist GRID (page 78).

IRHØ=F,F,...

INITSW....logical indicator for using the user-supplied subroutine INDATA to provide an initial estimate of the solution for the steady-state calculation or initial conditions for the transient calculation.

INITSW=T,

GUESSW....logical indicator for using the program's initial estimate of the solution for the steady-state calculation. Whenever possible the user should provide an initial estimate for a steady-state calculation.

GUESSW=T,

Note: If \([\rho C_p]_K \equiv 1\) use IREVLA(K)=F, and IRHØ(K)=F, (both default values). If \([\rho C_p]_K \equiv 0\) use IREVLA(K)=T, and IRHØ(K)=T, (IREVLA(K)=F, and IRHØ(K)=T, can also be used -- it generates a warning message). If \([\rho C_p]_K \neq 1\) and \(\neq 0\) use IREVLA(K)=T, and IRHØ(K)=F.
STEDSW....logical indicator for doing a steady-state calculation.
 STEDSW=T,

TRANSW....logical indicator for doing a transient calculation. A transient
calculation expects initial conditions. These can be provided by
either the initial spline coefficients, a least squares fit to the
initial data (INITSW=T,) or a steady-state calculation.
 TRANSW=T,

ISTDFQ....integer variable for the frequency of output from the steady-
state calculation. Output occurs every ISTDFQ time steps
after the first time step. Output also occurs on the first
time step. (Notice that ISTDFQ < 0 is meaningless.) The out-
put includes an evaluation of the approximate solution at the
Gaussian point grid (or optionally on user-specified grid) and
may also give the error at points on the grid via calls to
user-supplied subroutine ANAL.
 ISTDFQ=10,

IRGRD....integer variable of the number of points in the r-direction
for the optional user-specified output grid. If IRGRD=0 then
the tensor product of the Gaussian points in the r and z
direction is used to form the output grid. If IRGRD is posi-
tive, then the grid used is the tensor product of RGRID and
ZGRID (see below). For a one-dimensional problem in z, set
IRGRD=1,.
 IRGRD=1, (0 < IRGRD < MYRGRID)

RGRID....real vector of IRGRD points in the r-direction for user's
specified grid. When IRGRD=0 or 1, the vector kGRID is not
needed. When IRGRD > 2, the vector RGRID can be omitted. In
this case, the code generates a set of IRGRD equally spaced
output points RGRID(I) such that the first point is equal to
RLOW and the last point is equal to RUP.

JZGRD....integer variable of the number of points in the z-direction
for user's specified grid. For a one-dimensional problem in
r, set JZGRD=1,.
 JZGRD=1, (0 < JZGRD < MXZGRID)
ZGRID.....real vector of JZGRD points in the z-direction for user's specified grid. When JZGRD=0 or 1, ZGRID is not needed. When JZGRD > 2, ZGRID can be omitted in which case the code generates equally spaced output points, the first and last being ZLOW and ZUP.

IORD.....integer vector indicating order of derivatives computed on the user-supplied output grid. The code always provides the approximate solution (either user-supplied or Gaussian). However, if a user-supplied grid is used, partial derivatives of the approximation can be requested. IORD is a vector of, at most, fifteen components. Each component is an integer of the form 10*I+J and will cause the mixed partial of order I with respect to R and order J with respect to Z to be computed. Thus IORD = 10,11, will cause \(\frac{\partial U(K)}{\partial R} \) and \(\frac{\partial^2 U(K)}{\partial R \partial Z} \) to be computed as well as \(U(K) \) for all K. Notice that the user need not specify I=J=0 (the function value case).

IORD=0,0,...

IANAL.....logical indicator for giving the analytic solution in user-supplied subroutine ANAL. If IANAL=F, subroutine ANAL can be a dummy routine. If IANAL=T, subroutine ANAL is used to compute the steady state or the transient solution on the Gaussian or user-specified grid.

IANAL=F.

ISTDRS....logical indicator for restarting the steady-state calculation from a dump. This indicator and the next two indicators can be used to restart a calculation from a dump generated during a previous run. The code dumps information under the following four conditions: if it detects that time is expiring during a steady-state calculation; at a normal conclusion of a steady-state calculation; if it detects that time is expiring during a transient calculation; and at the normal conclusion of a transient calculation. Only the last dump during a given run is meaningful since each dump writes from the beginning of the file. Thus to generate a dump at the normal conclusion of the steady-state calculation, set TRANSW=F. (See §5.8 for further
information about restarting.) The ISTDRS indicator is associated with restarting the first type of dump, the DUMPSW indicator is associated with restarting the second type; and the ITRARS indicator is associated with the third type. The fourth type of dump can be utilized as follows: Set up an array of \(UT_0 \) of dimension \(N_2 \) and set \(N_\text{OUT} = N_1 < N_2 \). The program will then dump at \(T = UT_\text{OUT}(N_1) \). On the restart run set \(\text{INITSW, GUESSW, and STEDSW to false and TRANSW to true} \) and use \(N_\text{OUT} = N_2 \). The calculation will restart from \(UT_\text{OUT}(N_1) \) and process to \(UT_\text{OUT}(N_2) \). To restart a steady-state calculation set \(\text{ISTDRS=T, INITSW=F, GUESSW=F, and STEDSW=T} \). The code will then read the current value of the approximating coefficients and time (variables \(W \) and \(T \), respectively) from unit 10.

\(\text{ISTDRS=F, DUMPSW} \ldots \text{logical indicator for reading coefficients from unit 10}. \) If the dump in a previous run occurred at the normal conclusion of the steady-state calculation, the code dumped the final coefficients. By setting \(\text{DUMPSW=T} \), these coefficients can be read from unit 10 and can be used in either a new steady-state or transient calculation.

\(\text{DUMPSW=F, ITRARS} \ldots \text{logical indicator for restarting a transient calculation which ran out of time}. \) If \(\text{ITRARS=T} \), then the current value of the approximate coefficients and time (variables \(W \) and \(T \), respectively) are read from unit 10. When \(\text{ITRARS} \) is true, \(\text{INITSW, GUESSW, and STEDSW must be false and TRANSW must be true} \).

\(\text{ITRARS=F, ITRC0D} \ldots \text{logical variable to specify a cold rather than hot restart of a transient calculation}. \) Normally to restart a transient calculation we set \(\text{ITRARS=T} \). If, however, the problem has changed,
e.g. boundary conditions modified, we do not want a hot restart. In this case specify ITRCØD=T as well as ITRARS=T to get a cold restart.

ITRCØD=F,

MXSTED....integer variable for the maximum number of time steps permitted during a steady-state calculation.

MXSTED=500,

LGSTØP....logical variable for specifying a user-controlled termination criterion (sometimes called a G-stop facility). If LGSTØP=T, the routines GSTØPF and EVALFN are intended to be modified and extended by the user to specify the termination criterion. The GSTØPF routine returns a flag (IGSTØP) via COMMON indicating either no change (IGSTØP=0), exit DISPL1 to start a new problem (IGSTØP=1), or exit DISPL1 to change data and continue the current problem (IGSTØP=2). Note that GSTØPF is called after each successful time-step and is called only if LGSTØP=T. Subroutine GSTØPF can use subroutine EVALFN to evaluate the current solution as an aid in determining whether or not an exit should occur.

LGSTØP=F,
5.3 **Namelist DATA**

As mentioned earlier there are two sets of Namelist DATA. The first set is read once immediately after GRID before any calls to the calculation drivers. The second set is read just before the call to TIMEX, the transient driver. Thus the first set is read before either a steady state or a transient calculation is started, while the second set is read just before a transient calculation is started. If a steady-state calculation is to be followed by a transient calculation, the first set is used to define the steady-state case while the second set is used to define the transient case. If there are no changes in the variables appearing in the first set of Namelist DATA, then the second set can be a null set. Furthermore, the second set need only contain those variables in Namelist DATA which are changed when passing from a steady-state to a transient calculation. The variables and defaults for Namelist DATA are as follows.

\[W \ldots \text{real vector of spline coefficients. } W \text{ is an array of dimension } \text{MXNVAR}. \text{ This array can be used to specify the initial values for either a steady-state or a transient calculation by setting INITSW=F, in Namelist GRID. However, since } W \text{ is an array of spline coefficients, it can be specified only in exceptional circumstances (cf. sample problem 7.4). Moreover, in order to specify } W \text{ one must know the ordering of } W \text{ used in the code. This ordering is discussed in section 4.10. } W=1.0,1.0,\ldots,\]

\[\text{ALPHA} \ldots \text{real variable array of boundary value coefficients. } \text{ALPHA is dimensioned (MAXSP,4) and the user must provide} \]

\[
\text{ALPHA}(I,J) \quad I=1,2,\ldots,\text{NSPEC} \\
\quad J=1,2,3,4 \text{ (side index)}
\]

The default is \text{ALPHA}=0.0,0.0,\ldots,\]

\[\text{BETA} \ldots \text{real variable array of boundary value coefficients. } \text{BETA is dimensioned (MAXSP,4) and the user must provide} \]

\[
\text{BETA}(I,J) \quad I=1,2,\ldots,\text{NSPEC} \\
\quad J=1,2,3,4 \text{ (side index)}
\]

The default is \text{BETA}=1.0,1.0,\ldots,
GAMMA.....real variable array of boundary value coefficients. GAMMA is
dimensioned (MAXSP,4) and the user must provide

 GAMMA(I,J) I=1,2,...,NSPEC
 J=1,2,3,4 (side index)

The default is GAMMA=0.0,0.0,...,

NS1(K)....integer indicator for essential boundary conditions of side 1 for
the K-th species. If NS1(K)=1 then the boundary condition is essen-
tial, i.e. BETA(K,1)=0. If NS1(K) is 0 then the boundary condition
on side 1 is non-essential for species K. When NS1(K)=-1, no
boundary condition is imposed on side 1 for species K.†
NS1=0,0,...

NS2(K)....integer indicator for essential boundary conditions on side 2 for
the K-th species. See description of NS1 indicator.
NS2=0,0,...

NS3(K)....integer indicator for essential boundary conditions on side 3 for
the K-th species. See description of NS1 indicator.
NS3=0,0,...

NS4(K)....integer indicator for essential boundary conditions on side 4 for
the K-th species. See description of NS1 indicator.
NS4=0,0,...

For the standard Dirichlet or Neumann condition see the variables DRCHLT and
NEUMAN at the end of this namelist.

HU1......real array of boundary function h for side 1. HU1 is dimensioned
 (MAXBRK,MAXSP) and the user must provide

 HU1(I,K) I=1,2,...,NTIZ+1
 K=1,2,...,NSPEC

The default value is HU1=1.0,1.0,...,

HU2......real array of boundary function h for side 2. HU2 is dimensioned
 (MAXBRK,MAXSP) and the user must provide

 HU2(I,K) I=1,2,...,NTIR+1
 K=1,2,...,NSPEC

The default value is HU2=1.0,1.0,...,

†When specifying the indicators NS1(K), NS2(K), NS3(K), and NS4(K) in Namelist
DATA (pp. 74-75), the user must be sure to also specify the corresponding
values of ALPHA(K,I), BETA(K,I), and GAMMA(K,I). These values can be specified
directly or by use of the logical indicators DRCHLT(K,I) or NEUMAN(K,I).
HU3.......real array of boundary function h for side 3. Description is as for HU1.
HU3=1.0,1.0,...,

HU4.......real array of boundary function h for side 4. Description is as for HU1.
HU4=1.0,1.0,...,

HVGAP.....real array of gap coefficients in the z-direction. HVGAP is of dimension (MAXBRK,MAXBRK,MAXSP) and the user must provide
HVGAP(I,J,K) I=1,2,...,number of vertical gaps along R
J=1,2,...,NTIZ+1
K=1,2,...,NSPEC
Default value is HVGAP=0.0,0.0,...,

HHGAP.....real array of gap coefficients in the r-direction. HHGAP is of dimension (MAXBRK,MAXBRK,MAXSP) and the user must provide
HHGAP(J,I,K) J=1,2,...,number of horizontal gaps along Z
I=1,2,...,NTIR+1
K=1,2,...,NSPEC
Default value is HHGAP=0.0,0.0,...,

TO.......real variable for initial time at start of transient calculation.
TO=0.0,

NUTOUT....integer variable related to the frequency of output during the transient computation. NUTOUT is the number of major time values in the array UTOUT (see below).
NUTOUT=2,

UTOUT.....real vector of NUTOUT major time values. Note that UTOUT(1) is the time at which the transient calculation begins and must agree with TO, the physical initial time. UTOUT is of dimension 100 and its default value is
UTOUT=0.0,1.0,2.0,0.0,0.0,0.0,...,
NUFREQ....integer variable of the number of equally spaced points on each interval \([\text{UTOUT}(I),\text{UTOUT}(I+1)]\). Output will occur at each such point. If NUFREQ=1 then output will occur at each time \(\text{UTOUT}(I), 1 \leq I \leq \text{NUTOUT}\). Notice that NUFREQ \(\leq 0\) is meaningless.

NUFREQ=1,

GRAPH.....logical indicator to write output of unit 12 for later use in graphic analysis. This output will occur during each ordinary output for the steady-state or transient calculation.

GRAPH=F,

NUMGRF....number of run. This integer variable is written on unit 12 and is used by the graphics programs to identify the run which produced the graphics file.

NUMGRF=0,

EPS.....real variable of accuracy requirement for the GEAR subroutines used in solving the ordinary differential equations system.

EPS=.0001,

HINIT.....real variable of initial step size for GEAR calculation.

HINIT=.001,

MXGORD....integer variable for selecting the maximum order used in the ODE solver. MXGORD must be between 1 and 5.

MXGORD=5,
IPRSW1....integer variable for certain additional output from subroutine INPROC. If IPRSW1=0 print will not occur. If IPRSW1=1 the print will occur. (This print switch and the following print switches are primarily of use for debugging the code.)
IPRSW1=0,

IPRSW2....integer variable for additional output from subroutine INIFIT and certain output from subroutine INPROC. (See description of IPRSW1.)
IPRSW2=0,

IPRSW3....integer variable for additional output from subroutine GFUN and certain output from subroutine PEDERV. (See description of IPRSW1.)
IPRSW3=0,

IPRSW4....integer variable for additional output from subroutines GUESS1, RHS, and TIMEX. (See description of IPRSW1.)
IPRSW4=0,

IPRSW5....integer variable for certain additional output from subroutine PEDERV. (See description of IPRSW1.)
IPRSW5=0,

IPRSW6....integer variable for additional output from subroutine BLKSOR (in the iterative version of the code only).
IPRSW6=0,

DRCHLT(K,I)..logical indicator specifying that the K-th species on side I satisfies a Dirichlet boundary condition. DRCHLT(K,I)=T, will set NSI(K)=1, ALPHA(K,I)=1.DO, BETA(K,I)=0.DO, and GAMMA(K,I)=1.DO.
DRCHLT(K,I)=F,

NEUMAN(K,I)..logical indicator for a Neumann boundary condition. NEUMAN(K,I)=T, will set NSI(K)=0, ALPHA=0.DO, BETA=1.DO, and GAMMA=1.DO.
NEUMAN(K,I)=F,
5.4 Namelist FORMAT

This and the following three namelists provide the input for the graphics programs which are available with this code. The first namelist, FORMAT, provides variables common to all three of the graphics packages. The first graphics package is CSP which provides a one-dimensional cross section plotting capability. The namelist for this package is CSPIN. The second graphics package is CONTOR which provides a contour plotting capability. The namelist for this package is CNTRIN. The third graphics package is THREED which provides perspective surface plotting capability. The namelist for this package is DIM3IN.

The graphics programs will process files that were generated by several calls to EXEC. For each complete problem being graphed (that is for each time EXEC was called), the graphics program reads Namelist FORMAT and either Namelist CSPIN, CNTRIN, or DIM3IN. For example, if EXEC was called twice and we are using the CSP program, we need Namelist FORMAT and CSPIN followed by Namelist FORMAT and CSPIN.

In discussing the namelist input for these graphics packages, the following terminology will be used. A frame is a physical plotting area, and for each time value one can have several frames. In the CONTOR and THREED package there is just one coordinate axis per frame and one curve (contour, surface plot) per axis. In the CSP package, one can have one or more coordinate axis per frame with the same number of axis in each frame. If there is more than one axis per frame, then there can be only one curve per axis. On the other hand if there is one coordinate axis per frame, then there can be several curves per axis.

The following variables are in namelist FORMAT.

ITRTV.....integer variable indicator specifying which version of the code was used to generate to graphics dataset. (unit 12). This indicator establishes the ordering assumed for the spline coefficients. If ITRTV is 1, the ordering assumed is that used in the iterative version. If ITRTV is anything else, the ordering is assumed to be that used in the direct version of the code.
ITRTV=0,

IGNUM.....integer variable for the number of curves (or contours or three-dimensional perspectives) to be produced at each time value.
IGNUM=1, (1 < IGNUM < MXGNUM)

NRESIN.....integer variable for the number of grid points used for graphical purposes in each coordinate direction. For CSP it
is recommended to use $200 \leq \text{NRESIN} \leq 1000$. For CONTOR and THREED recommended values of $10 \leq \text{NRESIN} \leq 50$.

$\text{NRESIN} = \text{NRES1}$, for CSP ($1 \leq \text{NRESIN} \leq \text{NRES1}$)

$\text{NRESIN} = \text{NRESD}$, for CONTOR or THREED ($1 \leq \text{NRESIN} \leq \text{NRESD}$)

ITIME.....logical variable for use in time plots. When ITIME=T, the graphs generated will involve time as one of the independent variables. In the case of CSP, the solution at a given point is plotted as a function of time. At present this plot consists only of points without any connecting curve. In the case of CONTOR, contours are plotted on a plane in which the horizontal axis is time, and the other axis is a line parallel to either the r or the z axis. This line is specified by setting RMIN,ZMIN,RMAX,ZMAX in Namelist CNTRIN. In the case of THREED, the independent variables are the same as in CONTOR, however, the coordinates of the line are specified in Namelist DIM3IN rather than CNTRIN. Note: for CONTOR and THREED, the time values must be equally spaced.

ITIME=F, (Default value)

NTIME.....integer variable for the number of time values used when ITIME=T. When ITIME=F, this variable can be ignored.

$\text{NTIME} = \text{NRES1}$, (Default for CSP) ($1 \leq \text{NTIME} \leq \text{NRES1}$)

$\text{NTIME} = \text{NRESD}$, (Default for CONTOR and THREED) ($1 \leq \text{NTIME} \leq \text{NRESD}$)
5.5 Namelist CSPIN

The variables described here are used in the cross section plotting (CSP) program only.

ICN.....integer variable indicator for cinema mode. If ICN=1 the code uses its cinema mode to produce multiple copies of each frame during graphing. If ICN is anything else, cinema mode is not used and only one copy of each frame may be requested.
ICN=0,

IFORMT....integer indicator for grouping format of graphs. If IFORMT is set to 1, the graphs will be produced in packed format. That is, all the curves in a frame will be plotted on a single set of axes. If IFORMT is set to anything else, the code will use its separate mode. In this mode each curve on a given frame will be plotted on a separate set of axes. Thus multiple sets of axes will occur on a single frame.
IFORMT=0,

IANAL.....logical indicator for graphing the analytic solution. If IANAL is TRUE, the analytic solution for each species is plotted along with the numerical solution. In this case the user must supply a SINGLE PRECISION version of SUBROUTINE ANAL. If IANAL is FALSE the analytic solution will not be plotted although a dummy version of SUBROUTINE ANAL must be provided.
IANAL=F,

YAXMIN....real vector used as an estimate of the minimum value of the ordinate for all curves in a given frame (where the frame number for a given time is defined in LGRØUP). This estimate is checked by the CSP code and is used if it is reasonably close to the actual minimum value needed for all the curves within the given frame. By proper selection of YAXMIN and YAXMAX a constant vertical axis range can be used for all time values in a frame, e.g. for movie generation. Since there is a separate estimate for each frame there are max(LGRØUP(I)) components in YAXMIN and YAXMAX.
YAXMIN=0.0,0.0,

YAXMAX....real vector used as an estimate of the maximum value of the ordinate for all curves in a given frame. This vector is used with YAXMIN in establishing an initial vertical axis range for each
frame.
YAXMAX=1.0,1.0,

ISPEC.....integer vector relating species numbers with curves. The vector ISPEC is used to identify the I^{th} curve with a graph of species ISPEC(I). This vector has IGNUM components. Frequently we select ISPEC(I)=I so that we simply plot each species. Note, however, that a given species can be associated with several curves, e.g. ISPEC(I)=I_0 for several values of I.
ISPEC=1,2,...,MXNUM,

LGROUP....integer vector used to associate a given curve with a given frame. In general, the i^{th} curve is plotted on the LGROUP(I) frame. Thus the I^{th} curve plots the ISPEC(I) species on the LGROUP(I) frame. Notice that if we wish to plot, say, the first species on frames one and two we use ISPEC(1)=ISPEC(2)=1, LGROUP(1)=1, and LGROUP(2)=2. There are IGNUM components in LGROUP.
LGROUP=1,1,..., (1 < I < IGNUM)

LORDER....integer vector used to order curves on frames. If IFORMT=1, the LORDER(I) can be used for the I^{th} curve (see [10], p. 16) for a sample of these symbols). The selected symbol will be plotted at a few selected points along the I^{th} curve. If IFORMT#1, the separate axes plots in the frame will be ordered from the bottom of the frame, i.e. the I^{th} curve will be the LORDER(I) plot from the bottom of the LGROUP(I) frame. There are IGNUM components in LORDER.
Usually we use LORDER(I)=I.
LORDER=1,1,..., (1 < I < IGNUM)

A1........real vector or r coordinates of the first endpoint of the cross-sections. There is a separate cross-section associated with each frame and thus there are max LGROUP(I) cross-sections to provide. Each cross-section is provided by giving the r and z components of the two endpoints of the cross-section line. Thus, for the I^{th} frame, the line used for the
cross-section connects \((A1(I), B1(I))\) with \((A2(I), B2(I))\).

\(A1=0.0,0.0,..., (1 \leq I \leq \text{MAX(LGR0UP)})\)

\(B1.....\) real vector of \(z\) coordinates of the first endpoint of the cross-sections.

\(B1=0.0,0.0,..., (1 \leq I \leq \text{MAX(LGR0UP)})\)

\(A2.....\) real vector of \(r\) coordinates of the second endpoint of the cross-sections.

\(A2=1.0,1.0,..., (1 \leq I \leq \text{MAX(LGR0UP)})\)

\(B2.....\) real vector of \(z\) coordinates of the second endpoint of the cross-sections.

\(B2=1.0,1.0,..., (1 \leq I \leq \text{MAX(LGR0UP)})\)

\text{COMPS}..... logical variable to do a composite plot. If set to TRUE, all plots will occur on a single frame.

\text{COMPS}=F,

\text{SCALE}..... logical variable to do automatic axis scaling. If set to TRUE, axes will be rescaled as the solution evolves. If FALSE, the values in YAXMIN and YAXMAX will be used.

\text{SCALE}=F,
5.6 Namelist CNTRIN

In this subsection we describe the variables in Namelist CNTRIN which, together with those in Namelist FORMAT, provide the input data for the contouring program.

ISPEC.....integer vector of species numbers. The vector, just as the ISPEC vector in Namelist CSPIN, specifies that for a given time value, the \textit{i}th frame will be a contour plot of species ISPEC(I).

\[ISPEC=1,2,\ldots, (1 < i \leq \text{IGNUM}) \]

RMIN......real vector of minimum \textit{r} coordinate to be contoured on the \textit{i}th frame. There are IGNUM components in RMIN.

\[RMIN=0.0,0.0,\ldots, (1 < i \leq \text{IGNUM}) \]

RMAX......real vector of maximum \textit{r} coordinate to be contoured on the \textit{i}th frame. There are IGNUM components in RMAX.

\[RMAX=1.0,1.0,\ldots, (1 < i \leq \text{IGNUM}) \]

ZMIN......real vector of minimum \textit{z} coordinate to be contoured on the \textit{i}th frame. There are IGNUM components in ZMIN.

\[ZMIN=0.0,0.0,\ldots, (1 < i \leq \text{IGNUM}) \]

ZMAX......real vector of maximum \textit{z} coordinate to be contoured on the \textit{i}th frame. There are IGNUM components in ZMAX.

\[ZMAX=1.0,1.0,\ldots, (1 < i \leq \text{IGNUM}) \]

NRESR.....integer variable for the number of grid points used for the \textit{r} direction. This variable defaults to the value of NRESIN in Namelist FORMAT.

\[NRESR=NRESIN, \]

NRESZ.....integer variable for the number of grid points used for the \textit{z} direction.

\[NRESZ=NRESIN, \]
5.7 Namelist DIM3IN

In this subsection we describe the values in Namelist DIM3IN which, together with those in Namelist FORMAT, provide the input data for the three-dimensional perspective program (THREED).

The variables ISPEC, RMIN, RMAX, ZMIN, ZMAX, NRESR, and NRESZ as described in section 5.6 are required to specify the species indices and the rectangular plotting domain in r-z space. These variables are not repeated here for the sake of brevity. We also need to specify the viewpoint of the surface and bounds on the function axis.

RVIEW.....real variable describing the r coordinate of the viewpoint. In terms of actual coordinates we view the three-dimensional surface from the point (RVIEW,ZVIEW,FVIEW). It is recommended that the viewpoint be initially selected to be a considerable distance from the surface. On subsequent runs the viewpoint may be refined. Note when ITIME=T, RVIEW is associated with the time axis.

RVIEW=100.0,100.0,..., (1 ≤ I ≤ IGNUM)

ZVIEW.....real variable specifying z coordinate of viewpoint.

ZVIEW=100.0,100.0,..., (1 ≤ I ≤ IGNUM)

FVIEW.....real variable specifying function axis coordinate of viewpoint.

FVIEW=100.0,100.0,..., (1 ≤ I ≤ IGNUM)

FMATMN.....real variable used to provide an estimate of the minimum function value for all species over all time values. This variable, along with FMATMX, can be set large enough to provide a constant function axis for all plots in a given run. Otherwise, the code will adjust both FMATMN and FMATMX to accommodate the data.

FMATMN=0.0,0.0,..., (1 ≤ I ≤ IGNUM)

FMATMX.....real variables used to provide an estimate of the maximum function value for all species over all time values.

FMATMX=1.0,1.0,..., (1 ≤ I ≤ IGNUM)
5.8 Summary of Restart Procedures

Recall that the program writes restart data on unit 11, and reads restart data from unit 10. Furthermore, the write on unit 11 will always occur when any of the following circumstances occur.

(1) If time expires during a steady-state calculation.
(2) At the conclusion of a steady-state calculation.
(3) If time expires during a transient calculation.
(4) At the conclusion of a transient calculation. Note that the value of NUTOUT determines where the transient calculation stops. For example, if the UTOUT array has 21 time values and we set NUTOUT=8, then the program will stop at the end of the first 8 time values in UTOUT. If one wished to continue, then on a subsequent restart, one would set $8 < \text{NUTOUT} \leq 21$. The program will then proceed from UTOUT(8) to UTOUT(NUTOUT).

The general procedure for a restart is as follows.

(a) Assign the previously written restart dataset to unit 10 (it was previously assigned to unit 11).
(b) Assign to unit 11 the dataset on which the restart data will be written at the conclusion of this run.
(c) In Namelist GRID set
 $$\text{INITSW}=F,$$
 $$\text{GUESSW}=F,$$
(d) If this is a restart from a steady-state calculation and is a continuation of a steady-state calculation, then leave STEDSW=T, and leave TRANSW as it was in the previous calculation. Then set ISTDRS=T,
(e) If the previous run was a normal conclusion of a steady-state calculation with DUMPSW=T, and if one wishes to restart from this run to do a transient calculation, set the following indicators: STEDSW=F, TRANSW=T, DUMPSW=T, (in this case DUMPSW=T, serves to indicate that transient will read the steady-state data).
(f) If the previous run was a transient calculation, and this is a restart to continue this calculation then set ITRARS=T, and make sure STEDSW=F,
5.9 DISPL1 Files

The DISPL1 package consists of the following files:

1. The DISPL1 macros.
2. The DISPL1 numerical package.
3. The CSP graphics program.
4. The ÇÖNTÖR graphics program.
5. The THREEED graphics program.

In addition the MÖRTRAN preprocessor consists of

1. The MÖRTRAN macros.
2. The preprocessor itself.

To utilize these files, first compile the MÖRTRAN preprocessor itself into an executable program (use a Fortran 77 compiler). To conduct any MÖRTRAN compile execute the preprocessor assigning the MÖRTRAN macros to unit 1, the DISPL1 macros to unit 2 and the source MÖRTRAN code (e.g. the DISPL1 package) to unit 5. The MÖRTRAN listing will be generated on unit 6 and the FÖRTRAN translation of the MÖRTRAN source code will be generated on unit 7. The resulting FÖRTRAN can then be compiled with a Fortran 77 compiler. Using the above procedure the DISPL1 numerical package, and each of the three graphics programs can be compiled. In the case of the graphics programs the resulting object code can be linked to the DISSPLA library to produce an executable file.

To run a problem the user file (master driver and user routines) should be compiled (in MÖRTRAN or FÖRTRAN) and linked to the DISPL1 numerical object code to produce an executable file. This file should be executed with the Namelist assigned to unit 5, restart and dump files assigned to units 10 and 11, and graphics file assigned to unit 12. To execute any of the graphics programs, assign unit 12 from a previous computational run and assign the Namelist input to unit 5.
5.10 Error Messages

This program performs some consistency checks on the input stream. We distinguish between fatal and non-fatal errors in the input. Whenever possible an error is interpreted as non-fatal in which case the error is corrected and execution resumes. When a non-fatal error is encountered, the error is corrected and a message is printed informing the user of the correction. For example, if the number of quadrature points per interval in the r direction NQR is less than KR-1, then the quadrature error may exceed the spatial truncation error, and even worse, the matrix AL can be so poorly conditioned that it cannot be inverted. Hence if NQR < KR-1, the code will set NQR = KR-1 and then continue. This same situation also applies to NQZ.

For fatal errors, the program prints a message and then stops. The following errors are recognized as fatal errors in the computational phase of DISPL1.

1) If side J has a non-essential boundary condition for the K-th species, we have

$$\alpha h u + \beta D_\theta u = \gamma h$$

on side J where $\beta = \beta(K,J) \neq 0$. Thus the code checks that $NSJ(K)$ and $\beta(K,J)$ are not both zero. If they are, the following message appears.

***INPUT ERROR.BETA=O. FOR A NON-ESS. SIDE.

2) Recall that MAXBRK is the Macro parameter for the maximum number of intervals in either direction. The code checks whether $LR > MAXBRK-1$ or $LZ > MAXBRK-1$, and if so prints

***INPUT ERROR.NUMBER OF INTERVALS NOT CONSISTENT WITH NUMBER OF BREAKPOINTS.

3) NRNZ is the number of variables associated with one species, and MXNRNZ is the Macro parameter for this variable. The code checks $NRNZ > MXNRNZ$, and if so prints

***INPUT ERROR.NUMBER OF VARIABLES PER SPECIES EXCEEDS DIMENSIONED SIZE.

4) NVAR is the total number of variables for the problem, and MXNVAR is the corresponding Macro parameter. The code checks $NVAR > MXNVAR$ and if so prints
***INPUT ERROR. TOTAL NUMBER OF VARIABLES EXCEEDS DIMENSIONED SIZE.

(5) NQR(NQZ) is the number of quadrature points per interval, and MAXTQD is the corresponding Macro parameter. The code checks NQR > MAXTQD or NQZ > MAXTQD and if so prints

***INPUT ERROR. NUMBER OF QUADRATURE POINTS EXCEEDS DIMENSIONED SIZE.

(6) NUTOUT is the number of output times in a transient calculation. The code checks if NUTOUT < 2 or NUTOUT > 100, and if so prints

***INPUT ERROR. NUTOUT IS OUTSIDE THE INTERVAL (2,100).

(7) The PW array is dimensioned at run time by the user setting NPW in the DRIVER. The code checks whether the user has set NPW large enough, that is, whether MFBW*NVAR > NPW for the direct version, or FBW*NVAR*NSPEC > NPW for the iterative version. In either case the code prints

***PW ARRAY IS TOO SMALL.

(8) The AL array is dimensioned at run time by setting NAL in MASTER DRIVER. For either version the code checks whether FBW*NRNZ > NAL, and if so prints

***AL ARRAY IS TOO SMALL.

(9) MAXNQT is the Macro variable for the number of knots in either the r or z direction. If this number is exceeded the code prints

***INPUT ERROR. TOTAL NUMBER OF KNOTS IN ONE DIRECTION EXCEEDS STORAGE.

The graphics programs generate fatal errors with messages if the Macro variables used in the graphics programs are not as large as the Macro variables used to generate the graphics dataset on unit 12 during the execution of the computational phase. In the following discussion we refer to the value of the Macros used in the graphics codes by preceding the variable name with a J. The corresponding value in the computational code will be indicated by preceding the variable name with an I.

The fatal errors are:

(1) If the original Macro for the number of breakpoints is greater than the corresponding graphics Macro, the message
SPECIFIED NUMBER OF BREAKPOINTS (IMAXBRK) EXCEEDS THE MAXIMUM NUMBER DIMENSIONED (JMAXBRK). RUN STOPPED.

(2) If the original Macro for the number of species is greater than the corresponding graphics Macro the following message appears.

SPECIFIED NUMBER OF SPECIES (IMAXSP) EXCEEDS THE MAXIMUM NUMBER DIMENSIONED (JMAXSP). RUN STOPPED.

(3) If the original Macro for the spline order is greater than the value used in the graphics program the following message appears.

SPECIFIED ORDER OF SPLINES (IMAXK) EXCEEDS THE LIMITS OF THE PROGRAM (JMAXK). RUN STOPPED.

(4) If the original Macro for the number of knots in either direction is greater than the value used in the graphics program the following message appears.

SPECIFIED NUMBER OF KNOTS (IMAXN0T) EXCEEDS THE MAXIMUM NUMBER DIMENSIONED (JMAXN0T). RUN STOPPED.

(5) If the original Macro for the number of variables in either direction is greater than the value used in the graphics program the following message appears.

THE SINGLE SPECIES NUMBER OF VARIABLES (IMXNRNZ) EXCEEDS THE LIMITS OF THE PROGRAM (JMXNRNZ). RUN STOPPED.

(6) If the original Macro for the total number of variables is greater than the value used in the graphics program the following message appears.

THE SPECIFIED NUMBER OF VARIABLES (IMXNVAR) EXCEEDS THE LIMITS OF THE PROGRAM (JMXNVAR). RUN STOPPED.

In addition, a fatal error can occur when ITIME=T and if NTIME is greater than NRES1 (for CSP) or NRESD (for CØNTØR or THREED). If this occurs, the following message is printed.

SPECIFIED NUMBER OF TIME VALUES IS GREATER THAN \{NRES1, NRESD\}, NTIME= . RUN STOPPED.

where the appropriate Macro name NRES1 or NRESD is printed as well as the value of NTIME.
If a fatal error is detected (either due to input or due to computation), the last message printed in EXEC is

 EXIT EXEC WITH ABNORMAL TERMINATION

and control is returned to the Master Driver.

The following non-fatal message is printed by the graphics programs if ITIME=T and there are more time values on the graphics dataset than the user requested to be graphed via NTIME.

 WARNING *** MORE TIME VALUES THAN NTIME.
6. DESCRIPTION OF PRINTED AND GRAPHICAL OUTPUT

In this section we discuss the output generated by the DISPL1 package. We first discuss the printed output generated by the computational phase of DISPL1 in section 6.1. In section 6.2 we discuss the printed and graphical output which can be produced by the cross-section plot program. In section 6.3 we discuss the printed and graphical output which can be produced by the contour package. Finally in section 6.4 we discuss printed and graphical output which can be produced by the three-dimensional perspective program. In all cases, we describe the output with reference to the examples in section 7.

6.1 Printed Output

In this subsection we discuss the printed output of the DISPL1 computational code. The printed output has three main sections. The first section is the result of processing Namelist GRID and the first read of Namelist DATA. The second section contains the results of any initial fit computation and any steady-state calculation. The third section contains the results of a second read of Namelist DATA and any transient calculation which may have occurred. In discussing the results of processing the namelists, we will discuss only those aspects which are not clear from the discussion of the namelists in section 5.

Considering the first section, we use example 7.2 as an illustration. The output begins with a summary of the variables in Namelist GRID. Notice that INITIAL CÔNTR=13; this is just an indication that the code is going to set CÔNTR=KR-1 which is the default value. The next part of the output consists of certain internal arrays followed by a summary of Namelist DATA. The code first indicates that CÔNTR is reset to KR-1=4-1=3 and CÔNTZ is reset to KZ-1=1-1=0. NVGAP is the number of vertical gap interfaces, and NHGAP is the number of horizontal gap interfaces. LR and LZ are the number of intervals in the r and z direction. The IL array is the index set for the B-splines in the r-direction. JL is the corresponding index set for the z direction. IREF is an index set in the r direction for the interfaces. JREF is a similar array for the z direction.

MLTAB is the two-dimensional table of materials in the domain. This table is the internal array which is obtained from the Namelist GRID array
MATL. Next, the code determines whether it is more efficient (in terms of bandwidth) to store the coefficients with horizontal or vertical ordering. The ordering used is reported in the output. The next two lines of code deal with constants involved in the indexing of the coefficients. These constants are explained in section 4.10.

The output next gives the actual system size for the problem. NR is the number of variables per species in the r-direction. NZ is the corresponding number for the z-direction. NVAR is the total number of variables, i.e. NSPEC*NR*NZ. The output next indicates whether this is the iterative or direct version of the code. The summary print of namelist DATA then begins. The reference to PR\OUT in describing the time and space grid is to SUBROUTINE PR\OUT which controls output (both for units 6 and 12) during the steady-state and transient computation. The variable MF (which is 21) is an indicator for the ODE solver GEAR and must remain fixed.

Next we consider the second section. After completing the summary print for Namelist DATA, the code calls SUBROUTINE INIFIT if INITSW=T (which is the case in this example). The output contains a table of the least-squares solution evaluated at the quadrature points. In this example the code next reads namelist DATA for the second time and repeats its summary print. Notice that the coefficients, W, have changed as a result of the call to INIFIT. If GUESSW and/or STEDSW were TRUE, calls to SUBROUTINE GUESS1 and/or STEADY would have occurred. While the call to GUESS1 would not directly produce any printed output, the call to STEADY would produce output similar to the transient output discussed below. Such steady-state output would occur after the first time-step, after every ISTDFQ steps beyond the first one, and at the final step. Also, if the code runs out of time during the execution of STEADY, printout will occur for the last step before doing a dump.

Finally, we consider the third section of output. We first see a message indicating that the transient solution is beginning. There then follows a set of small (half page) reports of the solution as it is progressing. Each report is a result of a call to PR\OUT and occurs at a time specified by the user's time grid. Consider the first report in example (section 7.1) in detail. The time value is given followed by the spline coefficient values. Each approximate solution is then evaluated on the user-specified grid and, if IANAL=T, the corresponding analytic solution is given. The output values on
this grid are arranged as follows: each row represents a fixed value of z with the first row corresponding to ZGRID(JZGRD) and the last row corresponding to ZGRID(1). On a given row, the first entry corresponds to RGRID(1) and the last entry corresponds to RGRID(IRGRD). The message

(FROM PROUT VIA TIMEX)

is a reminder that this is a transient solution. If this call to PROUT was from SUBROUTINE STEADY we would get the following message.

(FROM PROUT VIA STEADY)

After the final species solution is printed, the time value, TOUT, is again printed.

PROUT reports other than the first one also include the value DELTA T and provide information concerning the monitoring of computer time usage.

DELTA T is the current spacing of subintervals on the user's time grid. Notice that this number will change when we move from one major time interval to another, i.e. from [UTOUT(1),UTOUT(2)] to [UTOUT(2),UTOUT(3)]. In the case of a steady-state solution, DELTA T is the actual time step being used in the ODE solver.

The next two lines deal with monitoring computer time usage. Based on the amount of time required to solve the problem during the previous call to the ODE solver GEAR, the code estimates the time required to do the next call to GEAR. This estimate is given, followed by the amount of computer time remaining. If the estimate is less than the time left we proceed. If not, we immediately dump the current results on unit 11, report this fact on the output, and stop. In the steady-state case a similar situation applies.

Returning to the example in section 7.1, after the transient solution is completed, the code writes the current solution on unit 11 and reports this on the output as a normal dump. The value of I (=5 in section 7.1) is the final index of UTOUT used. Finally, the code checks whether there is another problem to solve. If not, a message indicating that the end of the input file has been reached is printed.

†It should be emphasized that the output from PROUT (whether from STEADY or TIMEX is laid out just as if one were looking at the domain. That is, the output consists of a series of rows of numbers. Each row has values corresponding to ascending values of RGRID. The first row corresponds to the largest value of ZGRID while the last row corresponds to the smallest value of ZGRID.
6.2 Cross Section Plotting

The output of the cross section plotting program (CSP) is both printed and graphical. In this subsection we discuss both forms of output by reference to the examples in section 7. To begin with, all of the graphing programs can be used in one of two basic modes. If ITIME=F in Namelist FORMAT, the graphing program will generate plots associated with the solution at a specific time value. For example, CSP will generate plots of species solutions along one-dimensional slices at time values associated with the time array specified in Namelist DATA. If, on the other hand, ITIME=T, the graphing program will generate graphs with time as one of the independent variables. In the case of CSP we will obtain plots as specified by the graphing formats in Namelists FORMAT and CSPIN. The plot involves a graph of a species value $u_k(r^*,z^*,t)$, at a fixed spatial location (r^*,z^*) as a function of time t for a given species k. The point (r^*,z^*) is specified as follows. Recall that for the mth frame, CSP requires that a line segment in the spatial domain be specified by giving its end points $(A1(m),B1(m))$ and $(A2(m),B2(m))$. The point (r^*,z^*) is specified by setting

$$A1(m)=r^*, \quad A2(m)=r^*,$$
$$B1(m)=z^*, \quad B2(m)=z^*,$$

Note that $r^*=r^*(m)$, $z^*=z^*(m)$, i.e. (r^*,z^*) can change with each frame. The time values used in these plots are specified through the users time grid in Namelist DATA. The ITIME=T case for CONTOUR and THREEED will be discussed in sections 6.3 and 6.4.

We now discuss the printed output of CSP when using the ITIME=F mode. For example, consider the output in section 7.2. The printed output begins with:

BEGINNING CROSS SECTION GRAPHICS PACKAGE

The program then checks the sizes of various macro variables. If these values are acceptable, no prints occur. The program then gives formatting parameters and the value of NRESIN. The values of ITIME and NTIME are then given. Recall that NTIME is used only if ITIME=T. The values of YAXMIN(I) and YAXMAX(I) are then given in pairs for $I=1,...,IGNUM$. Next, the user's graphing format data is summarized on a frame-by-frame basis. Specifically, for each frame (at a given time value) the ordering of plots on that frame...
and the associated species number is given. In a similar manner, the definition of the cross section for each frame is reported. Finally, the program informs the user that the end of data has been encountered and the total number of frames produced is reported.

The graphical output associated with an ITIME=F case is also illustrated in section 7.2. In this example graphs were produced in the separate (not packed) format. Notice that the legend in the lower left corner of each graph gives the species number. Further, the time value associated with each frame is given. (Warning: Since floating point numbers must be plotted in an F format in the CALCOMP package, we sometimes obtain a double asterisk when a number, such as time, is out of range.)

We next consider the ITIME=T case, as is illustrated in section 7.3. The printed output is the same as in the ITIME=F case and for reasons of space we do not include it. The graphical output for ITIME=T differs from that for ITIME=F in that the legend in the lower left corner gives the r and z coordinates of the point where the solution is evaluated rather than a time value. Of course, the horizontal axis is time rather than r or z. The most significant difference is that the graph for ITIME=F is a curve whereas the graph for ITIME=T is just the NTIME points at which we have evaluated the solution. Finally, we point out that even when ITIME=T we can use the other options of CSP such as the grouping format (packed or separate) as well as the ISPEC, LGROUP, and LORDER arrays.
6.3 Contour Plotting

The contouring program (CÔNTÔR) can be used in one of two basic modes. If CÔNTÔR is used with ITIME=F contour plots are generated in which each plot is the approximate solution for a particular species over a rectangular domain in r-z space at a particular time. Thus we generate a series of contour plots ranging over the species and time values. If CÔNTÔR is used with ITIME=T, we generate a given contour plot with two independent variables--time and a space variable. The time values used are those defined in Namelist DATA and must be uniformly spaced for use in CÔNTÔR. The spatial variable must be a line in the r-z domain and must be parallel to one of the coordinate axes. The definition of this line is transmitted to CÔNTÔR through the RMIN, RMAX, ZMIN, and ZMAX arrays (which define the contouring domain when ITIME=F). Notice that if the problem is one dimensional in the spatial variable, then a contour plot cannot be done with ITIME=F; however, a contour plot can be done with ITIME=T.

In describing the output of CÔNTÔR we consider the ITIME=F mode and refer to the examples in section 7 for concreteness. The printed output of the CÔNTÔR program is illustrated in section 7.1. The output begins with the statement

BEGINNING CÔNTÔR GRAPHICS PACKAGE

The program then does a series of checks on the sizes of Macro variables. If these values are within range, the execution continues. The output next states the VERSION CÔNTÔR being used followed by the value of IGNU M. The user's formatting instructions are then summarized. Next, the value of ITIME is given along with the number of points in the r and z directions (NRESR and NRESZ) each of which is the input value NRESIN.

6.4 Perspective Plotting of Solution Surfaces

The three-dimensional perspective program (THREED) uses the DISSPLA graphics software package to generate views of the solution surface for a particular species over a rectangular domain. As with CSP and CÔNTÔR, THREED can be used in two basic modes: ITIME=F and ITIME=T. When used with ITIME=F, the domain is specified by \([RMIN(I),RMAX(I)] \times [ZMIN(I),ZMAX(I)]\). When used
with ITIME=T the domain is defined as for CONTR. That is, the domain involves two independent variables: the first is time, and values must be generated by a uniformly spaced time grid in Namelist DATA; the second independent variable must be parallel to the r or z axis and is specified by the values of RMIN(I), RMAX(I), ZMIN(I), and ZMAX(I). Notice that when ITIME=T, the spatial domain can, in fact, arise from a one-variable problem (see section 7.3).

In discussing the printed output we refer to the example in section 7.1. While this output deals with ITIME=F, the printed output for ITIME=T is essentially the same. The output begins with

```
BEGINNING THREE DIMENSIONAL PLOTTING PACKAGE
```

The program then conducts a series of checks for the size of certain variables relative to the size of the macro variables in the particular compilation being used. If necessary, diagnostic messages are given and the program stops. In the normal case the program next provides a summary of the input data. First, the VERSION and value of IGNUM are given. This is followed by the user's formatting instructions and the values of NRESIN and ITIME. Then the values of ISPEC, RMIN, RMAX, ZMIN, and ZMAX are given. Finally the viewpoint and FMATMN and FMATMK are given.

The graphical output for THREED gives a series of frames which are perspective views. Each view is a surface for a given species at a given time. Notice that each frame gives the title, value of TOUT, frame number, and specie number. Thus, each frame is clearly defined without reference to the printed output.

When using THREED with ITIME=T the outputs are similar. The printed output differs in only one respect:

The user's stated number of time values, NTIME (which is only required when ITIME=T) must not be greater than the Macro variable NRESO. A check of this requirement is made and, if necessary, a diagnostic message is printed. Further, if the actual number of time values is greater than NRESO, a warning message is given and the graph produced represents only the first NRESO time values.

The graphical output for the ITIME=T plots is similar to the graphical output already described. Of course, TOUT is not given in the lower left corner and one of the axes is the time axis.
7. SAMPLE PROBLEMS

In this section, we will illustrate the procedure used in setting up problems for this code. The computer output for the problems 7.2-7.5 was obtained from an earlier version of DISPL1 and differs somewhat in detail and format from the current package.

7.1 Two-Dimensional Heat Conduction in a Plate

Consider a rectangular plate \(R = \{(r,z): 0 < r < 2, 0 < z < 1\} \) with the heat conduction equation

\[
\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial r^2} + \frac{\partial^2 u}{\partial z^2} \quad \text{in } R \text{ for } t > 0.
\]

Let the following temperature distribution be specified on the sides for \(t > 0 \).

\[
(7.1.2) \quad u(0,z,t) = \phi(z,t), \quad u(r,0,t) = 0, \quad u(2,z,t) = 0, \quad u(r,1,t) = 0,
\]

and let the initial temperature distributions be

\[
(7.1.3) \quad u(r,z,0) = 0.
\]

For \(\phi(z,t) \) we take

\[
(7.1.4) \quad \phi(z,t) = t \theta(z)
\]

where

\[
(7.1.5) \quad \theta(z) = \begin{cases}
2z & \text{for } 0 \leq z \leq \frac{1}{2} \\
2(1-z) & \text{for } \frac{1}{2} \leq z \leq 1
\end{cases}
\]

To set up this problem, we have to consider the three Namelists described in section 5, the user-supplied subroutines described in section 4, and the Namelist graphics data described in section 5.
Namelist GRID

1. **Spline Order**

 When in doubt, use a cubic, i.e. KR=4, KZ=4, (Default) (Default cases do not require any cards.)

2. **Continuity at the mesh points**

 With a homogeneous domain and smooth data, the smooth splines are a reasonable choice.

 CONTR=3, CONTZ=3, (= KR-1 and KZ-1) (Default)

3. **Number of species**

 NSPEC=1, (Default)

4. **Domain**

 RLOW=0.0, (Default)
 RUP=2.0,
 ZLOW=0.0, (Default)
 ZUP=1.0, (Default).

5. **Total number of interfaces**

 None (Default)

6. **Interface mesh points**

 None (Default)

7. **Interface type codes**

 None (Default)

8. **Geometry type**

 Rectangular

 DELTA=0, (Default)

9. **Total number of non-interface mesh points in each direction.** (This total does not include the end points.)

 The numbers NMR and NMZ (and the corresponding positions of the mesh points) together with the spline orders KR and KZ control the errors in the approximate solution as far as the spatial approximation
is concerned. For heat conduction problems with very smooth data and at points not near the corners, one can expect the spatial error to behave as $O(h^k)$ asymptotically as $h \to 0$. Here h is an appropriate measure of the mesh width and $k = KR = KZ$. Thus, if one is familiar with the mesh requirements for a second order accurate finite difference scheme in order to achieve a given accuracy, then for a cubic spline ($K=4$) one would start by trying to use the square root of the number of points needed for the second order method. Of course, this estimate applies only for h rather small, e.g. $h \sim \frac{1}{100}$, one might use $h \sim \frac{1}{10}$ with a cubic. For illustrative purposes we use

$$NMR=4, NMZ=1,$$

10. Additional non-interface mesh points

These are the NMR and NMZ mesh points discussed above.

$$RMESH=0.1,0.25,0.5,1.0,$$

$$ZMESH=0.5,$$

11. Continuity indices at non-interface mesh points

Not needed
(Default)

12. Quadrature order

$NQR(NQZ)$ is the number of quadrature points used in each $r(z)$ mesh interval. The choice $NQR=KR$ and $NQZ=KZ$ is a conservative choice.

$$NQR=4, NQZ=4,$$

13. Index for algebraic boundary conditions

$ALGBCS=T$, (Default) indicates that we will use the boundary conditions as they are given. If we were to use the differential version, we would set $ALGBCS=F$, then differentiate the essential boundary condition (7.4) with respect to time; thereby generating

$$\frac{\partial \phi}{\partial t}(z,t) = \theta(z),$$

and use the user routine $BRHODT$ to provide $\theta(z)$. With $ALGBCBS=T$, we use the user routine $BRHO$ to provide $t\theta(z)$.
14. Conservative form index for the convection term
 Since the convection term is zero, use the default value.
 CONSRV=T, (Default)

15. Material table
 Not needed (Default)

16. Selection of calls to the calculation drivers
 INITSW=T, GUESSW=F, STEDSW=F, TRANSW=T,
 Since the initial condition for this problem is a zero temperature,
 we could have set the initial coefficients to zero in Namelist DATA
 rather than having INITSW=T. GUESSW=F, because we have initial con-
 ditions and STEDSW=F, because this is not a steady-state problem.

17. Species dependent heat capacity term
 Since the coefficient of $\frac{du}{dt}$ in Eq. (7.1.1) is identically one, we set
 IREVLA(1)=F, IRH0(1)=F, (Defaults)

18. Frequency of output from a steady-state calculation
 Not applicable.

19. Indicator for restarting a STEADY calculation
 Not applicable.

20. Indicator for restarting a TRANSIENT calculation
 Since this is not a restart we use
 ITRARS=F, (Default)

21. Indicator for reading coefficients from unit 10 generated at the conclu-
 sion of a previous steady-state calculation
 Not applicable.

22. Number of points in R-direction for user's grid
 IRGRD=4,
23. R coordinates for user's grid
 \(RGRID=0.25,0.75,1.25,1.75, \)

24. Number of z coordinates in user's grid
 \(JZGRID=2, \)

25. Z coordinates for user's grid
 \(ZGRID=0.25,0.75, \)

26. Indicator for an analytic solution

 For this problem, we can approximate the solution by means of a double Fourier series.
 \(IANAL=T, \)

Using the default options wherever possible, we see that the input for this Namelist GRID requires 10 cards.

Next we consider Namelist DATA. As mentioned before, there are two sets of namelist DATA, the first set is read before a steady-state calculation and the second set is read before a transient calculation. Since we are not doing a steady-state calculation we would fill out the second set of Namelist DATA and ignore the first set. That is, our deck would read:

```
&DATA
&END
&DATA
"To be filled in"
;
&END
```

From a conceptual point of view this is the proper form for the program; however, the program will also accept (for a transient calculation) all the data in the first namelist, i.e.

```
&DATA
"To be filled in"
;
&END
&DATA
&END
```

In this sample problem we will use this last form. We now consider the variables to be specified in Namelist DATA.
Namelist DATA

1. Boundary condition switches

Recall that NSI(K) is the switch for species K on side I with
0 non-essential b.c. on side I for species K
NSI(K) = 1 essential b.c. on side I for species K
-1 no b.c. on side I for species K

In this problem we have essential conditions on all four sides.
NS1(1)=1, NS2(1)=1, NS3(1)=1, NS4(1)=1.

2. Boundary value coefficients (MAXSP,4)

ALPHA(1,1)=1.0, BETA(1,1)=0.0, GAMMA(1,1)=1.0,
ALPHA(1,2)=1.0, BETA(1,2)=0.0, GAMMA(1,2)=0.0,
ALPHA(1,3)=1.0, BETA(1,3)=0.0, GAMMA(1,3)=0.0,
ALPHA(1,4)=1.0, BETA(1,4)=0.0, GAMMA(1,4)=0.0,

3. Boundary h functions

Not applicable (Default)

4. Gap coefficients

Not applicable (Default)

5. Reaction coefficients, first order

Not applicable (Default)

6. Reaction coefficients, second order

Not applicable (Default)

7. Initial time for the start of the transient calculation.

For this problem we use 0.0, i.e.
TO=0.0, (Default)

8. Output time control for a transient calculation

NUTOUT is the number of output time values including the initial
and final times.
NUTOUT=5,
UTOUT(I), 1 < I < NUTOUT is the array of output times. For this
problem we use UTOUT=0.0,0.25,0.5,0.75,3.0,
Each time interval defined by the array UTOUT can be subdivided into NUFREQ subintervals. The output will then be provided at each time point of this fine grid. For this problem we use NUFREQ=1, (Default)

9. Internal output control switches
 Not applicable (Default)

10. Initial spline coefficients
 Since B-splines are not interpolatory splines, it is not, in general, a simple matter to select the initial spline coefficients. Thus in general, one would use the least squares fit provided by setting INITSW=T, in Namelist GRID. However, in some situations, it is convenient to provide the initial spline coefficients. For example, in this problem, the initial data is zero everywhere; thus we could have set W=56*0.0, and INITSW=F,.
 Note that for this problem there are 56 variables; however, we could have used any number I, 56 ≤ I ≤ MXNVAR. The use of initial spline coefficients is not recommended for those who are not familiar with B-splines and the ordering procedure used in this program, c.f. section 4.10. For this problem, we use the default W=1.0,... (Default)

11. ODE solver control parameters
 EPS is the error control parameter used in the GEAR solver to control the error in the time integration. For this problem we used EPS=1.D-6,
 HINIT is the initial time step used in the GEAR solver. If this initial step is too large relative to the size of EPS, the GEAR solver will reduce the initial step size. For this problem we use HINIT=1.D-5,

12. Maximum order for the time integration used in GEAR
 MXGORD=5, (Default)
 Note that one must have 1 ≤ MXGORD ≤ 5.
13. Graphics output switch

If any graphical output is desired at the end of this computer run or at some later time, then when this switch is true the data for the graphics programs will be written on unit 12 for graphical purposes.

GRAPH=T,

For this test problem, we need 10 cards in Namelist DATA if we use the default values wherever possible.

Next we will consider the cards which are needed for the user-supplied subroutines. We shall assume that the user starts from the model subroutines as described in sections 4.1-4.10.

Subroutine RHOCP
Since the coefficient of $\frac{\partial u}{\partial t}$ in Eq. (7.1.1) is identically equal to 1, we need only let

\[RC=1.0 \]

Subroutine DIFUSE
The diffusivity is identically equal to 1; thus we set

\[DIFUR=1.0 \]
\[DIFUZ=1.0 \]

Subroutine VEL
There is no convective term in this problem; hence

\[VELR=0.0 \]
\[VELZ=0.0 \]

Subroutine EXTSRC
The distributed source is identically zero; hence

\[VV=0.0 \]

Subroutine FDEXTU
Since the distributed source is zero, the Frechet derivatives are identically zero.

\[UU(1)=0.0 \]
\[UUR(1)=0.0 \]
\[UUZ(1)=0.0 \]

(This problem has only one species.)
Subroutine INDATA

The initial data is identically zero; thus

\[\text{UU}=0.0 \]

Subroutine BRHO

From Eq. (7.1.2), we have \[u(0,z,t) = t\theta(z) \] on side 1; thus for side 1 we have

\[101 \text{CONTINUE} \]

\[\text{RHOV}=2.0 \times T \times XX \]

\[\text{IF}(XX \text{ GT} 0.500) \text{ RHOV}=2.0 \times T \times (1.0-XX) \]

RETURN

From Eq. (7.1.2), \(u = 0 \) on the remaining sides; thus we use

\[\text{RHOV}=0.0 \]

for sides 2, 3, and 4.

Subroutine BRHODT

Since we are using the algebraic boundary conditions, this routine can be a dummy routine.

Subroutine ANAL

For this problem we can provide an alternative approximate solution to this problem by using the Green's function for Eq. (7.1.1) (cf. [5]). The Green's function for the equation

\[\frac{\partial u}{\partial t} = Au \]

with zero boundary values over a two-dimensional rectangle \(R = [0,a] \times [0,b] \) is given by

\[G(x,y; x',y',t-\tau) = \frac{4}{ab} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} e^{-\sigma(t-\tau)} \sin \frac{m\pi x}{a} \sin \frac{m\pi y}{a} \sin \frac{n\pi y'}{b} \sin \frac{n\pi y'}{b} \]

where \(\sigma = \pi^2 \left(\frac{m^2}{a^2} + \frac{n^2}{b^2} \right) \).

The solution to the problem

\[\frac{\partial u}{\partial t} = Au \text{ in } R, \quad u = \phi \text{ on } \partial R, \quad u = f \text{ at } t = 0, \]

is given by

\[u(x,y,t) = \iint_{R} [G(x,y; x',y',t)f(x',y')dx'dy'] + \int_{0}^{t} \int_{\partial R} \phi(x',y',\tau) \frac{\partial G}{\partial n} d\sigma d\tau \]

where \(n \) is the inward directed normal to \(\partial R \).
For this problem, \(f = 0 \), \(a = 2 \), \(b = 1 \), and
\[
\phi = \begin{cases}
\theta(y) & \text{on side 1}, \\
0 & \text{on sides 2, 3, and 4},
\end{cases}
\]
where
\[
\theta(y) = \begin{cases}
2y, & 0 \leq y \leq \frac{1}{2} \\
2(1-y), & \frac{1}{2} \leq y \leq 1
\end{cases}
\]
Hence the solution for this problem has the representation
\[
u = \pi \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{\sin \frac{\pi mx}{2} \sin n\pi y}{\sigma^2} \int_0^t e^{-\sigma(t-\tau)} d\tau \int_0^1 \theta(y') \sin n\pi y' dy'.
\]
We have
\[
\int_0^t e^{-\sigma(t-\tau)} d\tau = \frac{1}{\sigma^2} (e^{-\sigma t} + \sigma t - 1),
\]
\[
\int_0^1 \theta(y') \sin n\pi y' dy' = \frac{4}{2n^2} \sin \frac{n\pi}{2}, \ n \geq 1;
\]
thus
\[
u = \frac{4}{\pi} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{1}{\sigma^2} \left(e^{-\sigma t} + \sigma t - 1 \right) \sin \frac{m\pi x}{2} \sin \frac{n\pi x}{2} \sin n\pi y.
\]
This double series was implemented in subroutine ANAL. The question of when to truncate the series was settled as follows. For this problem, three decimal place accuracy is enough to determine the error between the series solution and the approximate solution. Let \(N \) denote the upper limit for the \(n \) index and \(M \) the upper limit for the \(m \) index. For \(t=3 \), \(x=0.25 \), \(y=0.25 \), the series (7.6) was evaluated for various computations of \(N \) and \(M \) with the results shown in the following table.

<table>
<thead>
<tr>
<th>(N)</th>
<th>10</th>
<th>15</th>
<th>50</th>
<th>15</th>
<th>15</th>
<th>15</th>
<th>15</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M)</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>3000</td>
<td>5000</td>
<td>7500</td>
<td>10000</td>
<td></td>
</tr>
<tr>
<td>(u)</td>
<td>.75678</td>
<td>.75675</td>
<td>.75675</td>
<td>.75515</td>
<td>.75483</td>
<td>.75429</td>
<td>.75411</td>
<td></td>
</tr>
</tbody>
</table>

On the basis of these results, we selected the series solution with \(N=15 \) and
M=5000 as being almost accurate to three decimal places.

For this problem, both of the arrays AL and GPW in the Master Driver routine were of dimension 4100. The program was run on an IBM 370/195 in 410K bytes of fast memory. The CPU time for this problem was about 117 seconds of which 52 seconds were used in computing the series solution leaving 65 seconds for the computation of the approximate solution on the time interval [0,3].

The following pages contain the printed output from the computational phase of DISPL1.
THIS PROBLEM DEALS WITH HEAT CONDUCTION IN A PLATE IN TWO-DIMENSIONAL CARTESIAN GEOMETRY. IT IS DESCRIBED IN SECTION 7.1 OF DISPL1: A SOFTWARE PACKAGE FOR ONE AND TWO SPATIALLY DIMENSIONED KINETICS-DIFFUSION PROBLEMS BY G.K. LEAF AND M. MINKOFF, MAY, 1984. MATHEMATICS AND COMPUTER SCIENCE DIVISION, ARGONNE, ILLINOIS.
STORAGE MAXIMA FOR THIS COMPILATION:
MAXBRK 30
MAXSP 2
MAXTQD 4
MAXX 4
MXNRNZ 100
MXNVAR 100
MAXGAP 2
MAXNOT 40
MXGRD 20
MXZGRD 20
READING NUMELIST GRID

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>KR</td>
<td>4</td>
</tr>
<tr>
<td>KZ</td>
<td>4</td>
</tr>
<tr>
<td>ISPEC</td>
<td>1</td>
</tr>
<tr>
<td>RLEFT</td>
<td>0.0</td>
</tr>
<tr>
<td>RTP</td>
<td>0.25000000000000000+01</td>
</tr>
<tr>
<td>LZON</td>
<td>0.0</td>
</tr>
<tr>
<td>ZUP</td>
<td>0.10000000000000000+01</td>
</tr>
<tr>
<td>DELTA</td>
<td>0</td>
</tr>
<tr>
<td>HIII</td>
<td>0</td>
</tr>
<tr>
<td>HIIIZ</td>
<td>0</td>
</tr>
<tr>
<td>NRL</td>
<td>4</td>
</tr>
<tr>
<td>CGMTR</td>
<td>3</td>
</tr>
<tr>
<td>HNESH(1)</td>
<td>0.10000000000000000+00</td>
</tr>
<tr>
<td>HNESH(2)</td>
<td>0.25000000000000000+00</td>
</tr>
<tr>
<td>HNESH(3)</td>
<td>0.35000000000000000+00</td>
</tr>
<tr>
<td>HNESH(4)</td>
<td>0.10000000000000000+01</td>
</tr>
<tr>
<td>IZT</td>
<td>1</td>
</tr>
<tr>
<td>CNTZ</td>
<td>3</td>
</tr>
<tr>
<td>ZNESH(1)</td>
<td>0.50000000000000000+00</td>
</tr>
<tr>
<td>N-R</td>
<td>4</td>
</tr>
<tr>
<td>N-Z</td>
<td>4</td>
</tr>
<tr>
<td>CONSRV</td>
<td>T</td>
</tr>
<tr>
<td>ALGECIS</td>
<td>T</td>
</tr>
<tr>
<td>INITIN</td>
<td>T</td>
</tr>
<tr>
<td>STEDSM</td>
<td>F</td>
</tr>
<tr>
<td>TRANSMS</td>
<td>F</td>
</tr>
<tr>
<td>DUMFSM</td>
<td>F</td>
</tr>
<tr>
<td>ISTRES</td>
<td>F</td>
</tr>
<tr>
<td>ITNARS</td>
<td>F</td>
</tr>
<tr>
<td>ITNRCOD</td>
<td>F</td>
</tr>
<tr>
<td>LEGSTOP</td>
<td>F</td>
</tr>
<tr>
<td>IAHAL</td>
<td>F</td>
</tr>
<tr>
<td>ISOFFQ</td>
<td>10</td>
</tr>
<tr>
<td>NHOSTED</td>
<td>500</td>
</tr>
</tbody>
</table>

SPLINE ORDER IN R DIRECTION

SPLINE ORDER IN Z DIRECTION

NUMBER OF SPECIES

NUMBER OF INTERFACES IN R DIRECTION

NUMBER OF INTERFACES IN Z DIRECTION

NUMBER OF NON-INTERFACE R DIRECTION MESH POINTS

NUMBER OF CONTINUOUS DERIVATIVES AT R DIRECTION MESH POINTS

NUMBER OF NON-INTERFACE Z DIRECTION MESH POINTS

NUMBER OF CONTINUOUS DERIVATIVES AT Z DIRECTION MESH POINTS

NUMBER OF NON-INTERFACE R MESH POINTS

NUMBER OF NON-INTERFACE Z MESH POINTS

QUADRATURE ORDER FOR R DIRECTION

QUADRATURE ORDER FOR Z DIRECTION

CONSERVATIVE FORM INDICATOR FOR CONVECTION TERM

ALGEBRAIC TREATMENT OF BOUNDARY CONDITIONS INDICATOR

INDICATOR FOR INITIAL FIT OF DATA

INDICATOR FOR STEADY STATE COMPUTATION

INDICATOR FOR TRANSIENT COMPUTATION

INDICATOR FOR READING STEADY STATE COEFFICIENTS FROM UNIT DUMPRD

INDICATOR FOR STEADY STATE RESTART

INDICATOR FOR TRANSIENT RESTART WHEN A TRANSIENT RESTART IS DONE.

INDICATOR FOR A COLD RESTART INVOLVES A CALL TO AINVG AND IS USEFUL IF THE ODES HAVE CHANGED, I.E. THE PDE BOUNDARY CONDITIONS HAVE BEEN CHANGED

INDICATOR FOR USING G-STOP CAPABILITY

INDICATOR FOR USING ANALYTIC SOLUTION

INDICATOR FOR USING AN G STOP CAPABILITY

FUNCTIONAL FREQUENCY FOR STEADY STATE COMPUTATION

maximum number of O.D.E. calls

FOR STEADY STATE COMPUTATION

INDICATOR FOR INITIAL FIT OF DATA

INDICATOR THAT THE COEFFICIENT OF THE TIME DERIVATIVE IS NOT IDENTICALLY 1

INDICATOR THAT THE COEFFICIENT OF THE TIME DERIVATIVE IS IDENTICALLY 0

NUMBER OF USER SUPPLIED POINTS IN R DIRECTION

NUMBER OF USER SUPPLIED POINTS IN Z DIRECTION
READING NAMELIST DATA

VERTICAL ORDERING
HALF BANDWIDTH FOR AL
HALF BANDWIDTH FOR PH
CONSTANTS FOR ORDERING OF VARIABLES

CONSTANTS FOR ORDERING OF VARIABLES WITHIN A SPECIES

REQUIRED STORAGE FOR AL
AVAILABLE STORAGE FOR AL
AVAILABLE STORAGE FOR PH
SYSTHE SIZE FOR THIS CASE
NUMBER OF R DIRECTION MESH POINTS
NUMBER OF Z DIRECTION MESH POINTS
NUMBER OF VARIABLES PER SPECIES IN THE R DIRECTION
NUMBER OF VARIABLES PER SPECIES IN THE Z DIRECTION
TOTAL NUMBER OF VARIABLES

DIRICHLET CONDITION FOR SPECIES 1 ON SIDE 1
DIRICHLET CONDITION FOR SPECIES 1 ON SIDE 2
DIRICHLET CONDITION FOR SPECIES 1 ON SIDE 3
DIRICHLET CONDITION FOR SPECIES 1 ON SIDE 4
BOUNDARY CONDITION COEFFICIENTS

FOR SPECIES NO. 1

SIDE 1
SIDE 2
SIDE 3
SIDE 4

SIDE INDICATORS
FOR SPECIES NO. 1

BOUNDARY H FUNCTION FOR SIDES 1 AND 3
FOR MATERIAL INDEX 1 AND SPECIES NO. 1

BOUNDARY H FUNCTION FOR SIDES 2 AND 4
FOR MATERIAL INDEX 1 AND SPECIES NO. 1

TIME GRID FOR TRANSIENT PRINTOUT
NUTOUT = 5
NURFREQ = 1

UTOUT1 = 0.0
UTOUT2 = 0.25000000000000000+00
UTOUT3 = 0.50000000000000000+00
UTOUT4 = 0.75000000000000000+00
UTOUT5 = 0.30000000000000000+01

GRAPH = T
NCHREF = 1

IPRSH1 = 0
IPRSH2 = 0
IPRSH3 = 0
IPRSH4 = 0
IPRSH5 = 0

EPS = 0.10000000000000000-05
HINIT = 0.10000000000000000-04
MOSORD = 5
T0 = 0.0
CONT = 3
CGHTZ = 3

NUMBER OF MAJOR TIME INTERVALS
NUMBER OF SUBINTERVALS IN EACH MAJOR TIME INTERVAL
MAJOR TIME VALUES

LOGICAL INDICATOR FOR WRITING DATASET FOR LATER GRAPHICS
GRAPH NUMBER TO BE ASSOCIATED WITH THIS RUN
PRINT SWITCH INDICATORS

ORDINARY DIFFERENTIAL EQUATION PACKAGE DATA
LOCAL TEMPORAL ERROR CONTROL
INITIAL TIME STEP
MAXIMUM ORDER OF TIME INTEGRATION
INITIAL TIME
CONTINUITY IN R DIRECTION (MAY HAVE BEEN RESET)
CONTINUITY IN Z DIRECTION (MAY HAVE BEEN RESET)
DEFAULT INITIAL SPLINE COEFFICIENTS (SET TO ONE)
READING NAMELIST DATA

CHANGES IN NAMELIST DATA MAY HAVE BEEN MADE FOR TRANSIENT CALCULATION

DIRICHLET CONDITION FOR SPECIES 1 ON SIDE 1
DIRICHLET CONDITION FOR SPECIES 1 ON SIDE 2
DIRICHLET CONDITION FOR SPECIES 1 ON SIDE 3
DIRICHLET CONDITION FOR SPECIES 1 ON SIDE 4

BOUNDARY CONDITION COEFFICIENTS FOR SPECIES NO. 1

SIDE 1
SIDE 1
SIDE 2
SIDE 2
SIDE 3
SIDE 3
SIDE 4
SIDE 4
SIDE 4
SIDE 4
SIDE INDICATORS FOR SPECIES NO. 1

BOUNDARY H FUNCTION FOR SIDES 1 AND 3 FOR MATERIAL INDEX 1 AND SPECIES NO. 1

BOUNDARY H FUNCTION FOR SIDES 2 AND 4 FOR MATERIAL INDEX 1 AND SPECIES NO. 1

TIME GRID FOR TRANSIENT PRINTOUT
NUMBER OF MAJOR TIME INTERVALS
NUMBER OF SUBINTERVALS IN EACH MAJOR TIME INTERVAL
MAJOR TIME VALUES

LOGICAL INDICATOR FOR WRITING DATASET FOR LATER GRAPHICS
GRAPH NUMBER TO BE ASSOCIATED WITH THIS RUN
PRINT SWITCH INDICATORS

ORDINARY DIFFERENTIAL EQUATION PACKAGE DATA
LOCAL TEMPORAL ERROR CONTROL
INITIAL TIME STEP
MAXIMUM ORDER OF TIME INTEGRATION
INITIAL TIME
CONTINUITY IN R DIRECTION (MAY HAVE BEEN RESET)
CONTINUITY IN Z DIRECTION (MAY HAVE BEEN RESET)

INITIAL SPLINE COEFFICIENTS PROVIDED FROM
A RESTART DUMP, NAMELIST GRID,
INITIAL FIT OR STEADY-STATE CALCULATION
BEGIN TRANSIENT SOLUTION

PROUT FOR TIME = 0.0
VALUES OF CONCENTRATIONS U FOR THE 1 TH SPECIES ON THE USERS GRID
FROM PROUT VIA TIMEX

APPROXIMATION IS
 0.0 0.0 0.0 0.0
APPROXIMATION IS
 0.0 0.0 0.0 0.0

TOUT= 0.0

PROUT FOR TIME = 0.25000000000000000+00
VALUES OF CONCENTRATIONS U FOR THE 1 TH SPECIES ON THE USERS GRID
FROM PROUT VIA TIMEX

APPROXIMATION IS
 0.5374673743587760-01 0.7113500092085218-02 0.8709248806709673-03 0.7229221095151102-04
APPROXIMATION IS
 0.5374673743581950-01 0.7113500092139733-02 0.8709248809331651-03 0.7229221038565036-04

TOUT= 0.2380046428420064-01

ESTIMATED TIME FOR A CALL TO DRIVE 0.0
TIME LEFT 0.10000000000000000D+07

PROUT FOR TIME = 0.50000000000000000+00
VALUES OF CONCENTRATIONS U FOR THE 1 TH SPECIES ON THE USERS GRID
FROM PROUT VIA TIMEX

APPROXIMATION IS
 0.11754874076359300+00 0.20208542754560-01 0.3451868393469731-02 0.4897781147899306-03
APPROXIMATION IS
 0.1175487407638491+00 0.20208542777563-01 0.3451868393265855-02 0.4897781147147750-03

TOUT= 0.3911429890062788-01

ESTIMATED TIME FOR A CALL TO DRIVE 0.0
TIME LEFT 0.16000000000000000D+07

PROUT FOR TIME = 0.75000000000000000+00
VALUES OF CONCENTRATIONS U FOR THE 1 TH SPECIES ON THE USERS GRID
FROM PROUT VIA TIMEX

APPROXIMATION IS
 0.1814606219592290+00 0.3355248074717612-01 0.6237633835450340-02 0.9783743100093880-03
APPROXIMATION IS
0.18146062195903530+00 0.33552480747153050-01 0.62376338350046600-02 0.97837431022897150-03
TOUT= 0.75000000000000000+00 HUSED = 0.69256297726046070-01

ESTIMATED TIME FOR A CALL TO DRIVE 0.0
TIME LEFT 0.10000000000000000+07

PRGUT FOR TIME = 0.30000000000000000+01

VALUES OF CONCENTRATIONS U FOR THE 1 TH SPECIES ON THE USERS GRID
(FROM PRGUT VIA TIMEX)

APPROXIMATION IS
0.75674363174142710+00 0.15374259187918380+00 0.31405217392910750-01 0.54151267497946770-02

APPROXIMATION IS
0.75674363174137250+00 0.15374259187955400+00 0.31605217392868170-01 0.54151267495688880-02
TOUT= 0.30000000000000000+00 HUSED = 0.33322242322485450+00

ESTIMATED TIME FOR A CALL TO DRIVE 0.0
TIME LEFT 0.10000000000000000+07

**** Normal dump at end of TIMEX
I = 5 TOUT = 0.30000000000000000+01

END OF CASE
We next consider the use of the graphics packages in connection with this problem. While the cross-section plot program can be used to plot the solution along a straight line in the domain, we will illustrate the use of only \textsc{Con}t\textsc{or} and \textsc{Th}ree\textsc{d} in connection with this problem. (The \textsc{Csp} program will be illustrated in the next example.) In either case the graphics dataset generated on unit 12 during the computational phase must be assigned to this unit for the graphics run. For either case we will need Namelist \textsc{Format}.

\textbf{Namelist \textsc{Format}}

1. **Iterative or direct indicator**
 Previous versions of \textsc{Displ} allowed for direct or iterative solution of certain equations. The current version of \textsc{Displ1} only allows for the direct version; thus the default value ITRTV=0, MUST be used.
 ITRTV=0, (Default)

2. **Number of curves to be plotted**
 We have only one equation and thus
 IGNUM=1, (Default)

3. **Number of grid points in each direction for graphical purposes**
 This number cannot be larger than the default value NRESD. As the complexity of the surface increases, this number must increase.
 NRESIN=NRESD, (Default) (NRESD=21)

For the \textsc{Con}t\textsc{or} program we also need Namelist \textsc{Cntrin}.

\textbf{Namelist \textsc{Cntrin}}

1. **Vector of species numbers**
 This vector has, as its Ith component, the species number of the Ith frame to be contoured. The pattern of plots indicated by the vector is repeated for each time value. In the current case we have only one species and so,
 ISPEC=1, (Default)

2. **Real vector of minimum R coordinate for the Ith frame**
 We use the same value as RL\textsc{Low}.
 RMIN=0.0, (Default)
3. Real vector of maximum R coordinate for the Ith frame
 We use the same value as RUP.
 $R_{MAX}=2.0,$

4. Real vector of minimum Z coordinate for the Ith frame
 We use the same value as $Z_{LOW}.$
 $Z_{MIN}=0.0,$ (Default)

5. Real vector of maximum Z coordinate for the Ith frame
 We use the same value as $Z_{UP}.$
 $Z_{MAX}=1.0,$ (Default)

For the THREED program we need:

Namelist DIM3IN

All of the variables described in Namelist CNTRIN are used in this namelist. Also, the following variables are needed.

1. R coordinate of the viewpoint
 The viewpoint is given in absolute coordinates. That is, it is relative to the actual coordinate values used in the graph. It is usually a good idea to first view the surface from a considerable distance. Thus, the viewpoint used was $(100.,100.,100.).$
 $R_{VIEW}=100.0,$

2. Z coordinate of viewpoint.
 $Z_{VIEW}=100.0,$

3. F coordinate of viewpoint
 This is the vertical coordinate of the viewpoint (the solution axis).
 $F_{VIEW}=100.0,$

4. Lower bound on function axis
 The lower and upper bounds on the function axis can be used to
provide a fixed vertical axis range for several time values (for use in movie generation). For most purposes it is sufficient to use the default value $\text{FMATMN}=0.0$, (Default)

5. Upper bound on function axis.
 $\text{FMATMX}=1.0$, (Default)

The following pages contain selected printout from the execution of CONTOR, the corresponding plots, selected printout from the execution of THREED, and the corresponding plots. Specifically, for CONTOR we present output concerning frame 4 (time = .75) and frame 5 (time = 3.0). For THREED we present the corresponding graphs and the printout associated with frame 4 only. The other printout and graphs are not included in the interest of saving space.
BEGINNING CONTOUR PLOTTING GRAPHICS PACKAGE

VERSION NUMBER OF GRAPHS FOR EACH TIME
ITRTV = 0 IGNUM = 1 NRESIN = 21

USER SUPPLIED FORMAT INSTRUCTIONS

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>RMIN</th>
<th>RMAX</th>
<th>ZMIN</th>
<th>ZMAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.00000000E+00</td>
<td>0.20000000E+01</td>
<td>0.00000000E+00</td>
<td>0.10000000E+01</td>
</tr>
</tbody>
</table>

'TIME' = F

NRESR = 21 NRESZ = 21

NUMBER FOR RUN IS 1
USING A PRE-ALLOCATED DATASET ON FORTRAN UNIT 11
THE DATASET SHOULD BE "&ALBSR"
END OF DISSPLA 9.0 -- 8000 VECTORS GENERATED IN 5 PLOT FRAMES.
PROPRIETARY SOFTWARE PRODUCT OF ISSCO, SAN DIEGO, CA.
2192 VIRTUAL STORAGE REFERENCES; 4 READS; 0 WRITES.
Figure 7.1.1
Contour plot at t = 0.75 (Frame 4)
Figure 7.1.2
Contour plot at t = 3.0 (Frame 5)
BEGINNING THREE DIMENSIONAL PLOTTING PACKAGE

VERSION NUMBER OF GRAPHS FOR EACH TIME

0 1

NRESIN = 21

ITIME = F

USER SUPPLIED FORMAT INSTRUCTIONS

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>RHMIN</th>
<th>RHMAX</th>
<th>ZMIN</th>
<th>ZMAX</th>
<th>FMATMN</th>
<th>FMATNX</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.00000000E+00</td>
<td>0.20000000E+01</td>
<td>0.00000000E+00</td>
<td>0.10000000E+01</td>
<td>0.00000000E+00</td>
<td>0.30000000E+01</td>
</tr>
</tbody>
</table>

VIEWPOINT IN ABSOLUTE COORDINATES

X Y Z

0.10000000E+03 0.10000000E+03 0.10000000E+03

NRESR = 21 NRESZ = 21

NUMBER FOR RUN IS 1

USING A PRE-ALLOCATED DATASET ON FORTRAN UNIT 76

THE DATASET SHOULD BE "SYS1.DISPLA.DATA"

USING A PRE-ALLOCATED DATASET ON FORTRAN UNIT 77

THE DATASET SHOULD BE "SCRATCH FILE"

END OF DISPLA 9.0 -- 8310 VECTORS GENERATED IN 5 PLOT FRAMES.

PROPRIETARY SOFTWARE PRODUCT OF ISSCO, SAN DIEGO, CA.

3926 VIRTUAL STORAGE REFERENCES; 4 READS; 0 WRITES.
Figure 7.1.3
Three-dimensional perspective surface for heat conduction problem
Figure 7.1.4
Three-dimensional perspective surface for heat conduction problem
7.2 Water Hammer

This example involves a hyperbolic system of flow equations for a water hammer problem [6]. The model considers the flow of water from a reservoir down a conduit with a valve at the exit end. The valve is closed at a linear rate and, after closure, the flow reverses.

The continuity and momentum equations form a pair of quasi-linear hyperbolic partial differential equations in two dependent variables, velocity u and pressure head H, and two independent variables, distance along the pipe x and time t. The equations are given by

\[
\begin{align*}
\frac{\partial H}{\partial t} + u \frac{\partial H}{\partial x} + \frac{a}{g} \frac{\partial u}{\partial x} &= 0, \\
\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + g \frac{\partial H}{\partial x} &= \frac{-u^2 f}{2D},
\end{align*}
\]

(7.2.1)

where

- $g = 32.2 \ldots$ the acceleration due to gravity.
- $a = 3963 \ldots$ the speed of sound in water.
- $L = 4253.5\ldots$ the length of the horizontal conduit.
- $D = 3 \ldots \ldots$ the diameter of the conduit.
- $f = 0.019\ldots$ the friction coefficient.
- $x \ldots \ldots \ldots$ the distance along the conduit from the reservoir.
- $H = H(x, t)\ldots$ the pressure head in the conduit at x and t.
- $u = u(x, t)\ldots$ the velocity in the conduit at x and t.

The valve is located at $x = L$, and is closed at a linear rate until it is fully closed at $t = t_c = 5.9$; thereafter, the valve remains closed.

The boundary conditions are as follows:

\[
\begin{align*}
H(0, t) &= 305.12, \\
u(L, t) &= \frac{u_0}{H_0} H(L, t),
\end{align*}
\]

(7.2.2)

where

- $u_0 = 3.5 \ldots$ the steady-state velocity.
\(H_0 = 300 \ldots \) the steady state head loss across the valve.

\[
\tau = \begin{cases}
(1 - t/5.9), & 0 \leq t \leq 5.9 \\
0, & t > 5.9
\end{cases}
\]

The initial conditions are the steady-state conditions, viz.

\[
\begin{align*}
 u(x,0) &= u_0 = 3.5 \\
 H(x,0) &= 305.12 - \frac{(u_0)^2f x}{2gD}
\end{align*}
\]

(7.2.3)

We shall use this problem to illustrate: the procedures for setting up one-dimensional problems, nonlinear boundary conditions, and graphical output for one-dimensional problems.

It is assumed that the reader has already considered sample problem 7.1; therefore, we shall not discuss those items in the namelists which can be ignored for this problem. Recall that this problem is one dimensional and we shall arbitrarily take this dimension as the \(r \) direction.

1. Spline Order
 - \(KR=4, \ KZ=1 \),
 - \(KZ=1 \) is one of the parameters which is used in defining a one-dimensional problem. In this problem we will use smooth cubics, so that \(KR=4 \), is a default value.

2. Continuity at the mesh points
 - The default values are used, i.e.
 - \(CONTR=3, \ CONTZ=0 \),
 - Note that since \(KZ=1 \), \(CONTZ \) must be zero.

3. Number of species
 - \(NSPEC=2 \),

4. Domain
 - \(RUP=4253.5 \),
 - The other values are default values.
9. Total number of non-interface mesh points in each direction
 \(NMR=9, \)
 The value \(NMZ=0, \) is default and this value should be used for one-dimensional problems in \(r. \)

10. Additional non-interface mesh points
 \(RMESH=425.35, 850.7, 1276.05, 1701.4, 2126.75, 2552.1, 2977.45, 3402.8, 3828.15, \)

12. Quadrature Order
 \(NQR=4, NQZ=1, \)
 \(NQZ=1 \) should be used for a one-dimensional problem in the \(r \) direction.

13. Index for algebraic boundary conditions
 \(ALGBCS=T, \)
 This is the default value; however, it is worth noting that for boundary conditions which are not of the form \(u_m = \rho_m \) where \(\rho_m \) is a known function of \(t \) and \(x \) only, the concept of a time derivative of the boundary conditions is not feasible in this program. Hence for non-standard and/or nonlinear boundary conditions, one must use \(ALGBCS=T, \)

.22. Number of points in the \(r \)-direction for the user's grid
 \(IRGRD=6, \)

23. \(R \) coordinates for the user's grid
 \(RGRID=0.0, 850.7, 1701.4, 2552.1, 3402.8, 4253.5, \)

Next we consider Namelist DATA.

1. Boundary condition switches
 \(NS1(1)=1, NS3(1)=-1, \)
 \(NS1(2)=-1, NS3(2)=1, \)
 Here we have selected the head pressure as the first species and the velocity as the second species. The default values \(NS2(i) = NS4(i) = 0 \) for \(i = 1,2 \) are needed for a one-dimensional problem in \(r. \)
2. Boundary value coefficients

\begin{align*}
\text{ALPHA}(1,1) &= 1.0, \quad \text{BETA}(1,1) = 0.0, \quad \text{GAMMA}(1,1) = 1.0, \\
\text{ALPHA}(1,3) &= 1.0, \quad \text{BETA}(1,3) = 0.0, \quad \text{GAMMA}(1,3) = 1.0, \\
\text{ALPHA}(2,1) &= 1.0, \quad \text{BETA}(2,1) = 0.0, \quad \text{GAMMA}(2,3) = 1.0, \\
\text{ALPHA}(2,3) &= 1.0, \quad \text{BETA}(2,3) = 0.0, \quad \text{GAMMA}(2,3) = 1.0,
\end{align*}

The default values on sides 2 and 4 must be used for one-dimensional problems in \(r \).

8. Output time control

\begin{align*}
\text{NUTOUT} &= 21, \\
\text{UTOUT} &= 0.0, 0.429, 0.859, 1.288, 1.717, 2.147, 2.576, 3.005, 3.435, 3.864, 4.293, 4.723, 5.152, 5.581, 5.841, 5.9, 6.01, 6.44, 6.869, 7.298, 7.723,
\end{align*}

If one were to use, for example, \(\text{NUTOUT}=8 \) in conjunction with this \(\text{UTOUT} \) array, the program would integrate the equations from \(t = 0.0 \) to \(t = 3.005 \) with output at each of the first eight times in the \(\text{UTOUT} \) array. If one wished to restart from \(t = 3.005 \) to go to \(t = 7.728 \), for example, then one would use \(\text{NUTOUT}=21 \) with this same \(\text{UTOUT} \) array. Thus \(\text{NUTOUT} \) is the number of output times desired counting from the first element of the \(\text{UTOUT} \) array. This is true even on a restart.

11. ODE Solver control parameters

For this problem we used

\begin{align*}
\text{EPS} &= 1.0D-6, \quad \text{HINIT} = 1.0D-6,
\end{align*}

This completes the input for the two namelists for this water hammer problem. Next we consider the user-supplied subroutines. Again we assume that the user starts from the model subroutines described in section 4.

Subroutine RHOCP

For both species, the coefficient of the time derivative term is identically one; thus we use

\begin{align*}
\text{RC} &= 1.0D0
\end{align*}

Subroutine DIFUSE

There are no diffusion terms in this problem; hence

\begin{align*}
\text{DIFUR} &= 0.0D0 \\
\text{DIFUZ} &= 0.0D0
\end{align*}
Subroutine VEL

This problem was run with the convection term explicitly displayed and also with the convection term grouped with the distributed term. In the run shown here we have used the convection term grouped with the distributed source term. Thus we have:

VELR=0.DO
VELZ=0.DO

Note that the use of VELZ=0.DO and DIFUZ=0.DO are part of the defining relations for a problem which is one dimensional in the r direction.

Subroutine EXTSRC

The first species is the pressure and the second species is the velocity. Since we have grouped the convective terms with the distributed source terms, we have from Eq. (7.2.1),

1st species:

\[VV = -u \frac{aH}{\partial x} - \frac{a^2}{g} \frac{au}{\partial x} = -\text{SPDEN}(2)*\text{SPDENR}(1)-\text{ASDG}\times\text{SPDENR}(2) \]

2nd species:

\[VV = -u \frac{au}{\partial x} - g \frac{aH}{\partial x} - \frac{ulujf}{2D} = -\text{SPDEN}(2)*\text{SPDENR}(2)-G*\text{SPDENR}(1) \]

\[-F*\text{SPDEN}(2)*\text{DABS(SPDEN(2))}/2.DO*D \]

where \(G = 32.2D0 \)
\(D = 3.00 \)
\(F = 0.019D0 \)
\(\text{ASDG} = (3963.D0**2)/G \)

Subroutine FDEXTU

Recall that, for each species, this routine calculates the Frechet derivative of the distributed source with respect to \(u(k'), \frac{\partial u}{\partial r}(k'), \) and \(\frac{\partial u}{\partial z}(k') \) for \(k' = 1,\text{NSPEC} \).

Consider the 1st species. The source term is

\[VV = -u \frac{aH}{\partial x} - \frac{a^2}{g} \frac{au}{\partial x} = -\text{SPDEN}(2)*\text{SPDENR}(1)-\text{ASDG}\times\text{SPDENR}(2). \]

Thus

\[\frac{\partial VV}{\partial u(1)} = 0, \]

i.e.

\[\text{UU}(1) = 0.DO. \]
\[
\frac{\partial VV}{\partial u(2)} = -\frac{\partial H}{\partial x},
\]
i.e.

\[
UU(2) = -SPDENR(1).
\]

\[
\frac{\partial VV}{\partial u(1)} = -u, \quad (u_r(1) = \frac{\partial H}{\partial x}, \quad u_r(2) = \frac{\partial u}{\partial x})
\]
i.e.

\[
UUR(1) = -SPDEN(2).
\]

\[
\frac{\partial VV}{\partial u_r(2)} = -\frac{a^2}{g},
\]
i.e.

\[
UUR(2) = -ASDG.
\]

This is a one-dimensional problem in \(r \); hence

\[
UUZ(1) = 0.00,\quad UUZ(2) = 0.00.
\]

Next, consider the 2nd species.

\[
VV = -u \frac{\partial u}{\partial x} - g \frac{\partial H}{\partial x} - \frac{uluf}{2D}.
\]

Thus

\[
\frac{\partial VV}{\partial u(1)} = 0,
\]
i.e.

\[
UU(1) = 0.00.
\]

\[
\frac{\partial VV}{\partial u_r(2)} = -u \frac{\partial u}{\partial x} - \frac{uluf}{D},
\]
i.e.

\[
UU(2) = -SPDENR(2) - F*DABS(SPDEN(2))/D.
\]

\[
\frac{\partial VV}{u_r(1)} = -g
\]
i.e.

\[
UUR(1) = -G.
\]

\[
\frac{\partial VV}{u_r(2)} = -u,
\]
i.e.\[UUR(2) = -SPDEN(2) \]
\[UUZ(1) = 0.0 \]
\[UUZ(2) = 0.0 \]

Subroutine INDATA

The initial conditions are given by Eq. (7.2.3); thus we have:

\[G = 32.2 \]
\[ASDG = (3963.0 \times 2)/G \]
\[D = 3.0 \]
\[F = 0.019 \]
\[IF(K = EQ. 2) G0 T0 10 \]
\[UU = 305.12D0 - F \times (3.5D0 \times 2) \times RR/(2.0 \times D \times G) \]
\[RETURN \]
\[10 \]
\[UU = 3.5D0 \]
\[RETURN \]

Subroutine BRHO

The boundary conditions are given by Eq. (7.2.2). Using the model subroutine for BRHO described in section 4, we have:

after 101
\[\text{RHOV} = 305.12D0 \]
after 203
\[\text{RHOV} = 0.0 \]
\[\text{TAU} = 1.0 - (T/TC) \]
\[IF(T < LT. TC) \text{RHOV} = U0 \times TAU \times DSQRT(SPDEN(1)/HO) \]
\[RETURN \]

where
\[TC = 5.900 \]
\[HO = 300.0 \]
\[U0 = 3.500 \]

In the Master Driver, both AL and GPW were of dimension 784 (AL could have been half this size). The water hammer problem was run on an IBM 370/195. With the same macros as used in the first problem, this problem used 356K bytes of fast memory and ran with 42 seconds for the CPU time. In [6], this problem was solved by the method of characteristics and the results are shown in Table 7.2.1. Since we have selected the output grid and the output times to be the same as those in Table 7.2.1, the results can be compared and the agreement is seen to be excellent.

The following pages contain the printed output from the computational phase of DISPL.
Table 7.2.1

Output from method of characteristic solution

<table>
<thead>
<tr>
<th>TIME</th>
<th>TAU</th>
<th>x/L= 0.</th>
<th>0.2</th>
<th>0.4</th>
<th>0.6</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>.000</td>
<td>1.000</td>
<td>H= 305.12</td>
<td>304.10</td>
<td>303.07</td>
<td>302.05</td>
<td>301.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V= 3.50</td>
<td>3.50</td>
<td>3.50</td>
<td>3.50</td>
<td>3.50</td>
</tr>
<tr>
<td>.429</td>
<td>.927</td>
<td>H= 305.12</td>
<td>304.10</td>
<td>303.07</td>
<td>302.05</td>
<td>310.30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V= 3.50</td>
<td>3.50</td>
<td>3.50</td>
<td>3.50</td>
<td>3.42</td>
</tr>
<tr>
<td>.859</td>
<td>.854</td>
<td>H= 305.12</td>
<td>305.10</td>
<td>312.30</td>
<td>326.90</td>
<td>329.92</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V= 3.50</td>
<td>3.50</td>
<td>3.43</td>
<td>3.35</td>
<td>3.27</td>
</tr>
<tr>
<td>1.288</td>
<td>1.288</td>
<td>H= 305.12</td>
<td>322.66</td>
<td>331.84</td>
<td>341.26</td>
<td>351.11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V= 3.35</td>
<td>3.35</td>
<td>3.27</td>
<td>3.18</td>
<td>3.09</td>
</tr>
<tr>
<td>1.717</td>
<td>1.709</td>
<td>H= 305.12</td>
<td>324.44</td>
<td>343.79</td>
<td>363.21</td>
<td>373.93</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V= 3.04</td>
<td>3.03</td>
<td>3.02</td>
<td>3.01</td>
<td>2.91</td>
</tr>
<tr>
<td>2.147</td>
<td>2.147</td>
<td>H= 305.12</td>
<td>326.15</td>
<td>347.20</td>
<td>368.33</td>
<td>389.56</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V= 2.70</td>
<td>2.69</td>
<td>2.68</td>
<td>2.66</td>
<td>2.64</td>
</tr>
<tr>
<td>2.576</td>
<td>2.576</td>
<td>H= 305.12</td>
<td>327.68</td>
<td>350.87</td>
<td>373.43</td>
<td>392.68</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V= 2.33</td>
<td>2.33</td>
<td>2.32</td>
<td>2.30</td>
<td>2.30</td>
</tr>
<tr>
<td>3.005</td>
<td>4.91</td>
<td>H= 305.12</td>
<td>329.94</td>
<td>350.59</td>
<td>372.63</td>
<td>390.06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V= 1.94</td>
<td>1.93</td>
<td>1.95</td>
<td>1.97</td>
<td>1.99</td>
</tr>
<tr>
<td>3.435</td>
<td>4.114</td>
<td>H= 305.12</td>
<td>322.97</td>
<td>344.33</td>
<td>364.97</td>
<td>384.88</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V= 1.58</td>
<td>1.58</td>
<td>1.61</td>
<td>1.64</td>
<td>1.67</td>
</tr>
<tr>
<td>3.864</td>
<td>3.455</td>
<td>H= 305.12</td>
<td>322.32</td>
<td>339.43</td>
<td>356.38</td>
<td>376.65</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V= 1.29</td>
<td>1.29</td>
<td>1.30</td>
<td>1.31</td>
<td>1.35</td>
</tr>
<tr>
<td>4.293</td>
<td>2.72</td>
<td>H= 305.12</td>
<td>321.34</td>
<td>337.46</td>
<td>353.37</td>
<td>368.48</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V= 1.02</td>
<td>1.02</td>
<td>1.03</td>
<td>1.04</td>
<td>1.04</td>
</tr>
<tr>
<td>4.723</td>
<td>2.20</td>
<td>H= 305.12</td>
<td>319.96</td>
<td>334.68</td>
<td>349.16</td>
<td>366.35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V= .76</td>
<td>.77</td>
<td>.78</td>
<td>.79</td>
<td>.79</td>
</tr>
<tr>
<td>5.152</td>
<td>1.27</td>
<td>H= 305.12</td>
<td>318.11</td>
<td>334.02</td>
<td>350.45</td>
<td>367.36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V= .54</td>
<td>.54</td>
<td>.53</td>
<td>.52</td>
<td>.51</td>
</tr>
<tr>
<td>5.581</td>
<td>1.05</td>
<td>H= 305.12</td>
<td>322.63</td>
<td>337.60</td>
<td>353.71</td>
<td>370.34</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V= .29</td>
<td>.29</td>
<td>.27</td>
<td>.25</td>
<td>.23</td>
</tr>
<tr>
<td>6.010</td>
<td>1.00</td>
<td>H= 305.12</td>
<td>323.23</td>
<td>341.44</td>
<td>359.48</td>
<td>376.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V= .00</td>
<td>.00</td>
<td>-.00</td>
<td>-.01</td>
<td>-.04</td>
</tr>
<tr>
<td>6.446</td>
<td>1.00</td>
<td>H= 305.12</td>
<td>324.27</td>
<td>343.55</td>
<td>353.99</td>
<td>360.04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V= -.30</td>
<td>-.25</td>
<td>-.25</td>
<td>-.25</td>
<td>-.12</td>
</tr>
<tr>
<td>6.869</td>
<td>0.00</td>
<td>H= 305.12</td>
<td>316.74</td>
<td>319.73</td>
<td>322.41</td>
<td>323.37</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V= -.82</td>
<td>-.79</td>
<td>-.79</td>
<td>-.79</td>
<td>-.14</td>
</tr>
<tr>
<td>7.294</td>
<td>0.00</td>
<td>H= 305.12</td>
<td>242.17</td>
<td>246.94</td>
<td>242.99</td>
<td>287.08</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V= -.53</td>
<td>-.54</td>
<td>-.46</td>
<td>-.30</td>
<td>-.15</td>
</tr>
<tr>
<td>7.728</td>
<td>0.00</td>
<td>H= 305.12</td>
<td>247.60</td>
<td>272.49</td>
<td>250.61</td>
<td>248.66</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V= -.29</td>
<td>-.24</td>
<td>-.27</td>
<td>-.25</td>
<td>-.16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>----</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEXAB</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAJ10</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAJ14</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAF</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MINRI</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MARTA</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MART10</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M16GPN</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M16GPN</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
RFADIG NAMELIST GPID

PP = 4
KX = 1
KX = 0
MP = 0
W = 2
PF = 0.3
MUP = 0.4253500000000000D+04
TLOW = 0.5
ZPP = 0.1000000000000000D+01

INCFX = 4
INCFZ = 4
INITIAL CONTF = 13
INITIAL CONCF = 13

ADDITIONAL GRID POINTS
I = 1
FRESH(I) = 0.4253500000000000D+04
I = 2
FRESH(I) = 0.4253500000000000D+04
I = 3
FRESH(I) = 0.4253500000000000D+04
I = 4
FRESH(I) = 0.4253500000000000D+04
I = 5
FRESH(I) = 0.4253500000000000D+04
I = 6
FRESH(I) = 0.4253500000000000D+04
I = 7
FRESH(I) = 0.4253500000000000D+04
I = 8
FRESH(I) = 0.4253500000000000D+04
I = 9
FRESH(I) = 0.4253500000000000D+04

ADDITIONAL Z GRID POINTS

QUADRATURE ORDER FOR Z DIRECTION

MATERIAL TO GDIR = 4
MATERIAL TO GDIR = 4

CONSVF = F
ALGES = T
LOGICAL SWITCHES TO CONTROL PROGRAM
STFNS = F
OESSW = F
Trans = T
INITSV = T
ITRM = F
ITRM = F
INRPL(1) = F
INRPL(2) = F
ORDER OF SPLINE DERIVATIVES COMPUTED IS 0
NUMBER OF SUPPLIED POINTS IN Z DIRECTION 1
PGFZ(1) = 0.6
PGFZ(2) = 0.7
PGFZ(3) = 0.8
PGFZ(4) = 0.9
PGFZ(5) = 1.0

NUMBER OF SUPPLIED POINTS IN Z DIRECTION 1

READING NAMELIST DATA

CONTF TOO HIGH, BRING SET TO 4-1
CONCF TOO HIGH, BRING SET TO 1-1
HP = 0
WHP = 0
LR = 10
LI = 1
HR = 13
HZ = 1

IL(1) = 5
IL(2) = 6
IL(3) = 7
J1(1) = 8
Horizontal Ordering

<table>
<thead>
<tr>
<th>Index</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>26</td>
</tr>
<tr>
<td>3</td>
<td>-28</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
</tr>
</tbody>
</table>

System Size for This Case

<table>
<thead>
<tr>
<th>LB</th>
<th>LE</th>
<th>WF</th>
<th>NYAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1</td>
<td>13</td>
<td>26</td>
</tr>
</tbody>
</table>

This is the Direct Version

This Version Does Not Require Boundary Conditions on Every Side

For Species No. 1

<table>
<thead>
<tr>
<th>Side</th>
<th>Alpha</th>
<th>Beta</th>
<th>Gamma</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.10000000D+01</td>
<td>0.00</td>
<td>0.10000000D+01</td>
</tr>
<tr>
<td>2</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>3</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>4</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

For Species No. 2

<table>
<thead>
<tr>
<th>Side</th>
<th>Alpha</th>
<th>Beta</th>
<th>Gamma</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.10000000D+01</td>
<td>0.00</td>
<td>0.10000000D+01</td>
</tr>
<tr>
<td>2</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>3</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>4</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Side Indicators by Species

For Species No. 1

<table>
<thead>
<tr>
<th>MS1</th>
<th>MS2</th>
<th>MS3</th>
<th>MS4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>0</td>
</tr>
</tbody>
</table>

For Species No. 2

<table>
<thead>
<tr>
<th>MS1</th>
<th>MS2</th>
<th>MS3</th>
<th>MS4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Convection Velocity in P Direction

<table>
<thead>
<tr>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
</tr>
</tbody>
</table>

Convection Velocity in Z Direction

<table>
<thead>
<tr>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
</tr>
</tbody>
</table>

Boundary H Function for Sides 1 and 3

<table>
<thead>
<tr>
<th>Species No.</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material Index</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>H1</td>
<td>0.10000000000000D+01</td>
<td>0.10000000000000D+01</td>
</tr>
</tbody>
</table>

Boundary H Function for Sides 2 and 4

<table>
<thead>
<tr>
<th>Species No.</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material Index</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>H1</td>
<td>0.10000000000000D+01</td>
<td>0.10000000000000D+01</td>
</tr>
</tbody>
</table>

Species No. 1, Material Index 1

<table>
<thead>
<tr>
<th>H1</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10000000000000D+01</td>
<td>0.10000000000000D+01</td>
</tr>
</tbody>
</table>

Species No. 2, Material Index 1

<table>
<thead>
<tr>
<th>H1</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10000000000000D+01</td>
<td>0.10000000000000D+01</td>
</tr>
</tbody>
</table>
FIRST ORDER RATES

SECOND ORDER RATES ARE

DEFINITION OF CONCENTRATION U OF THE SPECIES AT THE QUADRATURE POINTS IN THE (1, 1)-TH RECTANGLE.

VALUES OF CONCENTRATION U OF THE 1 TH SPECIES AT THE QUADRATURE POINTS IN THE (1, 1)-TH RECTANGLE.

VALUES OF CONCENTRATION U OF THE 2 TH SPECIES AT THE QUADRATURE POINTS IN THE (1, 1)-TH RECTANGLE.

VALUES OF CONCENTRATION U OF THE 3 TH SPECIES AT THE QUADRATURE POINTS IN THE (1, 1)-TH RECTANGLE.

VALUES OF CONCENTRATION U OF THE 4 TH SPECIES AT THE QUADRATURE POINTS IN THE (1, 1)-TH RECTANGLE.

VALUES OF CONCENTRATION U OF THE 5 TH SPECIES AT THE QUADRATURE POINTS IN THE (1, 1)-TH RECTANGLE.
VALUES OF CONCENTRATION U OF THE SPECIES AT THE QUADRATURE POINTS IN THE (7, 1)-TH RECTANGLE.

<table>
<thead>
<tr>
<th>Species</th>
<th>Quadrature Points</th>
<th>Concentration U</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(3, 1)</td>
<td>0.35000000812538124E+01</td>
</tr>
<tr>
<td>2</td>
<td>(4, 1)</td>
<td>0.3499999967545694D+01</td>
</tr>
<tr>
<td>3</td>
<td>(5, 1)</td>
<td>0.3500000063001927D+01</td>
</tr>
<tr>
<td>4</td>
<td>(6, 1)</td>
<td>0.349999995719354001E+01</td>
</tr>
<tr>
<td>5</td>
<td>(7, 1)</td>
<td>0.35000001470206845D+01</td>
</tr>
<tr>
<td>6</td>
<td>(8, 1)</td>
<td>0.35000002694758663D+01</td>
</tr>
<tr>
<td>7</td>
<td>(9, 1)</td>
<td>0.35000004475614284836E+01</td>
</tr>
<tr>
<td>8</td>
<td>(10, 1)</td>
<td>0.350000063601927D+01</td>
</tr>
</tbody>
</table>

VALUES OF CONCENTRATION U OF THE SPECIES AT THE QUADRATURE POINTS IN THE (8, 1)-TH RECTANGLE.

<table>
<thead>
<tr>
<th>Species</th>
<th>Quadrature Points</th>
<th>Concentration U</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(3, 1)</td>
<td>0.35000000812538124E+01</td>
</tr>
<tr>
<td>2</td>
<td>(4, 1)</td>
<td>0.3499999967545694D+01</td>
</tr>
<tr>
<td>3</td>
<td>(5, 1)</td>
<td>0.3500000063001927D+01</td>
</tr>
<tr>
<td>4</td>
<td>(6, 1)</td>
<td>0.349999995719354001E+01</td>
</tr>
<tr>
<td>5</td>
<td>(7, 1)</td>
<td>0.35000001470206845D+01</td>
</tr>
<tr>
<td>6</td>
<td>(8, 1)</td>
<td>0.350000033805464001E+01</td>
</tr>
<tr>
<td>7</td>
<td>(9, 1)</td>
<td>0.35000005271339669D+01</td>
</tr>
<tr>
<td>8</td>
<td>(10, 1)</td>
<td>0.3500000715031394D+01</td>
</tr>
</tbody>
</table>

VALUES OF CONCENTRATION U OF THE SPECIES AT THE QUADRATURE POINTS IN THE (9, 1)-TH RECTANGLE.

<table>
<thead>
<tr>
<th>Species</th>
<th>Quadrature Points</th>
<th>Concentration U</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(3, 1)</td>
<td>0.35000000812538124E+01</td>
</tr>
<tr>
<td>2</td>
<td>(4, 1)</td>
<td>0.3499999967545694D+01</td>
</tr>
<tr>
<td>3</td>
<td>(5, 1)</td>
<td>0.3500000063001927D+01</td>
</tr>
<tr>
<td>4</td>
<td>(6, 1)</td>
<td>0.349999995719354001E+01</td>
</tr>
<tr>
<td>5</td>
<td>(7, 1)</td>
<td>0.35000001470206845D+01</td>
</tr>
<tr>
<td>6</td>
<td>(8, 1)</td>
<td>0.35000004475614284836E+01</td>
</tr>
<tr>
<td>7</td>
<td>(9, 1)</td>
<td>0.350000063601927D+01</td>
</tr>
<tr>
<td>8</td>
<td>(10, 1)</td>
<td>0.350000082833460185D+01</td>
</tr>
</tbody>
</table>

VALUES OF CONCENTRATION U OF THE SPECIES AT THE QUADRATURE POINTS IN THE (10, 1)-TH RECTANGLE.
READING MASSLIST DATA

CHANGES IN MASSLIST DATA MAY HAVE BEEN MADE FOR TRANSIENT WAVES
FOR SPECIES NO. 1
SIDE 1 ALPHA = 0.0000000000000000D+01 BETA = 0.0000000000000000D+01 GAMMA = 0.1000000000000000D+01
SIDE 2 ALPHA = 0.0000000000000000D+01 BETA = 0.0000000000000000D+01 GAMMA = 0.1000000000000000D+01
SIDE 3 ALPHA = 0.0000000000000000D+01 BETA = 0.0000000000000000D+01 GAMMA = 0.1000000000000000D+01
SIDE 4 ALPHA = 0.0000000000000000D+01 BETA = 0.0000000000000000D+01 GAMMA = 0.1000000000000000D+01

FOR SPECIES NO. 2
SIDE 1 ALPHA = 0.0000000000000000D+01 BETA = 0.0000000000000000D+01 GAMMA = 0.1000000000000000D+01
SIDE 2 ALPHA = 0.0000000000000000D+01 BETA = 0.0000000000000000D+01 GAMMA = 0.1000000000000000D+01
SIDE 3 ALPHA = 0.0000000000000000D+01 BETA = 0.0000000000000000D+01 GAMMA = 0.1000000000000000D+01
SIDE 4 ALPHA = 0.0000000000000000D+01 BETA = 0.0000000000000000D+01 GAMMA = 0.1000000000000000D+01

SIDE INDICATORS BY SPECIES

FOR SPECIES NO. 1 WS1 = 1 WS2 = 0 WS3 = -1 WS4 = 0
FOR SPECIES NO. 2 WS1 = -1 WS2 = 0 WS3 = 1 WS4 = 0

CONVECTION VELOCITY IN X DIRECTION 0.0
CONVECTION VELOCITY IN Y DIRECTION 0.0

BOUNDARY H FUNCTION FOR SIDES 1 AND 3
SPECIES NO. 1 MATERIAL INDEX 1 H1 = 0.1000000000000000D+01 H1 = 0.1000000000000000D+01
SPECIES NO. 2 MATERIAL INDEX 1 H2 = 0.1000000000000000D+01 H2 = 0.1000000000000000D+01

BOUNDARY H FUNCTION FOR SIDES 2 AND 4
SPECIES NO. 1 MATERIAL INDEX 1 H1 = 0.1000000000000000D+01 H1 = 0.1000000000000000D+01
SPECIES NO. 2 MATERIAL INDEX 1 H2 = 0.1000000000000000D+01 H2 = 0.1000000000000000D+01

REACTION RATES
FIRST ORDER RATES
CK INTO 1 FROM 1 IS 0.0
CK INTO 2 FROM 2 IS 0.0
CK INTO 2 FROM 2 IS 0.0

SECOND ORDER REACTION RATES ARE
CK INTO K = 1 FOR K = 1 INTO KPI = 1 CKK(1, 1, 1) = 0.0
CK INTO K = 1 FOR K = 2 INTO KPI = 1 CKK(2, 2, 1) = 0.0
CK INTO K = 1 FOR K = 2 INTO KPI = 1 CKK(1, 1, 2) = 0.0
CK INTO K = 2 FOR K = 1 INTO KPP = 1 CKK(1, 2, 1) = 0.0
CK INTO K = 2 FOR K = 2 INTO KPP = 1 CKK(2, 2, 1) = 0.0
CK INTO K = 2 FOR K = 2 INTO KPP = 2 CKK(2, 2, 2) = 0.0
CK INTO K = 2 FOR K = 2 INTO KPP = 2 CKK(2, 2, 2) = 0.0

ILSTPF = 100
TIME AND SPACE GRID FOR PROBE

NUMBER OF MAJOR TIME VALUES 21
NUMBER OF SUBINTERVALS OF EACH MAJOR TIME INTERVAL 1
(OUPUT WILL OCCUR AT EACH SUCH TIME)
MAJOR TIME VALUES
0.0
0.1717000000000000D+01 0.2147000000000000D+01 0.2576000000000000D+01 0.3005000000000000D+01
0.3435000000000000D+01 0.3864000000000000D+01 0.4293000000000000D+01 0.4723000000000000D+01
0.5152000000000000D+01 0.5581000000000000D+01 0.6010000000000000D+01 0.6439000000000000D+01
0.6868000000000000D+01 0.7297000000000000D+01 0.7726000000000000D+01

DATASET CREATED FOR USE IN GRAPHICS
GRID = 7
PRINT SWITCH INDICATORS
IPRSM1 = 0 IPRSM2 = 0 IPRSM3 = 0 IPRSM4 = 0 IPRSM5 = 0
ODE PACKAGE DATA
EPS = 0.1000000000000000D-06 MINI = 0.1000000000000000D-06 N = 21 PECE = 5
CONTINUITY FOR X AND Y DIRECTIONS
CONT = 3 CONT = 0
<table>
<thead>
<tr>
<th>INITIAL COEFFICIENTS FOR TRANSIENT</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.305120000000230D+03</td>
<td>0.304949192179930D+03</td>
<td>0.3500000000000001D+01</td>
<td></td>
</tr>
<tr>
<td>0.166275766539842D+03</td>
<td>0.349999999992026D+01</td>
<td>0.35000000000000000D+01</td>
<td></td>
</tr>
<tr>
<td>0.30562794195687D+03</td>
<td>0.303070106594140D+03</td>
<td>0.350000000000001588519D+01</td>
<td></td>
</tr>
<tr>
<td>0.302557826992759D+03</td>
<td>0.302954902393312D+03</td>
<td>0.350000000000001588519D+01</td>
<td></td>
</tr>
<tr>
<td>0.301530303778958D+03</td>
<td>0.3010206162634020D+03</td>
<td>0.35000000000001680296129D+01</td>
<td></td>
</tr>
<tr>
<td>0.3005091888586958D+03</td>
<td>0.300166573216599D+03</td>
<td>0.3500014932673946D+01</td>
<td></td>
</tr>
<tr>
<td>0.2999947653985550B+03</td>
<td>0.3499999728071043D+01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

{'primary_language':null,'is_rotation_valid':true,'rotation_correction':0,'is_table':true,'is_diagram':false,'natural_text':null}
BEGIN TRANSIENT SOLUTION

PROFT FOR TIME = 0.0

```plaintext
\begin{align*}
W &= 0.30512000D+03, 0.35033000D+03, 0.30499910D+03, 0.35000000D+03, 0.30102100D+03, 0.29999999D+03, 0.30255790D+03, 0.30050000D+03, 0.30255790D+03, 0.30050000D+03, 0.30512000D+03 \\
&= 0.30102061D+03, 0.30050819D+03, 0.30255790D+03, 0.30050000D+03, 0.30255790D+03, 0.30050000D+03, 0.30512000D+03, 0.30050000D+03, 0.30255790D+03, 0.30050000D+03, 0.30512000D+03
\end{align*}
```

VALUES OF CONCENTRATIONS U OF THE 1 TH SPECIES ON THE USERS GRID

(From PROFRT & TIME)

APPROXIMATE SOLUTION

-0.30512000D+03, 0.30499999D+03, 0.30255790D+03, 0.30050000D+03, 0.29999999D+03, 0.30255790D+03, 0.30050000D+03, 0.30255790D+03, 0.30050000D+03, 0.30255790D+03, 0.30050000D+03, 0.30512000D+03

PROFT FOR TIME = 0.42900000D+00

```plaintext
\begin{align*}
W &= 0.30512000D+03, 0.35033000D+03, 0.30499910D+03, 0.35000000D+03, 0.30102100D+03, 0.29999999D+03, 0.30255790D+03, 0.30050000D+03, 0.30255790D+03, 0.30050000D+03, 0.30512000D+03 \\
&= 0.30102061D+03, 0.30050819D+03, 0.30255790D+03, 0.30050000D+03, 0.30255790D+03, 0.30050000D+03, 0.30512000D+03, 0.30050000D+03, 0.30255790D+03, 0.30050000D+03, 0.30512000D+03
\end{align*}
```

VALUES OF CONCENTRATIONS U OF THE 1 TH SPECIES ON THE USERS GRID

(From PROFRT & TIME)

APPROXIMATE SOLUTION

-0.30512000D+03, 0.30499999D+03, 0.30255790D+03, 0.30050000D+03, 0.29999999D+03, 0.30255790D+03, 0.30050000D+03, 0.30255790D+03, 0.30050000D+03, 0.30255790D+03, 0.30050000D+03, 0.30512000D+03

ESTIMATED TIME FOR A CALL TO DRIVE

0.42900000D+00

TIME LEFT

0.44700000D+00

PROFT FOR TIME = 0.85930000D+00

```plaintext
\begin{align*}
W &= 0.30512000D+03, 0.35033000D+03, 0.30499910D+03, 0.35000000D+03, 0.30102100D+03, 0.29999999D+03, 0.30255790D+03, 0.30050000D+03, 0.30255790D+03, 0.30050000D+03, 0.30512000D+03 \\
&= 0.30102061D+03, 0.30050819D+03, 0.30255790D+03, 0.30050000D+03, 0.30255790D+03, 0.30050000D+03, 0.30512000D+03, 0.30050000D+03, 0.30255790D+03, 0.30050000D+03, 0.30512000D+03
\end{align*}
```

VALUES OF CONCENTRATIONS U OF THE 1 TH SPECIES ON THE USERS GRID

(From PROFRT & TIME)

APPROXIMATE SOLUTION

-0.30512000D+03, 0.30499999D+03, 0.30255790D+03, 0.30050000D+03, 0.29999999D+03, 0.30255790D+03, 0.30050000D+03, 0.30255790D+03, 0.30050000D+03, 0.30255790D+03, 0.30050000D+03, 0.30512000D+03

ESTIMATED TIME FOR A CALL TO DRIVE

0.85930000D+00

TIME LEFT

0.88700000D+00
VALUES OF CONCENTRATIONS U OF THE 1 TH SPECIES ON THE USERS GRID

APPROXIMATE SOLUTION

0.305119999999999D+03 0.3222819145036616D+03 0.3316643232829942D+03 0.3411981063571791D+03 0.3626717755695567D+03 0.3853534999999994D+03 0.4082170975726450D+03 0.3268228241072877D+03 0.3268228241072877D+03 0.3268228241072877D+03 0.3268228241072877D+03

APPROXIMATE SOLUTION

0.305119999999999D+03 0.3222819145036616D+03 0.3316643232829942D+03 0.3411981063571791D+03 0.3626717755695567D+03 0.3853534999999994D+03 0.4082170975726450D+03 0.3268228241072877D+03 0.3268228241072877D+03 0.3268228241072877D+03 0.3268228241072877D+03

ESTIMATED TIME FOR A CALL TO DRIVE 0.15663488D+03

TIE LEFT 0.44554900D+05

VALUES OF CONCENTRATIONS U OF THE 2 TH SPECIES ON THE USERS GRID

APPROXIMATE SOLUTION

0.305119999999999D+03 0.3222819145036616D+03 0.3316643232829942D+03 0.3411981063571791D+03 0.3626717755695567D+03 0.3853534999999994D+03 0.4082170975726450D+03 0.3268228241072877D+03 0.3268228241072877D+03 0.3268228241072877D+03

VALUES OF CONCENTRATIONS U OF THE 1 TH SPECIES ON THE USERS GRID

APPROXIMATE SOLUTION

0.305119999999999D+03 0.3222819145036616D+03 0.3316643232829942D+03 0.3411981063571791D+03 0.3626717755695567D+03 0.3853534999999994D+03 0.4082170975726450D+03 0.3268228241072877D+03 0.3268228241072877D+03 0.3268228241072877D+03 0.3268228241072877D+03

ESTIMATED TIME FOR A CALL TO DRIVE 0.15663488D+03

TIE LEFT 0.44554900D+05
<table>
<thead>
<tr>
<th>TIME</th>
<th>0.11927506D+03</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>0.21470000D+01</td>
</tr>
</tbody>
</table>

VALUES OF CONCENTRATIONS U OF THE 1ST SPECIES ON THE USERS GRID

<table>
<thead>
<tr>
<th>TIME</th>
<th>0.13967442D+03</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>0.25760000D+01</td>
</tr>
</tbody>
</table>

VALUES OF CONCENTRATIONS U OF THE 2ND SPECIES ON THE USERS GRID
VALUES OF CONCENTRATIONS OF THE 1 TH SPECIES ON THE USERS GRID

APPROXIMATE SOLUTION
0.305120000+03 0.193824730+01 0.308373730+03 0.193159770+01 0.317612210+03 0.194200410+01
0.319100120+01 0.191229420+01 0.348503590+03 0.194325010+01 0.351012920+03 0.200540670+01
0.351424400+01 0.196129350+01 0.371482000+03 0.197532390+01 0.380403730+03 0.200540670+01
0.369069500+01 0.205065900+01 0.468456400+03 0.199975120+01 0.401051800+03 0.200540670+01

VALUES OF CONCENTRATIONS OF THE 2 TH SPECIES ON THE USERS GRID

APPROXIMATE SOLUTION
0.305120000+03 0.193824730+01 0.308373730+03 0.193159770+01 0.317612210+03 0.194200410+01
0.319100120+01 0.191229420+01 0.348503590+03 0.194325010+01 0.351012920+03 0.200540670+01
0.351424400+01 0.196129350+01 0.371482000+03 0.197532390+01 0.380403730+03 0.200540670+01
0.369069500+01 0.205065900+01 0.468456400+03 0.199975120+01 0.401051800+03 0.200540670+01

APPROXIMATE SOLUTION
0.305120000+03 0.193824730+01 0.308373730+03 0.193159770+01 0.317612210+03 0.194200410+01
0.319100120+01 0.191229420+01 0.348503590+03 0.194325010+01 0.351012920+03 0.200540670+01
0.351424400+01 0.196129350+01 0.371482000+03 0.197532390+01 0.380403730+03 0.200540670+01
0.369069500+01 0.205065900+01 0.468456400+03 0.199975120+01 0.401051800+03 0.200540670+01

APPROXIMATE SOLUTION
0.305120000+03 0.193824730+01 0.308373730+03 0.193159770+01 0.317612210+03 0.194200410+01
0.319100120+01 0.191229420+01 0.348503590+03 0.194325010+01 0.351012920+03 0.200540670+01
0.351424400+01 0.196129350+01 0.371482000+03 0.197532390+01 0.380403730+03 0.200540670+01
0.369069500+01 0.205065900+01 0.468456400+03 0.199975120+01 0.401051800+03 0.200540670+01

ESTIMATED TIME FOR A CALL TO DRIVE
0.10223776+03

TIME LEFT
0.43946000+05
VALUES OF CONCENTRATIONS u OF THE 1ST SPECIES ON THE USERS GRID
(FROM PROOT VIA TIME)

<table>
<thead>
<tr>
<th>u</th>
<th>w</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.32171020D+03</td>
<td>0.12867516D+01</td>
<td>0.33117282D+03</td>
<td>0.13992789D+03</td>
<td>0.13056910D+01</td>
</tr>
<tr>
<td>0.34722796D+03</td>
<td>0.12962519D+01</td>
<td>0.33992789D+03</td>
<td>0.13212458D+01</td>
<td>0.13216458D+01</td>
</tr>
<tr>
<td>0.36628053D+03</td>
<td>0.13534177D+01</td>
<td>0.34722960D+03</td>
<td>0.13534177D+01</td>
<td>0.13647554D+01</td>
</tr>
<tr>
<td>0.38468701D+03</td>
<td>0.13878047D+01</td>
<td>0.392E34</td>
<td>0.13878047D+01</td>
<td>0.13892260D+01</td>
</tr>
</tbody>
</table>

VALUES OF CONCENTRATIONS u OF THE 2ND SPECIES ON THE USERS GRID
(FROM PROOT VIA TIME)

<table>
<thead>
<tr>
<th>u</th>
<th>w</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1051199999999999D+03</td>
<td>0.1217292343213048D+03</td>
<td>0.3375347125019273D+03</td>
<td>0.3531587689430451D+03</td>
<td>0.35411855436251316D+03</td>
</tr>
<tr>
<td>0.10158056D+01</td>
<td>0.1217292343213048D+03</td>
<td>0.3375347125019273D+03</td>
<td>0.3531587689430451D+03</td>
<td>0.35411855436251316D+03</td>
</tr>
<tr>
<td>0.1021486368508123D+01</td>
<td>0.1026917946220129D+01</td>
<td>0.1036377681561939D+01</td>
<td>0.1043461403430590D+01</td>
<td>0.10504283D+01</td>
</tr>
<tr>
<td>0.10694219D+03</td>
<td>0.1079925133442168D+01</td>
<td>0.1079925133442168D+01</td>
<td>0.1079925133442168D+01</td>
<td>0.1079925133442168D+01</td>
</tr>
</tbody>
</table>

VALUES OF CONCENTRATIONS u OF THE 1ST SPECIES ON THE USERS GRID
(FROM APFOXIMATE SOLUTION)

<table>
<thead>
<tr>
<th>u</th>
<th>w</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.30512000D+03</td>
<td>0.10158056D+01</td>
<td>0.30775050D+03</td>
<td>0.30775050D+03</td>
<td>0.30775050D+03</td>
</tr>
<tr>
<td>0.32220821D+03</td>
<td>0.1021486368508123D+01</td>
<td>0.37630183D+03</td>
<td>0.37630183D+03</td>
<td>0.37630183D+03</td>
</tr>
<tr>
<td>0.33761264D+03</td>
<td>0.1036377681561939D+01</td>
<td>0.38176809D+03</td>
<td>0.38176809D+03</td>
<td>0.38176809D+03</td>
</tr>
<tr>
<td>0.35280078D+03</td>
<td>0.1043461403430590D+01</td>
<td>0.392E34</td>
<td>0.392E34</td>
<td>0.392E34</td>
</tr>
<tr>
<td>0.36920331D+01</td>
<td>0.10504283D+01</td>
<td>0.39608701D+01</td>
<td>0.39608701D+01</td>
<td>0.39608701D+01</td>
</tr>
</tbody>
</table>

VALUES OF CONCENTRATIONS u OF THE 2ND SPECIES ON THE USERS GRID
(FROM APFOXIMATE SOLUTION)

<table>
<thead>
<tr>
<th>u</th>
<th>w</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1051199999999999D+03</td>
<td>0.1217292343213048D+03</td>
<td>0.3375347125019273D+03</td>
<td>0.3531587689430451D+03</td>
<td>0.35411855436251316D+03</td>
</tr>
<tr>
<td>0.10158056D+01</td>
<td>0.1217292343213048D+03</td>
<td>0.3375347125019273D+03</td>
<td>0.3531587689430451D+03</td>
<td>0.35411855436251316D+03</td>
</tr>
<tr>
<td>0.1021486368508123D+01</td>
<td>0.1026917946220129D+01</td>
<td>0.1036377681561939D+01</td>
<td>0.1043461403430590D+01</td>
<td>0.10504283D+01</td>
</tr>
<tr>
<td>0.10694219D+03</td>
<td>0.1079925133442168D+01</td>
<td>0.1079925133442168D+01</td>
<td>0.1079925133442168D+01</td>
<td>0.1079925133442168D+01</td>
</tr>
</tbody>
</table>

VALUES OF CONCENTRATIONS u OF THE 1ST SPECIES ON THE USERS GRID
(FROM APFOXIMATE SOLUTION)

<table>
<thead>
<tr>
<th>u</th>
<th>w</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.30512000D+03</td>
<td>0.10158056D+01</td>
<td>0.30775050D+03</td>
<td>0.30775050D+03</td>
<td>0.30775050D+03</td>
</tr>
<tr>
<td>0.32220821D+03</td>
<td>0.1021486368508123D+01</td>
<td>0.37630183D+03</td>
<td>0.37630183D+03</td>
<td>0.37630183D+03</td>
</tr>
<tr>
<td>0.33761264D+03</td>
<td>0.1036377681561939D+01</td>
<td>0.38176809D+03</td>
<td>0.38176809D+03</td>
<td>0.38176809D+03</td>
</tr>
<tr>
<td>0.35280078D+03</td>
<td>0.1043461403430590D+01</td>
<td>0.392E34</td>
<td>0.392E34</td>
<td>0.392E34</td>
</tr>
<tr>
<td>0.36920331D+01</td>
<td>0.10504283D+01</td>
<td>0.39608701D+01</td>
<td>0.39608701D+01</td>
<td>0.39608701D+01</td>
</tr>
</tbody>
</table>

VALUES OF CONCENTRATIONS u OF THE 2ND SPECIES ON THE USERS GRID
(FROM APFOXIMATE SOLUTION)

<table>
<thead>
<tr>
<th>u</th>
<th>w</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1051199999999999D+03</td>
<td>0.1217292343213048D+03</td>
<td>0.3375347125019273D+03</td>
<td>0.3531587689430451D+03</td>
<td>0.35411855436251316D+03</td>
</tr>
<tr>
<td>0.10158056D+01</td>
<td>0.1217292343213048D+03</td>
<td>0.3375347125019273D+03</td>
<td>0.3531587689430451D+03</td>
<td>0.35411855436251316D+03</td>
</tr>
<tr>
<td>0.1021486368508123D+01</td>
<td>0.1026917946220129D+01</td>
<td>0.1036377681561939D+01</td>
<td>0.1043461403430590D+01</td>
<td>0.10504283D+01</td>
</tr>
<tr>
<td>0.10694219D+03</td>
<td>0.1079925133442168D+01</td>
<td>0.1079925133442168D+01</td>
<td>0.1079925133442168D+01</td>
<td>0.1079925133442168D+01</td>
</tr>
</tbody>
</table>
Values of Concentrations of the 2 TH Species on the USPS Grid

Approximate Solution

<table>
<thead>
<tr>
<th>Time</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.305119999999990+03</td>
</tr>
<tr>
<td>0.29181934906+00</td>
<td>0.3281934906+00</td>
</tr>
<tr>
<td>0.31581934906+00</td>
<td>0.3381934906+00</td>
</tr>
<tr>
<td>0.3531934906+00</td>
<td>0.3661934906+00</td>
</tr>
<tr>
<td>0.38401934906+00</td>
<td>0.3971934906+00</td>
</tr>
<tr>
<td>0.370678102+00</td>
<td>0.383478102+00</td>
</tr>
<tr>
<td>0.363278102+00</td>
<td>0.375878102+00</td>
</tr>
<tr>
<td>0.350078102+00</td>
<td>0.362678102+00</td>
</tr>
<tr>
<td>0.331878102+00</td>
<td>0.344478102+00</td>
</tr>
<tr>
<td>0.311678102+00</td>
<td>0.324278102+00</td>
</tr>
<tr>
<td>0.291478102+00</td>
<td>0.304078102+00</td>
</tr>
<tr>
<td>0.271278102+00</td>
<td>0.283878102+00</td>
</tr>
<tr>
<td>0.251078102+00</td>
<td>0.263678102+00</td>
</tr>
<tr>
<td>0.232878102+00</td>
<td>0.245478102+00</td>
</tr>
<tr>
<td>0.212678102+00</td>
<td>0.225278102+00</td>
</tr>
<tr>
<td>0.191878102+00</td>
<td>0.204478102+00</td>
</tr>
<tr>
<td>0.171078102+00</td>
<td>0.183678102+00</td>
</tr>
<tr>
<td>0.150878102+00</td>
<td>0.163478102+00</td>
</tr>
<tr>
<td>0.131678102+00</td>
<td>0.144278102+00</td>
</tr>
<tr>
<td>0.111878102+00</td>
<td>0.124478102+00</td>
</tr>
<tr>
<td>0.091078102+00</td>
<td>0.103678102+00</td>
</tr>
<tr>
<td>0.071278102+00</td>
<td>0.083878102+00</td>
</tr>
<tr>
<td>0.051078102+00</td>
<td>0.063678102+00</td>
</tr>
<tr>
<td>0.031678102+00</td>
<td>0.044278102+00</td>
</tr>
<tr>
<td>0.011878102+00</td>
<td>0.024478102+00</td>
</tr>
</tbody>
</table>

Estimated Time for a Call to Drive: 0.92783721×10^2

Time Left: 0.435630×10^5

Values of Concentrations of the 1 TH Species on the USPS Grid

Approximate Solution

<table>
<thead>
<tr>
<th>Time</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.305119999999990+03</td>
</tr>
<tr>
<td>0.31956591475+00</td>
<td>0.33450813730+03</td>
</tr>
<tr>
<td>0.3495567305295885D+03</td>
<td>0.3665912714×2+03</td>
</tr>
</tbody>
</table>

Estimated Time for a Call to Drive: 0.92783721×10^2

Time Left: 0.435630×10^5
TOOT = 0.4E+00

DELTA T = 0.42E+00

ESTIMATED TIME FOR A CALL TO DRIVE = 0.56E+02

TIME LEFT = 0.43E+02

PROUT FOR TIME = 0.58E+00

\[\begin{align*}
\Delta T &= 0.42 \times 10^0 \\
\text{ESTIMATED TIME FOR A CALL TO DRIVE} &= 0.56 \times 10^2 \\
\text{TIME LEFT} &= 0.43 \times 10^2 \\
\text{PROUT FOR TIME} &= 0.58 \times 10^0
\end{align*} \]

\[\begin{array}{cccc}
0.30512000E+03 & 0.11620200E+00 & 0.39612423E+00 & 0.12820622E+00 \\
0.32257718E+03 & 0.12080670E+00 & 0.33290670E+00 & 0.10320170E+00 \\
0.34673154E+03 & 0.11225390E+00 & 0.35673170E+00 & 0.14575126E+00 \\
0.37376419E+03 & 0.63966284E+00 & 0.37122248E+00 & 0.13250912E+00 \\
0.39078490E+03 & 0.39946500E+00 & 0.30512000E+00 & 0.79115611E-01 \\
0.30511999E+03 & 0.32277681E+00 & 0.34082317E+00 & 0.35689671E+00 \\
0.39148360E+03 & 0.79115610E-01 & 0.37452798E+00 & 0.37452798E+00 \\
0.30512000E+03 & 0.79115610E-01 & 0.30820769E+00 & 0.79445686E-01 \\
0.32172128E+03 & 0.77832240E+00 & 0.33290670E+00 & 0.75622270E+00 \\
0.35016670E+03 & 0.70989594E+00 & 0.35815939E+00 & 0.36552260E+00 \\
0.37848960E+03 & 0.31000172E+00 & 0.38226899E+00 & 0.36933960E+00 \\
0.39148360E+03 & 0.20203355E-04 & 0.37452798E+00 & 0.37452798E+00 \\
\end{array} \]

VALUES OF CONCENTRATIONS U OF THE 1ST SPECIES ON THE USER'S GRID

\[\begin{align*}
0.30511999E+03 & 0.32277681E+00 & 0.34082317E+00 & 0.35689671E+00 \\
0.39148360E+03 & 0.79115610E-01 & 0.37452798E+00 & 0.37452798E+00 \\
\end{align*} \]
VALUES OF CONCENTRATIONS \(u \) OF THE 1ST SPECIES ON THE USERS GRID
(From Pout via Time 0)

APPROXIMATE SOLUTION
\[u = 0.30512000 \times 10^3 - 0.62394871 \times 10^0 \]
\[0.31215018 \times 10^1 - 0.36226831 \times 10^0 \]
\[0.32556991 \times 10^3 \]

VALUES OF CONCENTRATIONS \(u \) OF THE 2ND SPECIES ON THE USERS GRID
(From Pout via Time 0)

APPROXIMATE SOLUTION
\[u = 0.30511999 \times 10^3 - 0.35898611 \times 10^0 \]
\[0.31702958 \times 10^1 - 0.36226831 \times 10^0 \]
\[0.32556991 \times 10^3 \]

VALUES OF CONCENTRATIONS \(u \) OF THE 3RD SPECIES ON THE USERS GRID
(From Pout via Time 0)

APPROXIMATE SOLUTION
\[u = -0.29061095 \times 10^5 \]
\[0.33778910 \times 10^0 \]
\[0.35629377 \times 10^3 \]

VALUES OF CONCENTRATIONS \(u \) OF THE 4TH SPECIES ON THE USERS GRID
(From Pout via Time 0)

APPROXIMATE SOLUTION
\[u = -0.32416768 \times 10^5 \]
\[0.35465185 \times 10^0 \]
\[0.35944244 \times 10^3 \]

VALUES OF CONCENTRATIONS \(u \) OF THE 5TH SPECIES ON THE USERS GRID
(From Pout via Time 0)

APPROXIMATE SOLUTION
\[u = -0.29551106 \times 10^5 \]
\[0.32322614 \times 10^0 \]
\[0.32322614 \times 10^3 \]

VALUES OF CONCENTRATIONS \(u \) OF THE 6TH SPECIES ON THE USERS GRID
(From Pout via Time 0)

APPROXIMATE SOLUTION
\[u = -0.29880109 \times 10^5 \]
\[0.33772520 \times 10^0 \]
\[0.34383479 \times 10^3 \]
FROM PRODT VIA TINEX.

APPROXIMATE SOLUTION
0.3051199999999999D+03 0.30912711297142D+03 0.32270144097830D+03 0.32338916295089D+03
VALUES OF CONCENTRATIONS U OF THE 2 TH SPECIES ON THE USERS GRID

FROM PRODT VIA TINEX.

APPROXIMATE SOLUTION
-0.62398765686096D+00 -0.55629419107573D+00 0.41423825367356D+00 -0.28268663685626D+00 -0.07610332694689D+00
0.0
TOUT= 0.64690000000000D+00 DELTA T = 0.59000000000000D+00
ESTIMATED TIME FOR A CALL TO DRIVE 0.45600000D+03
TIME LEFT 0.42570000D+05

VALUES OF CONCENTRATIONS U OF THE 1 TH SPECIES ON THE USERS GRID

FROM PRODT VIA TINEX.

APPROXIMATE SOLUTION
0.3051199999999999D+03 0.29182677566980D+03
VALUES OF CONCENTRATIONS U OF THE 2 TH SPECIES ON THE USERS GRID

FROM PRODT VIA TINEX.

APPROXIMATE SOLUTION
0.3051199999999999D+03 0.29182677566980D+03
VALUES OF CONCENTRATIONS U OF THE 1 TH SPECIES ON THE USERS GRID

FROM PRODT VIA TINEX.

APPROXIMATE SOLUTION
0.3051199999999999D+03 0.29182677566980D+03
VALUES OF CONCENTRATIONS U OF THE 2 TH SPECIES ON THE USERS GRID

FROM PRODT VIA TINEX.
APPROXIMATE SOLUTION

\[-0.2687025442579254 \times 10^0\]

TOUT = 0.77290000003000CD+01
DELTA T = 0.2955949999999999+00

ESTIMATED TIME FOR A 'ALL TO DRIVF' 0.20700000CD+03
TIME LEFT 0.42162000+05

***** NORMAL DUMP AT END OF TIMES
I = 21 TOUT = 0.7728000000CD CD+01

END OF CASE
We next illustrate the use of the cross-section plot (CSP) program to generate a series of graphs at selected times. Much of the input is similar to that given in section 7.1. For example, the graphics dataset which was written on unit 12 during the computational phase must be reassigned to unit 12 for the CSP run.

For CSP, two namelists are required. The first is Namelist FORMAT which has input very similar to the FORMAT namelist used in section 7.1. The second is Namelist CSPIN which involves variables specifically for the CSP program.

Namelist FORMAT

1. Indicator for iterative or direct version of the computational code
 Previous versions of DISPL allowed for direct or iterative solution of certain equations. The current version of DISPL1 only allows for the direct version; thus the default value $\text{ITRTV}=0$, MUST be used.

 $\text{ITRTV}=0$, (Default)

2. Number of curves to be produced per time value
 For this problem we will generate two curves (one for each species) on each frame for each time value. Each curve will have its own axis.

 $\text{IGNUM}=2$,

3. Number of grid points for graphical purposes
 This number cannot exceed NRES.

 $\text{NRESIN}=\text{NRESI}=501$)

 We next consider the namelist which specifically applies to the CSP program.

Namelist CSPIN

1. Indicator for cinema mode
 We would use this option only if we wished to produce multiple copies of each frame. This should only be done in movie generation.

 $\text{ICN}=0$, (Default)
2. Indicator for grouping format

When more than one curve appears on a single frame, we can either produce the curves on a single set of axes (packed format) or produce each curve on its own set of axes (separate format). Since the range of values for pressure and velocity differ considerably, it is not desirable to use packed mode for this problem. We thus use the separate mode.

IFORMT=O, (Default)

3. Indicator for analytic solution

If the analytic solution is available we can graph the analytic solution for the Ith species with its corresponding numerical solution. The analytic solution is supplied via a SINGLE PRECISION version of the analytic subroutine. Since the CSP program contains its own dummy version of the analytic subroutine we don't need to provide the dummy version. For this problem we do not have an analytic solution; we use this dummy routine and set IANAL=F, (Default)

4. Estimate of minimum value of the ordinates

This vector has, as its Ith component, an estimate for the lower bound of the vertical axis for the Ith curve. When the solution values lie outside the interval \([YAXMIN(I),YAXMAX(I)]\), the code will rescale the vertical axis. Hence if the user does not want this rescaling to occur, he should specify a generous interval which contains a vertical axis range large enough for the Ith curve over all time values being plotted. Also, such a constant axis is useful for movie generation. In other cases it is sufficient to use the default values.

YAXMIN=0.0,0.0, (Default)

5. Estimate of maximum value of the ordinates

YAXMAX=1.0,1.0, (Default)

6. Species number for each curve

This vector has, as its Ith component, the species to be plotted as
the Ith curve. In the usual case, which we have, we use ISPEC(I)=I, for I=1,NSPEC.
ISPEC=1,2,

7. Frame number indicator

This vector specifies the frame on which the Ith curve is to be plotted. In our case we are plotting one frame for each time value. LGROUP=1,1, (Default)

8. Ordering of the curves on each frame

If IFORMT=1, the Ith component of this vector specifies the plotting symbol to be used to indicate the Ith curve. If IFORMT#1 (as in this case), LORDER(I) indicates the order of the curves on each frame. LORDER=1,2,

9. R coordinate of first endpoint of the cross-section line

This vector has, as its mth component, the R coordinate of the first of the two points specifying the cross-section for the mth frame. That is, each frame can have a different cross-section if desired. In our case we have only one frame and we wish to plot along the R axis from 0.0 to 4253.5. Further, since the Z axis defaults to [0.0,1.0], we can use any constant in the interval [0.0,1.0] for the Z component. We will use a cross-section from [0.0,0.0] to [4253.5,0.0].
A1=0.0, (Default)

10. Z coordinate of first endpoint of the cross-section

B1=0.0, (Default)

11. R coordinate of second endpoint of the cross-section

A2=4253.5,

12. Z coordinate of second endpoint in cross-section

B2=0.0, (Default)
The following page contains the printed output of the CSP run. This is followed by three of the twenty-one frames generated by the run. Each frame is for a given time value and consists of two curves: the lower curve (species 1) is a plot of head pressure versus distance; the upper curve (species 2) is a plot of velocity versus distance. Figure 7.2.1 is at a time \(t = 3.435 \) before the valve is closed. Figure 7.2.2 is at the time \(t = 5.9 \) when the valve has just closed, and Figure 7.2.3 is at a time \(t = 7.728 \) after the valve has closed. Note the flow reversal in this last figure.
BEGINNING CROSS SECTION GRAPHICS PACKAGE

FORMATTING PARAMETERS

CINEMA MODE VERSION NUMBER OF GRAPHS FOR EACH TIME GROUPING FORMAT ANALYTIC

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>F</td>
</tr>
</tbody>
</table>

\[\text{NRESIN} = 5C1 \]

\[\text{ITIME = F} \]

NUMBER OF TIME VALUES FOR TIME GALION IS 501

IF ITIME=1, THE SOLUTION IS EVALUATED AT \((A1(i),b1(i))\)

INITIAL ESTIMATE FOR VERTICAL AXES

\[\text{YAXMIN,YAXMAX} \]

\[0.0 \]

\[0.0 \]

USER GRAPH FORMAT SPECIFICATIONS

FRAME NUMBER ORDER WITHIN EACH FRAME SPECIES NUMBER FROM TOP TO BOTTOM

\[
\begin{array}{ccc}
1 & 1 & 1 \\
2 & 2 & 2 \\
\end{array}
\]

COORDINATES OF THE ENDPOINTS FOR EACH CROSS SECTION LINE GIVEN WITH THE CORRESPONDING FRAME NUMBER

FRAME NUMBER X1 Y1 X2 Y2

\[
\begin{array}{cccc}
1 & 0.0 & 0.0 & 0.42535000E+04 & 0.0 \\
\end{array}
\]

THE END OF THE DATA HAS BEEN REACHED, PROGRAM ENDS.

THE NUMBER OF GRAPHS PRODUCED IS 31
Figure 7.2.1
Graph of pressure and velocity for water hammer problem
Figure 7.2.2
Graph of pressure and velocity for water hammer problem
Figure 7.2.3
Graph of pressure and velocity for water hammer problem
7.3 Diurnal Chemical Kinetics

This problem is concerned with the concentrations of minor chemical species in the upper atmosphere. A major feature of this problem is the large time variations in the concentrations of the chemical species. In the course of solving this problem we shall see how a knowledgeable user can modify the code (at least its performance) by modifying the user subroutines. This problem will also illustrate the time history graphical output.

In the following problem, we let $c^1(z,t)$ denote the concentration of ozone (O_3), $c^2(z,t)$ denote the concentration of the oxygen singlet (O), and c^3 denote the concentration of oxygen (O_2) assumed to be constant. This model neglects convection, uses one spatial coordinate z (the altitude in kilometers), and a Fickian model of turbulent eddy diffusion. The problem is as follows.

$$\frac{\partial c^i}{\partial t} = \frac{\partial}{\partial z} \left[K(z) \frac{\partial c^i}{\partial z} \right] + R^i(c,t), \quad i=1,2$$

$$\frac{\partial c^1}{\partial z}(30,t) = \frac{\partial c^1}{\partial z}(50,t) = 0, \quad t > 0$$

$$c = (c^1(z,t), c^2(z,t))^T,$$

$$30 < z < 50,$$

$$0 < t < 8.64 \cdot 10^4 \text{ (one 24-hour day in seconds)}.$$

Further,

$$K(z) = \exp[z/5],$$

$$R^1(c,t) = -k_1 c^1 c^3 - k_2 c^1 c^2 + 2k_3(t) c^3 + k_4(t) c^2$$

$$R^2(c,t) = k_1 c^1 c^3 - k_2 c^1 c^2 - k_4(t) c^2$$

$$c^3 = 3.7 \cdot 10^{16}$$

$$k_1 = 1.63 \cdot 10^{-16}$$

$$k_2 = 4.66 \cdot 10^{-16}$$
\[k_i(t) = \begin{cases} \exp(-v_i/\sin \omega t), & \text{for } \sin \omega t > 0, \\ 0, & \text{for } \sin \omega t \leq 0, \end{cases} \]

\[v_3 = 22.62, \quad v_4 = 7.601, \text{ and } \omega = \pi/43,200. \]

\[c^1(z,0) = 10^6 \gamma(z), \quad c^2(z,0) = 10^{12} \gamma(z), \text{ where } \]

\[\gamma(z) = 1 - \left(\frac{z-40}{10}\right)^2 + \frac{1}{2}\left(\frac{z-40}{10}\right)^4. \]

Notice that the reaction rates \(k_3(t) \) and \(k_4(t) \) build up to a peak at noon (\(t = 21,600 \)) and are switched off from sunset (\(t = 43,200 \)) to sunrise (\(t = 86,400 \)) which models the diurnal effect. In this model the concentration \(c^1(z,t) \) rises to a peak value of about \(10^8 \) at noon, and then falls to zero at 6:00 p.m. and stays zero through the night. This behavior requires a modification to the error control mechanism in the ODE solver GEAR. Such a modification could have been made in GEAR; however, we choose to make this adjustment through a user routine in order to illustrate the point that some modifications can be achieved through these user routines. Let \(Y(I) \) denote the I-th component of the solution vector and \(E(I) \) the I-th component of the error vector, both considered at some current time \(t \). The version of GEAR which is used in this code defines a vector \(YMAX(I) \) such that \(YMAX(I) \) is the maximum value (in modulus) that \(Y(I) \) has achieved in the past, i.e. for \(t' < t \). A relative error control is used in this code, that is the quotient \(E(I)/YMAX(I) \) is compared with a specified tolerance factor. (The code uses an \(L_2 \) norm so that the actual situation is somewhat more involved.) Now consider the present problem as time approaches 6:00 p.m. The concentration \(c^1 \) has reached a peak value of about \(10^8 \) at noon; thus \(YMAX(I) \approx 10^8 \) during the entire afternoon. Moreover as we approach 6:00 p.m., the concentrations \(c^1 \) fall to zero very rapidly; hence we are using the error criterion \(10^{-8} \cdot E(I) \ < \text{tol} \) which is a very loose error control. In order to correct this situation we could put a floor value on the error control. For example we could define \(YMAX(I) \) as follows:

\[YMAX(I) = \max\{|Y(I)|, 10^{-20}\}. \]

This would have the effect of replacing a relative error control by an absolute error control when \(|Y(I)| \) is small. This change could have been made to
GEAR; however, we can also achieve this change through a user routine. Of course, this requires knowledge of the GEAR code and the DISPL code; so it is not a casual procedure.

To achieve the above change one must modify the definitions of YMAX(I) as described above. Moreover, this must be done after the GEAR program has defined YMAX. The AR program defines YMAX in subroutine DRIVE. The subroutine DRIVE calls a subroutine STIFF which in turn calls a DISPL subroutine GFUN. This latter subroutine calls several user routines such as VEL, DIFUSE, EXTSRC. Thus we can modify the definition of YMAX in any one of these subroutines, for example, subroutine VEL. To modify the definition of YMAX, we must have YMAX(I) and Y(I) available in this subroutine. The array YMAX(I) is in the common block GEAR2 and Y is in the common block GEAR10. These common blocks are invoked in subroutine VEL and the modification to YMAX(I) is made in this subroutine.

For this problem we use the following data in the namelists.

GRID

KR=1,KZ=4,
NSPEC=2,
ZL0W=30.0,ZUP=50.0,
C0NTZ=2,
NMZ=7,
ZMESH=32.5,35.0,37.5,40.0,42.5,45.0,47.5,
NQR=1,NQZ=4,
INITSW=T,TRANSW=T,GUESSW=F,STEDSW=F,
JZGRD=3,
ZGRID=30.,40.,50.,

DATA

NUTOUT=2,
NUFREQ=12,
UTOUT=0.0,86400.0,
EPS=1.D-3,HINIT=1.D-4,
GRAPH=T,

For the user routines, we used the following statements.

Subroutine RH0CP

RC=1.DO
Subroutine DIFUSE

DIFUR=0.DO
DIFUZ=(1.D-8)*DEXP(ZZ/5.DO)

Subroutine VEL

COMMON/GEAR2/YMAX(1)
COMMON/GEAR10/Y(1)
DOUBLE PRECISION Y,YMAX
DATA N/36/
DO 5 I=1,N
5 YMAX(I)=DMAX1(DABS(Y(I)),1.D-20)
VELR=0.DO
VELZ=0.DO

The use of this subroutine to modify YMAX was just a matter of convenience.

Subroutine EXTSRC

In this routine we form the sources
\[R_1 = - k_1 c_1 c_3 - k_2 c_1 c_2 + 2 k_3 c_3 + k_4 c^2 \]
\[R_2 = k_1 c_1 c_3 - k_2 c_1 c_2 - k_4 c^2 \]

Subroutine FDEXTU

In this subroutine we calculate the Frechet derivative of the distributed source.

For species 1 we have
\[UU(1) = -k_1 c_1 c_3 - k_2 c^2, \]
\[UU(2) = -k_2 c_1 + k_4. \]

For species 2 we have
\[UU(1) = k_1 c_1 c_3 - k_2 c^2 \]
\[UU(2) = -k_2 c_1 - k_4 \]

For both species, UUR(K) and UUZ(K) are zero for K=1,2.

Subroutine INDATA

In this routine we return the initial distributions
\[c_1(z,0) = 10^6 \gamma(z), \quad c_2(z,0) = 10^{12} \gamma(z) \]
where
\[\gamma(z) = 1 - \left(\frac{z-40}{10} \right)^2 + \frac{1}{2} \left(\frac{z-40}{10} \right)^4. \]
Subroutine BRHØ

Since \(\frac{\partial c_i}{\partial z}(30,t) = \frac{\partial c_i}{\partial z}(50,t) = 0 \), we just return RHØV=0.0D0 on sides 2 and 4 for both species.

In this problem we used the z axis for the spatial variable and Hermite cubic (KZ=4,CØNTZ=2) B-splines. For spatially smooth solutions, the use of Hermite cubics is not an advantage; however, we use them here for illustrative purposes. The output is given at 30, 40, and 50 km at two-hour intervals during a 24-hour day. This problem was taken from Ref. [7] where a finite difference solution is given at the above spatial and time values. This data is given in Table 7.3.1.

The following pages contain the computational phase output for this problem.
TABLE 7.3.1. Finite Difference Solution for Atmospheric Model

<table>
<thead>
<tr>
<th>Time</th>
<th>30 km</th>
<th>40 km</th>
<th>50 km</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00 AM</td>
<td>2.10 • 10¹¹</td>
<td>4.12 • 10¹¹</td>
<td>2.22 • 10¹¹</td>
</tr>
<tr>
<td>10:00 AM</td>
<td>1.31 • 10⁷</td>
<td>2.54 • 10⁷</td>
<td>1.44 • 10⁷</td>
</tr>
<tr>
<td>12:00</td>
<td>4.74 • 10⁷</td>
<td>8.68 • 10⁷</td>
<td>5.29 • 10⁷</td>
</tr>
<tr>
<td>2:00 PM</td>
<td>1.52 • 10⁷</td>
<td>2.72 • 10⁷</td>
<td>1.72 • 10⁷</td>
</tr>
<tr>
<td>4:00 PM</td>
<td>2.46 • 10⁴</td>
<td>4.37 • 10⁴</td>
<td>2.84 • 10⁴</td>
</tr>
<tr>
<td>6:00 PM</td>
<td>5.96 • 10¹¹</td>
<td>10.5 • 10¹¹</td>
<td>0.45 • 10¹¹</td>
</tr>
<tr>
<td>8:00 PM</td>
<td>5.97 • 10¹¹</td>
<td>10.5 • 10¹¹</td>
<td>0.75 • 10¹¹</td>
</tr>
<tr>
<td>10:00 PM</td>
<td>5.99 • 10¹¹</td>
<td>10.4 • 10¹¹</td>
<td>0.74 • 10¹¹</td>
</tr>
<tr>
<td>12:00</td>
<td>6.01 • 10¹¹</td>
<td>10.4 • 10¹¹</td>
<td>0.72 • 10¹¹</td>
</tr>
<tr>
<td>2:00 AM</td>
<td>6.03 • 10¹¹</td>
<td>10.3 • 10¹¹</td>
<td>0.73 • 10¹¹</td>
</tr>
<tr>
<td>4:00 AM</td>
<td>6.04 • 10¹¹</td>
<td>10.3 • 10¹¹</td>
<td>0.48 • 10¹¹</td>
</tr>
<tr>
<td>6:00 AM</td>
<td>6.06 • 10¹¹</td>
<td>10.2 • 10¹¹</td>
<td>0.42 • 10¹¹</td>
</tr>
<tr>
<td>STORAGE MAXIMA FOR THIS COMPILATION:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAVEBK</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#LISP</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#LISTQD</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAKK</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHIFTP</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHIFTR</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHINOT</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#MESSAGE</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#MESSAGEB</td>
<td>20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
READING NAMELIST DATA

GRID

<table>
<thead>
<tr>
<th>NR</th>
<th>L2</th>
<th>MR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NTIR</th>
<th>NTIZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NSPEC</th>
<th>POLY</th>
<th>ROLP</th>
<th>ZUP</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.0</td>
<td>0.3000000000000000D+02</td>
<td>0.5000000000000000D+02</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NHAI</th>
<th>NTCH</th>
<th>NTCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GEOMETRY INDICATOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

ADDITIONAL NON-INTERFACE R MESH POINTS

<table>
<thead>
<tr>
<th>I</th>
<th>ZRSH(I)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.3250000000000000D+02</td>
</tr>
<tr>
<td>2</td>
<td>0.4500000000000000D+02</td>
</tr>
<tr>
<td>3</td>
<td>0.4250000000000000D+02</td>
</tr>
<tr>
<td>4</td>
<td>0.4750000000000000D+02</td>
</tr>
</tbody>
</table>

ADDITIONAL NON-INTERFACE Z MESH POINTS

<table>
<thead>
<tr>
<th>I</th>
<th>ZMESH(I)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.3000000000000000D+02</td>
</tr>
<tr>
<td>2</td>
<td>0.3250000000000000D+02</td>
</tr>
<tr>
<td>3</td>
<td>0.3750000000000000D+02</td>
</tr>
<tr>
<td>4</td>
<td>0.4250000000000000D+02</td>
</tr>
</tbody>
</table>

QUADRATURE ORDER FOR R DIRECTION

<table>
<thead>
<tr>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
</tr>
</tbody>
</table>

QUADRATURE ORDER FOR Z DIRECTION

<table>
<thead>
<tr>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
</tr>
</tbody>
</table>

MATERIAL TABLE IS GIVEN AS MATERIAL INDEX

<table>
<thead>
<tr>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

CONSERV

<table>
<thead>
<tr>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
</tr>
</tbody>
</table>

ALGCS

<table>
<thead>
<tr>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
</tr>
</tbody>
</table>

LOGICAL SWITCHES TO CONTROL PROGRAM

<table>
<thead>
<tr>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
</tr>
</tbody>
</table>

NONE

<table>
<thead>
<tr>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
</tr>
</tbody>
</table>

IREF

<table>
<thead>
<tr>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

ZGRID

<table>
<thead>
<tr>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

GRID

<table>
<thead>
<tr>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

USER SUPPLIED POINTS IN R DIRECTION

<table>
<thead>
<tr>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

USER SUPPLIED POINTS IN Z DIRECTION

<table>
<thead>
<tr>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

NUMBER OF USER SUPPLIED POINTS IN R DIRECTION

<table>
<thead>
<tr>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

NUMBER OF USER SUPPLIED POINTS IN Z DIRECTION

<table>
<thead>
<tr>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

READING NAMELIST DATA

MESH

<table>
<thead>
<tr>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

FILE

<table>
<thead>
<tr>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

READ

<table>
<thead>
<tr>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

WRITE

<table>
<thead>
<tr>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
</tbody>
</table>
ULTAI(1, 2) = 1
ULTAI(1, 3) = 1
ULTAI(1, 4) = 1
ULTAI(1, 5) = 1
ULTAI(1, 6) = 1
ULTAI(1, 7) = 1
ULTAI(1, 8) = 1

HORIZONTAL ORDERING

WI= 2 WJ= 2 MCC= -4 DBB= 7

WI= 1 WJ= 1 MCC= -1 DB= 3

SYSTEM SIZE FOR THIS CASE
LN = 1 LS = 0
NB = 1 NZ = 18

THIS IS THE OBJECT VERSION

THIS VERSION DOES NOT REQUIRE BOUNDARY CONDITIONS OF EVERY SIDE
FOR SPECIES NO. 1
SIDE 1 ALPHA = 0.0 BETA = -0.10000000000000000+01 GAMMA = 0.0
SIDE 2 ALPHA = 0.0 BETA = -0.10000000000000000+01 GAMMA = 0.0
SIDE 3 ALPHA = 0.0 BETA = 0.10000000000000000+01 GAMMA = 0.0

FOR SPECIES NO. 2
SIDE 1 ALPHA = 0.0 BETA = -0.10000000000000000+01 GAMMA = 0.0
SIDE 2 ALPHA = 0.0 BETA = -0.10000000000000000+01 GAMMA = 0.0
SIDE 3 ALPHA = 0.0 BETA = 0.10000000000000000+01 GAMMA = 0.0
SIDE 4 ALPHA = 0.0 BETA = 0.10000000000000000+01 GAMMA = 0.0

SIDE INDICATORS BY SPECIES
POP SPECIES NO. 1 M31= 0 M32= 0 M33= 0 M3*: 0
POP SPECIES NO. 2 M51= 0 M52= 0 M53= 0 M5*: 0
BOUNDARY B FUNCTION FOR SIDES 1 AND 3
SPECIES NO. 1 MATERIAL INDEX 1 HO1 = 0.10000000000000000+01 HO3 = 0.10000000000000000+01
SPECIES NO. 2 MATERIAL INDEX 1 HO1 = 0.10000000000000000+01 HO3 = 0.10000000000000000+01
BOUNDARY B FUNCTION FOR SIDES 2 AND 4
SPECIES NO. 1 MATERIAL INDEX 1 HO2 = 0.10000000000000000+01 HO4 = 0.10000000000000000+01
SPECIES NO. 2 MATERIAL INDEX 1 HO2 = 0.10000000000000000+01 HO4 = 0.10000000000000000+01
REACTION RATES
FIRST ORDER RATES
CK INTO 1 FROM 1 IS 0.0
CK INTO 2 FROM 1 IS 0.0
CK INTO 1 FROM 2 IS 0.0
CK INTO 2 FROM 2 IS 0.0
SECOND ORDER REACTION RATES ARE
CK INTO k = 1 FOR KP = 1 INTO KPP = 1 CKK(1, 1, 1) = 0.0
CK INTO k = 1 FOR KP = 2 INTO KPP = 1 CKK(2, 1, 1) = 0.0
CK INTO k = 1 FOR KP = 1 INTO KPP = 2 CKK(1, 2, 1) = 0.0
CK INTO k = 1 FOR KP = 2 INTO KPP = 2 CKK(2, 2, 1) = 0.0
ISTDPQ = 100
TIME AND SPACE GRID FOR PROXUT

NUMBER OF MAJOR TIME VALUES 2
NUMBER OF SUBINTEVIALS OF EACH MAJOR TIME INTERVAL 12

OUTPUT WILL OCCUR AT EACH SUCH TIME

MAJOR TIME VALUES
0.0 0.8640000000000000D+05

DATASET CREATED FOR USE IN GRAPHERS

GRAPHER = P

PRIV: SWITCH INDICATORS
IPRSM1 = 0 IPRSM2 = 0 IPRSM3 = 0 IPRSM4 = 0 IPRSM5 = 0

CREATED PACKAGE DATA

EPS = 0.1000000000000000D-02 HINIT = 0.1000000000000000D-01 NF = 21 SIGORD = 5
CONTINUITY FOR 1 AND 2 DIRECTIONS MAY HAVE BEEN RESET

CORT = 0 CORTS = 2

DEFAULT INITIAL COEFFICIENTS

0.1000000000000000D+01 0.1000000000000000D+01 0.1000000000000000D+01 0.1000000000000000D+01
0.1000000000000000D+01 0.1000000000000000D+01 0.1000000000000000D+01 0.1000000000000000D+01
0.1000000000000000D+01 0.1000000000000000D+01 0.1000000000000000D+01 0.1000000000000000D+01
0.1000000000000000D+01 0.1000000000000000D+01 0.1000000000000000D+01 0.1000000000000000D+01

VALUES OF CONCENTRATION U OF THE 1 TH SPECIES AT THE QUADRATURE POINTS IN THE (1, 1)-TH RECTANGLE.

(VROM INIFIT) 0.5865507605104160D+06 0.5470729890168723D+06 0.51253133929321257D+06 0.5006021263587777D+06

VALUES OF CONCENTRATION U OF THE 2 TH SPECIES AT THE QUADRATURE POINTS IN THE (1, 1)-TH RECTANGLE.

(VROM INIFIT) 0.5865507605104160D+06 0.5470729890168723D+06 0.51253133929321257D+06 0.5006021263587777D+06

VALUES OF CONCENTRATION U OF THE 1 TH SPECIES AT THE QUADRATURE POINTS IN THE (1, 2)-TH RECTANGLE.

(VROM INIFIT) 0.7682092333596027D+06 0.7182243844835646D+06 0.6536499582097510D+06 0.6073443721760726D+06

VALUES OF CONCENTRATION U OF THE 2 TH SPECIES AT THE QUADRATURE POINTS IN THE (1, 2)-TH RECTANGLE.

(VROM INIFIT) 0.7682092333596027D+06 0.7182243844835646D+06 0.6536499582097510D+06 0.6073443721760726D+06

VALUES OF CONCENTRATION U OF THE 1 TH SPECIES AT THE QUADRATURE POINTS IN THE (1, 3)-TH RECTANGLE.

(VROM INIFIT) 0.9341287513666886D+06 0.8955229152425516D+06
VALUES OF CONCENTRATION U OF THE 2 TH SPECIES AT THE QUADRATURE POINTS IN THE (1, 3)-TH RECTANGLE.

VALUES OF CONCENTRATION U OF THE 1 TH SPECIES AT THE QUADRATURE POINTS IN THE (1, 4)-TH RECTANGLE.

VALUES OF CONCENTRATION U OF THE 2 TH SPECIES AT THE QUADRATURE POINTS IN THE (1, 4)-TH RECTANGLE.

VALUES OF CONCENTRATION U OF THE 1 TH SPECIES AT THE QUADRATURE POINTS IN THE (1, 5)-TH RECTANGLE.

VALUES OF CONCENTRATION U OF THE 2 TH SPECIES AT THE QUADRATURE POINTS IN THE (1, 5)-TH RECTANGLE.

VALUES OF CONCENTRATION U OF THE 1 TH SPECIES AT THE QUADRATURE POINTS IN THE (1, 6)-TH RECTANGLE.

VALUES OF CONCENTRATION U OF THE 2 TH SPECIES AT THE QUADRATURE POINTS IN THE (1, 6)-TH RECTANGLE.

VALUES OF CONCENTRATION U OF THE 1 TH SPECIES AT THE QUADRATURE POINTS IN THE (1, 7)-TH RECTANGLE.

VALUES OF CONCENTRATION U OF THE 2 TH SPECIES AT THE QUADRATURE POINTS IN THE (1, 7)-TH RECTANGLE.

VALUES OF CONCENTRATION U OF THE 1 TH SPECIES AT THE QUADRATURE POINTS IN THE (1, 8)-TH RECTANGLE.

VALUES OF CONCENTRATION U OF THE 2 TH SPECIES AT THE QUADRATURE POINTS IN THE (1, 8)-TH RECTANGLE.

VALUES OF CONCENTRATION U OF THE 1 TH SPECIES AT THE QUADRATURE POINTS IN THE (1, 9)-TH RECTANGLE.

VALUES OF CONCENTRATION U OF THE 2 TH SPECIES AT THE QUADRATURE POINTS IN THE (1, 9)-TH RECTANGLE.

VALUES OF CONCENTRATION U OF THE 1 TH SPECIES AT THE QUADRATURE POINTS IN THE (1, 10)-TH RECTANGLE.

VALUES OF CONCENTRATION U OF THE 2 TH SPECIES AT THE QUADRATURE POINTS IN THE (1, 10)-TH RECTANGLE.
VALUES OF CONCENTRATION u OF THE 2 TH SPECIES AT THE QUADRATURE POINTS IN THE (1, 8)-TH RECTANGLE.

(FROM INIFIT)

0.580550760510*10^20+12
0.587298801689230+12
0.585850760510*10^20+12
0.585213397232880+12
0.585850760510*10^20+12
0.580550760510*10^20+12
0.580550760510*10^20+12
READING NAMELIST DATA

CHANGES IN NAMLIST DATA: \n) BEEN MADE FOR TRANSIENT

FOR SPECIES NO. 1
SIDE 1 ALPHA = 0.0
SIDE 2 ALPHA = 0.0
SIDE 3 ALPHA = 0.0
SIDE 4 ALPHA = 0.0

FOR SPECIES NO. 2
SIDE 1 ALPHA = 0.0
SIDE 2 ALPHA = 0.0
SIDE 3 ALPHA = 0.0
SIDE 4 ALPHA = 0.0

SIDE INDICATORS BY SPECIES

FOR SPECIES NO. 1 MS1= 0 MS2= 0 MS3= 0 MS4= 0
FOR SPECIES NO. 2 MS1= 0 MS2= 0 MS3= 0 MS4= 0

BOUNDARY K FUNCTION FOR SIDES 1 AND 3
SPECIES NO. 1 MATERIAL INDEX 1 HU1 = 0.10000000000000000000+01 HU3 = 0.10000000000000000000+01
SPECIES NO. 2 MATERIAL INDEX 1 HU1 = 0.10000000000000000000+01 HU3 = 0.10000000000000000000+01

BOUNDARY K FUNCTION FOR SIDES 2 AND 4
SPECIES NO. 1 MATERIAL INDEX 1 HU2 = 0.10000000000000000000+01 HU4 = 0.10000000000000000000+01
SPECIES NO. 2 MATERIAL INDEX 1 HU2 = 0.10000000000000000000+01 HU4 = 0.10000000000000000000+01

REACTOR RATES
FIRST ORDER RATES
CK INTO 1 FROM 1 IS 0.0
CK INTO 2 FROM 1 IS 0.0
CK INTO 1 FROM 2 IS 0.0
CK INTO 2 FROM 2 IS 0.0
SECOND ORDER REACTION RATES ARE
CK INTO K = 1 FOR KP = 1 INTO KPP = 1 CK(1, 1, 1) = 0.0
CK INTO K = 1 FOR KP = 2 INTO KPP = 1 CK(1, 1, 1) = 0.0
CK INTO K = 1 FOR KP = 2 INTO KPP = 2 CK(1, 1, 1) = 0.0
CK INTO K = 2 FOR KP = 1 INTO KPP = 1 CK(2, 1, 1) = 0.0
CK INTO K = 2 FOR KP = 2 INTO KPP = 1 CK(2, 1, 1) = 0.0
CK INTO K = 2 FOR KP = 1 INTO KPP = 2 CK(2, 1, 1) = 0.0
CK INTO K = 2 FOR KP = 2 INTO KPP = 2 CK(2, 2, 2) = 0.0

ISTPD = 100
TIME AND SPACE GRID FOR PROBT

NUMBER OF MAJOR TIME VALUES 2
NUMBER OF SUBINTERVALS OF EACH MAJOR TIME INTERVAL 12
(OUTFIT WILL OCCUR 4 TIMES EACH SUCH TIME)
MAJOR TIME VALUES
0.0 0.8640000000000000+05

DATASET CREATED FOR USE IN GRAPHICS
GRAPH = "-
FIRST SWITCH INDICATORS
IPRSW1 = 0 IPRSW2 = 0 IPRSW3 = 0 IPRSW4 = 0 IPRSW5 = 0

ODE PACKAGE DATA
EPS = 0.10000000000000000000+02
HMUT = 0.10000000000000000000+03
MF = 21
RECORD = 5
CONTINUITY FOR B AND Z DIRECTIONS
CBET = 0
COPU = 2
INITIAL COEFFICIENTS FOR TRANSIENT

0.4999264134230720+06 0.4599264134230710+06 0.4771222170879480+06 0.500322170879420+12
0.560/378756344850+06 0.560/378756344840+06 0.560/378756344840+06 0.560/378756344840+06
0.7187559150121820+06 0.7187559150121820+06 0.84382886260720+12
0.9004775334450410+06 0.9004775334450410+06 0.97851462945552+06 0.97851462945552+06
0.1000061709757850+07 0.1000061709757850+07 0.1000061709757850+07 0.1000061709757850+13

773
BEGIN TRANSIENT SOLUTION

PROUT FOR TIME = 0.0

Values of Concentrations u of the 1st Species on the USEPS Grid (From PROUT via Time)

<table>
<thead>
<tr>
<th>u_1</th>
<th>PROUT</th>
<th>FOP Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.49992644D+04</td>
<td>0.49992644D+12</td>
<td>0.50032222D+06</td>
</tr>
<tr>
<td>0.65051958D+06</td>
<td>0.71878559D+06</td>
<td>0.71878559D+06</td>
</tr>
<tr>
<td>0.90004775D+06</td>
<td>0.97850515D+06</td>
<td>0.97850515D+06</td>
</tr>
<tr>
<td>0.10000642D+07</td>
<td>0.97850515D+06</td>
<td>0.97850515D+06</td>
</tr>
<tr>
<td>0.84383289D+06</td>
<td>0.71878559D+06</td>
<td>0.71878559D+06</td>
</tr>
</tbody>
</table>

Values of Concentrations u of the 2nd Species on the USEPS Grid (From PROUT via Time)

<table>
<thead>
<tr>
<th>u_2</th>
<th>PROUT</th>
<th>FOP Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.49992644D+04</td>
<td>0.50032222D+06</td>
<td>0.50032222D+06</td>
</tr>
<tr>
<td>0.65051958D+06</td>
<td>0.71878559D+06</td>
<td>0.71878559D+06</td>
</tr>
<tr>
<td>0.90004775D+06</td>
<td>0.97850515D+06</td>
<td>0.97850515D+06</td>
</tr>
<tr>
<td>0.10000642D+07</td>
<td>0.97850515D+06</td>
<td>0.97850515D+06</td>
</tr>
<tr>
<td>0.84383289D+06</td>
<td>0.71878559D+06</td>
<td>0.71878559D+06</td>
</tr>
</tbody>
</table>

PROUT FOR TIME = 0.72000000D+04

Values of Concentrations u of the 1st Species on the USEPS Grid (From PROUT via Time)

<table>
<thead>
<tr>
<th>u_1</th>
<th>PROUT</th>
<th>FOP Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.50111956D+05</td>
<td>0.50111956D+05</td>
<td>0.51193205D+04</td>
</tr>
<tr>
<td>0.65176358D+05</td>
<td>0.65176358D+05</td>
<td>0.66193205D+04</td>
</tr>
<tr>
<td>0.80228372D+05</td>
<td>0.80228372D+05</td>
<td>0.81193205D+04</td>
</tr>
<tr>
<td>0.95280479D+05</td>
<td>0.95280479D+05</td>
<td>0.96193205D+04</td>
</tr>
<tr>
<td>0.11094587D+06</td>
<td>0.11094587D+06</td>
<td>0.11193205D+04</td>
</tr>
</tbody>
</table>

Values of Concentrations u of the 2nd Species on the USEPS Grid (From PROUT via Time)

<table>
<thead>
<tr>
<th>u_2</th>
<th>PROUT</th>
<th>FOP Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.50111956D+05</td>
<td>0.50111956D+05</td>
<td>0.51193205D+04</td>
</tr>
<tr>
<td>0.65176358D+05</td>
<td>0.65176358D+05</td>
<td>0.66193205D+04</td>
</tr>
<tr>
<td>0.80228372D+05</td>
<td>0.80228372D+05</td>
<td>0.81193205D+04</td>
</tr>
<tr>
<td>0.95280479D+05</td>
<td>0.95280479D+05</td>
<td>0.96193205D+04</td>
</tr>
<tr>
<td>0.11094587D+06</td>
<td>0.11094587D+06</td>
<td>0.11193205D+04</td>
</tr>
</tbody>
</table>
APPROXIMATE SOLUTION

\[0.35590185343984D+12 \]

APPROXIMATE SOLUTION

\[0.9551932775984D+12 \]

ESTIMATED TIME FOR A CALL TO DRIVE

\[0.22790000D+04 \]

TOUT = 0.720000000000000D+04

DELTA T = 0.864000000000000D+05

TIME LEFT

\[0.1751500000D+05 \]

TIME FOR TIME

\[0.1436251371761089D+08 \]

VALUES OF CONCENTRATIONS U OF THE 1TH SPECIES ON THE USIPS GRID

\[0.12908669D+09 \]

\[0.50256248D+12 \]

\[0.12919537D+08 \]

\[0.13965950D+08 \]

\[0.54380511D+12 \]

APPROXIMATE SOLUTION

APPROXIMATE SOLUTION

\[0.5011956250147810D+12 \]

\[0.720000000000000D+04 \]

\[0.855000000000000D+04 \]

\[0.74972254D+12 \]

\[0.24996351D+12 \]

\[0.55940945D+12 \]

APPROXIMATE SOLUTION

\[0.59409582439390D+12 \]

VALUES OF CONCENTRATIONS U OF THE 2TH SPECIES ON THE USIPS GRID

\[0.12908669D+09 \]

\[0.50256248D+12 \]

\[0.12919537D+08 \]

\[0.13965950D+08 \]

\[0.54380511D+12 \]

APPROXIMATE SOLUTION

\[0.5011956250147810D+12 \]

APPROXIMATE SOLUTION

\[0.5011956250147810D+12 \]

APPROXIMATE SOLUTION

\[0.720000000000000D+04 \]

DELTA T = 0.864000000000000D+05

ESTIMATED TIME FOR A CALL TO DRIVE

\[0.22790000D+04 \]

TIME LEFT

\[0.1751500000D+05 \]

TIME FOR TIME

\[0.2160000000D+05 \]

\[0.1436251371761089D+08 \]

\[0.54380511D+12 \]
Values of Concentrations \(u \) of the 1st Species on the Users Grid (from \(P(\text{Out}) \) via \(T(\text{In}) \))

<table>
<thead>
<tr>
<th>Value</th>
<th>Value</th>
<th>Value</th>
<th>Value</th>
<th>Value</th>
<th>Value</th>
<th>Value</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0.864854 \times 10^8)</td>
<td>(0.102116 \times 10^8)</td>
<td>(0.84 \times 10^8)</td>
<td>(0.994112 \times 10^8)</td>
<td>(0.7714 \times 10^8)</td>
<td>(0.9084 \times 10^8)</td>
<td>(0.7226 \times 10^8)</td>
<td>(0.8498 \times 10^8)</td>
</tr>
<tr>
<td>(0.722850 \times 10^8)</td>
<td>(0.840826 \times 10^8)</td>
<td>(0.630196 \times 10^8)</td>
<td>(0.738030 \times 10^8)</td>
<td>(0.589094 \times 10^8)</td>
<td>(0.6844 \times 10^8)</td>
<td>(0.538918 \times 10^8)</td>
<td>(0.627895 \times 10^8)</td>
</tr>
<tr>
<td>(0.538918 \times 10^8)</td>
<td>(0.627895 \times 10^8)</td>
<td>(0.529225 \times 10^8)</td>
<td>(0.616199 \times 10^8)</td>
<td>(0.529417 \times 10^8)</td>
<td>(0.616430 \times 10^8)</td>
<td>(0.582699 \times 10^8)</td>
<td>(0.102580 \times 10^8)</td>
</tr>
</tbody>
</table>

Values of Concentrations \(u \) of the 2nd Species on the Users Grid (from \(P(\text{Out}) \) via \(T(\text{In}) \))

<table>
<thead>
<tr>
<th>Value</th>
<th>Value</th>
<th>Value</th>
<th>Value</th>
<th>Value</th>
<th>Value</th>
<th>Value</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0.529417 \times 10^8)</td>
<td>(0.6684 \times 10^8)</td>
<td>(0.2160 \times 10^5)</td>
<td>(0.8644 \times 10^8)</td>
<td>(0.9084 \times 10^8)</td>
<td>(0.6894 \times 10^8)</td>
<td>(0.6164 \times 10^8)</td>
<td>(0.1025 \times 10^8)</td>
</tr>
<tr>
<td>(0.538918 \times 10^8)</td>
<td>(0.627895 \times 10^8)</td>
<td>(0.529225 \times 10^8)</td>
<td>(0.616199 \times 10^8)</td>
<td>(0.529417 \times 10^8)</td>
<td>(0.616430 \times 10^8)</td>
<td>(0.582699 \times 10^8)</td>
<td>(0.102580 \times 10^8)</td>
</tr>
</tbody>
</table>

Estimated Time for a Call to Drive

\[\text{Time Left} = 0.29 \times 10^5 + 0.02 \]

\[\text{Total Time} = 0.20 \times 10^5 + 0.05 \]

Approximate Solution

\[\text{Approximate Solution} = 0.5294171211892320 \times 10^8 \]

Approximate Solution

\[\text{Approximate Solution} = 0.84 \times 10^8 \]

Approximate Solution

\[\text{Approximate Solution} = 0.994112 \times 10^8 \]

Approximate Solution

\[\text{Approximate Solution} = 0.7714 \times 10^8 \]

Approximate Solution

\[\text{Approximate Solution} = 0.9084 \times 10^8 \]

Approximate Solution

\[\text{Approximate Solution} = 0.8498 \times 10^8 \]

Approximate Solution

\[\text{Approximate Solution} = 0.627895 \times 10^8 \]

Approximate Solution

\[\text{Approximate Solution} = 0.529417 \times 10^8 \]

Approximate Solution

\[\text{Approximate Solution} = 0.616430 \times 10^8 \]

Approximate Solution

\[\text{Approximate Solution} = 0.582699 \times 10^8 \]

Approximate Solution

\[\text{Approximate Solution} = 0.1025 \times 10^8 \]
APPROXIMATE SOLUTION
0.2833667787659693D+05
tout = 0.2833666363639320D+05 DELTA T = 0.000000000000000D+05

ESTIMATED TIME FOR A CALL TO DRIVE 0.17050000D+05
TIME LEFT 0.17050000D+05

PROUT FOR TIME = 0.36000000D+05

W =
-0.2103137970D-32 0.5957045600D+12 -0.0323558179D-32 0.5849382920D+12 0.3655336000D+12

VALUES OF CONCENTRATIONS U OF THE 1 TH SPECIES ON THE USEPS GRID
(APPROXIMATE SOLUTION 0.2833667787659693D+05)

APPROXIMATE SOLUTION
0.2833667787659693D+05

APPROXIMATE SOLUTION
0.4373606636E+32

APPROXIMATE SOLUTION
0.262317065622740D+05

VALUES OF CONCENTRATIONS U OF THE 2 TH SPECIES ON THE USEPS GRID
(APPROXIMATE SOLUTION 0.68357445604034855D+12)

APPROXIMATE SOLUTION
0.68357445604034855D+12

APPROXIMATE SOLUTION
0.1055014053S882990+13

APPROXIMATE SOLUTION
0.5849382920D+12
tout = 0.360000000000000D+05 DELTA T = 0.000000000000000D+05

ESTIMATED TIME FOR A CALL TO DRIVE 0.20300000D+03
TIME LEFT 0.17050000D+05

PROUT FOR TIME = 0.43200000D+05

W =
-0.2103137970D-32 0.5957045600D+12 -0.0323558179D-32 0.5849382920D+12 0.3655336000D+12

VALUES OF CONCENTRATIONS U OF THE 1 TH SPECIES ON THE USEPS GRID
(APPROXIMATE SOLUTION 0.2833667787659693D+05)
<table>
<thead>
<tr>
<th>VALUES OF CONCENTRATIONS U OF THE 2 TH SPECIES ON THE USEPS GRID (FROM PROPT VIA TIME)</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPROXIMATE SOLUTION</td>
</tr>
<tr>
<td>-0.2494525718306979D-32</td>
</tr>
<tr>
<td>APPROXIMATE SOLUTION</td>
</tr>
<tr>
<td>-0.377278412341873D-32</td>
</tr>
<tr>
<td>APPROXIMATE SOLUTION</td>
</tr>
<tr>
<td>-0.210163965895863D-32</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VALUES OF CONCENTRATIONS U OF THE 1 TH SPECIES ON THE USEPS GRID (FROM PROPT VIA TIME)</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPROXIMATE SOLUTION</td>
</tr>
<tr>
<td>0.694721406387187D+12</td>
</tr>
<tr>
<td>APPROXIMATE SOLUTION</td>
</tr>
<tr>
<td>0.105013636078147D+13</td>
</tr>
<tr>
<td>APPROXIMATE SOLUTION</td>
</tr>
<tr>
<td>0.585704966221613D+12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ESTIMATED TIME FOR A CALL TO DRIVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIME LEFT</td>
</tr>
<tr>
<td>0.15631000D+05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PROPT FOR TIME = 0.50000000D+05</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
</tr>
<tr>
<td>0.35830000D-32</td>
</tr>
<tr>
<td>0.35857547D-33</td>
</tr>
<tr>
<td>0.59737383D+12</td>
</tr>
<tr>
<td>0.30381273D+33</td>
</tr>
<tr>
<td>0.62875501D+12</td>
</tr>
<tr>
<td>0.45419750D-33</td>
</tr>
<tr>
<td>0.73744049D+12</td>
</tr>
<tr>
<td>0.49661165D+33</td>
</tr>
<tr>
<td>0.80456135D+12</td>
</tr>
<tr>
<td>0.56559180D-33</td>
</tr>
<tr>
<td>0.92409982D+12</td>
</tr>
<tr>
<td>0.59007350D-31</td>
</tr>
<tr>
<td>0.97680245D+12</td>
</tr>
<tr>
<td>0.63963794D+33</td>
</tr>
<tr>
<td>0.10247690D+13</td>
</tr>
<tr>
<td>0.64035252D-33</td>
</tr>
<tr>
<td>0.429108550D-33</td>
</tr>
<tr>
<td>0.71064132D+12</td>
</tr>
<tr>
<td>0.42942227D+12</td>
</tr>
<tr>
<td>0.47558449D+12</td>
</tr>
<tr>
<td>0.77979944D-12</td>
</tr>
<tr>
<td>0.45419360D-33</td>
</tr>
<tr>
<td>0.74790418D+12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ESTIMATED TIME FOR A CALL TO DRIVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIME LEFT</td>
</tr>
<tr>
<td>0.13000000D+02</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PROPT FOR TIME = 0.50000000D+05</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
</tr>
<tr>
<td>0.35830000D-32</td>
</tr>
<tr>
<td>0.35857547D-33</td>
</tr>
<tr>
<td>0.59737383D+12</td>
</tr>
<tr>
<td>0.30381273D+33</td>
</tr>
<tr>
<td>0.62875501D+12</td>
</tr>
<tr>
<td>0.45419750D-33</td>
</tr>
<tr>
<td>0.73744049D+12</td>
</tr>
<tr>
<td>0.49661165D+33</td>
</tr>
<tr>
<td>0.80456135D+12</td>
</tr>
<tr>
<td>0.56559180D-33</td>
</tr>
<tr>
<td>0.92409982D+12</td>
</tr>
<tr>
<td>0.59007350D-31</td>
</tr>
<tr>
<td>0.97680245D+12</td>
</tr>
<tr>
<td>0.63963794D+33</td>
</tr>
<tr>
<td>0.10247690D+13</td>
</tr>
<tr>
<td>0.64035252D-33</td>
</tr>
<tr>
<td>0.429108550D-33</td>
</tr>
<tr>
<td>0.71064132D+12</td>
</tr>
<tr>
<td>0.42942227D+12</td>
</tr>
<tr>
<td>0.47558449D+12</td>
</tr>
<tr>
<td>0.77979944D-12</td>
</tr>
<tr>
<td>0.45419360D-33</td>
</tr>
<tr>
<td>0.74790418D+12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ESTIMATED TIME FOR A CALL TO DRIVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIME LEFT</td>
</tr>
<tr>
<td>0.13000000D+02</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PROPT FOR TIME = 0.50000000D+05</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
</tr>
<tr>
<td>0.35830000D-32</td>
</tr>
<tr>
<td>0.35857547D-33</td>
</tr>
<tr>
<td>0.59737383D+12</td>
</tr>
<tr>
<td>0.30381273D+33</td>
</tr>
<tr>
<td>0.62875501D+12</td>
</tr>
<tr>
<td>0.45419750D-33</td>
</tr>
<tr>
<td>0.73744049D+12</td>
</tr>
<tr>
<td>0.49661165D+33</td>
</tr>
<tr>
<td>0.80456135D+12</td>
</tr>
<tr>
<td>0.56559180D-33</td>
</tr>
<tr>
<td>0.92409982D+12</td>
</tr>
<tr>
<td>0.59007350D-31</td>
</tr>
<tr>
<td>0.97680245D+12</td>
</tr>
<tr>
<td>0.63963794D+33</td>
</tr>
<tr>
<td>0.10247690D+13</td>
</tr>
<tr>
<td>0.64035252D-33</td>
</tr>
<tr>
<td>0.429108550D-33</td>
</tr>
<tr>
<td>0.71064132D+12</td>
</tr>
<tr>
<td>0.42942227D+12</td>
</tr>
<tr>
<td>0.47558449D+12</td>
</tr>
<tr>
<td>0.77979944D-12</td>
</tr>
<tr>
<td>0.45419360D-33</td>
</tr>
<tr>
<td>0.74790418D+12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ESTIMATED TIME FOR A CALL TO DRIVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIME LEFT</td>
</tr>
<tr>
<td>0.13000000D+02</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PROPT FOR TIME = 0.50000000D+05</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
</tr>
<tr>
<td>0.35830000D-32</td>
</tr>
<tr>
<td>0.35857547D-33</td>
</tr>
<tr>
<td>0.59737383D+12</td>
</tr>
<tr>
<td>0.30381273D+33</td>
</tr>
<tr>
<td>0.62875501D+12</td>
</tr>
<tr>
<td>0.45419750D-33</td>
</tr>
<tr>
<td>0.73744049D+12</td>
</tr>
<tr>
<td>0.49661165D+33</td>
</tr>
<tr>
<td>0.80456135D+12</td>
</tr>
<tr>
<td>0.56559180D-33</td>
</tr>
<tr>
<td>0.92409982D+12</td>
</tr>
<tr>
<td>0.59007350D-31</td>
</tr>
<tr>
<td>0.97680245D+12</td>
</tr>
<tr>
<td>0.63963794D+33</td>
</tr>
<tr>
<td>0.10247690D+13</td>
</tr>
<tr>
<td>0.64035252D-33</td>
</tr>
<tr>
<td>0.429108550D-33</td>
</tr>
<tr>
<td>0.71064132D+12</td>
</tr>
<tr>
<td>0.42942227D+12</td>
</tr>
<tr>
<td>0.47558449D+12</td>
</tr>
<tr>
<td>0.77979944D-12</td>
</tr>
<tr>
<td>0.45419360D-33</td>
</tr>
<tr>
<td>0.74790418D+12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ESTIMATED TIME FOR A CALL TO DRIVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIME LEFT</td>
</tr>
<tr>
<td>0.13000000D+02</td>
</tr>
<tr>
<td>Value</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>0.3360187D-32</td>
</tr>
<tr>
<td>-0.4220869D-32</td>
</tr>
<tr>
<td>-0.5606528D-32</td>
</tr>
<tr>
<td>-0.5984043D-32</td>
</tr>
<tr>
<td>-0.4980743D-32</td>
</tr>
<tr>
<td>-0.4025059D-32</td>
</tr>
</tbody>
</table>

Values of concentrations of the 1st species on the users' grid (from PROUT via TIME, APPROXIMATE SOLUTION)

<table>
<thead>
<tr>
<th>Value</th>
<th>Value</th>
<th>Value</th>
<th>Value</th>
<th>Value</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.7136776D+12</td>
<td>0.7136776D+12</td>
<td>0.5899169D+12</td>
<td>0.2571157D+28</td>
<td>0.6313647D+12</td>
<td></td>
</tr>
</tbody>
</table>

Estimated time for a call to drive 0.6000000D+05

Time left 0.1561200D+05

PROUT FOR TIME = 0.4660000D+05

<table>
<thead>
<tr>
<th>Value</th>
<th>Value</th>
<th>Value</th>
<th>Value</th>
<th>Value</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3036134D+27</td>
<td>0.5693565D+12</td>
<td>-0.7310732D+27</td>
<td>0.5898165D+12</td>
<td>0.2571157D+27</td>
<td>0.6313647D+12</td>
</tr>
<tr>
<td>-0.7531584D+28</td>
<td>0.7394009D+12</td>
<td>-0.8422632D+28</td>
<td>0.8065673D+12</td>
<td>0.6784293D+28</td>
<td>0.9246695D+12</td>
</tr>
<tr>
<td>-0.3498276D+29</td>
<td>0.9758470D+12</td>
<td>-0.2142513D+29</td>
<td>0.1037702D+13</td>
<td>-0.1008159D+28</td>
<td>0.1047565D+13</td>
</tr>
<tr>
<td>0.6085810D+29</td>
<td>0.1023022D+13</td>
<td>-0.2876717D+29</td>
<td>0.9871655D+12</td>
<td>0.1712647D+29</td>
<td>0.9397792D+12</td>
</tr>
<tr>
<td>-0.8339688D+30</td>
<td>0.4579651D+12</td>
<td>-0.4622526D+10</td>
<td>0.7941581D+12</td>
<td>-0.2673552D+10</td>
<td>0.7575631D+12</td>
</tr>
<tr>
<td>0.1585399D+30</td>
<td>0.7268678D+12</td>
<td>-0.1727171D+3C</td>
<td>0.7217171D+31</td>
<td>0.2878171D+31</td>
<td>0.7217159D+12</td>
</tr>
</tbody>
</table>

Values of concentrations of the 1st species on the users' grid (from PROUT via TIME, APPROXIMATE SOLUTION)

<table>
<thead>
<tr>
<th>Value</th>
<th>Value</th>
<th>Value</th>
<th>Value</th>
<th>Value</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2878171D+31</td>
<td>0.2878171D+31</td>
<td>0.9989632D+65</td>
<td>0.1013994D+31</td>
<td>0.2878171D+31</td>
<td>0.7217159D+12</td>
</tr>
</tbody>
</table>

Approximate solution

-0.1998668D+65 | 0.5693565D+12 | 0.2571157D+27 | 0.6313647D+12 |

Approximate solution

0.2878171D+31 | 0.2878171D+31 | 0.9989632D+65 | 0.1013994D+31 | 0.2878171D+31 | 0.7217159D+12 |
VALUES OF CONCENTRATIONS U OF THE 2 TH SPECIES ON THE USERS GRID
(FROM ROOT VIA TIME)

APPROXIMATE SOLUTION
0.72174592862239D+12

APPROXIMATE SOLUTION
0.10352940658038D+13

APPROXIMATE SOLUTION
0.589356533845197D+12 DELTA T = 0.86400000000000D+05

ESTIMATED TIME FOR A CALL TO DRIVE 0.15090000D+05
TIME LEFT 0.15990000D+05

PROOT FOR TIME = 0.72000000D+05

\[
\begin{array}{cccc}
0.12435132D-26 & 0.59057865D+12 & -0.29452285D-26 & 0.59100411D+12 & 0.10522801D-26 & 0.63266437D+12 \\
-0.30828978D-27 & 0.74096695D+12 & -0.34446415D-27 & 0.80754782D+12 & 0.27767054D-27 & 0.92500340D+12 \\
-0.14297890D-27 & 0.97534519D+12 & -0.87720251D-28 & 0.10351956D+13 & -0.41215332D-28 & 0.10836881D+13 \\
0.24947174D-28 & 0.10170247D+13 & -0.11731379D-28 & 0.92289492D+12 & 0.70462992D-29 & 0.90032421D+12 \\
-0.33776693D-29 & 3.85581402D+12 & 0.20050135D-29 & 0.78660388D+12 & -0.10600576D-29 & 0.76209100D+12 \\
-0.67721620D-29 & 0.73379306D+12 & -0.67603236D-30 & 0.72902665D+12 & 0.14592204D-30 & 0.72905501D+12
\end{array}
\]

VALUES OF CONCENTRATIONS U OF THE 1 TH SPECIES ON THE USERS GRID
(FROM ROOT VIA TIME)

APPROXIMATE SOLUTION
0.1988220425798624D+30

APPROXIMATE SOLUTION
-0.813607675338683D-29

APPROXIMATE SOLUTION
0.724513217593259D-26

VALUES OF CONCENTRATIONS U OF THE 2 TH SPECIES ON THE USERS GRID
(FROM ROOT VIA TIME)

APPROXIMATE SOLUTION
0.720055010917528D+12

APPROXIMATE SOLUTION
0.103061394284445D+13

APPROXIMATE SOLUTION
0.590578651941020D+12 DELTA T = 0.86400000000000D+05

ESTIMATED TIME FOR A CALL TO DRIVE 0.10300000D+01
TIME LEFT 0.15990000D+05

PROOT FOR TIME = 0.79200000D+05

\[
\begin{array}{cccc}
0.30828978D-26 & 0.59100411D+12 & -0.66988365D-25 & 0.5922644D+12 & 0.23933193D-26 & 0.63396069D+12
\end{array}
\]
VALUES OF CONCENTRATIONS U OF THE 1ST SPECIES ON THE USERS GRID
(FROM PROUT VIA TIME)

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
<th>u</th>
<th>v</th>
<th>w</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.360584310-27</td>
<td>0.593028690-12</td>
<td>-0.854003070-27</td>
<td>0.593899560-12</td>
<td>0.305118170-27</td>
<td>0.635253820-12</td>
</tr>
<tr>
<td>-0.693497950-28</td>
<td>0.743270550-12</td>
<td>-0.992200420-28</td>
<td>0.899459490-12</td>
<td>0.855317710-28</td>
<td>0.925190170-12</td>
</tr>
<tr>
<td>-0.584940650-28</td>
<td>0.749408130-12</td>
<td>-0.965050710-28</td>
<td>0.852998670-12</td>
<td>-0.11976560-28</td>
<td>0.103578390-13</td>
</tr>
<tr>
<td>0.725246210-29</td>
<td>0.105555670-13</td>
<td>-0.338312530-29</td>
<td>0.970640570-12</td>
<td>0.226003970-29</td>
<td>0.893048370-12</td>
</tr>
<tr>
<td>-0.635167770-30</td>
<td>0.582747120-12</td>
<td>0.556555550-30</td>
<td>0.751478670-12</td>
<td>-0.254905810-30</td>
<td>0.770326160-12</td>
</tr>
<tr>
<td>0.209249410-30</td>
<td>0.746009260-12</td>
<td>-0.183276630-30</td>
<td>0.740231220-12</td>
<td>0.550629830-31</td>
<td>0.740240490-12</td>
</tr>
</tbody>
</table>

VALUES OF CONCENTRATIONS U OF THE 2ND SPECIES ON THE USERS GRID
(FROM PROUT VIA TIME)

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
<th>u</th>
<th>v</th>
<th>w</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.593292750-09</td>
<td>0.593028690-12</td>
<td>-0.854003070-27</td>
<td>0.593899560-12</td>
<td>0.305118170-27</td>
<td>0.635253820-12</td>
</tr>
<tr>
<td>-0.693497950-28</td>
<td>0.743270550-12</td>
<td>-0.992200420-28</td>
<td>0.899459490-12</td>
<td>0.855317710-28</td>
<td>0.925190170-12</td>
</tr>
<tr>
<td>-0.584940650-28</td>
<td>0.749408130-12</td>
<td>-0.965050710-28</td>
<td>0.852998670-12</td>
<td>-0.11976560-28</td>
<td>0.103578390-13</td>
</tr>
<tr>
<td>0.725246210-29</td>
<td>0.105555670-13</td>
<td>-0.338312530-29</td>
<td>0.970640570-12</td>
<td>0.226003970-29</td>
<td>0.893048370-12</td>
</tr>
<tr>
<td>-0.635167770-30</td>
<td>0.582747120-12</td>
<td>0.556555550-30</td>
<td>0.751478670-12</td>
<td>-0.254905810-30</td>
<td>0.770326160-12</td>
</tr>
<tr>
<td>0.209249410-30</td>
<td>0.746009260-12</td>
<td>-0.183276630-30</td>
<td>0.740231220-12</td>
<td>0.550629830-31</td>
<td>0.740240490-12</td>
</tr>
</tbody>
</table>

PROUT FOR TIME = 0.86400000D+05
TIME LEFT = 0.15595000D+05
APPROXIMATE SOLUTION
0.1020675308413356D+13

APPROXIMATE SOLUTION
0.593028683105982D+12
TOUT = 0.864000000000000D+05 DELTA T = 0.864000000000000D+05

ESTIMATED TIME ON A CALL TO DRIVE 0.35000000D+02
TIME LEFT 0.15560000D+05

****** NORMAL DUMP AT END OF TIME
I = 2 TOUT = 0.864000000000000D+05

END OF CASE
To illustrate the use of the graphics programs for $\text{ITIME}=T$, we will present plots using CSP, CØNTØR, and THREEED. In the case of CSP, we present a graph of each species on the same frame. At $r = 30\text{km}$, each species $c_i(z,t)$ is plotted as a function of t where t is evaluated at 2-hour intervals starting at 6:00 AM for one 24-hour period. Note that the data points on the graph are not connected with any type of curve. This is a limitation of the present version of CSP. In the case of CØNTØR, we present two contour plots—-one for each species. The horizontal axis is time ($0 \leq t < 86400 \text{ sec}$) and the vertical axis is the spatial variable z ($30 \leq z \leq 50$). Note that the contour heights for the second species are too large for the printing capability of BLACKBOX. Hence we have ** printed for the contour heights. In the case of THREEED we present two graphs—-one for each species. In each case the independent variables are t and z (as in CØNTØR), and the dependent variable is the species concentrations $c_i(z,t)$.

In the following we give the namelist data used for each of the three graphics programs.

For CSP:

Namelist FORMAT

1. Indicator for iterative or direct version.
 Previous versions of DISPL allowed for direct or iterative solution of certain equations. The current version of DISPL1 only allows for the direct version; thus the default value $\text{ITRTV}=0$, MUST be used.
 $\text{ITRTV}=0,$

2. Number of curves produced.
 We want a time plot for each of two species.
 $\text{IGNUM}=2,$

3. Logical indicator for time option.
 $\text{ITIME}=T,$

4. Number of time values.
 There are 13 output time values.
 $\text{NTIME}=13,$

Namelist CSPIN

1. Indicator for cinema mode.
 $\text{ICN}=0,$ (Default)

2. Indicator for grouping format.
 We will put each curve on a separate axis; thus we want separate format.
 $\text{IFFORMT}=0,$ (Default)
3. Species number for each curve.
 We will plot the first species on the first curve and the second species on the second curve.
 ISPEC=1,2,

4. Ordering of curves on frames.
 LORDER=1,2,

5. Frame number indicator.
 Both curves will be plotted on the first frame.
 LGROUP=1,1,

6. Estimate of minimum value of the ordinates.
 YAXMIN=0,0, (Default)

7. Estimate of maximum value of the ordinates.
 YAXMAX=0,0, (Default)

8. Coordinates of the point at which the solution is evaluated.
 A1=0.0, A2=0.0,
 B1=30.0, B2=30.0,

For CONTOR:

 Namelist FORMAT is the same as in CSP. (We allow NRESIN to take on its default value of the Macro variable NRESD=21.)

 Namelist CNTRIN
1. Species number for each frame.
 ISPEC=1,2,

2. Coordinates of line to be used as the spatial variable.
 RMIN=0.0, 0.0, (Default)
 RMAX=0.0, 0.0,
 ZMIN=30.0, 30.0,
 ZMAX=50.0, 50.0,

For THREED:

 Namelist FORMAT is the same as in CSP. (We again allow NRESIN=NRESD, its default value.)

 Namelist DIM3IN
This namelist contains all the variables which appear in CNTRIN and these values are unchanged. In addition, we need the following
variables.

1. Coordinates of the viewpoint.
 \[\text{RVIEW}= -100.0, \]
 \[\text{ZVIEW}= -100.0, \]
 \[\text{FVIEW}= 150.0, \]

2. Bounds on the function axis.
 \[\text{FMATMN}= 0.0, \text{FMATMX}= 1.0, \text{(Defaults)} \]

The graphs are presented on the following pages.
Figure 7.3.1
Time graphs of the species concentrations via CSP
Figure 7.3.2
Time graph of the first species via CONTOR
Figure 7.3.3
Time graph of the second species via CONTOR
Figure 7.3.4
Time graph of the first species via THREED
Figure 7.3.5
Time graph of the second species via THREED
7.4 Cooling of a Sphere in a Well Stirred Fluid

This problem will illustrate the use of spherical geometry and the differential boundary condition version of the code.

Consider a homogeneous sphere initially at a uniform temperature T, which is immersed in a volume V_f of a well stirred fluid at a temperature T_0 in an insulated tank. Let

- k_s thermal conductivity of the sphere,
- $\rho_s C_p s$ heat capacity of the sphere,
- $T_s = T_s(r,t)$ temperature of the sphere,
- $T_f = T_f(t)$ temperature of the fluid at the surface of the sphere,
- R radius of the sphere,
- V_s volume of the sphere.

Define the following dimensionless variables.

- $\alpha_s = k_s/\rho_s C_p s$,
- $\xi = r/R$,
- $\tau = s t/R^2$,
- $\theta_s = \theta_s(\xi, \tau) = (T_s - T_0)/(T_1 - T_0)$,
- $\theta_f = (T_1 - T_f)/(T_1 - T_0)$.

For this problem, we will set $T_0 = 0$, then we have the following conduction problem.

\[
\frac{\partial \theta_s}{\partial \tau} = \frac{1}{\xi^2} \frac{\partial}{\partial \xi} \xi^2 \frac{\partial \theta_s}{\partial \xi} , \quad 0 < \xi < 1
\]

(7.4.1)

\[
\frac{\partial \theta_s}{\partial \xi}(0, \tau) = 0 ,
\]

(7.4.2)

\[
\theta_s(1, \tau) = \theta_f(\tau) \quad \text{where} \quad \frac{d \theta_f}{d \tau} = -\frac{3}{B} \frac{\partial \theta_s}{\partial \xi}(1, \tau),
\]

(7.4.3)

\[
B = \rho_f C_p f V_f / \rho_s C_p s V_s ,
\]

(7.4.4)

\[
\theta_s(\xi, 0) = 0 \quad \text{for} \quad 0 < \xi < 1 , \quad \text{and}
\]

\[
\theta_f(0) = 1.
\]
Note that the boundary condition at $\xi = 1$ can be written in the form

$$\frac{\partial \phi}{\partial \tau} (1, \tau) = -\frac{3}{B} \frac{\partial \phi}{\partial \xi} (1, \tau).$$

This boundary condition is given in a time differential form; hence it is natural to use the differential boundary condition version to solve this problem.

This problem is selected from the text by Bird, Stewart, and Lightfoot, Ref. [8], page 357; the same problem can also be found in Carslaw and Jaeger, Ref. [5], page 205. The solution to this problem can be written in the following form (with $T_0 = 0$).

$$e_s(\xi, \tau) = \frac{B}{B+1} + \frac{2B}{3\xi} \sum_{k=1}^{\infty} \exp(-\tau b_k^2) \frac{[B^2b_k^4 + 3(2B+3)b_k^2 + 9]}{B^2b_k^4 + 9(B+1)b_k^2} \sin \xi b_k \sin b_k$$

$$e_f(\tau) = \frac{B}{1+B} + 6B \sum_{k=1}^{\infty} \exp(-\tau b_k^2) (b_k^2B^2 + 9(1+B))^{-1}$$

where the b_k are the non-zero roots of

$$\tan b = \frac{3b}{3 + 8b^2}.$$

For this problem, we take

$$B = 1/2,$$

and for this value of B, the first 15 non-zero roots are given in Table 7.4.1.

<table>
<thead>
<tr>
<th>TABLE 7.4.1. First 15 Non-zero Roots</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.972021016717</td>
</tr>
<tr>
<td>12.98602738139</td>
</tr>
<tr>
<td>22.25151701953</td>
</tr>
<tr>
<td>31.6024574142</td>
</tr>
<tr>
<td>40.98555486792</td>
</tr>
</tbody>
</table>
The roots shown in Table 7.4.1 were obtained by fixed point iteration on Eq. (7.4.8), and they were also calculated using Newton iterations. When these roots are used in (7.4.8), the residuals are less than 1.0-8 in all cases. These roots were used in Eqs. (7.4.6) and (7.4.7), and for \(\tau \geq 0.04 \) the partial sums were unchanged in the first 10 significant digits when using 10 or 15 terms in these series. From these circumstances, we infer that the first 15 terms will provide solutions accurate to at least eight significant places when \(\tau \geq 0.04 \).

For this problem we used the following input data in the namelists.

GRID

- \(KR=6, KZ=1, \)
- \(C0NTR=5, \)

Here we are using a smooth quintic B-spline.

- \(DELTA=2, \)
- (Spherical geometry)
- \(NQR=6, NQZ=1, \)
- \(NMR=22, \)
- \(RMESH = 0.1, 0.2, 0.3, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.725, 0.75, 0.775, 0.8, 0.825, 0.85, 0.875, 0.9, 0.925, 0.95, 0.975, 0.985, \)

Here we are using a non-uniform mesh since the temperature is initially one at the surface \((\xi=1) \) and zero for \(0 \leq \xi < 1 \). The temperature profile will initially have a large gradient near \(\xi=1 \), and the gradient will always be zero at \(\xi=0 \).

- \(INITSW=F, GUESSW=F, STEDSW=F, TRANSW=T, \)

Since the initial temperature is zero inside the sphere and one at the surface, the least squares fit, which \(INITSW=T \), would provide a very poor fit to this data. For this reason, the initial spline coefficients will be provided in namelist DATA.

- \(IRGRD=6, \)
- \(RGRID=0.2, 0.4, 0.6, 0.8, 0.9, 1.0, \)
- \(IANAL=T, \)

The series solution as given in Eqs. (7.4.6) and (7.4.7) will be provided in the user subroutine ANAL.

- \(ALGBCS=F, \)

We are using the differential boundary condition option of the code.
DATA

NS3(1)=1,
ALPHA(1,3)=1.0, BETA(1,3)=0.0, GAMMA(1,3)=1.0,
NUT0UT=6,
UTDOUT=0.0,0.04,0.08,0.12,0.16,0.2,
W=27*0.0,

Here we are providing the initial spline coefficients. Recall that the initial temperature is identically zero for 0 ≤ ξ < 1 and one for ξ=1. From the properties of the B-splines (cf. section 2.2) we can infer that if the dimension of the problem is N (the number of basis functions), then the initial spline coefficients W will satisfy

W(j) ≡ 0 for 1 ≤ j ≤ N-1, and
W(N) = 1.

Since the default value for the initial spline coefficients is one, setting W=27*0.0, will provide this initial distribution for the spline coefficients. Of course, there is the problem of determining that N=28 for this problem. Recall from section 2 that for a one-dimensional problem in r

N = N' = KR+NMR*(KR-C0NTR).

For this problem KR=6, NMR=22, and C0NTR=KR-1=5; hence N=28.

EPS=1.D-6, HINIT=1.0-8,
GRAPH=T,

The user routines for this problem are characterized as follows.

RH0CP
RC=1.D0

DIFUSE
DIFUR=1.D0
DIFUZ=0.D0

VEL
VELR=0.D0
VELZ=0.D0

EXTSRC
VV=0.D0

FDEXTU
UU(1)=0.D0
UUR(1)=0.D0
UUZ(1)=0.D0
As mentioned before, the boundary conditions for this problem are presented in differential form; hence we use the differential boundary condition option. This implies that we use subroutine BRHØDT rather than BRHØ. In BRHØDT, we return time differentiated boundary values on sides that have essential boundary conditions (where \(\delta = 0 \)), and we return undifferentiated boundary values on sides that have non-essential boundary conditions. In this problem we have \(\frac{\partial \delta}{\partial t} = 0 \) on side 1; this is a non-essential boundary condition, hence we return \(\Delta H_{\partial} = 0.00 \) on side 1. On side 3, we have \(\theta = \theta_1 \) where \(\frac{\partial \delta}{\partial t} = -3/B \frac{\partial \theta}{\partial t} \). This is an essential boundary condition; hence we return the time derivative of \(\delta_t \) on side 3, that is

\[
\Delta H_{\partial} = -3.00*\text{SPDENX}(1)/B.
\]

In this routine we implement the series solutions given in Eqs. (7.4.6) and (7.4.7) using the 15 non-zero roots given in Table 7.4.1. For very small values of \(\tau \) (in particular for \(\tau = 0 \)) these series are very slowly converging, and 15 terms is not adequate to obtain a reasonable solution. For \(\tau \geq 0.04 \), 15 terms is more than adequate to obtain eight significant digits of accuracy in these series solutions.

In all these sample problems, we have used NQR=KR and NZQ=KZ. This is not necessarily the optimal choice; however, we have used these values to insure that errors in the approximation were due solely to the spatial approximation. This is also why we have used rather tight convergence criteria (EPS) in the ODE solver. In Table 7.4.2 we show the effect of varying the quadrature order for the case of a cubic B-spline approximation to this problem.

Using KR=4 (cubic B-splines) we ran this problem with NQR=3,4,6. Table 7.4.2 presents the solution values at \(t = 0.04 \) and \(\varepsilon = 0.1 \) and \(\varepsilon = 1.0 \).
TABLE 7.4.2. Effect of Quadrature Order on Approximation Error

<table>
<thead>
<tr>
<th>NQR</th>
<th>$\xi = 0.1$</th>
<th>$\xi = 1.0$</th>
<th>CPU time(sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.016126856864</td>
<td>0.4516148560</td>
<td>36</td>
</tr>
<tr>
<td>4</td>
<td>0.01612406559</td>
<td>0.4515455554</td>
<td>40</td>
</tr>
<tr>
<td>6</td>
<td>0.01612406537</td>
<td>0.4515455545</td>
<td>43</td>
</tr>
<tr>
<td>Series Solution</td>
<td>0.0158142829</td>
<td>0.44352229025</td>
<td></td>
</tr>
</tbody>
</table>

The data shows that for this problem the choice NQR = KR-1 = 3 is the optimal choice. This is in agreement with the discussion for elliptic problems in [4]. Although the CPU times are not drastically different, it should be remembered that for two-dimensional problems the effect of using $(K-1)^2$ points per rectangle rather than K^2 points will have a significant effect on the running time.
| STORAGE MAXIMA FOR THIS COMPILATION : |
|-------------------------------|---|
| NAMERK | 30 |
| NAMEP | 6 |
| NAMEPD | 6 |
| NAMEI | 6 |
| NINSTK | 190|
| NINXAM | 190|
| NAXBOT | 40 |
| NTSQP | 70 |
| NSQROD | 20 |
FADING NAMELIST GRID

KP = 6 KEP = 1
NP12 = 0 NP21 = 0
NSPEC = 1
NW = 0, 0 NUP = 0.1000000000000000+01
SLOW = 0.0 JUP = 0.1000000000000000+01
NXP = 22 KNP = 0

INITIAL COVY = 13 INITIAL CVZ = 13

GEOMETRY INDICATOR = 2
ADDITIONAL NON-INTERFACE MESH POINTS
I = 1 NRESH(I) = 0.1000000000000000+00
I = 2 NRESH(I) = 0.2000000000000000+00
I = 3 NRESH(I) = 0.3000000000000000+00
I = 4 NRESH(I) = 0.4000000000000000+00
I = 5 NRESH(I) = 0.5000000000000000+00
I = 6 NRESH(I) = 0.6000000000000000+00
I = 7 NRESH(I) = 0.7000000000000000+00
I = 8 NRESH(I) = 0.8000000000000000+00
I = 9 NRESH(I) = 0.9000000000000000+00
I = 10 NRESH(I) = 1.0000000000000000+00
I = 11 NRESH(I) = 1.1000000000000000+00
I = 12 NRESH(I) = 1.2000000000000000+00
I = 13 NRESH(I) = 1.3000000000000000+00
I = 14 NRESH(I) = 1.4000000000000000+00
I = 15 NRESH(I) = 1.5000000000000000+00
I = 16 NRESH(I) = 1.6000000000000000+00
I = 17 NRESH(I) = 1.7000000000000000+00
I = 18 NRESH(I) = 1.8000000000000000+00
I = 19 NRESH(I) = 1.9000000000000000+00
I = 20 NRESH(I) = 2.0000000000000000+00
I = 21 NRESH(I) = 2.1000000000000000+00
I = 22 NRESH(I) = 2.2000000000000000+00

NO ADDITIONAL NON-INTERFACE MESH POINTS

ORDER OF SPLINE DERIVATIVES COMPUTED IS 0
NUMBER OF SUPPLIED POINTS IN X DIRECTION 6
XGRID(1) = 0.1000000000000000+00
XGRID(2) = 0.2000000000000000+00
XGRID(3) = 0.3000000000000000+00
XGRID(4) = 0.4000000000000000+00
XGRID(5) = 0.5000000000000000+00
XGRID(6) = 0.6000000000000000+00

NUMBER OF SUPPLIED POINTS IN Z DIRECTION 1
ZGRID(1) = 0.1000000000000000+00

READING NAMELIST DATA
CONTR TOO HIGH, BEING RESET TO 6-1

CONTR TOO HIGH, BEING RESET TO 1-1

UVGAP = 0 "UVGA = 0 LR = 23 LZ = 1 NP = 24 NZ = 1

JL (I) =
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

JI (J) =
1

JREFT (I) =
1 1

JREFT (J) =
1
MLTAB (1, 1) = 1
MLTAB (2, 1) = 1
MLTAB (3, 1) = 1
MLTAB (4, 1) = 1
MLTAB (5, 1) = 1
MLTAB (6, 1) = 1
MLTAB (7, 1) = 1
MLTAB (8, 1) = 1
MLTAB (9, 1) = 1
MLTAB (10, 1) = 1
MLTAB (11, 1) = 1
MLTAB (12, 1) = 1
MLTAB (13, 1) = 1
MLTAB (14, 1) = 1
MLTAB (15, 1) = 1
MLTAB (16, 1) = 1
MLTAB (17, 1) = 1
MLTAB (18, 1) = 1
MLTAB (19, 1) = 1
MLTAB (20, 1) = 1
MLTAB (21, 1) = 1
MLTAB (22, 1) = 1
MLTAB (23, 1) = 1

HORIZONTAL OPDEPPING

HT = 1 HJ = 24 WCC = -29 NBW = 5

NBW = 1 HJN = 28 WCCN = -28 DM = 5

SYSTEM SIZE FOR THIS CASE
LP = 23 LZ = 1 NP = 20 NZ = 1

THIS IS THE DIRECT VERSION
THIS VERSION DOES NOT REQUIRE BOUNDARY CONDITIONS ON EVERY SIDE

FOR SPECIES NO. 1

SIDE 1 ALPHA = 0.0 BETA = -0.10000000D+01 GAMMA = 0.0
SIDE 2 ALPHA = 0.0 BETA = -0.10000000D+01 GAMMA = 0.0
SIDE 3 ALPHA = 0.10000000D+01 BETA = 0.0 GAMMA = 0.10000000D+01
SIDE 4 ALPHA = 0.0 BETA = 0.10000000D+01 GAMMA = 0.0

SIDE INDICATORS BY SPECIES

FOR SPECIES NO. 1 HS1 = 0 HS2 = 0 HS3 = 1 HS4 = 0
BOUNDARY H FUNCTION FOR SIDES 1 AND 3
SPECIES NO. 1 MATERIAL INDEX 1 HS1 = 0.0000000000000000D+00 HS2 = 0.0000000000000000D+00
SPECIES NO. 1 MATERIAL INDEX 1 HS3 = 0.1000000000000000D+01 HS4 = 0.1000000000000000D+01

REACTION RATES
FIRST ORDER RATES
CK INTO 1 FROM 1 TO 0.0
SECOND ORDER REACTION RATES ARE
CK INTO F = 1 FOR H = 1 INTO HFP = 1

INTROD = 100
TIME AND SPACE GRID FOR PROUT

NUMBER OF MAJOR TIME VALUES 6
NUMBER OF SUBINTERVALS OF EACH MAJOR TIME INTERVAL 1
(OUTPUT WILL OCCUR AT EACH SUCH TIME)
MAJOR TIME VALUES

0.0 0.1000000000000000D+00
0.2000000000000000D+00

DATASET CREATED FOR USE IN GRAPHICS
GRAPH = 7
PRINT SWITCH INDICATORS
IPRSW1 = 0 IPRSW2 = 0 IPRSW3 = 0 IPRSW4 = 0 IPRSW5 = 0
ODE PACKAGE DATA

EPS = 0.1000000000000000D-05 NINIT = 0.1000000000000000D+07 MP = 21 BIGORD = 5
CONTINUITY FOR R AND Z DIRECTIONS MAY HAVE BEEN RESET
COTES = 5 COTES = 0
DEFAULT INITIAL COEFFICIENTS

0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.1000000000000000D+01
PLEADING PANELIST

CHANGES IN P

P SPECIES NO. 1

<table>
<thead>
<tr>
<th>SIDE 1 ALPHA</th>
<th>SIDE 2 ALPHA</th>
<th>SIDE 3 ALPHA</th>
<th>SIDE 4 ALPHA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.1</td>
<td>0.0</td>
</tr>
</tbody>
</table>

PANELIST SPECIES

NO. 1

SIDE 1

\[\alpha = 0.100000000000000D+01, \beta = 0.0, \gamma = 0.3 \]

SIDE 2

\[\alpha = 0.0, \beta = 0.0, \gamma = 0.3 \]

SIDE 3

\[\alpha = 0.100000000000000D+01, \beta = 0.0, \gamma = 0.3 \]

SIDE 4

\[\alpha = 0.0, \beta = 0.0, \gamma = 0.3 \]

SIDE INDICATORS BY SPECIES

P SPECIES NO. 1

<table>
<thead>
<tr>
<th>SIDE 1</th>
<th>SIDE 2</th>
<th>SIDE 3</th>
<th>SIDE 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS1 = 0</td>
<td>NS2 = 1</td>
<td>NS3 = 1</td>
<td>NS4 = 0</td>
</tr>
</tbody>
</table>

BOUNDARY H FUNCTION FOR SIDES 1 AND 3

\[H_{13} = 0.100000000000000D+01 \]

BOUNDARY H FUNCTION FOR SIDES 2 AND 4

SPECIES NO. 1 MATERIAL INDEX

SIDE 1

\[H_{11} = 0.100000000000000D+01, H_{13} = 0.100000000000000D+01 \]

SECOND ORDER REACTION RATES

FIRST ORDER RATES

CK INTO 1 FROM 1 IS 0.0

SECOND ORDER REACTION RATES ARE

\[CK(1, 1, 1) = 0.0 \]

ISTDFP = 100

TIME AND SPACE GRID FOR PROUT

NUMBER OF MAJOR TIME VALUES

6

NUMBER OF SUBINTERVALS OF EACH MAJOR TIME INTERVAL

1

OUTPUT WILL OCCUR AT EACH SUCH TIME

MAJOR TIME VALUES

0.0
0.400000000000000D-01
0.800000000000000D-01
0.120000000000000D0
0.160000000000000D0
0.200000000000000D0

DATASET CREATED FOR USE IN GRAPHS

GRAPH = T

PRINT SWITCH INDICATORS

IPRSW1 = 0
IPRSW2 = 0
IPRSW3 = 0
IPRSW4 = 0
IPRSW5 = 0

ODS PACKAGE DATA

EPS = 0.100000000000000D-05

BINIT = 0.100000000000000D-07

MP = 21

NCONT = 5

COUTS = 5

COUT = 0

INITIAL COEFFICIENTS FOR TRANSIENT

<table>
<thead>
<tr>
<th>0.0</th>
<th>0.0</th>
<th>0.0</th>
<th>0.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>
BEGIN TRANSIENT SOLUTION

PROUT FOR TIME = 0.0

\[
\begin{align*}
W &= 0.0 \\
 &= 0.0 \\
 &= 0.0 \\
 &= 0.0 \\
 &= 0.0 \\
 &= 0.0 \\
 &= 0.0
\end{align*}
\]

VALUES OF CONCENTRATIONS U OF THE 1 TH SPECIES ON THE USERS GRID

FROM PROUT VIA TIME

APPROXIMATE SOLUTION

\[
\begin{align*}
0.0 \\
0.1000000000000000 \times 10^0 \\
0.0 \\
\end{align*}
\]

ANALYTIC SOLN.

\[
\begin{align*}
-0.4014236151701244 \times 10^{-4} \\
0.9229872659082878 \times 10^{-4} \\
\end{align*}
\]

MAXIMUM ERROR OF GRID IS

TOTTAL

0.0

PROUT FOR TIME = 0.4000000000

\[
\begin{align*}
W &= 9.77643223 \times 10^{-2} \\
 &= 0.81191880 \times 10^{-2} \\
 &= 0.97159559 \times 10^{-2} \\
 &= 0.14324189 \times 10^{-2} \\
 &= 0.25423782 \times 10^{-2} \\
 &= 0.35715939 \times 10^{-2} \\
 &= 0.40639177 \times 10^{-2} \\
 &= 0.44631052 \times 10^{-2}
\end{align*}
\]

VALUES OF CONCENTRATIONS U OF THE 1 TH SPECIES ON THE USERS GRID

FROM PROUT VIA TIME

APPROXIMATE SOLUTION

\[
\begin{align*}
0.16426231991113 \times 10^{-2} \\
0.3152358777 \times 10^{-2} \\
0.31542290 \times 10^{-2}
\end{align*}
\]

ANALYTIC SOLN.

\[
\begin{align*}
0.53975931633774 \times 10^{-2} \\
0.15317791157469 \times 10^{-2} \\
0.53975931633774 \times 10^{-2}
\end{align*}
\]

MAXIMUM ERROR OF GRID IS

TOTTAL

0.4000000000

ESTIMATED TIME FOR A CALL TO DRIVE

0.2239000000

TIME LEFT

0.1691900000

PROUT FOR TIME = 0.8000000000

\[
\begin{align*}
W &= 0.10086542 \times 10^{-2} \\
 &= 0.10086542 \times 10^{-2}
\end{align*}
\]

VALUES OF CONCENTRATIONS U OF THE 1 TH SPECIES ON THE USERS GRID

FROM PROUT VIA TIME

\[
\begin{align*}
0.10086542 \times 10^{-2} \\
0.10086542 \times 10^{-2}
\end{align*}
\]
APPARENT SOLUTION
-0.2148314 -11975584119.00
+0.36672482713934 -45.00
ANALYTIC SOIL.
-0.1178222229514190.00
-0.1722877066705615+0.00
+0.1320721713784850+0.00
-0.363653937192950+0.00
APPROXIMATE PROP ON GRID IS 0.43229578-02
TORT= 0.0999999999999999+01 DELTA T = 0.0999999999999999-01
ESTIMATED TIME FOR A CALL TO DRIVE 0.236300000+03
TIME LEFT 0.166700000+05

PROOF FOR TIME = 0.120000000+00
\[U = \begin{bmatrix} 0.20087719+00 \\ 0.20087719+00 \\ 0.20087719+00 \end{bmatrix} \]
\[\begin{bmatrix} 0.20087719+00 \\ 0.20087719+00 \\ 0.20087719+00 \end{bmatrix} \]
VALUES OF CONCENTRATIONS \(U \) OF THE 1 TH SPECIES ON THE USPES GRID
(FROM PROOF VIA TIME)

APPROXIMATE SOLUTION
-0.1110646228322142+00
+0.3654757297106017+00
ANALYTIC SOIL.
-0.2700222229514190.00
-0.29073834330433590+0.00
+0.3164619999999999-01
APPROXIMATE PROP ON GRID IS 0.43229578-02
TORT= 0.1200000000000001+00 DELTA T = 0.1200000000000001-01
ESTIMATED TIME FOR A CALL TO DRIVE 0.1264000000+03
TIME LEFT 0.155970000+05

PROOF FOR TIME = 0.160000000+00
\[U = \begin{bmatrix} 0.20087719+00 \\ 0.20087719+00 \\ 0.20087719+00 \end{bmatrix} \]
\[\begin{bmatrix} 0.20087719+00 \\ 0.20087719+00 \\ 0.20087719+00 \end{bmatrix} \]
VALUES OF CONCENTRATIONS \(U \) OF THE 1 TH SPECIES ON THE USPES GRID
(FROM PROOF VIA TIME)

APPROXIMATE SOLUTION
-0.2700222229514190.00
+0.3654757297106017+00
ANALYTIC SOIL.
-0.2700222229514190.00
-0.29073834330433590+0.00
+0.3164619999999999-01
APPROXIMATE PROP ON GRID IS 0.43229578-02
TORT= 0.1200000000000001+00 DELTA T = 0.1200000000000001-01
ESTIMATED TIME FOR A CALL TO DRIVE 0.1264000000+03
TIME LEFT 0.155970000+05

VALUES OF CONCENTRATIONS \(U \) OF THE 1 TH SPECIES ON THE USPES GRID
(FROM PROOF VIA TIME)

APPROXIMATE SOLUTION
-0.2700222229514190.00
+0.3654757297106017+00
ANALYTIC SOIL.
-0.2700222229514190.00
-0.29073834330433590+0.00
+0.3164619999999999-01
APPROXIMATE PROP ON GRID IS 0.43229578-02
TORT= 0.1200000000000001+00 DELTA T = 0.1200000000000001-01
ESTIMATED TIME FOR A CALL TO DRIVE 0.1264000000+03
TIME LEFT 0.155970000+05
PROB FOR TIME = 0.23000000D+00

<table>
<thead>
<tr>
<th>U</th>
<th>0.29805915D+00</th>
<th>0.29835914D+00</th>
<th>0.29920778D+00</th>
<th>0.30167456D+00</th>
<th>0.30601416D+00</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.29805915D+00</td>
<td>0.31078024D+00</td>
<td>0.31539188D+00</td>
<td>0.32945800D+00</td>
<td>0.32642263D+00</td>
<td>0.32981992D+00</td>
</tr>
<tr>
<td>0.31078024D+00</td>
<td>0.33196124D+00</td>
<td>0.33894718D+00</td>
<td>0.33711675D+00</td>
<td>0.33941111D+00</td>
<td>0.33961111D+00</td>
</tr>
<tr>
<td>0.31539188D+00</td>
<td>0.33894718D+00</td>
<td>0.34172189D+00</td>
<td>0.34265990D+00</td>
<td>0.34357250D+00</td>
<td>0.34414576D+00</td>
</tr>
<tr>
<td>0.32945800D+00</td>
<td>0.33711675D+00</td>
<td>0.34172189D+00</td>
<td>0.34265990D+00</td>
<td>0.34357250D+00</td>
<td>0.34414576D+00</td>
</tr>
</tbody>
</table>

VALUES OF CONCENTRATIONS U OF THE 1 TH SPECIES ON THE USERS GRID (FROM PROBT VIA TTIME)

APPROXIMATE SOLUTION

ARITHMETIC ERROR ON GRID IS 0.31877777D-32
TOUT = 0.200000000000000D+00 DELTA I = 0.3999999999999999D-31

ESTIMATED TIME FOR A CALL TO CHIEF

TOUT = 0.3083000000D+00

TIME LEFT 0.16094000D+00

***** normal dump at END OF TIME

I = 6
TOUT = 0.230000000000000D+00

END OF CAST
7.5 Heat Conduction with Chemical Heat Source

This problem involves a simple model for a fixed-bed flow reactor. The problem will illustrate the use of interface conditions and the use of material tables. This problem is taken from [8] where a solution to the problem is also given.

The reactor extends from $z = -\infty$ to $z = +\infty$ and is divided into three zones with the central zone $(0 < z < L)$ being the reaction zone. Radial velocity gradients are neglected and the walls are well insulated so that the temperature is independent of the radial coordinate r. The task is to find the steady-state axial temperature distribution $T(z)$ when the fluid enters at $z = -\infty$ with a uniform temperature T_1 and are average linear velocity without packing of $v_1 = \frac{w}{\pi R^2} \rho_1$ where R is the radius of the reactor and ρ_1 is the fluid density. The volume rate of thermal energy production by chemical reactions S_c is assumed to be of the form

$$S_c(z) = S_{c1} \left(\frac{T(z) - T^0}{T_1 - T^0} \right)$$

where T^0 and S_{c1} are given constants.

The governing equations are as follows.

$$\rho_1 v_1 C_p \frac{dT}{dz} = k \frac{d^2T}{dz^2} \text{ for } z < 0,$$

(7.5.1) $$\rho_1 v_1 C_p \frac{dT}{dz} = k \frac{d^2T}{dz^2} + S_{c1} \left(\frac{T - T^0}{T_1 - T^0} \right) \text{ for } 0 < z < L,$$

$$\rho_1 v_1 C_p \frac{dT}{dz} = k \frac{d^2T}{dz^2} \text{ for } L < z.$$
The following boundary and interface conditions are used.

\[T = T_1 \text{ at } z = -\infty \]
\[T(0^-) = T(0^+) \]
\[k \left. \frac{dT}{dz} \right|_{z=0^-} = k \left. \frac{dT}{dz} \right|_{z=0^+} \]
\[(7.5.2) \quad T(L^-) = T(L^+) \]
\[k \left. \frac{dT}{dz} \right|_{z=L^-} = k \left. \frac{dT}{dz} \right|_{z=L^+} \]
\[\left. \frac{dT}{dz} \right|_{z=\pm\infty} = 0 \]

In [8] the solution to this problem is given in terms of dimensionless variables. Thus

\[\zeta = \frac{z}{L}, \quad \theta = \frac{(T-T_1^0)/(T_1-T_0)}{B} = \frac{\rho_1 \nu_1 C_p L}{Q}, \quad \text{and} \]
\[F = \frac{S c_1 L}{\rho_1 \nu_1 C_p (T_1-T_0)}. \]

The governing equations are then of the following form:

\[\frac{d\theta}{d\zeta} = \frac{1}{B} \frac{d^2 \theta}{d\zeta^2} \quad \text{for } \zeta < 0, \]
\[(7.5.3) \quad \frac{d\theta}{d\zeta} = \frac{1}{B} \frac{d^2 \theta}{d\zeta^2} + \theta F \quad \text{for } 0 < \zeta < 1, \]
\[\frac{d\theta}{d\zeta} = \frac{1}{B} \frac{d^2 \theta}{d\zeta^2} \quad \text{for } 1 < \zeta. \]

The boundary conditions and interface conditions have the form:
\[\theta = 1 \text{ at } \zeta = -\infty \]
\[\theta(0^-) = \theta(0^+) \]
\[\left. \frac{1}{B} \frac{d \theta}{d \zeta} \right|_{0^-} = \left. \frac{1}{B} \frac{d \theta}{d \zeta} \right|_{0^+} \]
\[\theta(1^-) = \theta(1^+) \]
\[\left. \frac{1}{B} \frac{d \theta}{d \zeta} \right|_{1^-} = \left. \frac{1}{B} \frac{d \theta}{d \zeta} \right|_{1^+} \]
\[\frac{d \theta}{d \zeta} = 0 \text{ at } \zeta = +\infty. \]

The solution, from [8], is then given by the following expressions.

Let

\[m_3 = \frac{1}{2} B (1 - \sqrt{1 - 4F/B}) \]
\[m_4 = \frac{1}{2} B (1 + \sqrt{1 - 4F/B}) \]

Assume that \(1 - 4F/B > 0 \) and set

\[E = m_4^2 \exp(m_4) - m_3^2 \exp(m_3), \]

then

\[\theta(\zeta) = 1 + \frac{1}{E} \left[m_3 m_4 \left(\exp(m_4) - \exp(m_3) \right) \right] \exp \left[(m_3 + m_4) \zeta \right] \text{ for } \zeta < 0, \]
\[\theta(\zeta) = \frac{1}{E} \left[m_4 \exp(m_4 + m_3 \zeta) - m_3 \exp(m_3 + m_4 \zeta) \right] (m_3 + m_4) \text{ for } 0 < \zeta < 1, \]
\[\theta(\zeta) = \frac{1}{E} (m_4^2 - m_3^2) \exp(m_3 + m_4) \text{ for } 1 < \zeta. \]

This problem was run with \(B=8 \) and \(F=-1 \), and the following data was used in the namelists.

Grid

\(KR=1, KZ=4, \)

Since the problem is one dimensional and presented as a problem in \(z \), we use this coordinate.

\(NTIZ=2, \)

This is the number of interfaces for this problem.
IFTYPZ=1,1,
This vector indicates that the two interfaces are of type 1; that
is, we require that the approximation be continuous at these inter-
faces. For this particular problem the diffusivity is the same in
each of the three sections; thus the solution given in Eq. (7.5.5)
has continuous first derivative at these interfaces. Using inter-
faces, our approximations will not have a continuous first deriva-
tive at these interfaces; although the discrepancy will tend to zero
as the mesh or spline order is increased. If we had wished to use
splines with continuous first derivatives at these interfaces, we
would have avoided using interfaces (i.e. we would have set
NTIZ=0,) and instead we would have used the variable continuity
index INUZ to specify the continuity desired at those interfaces.
However, in this problem we wish to illustrate the use of material
regions and interfaces.

ZIF=0.0,1.0,
These are the coordinates of the interfaces.

ZLOW=-2.0,
At z=-2, the analytic solution is equal to 1 to
7 decimal places; hence the error due to the position of the boundary should not
contaminate the approximation error.

ZUP=1.2,
Since the solution is flat in the interval \([1,\infty]\) this choice is
appropriate. Thus for numerical purposes, the reactor is in the
interval \([-2,1.2]\).

NMZ=11,
ZMESH=-1.5,-1.0,-0.8,-0.6,-0.4,-0.2,0.2,0.4,0.6,0.8,1.1,
Note that these additional mesh points do not include the interface
points. Thus the total number of mesh points will be 13.

NQR=1,NQZ=4,
MATL(1,1)=1, MATL(1,2)=2, MATL(1,3)=3,
Here we assign material indices to each of the three sections.
Material #1 is assigned to the interval \([-2.0,0)\), material #2 is
assigned to \((0,1)\), and material #3 is assigned to \((1.0,1.2)\). Recall
that the vector ZIF subdivided the interval \([-2.0,1.2]\) into three
sections.
INITSW=T, GUESSW=F, STEDSW=T, TRANSW=F,
ISTDFQ=100,

This is a steady-state calculation, so we are only interested in
the final solution. However, ISTDFQ=100, means that we will get
output every 100 time steps. This is useful as a check on how the
calculation is proceeding. When the problem finishes, i.e. when a
steady-state has been reached, the program will produce the printed
output regardless of the value of ISTDFQ. Thus we could have set
it to 1,000 or some large number in order to suppress the inter-
mediate output.

JZGRD=6,
ZGRID=-0.3,0.0,0.2,0.6,1.0,1.1,

Here we are asking for output at these six locations.

IANAL=T,

We have an analytic solution for this problem so we will provide
this solution.

Namelist DATA

NS2(1)=1,

The boundary conditions on sides 1, 3, and 4 are non-essential
which is the default value.

ALPHA(1,2)=1.0, BETA(1,2)=0.0, GAMMA(1,2)=1.0,
EPS=1.D-5, HINIT=1.D-5,
GRAPH=T,

This completes the input for the namelists. The user-supplied subroutines used the following data.

RH\(\rho\)CP

RC=1.DO

DIFUSE

DIFUR=0.DO
DIFUZ=1.DO/8.DO

VEL

VELR=0.DO
VELZ=1.DO
Recall that only the central section has a non-zero source. This central section had material index 2; so we can use this material index in this routine.

\[VV = 0.0 \]
\[IF(IMATL .EQ. 2) VV = -SPDEN(1) \]

The source is non-zero only in the central sections where it is equal to \(-SPDEN(1)\). Thus \(UU(1)\), \(UUR(1)\), and \(UUZ(1)\) are zero except in the central section where we use:

\[IF(IMATL .EQ. 2) UU(1) = -1.0 \]

Any reasonable estimate will do; here we use

\[UU = 1.0 \]

The boundary conditions are taken as \(\theta(-2) = 1\) and \(\theta'(1.2) = 0\). From Eq. (7.5.5), we see that the solution is constant for \(z > 1\); hence the choice ZUP=1.2 is reasonable and leads to no errors in the approximation. The choice of ZLOW=-2 as an approximation to \(-\infty\) does lead to an error in the approximation; however, the solution at \(z = -2\) is equal to 1 to 7 decimal places; hence we do not expect this choice for ZLOW to cause any significant error. Thus on side 2 we use:

\[RH0V = 1.0 \]

and on side 4 we use

\[RH0V = 0.0 \]

In this routine we implement Eq. (7.5.5).

The printed output corresponding to this data is given on the following pages. In addition, for this problem we also give some indication of the effect of spline order and mesh size on the approximation error. For a fixed mesh size NMZ=11 we used splines of order 2, 3, and 4. Also for a spline order of 4 we halved the mesh size (NMZ=21) in the interval \([-1.0,1.0]\). We sampled the maximum error over the points -0.3, 0.0, 0.2, 0.6, 1.0, and 1.1;
in all cases the maximum error was at -0.3. In the following table we give the error at the first interface 0.0, at \(z = 0.2 \), and the maximum error (which occurred at \(z = -0.3 \)).

<table>
<thead>
<tr>
<th>KZ</th>
<th>(z = 0) (interface)</th>
<th>(z = 0.2)</th>
<th>Max. Error ((z = -0.3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2194.65</td>
<td>1892.3</td>
<td>2793.09</td>
</tr>
<tr>
<td>3</td>
<td>0.795</td>
<td>32.92</td>
<td>765.938</td>
</tr>
<tr>
<td>4</td>
<td>1.609</td>
<td>12.28</td>
<td>30.767</td>
</tr>
<tr>
<td>4NMZ=21</td>
<td>0.485</td>
<td>0.551</td>
<td>3.527</td>
</tr>
</tbody>
</table>

In considering this data we must bear in mind that the time integration error control parameter (EPS) was only 1.0D-5 for these runs; thus there could be some contamination in the results for \(k=4 \). In addition, the fact that the maximum error was always at -0.3 may indicate that the position of the mesh in the first section is contributing to the error. (Recall that we have used \(z = -2.0,-1.5,-1.0,... \) as mesh points, and the solution at \(z = -1.0 \) is 1 to 3 decimal places; thus these mesh positions may be contaminating the error when \(k = 4 \).) In any case the results show substantial reductions in the error at least from \(k = 2 \) to \(k = 3 \), and for \(k = 4 \) we see a behavior of \(\epsilon = O(h^4) \) when refining the mesh.
STORAGE MAXIMA FOR THIS COMPILATION:
MAXBK 30
MAXSF 6
MAXTOP 6
MAXX 6
MAXNNZ 100
MAXVAR 350
MAXNOT 40
MIRGRD 20
MREGRD 20
READING NAMELIST GRID

GRID

- **K1** = 1, **K2** = 4
- **NT1** = 0, **NT2** = 2
- **NSPEC** = 1
- **BLOW** = 0.0, **HUP** = 0.1000000000000000D+01
- **ZLOW** = -0.2000000000000000D+01, **ZUP** = 0.1000000000000000D+01
- **NR** = 0, **NZ** = 11
- **INITIAL CCNTR** = 13, **INITIAL CONTZ** = 13
- **GEOMETRY INDICATOR** = 0
- **INTERFACE Z-DIRECTION MESH POINTS**
 - I = 1, **IFTYPZ(I)** = 1, **ZIF(I)** = 0.
 - I = 2, **IFTYPZ(I)** = 1, **ZIF(I)** = 0.1000000000000000D+01
- **ADDITIONAL NON-INTERFACE Z MESH POINTS**
 - I = 1, **ZMESH(I)** = -0.1500000000000000D+01
 - I = 2, **ZMESH(I)** = -0.8000000000000000D+00
 - I = 3, **ZMESH(I)** = -0.1000000000000000D+00
 - I = 4, **ZMESH(I)** = -0.1000000000000000D+00
 - I = 5, **ZMESH(I)** = -0.3000000000000000D+00
 - I = 6, **ZMESH(I)** = -0.2000000000000000D+00
 - I = 7, **ZMESH(I)** = -0.2000000000000000D+00
 - I = 8, **ZMESH(I)** = -0.1000000000000000D+00
 - I = 9, **ZMESH(I)** = 0.1000000000000000D+00
 - I = 10, **ZMESH(I)** = 0.3000000000000000D+00
 - I = 11, **ZMESH(I)** = 0.1000000000000000D+00

QUADRATURE ORDER FOR R DIRECTION

- **QUADRATURE ORDER FOR Z DIRECTION**

MATERIAL TABLE IS GIVEN AS MATL(RINDEX,ZINDEX)

MATERIAL TABLE FOR ZINDEX = 3

- **MATERIAL TABLE FOR ZINDEX = 2**

LOGICAL SWITCHES TO CONTROL PROGRAM

- **CONSRV** = F
- **ecalCS** = T
- **STEDSW = T**, **GOESSW = F**, **TRANSW = F**, **INISW = T**
- **ISTENS = F**, **ITRANS = F**, **ITAML = T**
- **QUPWSW = F**
- **IREVLA(1) = F**

ORDER OF SPLINE DERIVATIVES COMPUTED

- **NUMBER OF USER SUPPLIED POINTS IN R DIRECTION**
 - **GRID(1)** = 0.5000000000000000D+00
 - **GRID(2)** = 0.3000000000000000D+00

NUMBER OF USER SUPPLIED POINTS IN Z DIRECTION

- **GRID(3)** = 0.3000000000000000D+00
- **GRID(4)** = 0.6000000000000000D+00
- **GRID(5)** = 0.1000000000000000D+01
- **GRID(6)** = 0.1000000000000000D+01

READING NAMELIST DATA

CONTR TOO HIGH, BEING RESET TO 1-1
CONTZ TOO HIGH, BEING RESET TO 4-1

NNGAP = 0 NHGAP = 0 LR = 1 LE = 14 MK = 1 NZ = 21

IL(I) =
1

JL(J) =
4 5 6 7 8 9 10 13 14 15 16 17 20 21

IREF(I) =
1

JREF(J) = 1 1 1 1 1 1 1 1 1 2 2 2
2 2 3 3

BLTAB(1, 3) = 1
BLTAB(1, 2) = 1
BLTAB(1, 3) = 1
BLTAB(1, 4) = 1
BLTAB(1, 5) = 1
BLTAB(1, 6) = 1
BLTAB(1, 7) = 1
BLTAB(1, 8) = 2
BLTAB(1, 9) = 2
BLTAB(1, 10) = 2
BLTAB(1, 11) = 3
BLTAB(1, 12) = 2
BLTAB(1, 13) = 3
BLTAB(1, 14) = 3

HORIZONTAL ORDERING

NH= 1 NJ= 1 NCC= -2 NR= 3

NH= 1 NJ= 1 NCH= -1 OR= 3

SYSTEM SIZE FOR THIS CASE
LR = 1 LE = 14
NR = 1 NZ = 21
NVAR = 21

THIS IS THE DIRECT VERSION

THIS VERSION DOES NOT REQUIRE BOUNDARY CONDITIONS ON EVERY SIDE

FOR SPECIES NO. 1
SIDE 1 ALPHA = 0.0 BETA = -0.100000000D+01 GAMMA = 0.0
SIDE 2 ALPHA = 0.100000000D+01 BETA = 0.0 GAMMA = 0.100000000D+01
SIDE 3 ALPHA = 0.0 BETA = 0.100000000D+01 GAMMA = 0.0
SIDE 4 ALPHA = 0.0 BETA = 0.100000000D+01 GAMMA = 0.0

SIDE INDICATORS BY SPECIES

FOR SPECIES NO. 1 NS1= 0 NS2= 1 NS3= 0 NS4= 0
BOUNDARY H FUNCTION FOR SIDES 1 AND 3
<table>
<thead>
<tr>
<th>SPECIES NO.</th>
<th>MATERIAL INDEX</th>
<th>1</th>
<th>HU1</th>
<th>=</th>
<th>0.1000000000000000D+01</th>
<th>HU3</th>
<th>=</th>
<th>0.1000000000000000D+01</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECIES NO.</td>
<td>MATERIAL INDEX</td>
<td>2</td>
<td>HU1</td>
<td>=</td>
<td>0.1000000000000000D+01</td>
<td>HU3</td>
<td>=</td>
<td>0.1000000000000000D+01</td>
</tr>
<tr>
<td>SPECIES NO.</td>
<td>MATERIAL INDEX</td>
<td>3</td>
<td>HU1</td>
<td>=</td>
<td>0.1000000000000000D+01</td>
<td>HU3</td>
<td>=</td>
<td>0.1000000000000000D+01</td>
</tr>
<tr>
<td>BOUNDARY N FUNCTION FOR SIDES 2 AND 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPECIES NO.</td>
<td>MATERIAL INDEX</td>
<td>1</td>
<td>HU1</td>
<td>=</td>
<td>0.1000000000000000D+01</td>
<td>HU3</td>
<td>=</td>
<td>0.1000000000000000D+01</td>
</tr>
<tr>
<td>FCR SPECIES 1 INTERFACES 1</td>
<td>HhGAP</td>
<td>=</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FCR SPECIES 1 INTERFACES 2</td>
<td>HhGAP</td>
<td>=</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REACTION RATES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIRST ORDER RATES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK INTO 1 FROM 1 IS</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SECOND ORDER REACTION RATES ARE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK INTO M = 1 FOR KP = 1 INTO KPP = 1</td>
<td>CK(1,1,1) = 0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISTDFQ = 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIME AND SPACE GRID FOR PROUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NUMBER OF MAJOR TIME VALUES</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NUMBER OF SUBINTERVALS OF EACH MAJOR TIME INTERVAL</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(OUTPUT WILL OCCUR AT EACH SUCH TIME)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAJOR TIME VALUES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1600000000000000D+00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2000000000000000D+01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.8000000000000000D-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DATASET CREATED FOR USE IN GRAPHS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRAPH = P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRINT SWITCH INDICATORS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPRSW1 = 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPRSW2 = 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPRSW3 = 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPRSW4 = 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODE PACKAGE DATA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPS = 0.1000000000000000D-06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MP = 21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NUMORD = 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONTINITY FOR R AND Z DIRECTIONS MAY HAVE BEEN RESET</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COSTR = 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONT = 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEFAULT INITIAL COEFFICIENTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1000000000000000D+01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1000000000000000D+01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1000000000000000D+01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1000000000000000D+01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VALUES OF CONCENTRATION U OF THE 1ST SPECIES AT THE QUADRATURE POINTS IN THE (1, 1)-TH RECTANGLE.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(FROM IP1I1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1000000000000000D+01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.9999999999999999D+00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.9999999999999999D+00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VALUES OF CONCENTRATION U OF THE 1ST SPECIES AT THE QUADRATURE POINTS IN THE (1, 2)-TH RECTANGLE.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(FROM IP1I1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.9999999999999999D+00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1000000000000000D+00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1000000000000000D+00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VALUES OF CONCENTRATION U OF THE 1ST SPECIES AT THE QUADRATURE POINTS IN THE (1, 3)-TH RECTANGLE.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(FROM IP1I1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1000000000000000D+00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1000000000000000D+00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1000000000000000D+00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VALUES OF CONCENTRATION U OF THE 1ST SPECIES AT THE QUADRATURE POINTS IN THE (1, 4)-TH RECTANGLE.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(FROM IP1I1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.9999999999999999D+00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.9999999999999999D+00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1000000000000000D+00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
VALUES OF CONCENTRATION U AT THE QUADRATURE POINTS IN THE (1, 5)-TH RECTANGLE.

<table>
<thead>
<tr>
<th>Species</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1000000000000000D+01</td>
<td></td>
</tr>
</tbody>
</table>

VALUES OF CONCENTRATION U AT THE QUADRATURE POINTS IN THE (1, 6)-TH RECTANGLE.

<table>
<thead>
<tr>
<th>Species</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9999999999999999D+00</td>
<td></td>
</tr>
<tr>
<td>0.9999999999999998D+00</td>
<td></td>
</tr>
<tr>
<td>0.9999999999999997D+00</td>
<td></td>
</tr>
<tr>
<td>0.9999999999999996D+00</td>
<td></td>
</tr>
</tbody>
</table>

VALUES OF CONCENTRATION U AT THE QUADRATURE POINTS IN THE (1, 7)-TH RECTANGLE.

<table>
<thead>
<tr>
<th>Species</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9999999999999996D+00</td>
<td></td>
</tr>
<tr>
<td>0.9999999999999996D+00</td>
<td></td>
</tr>
<tr>
<td>0.9999999999999997D+00</td>
<td></td>
</tr>
<tr>
<td>0.9999999999999998D+00</td>
<td></td>
</tr>
</tbody>
</table>

VALUES OF CONCENTRATION U AT THE QUADRATURE POINTS IN THE (1, 8)-TH RECTANGLE.

<table>
<thead>
<tr>
<th>Species</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9999999999999997D+00</td>
<td></td>
</tr>
<tr>
<td>0.9999999999999996D+00</td>
<td></td>
</tr>
<tr>
<td>0.9999999999999997D+00</td>
<td></td>
</tr>
<tr>
<td>0.9999999999999998D+00</td>
<td></td>
</tr>
</tbody>
</table>

VALUES OF CONCENTRATION U AT THE QUADRATURE POINTS IN THE (1, 9)-TH RECTANGLE.

<table>
<thead>
<tr>
<th>Species</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1000000000000000D+01</td>
<td></td>
</tr>
<tr>
<td>0.1000000000000000D+01</td>
<td></td>
</tr>
<tr>
<td>0.1000000000000000D+01</td>
<td></td>
</tr>
<tr>
<td>0.9999999999999996D+00</td>
<td></td>
</tr>
</tbody>
</table>

VALUES OF CONCENTRATION U AT THE QUADRATURE POINTS IN THE (1, 10)-TH RECTANGLE.

<table>
<thead>
<tr>
<th>Species</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9999999999999996D+00</td>
<td></td>
</tr>
<tr>
<td>0.9999999999999996D+00</td>
<td></td>
</tr>
<tr>
<td>0.9999999999999997D+00</td>
<td></td>
</tr>
<tr>
<td>0.9999999999999998D+00</td>
<td></td>
</tr>
</tbody>
</table>

VALUES OF CONCENTRATION U AT THE QUADRATURE POINTS IN THE (1, 11)-TH RECTANGLE.

<table>
<thead>
<tr>
<th>Species</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1000000000000000D+01</td>
<td></td>
</tr>
<tr>
<td>0.1000000000000000D+01</td>
<td></td>
</tr>
<tr>
<td>0.1000000000000000D+01</td>
<td></td>
</tr>
<tr>
<td>0.9999999999999995D+00</td>
<td></td>
</tr>
</tbody>
</table>

VALUES OF CONCENTRATION U AT THE QUADRATURE POINTS IN THE (1, 12)-TH RECTANGLE.

<table>
<thead>
<tr>
<th>Species</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1000000000000000D+01</td>
<td></td>
</tr>
<tr>
<td>0.1000000000000000D+01</td>
<td></td>
</tr>
<tr>
<td>0.1000000000000000D+01</td>
<td></td>
</tr>
<tr>
<td>0.9999999999999995D+00</td>
<td></td>
</tr>
</tbody>
</table>

VALUES OF CONCENTRATION U AT THE QUADRATURE POINTS IN THE (1, 13)-TH RECTANGLE.

<table>
<thead>
<tr>
<th>Species</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1000000000000000D+01</td>
<td></td>
</tr>
<tr>
<td>0.1000000000000000D+01</td>
<td></td>
</tr>
<tr>
<td>0.1000000000000000D+01</td>
<td></td>
</tr>
<tr>
<td>0.1000000000000000D+01</td>
<td></td>
</tr>
</tbody>
</table>

VALUES OF CONCENTRATION U AT THE QUADRATURE POINTS IN THE (1, 14)-TH RECTANGLE.

<table>
<thead>
<tr>
<th>Species</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1000000000000000D+01</td>
<td></td>
</tr>
<tr>
<td>0.1000000000000000D+01</td>
<td></td>
</tr>
<tr>
<td>0.1000000000000000D+01</td>
<td></td>
</tr>
<tr>
<td>0.1000000000000000D+01</td>
<td></td>
</tr>
</tbody>
</table>

VALUES OF CONCENTRATION U AT THE QUADRATURE POINTS IN THE (1, 15)-TH RECTANGLE.

<table>
<thead>
<tr>
<th>Species</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1000000000000000D+01</td>
<td></td>
</tr>
<tr>
<td>0.1000000000000000D+01</td>
<td></td>
</tr>
<tr>
<td>0.1000000000000000D+01</td>
<td></td>
</tr>
<tr>
<td>0.1000000000000000D+01</td>
<td></td>
</tr>
</tbody>
</table>

VALUES OF CONCENTRATION U AT THE QUADRATURE POINTS IN THE (1, 16)-TH RECTANGLE.

<table>
<thead>
<tr>
<th>Species</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1000000000000000D+01</td>
<td></td>
</tr>
<tr>
<td>0.1000000000000000D+01</td>
<td></td>
</tr>
<tr>
<td>0.1000000000000000D+01</td>
<td></td>
</tr>
<tr>
<td>0.1000000000000000D+01</td>
<td></td>
</tr>
</tbody>
</table>

VALUES OF CONCENTRATION U AT THE QUADRATURE POINTS IN THE (1, 17)-TH RECTANGLE.

<table>
<thead>
<tr>
<th>Species</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1000000000000000D+01</td>
<td></td>
</tr>
<tr>
<td>0.1000000000000000D+01</td>
<td></td>
</tr>
<tr>
<td>0.1000000000000000D+01</td>
<td></td>
</tr>
<tr>
<td>0.1000000000000000D+01</td>
<td></td>
</tr>
</tbody>
</table>

VALUES OF CONCENTRATION U AT THE QUADRATURE POINTS IN THE (1, 18)-TH RECTANGLE.

<table>
<thead>
<tr>
<th>Species</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1000000000000000D+01</td>
<td></td>
</tr>
<tr>
<td>0.1000000000000000D+01</td>
<td></td>
</tr>
<tr>
<td>0.1000000000000000D+01</td>
<td></td>
</tr>
<tr>
<td>0.1000000000000000D+01</td>
<td></td>
</tr>
</tbody>
</table>

VALUES OF CONCENTRATION U AT THE QUADRATURE POINTS IN THE (1, 19)-TH RECTANGLE.

<table>
<thead>
<tr>
<th>Species</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1000000000000000D+01</td>
<td></td>
</tr>
<tr>
<td>0.1000000000000000D+01</td>
<td></td>
</tr>
<tr>
<td>0.1000000000000000D+01</td>
<td></td>
</tr>
<tr>
<td>0.1000000000000000D+01</td>
<td></td>
</tr>
</tbody>
</table>

VALUES OF CONCENTRATION U AT THE QUADRATURE POINTS IN THE (1, 20)-TH RECTANGLE.

<table>
<thead>
<tr>
<th>Species</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1000000000000000D+01</td>
<td></td>
</tr>
<tr>
<td>0.1000000000000000D+01</td>
<td></td>
</tr>
<tr>
<td>0.1000000000000000D+01</td>
<td></td>
</tr>
<tr>
<td>0.1000000000000000D+01</td>
<td></td>
</tr>
</tbody>
</table>

VALUES OF CONCENTRATION U AT THE QUADRATURE POINTS IN THE (1, 21)-TH RECTANGLE.

<table>
<thead>
<tr>
<th>Species</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1000000000000000D+01</td>
<td></td>
</tr>
<tr>
<td>0.1000000000000000D+01</td>
<td></td>
</tr>
<tr>
<td>0.1000000000000000D+01</td>
<td></td>
</tr>
<tr>
<td>0.1000000000000000D+01</td>
<td></td>
</tr>
</tbody>
</table>

VALUES OF CONCENTRATION U AT THE QUADRATURE POINTS IN THE (1, 22)-TH RECTANGLE.

<table>
<thead>
<tr>
<th>Species</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1000000000000000D+01</td>
<td></td>
</tr>
<tr>
<td>0.1000000000000000D+01</td>
<td></td>
</tr>
<tr>
<td>0.1000000000000000D+01</td>
<td></td>
</tr>
<tr>
<td>0.1000000000000000D+01</td>
<td></td>
</tr>
</tbody>
</table>

VALUES OF CONCENTRATION U AT THE QUADRATURE POINTS IN THE (1, 23)-TH RECTANGLE.

<table>
<thead>
<tr>
<th>Species</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1000000000000000D+01</td>
<td></td>
</tr>
<tr>
<td>0.1000000000000000D+01</td>
<td></td>
</tr>
<tr>
<td>0.1000000000000000D+01</td>
<td></td>
</tr>
<tr>
<td>0.1000000000000000D+01</td>
<td></td>
</tr>
</tbody>
</table>

VALUES OF CONCENTRATION U AT THE QUADRATURE POINTS IN THE (1, 24)-TH RECTANGLE.

<table>
<thead>
<tr>
<th>Species</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1000000000000000D+01</td>
<td></td>
</tr>
<tr>
<td>0.1000000000000000D+01</td>
<td></td>
</tr>
<tr>
<td>0.1000000000000000D+01</td>
<td></td>
</tr>
<tr>
<td>0.1000000000000000D+01</td>
<td></td>
</tr>
</tbody>
</table>
REVISED ESTIMATE OF ITERATIONS POSSIBLE BEFORE DUMP 2206

1 CALLS TO DRIVE HAVE OCCURRED

PROUT FOR TIME = -0.10000000D+05

\[N = 0.10000000D+01 \quad 0.99999970D+00 \quad 0.10000000D+01 \quad 0.99999992D+00 \quad 0.10000000D+01 \quad 0.99999966D+00 \]
\[0.10000000D+01 \quad 0.99999987D+00 \quad 0.10000000D+01 \quad 0.99999986D+00 \quad 0.99999986D+00 \quad 0.99999986D+00 \]

VALUES OF CONCENTRATIONS \(V \) OF THE 1 IN SPECIES ON THE USERS' GRID

FROM PROUT VIA STEADY

APPROXIMATE SOLUTION
0.999995621873465D+00
ANALYTIC SOLN.
0.99999997D+00

APPROXIMATE SOLUTION
0.99999903695433105D+00
ANALYTIC SOLN.
0.99999997D+00

APPROXIMATE SOLUTION
0.999999009480499D+00
ANALYTIC SOLN.
0.99999997D+00

APPROXIMATE SOLUTION
0.9999990019994185D+00
ANALYTIC SOLN.
0.99999997D+00

APPROXIMATE SOLUTION
0.999999000399945185D+00
ANALYTIC SOLN.
0.99999997D+00

APPROXIMATE SOLUTION
0.999999000399945185D+00
ANALYTIC SOLN.
0.99999997D+00

MAXIMUM ERROR ON GRID IS 0.59716772D+00
AT T0 = -0.10000000D+05 S0MN = 0.12920189D+01 AND HUSED = 0.10000000D+01
HUSED = 1
SCOF = 0.12920189D-04

9% CALLS TO DRIVE HAVE OCCURRED

PROUT FOR TIME = -0.99996467D+04

\[N = \]
<table>
<thead>
<tr>
<th>Species</th>
<th>Approximate Solution</th>
<th>Analytic Solution</th>
<th>Approximate Solution</th>
<th>Analytic Solution</th>
<th>Approximate Solution</th>
<th>Analytic Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.40263167171412060</td>
<td>0.40263167171412060</td>
<td>0.52525143727018500</td>
<td>0.5252211778316441</td>
<td>0.8451315200000</td>
<td>0.24303424D-05</td>
</tr>
<tr>
<td>2</td>
<td>0.5252211778316441</td>
<td>0.5252211778316441</td>
<td>0.7510621225460790</td>
<td>0.7510621225460790</td>
<td>0.74697465D+00</td>
<td>0.43357934D-05</td>
</tr>
<tr>
<td>3</td>
<td>0.8989850414801589</td>
<td>0.8989850414801589</td>
<td>0.99083612977114651</td>
<td>0.99083612977114651</td>
<td>0.99083612977114651</td>
<td>0.99083612977114651</td>
</tr>
</tbody>
</table>

Maximum error on grid is 0.30765900D-09
Reading Name List Data

Changes in Name List Data May Have Been Made for Transient

For Species No. 1

<table>
<thead>
<tr>
<th>Side</th>
<th>Alpha</th>
<th>Beta</th>
<th>Gamma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Side 1</td>
<td>0.0</td>
<td>0.1000000000000000D+01</td>
<td>0.0</td>
</tr>
<tr>
<td>Side 2</td>
<td>0.0</td>
<td>0.1000000000000000D+01</td>
<td>0.0</td>
</tr>
<tr>
<td>Side 3</td>
<td>0.0</td>
<td>0.1000000000000000D+01</td>
<td>0.0</td>
</tr>
<tr>
<td>Side 4</td>
<td>0.0</td>
<td>0.1000000000000000D+01</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Side Indicators By Species

<table>
<thead>
<tr>
<th>For Species No. 1</th>
<th>HS1</th>
<th>HS2</th>
<th>HS3</th>
<th>HS4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boundary Function for Sides 1 and 3</td>
<td>0.1000000000000000D+01</td>
<td>0.1000000000000000D+01</td>
<td>0.1000000000000000D+01</td>
<td>0.1000000000000000D+01</td>
</tr>
<tr>
<td>Species No. 1 Material Index 1</td>
<td>0.1000000000000000D+01</td>
<td>0.1000000000000000D+01</td>
<td>0.1000000000000000D+01</td>
<td>0.1000000000000000D+01</td>
</tr>
<tr>
<td>Species No. 1 Material Index 2</td>
<td>0.1000000000000000D+01</td>
<td>0.1000000000000000D+01</td>
<td>0.1000000000000000D+01</td>
<td>0.1000000000000000D+01</td>
</tr>
<tr>
<td>Species No. 1 Material Index 3</td>
<td>0.1000000000000000D+01</td>
<td>0.1000000000000000D+01</td>
<td>0.1000000000000000D+01</td>
<td>0.1000000000000000D+01</td>
</tr>
</tbody>
</table>

Reactor Rates

First Order Rates

CK INTO 1 FROM 1 IS 0.0

Second Order Reaction Rates

CK INTO K = 1 FOR EP = 1 INTO KPP = 1

CK(1,1,1) = 0.0

ISTDPQ = 100

Time and Space Grid For Output

Number of Major Time Values 6

Number of Subintervals of Each Major Time Interval 1

Output Will Occur at Each Time

Major Time Values

0.0

0.0000000000000000D+01

0.0000000000000000D+00

0.0000000000000000D+00

0.0000000000000000D+00

0.0000000000000000D+00

Dataset Created For Use In Graphics

Graph = F

First Switch Indicators

IPRSW1 = 0

IPRSW2 = 0

IPRSW3 = 0

IPRSW4 = 0

IPRSW5 = 0

ODE Package Data

EPS = 0.1000000000000000D+00

MINIT = 0.1000000000000000D+00

HF = 21

MEGORD = 5

Continuity For Z and 2 Directions

CONTZ = 0

CONTZ = 3

Initial Coefficients For Transient

<table>
<thead>
<tr>
<th>0.1000000000000000D+07</th>
<th>0.9999899999090797D+00</th>
<th>0.1000000000000000D+00</th>
<th>0.9999899999090797D+00</th>
<th>0.9999899999090797D+00</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9999899999090797D+07</td>
<td>0.9999899999090797D+00</td>
<td>0.1000000000000000D+00</td>
<td>0.9999899999090797D+00</td>
<td>0.9999899999090797D+00</td>
</tr>
</tbody>
</table>

End of Case
7.6 A Defect-Diffusion Problem in One-Dimensional Spherical Geometry

This problem involves the distribution of two reacting species in a domain bounded by two concentric spheres, i.e. \(\Omega = \{ r: R_L \leq r \leq R_U \} \). Let \(u_i(r,t), \ i=1,2, \) denote the concentration of the \(i^{th} \) species subject to the following governing equations.

\[
\frac{\partial u_1}{\partial t} = D_v \Delta u_1 + D_R - C_{iv} u_1 u_2 - C_{sv} C_s (u_1 - VATV)
\]

(7.6.1)

\[
\frac{\partial u_2}{\partial t} = D_I \Delta u_2 + D_R - C_{iv} u_1 u_2 - C_{si} C_s u_2
\]

(7.6.2)

\[
u_1(R_L, t) = \text{VEQL}; \quad u_1(R_U, t) = \text{VATV}
\]

(7.6.3)

\[
u_2(R_L, t) = \text{XIEQL}; \quad u_2(R_U, t) = \text{XIEQL}
\]

(7.6.4)

\[
u_1(r, 0) = \text{VEQL}
\]

(7.6.5)

\[
u_2(r, 0) = \text{XIEQL}
\]

where \(\Delta \) denotes the Laplacian in spherical geometry, and

\[
R_L = 10^{-6}, \quad R_U = 10^{-5}
\]

\[
D_v = 1.98354 \cdot 10^{-7}
\]

\[
D_I = 9.37700 \cdot 10^{-4}
\]

\[
D_R = 10^{-3}
\]

\[
C_{iv} = 3.40606 \cdot 10^{13}
\]

\[
C_{sv} = 3.70750 \cdot 10^8
\]

\[
C_s = 7.38716 \cdot 10^{-8}
\]

\[
C_{si} = 1.75269 \cdot 10^{12}
\]

\[
\text{VATV} = 1.65843 \cdot 10^{-7}
\]

\[
\text{VEQL} = 1.35436 \cdot 10^{-7}
\]

\[
\text{XIEQL} = 6.75044 \cdot 10^{-18}
\]

For the numerical approximation of this problem, the following input parameters are used in the Namelist input.
Namelist GRID

DELTA=2,
 Spherical geometry.

KR=3,
 B-splines of degree 2 are used in the radial direction.

KZ=1,
 B-splines of zero degree are used on this axis. The problem is one dimensional.

NSPEC=2,
 Two species.

RLØW=1.D-6, RUP=1.D-5,
 Inner and outer radii of the concentric spheres. Defines the spatial domain in the radial direction.

NMR=10,
 Number of interior breakpoints not including the end points.

RMESH = 1.1D-6, 1.2D-6, 1.4D-6, 2.4D-6, 4.4D-6, 6.6D-6, 8.6D-6, 9.6D-6, 9.8D-6, 9.9D-6,
 Location of the radial breakpoints.

TRANSW=T,
 A steady-state calculation will be done. We will not use the transient option.

IRGRD=4,
 Number of output points in the radial direction.

RGRID = 3.5D-6, 5.D-6, 8.D-6, 9.D-6,
 Position of the radial output points.

NQR=3,
 NQZ=1,
 These values are the default values; however they are displayed here in order to call attention to the fact that this problem fails with NQR = KR-1 = 2 and NQZ = KZ-1 = 0.

Namelist DATA

DRCHLT(1,1)=T, DRCHLT(2,1)=T,
 Dirichlet boundary conditions for both species on side 1 (the left
or inner boundary).

\[
\text{DRCHLT}(1,3) = T, \quad \text{DRCHLT}(2,3) = T,
\]

Dirichlet boundary conditions for both species on side 3 (the right or outer boundary).

\[
\text{ISTDFQ} = 100,
\]

Frequency of output for a steady-state calculation. Printout will occur every ISTDFQ time steps.

\[
\text{GRAPH} = T,
\]

Graph of the solution is desired.

\[
\text{EPS} = 1.0 \times 10^{-3},
\]

Local error tolerance for the time integration in the ODE solver.

\[
\text{HINIT} = 1.0 \times 10^{-15},
\]

Initial step size in time used in the ODE solver.

The user-supplied subroutines are discussed below.

MASTER DRIVER

The data for this problem is temperature dependent and is generated in the MASTER DRIVER. This case corresponds to a temperature of 900. The MASTER DRIVER is also used to allocate space for the arrays AL and PW with NAL=100 and NPW=420 for this case. With the use of quadratic B-splines over 11 intervals, we have 13 unknowns for each species for a total system size of 26. This gives a required storage for AL of 91 and for PW of 416. This data is printed in the output.

RHOC

This subroutine provides the coefficients of the time derivatives in Equation (7.6.1). Since these coefficients are equal to one, this routine returns 1.0D0.

VEL

This subroutine returns the coefficients of the convective terms in Equation (7.6.1). Since there are no convective terms, this routine returns 0.0D0.

DIFUSE

This routine provides the diffusion coefficients \(D_v \) and \(D_l \). Note that the user does not concern himself with the form of the Laplacian in spherical geometry. This is taken care of in Namelist GRID by
setting DELTA=2. Note also that since this problem is one dimensional (all quantities depend only on the R-coordinate), this routine sets the Z-component of the diffusion coefficient to 0.DO.

EXTSRC

This routine returns the source terms

\[s_1 = -C_i v u_1 u_2 - C_s v s_1 \]

for species 1, and

\[s_2 = -C_i v u_1 u_2 - C_s s_1 u_2 \]

for species 2.

FDEXTU

This routine provides the Frechet derivatives (or an approximation thereof) of the distributed source. From the form of the distributed source terms, we find for species 1:

\[\frac{\partial s_1}{\partial u_1} = -C_i v u_2 - C_s v s_1 \]

while for species 2, we find

\[\frac{\partial s_2}{\partial u_1} = -C_i v u_2 \]

\[\frac{\partial s_2}{\partial u_2} = -C_i v u_1 - C_s s_1 C_s \]

BRHØ

This routine provides the boundary values for each species as given in Equation (7.6.2). The inner radius \(R_L \) is identified with side 1, and the outer radius is identified with side 3.

BRHØDT

This routine is not used since the boundary values do not involve time derivatives of the concentrations.

INDATA

This routine provides the initial data as given in Equation (7.6.3).

ANAL

This routine is not used in this problem and appears in dummy form.

The printed output is supplied on the following pages. Notice that output occurs after the first time step, the 100th time step (since ISTDFQ=100), and the 141st time step (at which the steady state solution has been found).
THIS PROBLEM IS A KINETICS-DIFFUSION PROBLEM IN ONE-DIMENSIONAL SPHERICAL GEOMETRY. IT IS DESCRIBED IN SECTION 7.6 OF DIPPL1: A SOFTWARE PACKAGE FOR ONE AND TWO SPATIALLY DIMENSIONED KINETICS-DIFFUSION PROBLEMS BY G.K. LEAF AND H. MINKOFF, MAY, 1984, MATHEMATICS AND COMPUTER SCIENCE DIVISION, ARGONNE, ILLINOIS.
DI.DV 0.9377002431925776E-03 0.1983543028505083E-06
VEQL,XIEQL 0.1354356100587436E-06 0.6750441358726501E-17
VAVT,CIV,CSV,CSI,CS
 0.165543080144463E06 0.3406061271044610E+14 0.3707504460802127E+09 0.3707504460802127E+09 0.1752685867950059E+13 0.7387154739783821E-07
STORAGE MAXIMA FOR THIS COMPILATION:

MAXBRK 30
MAXSP 2
MAXTOO 4
MAXX 4
MAXMZ 100
MEXLNR 100
MAXGAP 2
MXNOT 40
MXGRID 20
MXZERO 20
JSON Format

```json
"KR" = 3
"KZ" = 1
"NSPEC" = 2
"RLSQ" = 0.10000000000000000-05
"KUP" = 0.10000000000000000-04
"ZLOM" = 0.0
"ZUP" = 0.10000000000000000+01
"DELTU" = 2
"NTIR" = 0
"NTIZ" = 0
"N11R" = 10
"RMESH(1)" = 0.11000000000000000-05
"RMESH(2)" = 0.12000000000000000-05
"RMESH(3)" = 0.14000000000000000-05
"RMESH(4)" = 0.24000000000000000-05
"RMESH(5)" = 0.24000000000000000-05
"RMESH(6)" = 0.66000000000000000-05
"RMESH(7)" = 0.86000000000000000-05
"RMESH(8)" = 0.96000000000000000-05
"RMESH(9)" = 0.98000000000000000-05
"RMESH(10)" = 0.99000000000000000-05
"IHZ" = 0
"NQR" = 3
"NQZ" = 1
"COUSRV" = 'F'
"ALGBCS" = 'T'
"INITSW" = 'T'
"STEDSH" = 'T'
"TRAtSW" = 'F'
"DUMIPSH" = 'F'
"ISTDRS" = 'F'
"ITRARS" = 'F'
"ITRCOD" = 'F'
"LGSTOP" = 'F'
"IANAL" = 'F'
"ISTDFQ" = 'F'
"IREVLA(1)" = 'F'
"IRHO(1)" = 'F'
"IREVLA(2)" = 'F'
"IRHO(2)" = 'F'
"IRGRD" = 'F'
"RGRID(1)" = 0.35000000000000000-05
"RGRID(2)" = 0.50000000000000000+01
```

Descriptive Text

- **KR = 3**: Spline order in R direction.
- **KZ = 1**: Spline order in Z direction.
- **NSPEC = 2**: Number of species.
- **RLSQ = 0.10000000000000000-05**: Left boundary.
- **KUP = 0.10000000000000000-04**: Right boundary.
- **ZLOM = 0.0**: Lower boundary.
- **ZUP = 0.10000000000000000+01**: Upper boundary.
- **DELTU = 2**: Geometry indicator.
- **NTIR = 0**: Number of interfaces in R direction.
- **NTIZ = 0**: Number of interfaces in Z direction.
- **N11R = 10**: Number of non-interface R direction mesh points.
- **RMESH(1) = 0.11000000000000000-05**: R mesh points.
- **RMESH(2) = 0.12000000000000000-05**: R mesh points.
- **RMESH(3) = 0.14000000000000000-05**: R mesh points.
- **RMESH(4) = 0.24000000000000000-05**: R mesh points.
- **RMESH(5) = 0.24000000000000000-05**: R mesh points.
- **RMESH(6) = 0.66000000000000000-05**: R mesh points.
- **RMESH(7) = 0.86000000000000000-05**: R mesh points.
- **RMESH(8) = 0.96000000000000000-05**: R mesh points.
- **RMESH(9) = 0.98000000000000000-05**: R mesh points.
- **RMESH(10) = 0.99000000000000000-05**: R mesh points.
- **IHZ = 0**: Number of non-interface Z direction mesh points.
- **NQR = 3**: Quadrature order for R direction.
- **NQZ = 1**: Quadrature order for Z direction.
- **COUSRV = 'F'**: Conservative form indicator for convection term.
- **ALGBCS = 'T'**: Algebraic treatment of boundary conditions indicator.
- **INITSW = 'T'**: Indicator for initial fit of data.
- **STEDSH = 'T'**: Indicator for steady state computation.
- **TRANSF = 'F'**: Indicator for transient computation.
- **DUMIPSH = 'F'**: Indicator for reading steady state coefficients from unit dump
- **ISTDRS = 'F'**: Indicator for steady state restart.
- **ITRCOD = 'F'**: Indicator for transient restart.
- **ITFCOD = 'F'**: Indicator for cold restart when a transient restart is done.
- **LGSTOP = 'F'**: Indicator for using 6-stop capability.
- **IAHAL = 'F'**: Indicator for using analytic solution.
- **ISTDFQ = 100**: Printout frequency for steady state computation.
- **MAXTED = 500**: Maximum number of O.D.E. calls.
- **IREVLA(1) = 'F'**: Indicates that the coefficient of the time derivative is not identically 1.
- **IRHO(1) = 'F'**: Indicates that the coefficient of the time derivative is identically 0.
- **IREVLA(2) = 'F'**: Indicates that the coefficient of the time derivative is identically 0.
- **RGRID(1) = 0.35000000000000000-05**: Number of user supplied points in R direction.
- **RGRID(2) = 0.50000000000000000+01**: Number of user supplied points in Z direction.
RGRID(3) = 0.8000000000000000-05
RGRID(4) = 0.9000000000000000-05
JZGRID = 1
ZGRID(1) = 0.5000000000000000+00

NUMBER OF USER SUPPLIED POINTS IN Z DIRECTION
READING NAMELIST DATA

CONTR TOO HIGH, BEING RESET TO 3-1

CONTR TOO HIGH, BEING RESET TO 1-1

HORIZONTAL ORDERING
HALF BANDWIDTH FOR AL
HALF BANDWIDTH FOR PH

CONSTANTS FOR ORDERING OF VARIABLES

CONSTANTS FOR ORDERING OF VARIABLES WITHIN A SPECIES

REQUIRED STORAGE FOR AL
AVAILABLE STORAGE FOR AL
REQUIRED STORAGE FOR PH
AVAILABLE STORAGE FOR PH

SYSTEM SIZE FOR THIS CASE
NUMBER OF R DIRECTION MESH POINTS
NUMBER OF Z DIRECTION MESH POINTS

NUMBER OF VARIABLES PER SPECIES IN THE R DIRECTION
NUMBER OF VARIABLES PER SPECIES IN THE Z DIRECTION

NUMBER OF VARIABLES PER SPECIES

TOTAL NUMBER OF VARIABLES

DIRICHLET CONDITION FOR SPECIES 1 ON SIDE 1
NEUMAN CONDITION FOR SPECIES 1 ON SIDE 2
DIRICHLET CONDITION FOR SPECIES 1 ON SIDE 3
NEUMAN CONDITION FOR SPECIES 1 ON SIDE 4

BOUNDARY CONDITION COEFFICIENTS

FOR SPECIES NO. 1

SIDE 1
SIDE 1
SIDE 1
SIDE 2
SIDE 2
SIDE 3
SIDE 3
SIDE 3
SIDE 4
SIDE 4
SIDE 4
SIDE 4

DIRICHLET CONDITION FOR SPECIES 2 ON SIDE 1
NEUMAN CONDITION FOR SPECIES 2 ON SIDE 2
DIRICHLET CONDITION FOR SPECIES 2 ON SIDE 3
NEUMAN CONDITION FOR SPECIES 2 ON SIDE 4

BOUNDARY CONDITION COEFFICIENTS

FOR SPECIES NO. 2

SIDE 1
SIDE 1
SIDE 2
BETA(2,2) = 0.00000000000000000D+01 SIDE 2
GANMA(2,2) = 0.00000000000000000D+01 SIDE 2
ALPHA(2,3) = 0.00000000000000000D+01 SIDE 3
BETA(2,3) = 0.00000000000000000D+01 SIDE 3
GANMA(2,3) = 0.00000000000000000D+01 SIDE 3
ALPHA(2,4) = 0.00000000000000000D+01 SIDE 4
BETA(2,4) = 0.00000000000000000D+01 SIDE 4
GANMA(2,4) = 0.00000000000000000D+01 SIDE 4
NS1(1) = 1 FOR SPECIES NO. 1
NS2(1) = 0
NS3(1) = 1
NS4(1) = 0
NS1(2) = 1 SIDE INDICATORS
NS2(2) = 0
NS3(2) = 1
NS4(2) = 0

HU1(1,1) = 0.00000000000000000D+01 FOR MATERIAL INDEX 1 AND SPECIES NO. 1
HU1(1,2) = 0.00000000000000000D+01
HU1(1,3) = 0.00000000000000000D+01
HU1(1,4) = 0.00000000000000000D+01
HU1(2,1) = 0.00000000000000000D+01
HU1(2,2) = 0.00000000000000000D+01
HU1(2,3) = 0.00000000000000000D+01
HU1(2,4) = 0.00000000000000000D+01
HU2(1,1) = 0.00000000000000000D+01
HU2(1,2) = 0.00000000000000000D+01
HU2(1,3) = 0.00000000000000000D+01
HU2(1,4) = 0.00000000000000000D+01
HU2(2,1) = 0.00000000000000000D+01
HU2(2,2) = 0.00000000000000000D+01
HU2(2,3) = 0.00000000000000000D+01
HU2(2,4) = 0.00000000000000000D+01

NSOUT = 3 TIME GRID FOR TRANSIENT PRINTOUT
NISPRES = 1 NUMBER OF MAJOR TIME INTERVALS
NSOUT = 3 NUMBER OF SUBINTERVALS IN EACH MAJOR TIME INTERVAL
NISPRES = 1 MAJOR TIME VALUES

GRAPH = T LOGICAL INDICATOR FOR WRITING DATASET FOR LATER GRAPhICS
NUMGRF = 1 GRAPH NUMBER TO BE ASSOCIATED WITH THIS RUN

IPRS1 = 0 PRINT SWITCH INDICATORS
IPRS2 = 0
IPRS3 = 0
IPRS4 = 0
IPRS5 = 0

EPS = 0.00000000000000000D-02 ORINARY DIFFERENTIAL EQUATION PACKAGE DATA
WINIT = 0.00000000000000000D-02 LOCAL TEMPORAL ERROR CONTROL
HORDER = 5 INITIAL TIME STEP
TO = 0.0 MAXIMUM ORDER OF TIME INTEGRATION
CONT = 2 INITIAL TIME
CONTZ = 0 CONTINUITY IN R DIRECTION (MAY HAVE BEEN RESET)
W = 0 CONTINUITY IN Z DIRECTION (MAY HAVE BEEN RESET)

PROUT FOR TIME = -0.9999999999999999D-01 DEFAULT INITIAL SPLINE COEFFICIENTS (SET TO ONE)
VALUES OF CONCENTRATIONS U FOR THE 1 TH SPECIES ON THE USERS GRID
(FROM PROUT VIA INFIT)

APPROXIMATION IS
0.15543486486175620-06 0.13545466658466856-06 0.13548794214971290-06 0.1356862352207560-06

VALUES OF CONCENTRATIONS U FOR THE 2 TH SPECIES ON THE USERS GRID
(FROM PROUT VIA INFIT)

APPROXIMATION IS
0.15543486486175620-06 0.13545466658466856-06 0.13548794214971290-06 0.1356862352207560-06

VALUES OF CONCENTRATIONS U FOR THE 1 TH SPECIES ON THE USERS GRID
(FROM PROUT VIA STEADY)

APPROXIMATION IS
0.13543000966401 20080-06 0.13546464350681810-06 0.13549247214949890-06 0.13548623522073380-06

VALUES OF CONCENTRATIONS U FOR THE 2 TH SPECIES ON THE USERS GRID
(FROM PROUT VIA STEADY)

APPROXIMATION IS
0.13543000966401 20080-06 0.13546464350681810-06 0.13549247214949890-06 0.13548623522073380-06

PROUT FOR TIME = -0.99999999999998990-01

VALUES OF CONCENTRATIONS U FOR THE 1 TH SPECIES ON THE USERS GRID
(FROM PROUT VIA STEADY)

APPROXIMATION IS
0.13611485623583590-06 0.13564187227327690-06 0.13588326826806520-06 0.13646678367920500-06

VALUES OF CONCENTRATIONS U FOR THE 2 TH SPECIES ON THE USERS GRID
(FROM PROUT VIA STEADY)

APPROXIMATION IS
0.13611485623583590-06 0.13564187227327690-06 0.13588326826806520-06 0.13646678367920500-06

PROUT FOR TIME = -0.99999999999998990-01

VALUES OF CONCENTRATIONS U FOR THE 1 TH SPECIES ON THE USERS GRID
(FROM PROUT VIA STEADY)

APPROXIMATION IS
0.14104420609853310-10 0.13586235613581800-10 0.13583039327608200-11 0.135859871655671660-11

VALUES OF CONCENTRATIONS U FOR THE 2 TH SPECIES ON THE USERS GRID
(FROM PROUT VIA STEADY)

APPROXIMATION IS
0.14104420609853310-10 0.13586235613581800-10 0.13583039327608200-11 0.135859871655671660-11

SUPN = 0.1359563909092360-01 0.135910903706140-02 100 CALLS TO DRIVE HAVE OCCURRED

A STEADY PRINT TAKES LESS THAN A CENTISEC.--USE 1 CENTISEC. AS AN ESTIMATE
A CALL TO DRIVE TAKES LESS THAN A CENTISEC.-- USE 1 CENTISEC. AS A ESTIMATE

SUPN = 0.1359563909092360-01 0.135910903706140-02 100 CALLS TO DRIVE HAVE OCCURRED
PROUT FOR TIME = -0.97473534320924620-01

VALUES OF CONCENTRATIONS U FOR THE 1 TH SPECIES ON THE USERS GRID (FROM PROUT VIA STEADY)

APPROXIMATION IS

0.21284143287776-06 0.19152384252265-06 0.179728263119835-06

VALUES OF CONCENTRATIONS U FOR THE 2 TH SPECIES ON THE USERS GRID (FROM PROUT VIA STEADY)

APPROXIMATION IS

0.11168904000992920-10 0.10660216557891070-10 0.1030863820990980-11 0.3816756053909090-11

AT TOUT = -0.97473534320924620-01 SDEN = 0.3437196180633650-06 AND H = 0.1650701546478950-02

NQ = 1

SUPH =

0.3437196180633650-06

14% CALLS TO DRIVE HAVE OCCURRED

STEADY-STATE SOLUTION HAS BEEN ACHIEVED

COEFFICIENTS WRITTEN ON DUMP DATASET
CHANGES IN NAMELIST DATA MAY HAVE BEEN MADE FOR TRANSIENT CALCULATION

BOUNDARY CONDITION COEFFICIENTS

FOR SPECIES NO. 1

DIRICHLET CONDITION FOR SPECIES 1 ON SIDE 1

NEUMANN CONDITION FOR SPECIES 1 ON SIDE 2

DIRICHLET CONDITION FOR SPECIES 1 ON SIDE 3

NEUMANN CONDITION FOR SPECIES 1 ON SIDE 4

FOR SPECIES NO. 2

DIRICHLET CONDITION FOR SPECIES 2 ON SIDE 1

NEUMANN CONDITION FOR SPECIES 2 ON SIDE 2

DIRICHLET CONDITION FOR SPECIES 2 ON SIDE 3

NEUMANN CONDITION FOR SPECIES 2 ON SIDE 4

FOR SPECIES NO. 1

BOUNDARY H FUNCTION FOR SIDES 1 AND 3

FOR MATERIAL INDEX 1 AND SPECIES NO. 1

FOR MATERIAL INDEX 2 AND SPECIES NO. 2
BOUNDARY H FUNCTION FOR SIDES 2 AND 4
FOR MATERIAL INDEX 1 AND SPECIES NO. 1

FOR MATERIAL INDEX 1 AND SPECIES NO. 2

TIME GRID FOR TRANSIENT PRINTOUT
NUMBER OF MAJOR TIME INTERVALS
NUMBER OF SUB-INTERVALS IN EACH MAJOR TIME INTERVAL
MAJOR TIME VALUES

LOGICAL INDICATOR FOR WRITING DATASET FOR LATER GRAPHICS
GRAPH NUMBER TO BE ASSOCIATED WITH THIS RUN
PRINT SWITCH INDICATORS

ORDINARY DIFFERENTIAL EQUATION PACKAGE DATA
LOCAL TEMPORAL ERROR CONTROL

INITIAL TIME STEP
MAXIMUM ORDER OF TIME INTEGRATION
INITIAL TIME
CONTINUITY IN R DIRECTION (MAY HAVE BEEN RESET)
CONTINUITY IN Z DIRECTION (MAY HAVE BEEN RESET)
INITIAL SPLINE COEFFICIENTS PROVIDED FROM
A RESTART DUMP, NAMELIST GRID,
INITIAL FIT OR STEADY-STATE CALCULATION

END OF CASE
We next consider the use of the Cross Section Plotting (CSP) graphics program in connection with the defect-diffusion problem.

The CSP program is provided with a dummy form of SUBROUTINE ANAL which is the only user-supplied routine. Since we do not have an analytic solution, we leave the dummy routine as it is.

There are two Namelists required: Namelist FORMAT and Namelist CSPIN.

Namelist FORMAT

1. Iterative or direct indicator.
 Previous versions of DISPL allowed for direct or iterative solution of certain equations. The current version of DISPL1 only allows for the direct version; thus the default value ITRTV=0, MUST be used.
 ITRTV=0, (Default)

2. Number of curves to be produced per time value.
 This variable specifies the number of curves to be produced for each time value. Since there are two equations and each solution is produced once for each time value, use IGNUM=2,

3. Number of grid points for graphical purposes.
 This number cannot exceed the macro variable NRES1 which has a value of 501.
 NRESIN=NRES1, (Default)

4. Logical variable for doing space-time plots.
 A time plot is not called for.
 ITIME=F, (Default)

Namelist CSPIN

1. Indicator for grouping format.
 The IFORMT, ISPEC, LGROUP, and LORDER variables describe how the curves are to be displayed. For each time value in this example, a single frame will be produced. Within this frame both curves will be plotted and, since these solutions differ considerably in magnitude, they will be put on separate sets of axes. Thus the separate mode is used.
 IFORMT=0, (Default)
2. Estimate of the minimum value of the ordinates
 This is defaulted to zero.
 YAXMIN=0.0, (Default)

3. Estimate of the maximum value of the ordinate for all curves.
 This defaults to one. The CSP program will automatically rescale
 this value since it is much larger than necessary.
 YAXMAX=1.0, (Default)

4. Species number for each curve
 The next three variables will be two component vectors since IGNUM=2.
 Associate the first curve with the first specie and the second curve
 with the second specie. (See Note 10 of the Machine Readable Docu-
 mentation for more general examples of ISPEC, LGROUP, and LORDER.)
 ISPEC=1,2,

5. Frame number indicator
 Since only one frame is generated for each time value:
 LGROUP=1,1, (Default)

6. Ordering of curves on each frame
 The plots will be ordered from the bottom to the top of each frame.
 LORDER=1,2,

7. R coordinate of first endpoint of cross-section
 This is a one-dimensional problem in the R direction. The cross-
 section will be from (10^{-6},0) to (10^{-5},0).
 A1=1.E-6,

8. R coordinate of second endpoint of cross-section
 A2=1.E-5,

 The CSP program will provide a frame for each time that printout occurred.
 Thus there will be a frame corresponding to the 1_{st}, 100_{th}, and 141_{st} time step.
 The following page provides the graph associated with the 141_{st} step (the steady-
 state solution). Notice that the time value appearing in the graph is artifi-
 cial and is only used within DISPL to control integration to steady-state.
BEGINNING CROSS SECTION PLOTTING GRAPHICS PACKAGE

FORMATTING PARAMETERS

CINEMA MODE VERSION NUMBER OF GRAPHS FOR EACH TIME GROUPING FORMAT ANALYTIC
0 0 2 0 F

NR resin = 501

ITime = F NUMBER OF TIME VALUES FOR TIME OPTION IS 501
IF ITIME=T, THE SOLUTION IS EVALUATED AT (A1(I),B1(I))

INITIAL ESTIMATE FOR VERTICAL AXES
YAXMIN, YAXMAX
0.000000000E+00 0.000000000E+00

NUMBER FOR RUN IS 1

USER GRAPH FORMAT SPECIFICATIONS

FRAME NUMBER ORDER WITHIN EACH FRAME SPECIES NUMBER
FROM TOP TO BOTTOM

1 1
2 2

COORDINATES OF THE ENDPOINTS FOR EACH CROSS SECTION
LINE GIVEN WITH THE CORRESPONDING FRAME NUMBER

FRAME NUMBER X1 Y1 X2, Y2

1 0.100000003E-05 0.000000000E+00 0.99999997E-05 0.000000000E+00

THE NUMBER OF DISTINCT GRAPHS PRODUCED IS 3

THE END OF THE DATA HAS BEEN REACHED, PROGRAM ENDS.

END OF DISPLA 9.0 -- 11366 VECTORS GENERATED IN 4 PLOT FRAMES.

3488 VIRTUAL STORAGE REFERENCES; 4 READS; 0 WRITES.
Figure 7.6.1
Graph of Concentrations at 141st Time Step
APPENDIX

List of Symbols
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>Number of species.</td>
<td>4</td>
</tr>
<tr>
<td>ρ_i</td>
<td>Mass concentrations, i^{th} species</td>
<td>4</td>
</tr>
<tr>
<td>ρ</td>
<td>Total mass concentration</td>
<td>4</td>
</tr>
<tr>
<td>\vec{V}_i</td>
<td>Velocity of i^{th} species.</td>
<td>4</td>
</tr>
<tr>
<td>\vec{V}</td>
<td>Local mass averaged velocity</td>
<td>4</td>
</tr>
<tr>
<td>q_i</td>
<td>Rate of production of species i.</td>
<td>4</td>
</tr>
<tr>
<td>\dot{J}_i</td>
<td>Mass flux relative to \vec{V}.</td>
<td>4</td>
</tr>
<tr>
<td>v</td>
<td>Divergency operator.</td>
<td>4</td>
</tr>
<tr>
<td>θ</td>
<td>Parameter for conservative/nonconservative form.</td>
<td>5</td>
</tr>
<tr>
<td>u_m</td>
<td>Dependent variable, $u_m = u_m(r,z,t)$</td>
<td>5</td>
</tr>
<tr>
<td>r</td>
<td>Independent space-like variable</td>
<td>5</td>
</tr>
<tr>
<td>z</td>
<td>Independent space-like variable</td>
<td>5</td>
</tr>
<tr>
<td>t</td>
<td>Independent time-like variable</td>
<td>5</td>
</tr>
<tr>
<td>\vec{V}_m</td>
<td>Convective velocity coefficient.</td>
<td>5</td>
</tr>
<tr>
<td>ϕ_m</td>
<td>Coefficient of Diffusivity</td>
<td>5</td>
</tr>
<tr>
<td>$[\rho C_p]_m$</td>
<td>Heat capacity coefficient.</td>
<td>6</td>
</tr>
<tr>
<td>f_m</td>
<td>Distributed source</td>
<td>6</td>
</tr>
<tr>
<td>R</td>
<td>Spatial domain</td>
<td>6</td>
</tr>
<tr>
<td>NTIR</td>
<td>Number of vertical interfaces</td>
<td>6</td>
</tr>
<tr>
<td>NTIZ</td>
<td>Number of horizontal interfaces</td>
<td>6</td>
</tr>
<tr>
<td>α</td>
<td>Coefficient $\alpha(m,s)$ in boundary conditions.</td>
<td>7</td>
</tr>
<tr>
<td>β</td>
<td>Coefficient $\beta(m,s)$ in boundary conditions.</td>
<td>7</td>
</tr>
<tr>
<td>γ</td>
<td>Coefficient $\gamma(m,s)$ in boundary conditions.</td>
<td>7</td>
</tr>
<tr>
<td>h</td>
<td>Mass transfer coefficient in boundary conditions</td>
<td>7</td>
</tr>
<tr>
<td>ρ_0</td>
<td>User-specified function in boundary conditions</td>
<td>7</td>
</tr>
<tr>
<td>∂R</td>
<td>Boundary of R.</td>
<td>8</td>
</tr>
</tbody>
</table>
Section 2

F General term for reaction and distributed source 12

\(R_s \) Material subrectangles 12

\(\omega \) Test function in Galerkin procedure 12

\(C^1(R_s) \) Class of functions continuous together with the first
derivatives in \(R_s \) .. 12

\(\langle u, w \rangle \) Inner product of \(u, w \) 12

\(aR_1 \) That part of \(\partial R \) where \(\beta \neq 0 \) 12

\(aR_2 \) That part of \(\partial R \) where no boundary condition is imposed ... 12

\(aR_0 \) That part of \(\partial R \) where \(\beta = 0 \) 12

\(\partial k_s \) Boundary of \(R_s \) .. 12

\(\Gamma_s \) That part of \(\partial R_s \) which is an interface 13

\(\pi \) Mesh subdividing an interval 16

\(k \) Order of a polynomial .. 16

\(P_{k, \pi} \) Space of piecewise polynomials 16

\(\ell \) Number of subintervals in 16

\(X_i \) Breakpoints in \(\pi \) 16

\(\nu_i \) Smoothness index associated with \(X_i \) 16

\(S_{k, \pi, \nu} \) Spline subspace 16

\(g_k(\sigma; s) \) Truncated power function 17

\(\{ \xi_i \} \) Knots .. 17

\(M_{ij}(s) \) Divided difference of \(g_k \) 17

\(d_j \) Multiplicity of knots associated with \(X_j \) 17
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N_{i,k}(x))</td>
<td>Normalized B-spline.</td>
</tr>
<tr>
<td>(NMR)</td>
<td>Number of additional vertical mesh lines</td>
</tr>
<tr>
<td>(NMZ)</td>
<td>Number of additional horizontal mesh lines</td>
</tr>
<tr>
<td>(A_i(r))</td>
<td>Normalized B-spline in (r)</td>
</tr>
<tr>
<td>(B_j(z))</td>
<td>Normalized B-spline in (z)</td>
</tr>
<tr>
<td>(N_{r(Nz)})</td>
<td>Number of normalized B-splines in (r(z))</td>
</tr>
<tr>
<td>(s_i)</td>
<td>Indicator on side (i) for boundary condition type</td>
</tr>
<tr>
<td>(\hat{n}_r(n_z))</td>
<td>Lower integral bounds</td>
</tr>
<tr>
<td>(\hat{N}_r(n_z))</td>
<td>Upper integral bounds</td>
</tr>
<tr>
<td>(U_{i,j}(t))</td>
<td>Coefficient in tensor B-spline expansion</td>
</tr>
<tr>
<td>(T_0)</td>
<td>Set of B-splines associated with essential boundary</td>
</tr>
<tr>
<td>(T)</td>
<td>Set of B-splines which vanish on (\partial R_0)</td>
</tr>
<tr>
<td>(du_r)</td>
<td>Measure for integration</td>
</tr>
<tr>
<td>(S^S(R))</td>
<td>Surface area factor</td>
</tr>
<tr>
<td>(\sigma^g(p))</td>
<td>Vertical gap indices</td>
</tr>
<tr>
<td>(\tau^g(q))</td>
<td>Horizontal gap indices</td>
</tr>
<tr>
<td>(IL(\sigma))</td>
<td>Index of last knot associated with (r_\sigma)</td>
</tr>
<tr>
<td>(JL(\tau))</td>
<td>Index of last knot associated with (z_\tau)</td>
</tr>
<tr>
<td>(C_{mm}^{\alpha\beta})</td>
<td>First order reaction rate coefficient</td>
</tr>
<tr>
<td>(C_{mm'\alpha'^\beta'}^{\alpha\beta})</td>
<td>Second order reaction rate coefficient</td>
</tr>
<tr>
<td>(NQR)</td>
<td>Number of quadrature points in each (r) interval</td>
</tr>
<tr>
<td>(NQZ)</td>
<td>Number of quadrature points in each (z) interval</td>
</tr>
</tbody>
</table>

Section 3

- \(R\) | Spatial domain |
- \(RLOW\) | Left side of domain |
- \(RUP\) | Right side of domain |
<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZLOW</td>
<td>Bottom side of domain</td>
</tr>
<tr>
<td>ZUP</td>
<td>Top side of domain</td>
</tr>
<tr>
<td>DELTA</td>
<td>Geometry indicator</td>
</tr>
<tr>
<td>NTIR</td>
<td>Number of vertical interfaces</td>
</tr>
<tr>
<td>NTIZ</td>
<td>Number of horizontal interfaces</td>
</tr>
<tr>
<td>RIF</td>
<td>Position of a vertical interface</td>
</tr>
<tr>
<td>ZIF</td>
<td>Position of a horizontal interface</td>
</tr>
<tr>
<td>NMR</td>
<td>Number of additional vertical mesh points</td>
</tr>
<tr>
<td>NMZ</td>
<td>Number of additional horizontal mesh points</td>
</tr>
<tr>
<td>RMESH</td>
<td>Position of a vertical additional mesh point</td>
</tr>
<tr>
<td>ZMESH</td>
<td>Position of a horizontal additional mesh point</td>
</tr>
<tr>
<td>NSPEC</td>
<td>Number of species</td>
</tr>
<tr>
<td>um(r,z,t)</td>
<td>Concentration of the m-th species</td>
</tr>
<tr>
<td>CONSRV</td>
<td>Logical indicator for convection term</td>
</tr>
<tr>
<td>RHOCP</td>
<td>Heat capacity subroutine</td>
</tr>
<tr>
<td>VEL</td>
<td>Convective velocity subroutine</td>
</tr>
<tr>
<td>DIFUSE</td>
<td>Diffusion coefficient subroutine</td>
</tr>
<tr>
<td>EXTSRC</td>
<td>Distributed source subroutine</td>
</tr>
<tr>
<td>NIGAP</td>
<td>Number of vertical gap interfaces</td>
</tr>
<tr>
<td>HVGAP</td>
<td>Vertical gap coefficient</td>
</tr>
<tr>
<td>NJGAP</td>
<td>Number of horizontal gap interfaces</td>
</tr>
<tr>
<td>HHGAP</td>
<td>Horizontal gap coefficients</td>
</tr>
<tr>
<td>ALPHA</td>
<td>Boundary condition coefficient</td>
</tr>
<tr>
<td>BETA</td>
<td>Boundary condition coefficient</td>
</tr>
<tr>
<td>GAMMA</td>
<td>Boundary condition coefficient</td>
</tr>
<tr>
<td>HUJ</td>
<td>Mass transfer coefficients (J=1,4)</td>
</tr>
</tbody>
</table>
Section 4

DIFUSE...User subroutine.

IMATL...Material index

KSPEC...Species index.

NSPEC...Number of species.

T...Time, current value.

RR...Abscissa

ZZ...Ordinate

SPDEN...Array of concentrations.

SPDENR...Array of partial derivatives with respect to r

SPDENZ...Array of partial derivatives with respect to z

WIFUR...Output from DIFUSE

DIFUZ...Output from DIFUSE

T0...Initial time

VEL...User subroutine.

VELR...Output from VEL.

VELZ...Output from VEL.
<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRHØ</td>
<td>User subroutine.</td>
<td>43</td>
</tr>
<tr>
<td>RHØV</td>
<td>Output from BRHØ.</td>
<td>43</td>
</tr>
<tr>
<td>XX</td>
<td>Position coordinate on a side.</td>
<td>43</td>
</tr>
<tr>
<td>YLBD</td>
<td>Normal component of convection velocity.</td>
<td>44</td>
</tr>
<tr>
<td>BDFRD</td>
<td>User subroutine.</td>
<td>45</td>
</tr>
<tr>
<td>BRHØDT</td>
<td>User subroutine.</td>
<td>46</td>
</tr>
<tr>
<td>BDFRDT</td>
<td>User subroutine.</td>
<td>47</td>
</tr>
<tr>
<td>EXTSRC</td>
<td>User subroutine.</td>
<td>48</td>
</tr>
<tr>
<td>FDEXTU</td>
<td>User subroutine.</td>
<td>50</td>
</tr>
<tr>
<td>INDATA</td>
<td>User subroutine.</td>
<td>53</td>
</tr>
<tr>
<td>RHØCP</td>
<td>User subroutine.</td>
<td>54</td>
</tr>
<tr>
<td>ANAL</td>
<td>User subroutine.</td>
<td>54</td>
</tr>
<tr>
<td>KR(KZ)</td>
<td>Order of B-splines.</td>
<td>56</td>
</tr>
<tr>
<td>LR(LZ)</td>
<td>Number of subintervals.</td>
<td>56</td>
</tr>
<tr>
<td>INUR(INUZ)</td>
<td>Vector of continuity indices.</td>
<td>56</td>
</tr>
<tr>
<td>NRNZ</td>
<td>Number of variables for one species.</td>
<td>56</td>
</tr>
<tr>
<td>NVAR</td>
<td>Number of variables.</td>
<td>57</td>
</tr>
<tr>
<td>AL</td>
<td>Coefficient matrix.</td>
<td>57</td>
</tr>
<tr>
<td>HØRHBW(VERHBW)</td>
<td>Half bandwidths.</td>
<td>57</td>
</tr>
<tr>
<td>NI,NJ,NCC</td>
<td>Ordering parameters.</td>
<td>57</td>
</tr>
<tr>
<td>DM</td>
<td>Half bandwidth for AL.</td>
<td>58</td>
</tr>
<tr>
<td>FBW</td>
<td>Full bandwidth for AL.</td>
<td>58</td>
</tr>
<tr>
<td>NAL</td>
<td>Storage requirement for AL</td>
<td>58</td>
</tr>
<tr>
<td>ALHS</td>
<td>Common block for AL.</td>
<td>58</td>
</tr>
<tr>
<td>PW</td>
<td>Jacobian matrix.</td>
<td>58</td>
</tr>
<tr>
<td>MBW</td>
<td>Half bandwidth for PW.</td>
<td>58</td>
</tr>
<tr>
<td>MFBW</td>
<td>Full bandwidth for PW.</td>
<td>58</td>
</tr>
<tr>
<td>SNPW</td>
<td>Storage requirement for PW</td>
<td>59</td>
</tr>
<tr>
<td>GEAR6</td>
<td>Common block for PW.</td>
<td>59</td>
</tr>
</tbody>
</table>
ACKNOWLEDGMENTS

The authors wish to express their gratitude to T. Chawla for providing
the motivation for undertaking this effort. We wish to acknowledge the
assistance of G. D. Byrne, D. C. Sorensen, T. Bleakney, and J. Saltzman on
earlier versions of this package. We also express our appreciation to
J. Dongarra and A. Hinds for their help and guidance in optimizing some key
loops in this program. Special thanks to J. Beumer for the excellent typing
of this report.
REFERENCES

Distribution for ANL-84-56

internal:

K. L. Kliewer
A. B. Krisciunas
G. K. Leaf (2o)
P. C. Messina
M. Minkoff (27)
D. M. Pahis
T. M. Woods (2)
G. W. Pieper
ANL Patent Department
ANL Contract File
ANL Libraries
TIS Files (6)

External:

DOE-TIC, for distribution per UC-32 (172)
Manager, Chicago Operations Office, DOE
Mathematics and Computer Science Division Review Committee:

J. L. Bona, U. Chicago
J. C. Browne, U. Texas, Austin
S. Gerhart, Wang Institute, Tysonsboro, MA
G. H. Golub, Stanford U.
W. C. Lynch, Xerox Corp., Palo Alto
M. F. Wheeler, Rice U.
L. P. Kadanoff, U. of Chicago (Board of Governors liaison)
U. Ascher, U. of British Columbia
D. Austin, Office of Basic Energy Sciences, DOE
J. Bolstad, Calif. Inst. of Technology
G. Byrne, Exxon Research and Engineering Co.
T. Chan, Yale U.
A. Curtis, AERE Harwell, United Kingdom
P. Deuflhard, U. Heidelberg, West Germany
D. Evans, Loughborough U. of Technology
K. Fong, LLL
P. Gaffney, Christian Michelsen Inst., Norway
U. Garcia-Palomares, U. Simon Bolivar, Venezuela
H. Ginsberg, General Motors Research Labs
C. Hamrin, U. of Kentucky
A. Hindmarsh, LLL
J. Hyman, LANL
G. Koopmans, KEMA, The Netherlands
K. Jackson, U. of Toronto
K. Jordan, Exxon Research and Engineering Co.
G. Klinzing, U. of Pittsburgh
R. Klopfenstein, RCA Labs
B. Lindberg, KTH, Sweden
N. Madsen, LLL
P. Merz, Chevron Research Co.
G. Michael, LLL
E. Oliver, Office of Basic Energy Sciences, DOE
L. Petzold, Sandia Laboratories
R. Russell, U. of New Mexico
N. Schryer, Bell Laboratories
L. Shampine, Sandia Laboratories
R. Sincock, U. of Colorado, Colorado Springs
R. Sweet, National Bureau of Standards