In this article, a numerical study is reported on the equilibrium properties of a surface-emitted or edge-confined non-drifting plasma. A self-consistent finite-differences evaluation of the electrostatic potential is carried out for a non-neutral plasma that follows a Boltzmann density distribution.
The UNT College of Arts and Sciences educates students in traditional liberal arts, performing arts, sciences, professional, and technical academic programs. In addition to its departments, the college includes academic centers, institutes, programs, and offices providing diverse courses of study.
In this article, a numerical study is reported on the equilibrium properties of a surface-emitted or edge-confined non-drifting plasma. A self-consistent finite-differences evaluation of the electrostatic potential is carried out for a non-neutral plasma that follows a Boltzmann density distribution.
Physical Description
8 p.
Notes
Abstract: A numerical study is reported on the equilibrium properties of a surface-emitted or edge-confined non-drifting plasma. A self-consistent finite-differences evaluation of the electrostatic potential is carried out for a non-neutral plasma that follows a Boltzmann density distribution. The non-neutral plasma generates an electrostatic potential that has an extremum at the geometric center. Poisson’s equation is solved for different ratios of the non-neutral plasma size to the edge Debye length. The profiles of the electrostatic potential and the plasma density are presented for different values of that ratio. A second plasma species is then introduced for two-plasma-species confinement studies, with one species confined by the space charge of the other, while each species follows a Boltzmann density distribution. An equilibrium in which a neutral region forms is found. An equilibrium is also found in which the two species have equal temperatures and charge states.
This article is part of the following collection of related materials.
UNT Scholarly Works
Materials from the UNT community's research, creative, and scholarly activities and UNT's Open Access Repository. Access to some items in this collection may be restricted.
Pacheco, J. L.; Ordonez, Carlos A. & Weathers, Duncan L.Space-charge-based electrostatic plasma confinement involving relaxed plasma species,
article,
October 23, 2012;
(https://digital.library.unt.edu/ark:/67531/metadc1705447/:
accessed December 14, 2024),
University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu;
crediting UNT College of Arts and Sciences.