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Abstract

Through classical trajectory simulation, it is found that antihydrogen can be synthesized via

three body recombination involving magnetobound positronium. It has previously been reported

that giant cross-magnetic-field steps can occur as a result of electron-positron pair collisions. An

electron-positron pair collision can result in a correlated drift of the particles perpendicular to a

constant strong magnetic field. While the two particles remain in their correlated drift, they are

referred to as a magnetobound positronium system. Thus, magnetobound positronium is a two-

body system consisting of a positron-electron pair that becomes temporarily bound together in

the presence of a magnetic field. This study was conducted to determine what would happen if a

magnetobound positronium system encountered a finite-mass antiproton. The simulation incor-

porates a strong magnetic field (1 T) similar to that found within Penning traps. The simulation

shows that with a finite-mass antiproton, the electron will be ejected from the system, and the

positron is captured into a bound state with an antiproton thereby synthesizing antihydrogen.

Introduction

Previous simulations indicate that electron-positron pair collisions can result in the particles

being temporarily correlated and experience giant cross magnetic field drifts[1]. Those particle

pairs have been referred to as being in a magnetobound state[2]. This phenomenon occurs at

low temperatures, low energies, and strong magnetic fields similar to the environment found

in a Penning trap. Given this, it has been previously proposed that magnetobound positronium

could be a useful intermediate step in the production of antihydrogen[2].

Governing Equations

In the simulation, the positron, electron, and antiproton interact classically. For brevity, the

positron will be denoted as particle 1, the electron as particle 2, and the antiproton as particle

3. Variables will be denoted with i, j, and k, which have values 1, 2, or 3 for each particle and

i 6= j 6= k. Beginning with the electric force, Coulomb’s law states that the electric force exerted

on particle i by particle j is given by F
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constant, q
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i j

= |r
ij

| is the distance between particles,
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and r
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= r
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j

is the separation vector between the particles. Coulomb’s constant is defined as

k

c

= 1/(4pe0), in which e0 is the permittivity of free space.

Additionally, the magnetic force from the magnetic field on the particle is denoted by F
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ĵ), where in this simulation the magnetic field, B, acts parallel to the unit vector
ˆ

k, (ı̂,ĵ,k̂) are the Cartesian unit vectors, k

L

is the Lorentz force constant (in SI units k

L

= 1),

q is the charge of the particle, v is the velocity of the particle, and v

ix

, v

iy

, v

iz

are the velocity

components of the particle.

Newton’s second law governs the classical motion of the particles. For particle i, F
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, where m

i

is the mass of particle i, and a

i

is its acceleration. The position

and velocity of each of the particles are functions of time. The position and velocity of a particle

are written as r
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Therefore, the equations of motion of particle i are
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Where s

i j

and s

ik

are the separation between particles i and j and particles i and k respectively.

The electron and positron are treated as traveling in opposite directions towards each other

from an infinite distance with equal kinetic energies, K•, and the antiproton is at rest an infinite

distance from both the electron and positron before the start of the simulation. The electric po-

tential energy is defined to be zero when the particles are infinitely separated from one another.

Conservation of energy requires that at the start of the simulation
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where v

x10, v

y10, and v

z10 are the initial velocity components of the positron at the beginning

of the simulation and v

x20, v

y20, and v

z20 are the initial velocity components of the electron.

The separation between the particles at the start of the simulation is r

i j0. For this simulation,

v

x10 = v

x20 = v

y10 = v

y20 = 0, m1 = m2 = m, and �v

z10 = v

z20.

Figure 1 shows the initial positions of the particles at the start of the simulation. The elec-

tron and positron approach each other with initial velocities that are of equal magnitude but in

opposite directions. The simulation begins with the positron at (b/2,0,z b/2), the electron at

(�b/2,0,�z b/2), and the antiproton at (0,d ,0).
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Figure 1: Initial positions of particles.

This gives r120 = b

p
1+z 2, and r130 = r230 =

p
(b/2)2 +d 2 +(z b/2)2. The parameter b is re-

ferred to as the impact parameter, z b is the inital ax-

ial separation between the electron and the positron,

and d is the distance between the coordinate origin

and the antiproton, which is located along the y-

axis. Plugging in values and rearranging Equation

(4), we find the nonzero velocity components to be

v
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s

2K•
m

� k

c

q1q2

mb

p
1+z 2

. (5)

In which the positron takes the negative velocity

and the electron takes the positive velocity.

The simulation occurs with the parameters, B = 1 T and K• = 9 k , where k has the value

of Boltzmann’s constant in SI units, but with units of energy. The impact parameter b is set

equal to 3.1r

c

, due to the large cross-magnetic field drift distance resulting from an electron-

positron collision[1]. Here, r

c

is the cyclotron radius and is defined as
q

2K•m/(k2
L

B

2
q

2). The

cyclotron radius is 9.3910⇥10�8 m. The trajectories of the positron and electron in a magnetic

field were found by solving their equations of motion using a classical trajectory simulation

on Mathematica using Implicit Runge-Kutta. The total energy of the system changed by 2.973

x 10�8 % for the sample system detailed in the results section, which shows that energy is

conserved throughout the simulation.

Results

In the simulation, d was varied so that the intial position of the antiproton was moved in

increments of 1rc along the y axis from 0 to 50rc. Although a choatic system, the positron was

more likely captured when the starting y axis position for the antiproton was in the 19rc to 35rc

range. Fig. 2a shows the electron expelled, while the positron is captured by the antiproton,

as projected onto the yz plane for d = 27rc. Fig. 2b shows the positron being captured by the

antiproton as projected onto the yx plane. Both graphs are normalized by rc.

In addition to a visual inspection of the plotted trajectory of the positron about the antiproton,

the total energy of the antihydrogen can be examined. For a positron in a bound state, it will

have a negative total energy. As the positron enters a bound orbit, the kinetic energy term and

the electric potential energy term between the positron and the antiproton stabilize, resulting

in a value for the total energy of the antihydrogen system that approaches a constant negative
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(a) Projection along the yz plane. (b) Projection along the yx plane.

Figure 2: Paths of the positron, electron, and antiproton.

value as seen in Fig. 3. As a result of the positron’s negative total energy and the conservation

of energy, the electron therefore carries away excess energy as it is expelled from the system,

allowing the formation of antihydrogen to occur.

Figure 3: Graph showing the total energy of

the antihydrogen system as a function of time.

Conclusion

Both visually and through analyzing the total en-

ergy of the antihydrogen system, the possibility of

producing antihydrogen with a finite mass antipro-

ton and magnetobound positronium was demonstrated.

This simulation lays the ground work for future sim-

ulation investigations of the feasibility of employ-

ing magnetobound positronium as an intermediate

step for antihydrogen production.
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