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ABSTRACT
A summary of closed-form expressions for the magnetic fields produced by rectangular- and circular-shaped finite-length solenoids and
current loops is provided altogether for easy reference. Each expression provides the magnetic field in all space, except locations where a
current of infinitesimal thickness is considered to exist. The closed-form expression for the magnetic field of a rectangular-shaped finite-
length solenoid is derived using the Biot–Savart law. Closed-form expressions for the magnetic fields of solenoids and current loops can be
used to avoid approximations in analytical models and may reduce computation time in computer simulations.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0010982., s

I. INTRODUCTION
Closed-form expressions are presented for the magnetic fields

generated by four electrical current configurations: rectangular and
circular finite-length solenoids and rectangular and circular current
loops. The expressions for the magnetic fields of rectangular finite-
length solenoids and rectangular current loops are written in terms
of elementary functions. The expressions for the magnetic fields of
circular finite-length solenoids and circular current loops are written
in terms of complete elliptic integrals and elementary functions. The
expressions presented here provide the magnetic field in all space,
except locations where current flows. The current is considered to be
of infinitesimal thickness for each of the configurations considered.
Various derivations of closed-form expressions for circular finite-
length solenoids and rectangular and circular current loops are avail-
able in the literature (see, for example, Refs. 1–5). The closed-form
expression presented here for the magnetic field generated by a rect-
angular finite-length solenoid has not been published previously, to
our knowledge.

Closed-form expressions for the magnetic fields of solenoids
and current loops have been used for developing analytical mod-
els and computer simulations (see, for example, Refs. 6–16). The
expressions presented here are in forms that may simplify analytic

or numerical calculations and are readily non-dimensionalized. The
expressions for the circular current loop and solenoid cannot be
reduced to elementary functions without loss of generality, but the
elliptic integrals have well defined properties and relations (see, for
example, Ref. 17). Furthermore, common forms of the elliptic inte-
grals are available in many numerical algorithm libraries (see, for
example, Ref. 18).

The closed-form expressions for the magnetic fields of rectan-
gular and circular finite-length solenoids and rectangular and cir-
cular current loops are summarized in Sec. II for easy reference.
Section III provides a derivation of the closed-form expression for
the magnetic field of a rectangular finite-length solenoid. A discus-
sion and conclusion are found in Sec. IV. Various definitions exist
for the complete elliptic integrals, and the definitions used here are
given in Appendix A. For completeness, Appendixes B–D provide
derivations of the closed-form expressions for the magnetic fields of
the rectangular current loop and the circular finite-length solenoid
and current loop.

II. SUMMARY OF CLOSED-FORM EXPRESSIONS
Hereafter, �0 is the permeability of free space, I is the current in

an infinitesimally thin wire that is wound in a rectangular or circular
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shape around the z axis of a Cartesian coordinate system to form
either a single-turn current loop or a multi-turn solenoid, and n is
the number of wire turns per unit length of a solenoid. The current
I is defined to be positive if current flows in the counterclockwise
direction when viewing a current loop or an entire solenoid from a
location on the z axis at z > 0.
A. Rectangular finite-length solenoid

For a rectangular finite-length solenoid that is centered at the
origin of a Cartesian coordinate system, with coordinates (x, y, z),
the magnetic field components are

Bx = B0

8π
1�
i=0

1�
j=0

1�
k=0
(−1)i+j+k ln�−[ y + ay(−1)j+1] + rijk[ y + ay(−1)j+1] + rijk

�, (1)

By = B0

8π
1�
i=0

1�
j=0

1�
k=0
(−1)i+j+k ln�−[x + ax(−1)i+1] + rijk[x + ax(−1)i+1] + rijk

�, (2)

Bz = B0

4π
1�
i=0

1�
j=0

1�
k=0
(−1)i+j+k+1

× tan−1� [x + ax(−1)i+1][z + az(−1)k+1][ y + ay(−1)j+1]rijk �
+
B0

4π
1�
i=0

1�
j=0

1�
k=0
(−1)i+j+k+1

× tan−1� [ y + ay(−1)j+1][z + az(−1)k+1][x + ax(−1)i+1]rijk �, (3)

where

rijk =�[x + ax(−1)i+1]2 + [ y + ay(−1)j+1]2 + [z + az(−1)k+1]2.
Here, B0 = �0In in SI units, and 2ax, 2ay, and 2az are the dimen-
sions of the solenoid in the x, y, and z dimensions, respectively. The

FIG. 1. Sketch of the rectangular solenoid geometry. The dotted lines are intended
to guide the eye.

magnitude of the magnetic field inside the solenoid in the limit of
infinite length, L = 2az →∞, is |B0|.

A sketch depicting the geometry is shown in Fig. 1. The field
magnitude is plotted at the axial center of an example solenoid, as
shown in Fig. 2, and at one axial edge of the solenoid, as shown
in Fig. 3. It is found that the field magnitude approaches azimuthal
symmetry at z = 0 inside and outside a square finite-length solenoid
in the limit az � ax = ay. It may seem counterintuitive that the con-
tours in Fig. 2 display an apparent azimuthal symmetry. Such an
apparent symmetry occurs near z = 0 inside a long square solenoid
because |Bx|� |Bz| and |By|� |Bz| near z = 0. Also, there exists an
approximate proportionality, �Bz � ∝ 1 + c�x2 + y2�, with constant
c, near z = 0. The near-azimuthal symmetry is reduced when away
from z = 0, for example, at the axial end of the solenoid, z = az , as
shown in Fig. 3. Furthermore, changing the geometry away from a
square geometry, with ax ≠ ay, changes the symmetry, as shown in
Fig. 4.

Notice in Figs. 2(b) and 3(b) that the plot lines are not contin-
uous at the locations x = ±ax and y = ±ay. The denominator of the
argument of each arctangent function in Eq. (3) contains either [y
+ ay(−1) j+1] or [x + ax(−1)i+1], which causes the argument of an arc-
tangent function to diverge when one of the conditions, x = ±ax or
y = ±ay, is met [the arctangent function itself does not diverge since

FIG. 2. Contour map of the normalized
magnetic field magnitude for the rectan-
gular solenoid at z = 0 (a) inside the
solenoid and (b) outside the solenoid.
Here, ax = ay = 0.5, and az = 10.0. The
normalized field magnitude is scaled by
a factor of 102 for display purposes.
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FIG. 3. Contour map of the normalized
magnetic field magnitude for the rectan-
gular solenoid at z = az (a) inside the
solenoid and (b) outside the solenoid.
Here, ax = ay = 0.5, and az = 10.0. The
normalized field magnitude is scaled by
a factor of 102 for display purposes.

tan−1(±∞) = ±π�2]. To avoid the issue with calculating the value of
a divergent argument, the following expression can be used in place
of Eq. (3):

Bz = B0

4π
1�
i=0

1�
j=0

1�
k=0
(−1)i+j+k+1������

y + ay(−1) j+1�
δ + [ y + ay(−1) j+1]2

× tan−1��
[x + ax(−1)i+1][z + az(−1)k+1]

rijk
�
δ + [ y + ay(−1) j+1]2

�
�
������

+
B0

4π
1�
i=0

1�
j=0

1�
k=0
(−1)i+j+k+1������

x + ax(−1)i+1�
δ + [x + ax(−1)i+1]2

× tan−1��
[ y + ay(−1) j+1][z + az(−1)k+1]

rijk
�
δ + [x + ax(−1)i+1]2

�
�
������. (4)

Here, δ is chosen to be a positive value that is sufficiently small to
have a negligible effect on a calculated value of Bz .

B. Circular finite-length solenoid
The magnetic field components for a cylindrical finite-length

solenoid that is centered at the origin of a cylindrical coordinate
system, with coordinates (r, θ, z), and that has an axis of symmetry
aligned with the z axis are

Br(r, θ, z) = B0

π

�
a

rm+
�E(m+) − �1 − m+

2
�K(m+)�

− B0

π

�
a

rm− �E(m−) − �1 −
m−
2
�K(m−)�, (5)

Bθ(r, θ, z) = 0, (6)

FIG. 4. Contour map of the normalized
magnetic field magnitude for the rectan-
gular solenoid at z = 0 (a) with ax = ay /2
and (b) with ax = ay /5. Comparison of
(a) and (b) with Fig. 2 shows how the
contours change with geometry. Here, ax
is varied, ay = 0.5, and az = 10.0. The
normalized field magnitude changes by≤ 0.1% between consecutive contour
lines.
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Bz(r, θ, z) = B0ζ+
4π

�m+

ar �K(m+) + �a − ra + r �Π(u,m+)�
− B0ζ−

4π

�m−
ar �K(m−) + �a − ra + r �Π(u,m−)�. (7)

Here, B0 = �0In in SI units. Furthermore, u = 4ar/(a + r)2, m+= 4ar��(a + r)2 + ζ2+�, m− = 4ar��(a + r)2 + ζ2−�, ζ+ = z + (L/2),
ζ− = z − (L/2), L and a are the length and radius of the solenoid,
respectively, and the complete elliptic integrals of the first, second,
and third kinds are given in Appendix A. Themagnitude of the mag-
netic field inside the solenoid in the limit of infinite length, L→∞,
is |B0|. A sketch depicting the geometry is shown in Fig. 5.

C. Rectangular current loop
For a rectangular current loop that is centered at the origin of

a Cartesian coordinate system, with coordinates (x, y, z), and that
resides in the z = 0 plane, the magnetic field components are

Bx = −ρB0z
4
� 1
r1(r1 − y − ay) −

1
r2(r2 − y − ay)

− 1
r3(r3 − y + ay) +

1
r4(r4 − y + ay)�, (8)

By = −ρB0z
4
� 1
r1(r1 − x − ax) −

1
r2(r2 − x + ax)

− 1
r3(r3 − x − ax) +

1
r4(r4 − x + ax)�, (9)

Bz = ρB0

4
� x + ax
r1(r1 − y − ay) +

y + ay
r1(r1 − x − ax) −

x − ax
r2(r2 − y − ay)

− y + ay
r2(r2 − x + ax) −

x + ax
r3(r3 − y + ay) −

y − ay
r3(r3 − x − ax)

+
x − ax

r4(r4 − y + ay) +
y − ay

r4(r4 − x + ax)�, (10)

where

ρ = 1�
a−2x + a−2y

, (11)

FIG. 5. Sketch of the circular solenoid geometry. The dotted lines are intended to
guide the eye.

and

B0 = �0I
�

a−2x + a−2y
π , (12)

in SI units. Here, 2ax and 2ay are the dimensions of the rectangular
current loop, and

r1 =�(x + ax)2 + (y + ay)2 + z2, (13)

r2 =�(x − ax)2 + (y + ay)2 + z2, (14)

r3 =�(x + ax)2 + (y − ay)2 + z2, (15)

r4 =�(x − ax)2 + (y − ay)2 + z2. (16)

The magnitude of the magnetic field at the coordinate origin is |B0|.
A sketch depicting the geometry is shown in Fig. 6.

D. Circular current loop
For a circular current loop that is centered at the origin of a

cylindrical coordinate system, with coordinates (r, θ, z), and that
has an axis of symmetry aligned with the z axis, the magnetic field
components are

Br(r, θ, z) = aB0z

πr
�(a + r)2 + z2

� a2 + r2 + z2

(a − r)2 + z2
E(m) − K(m)�,

(17)

Bθ(r, θ, z) = 0, (18)

Bz(r, θ, z) = aB0

π
�(a + r)2 + z2

� a2 − r2 − z2
(a − r)2 + z2

E(m) + K(m)�. (19)

FIG. 6. Sketch of the rectangular loop geometry.
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FIG. 7. Sketch of the circular loop geometry.

Here, B0 = �0I/(2a) in SI units, a is the radius of the current loop,
m = 4ar��(a + r)2 + z2�, and the complete elliptic integrals of the
first and second kinds are given in Appendix A. The magnitude of
the magnetic field at the coordinate origin is |B0|. A sketch depicting
the geometry is shown in Fig. 7.

III. RECTANGULAR FINITE-LENGTH SOLENOID
An infinitesimally thin wire carrying an electric current I is

wound in a rectangular shape around the z axis of a Cartesian
coordinate system with coordinates (x, y, z) to form a finite-length
solenoid. The solenoid has a height 2ay, width 2ax, and length 2az ,
with the geometrical center of the solenoid located at the coordinate
origin, as shown in Fig. 1. The magnetic field can be found from the
Biot–Savart law,

B = �0
4π �

∞
−∞ �

∞
−∞ �

∞
−∞

J × (r − rs)�r − rs�3 dxsdysdzs, (20)

where J is the current density.
The Cartesian components of the current density are written as

Jx(xs, ys, zs) = InΘ(az − zs)Θ(az + zs)Θ(ax − xs)Θ(ax + xs)
× [−δ(ay − ys) + δ(ay + ys)], (21)

Jy(xs, ys, zs) = InΘ(az − zs)Θ(az + zs)Θ(ay − ys)Θ(ay + ys)
× [δ(ax − xs) − δ(ax + xs)], (22)

Jz(xs, ys, zs) = 0. (23)

Here, Θ(x) is the Heaviside step function, which is equal to 1 for x≥ 0 and equal to 0 for x < 0, and δ(x) is the Dirac delta function.
Cartesian coordinates (xs, ys, zs) with s subscripts refer to source
points, and Cartesian coordinates (x, y, z) without subscripts refer
to field points.

The x and y components of the magnetic field are

Bx = �0
4π �

∞
−∞ �

∞
−∞ �

∞
−∞

(z − zs)Jy
[(x − xs)2 + (y − ys)2 + (z − zs)2]3�2

× dxsdysdzs, (24)

By = �0
4π �

∞
−∞ �

∞
−∞ �

∞
−∞

−(z − zs)Jx
[(x − xs)2 + (y − ys)2 + (z − zs)2]3�2

× dxsdysdzs, (25)

or

Bx = �0In
4π

1�
i=0(−1)

i � ay

−ay �
az

−az
× z − zs[(x + ax(−1)i+1)2 + (y − ys)2 + (z − zs)2]3�2 dzsdys, (26)

By = �0In
4π

1�
j=0(−1)

j

× � ax

−ax �
az

−az
z − zs[(x − xs)2 + (y + ay(−1)j+1)2 + (z − zs)2]3�2 dzsdxs.

(27)

The integrals over zs have the form

� b − zs[a2 + (b − zs)2]3�2 dzs =
1�

a2 + (b − zs)2 + c, (28)

where a, b, and c do not depend on the integration variable. Exclud-
ing locations where the current flows, themagnetic field components
become

Bx = �0In
4π

1�
i=0

1�
k=0
(−1)i+k

× � ay

−ay
dys�(x + ax(−1)i+1)2 + (y − ys)2 + (z + az(−1)k+1)2 ,

(29)

By = �0In
4π

1�
j=0

1�
k=0
(−1)j+k

× � ax

−ax
dxs�(x − xs)2 + (y + ay(−1)j+1)2 + (z + az(−1)k+1)2 .

(30)

Both integrals have the same form,

� dw�
a2 + (b −w)2 =

1
2

������ln
�
�1 −

b −w�
a2 + (b −w)2

�
�

− ln
�
�1 +

b −w�
a2 + (b −w)2

�
�
������ + c, (31)

or

� dw�
a2 + (b −w)2 =

1
2
ln
�
�
−(b −w) +�a2 + (b −w)2
+(b −w) +�a2 + (b −w)2

�
� + c.

(32)
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Applying to Eqs. (29) and (30) and defining

rijk =�[x + ax(−1)i+1]2 + [ y + ay(−1)j+1]2 + [z + az(−1)k+1]2,
(33)

result in the expressions given in Sec. II A.
The z component of the magnetic field is

Bz = �0
4π

× � ∞
−∞ �

∞
−∞ �

∞
−∞

(y − ys)Jx
[(x − xs)2 + (y − ys)2 + (z − zs)2]3�2 dxsdysdzs

+
�0
4π

× � ∞
−∞�

∞
−∞�

∞
−∞

−(x − xs)Jy
[(x − xs)2 + (y − ys)2 + (z − zs)2]3�2 dxsdysdzs,

(34)

which can be written as Bz = Bz1 + Bz2, where

Bz1 = �0In
4π

1�
j=0(−1)

j+1�y + ay(−1)j+1�
×� az

−az �
ax

−ax
1

[(x − xs)2 + (y + ay(−1)j+1)2 + (z − zs)2]3�2 dxsdzs,
(35)

Bz2 = �0In
4π

1�
i=0(−1)

i+1�x + ax(−1)i+1�
×� az

−az �
ay

−ay
1

[(x + ax(−1)i+1)2 + (y − ys)2 + (z − zs)2]3�2 dysdzs.
(36)

The inner integrals have the form

� 1
[a2 + (b −w)2]3�2 dw =

−(b −w)
a2
�
a2 + (b −w)2 + c, (37)

which, when substituted into the preceding expressions, gives

Bz1 = �0In
4π

1�
i,j=0(−1)

i+j�y + ay(−1)j+1��x + ax(−1)i+1�� az

−az
dzs

[(y + ay(−1)j+1)2 + (z − zs)2]�(x + ax(−1)i+1)2 + (y + ay(−1)j+1)2 + (z − zs)2 ,
(38)

Bz2 = �0In
4π

1�
i,j=0(−1)

i+j�x + ax(−1)i+1��y + ay(−1)j+1�� az

−az
dzs

[(x + ax(−1)i+1)2 + (z − zs)2]�(x + ax(−1)i+1)2 + (y + ay(−1)j+1)2 + (z − zs)2 .
(39)

The remaining integrals have the form

� dzs
(a2 + (z − zs)2)�a2 + b2 + (z − zs)2
= − 1

ab tan−1��
b(z − zs)

a
�
a2 + b2 + (z − zs)2

�
� + c, (40)

which, when substituted into Bz1 and Bz2, gives the result in
Sec. II A.

IV. DISCUSSION AND CONCLUSION
For the models used here for rectangular and circular multi-

turn solenoids, the current is considered to flow only in the
azimuthal direction, with no current flowing in the z direction. A
real multi-turn solenoid may not have current that flows only in the
azimuthal direction. For example, if a winding begins at one end
of the solenoid, the winding may form a helix such that the wire
reaches the other end. The effect of current flow in the z direc-
tion in a real solenoid may be reduced, for example, by increas-
ing the number of wire turns per unit length n, by having differ-
ent layers of windings alternate between being a right-handed helix
and a left-handed helix so that the wire is wound back and forth

along the length of the real solenoid, and by careful design of the
end windings to minimize end effects. However, real multi-turn
solenoids and even single-turn magnetic coils will have a current
path with finite thickness. In contrast, for all models used here
for solenoids and current loops, a current of infinitesimal thick-
ness is considered. Additionally, the corners in rectangular current
loops and solenoids are modeled here without the finite radius of
curvature present in the wire bends of real rectangular magnetic
coils.

The closed-form expressions presented here are for idealized
cases. The validity of an expression for representing a particular
real magnetic coil depends on many factors, including the specifica-
tions, tolerances, and materials used in the construction of the coil.
To assess the range of validity of a model used here for a solenoid
or current loop, when the model is to be used to represent a real
magnetic coil, the magnetic field that is calculated with a closed-
form expression can be compared to the magnetic field obtained by
measurement or by solving the Biot–Savart law numerically. Ideally,
such an assessment would be carried out before using the closed-
form expression in an analytical model of a physical system or in a
computer simulation (e.g., to reduce computation time). It should
also be noted that the use of superpositions of magnetic fields calcu-
lated with the closed-form expressions presented here may improve
the range of validity of a model that represents a real magnetic coil.
For example, to represent a real solenoid with finite thickness, an
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improvement over using a single solenoid model with infinitesimal
thickness may be to use two nested coaxial solenoids as the model,
with a difference in the solenoid radius equal to the thickness of the
real solenoid.

For all four current configurations that were considered here,
the associated closed-form expressions are exact solutions of the
Biot–Savart law and are expected to provide more accurate results
than solutions obtained by numerically solving the Biot–Savart law
for the same current configuration. A simple relationship that indi-
cates the validity of an expression used for estimating the magnetic
field of a representative real magnetic coil is not provided because
many aspects of a real coil can vary widely, including but not lim-
ited to the number of layers of windings, the wire’s pitch angle
per layer, the design of the end windings to minimize end effects,
the radius of curvature present in the wire bends of rectangular
magnetic coils, the wire cross section (e.g., if water cooled), the
electrical insulation thickness, the coil dimensions, and the speci-
fications, tolerances, and materials used for the construction of a
real magnetic coil. In addition, the validity of an expression used
for estimating the magnetic field of a representative real magnetic
coil depends on the location in space where the magnetic field is
calculated.

In summary, closed-form expressions have been provided for
themagnetic fields of rectangular and circular finite-length solenoids
and rectangular and circular current loops in Sec. II. Derivations
for the closed-form expressions have been provided in Sec. III and
Appendixes B–D. Closed-form expressions for the magnetic fields
of solenoids and current loops can be used for analytical models
(e.g., to avoid approximations) and for computer simulations (e.g.,
to potentially reduce computation time).
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APPENDIX A: DEFINITIONS USED FOR THE COMPLETE
ELLIPTIC INTEGRALS

The complete elliptic integrals of the first, second, and third
kinds are

K(m) = � π�2
0
�1 −m sin2 θ�−1�2dθ, (A1)

E(m) = � π�2
0
�1 −m sin2 θ�1�2dθ, (A2)

Π(u,m) = � π�2
0
(1 − u sin2 θ)−1�1 −m sin2 θ�−1�2dθ. (A3)

Relations between various forms of the elliptic integrals, their
derivatives, and limiting values are available (see, for example,
Ref. 17).

APPENDIX B: RECTANGULAR CURRENT LOOP
The current loop is approximated as an infinitesimally thin wire

that carries an electrical current and that forms a rectangle. The
expressions obtained for the magnetic vector potential and the mag-
netic field do not apply at the wire, where the current density is
infinite. An expression for the magnetic vector potentialA produced
by the rectangular current loop is derived by carrying out a closed
line integral,

A = �0I
4π � 1

Rdrs. (B1)

Here, drs is a position differential along the current path, where the
direction of drs can be parallel or antiparallel to the current and
is to be chosen based on the orientation of a coordinate system,
R = |r − rs|, where r is the vector position of a “field” point at a loca-
tion where the magnetic vector potential is to be evaluated, and rs is
the vector position of a “source” point at a location along the current
path.

A Cartesian coordinate system is defined such that the origin is
located at the geometric center of the rectangular current loop, the
z axis is normal to the plane in which the rectangular current loop
resides, and the x axis and the y axis are each parallel to two sides
of the rectangular current loop. Each side parallel to the x axis has
a length 2ax, and each side parallel to the y axis has a length 2ay.
The Cartesian coordinate system has unit vectors denoted by î, ĵ, k̂.
Cartesian coordinates (x, y, z) without subscripts refer to field points.
Cartesian coordinates (xs, ys, zs) with s subscripts refer to source
points. The expression for R is

R =�(x − xs)2 + (y − ys)2 + (z − zs)2. (B2)

The integral used to determine the magnetic vector potential is sepa-
rated into four sequential line integrals, one integral for each straight
segment of the rectangular current loop. The sequential line integrals
are carried out in the counterclockwise direction when viewing the z
= 0 plane from a location at z > 0. The result is written as

4πA
�0I
= ĵ� ay

−ay
dys�(x − ax)2 + (y − ys)2 + z2

+ î� −ax
ax

dxs�(x − xs)2 + (y − ay)2 + z2

+ ĵ� −ay
ay

dys�(x + ax)2 + (y − ys)2 + z2

+ î� ax

−ax
dxs�(x − xs)2 + (y + ay)2 + z2

. (B3)

The magnetic vector potential is written in terms of Cartesian
components as A = Ax î + Ay ĵ + Azk̂, where the z component is zero,
and Az = 0. The nonzero components are written as

Ax = −�0I4π
2�

m=1 γ(m)�
ax

−ax
dxs�(x − xs)2 + [y − γ(m)ay]2 + z2

, (B4)

Ay = �0I
4π

2�
m=1 γ(m)�

ay

−ay
dys�[x − γ(m)ax]2 + (y − ys)2 + z2

, (B5)
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where γ(1) = 1 and γ(2) = −1 or, equivalently, γ(m) = −(−1)m with
m restricted to having a value of either 1 or 2. The magnetic vector
potential is defined to within an arbitrary additive function so long
as the curl of the function equals zero. Each integral has the same
form, and the associated indefinite integral is evaluated to within an
additive constant. The result for the first integral is written as

� dxs�(x − xs)2 + [y − γ(m)ay]2 + z2

= ln�−(x − xs) +�(x − xs)2 + [y − γ(m)ay]2 + z2� + c, (B6)

where c is a constant. A similar result applies for the second integral.
The nonzero components of the magnetic vector potential are

Ax = −�0I4π
2�

m=1
2�

n=1 γ(m)γ(n)
× ln�−[x − γ(n)ax] +�[x − γ(n)ax]2 + [y − γ(m)ay]2 + z2�,

(B7)

Ay = �0I
4π

2�
m=1

2�
n=1 γ(m)γ(n)

× ln�−[y − γ(n)ay] +�[y − γ(n)ay]2 + [x − γ(m)ax]2 + z2�.
(B8)

The magnetic field of a rectangular current loop is evaluated
from the magnetic vector potential using B = ∇ × A. The result is
given in Sec. II C.

APPENDIX C: CIRCULAR FINITE-LENGTH SOLENOID
A wire carrying an electrical current is wound to form a finite-

length solenoid of a constant radius. The wire and solenoid wall
are each approximated as being infinitesimally thin. The expres-
sions obtained for the magnetic vector potential and the magnetic
field do not apply at the wire, where the current density is infinite.
An expression for the magnetic vector potential A produced by the
finite-length solenoid is derived by carrying out a surface integral,

A = �0In
4π � 1

RdSs. (C1)

Here, dSs is a surface differential along the current path, where the
direction of dSs is either parallel or antiparallel to the current and is
to be chosen based on the orientation of a coordinate system, I is the
current carried by the wire, where I is positive if the current is in the
same direction as dSs and I is negative if the current is opposite to the
direction of dSs, n is the number of wire turns per unit length of the
solenoid, �0 is the permeability of free space, R = |r − rs|, where r is
the vector position of a “field” point at a location where the magnetic
vector potential is to be evaluated, and rs is the vector position of a
“source” point at a location along the current path.

Three coordinate systems are defined, consisting of a Carte-
sian coordinate system and two cylindrical coordinate systems. For

each coordinate system, the origin is located at the geometric cen-
ter of the finite-length solenoid, and the z axis is coincident with
the axis of symmetry of the finite-length solenoid. The Cartesian
coordinate system has unit vectors denoted by î, ĵ, k̂, and the two
cylindrical coordinate systems have unit vectors denoted by r̂, θ̂, k̂
and r̂s, θ̂s, k̂. All three unit vectors parallel to the z axis point in the
same direction, and the same symbol k̂ is used to denote each of
them. Different symbols are used to denote radial and azimuthal unit
vectors associated with field and source vectors. Cartesian coordi-
nates (x, y, z) and cylindrical coordinates (r, θ, z) without subscripts
refer to field points. Cartesian coordinates (xs, ys, zs) and cylindrical
coordinates (rs, θs, zs) with s subscripts refer to source points. The
usual orientation is used for the cylindrical coordinate systems rela-
tive to the Cartesian coordinate system. For example, the azimuthal
angle θ is zero for a field point on the y = 0 plane with x > 0,
and the azimuthal angle increases according to the right-hand rule.
Therefore, the following relations apply:

x = r cos θ, y = r sin θ, (C2)

xs = rs cos θs, ys = rs sin θs. (C3)

The current path forms a shell of a constant radius,

rs = a, (C4)

where a denotes the radius of the finite-length solenoid. Because of
the cylindrical symmetry of the configuration, the magnetic vector
potential expressed in terms of cylindrical coordinates (r, θ, z) will
not be a function of θ, and the magnetic vector potential is evaluated
at

θ = 0. (C5)

The expression for R is

R =�(x − xs)2 + (y − ys)2 + (z − zs)2
=�a2 + r2 + (z − zs)2 − 2ar cos θs. (C6)

The source unit vectors perpendicular to k̂ are related to Carte-
sian unit vectors by

r̂s = cos θs î + sin θs ĵ, θ̂s = − sin θs î + cos θs ĵ. (C7)

Using conventional practice, the surface differential for the source is
written as dSs = ±rs drs dθsk̂ ± rsdθsdzsr̂s ± dzsdrsθ̂s. With rs = a, the
differential of rs is zero, drs = 0, and dSs = ±adθsdzsr̂s. By follow-
ing conventional practice, the direction of the surface differential for
the source is in the ±r̂s direction, which is normal to the differen-
tial surface area. In the present work, the direction of the surface
differential is chosen to be θ̂s instead; hence, dSs = adθsdzsθ̂s. The
current-carrying wire is considered to be wound in the azimuthal
direction, and I is positive or negative if the current is in the θ̂s or −θ̂s
direction, respectively. The source surface differential in cylindrical
coordinates is

dSs = a dθs dzsθ̂s = −a sin θs dθs dzs î + a cos θs dθs dzs ĵ. (C8)
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The magnetic vector potential is

A(r, θ, z)�θ=0 = �0Ina
4π � L�2

−L�2
��������

π

−π
− sin θs dθs î�

a2 + r2 + (z − zs)2 − 2ar cos θs
+ � π

−π
cos θs dθs ĵ�

a2 + r2 + (z − zs)2 − 2ar cos θs
�������
dzs, (C9)

where L is the length of the solenoid. The integrand of the first inner
integral is an odd function of the integration variable θs, and the first
inner integral equals zero. The integrand of the second inner integral
is an even function of the integration variable θs, and the second
inner integral can be evaluated by integrating over positive values of
the integration variable and multiplying the integral by a factor of
two. In addition, at θ = 0, the equality θ̂ = ĵ applies,
A(r, θ, z)�θ=0 = �0Ina2π

×� L�2
−L�2 �

π

0

cos θs dθs θ̂�
a2 + r2 + (z − zs)2 − 2ar cos θs dzs.

(C10)

In terms of cylindrical components, the magnetic vector potential is
written asA = Ar r̂+Aθθ̂+Azk̂. The system is cylindrically symmetric,
and the finding Ar = Az = 0 at θ = 0 also applies for nonzero values
of θ. The only nonzero component of the magnetic vector potential
is

Aθ(r, θ, z) = �0Ina2π

×� L�2
−L�2 �

π

0

cos θs�
a2 + r2 + (z − zs)2 − 2ar cos θs dθs dzs.

(C11)

The integral over zs is evaluated by carrying out a change in the inte-
gration variable: ζ = z − zs, zs = z − ζ, dzs = −dζ, ζ− = ζ(zs = L/2)
= z − (L/2), ζ+ = ζ(zs = −L/2) = z + (L/2), and (z−zs)2 = ζ2. Carrying
out the change in the integration variable yields,

Aθ(r, θ, z) = �0Ina
2π � ζ+

ζ− �
π

0

cos θs�
a2 + r2 + ζ2 − 2ar cos θs dθs dζ.

(C12)
The magnetic field of a finite-length solenoid is evaluated from

the magnetic vector potential,A = Aθ(r, θ, z)θ̂, using B =∇ ×A. The
magnetic vector potential is defined to within an arbitrary additive
function so long as the curl of the function equals zero. In terms
of cylindrical components, the magnetic field is written as B = Br r̂
+ Bθθ̂ + Bzk̂, where

Br(r, θ, z) = −@Aθ(r, θ, z)
@z , (C13)

Bθ(r, θ, z) = 0, (C14)

Bz(r, θ, z) = Aθ(r, θ, z)
r +

@Aθ(r, θ, z)
@r . (C15)

The radial component of the magnetic field is evaluated as

Br(r, θ, z) = −@Aθ
@ζ

@ζ
@z = −@Aθ

@ζ

= −�0Ina
2π � ζ+

ζ− �
π

0

�
�
@

@ζ
cos θs�

a2 + r2 + ζ2 − 2ar cos θs
�
�

× dθs dζ. (C16)

Evaluating the partial derivative and reversing the order of integra-
tion yield,

Br(r, θ, z) = �0Ina
2π � π

0
� ζ+

ζ−
ζ cos θs

(a2 + r2 + ζ2 − 2ar cos θs)3�2 dζ dθs.
(C17)

The quantity, a2 + r2 − 2ar cos θs, is positive because the smallest
value occurs when cos θs = 1, for which a2 + r2 − 2ar = (a − r)2.
Evaluation of the inner integral yields

Br(r, θ, z) = −�0Ina2π � π

0

������
1�

a2 + r2 + ζ2 − 2ar cos θs
������
ζ+

ζ−
cos θs dθs,

(C18)
where

������
1�

a2 + r2 + ζ2 − 2ar cos θs
������
ζ+

ζ−
= 1�

a2 + r2 + ζ2+ − 2ar cos θs
− 1�

a2 + r2 + ζ2− − 2ar cos θs .
(C19)

More generally, the following notation is used hereafter:

[ f (x)]x+x− = f (x+) − f (x−). (C20)

Here, f (x) is a real function of a real parameter x, which has values
x− and x+, with x+ > x−. With such a notation, the radial component
of the magnetic field is equivalently written as

Br(r, θ, z) = −�0Ina2π

�������
π

0

cos θs�
a2 + r2 + ζ2 − 2ar cos θs dθs

������
ζ+

ζ−
. (C21)

Integration gives (see, for example, Ref. 1)

Br(r, θ, z) = �0In
π �
�

a
rm(ζ)�E(m(ζ)) − �1 − m(ζ)

2
�K(m(ζ))��ζ+

ζ−
,

(C22)
where

m(ζ) = 4ar
(a + r)2 + ζ2

, (C23)

and the complete elliptic integrals of the first and second kinds are
given in Appendix A.

An expression for Bz(r, θ, z) is now obtained starting with
Eq. (C12). Note from Eq. (C15) that there are two terms to be
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evaluated. Equation (C12) with the order of integration reversed is

Aθ(r, θ, z) = �0Ina
2π � π

0
� ζ+

ζ−
1�

a2 + r2 + ζ2 − 2ar cos θs dζ cos θs dθs.

(C24)
The inner integral is simplified further by carrying out a second
change in the integration variable:w = ζ/χ, χ =√a2 + r2 − 2ar cos θs,
ζ = wχ, dζ = χdw, w− = w(ζ = ζ−) = ζ−�χ, w+ = w(ζ = ζ+) = ζ+�χ,
ζ2 = w2χ2, and

�
a2 + r2 + ζ2 − 2ar cos θs = �χ2 + ζ2 = χ

√
1 +w2;

this results in

Aθ(r, θ, z) = �0Ina
2π � π

0
� w+

w−
1√

1 +w2
dw cos θs dθs. (C25)

Evaluation yields

Aθ(r, θ, z) = �0Ina2π � π

0
ln
�
�
ζ+ +
�
ζ2+ + a2 + r2 − 2ar cos θs

ζ− +
�
ζ2− + a2 + r2 − 2ar cos θs

�
�

× cos θs dθs. (C26)

Let

u(θs) = ln��
ζ+ +
�
ζ2+ + a2 + r2 − 2ar cos θs

ζ− +
�
ζ2− + a2 + r2 − 2ar cos θs

�
�, (C27)

v(θs) = sin θs. (C28)

Integration by parts gives

Aθ(r, θ, z) = �0Ina
2π � π

0
u(θs) v′(θs)dθs

= �0Ina
2π �u(π)v(π) − u(0)v(0) −�

π

0
u′(θs) v(θs)dθs�.

(C29)

With u(π)v(π) − u(0)v(0) = 0,

Aθ(r, θ, z) = �0Ina
2π � π

0
� ar sin2 θs
a2 + r2 − 2ar cos θs �

× ������
ζ�

ζ2 + a2 + r2 − 2ar cos θs
������
ζ+

ζ−
dθs. (C30)

Equation (C30) divided by r is the first term on the right in
Eq. (C15) and is to be added to another integral that represents the
second term on the right in Eq. (C15). Equation (C26) is written
equivalently as

Aθ(r, θ, z) = �0Ina2π ��
π

0
ln�ζ +�ζ2 + a2 + r2 − 2ar cos θs�

× cos θs dθs�ζ+
ζ−
. (C31)

The second term on the right in Eq. (C15) is

@Aθ(r, θ, z)
@r = �0Ina

2π ��
π

0
� @
@r ln�ζ +

�
ζ2 + a2 + r2 − 2ar cos θs�� cos θs dθs�ζ+

ζ−

= �0Ina
2π

�������
π

0

�
�

ζ(a cos θs − r)
(a2 + r2 − 2ar cos θs)�ζ2 + a2 + r2 − 2ar cos θs +

r − a cos θs
a2 + r2 − 2ar cos θs

�
� cos θs dθs

������
ζ+

ζ−

= �0Ina
2π � π

0

������
ζ(a cos θs − r)

(a2 + r2 − 2ar cos θs)�ζ2 + a2 + r2 − 2ar cos θs
������
ζ+

ζ−
cos θs dθs, (C32)

where

� r − a cos θs
a2 + r2 − 2ar cos θs �

ζ+

ζ−
= 0 (C33)

has been used due to having no ζ dependence. An equivalent
expression is

@Aθ(r, θ, z)
@r = −�0Ina

2π � π

0
� cos θs(r − a cos θs)a2 + r2 − 2ar cos θs �

× ������
ζ�

ζ2 + a2 + r2 − 2ar cos θs
������
ζ+

ζ−
dθs. (C34)

Substituting Eqs. (C30) and (C34) into Eq. (C15), and noting
the equality, a sin2 θs − cos θs(r − a cos θs) = a − r cos θs, gives

Bz(r, θ, z) = �0Ina
2π � π

0
� a − r cos θs
a2 + r2 − 2ar cos θs �

× ������
ζ�

ζ2 + a2 + r2 − 2ar cos θs
������
ζ+

ζ−
dθs. (C35)

The integral is evaluated by carrying out a change in the integration
variable and treating the range of possible θs values to be 0 ≤ θs ≤ π:
t = cos θs, θs = arccos t, dθs = �−1�√1 − t2�dt, t(θs = 0) = 1, and t(θs
= π) = −1. Carrying out the change in the integration variable, the
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resulting equation can be written as

Bz(r, θ, z) = �0Ina
2π ��

1

−1�
a − rt

a2 + r2 − 2art �
× ζ�

ζ2 + a2 + r2 − 2art �
1√
1 − t2 �dt

������
ζ+

ζ−
. (C36)

Evaluation yields (see, for example, Ref. 1)

Bz(r, θ, z) = �0In
4π

������ζ
�

m(ζ)
ar �K(m(ζ)) + �a − ra + r �Π(u,m(ζ))�

������
ζ+

ζ−
,

(C37)
where

u = 4ar(a + r)2 , (C38)

and the complete elliptic integral of the third kind is given in
Appendix A.

APPENDIX D: CIRCULAR CURRENT LOOP
A wire that carries an electrical current and that forms a cir-

cle is approximated as being infinitesimally thin. The expressions
obtained for the magnetic vector potential and the magnetic field do
not apply at the wire, where the current density is infinite. An expres-
sion for the magnetic vector potential A produced by the circular
current loop is derived by carrying out a closed line integral,

A = �0I
4π � 1

Rdrs. (D1)

Here, drs is a position differential along the current path, where the
direction of drs can be parallel or antiparallel to the current and is to
be chosen based on the orientation of a coordinate system, I is the
current carried by the wire, where I is positive if the current is in the
same direction as drs and I is negative if the current is opposite to
the direction of drs, �0 is the permeability of free space, R = |r − rs|,
where r is the vector position of a “field” point at a location where
the magnetic vector potential is to be evaluated, and rs is the vector
position of a “source” point at a location along the current path.

Three coordinate systems are defined, consisting of a Cartesian
coordinate system and two cylindrical coordinate systems. For each
coordinate system, the origin is located at the geometric center of the
circular current loop, and the z axis is normal to the plane in which
the current loop resides. The Cartesian coordinate system has unit
vectors denoted by î, ĵ, k̂, and the two cylindrical coordinate systems
have unit vectors denoted by r̂, θ̂, k̂ and r̂s, θ̂s, k̂. All three unit vectors
parallel to the z axis are parallel to one another, and the same symbol
is used to denote each of them. Different symbols are used to denote
radial and azimuthal unit vectors associated with field and source
vectors. Cartesian coordinates (x, y, z) and cylindrical coordinates (r,
θ, z) without subscripts refer to field points. Cartesian coordinates
(xs, ys, zs) and cylindrical coordinates (rs, θs, zs) with s subscripts
refer to source points. The usual orientation is used for the cylindri-
cal coordinate systems relative to the Cartesian coordinate system.

For example, the azimuthal angle θ is zero for a field point on the y
= 0 plane with x > 0, and the azimuthal angle increases according to
the right-hand rule. Therefore, the following relations apply:

x = r cos θ, y = r sin θ, (D2)

xs = rs cos θs, ys = rs sin θs. (D3)

The current path forms a circle, and two cylindrical coordinates
are constants,

rs = a, zs = 0. (D4)

Here, a denotes the radius of the circular current loop. Because of
the cylindrical symmetry of the configuration, the magnetic vector
potential expressed in terms of cylindrical coordinates (r, θ, z) will
not be a function of θ, and the magnetic vector potential is evaluated
at

θ = 0. (D5)

The expression for R is

R =�(x − xs)2 + (y − ys)2 + (z − zs)2 =�a2 + r2 + z2 − 2ar cos θs.
(D6)

The source unit vectors perpendicular to k̂ are related to Carte-
sian unit vectors by

r̂s = cos θs î + sin θs ĵ, θ̂s = − sin θs î + cos θs ĵ. (D7)

With two cylindrical source coordinates being constant, rs = a and
zs = 0, the source position differential in cylindrical coordinates is

drs = drs r̂s+rs dθs θ̂s+dzs k̂ = a dθs θ̂s = −a sin θs dθs î+a cos θs dθs ĵ,
(D8)

where drs = 0 and dzs = 0 have been used. The magnetic vector
potential is

A(r, θ, z)�θ=0 = −�0Ia4π �
π

−π
sin θs dθs î√

r2 + a2 + z2 − 2ra cos θs
+

�0Ia
4π �

π

−π
cos θs dθs ĵ√

r2 + a2 + z2 − 2ra cos θs . (D9)

The integrand of the first integral is an odd function of the inte-
gration variable, and the first integral equals zero. The integrand of
the second integral is an even function of the integration variable,
and the second integral can be evaluated by integrating over positive
values of the integration variable and multiplying the integral by a
factor of two. In addition, at θ = 0, the equality θ̂ = ĵ applies,

A(r, θ, z)�θ=0 = �0Ia
2π �

π

0

cos θs dθs θ̂√
r2 + a2 + z2 − 2ra cos θs . (D10)

In terms of cylindrical components, the magnetic vector potential is
written asA = Ar r̂+Aθθ̂+Azk̂. The system is cylindrically symmetric,
and the finding Ar = Az = 0 at θ = 0 also applies for nonzero values
of θ. The only nonzero component of the magnetic vector potential
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is

Aθ(r, θ, z) = �0Ia
2π �

π

0

cos θs dθs√
r2 + a2 + z2 − 2ra cos θs . (D11)

For given values of r and a, the smallest value of the quantity, r2 + a2
+ z2 − 2ra cos θs, is greater than or equal to zero because the smallest
value occurs when cos θs = 1 and z = 0 for which r2 + a2 − 2ra = (a− r)2. The integral is evaluated to be

Aθ(r, θ, z) = �0I
2πr
�
�
�a2 + r2 + z2�K(m)�(a + r)2 + z2

−�(a + r)2 + z2 E(m)��,
(D12)

where

m = 4ar
(a + r)2 + z2

, (D13)

and the complete elliptic integrals of the first and second kinds
are given in Appendix A. The magnetic vector potential is defined
to within an arbitrary additive function so long as the curl of the
function equals zero.

The magnetic field of a circular current loop is evaluated from
the magnetic vector potential, A = Aθ(r, θ, z)θ̂, using B = ∇ × A.
In terms of cylindrical components, the magnetic field is written as
B = Br r̂ +Bθθ̂+Bzk̂. The cylindrical components are (see, for exam-
ple, Ref. 3)

Br(r, θ, z) = �0I
2π

z
r

1�(a + r)2 + z2
� a2 + r2 + z2

(a − r)2 + z2
E(m) − K(m)�,

(D14)

Bθ(r, θ, z) = 0, (D15)

Bz(r, θ, z) = �0I
2π

1�(a + r)2 + z2
� a2 − r2 − z2
(a − r)2 + z2

E(m) + K(m)�.
(D16)
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