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Foias Numbers

Nicolae Anghel

Abstract

The Foias constant, a true mathematical gem, is generalized to a
host of similar numbers. As is the case with all significant mathematics
it is the underlying method, due to Foias, that matters.

The Foias constant is the unique positive real number x1 for which the
recursion

xn+1 =

(
1 +

1

xn

)n

, x1 > 0, n = 1, 2, . . . (1)

has the property that limn→∞ xn =∞. Very likely transcendental, its 15-digit
approximation is 1.187452351126501 [4, 7]. For the fascinatingly bizarre story
of the discovery of this number and a proof, please see [2].

In this note we identify the principal features in Foias’ original proof and
streamline them into a general result. Our result gives further evidence to the
observation [2] that the connection between the sequence (1) with initial seed
the Foias constant and the Prime Number Theorem [1] must be fortuitous.

Theorem. Let (fn)∞n=1 be a sequence of strictly decreasing continuously dif-
ferentiable functions with increasing non-vanishing derivatives, all with the
same domain, (0,∞), and the same range, (r,∞), r ≥ 0, and such that

Σ :=
⋂∞

n=1 (fn ◦ fn−1 ◦ · · · ◦ f1) (0,∞) 6= ∅. (2)

Assume that there is a number c ∈ Σ such that
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(i) lim
n→∞

fn(c) =∞.

(ii) lim
n→∞

αn =∞, where αn :=
(
f−1n+1 ◦ f

−1
n+2

)
(c), n = 0, 1, . . .

(iii) lim
n→∞

(
f−1n

)′
(αn) = 0.

(iv) lim inf
n→∞

2n

f−1n (c)
> 0.

Then the recursion

xn+1 = fn(xn), x1 > 0, n = 1, 2, . . . , (3)

has the Foias property, namely there is an unique x1 > 0, called the Foias
number associated to the sequence of functions (fn)n and denoted by c, such
that lim

n→∞
xn =∞. Moreover,

c = lim
n→∞

(
f−11 ◦ f−12 ◦ · · · ◦ f−1n

)
(c). (4)

Examples of sequences (fn)n satisfying the hypotheses of the theorem are

fn(x) =

(
1 +

1

x

)n

, r = 1, Σ =


((

53 + 43
)4

+ 512
)5

(53 + 43)
20 , 4

 ,

c = e, αn =
1

n+1
√

1/ ( n+2
√
e− 1)− 1

,

(5)

or

fn(x) = en/x, r = 1, Σ =
(
e3e

−2

, e2
)
, c = e, αn =

n+ 1

ln(n+ 2)
. (6)

Notice that (5) is Foias’ case. An example of a sequence which might, however
does not, satisfy the hypotheses or the conclusion of the theorem is

fn(x) =
n

x
, r = 0, Σ = (0,∞), no c exists. (7)

In this case, (xn)n always diverges to ∞.
In order to prove the Theorem we need some preparation. Fixing t > 0

and a positive integer n, define a sequence (tn+m+1)
∞
m=1 depending on t by

tn+m+1 := (fn+m ◦ · · · ◦ fn) (t). (8)

We say that the sequence (tn+m+1)m has property (A) if its odd-term subse-
quence (tn+2m)m is bounded above while its even-term subsequence (tn+2m+1)m
diverges to∞. Similarly, it has property (B) if the words odd-even are switched
in property (A).
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Lemma. In the above setting, and assuming the hypotheses (i) and (ii) of
the Theorem, for any n = 1, 2, . . . , define the disjoint subsets An and Bn of
(0,∞) by

An := { t | (tn+m+1)m has property (A) }
Bn := { t | (tn+m+1)m has property (B) }

(9)

Then the following is true about the sets An and Bn:

(v) fn(An) = Bn+1 ∩ (r,∞) and fn(Bn) = An+1 ∩ (r,∞).

(vi) If t ∈ An and t′ ∈ Bn then (0, t] ⊆ An, [t′,∞) ⊆ Bn, and t < t′.

(vii) If n is such that αk ≥ c for k ≥ n+1 then αn−1 ∈ An and f−1n (αn) ∈ Bn.
Consequently, αn−1 < f−1n (αn).

Proof. (v) follows immediately from (8) and the very definitions (9) of the sets
An and Bn, while the monotonicity properties of the functions fk’s, namely the
composition of an even/odd number of fk’s is strictly increasing/decreasing,
implies (vi).

To the end of proving (vii) notice first that since c ∈ Σ, αn is well-defined.
In particular, αn > r, n = 1, 2, . . . . The premise of (vii) always holds true for
n sufficiently large, by (ii). Set now t = αn−1 for an allowable n. Then,

tn+2 = (fn+1 ◦ fn) (αn−1) = c,

since the definition of αn−1 in (ii) is equivalent to (fn+1 ◦ fn) (αn−1) = c.
Thus, tn+2 = c ≤ αn+1 yields tn+2 ≤ αn+1, and repeating the above procedure
gives

tn+4 = (fn+3 ◦ fn+2) (tn+2) ≤ (fn+3 ◦ fn+2) (αn+1) = c ≤ αn+3.

More generally, by iteration

tn+2m ≤ c ≤ αn+2m−1, m = 1, 2, . . . (10)

Now, (10) implies

tn+2m+1 = fn+2m(tn+2m) ≥ fn+2m(c). (11)

From (10), (11), and (i) it follows that the sequence (tn+m+1)m has property
(A) for t = αn−1, and so αn−1 ∈ An.

Finally, we have αn ∈ An+1 too, which is equivalent to f−1n (αn) ∈ Bn, by
(vi), and αn−1 < f−1n (αn) follows also from (vi).
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Proof of the Theorem. In view of the Lemma there are real numbers an, bn,
n = 1, 2, . . . , such that

(0, an) ⊆ An ⊆ (0, an] and (bn,∞) ⊆ Bn ⊆ [bn,∞). (12)

Also, for n large enough, more precisely for n such that αk ≥ c, k = n+ 1, n+
2, . . . , we have

αn−1 ≤ an ≤ bn ≤ f−1n (αn), and fn(an) = bn+1, fn(bn) = an+1, (13)

from which it follows that

bn − an
f−1n+1(c)

≤f
−1
n (αn)− αn−1

f−1n+1(c)
=
f−1n (αn)− f−1n (fn(αn−1))

f−1n+1(c)
=

f−1n (αn)− f−1n

(
f−1n+1(c)

)
f−1n+1(c)

.

(14)

By (i) we can also assume that

fn+2(c) ≥ c, or c ≤ f−1n+2(c), or f−1n+1(c) ≥ f−1n+1 ◦ f
−1
n+2(c) = αn.

f ′n and
(
f−1n

)′
are increasing functions taking only negative values, and so

|f ′n| = −f ′n and
∣∣∣(f−1n

)′∣∣∣ = −
(
f−1n

)′
are decreasing. An application of the

mean value theorem on the interval
[
αn, f

−1
n+1(c)

]
gives

f−1n (αn)− f−1n

(
f−1n+1(c)

)
≤
∣∣∣(f−1n

)′
(αn)

∣∣∣ (f−1n+1(c)− αn

)
<∣∣∣(f−1n

)′
(αn)

∣∣∣ f−1n+1(c).
(15)

Putting together (14) and (15) leads to

bn − an
f−1n+1(c)

<
∣∣∣(f−1n

)′
(αn)

∣∣∣ . (16)

Also, since bn ≤ f−1n (αn),

|f ′n(bn)| ≥
∣∣f ′n (f−1n (αn)

)∣∣ =
1∣∣∣(f−1n

)′
(αn)

∣∣∣ ,
and so by (iii),

lim
n→∞

|f ′n(bn)| =∞. (17)
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Let now p be a positive integer such that

fn+2(c) ≥ c, αn+1 ≥ c, and |f ′n(bn)| ≥ 2, n = p, p+ 1, . . . . (18)

Another application of the mean value theorem on [an, bn] yields

bn+1 − an+1 = |fn(bn)− fn(an)| ≥ |f ′n(bn)| |bn − an| ≥ 2(bn − an),

and by iteration,

bn − an ≥ 2n−p (bp − ap) , n = p, p+ 1, . . . . (19)

From (16) and (19) we get that

0 ≤ 2n−p(bp − ap)

f−1n+1(c)
<
∣∣∣(f−1n

)′
(αn)

∣∣∣ , n = p, p+ 1, . . . ,

and so, via (iii)

2−(p+1)(bp − ap) lim
n→∞

2n

f−1n (c)
= 0. (20)

(20) and (iv) finally give ap = bp, which by (13) and (ii) also leads to

an = bn, n = p, p+ 1, . . . , and lim
n→∞

an =∞. (21)

Since αp−1 =
(
f−1p ◦ f−1p+1

)
(c) and f−1p (αp) =

(
f−1p ◦ f−1p+1 ◦ f

−1
p+2

)
(c) are both

in the domain of f−11 ◦ · · · ◦ f−1p−1, if p > 1, so is the interval
[
αp−1, f

−1
p (αp)

]
.

Therefore,
(
f−1p ◦ · · · ◦ f−1p−1

)
(ap) exists, and then clearly

f−1p−1(ap) = ap−1, f
−1
p−2(ap−1) = ap−2, . . . , f

−1
1 (a2) = a1. (22)

Setting now c := a1, the Foias property follows, as the sequence xn+1 =
fn(xn), x1 = c, is the only one diverging to ∞. Furthermore,

αn−1 =
(
f−1n ◦ f−1n+1

)
(c) ≤ an ≤

(
f−1n ◦ f−1n+1 ◦ f

−1
n+2

)
(c) =

f−1n (αn), n = p, p+ 1, . . .

implies (
f−11 ◦ · · · ◦ f−1n−1

) (
f−1n ◦ f−1n+1

)
(c) ≤ c ≤(

f−11 ◦ · · · ◦ f−1n−1
) (
f−1n ◦ f−1n+1 ◦ f

−1
n+2

)
(c),

if n ≥ p is odd, since the composition of an even number of f−1k ’s is a strictly
increasing function. Thus,(

f−11 ◦ · · · ◦ f−12m

)
(c) ≤ c ≤

(
f−11 ◦ · · · ◦ f−12m+1

)
(c), for m ≥ p+ 1

2
. (23)
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Also, the even-term sequence
((
f−11 ◦ · · · ◦ f−12m

)
(c)
)
m

is increasing while the

odd-term sequence
((
f−11 ◦ · · · ◦ f−12m+1

)
(c)
)
m

is decreasing, for m sufficiently
large, as these claims are equivalent to α2m−2 ≥ c, respectively α2m−1 ≥ c.
Setting

c− := lim
m→∞

(
f−11 ◦ · · · ◦ f−12m

)
(c), and c+ := lim

m→∞

(
f−11 ◦ · · · ◦ f−12m+1

)
(c),

(24)
we have

c− ≤ c ≤ c+, (25)

and the proof of the Theorem will be complete if we can show that c− = c+.
By way of contradiction, assume c− 6= c+ and let, say, c′ be such that

c− ≤ c′ < c. Then

(f2m+1 ◦ · · · ◦ f1) (c′) > (f2m+1 ◦ · · · ◦ f1) (c) and

(f2m ◦ · · · ◦ f1) (c′) ≥ (f2m ◦ · · · ◦ f1) (c−) ≥
(f2m ◦ · · · ◦ f1)

(
f−11 ◦ · · · ◦ f−12m+2(c)

)
= α2m

(26)

(26) shows now that xn+1 = fn(xn), x1 = c′, also diverges to ∞, a contradic-
tion to the Foias property.

Remarks. 1) The exact value of the original Foias constant associated

to (5) is c =
1

1((
1

(··· )1/4
−1
)1/3

−1
)1/2 − 1

, while that associated to (6) is c =

1

ln 2
ln 3

···

. Also, thanks to the prowess of Wolfram Alpha [6] a 6-digit approxi-

mation of the latter is c = 1.375892.
2) It is possible to state a version of the Theorem without reference to the

set Σ. Notice that if the hypothesis (i) of the Theorem holds for some number
c > r, then αn is well-defined for n sufficiently large. Indeed, αn makes sense if
and only if f−1n+2(c) > r, or equivalently c < fn+2(r). Since fn+2(r) > fn+2(c),
the claim follows. If now the hypotheses (i) - (iv) are met one can calculate
first, as in the Theorem, the Foias number cn for the sequence of functions
(fn+k−1)

∞
k=1 for some integer n satisfying (vii), and then backtrack from cn

down to c1 = c via the formulas

cn−k = f−1n−k(cn−k+1), k = 1, 2, . . . , n− 1. (27)

Any c > r could then potentially work.
3) Just as in [2] one can prove that

lim
n→∞

xn lnn

n
= 1, (28)
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for the sequences (xn)
∞
n=1 given by (5) and (6), when x1 equals the corre-

sponding Foias numbers. π(n), the prime counting function [1], also satisfies
(28). It is therefore very tempting to inquire whether there are deeper rela-
tions between Foias sequences and π(n). The answer is a resolute no! If in the

Theorem it also happens that lim
n→∞

f−1n (αn)

αn−1
= 1, then lim

n→∞

xn
αn−1

= 1, when

x1 = c. A slight modification in example (6), namely fn(x) = e2n/x, gives

αn =
2(n+ 1)

ln 2(n+ 2)
, and then for the corresponding Foias sequence (xn)∞n=1 we

have lim
n→∞

xn lnn

n
= 2.

4) One can replace the sequence (fn)
∞
n=1 by a new sequence (f∗n)

∞
n=1, de-

fined by
f∗n(x) = fn(x)− r, (29)

The new functions continue to be strictly decreasing, with the same domain
and range, (0,∞), so the issue with the domain of a composition of inverses
disappears, an advantage. Under mild extra-hypotheses, (fn)n and (f∗n)n have
the Foias property simultaneously, so how do their numbers c and c∗ relate?
The answer is unknown to us! For comparison with 1), we include here the
Foias constant associated to the sequence derived from (6), namely c∗ =

1

ln

(
1 + 2

ln(1+ 3
ln(1+··· ) )

) ≈ 1.0097932.

5) There is an obvious visual analogy between Foias numbers and continued

fractions [3]. In fact, if f−1n (x) = un−1 +
vn
x

, n = 1, 2, . . . , x ∈ (0,∞), where

(un)
∞
n=1 and (vn)

∞
n=1 are pre-assigned sequences of positive real numbers, and

v0 = 0, then
(
f−11 ◦ · · · ◦ f−1n

)
(c) approximate the generalized continued frac-

tion
u1

v1 + u2

v2+
u3

v3+···

. A theorem of Sleszynski-Pringsheim [5] guarantees con-

vergence of this continued fraction if vn ≥ un+1, n = 1, 2, . . . . So, in a certain
sense the concept of Foias number generalizes the concept of continued frac-
tion.
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