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The validity of inferences drawn from statistical test results depends on how well data
meet associated assumptions.Yet, research (e.g., Hoekstra et al., 2012) indicates that such
assumptions are rarely reported in literature and that some researchers might be unfamiliar
with the techniques and remedies that are pertinent to the statistical tests they conduct.
This article seeks to support researchers by concisely reviewing key statistical assumptions
associated with substantive statistical tests across the general linear model. Additionally,
the article reviews techniques to check for statistical assumptions and identifies remedies
and problems if data do not meet the necessary assumptions.
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The degree to which valid inferences may be drawn from the
results of inferential statistics depends upon the sampling tech-
nique and the characteristics of population data. This dependency
stems from the fact that statistical analyses assume that sample(s)
and population(s) meet certain conditions. These conditions are
called statistical assumptions. If violations of statistical assump-
tions are not appropriately addressed, results may be interpreted
incorrectly. In particular, when statistical assumptions are violated,
the probability of a test statistic may be inaccurate, distorting Type
I or Type II error rates.

This article focuses on the assumptions associated with sub-
stantive statistical analyses across the general linear model (GLM),
as research indicates they are reported with more frequency
in educational and psychological research than analyses focus-
ing on measurement (cf. Kieffer et al., 2001; Zientek et al.,
2008). This review is organized around Table 1, which relates
key statistical assumptions to associated analyses and classifies
them into the following categories: randomization, independence,
measurement, normality, linearity, and variance. Note that the
assumptions of independence, measurement, normality, linear-
ity, and variance apply to population data and are tested by
examining sample data and using test statistics to draw infer-
ences about the population(s) from which the sample(s) were
selected.

RANDOMIZATION
A basic statistical assumption across the GLM is that sample data
are drawn randomly from the population. However, much social
science research is based on unrepresentative samples (Thomp-
son, 2006) and many quantitative researchers select a sample
that suits the purpose of the study and that is convenient (Gall
et al., 2007). When the assumption of random sampling is not
met, inferences to the population become difficult. In this case,

researchers should describe the sample and population in suffi-
cient detail to justify that the sample was at least representative of
the intended population (Wilkinson and APA Task Force on Sta-
tistical Inference, 1999). If such a justification is not made, readers
are left to their own interpretation as to the generalizability of the
results.

INDEPENDENCE
Across GLM analyses, it is assumed that observations are inde-
pendent of each other. In quantitative research, data often do not
meet the independence assumption. The simplest case of non-
independent data is paired sample or repeated measures data. In
these cases, only pairs of observations (or sets of repeated data) can
be independent because the structure of the data is by design paired
(or repeated). More complex data structures that do not meet the
assumption of independence include nested data (e.g., employees
within teams and teams within departments) and cross-classified
data (e.g., students within schools and neighborhoods).

When data do not meet the assumption of independence, the
accuracy of the test statistics (e.g., t, F, χ2) resulting from a GLM
analysis depends on the test conducted. For data that is paired
(e.g., pretest-posttest, parent-child), paired samples t test is an
appropriate statistical analysis as long as the pairs of observations
are independent and all other statistical assumptions (see Table 1)
are met. Similarly, for repeated measures data, repeated measures
ANOVA is an appropriate statistical analysis as long as sets of
repeated measures data are independent and all other statistical
assumptions (see Table 1) are met. For repeated measures and/or
non-repeated measures data that are nested or cross-classified,
multilevel modeling (MLM) is an appropriate statistical analytic
strategy because it models non-independence. Statistical tests that
do not model the nested or cross-classified structure of data will
lead to a higher probability of rejecting the null hypotheses (i.e.,
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Table 1 | Statistical assumptions associated with substantive analyses across the general linear model.

Statistical analysisa Independence Measurement Normality Linearity Variance

Level of variable(s)b

Dependent Independent

CHI-SQUARE

Single sample Independent observations Nominal+ N/A

2+ samples Independent observations Nominal+ Nominal+

T -TEST

Single sample Independent observations Continuous N/A Univariate

Dependent sample Independent paired observations Continuous N/A Univariate

Independent sample Independent observations Continuous Dichotomous Univariate Homogeneity of variance

OVA-RELATEDTESTS

ANOVA Independent observations Continuous Nominal Univariate Homogeneity of variance

ANCOVAc Independent observations Continuous Nominal Univariate X Homogeneity of variance

RM ANOVA Independent repeated observations Continuous Nominal (opt.) Multivariate X Sphericity

MANOVA Independent observations Continuous Nominal Multivariate X Homogeneity of covariance matrix

MANCOVAc Independent observations Continuous Nominal Multivariate X Homogeneity of covariance matrix

REGRESSION

Simple linear Independent observations Continuous Continuous Bivariate X

Multiple linear Independent observations Continuous Continuous Multivariate X Homoscedasticity

Canonical correlation Independent observations Continuous Continuous Multivariate X Homoscedasticity

aAcross all analyses, data are assumed to be randomly sampled from the population. bData are assumed to be reliable. cANCOVA and MANCOVA also assumes

homogeneity of regression and continuous covariate(s). Continuous refers to data that may be dichotomous, ordinal, interval, or ratio (cf.Tabachnick and Fidell, 2001).

Type I error) than if an appropriate statistical analysis were per-
formed or if the data did not violate the independence assumption
(Osborne, 2000).

Presuming that statistical assumptions can be met, MLM can
be used to conduct statistical analyses equivalent to those listed
in Table 1 (see Garson, 2012 for a guide to a variety of MLM
analyses). Because multilevel models are generalizations of multi-
ple regression models (Kreft and de Leeuw, 1998), MLM analyses
have assumptions similar to analyses that do not model multilevel
data. When violated, distortions in Type I and Type II error rates
are imminent (Onwuegbuzie and Daniel, 2003).

MEASUREMENT
RELIABILITY
Another basic assumption across the GLM is that population data
are measured without error. However, in psychological and educa-
tional research, many variables are difficult to measure and yield
observed data with imperfect reliabilities (Osborne and Waters,
2002). Unreliable data stems from systematic and random errors of
measurement where systematic errors of measurement are “those
which consistently affect an individual’s score because of some
particular characteristic of the person or the test that has noth-
ing to do with the construct being measured (Crocker and Algina,
1986, p. 105) and random errors of measurement are those which
“affect an individual’s score because of purely chance happenings”
(Crocker and Algina, 1986, p. 106).

Statistical analyses on unreliable data may cause effects to be
underestimated which increase the risk of Type II errors (Onwueg-
buzie and Daniel, 2003). Alternatively in the presence of correlated

error, unreliable data may cause effects to be overestimated which
increase the risk of Type I errors (Nimon et al., 2012).

To satisfy the assumption of error-free data, researchers may
conduct and report analyses based on latent variables in lieu of
observed variables. Such analyses are based on a technique called
structural equation modeling (SEM). In SEM, latent variables are
formed from item scores, the former of which become the unit
of analyses (see Schumacker and Lomax, 2004 for an accessible
introduction). Analyses based on latent-scale scores yield statis-
tics as if multiple-item scale scores had been measured without
error. All of the analyses in Table 1 as well as MLM analyses can be
conducted with SEM. The remaining statistical assumptions apply
when latent-scale scores are analyzed through SEM.

Since SEM is a large sample technique (see Kline, 2005),
researchers may alternatively choose to delete one or two items in
order to raise the reliability of an observed score. Although “exten-
sive revisions to prior scale dimensionality are questionable. . . one
or a few items may well be deleted” in order to increase reliability
(Dillon and Bearden, 2001, p. 69). The process of item deletion
should be reported, accompanied by estimates of the reliability of
the data with and without the deleted items (Nimon et al., 2012).

MEASUREMENT LEVEL
Table 1 denotes measurement level as a statistical assumption.
Whether level of measurement is considered a statistical assump-
tion is a point of debate in statistical literature. For example,
proponents of Stevens (1946, 1951) argue that the dependent vari-
able in parametric tests such as t tests and analysis-of-variance
related tests should be scaled at the interval or ratio level (Maxwell
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and Delaney, 2004). Others (e.g., Howell, 1992; Harris, 2001) indi-
cate that the validity of statistical conclusions depends only on
whether data meet distributional assumptions not on the scaling
procedures used to obtain data (Warner, 2008). Because mea-
surement level plays a pivotal role in statistical analyses decision
trees (e.g., Tabachnick and Fidell, 2001, pp. 27–29), Table 1 relates
measurement level to statistical analyses from a pragmatic perspec-
tive. It is important to note that lowering the measurement level
of data (e.g., dichotomizing intervally scaled data) is ill-advised
unless data meet certain characteristics (e.g., multiple modes, seri-
ous skewness; Kerlinger, 1986). Although such a transformation
makes data congruent with statistics that assume only the nominal
measurement level, it discards important information and may
produce misleading or erroneous information (see Thompson,
1988).

NORMALITY
For many inferential statistics reported in educational and psycho-
logical research (cf. Kieffer et al., 2001; Zientek et al., 2008), there
is an assumption that population data are normally distributed.
The requirement for, type of, and loci of normality assumption
depend on the analysis conducted. Univariate group comparison
tests (t tests, ANOVA, ANCOVA) assume univariate normality
(Warner, 2008). Simple linear regression assumes bivariate nor-
mality (Warner, 2008). Multivariate analyses (repeated measures
ANOVA, MANOVA, MANCOVA, multiple linear regression, and
canonical correlation) assume multivariate normality (cf. Tabach-
nick and Fidell, 2001; Stevens, 2002). For analysis-of-variance type
tests (OVA-type tests) involving multiple samples, the normality
assumption applies to each level of the IV.

UNIVARIATE
The assumption of univariate normality is met when a distrib-
ution of scores is symmetrical and when there is an appropriate
proportion of distributional height to width (Thompson, 2006).
To assess univariate normality, researchers may conduct graphical
or non-graphical tests (Stevens, 2002): Non-graphical tests include
the chi-square goodness of fit test, the Kolmogorov–Smirnov test,
the Shapiro–Wilks test, and the evaluation of kurtosis and skew-
ness values. Graphical tests include the normality probability plot
and the histogram (or stem-and-leave plot).

Non-graphical tests are preferred for small to moderate sample
sizes, with the Shapiro–Wilks test and the evaluation of kurto-
sis and skewness values being preferred methods for sample sizes
of less than 20 (Stevens, 2002). The normal probability plot in
which observations are ordered in increasing degrees of magni-
tude and then plotted against expected normal distribution values
is preferred over histograms (or stem-and leave plots). Evalu-
ating normality by examining the shape of histogram scan be
problematic (Thompson, 2006), because there are infinitely dif-
ferent distribution shapes that may be normal (Bump, 1991). The
bell-shaped distribution that many educational professionals are
familiar with is not the only normal distribution (Henson, 1999).

BIVARIATE
The assumption of bivariate normality is met when the linear rela-
tionship between two variables follows a normal distribution (Bur-
denski, 2000). A necessary but insufficient condition for bivariate

normality is univariate normality for each variable. Bivariate nor-
mality can be evaluated graphically (e.g., scatterplots). However, in
practice, even large datasets (n > 200) have insufficient data points
to evaluate bivariate normality (Warner, 2008) which may explain
why this assumption often goes unchecked and unreported.

MULTIVARIATE
The assumption of multivariate normality is met when each vari-
able in a set is normally distributed around fixed values on all other
variables in the set (Henson, 1999). Necessary but insufficient con-
ditions for multivariate normality include univariate normality
for each variable along with bivariate normality for each variable
pair. Multivariate normality can be assessed graphically or with
statistical tests.

To assess multivariate normality graphically, a scatterplot of
Mahalanobis distances and paired χ2-values may be examined,
where Mahalanobis distance indicates how far each “set of scores
is from the group means adjusting for correlation of the variables”
(Burdenski, 2000, p. 20). If the plot approximates a straight-line,
data are considered multivariate normal. Software to produce the
Mahalanobis distance by χ2 scatterplot can be found in Thompson
(1990); Henson (1999), and Fan (1996).

Researchers may also assess multivariate normality by testing
Mardia’s (1985) coefficient of multivariate kurtosis and examin-
ing its critical ratio. If the critical ratio of Mardia’s coefficient of
multivariate kurtosis is less than 1.96, a sample can be considered
multivariate normal at the 0.05 significance level, indicating that
the multivariate kurtosis is not statistically significantly different
than zero. Mardia’s coefficient of multivariate kurtosis is available
in statistical software packages including AMOS, EQS, LISREL,
and PASW (see DeCarlo, 1997).

VIOLATIONS
The effect of violating the assumption of normality depends on
the level of non-normality and the statistical test examined. As
long the assumption of normality is not severely violated, the
actual Type I error rates approximate nominal rates for t tests
and OVA-tests (cf. Boneau, 1960; Glass et al., 1972; Stevens, 2002).
However, in the case of data that are severely platykurtic, power
is reduced in t tests and OVA-type tests (cf. Boneau, 1960; Glass
et al., 1972; Stevens, 2002). Non-normal variables that are highly
skewed or kurtotic distort relationships and significance tests in
linear regression (Osborne and Waters, 2002). Similarly, proper
inferences regarding statistical significance tests in canonical cor-
relation depend on multivariate normality (Tabachnick and Fidell,
2001). If the normality assumption is violated, researchers may
delete outlying cases, transform data, or conduct non-parametric
tests (see Conover, 1999; Osborne, 2012), as long as the process is
clearly reported.

LINEARITY
For parametric statistics involving two or more continuous vari-
ables (ANCOVA, repeated measures ANOVA, MANOVA, MAN-
COVA, linear regression, and canonical correlation) linearity
between pairs of continuous variables is assumed (cf. Tabachnick
and Fidell, 2001; Warner, 2008). The assumption of linearity is
that there is a straight-line relationship between two variables.
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Linearity is important in a practical sense because Pearson’s r,
which is fundamental to the vast majority of parametric statistical
procedures (Graham, 2008), captures only the linear relation-
ship among variables (Tabachnick and Fidell, 2001). Pearson’s r
underestimates the true relationship between two variables that is
non-linear (i.e., curvilinear; Warner, 2008).

Unless there is strong theory specifying non-linear relation-
ships, researchers may assume linear relationships in their data
(Cohen et al., 2003). However, linearity is not guaranteed and
should be validated with graphical methods (see Tabachnick
and Fidell, 2001). Non-linearity reduces the power of statistical
tests such as ANCOVA, MANOVA, MANCOVA, linear regres-
sion, and canonical correlation (Tabachnick and Fidell, 2001).
In the case of ANCOVA and MANCOVA, non-linearity results
in improper adjusted means (Stevens, 2002). If non-linearity is
detected, researchers may transform data, incorporate curvilin-
ear components, eliminate the variable producing non-linearity,
or conduct a non-linear analysis (cf. Tabachnick and Fidell, 2001;
Osborne and Waters, 2002; Stevens, 2002; Osborne, 2012), as long
as the process is clearly reported.

VARIANCE
Across parametric statistical procedures commonly used in quan-
titative research, at least five assumptions relate to variance. These
are: homogeneity of variance, homogeneity of regression, spheric-
ity, homoscedasticity, and homogeneity of variance-covariance
matrix.

Homogeneity of variance applies to univariate group analyses
(independent samples t test,ANOVA,ANCOVA) and assumes that
the variance of the DV is roughly the same at all levels of the IV
(Warner, 2008). The Levene’s test validates this assumption, where
smaller statistics indicate greater homogeneity. Research (Boneau,
1960; Glass et al., 1972) indicates that univariate group analyses
are generally robust to moderate violations of homogeneity of
variance as long as the sample sizes in each group are approxi-
mately equal. However, with unequal sample sizes, heterogeneity
may compromise the validity of null hypothesis decisions. Large
sample variances from small-group sizes increase the risk of Type
I error. Large sample variances from large-group sizes increase
the risk of Type II error. When the assumption of homogeneity
of variance is violated, researchers may conduct and report non-
parametric tests such as the Kruskal–Wallis. However,Maxwell and
Delaney (2004) noted that the Kruskal–Wallis test also assumes
equal variances and suggested that data be either transformed to
meet the assumption of homogeneity of variance or analyzed with
tests such as Brown–Forsythe F∗ or Welch’s W.

Homogeneity of regression applies to group analyses with
covariates, including ANCOVA and MANCOVA, and assumes that
the regression between covariate(s) and DV(s) in one group is the
same as the regression in other groups (Tabachnick and Fidell,
2001). This assumption can be examined graphically or by con-
ducting a statistical test on the interaction between the COV(s)
and the IV(s). Violation of this assumption can lead to very mis-
leading results if covariance is used (Stevens, 2002). For example,
in the case of heterogeneous slopes, group means that have been
adjusted by a covariate could indicate no difference when, in fact,
group differences might exist at different values of the covariate. If

heterogeneity of regression exists, ANCOVA and MANCOVA are
inappropriate analytic strategies (Tabachnick and Fidell, 2001).

Sphericity applies to repeated measures analyses that involve
three or more measurement occasions (repeated measures
ANOVA) and assumes that the variances of the differences for all
pairs of repeated measures are equal (Stevens, 2002). Presuming
that data are multivariate normal, the Mauchly test can be used
to test this assumption, where smaller statistics indicate greater
levels of sphericity (Tabachnick and Fidell, 2001). Violating the
sphericity assumption increases the risk of Type I error (Box,
1954). To adjust for this risk and provide better control for Type I
error rate, the degrees of freedom for the repeated measures F test
may be corrected using and reporting one of three adjustments:
(a) Greenhouse–Geisser, (b) Huynh–Feldt, and (c) Lower-bound
(see Nimon and Williams, 2009). Alternatively, researchers may
conduct and report analyses that do not assume sphericity (e.g.,
MANOVA).

Homoscedasticity applies to multiple linear regression and
canonical correlation and assumes that the variability in scores for
one continuous variable is roughly the same at all values of another
continuous variable (Tabachnick and Fidell, 2001). Scatterplots
are typically used to test homoscedasticity. Linear regression is
generally robust to slight violations of homoscedasticity; how-
ever, marked heteroscedasticity increases the risk of Type I error
(Osborne and Waters, 2002). Canonical correlation performs best
when relationships among pairs of variables are homoscedastic
(Tabachnick and Fidell, 2001). If the homoscedasticity assumption
is violated, researchers may delete outlying cases, transform data,
or conduct non-parametric tests (see Conover, 1999; Osborne,
2012), as long as the process is clearly reported.

Homogeneity of variance-covariance matrix is a multivariate
generalization of homogeneity of variance. It applies to multivari-
ate group analyses (MANOVA and MANCOVA) and assumes that
the variance-covariance matrix is roughly the same at all levels
of the IV (Stevens, 2002). The Box M test tests this assumption,
where smaller statistics indicate greater homogeneity. Tabachnick
and Fidell (2001) provided the following guidelines for inter-
preting violations of this assumption: if sample sizes are equal,
heterogeneity is not an issue. However, with unequal sample sizes,
heterogeneity may compromise the validity of null hypothesis
decisions. Large sample variances from small-group sizes increase
the risk of Type I error whereas large sample variances from large-
group sizes increase the risk of Type II error. If sample sizes are
unequal and the Box M test is significant at p < 0.001, researchers
should conduct the Pillai’s test or equalize sample sizes by random
deletion of cases if power can be retained.

DISCUSSION
With the advances in statistical software, it is easy for researchers to
use point and click methods to conduct a wide variety of statisti-
cal analyses on their datasets. However, the output from statistical
software packages typically does not fully indicate if necessary sta-
tistical assumptions have been met. I invite editors and reviewers to
use the information presented in this article as a basic checklist of
the statistical assumptions to be reported in scholarly reports. The
references cited in this article should also be helpful to researchers
who are unfamiliar with a particular assumption or how to test it.
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For example, Osborne’s (2012) book provides an accessible treat-
ment of a wide variety of data transformation techniques while
Burdenski’s (2000) article review graphics procedures to evalu-
ate univariate, bivariate, and multivariate normality. Finally, the
information presented in this article should be helpful to readers
of scholarly reports. Readers cannot presume that just because an
article has survived peer review, the interpretation of the findings

is methodologically sound (cf. Henson et al., 2010). Readers must
make their own judgment as to the quality of the study if infor-
mation that could affect the validity of the data presented is not
reported. With the information presented in this article and oth-
ers, I invite readers to take an active role in evaluating the findings
of quantitative research reports and become informed consumers
of the data presented.
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