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Students in introductory physics courses frequently struggle with various aspects of energy analyses.

We argue that inconsistencies and errors in the traditional treatment of energy contribute to these

student confusions. As an alternative to creating multiple activities to ameliorate student difficulties,

we describe a more coherent, contemporary approach to the teaching of energy that offers students a

principled way to avoid confusions. VC 2019 Author(s). All article content, except where otherwise noted, is licensed

under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
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I. INTRODUCTION

Inconsistencies are common in the theoretical framework
for energy in the traditional introductory calculus-based
physics curriculum, and these inconsistencies may cause diffi-
culties for students who are learning about energy.1,2 The
work-energy theorem, which is derivable from Newton’s sec-
ond law, is often not distinguished from the true energy equa-
tion; as a result, students may choose an inappropriate
equation to start a problem.3 The terms “conserved” and
“constant” are often used interchangeably; as a result, students
may believe that conservation of energy is not general.4 The
choice of the system, though recognized to be important in
free-body analyses, is often not given adequate attention in
energy analyses, where potential energy may be erroneously
ascribed to a single object rather than to a pair of interacting
objects within a system; as a result, students may double-
count work and DU terms. Binding energies, which are posi-
tive numbers, are not carefully defined as the energy required
to dissociate a system, and so students are often puzzled that
KþU for a bound system (such as a planet orbiting a star) is
a negative number. An arbitrary constant is often added to
potential energy (although in the larger relativistic context this
is not possible); this can aggravate confusion about the signs
of potential energy terms. Paradoxes occur when friction (a
dissipative phenomenon involving deformable systems) is
invoked while modeling objects as point particles (which are
not deformable and have no internal degrees of freedom).
Despite the fact that friction forces are, at a fundamental level,
conservative interatomic electric forces, they are often labeled
“non-conservative,” leaving students wondering if electric
forces must also be “non-conservative.” Rather than attempt-
ing to add activities that give students practice in dealing with
such confusions, we advocate a restructuring of the energy
component of the introductory physics curriculum in a manner
that is coherent, consistent, and contemporary, and which
empowers students to analyze interesting phenomena such as
fission and fusion simply by applying fundamental principles.

II. TOO MANY ENERGY EQUATIONS

For a student, it can be bewildering that there seem to be
several different fundamental energy equations: the “work-
energy theorem,” the “first law of thermodynamics” used in

the thermal physics context, and the essentially nameless
true energy equation used in the mechanics course. By being
explicit about whether a system is modeled as a point parti-
cle or an extended system with internal degrees of freedom,
it is possible to reduce this list to just one equation.

A. The work-energy theorem

Energy is often introduced in the context of the “work-
energy theorem” which is actually a path integral of
Newton’s second law and fundamentally deals with momen-
tum, not energy. Starting from Newton’s second law applied
to a multiparticle system, d~pcm=dt ¼ ~Fnet, and integrating
through the displacement of the center of mass, one obtains
the nonrelativistic form of the work-energy theorem
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This equation tells us that the change in translational
kinetic energy of a system is equal to the net force applied to
the system acting through the displacement of the center of
mass of the system. One can derive the work-energy theorem
by starting from the components of d~pcm=dt ¼ ~Fnet and
obtain the following:
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The sum of these three equations yields the work-energy
theorem. The fact that there are three separately valid com-
ponent equations makes it clear that the work-energy theo-
rem, despite its name, is basically a momentum equation, not
an energy equation. Further evidence for this point of view is
that there is no internal energy term in the work-energy theo-
rem. It only predicts the change in the translational kinetic
energy of the system, independent of rotational, vibrational,
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or thermal energy changes. Note that in these equations, the
relevant displacement is that of the center of mass, which
may or may not be equal to the displacement of the point of
action of each individual force on the system.

B. The energy principle

There does not seem to be a widely accepted name for the
true energy equation in the context of the introductory mechan-
ics course; this equation relates the change in the total energy
of a system to the energy inputs to the system from the sur-
roundings. We choose to give the true energy equation the
name used by Fred Reif, the “Energy Principle.” It cannot be
derived from d~p=dt ¼ ~Fnet but rather is the fruit of nearly 200
years of experimental and theoretical work. It has the following
form, where Esys is the energy of the chosen system, and energy
transfers can be in the form of mechanical work, thermal
energy transfer (microscopic work), radiation, etc.:

DEsys ¼
X�ð

~Fi � d~ri

�

þ other energy inputs from surroundings: (5)

In the Energy Principle, the mechanical work done on the
system by the surroundings is calculated by summing the
work done by each individual force,

Ð
~Fi � d~ri. If the dis-

placements of the individual forces are not the same as d~rcm,
the right side of the work-energy theorem, which is some-
times called “pseudowork,” will not be equal to the work
term in the Energy Principle.5,6 In 2008, John Jewett pub-
lished a useful five-part tutorial on these matters in The
Physics Teacher.7–11

Figure 1 illustrates a simple example: pull on the left and
right ends of a spring with your left and right hands, with each
hand applying a force of the same magnitude. Applying the
Energy Principle to the extended system of the spring, your
left hand does positive work and your right hand also does
positive work; the net input of energy has the effect of increas-
ing the potential energy of the spring (which is a deformable
multiparticle system and can have potential energy associated
with the interactions of the atoms within the system).

In contrast, applying the work-energy theorem (thus
modeling the system as a point particle, Fig. 2), we find that
the net force on the system is zero and acts through a zero
displacement of the center of mass, which correctly yields
zero change in the translational kinetic energy.

Similarly, consider pushing to the right at the top of a disk
rotating on a horizontal low-friction axle and simultaneously

pushing with the same force to the left on the bottom of the
disk. Both hands do positive work to increase the rotational
kinetic energy of the disk modeled as an extended system,
but the net force and the displacement of the center of mass
are both zero, in agreement with the fact that the transla-
tional kinetic energy of the rotationally accelerating disk
remains zero.

C. Conservation of energy

The most general statement of the Energy Principle
emphasizes that energy is always a conserved quantity,
where Esurr is the energy of the surroundings

DEsys þ DEsurr ¼ 0: (6)

This is a proper statement of conservation of energy, and
one says that energy is a conserved quantity. It is not uncom-
mon, but incorrect, to speak of the energy in an inelastic col-
lision as not being “conserved” when in fact what is meant is
that the kinetic energy did not remain constant; energy is
always a conserved quantity.

In a situation where DEsys¼ 0, this is simply the energy
principle applied to an isolated system. If one applies the
energy principle only to isolated systems, students may con-
fuse the more general conservation of energy with the spe-
cific case where the energy of a system is constant. When
students study special relativity in later physics courses, it
will be useful to distinguish between the separate ideas con-
served, constant, and invariant.

D. Point-particle vs extended-system models

Beginning students have difficulty making fine distinc-
tions, and it is unfortunate that the work-energy theorem and
the Energy Principle may look rather similar to the student.
A more vivid way of keeping them distinct is to apply the
same Energy Principle to two different models of a system:
first, the actual multiparticle “extended” system, and second,
a point-particle system located initially at the center of mass
of the extended system, with the same mass and same cen-
ter-of-mass velocity and acted on by the same net force as
the extended system. The point-particle system’s motion will
be exactly the same as the motion of the center of mass of
the extended system, but the only change in its energy will
be translational kinetic energy, and because all of the forces
act through the displacement of the point particle, the work
done on the point particle may be different from the mechan-
ical work done on the extended system, as in the case of the
spring discussed above.

The kinetic energy of a multiparticle system can usefully
be written as a sum of translational kinetic energy and
kinetic energy relative to the center of mass, including rota-
tional and vibrational kinetic energy

Ktotal ¼ Ktranslation þ Krelative: (7)

Changes in translational kinetic energy can be calculated
by applying the Energy Principle to the system modeled as a
point-particle, thereby evaluating one of the terms in the
Energy Principle that is applied to the extended system

DKtranslation ¼
ð
~Fnet � d~rcm: (8)

Fig. 1. Equal and opposite forces applied to the ends of a spring, modeled as

an extended (multiparticle) system.

Fig. 2. Equal and opposite forces applied to the ends of a spring, now mod-

eled as a point particle.
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By learning to apply the energy principle separately to the
point-particle model and the extended-system model, students
gain experience in a valuable aspect of doing physics-
modeling. They learn to define the model, identify assump-
tions inherent in the model, and recognize limitations of the
model.12

III. CHOICE OF THE SYSTEM AND POTENTIAL

ENERGY

All approaches to problems involving freebody diagrams
emphasize the importance of careful definition of the chosen
system, but often there is less care when doing energy analy-
ses, where the choice of the system is just as important. The
key issue is that potential energy is a kind of internal
energy—it is a property of an interaction between two
objects within a system; a system of a single particle does
not have potential energy.

Consider the case of a rock falling a distance h near the
surface of the Earth. If we choose the rock alone as the sys-
tem, the Earth is part of the surroundings and can do work on
the rock (Fig. 3). In this case, the work done by the Earth is
þmgh, and so

DKsys ¼ W ¼ þmgh: (9)

Alternatively, if we choose the rock plus the Earth as the
system, negligible work is done by the surroundings, and
energy flows between kinetic energy and potential energy
within the system (Fig. 4). The potential energy change in
the (rockþEarth) system is

DU ¼ DðmgyÞ ¼ �mgh; (10)

and so

DKsys þ�mgh ¼ 0: (11)

Either choice of the system will give the appropriate result
for DKsys (the kinetic energy change of the Earth is negligi-
ble). However, it is not uncommon to say that the rock has
potential energy mgy and that its kinetic energy increases as
its potential energy decreases, DKþD(mgy)¼ 0. Given this
confusion, it is quite reasonable for the careful student who
knows about potential energy and about work to include
both entities and say DKþD(mgy)¼W¼mgh, thereby
double-counting and getting an incorrect result.

A clearer approach is to emphasize that a single object
(the rock in this case) does not have potential energy.
Potential energy is a function of the relative positions of two
interacting objects and might well be called “configurational
energy.”

The concept of the system can be further elaborated by
discussing how the form of the Energy Principle changes for
different choices of the system (and surroundings), using as
an example a woman lifting and accelerating a barbell,
choosing the system to be the woman, barbell, and Earth,
then the barbell alone, and then the barbell and the Earth.
Similarly, it is useful to show how the form of the Energy
Principle changes when the system is viewed in a moving
reference system, in which case each individual energy and
work term changes yet the Energy Principle is still valid.

It can be very useful to engage students in making graphs
of kinetic, potential, and total mechanical energy in systems
that include gravitational orbits and in hanging spring-mass
systems in arbitrary 3D motion. In the case of orbits and
electric interactions, it is useful to have students plot ener-
gies not only as a function of separation distance, which is
the most common presentation, but also as a function of time
(Fig. 5). Graphs of K, U, and KþU as a function of time
make clear the flow of energy within a multi-object system.
Graphs of energy vs. separation distance make it easy for
students to identify bound states as states with negative
potential energy and total mechanical energy.

A natural extension is to introduce the basic aspects of dis-
crete energy levels in microscopic systems, with emphasis
on graphs indicating energy levels and transitions between
levels. Working with energy graphs and discrete energy lev-
els in the introductory course provides a foundation for the
understanding of such graphs in the later modern physics and
quantum mechanics courses.

IV. ENERGY IN THE RELATIVISTIC CONTEXT

There are several pedagogical advantages to embedding
introductory mechanics in the larger relativistic framework,
by explicitly including the concept of rest energy. It makes it
possible to engage students in analyzing interesting particle
reactions such as neutron decay, fission reactions, and fusion
reactions (providing an interesting context for the application
of electric potential energy). It can also help students become
comfortable with the negative sign of potential energy terms.

Einstein’s theory predicts and the results of experiments
confirm that the total energy of a single particle is Eparticle

¼ cmc2, where c ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c2

p
. This particle energy can

be written as cmc2¼mc2þK, separating it into rest energy
and kinetic energy.

Fig. 3. If the rock alone is the system, the Earth does positive work on the

falling rock, increasing its kinetic energy.

Fig. 4. If the system consists of the rock plus the Earth, there is no work

done on the system, since there are no external forces. Energy flows from

potential energy to kinetic energy within the system.
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Consider a system of two objects with the same mass
M (for example, two identical stars or an electron and a
positron) that are at rest so far apart that their interac-
tion is negligible. Since their kinetic energy is zero, the
total energy of this system must be 2Mc2. Since the sys-
tem includes two objects, we can write the total energy
of the system as the sum of the rest energies, kinetic
energies, and the potential energy associated with the
interaction

Etotal ¼ 2Mc2 þ K1 þ K2 þ U:

In order for the total energy of the system to be equal to
2Mc2, the potential energy U must be zero at very large sepa-
rations; one cannot add an arbitrary constant. Furthermore,
the energy and momentum four-vector will not transform
properly unless in this situation U¼ 0. That which was rela-
tive before 1905 is now absolute, which may be conceptually
simpler for students.13

The total energy of a multi-particle system of mass M
whose center of mass is at rest is Mc2. This rest energy can
also be written as the sum of the masses and kinetic ener-
gies of all the system’s constituents plus the sum of all the
pair-wise potential energy terms. The mass M can be less
than the sum of the individual masses of the unbound par-
ticles, in which case we define the binding energy as the
amount of energy needed to dissociate the system into its
constituents. For example, the mass of the bound O2 mole-
cule is very slightly less than the mass of two oxygen
atoms, while in nuclear physics the mass difference
between bound and unbound nucleons can be sizable.
Although the mass difference is tiny in chemistry, it is con-
ceptually useful to understand binding in these absolute
terms, which helps avoid a common student misconception
of thinking of binding energy as something “stored in
chemical bonds” rather than being associated with a nega-
tive mass difference. Moreover, the total energy of a bound
system, including the rest energy, is always positive, which
can help students accept situations in which potential
energy terms are negative.

V. DISSIPATIVE INTERACTIONS

For systems that can be adequately modeled as point par-
ticles (that is, there is no change in internal energy), one can
demonstrate path independence, but in the case of dissipative
forces such as sliding friction or air resistance, path indepen-
dence does not hold. These forces are sometimes called
“nonconservative” forces, which is an unfortunate term,
because these interatomic forces are electric interactions,
and electric forces obey path independence. The issue is not
the kind of force but rather the kind of system. A sliding
block is a multiparticle system whose internal energy
increases as a result of inelastic collisions of the block with
the surface.6 The phenomenon of sliding friction is funda-
mentally entropic, associated with the huge number of
atomic degrees of freedom of the sliding block.

Of course analysis of the point-particle version of the
block (which is equivalent to applying the work-energy theo-
rem) can be used to determine the change in the translational
kinetic energy, but this analysis ignores the obvious fact that
the block’s internal energy increases, as indicated by a tem-
perature increase.

VI. INTERNAL ENERGY

Students are sometimes confused about the difference
between internal energy and other forms of energy. In fact,
internal energy is a convenient catch-all term that denotes
“forms of energy that we choose not to analyze in detail at
the moment,” and not a fundamental form of energy.14 The
clearest and most parsimonious view is that there are only
three distinct categories of system energy: rest energy,
kinetic energy, and potential energy (or equivalently, in
more advanced courses, field energy). However, it is often
convenient to define “internal energy” as, for example, the
sum of the kinetic and electric potential energy associated
with the thermal motions of all the atoms in a solid object.
Internal energy need not refer solely to atomic-level kinetic
and potential energy; the energy associated with the rotation
or vibration of components of a macroscopic system can also

Fig. 5. Plots of kinetic energy, potential energy, and the sum of the two for a spacecraft in an elliptical orbit around the Earth. The system chosen is the space-

craft plus the Earth. On the left, kinetic energy (top), gravitational potential energy (bottom), and their sum (straight line) are plotted versus the separation of

the two bodies. The dots show the values of these quantities at one particular separation. On the right, the same quantities are plotted as a function of time. The

fact that the total mechanical energy of the system is negative indicates that this is a bound state—the spacecraft cannot escape.
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be termed “internal energy” if we are interested only in the
translational kinetic energy associated with motion of the
center of mass of the system.

A microscopic viewpoint is useful in clarifying these ideas
and can help students see that thermal energy is not a differ-
ent form of energy but simply kinetic and potential energy at
an atomic level. This makes it possible to see thermal phys-
ics and mechanics as closely related rather than as
completely distinct.15,16

VII. WHY FIELDS?

A puzzle associated with potential energy provides a moti-
vation for mentioning the field concept, which may be of
interest to some students. Consider two stars with equal mass
M at rest far from each other. To analyze the energetics of
their approach, a good choice of system is the two stars, with
the assumption that the surroundings are empty. Then,
DE1þDE2þDUþDEsurr¼ 0. There is nothing in the sur-
roundings, so DEsurr¼ 0, and the kinetic energy of both stars
increases as U¼�GM2/r decreases.

However, our conclusion should not depend on our choice
of system, so we next analyze a system consisting solely of
star 1, where star 2 is the only entity in the surroundings:
DE1¼W, and the kinetic energy of star 1 increases due to
the positive work done by star 2 (there is no potential energy
term for this single-object choice of system). It must also be
true that DE1þDEsurr¼ 0. The kinetic energy of star 1 is
increasing, so the energy of the surroundings must be
decreasing, yet the surroundings seem to consist solely of
star 2, whose kinetic energy is increasing not decreasing.

Evidently something is missing from this energy analysis.
To be able to analyze this situation fully, we need to intro-
duce the abstract idea of a “field,” which is the subject of the
second-semester E&M course, where one sees that seem-
ingly empty space can contain energy and momentum.
Despite our lack of understanding, the power of the Energy
Principle is such that we can calculate how much energy loss
there is in the “gravitational field.” The change in the energy
of the surroundings is DEsurr¼�DE1, with part of DEsurr

being DE2, which is equal to DE1 for this symmetric situa-
tion. Hence, the change in the field energy is �DE1 � DE2.
The analysis of the two-star system led to the same result for
U: DU¼�DE1 � DE2, so we get the correct result using
potential energy with the two-star system. However, the dif-
ficulty in accounting for the energy in the surroundings sug-
gests that one must in some analyses include field energy.17

VIII. ASSESSMENT

Some aspects of our approach to energy may seem unusu-
ally advanced for the calculus-based introductory physics
course taken by science and engineering students. However,
this approach, incorporated into the introductory calculus-
based physics textbook Matter & Interactions,18 is used with
many different student populations at a variety of different
kinds of institutions: large and medium-sized universities,
four-year liberal arts colleges, community colleges, and a
few high schools. The fact that some of these topics are typi-
cally encountered only in later physics courses is a matter of
tradition, not of necessity.

Evaluating the success of the approach requires assess-
ment instruments. Although widely known, the Energy and
Momentum Conceptual Survey (EMCS),19 because it is

aligned with the traditional presentation, encourages some
of the confusions discussed above. In particular, some ques-
tions confuse the terms “constant” and “conserved,” and
attribute potential energy to a system of a single object. A
more extensive, curriculum-specific instrument20 was
developed to assess learning of the approach to energy dis-
cussed in this paper and has been used to assess student
learning in courses that use this approach. Although the
validity and reliability of this instrument are clearly estab-
lished, it is not typically used in traditional introductory
physics courses because about half of the items either
assess understanding of the framework discussed in this
paper, or refer to topics not covered in the traditional course
(such as rest energy).

IX. CONCLUSIONS

We have highlighted what we consider to be significant
problems with the treatment of many energy topics in the tra-
ditional calculus-based introductory physics course, and we
have presented ways in which these problems can be
addressed. Issues include confusion of the work-energy theo-
rem with the true energy equation, the need to be more care-
ful in specifying the system of interest, the fact that single
particles do not have potential energy (which is a property of
pairs of interacting particles), confusion between “constant”
and “conserved” quantities, the value of embedding energy
in the larger relativistic context, and the fact that friction
forces are not “nonconservative” (being interatomic electric
forces). We argue that the more coherent approach to energy
discussed in this paper is not only accessible to students at
the introductory level, but can help eliminate some of the
confusions that students encounter in the traditional
approach to energy at this level.
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