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ABSTRACT The research field of reconstructing 3D models from 2D images is becoming more and
more important. Existing methods typically perform single-view reconstruction or multi-view reconstruction
utilizing the properties of recurrent neural networks. Due to the self-occlusion of the model and the special
nature of the recurrent neural network, these methods have some problems. We propose a novel three-
dimensional fusion hierarchical reconstructionmethod that utilizes a multi-view feature combinationmethod
and a hierarchical prediction strategy to unify the single view and any number of multiple views 3D
reconstructions. Experiments show that our method can effectively combine features between different views
and obtain better reconstruction results than the baseline, especially in the thin parts of the object. Our source
code is available at https://github.com/VIM-Lab/3D-FHNet.

INDEX TERMS 3D reconstruction, multi-views reconstruction, 3D volume, feature combination, hierarchi-
cal prediction.

I. INTRODUCTION
With the continuous upgrading of application requirements
such as robot grasping objects and 3D printing, it becomes
a requirement to automatically reconstruct 3D models from
2d images. Moreover, we can get more information from
the three-dimensional model than from the two-dimensional
image. Therefore, this research field is becoming more and
more important.

The emergence of some large 3D model libraries, such as
ShapeNet [1], PASCAL 3D+ [2], and ObjectNet3D [3], has
promoted the development of this research field. In recent
years, with the rapid development of deep learning, learning-
based methods have become the mainstream of 3D recon-
struction. These methods usually accept two-dimensional
images as input to obtain 3D reconstruction results in
voxel [4], mesh [5] and point cloud [6] formats.

The associate editor coordinating the review of this manuscript and

approving it for publication was Stavros Ntalampiras .

However, due to the self-occlusion of the model, a single
image can correspond to a variety of possible 3D models [7].
Therefore, when the information contained in the single
image is limited, it is an impossible task to infer the accu-
rate 3D model. In addition, the result of 3D reconstruction
using a single view is also unstable. To solve this problem,
it is natural and effective to utilize multiple images of the
same object from different perspectives to reconstruct the 3D
model.

When we map multiple images of the same object to a
3D model, a new problem arises: how do we combine the
information contained in multiple images? The vast majority
of current methods [8], [9] use the features of each image as
an input to the LSTM or its variants, using LSTM’s memory
capabilities to combine the information contained in multiple
images by constantly updating the hidden state. These meth-
ods subtly utilize the characteristics of LSTM to combine the
information of multiple images, and as the number of views
increases, the accuracy of reconstruction results is improved.
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FIGURE 1. Some examples of reconstruction by our 3D-FHNet. The result of the reconstruction is on the left, and the input views are on the right.

However, there are some problems in using the features of
each image as an input to the LSTM. As we know, the LSTM
structure is time-series. When we use multiple images as
input to different time steps of the LSTM, we distinguish
the status of each image. Due to the structure of the LSTM,
the input of different time steps will have different effects
on the final reconstruction result. That is to say, the result
of the reconstruction will depend on the order of the input
images. If the order of the input images changes, the final
reconstruction result is changed accordingly, which is obvi-
ously not our intention. When visualizing the reconstruction
results, for thin parts of objects such as chair legs, existing
methods readily achieve the result of missing components
during reconstruction.

Therefore, we propose a novel multi-view feature combi-
nation method. This feature combination method treats each
input image equally and the reconstruction result will not
change due to the change of input image order. Furthermore,
the feature combination method can receive any number of
images as input and obtain a three-dimensional reconstruc-
tion result, and as the number of input images increases,
the reconstruction result is improved. In addition, we pro-
pose a hierarchical prediction strategy, which can effectively
improve the reconstruction results for the thin parts of the
object.

Our experiments show that our model can achieve better
reconstruction results than the state-of-the-art method, and
the reconstruction results will become more and more accu-
rate as of the number of views increases. The main contribu-
tions of this paper are as follows:
• We propose a three-dimensional fusion hierarchical
reconstruction method called 3D-FHNet, which uni-
fies a single view and any number of multiple views
reconstructions and can get accurate reconstruction
results.

• We propose a novel multi-view feature combination
method that allows our model to continuously improve
reconstruction performance as the number of views
increases.

• We utilize a hierarchical prediction strategy that allowed
the network to reconstruct the thin parts of the object
more accurately.

• Our experiments show that our method can achieve
better reconstruction results than the state-of-the-art
method.

II. RELATED WORK
Classic 3D reconstruction methods, based on the Structure-
from-Motion technology [10]–[13] are usually limited to the
illumination condition, surface textures and dense views. The
goal of these multi-view instance reconstruction methods is
to infer the 3D structure of a particular scene/object given a
large number of views of the same instance. Contrary to these
methods, benefited from prior knowledge, our method can
reconstruct credible results with a small number of images
or even one image without the assumptions on the object
reflection and surface textures. This is something that these
classic 3D reconstruction techniques cannot do.

With the emergence of large-scale shape sets [1]–[3], [14],
especially the success of CNNs, data-driven methods have
become the preferredmethod to predict 3D shapes. Regarding
object reconstruction as a predictive and generative issue
from a single image, learning-based methods typically utilize
a CNN-based encoder and decoder to predict 3D volumes,
meshes, or point sets. Girdhar et al. [15] combined an autoen-
coder and a convolutional network to learn an embedding
space with 2D images and 3D shapes. Dai et al. [16] com-
pleted partial 3D shapes through a combination of volumetric
deep neural networks and 3D shape synthesis. Wu et al. [17]
generated 3D objects from a probabilistic space leveraging
volumetric convolutional networks and generative adversar-
ial nets. Smith and Meger [18] extended previous work by
employing the Wasserstein distance normalized with gra-
dient penalization as a training objective. Kar et al. [19]
proposed deformable 3D shape models to recovering high
frequency shape details. Zhu et al. [4] designed architectures
of pose-aware shape reconstruction which reproject the pre-
dicted shape back on to the image using the predicted pose.
Fan et al. [6] designed a conditional shape sampler, capable
of predicting plausible 3D point clouds from an input image.
Wang et al. [20] represented 3D mesh in a graph-based con-
volutional neural network and produced correct geometry by
progressively deforming an ellipsoid, leveraging perceptual
features extracted from the input image. Mandikal et al. [21]
learned mapping from the 2D image to the corresponding
learned to embed by learning a probabilistic latent space
with a view-specific "diversity loss". Yan et al. [22] inves-
tigated the task of single-view 3D object reconstruction from
a learning agent’s perspective. Tulsiani et al. [23] studied the
notion of consistency between a 3D shape and a 2D observa-
tion and proposed a differentiable formulation, which allows
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FIGURE 2. We propose a unified framework for performing single view or any number of multiple views reconstructions. In our model,
the two-dimensional encoder extracts the image features, mapping them to the three-dimensional features through the feature mapping unit,
and decodes the predicted voxel occupancy probability through the three-dimensional decoder. The features of the multiple images are
combined by the feature combination module, and finally, the hierarchical prediction strategy is utilized to predict the three-dimensional
volume of the object.

computing gradients of the 3D shape given an observation
from an arbitrary view. Kato et al. [24] proposed an approxi-
mate gradient for rasterization that enables the integration of
rendering into neural networks. Yang et al. [25] reconstructed
the complete 3D structure of a given object from a single
arbitrary depth view using generative adversarial networks.
Kurenkov et al. [26] introduced a new differentiable layer
for 3D data deformation and used it to learn a model for
3D reconstruction-through-deformation. A crucial assump-
tion in the above-mentioned models, however, is that the
input images contain most information of a 3D object. As a
result, thesemodels fail to make a reasonable prediction when
the observation has severe self-occlusion as they lack the
information from other views. Sun et al. [27] proposed an
end-to-end efficient generation network to reconstruct 3D
model from a single image. Reference [28] proposed a self-
supervised network to generate 3D point clouds from a single
RGB image.

An effective solution is to utilize more views to make up
the information. Tulsiani et al. [29] allows leveraging multi-
view observations from unknown poses as a supervisory sig-
nal during training. Kar et al. [30] leverage the underlying
3D geometry of the problem through feature projection and
unprojection along viewing rays. Choy et al. [8] utilize a
recurrent neural network to learn a mapping from images of
objects to their underlying 3D shapes from a large collection
of synthetic data. Yang et al. [9] learn a guided informa-
tion acquisition model and to aggregate information from
a sequence of images for reconstruction. Soltani et al. [31]
learnt a generative model over multi-view depth maps or
their corresponding silhouettes, and used a deterministic ren-
dering function to produce 3D shapes from these images.
Wiles and Zisserman [32] introduced a deep-learning archi-
tecture and loss function, which handle multiple views in an

order-agnostic manner. Gwak et al. [33] explored inexpensive
2D supervision as an alternative for expensive 3DCAD anno-
tation, used foreground masks as weak supervision through a
ray trace pooling layer that enables perspective projection and
backpropagation.

Closest to our work is the work of Choy et al. [8] which
takes in one or more images of an object instance from
arbitrary viewpoints, learns amapping from images of objects
to their underlying 3D shapes from a large collection of
synthetic data and outputs a reconstruction of the object in
the form of a 3D occupancy grid. We utilize a multi-view
feature combination method to combine the features of mul-
tiple views and a hierarchical prediction strategy to obtain the
three-dimensional reconstruction results.

III. METHODOLOGY
In this chapter, we will introduce our model in detail.
In section 3.1, an overview of our approach is provided.
In Section 3.2, our single-view reconstruction network archi-
tecture is described in detail. In Section 3.3, our multi-view
feature combination module is described. In Section 3.4,
the hierarchical prediction strategy utilized by our model is
described.

A. OVERVIEW
We developed a unified framework to perform both single
view and any number of multiple views reconstructions.
We represent the three-dimensional model as a voxel form,
and the voxel is characterized by a value of zero or one for
each voxel grid. Benefiting from this feature of voxel repre-
sentation, we consider the prediction of the voxel grid at each
location in the reconstruction task as a binary classification
problem.
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FIGURE 3. Illustration of network architecture. Our entire single view reconstruction network consists of three components: a two-dimensional
encoder, a feature mapping unit and a three-dimensional decoder. Taking the RGB image as input, the network predicts the predicted probability Ot of
the three-dimensional volume.

Figure 2 illustrates our model. In the training stage, we can
feed any number of image data of the same object to our
model. These images are respectively encoded by a resid-
ual two-dimensional encoder and then flattened into a fea-
ture vector Fi. Each Fi is then sent to the feature mapping
unit to convert the two-dimensional information into three-
dimensional information Vi. This three-dimensional infor-
mation is then decoded by a residual 3D decoder, result-
ing in a predicted voxel occupying Ot . As the number of
views increases, each predicted voxel occupancy Ot is com-
bined by a feature combination module, and finally the final
predicted voxel occupancy O is obtained. Under the guid-
ance of cross-entropy loss function, the parameters in the
model are optimized gradually. In the test stage, we feed
the images of the test set to the trained model to obtain the
predicted voxel occupationO, and then utilize the hierarchical
prediction strategy to obtain 0-1 voxel occupation, where
zero represents no occupation and 1 represents occupation.
Finally, the accuracy is calculated by comparing the predicted
0-1 voxel occupation with the ground truth voxel occupation.

B. SINGLE VIEW RECONSTRUCTION NETWORK
ARCHITECTURE
We utilize the encoder-decoder architecture to generate 3D
models. We plot one step of data flow in Figure 3. Next,
we discuss the detailed architecture.

1) ENCODER: TWO-DIMENSIONAL RESIDUAL
CONVOLUTIONAL NEURAL NETWORK
This network is utilized to extract features from the input
image. In our implementation, the network was utilized to
extract features from images with a resolution of 128× 128.
For each input image, we make it pass through six resid-
ual convolutional encoder blocks successively. Each residual
convolutional encoder block consists of three convolution

operations and one pooling operation. For each residual con-
volutional encoder block, we pass the data through two paths
at the same time, one of which contains two convolutions and
the other is a 1×1 convolution, all convolution operations are
followed by a relu activation function. The data of the two
paths are concatenated, passed through a max-pooling and
outputted to the next operating unit. The convolution kernel
size in the first residual convolutional encoder block is set to
7 × 7, and the convolution kernel size in the remaining five
residual convolutional encoder blocks is set to 3 × 3. After
passing through six residual convolutional encoder blocks,
we flatten the extracted features into feature vectors.

2) FEATURE MAPPING UNIT
The feature mapping unit is utilized to map the feature vector
extracted by the encoder to the three-dimensional feature. For
each feature vector of the input image, we pass it through a
fully connected layer and then send it to the feature mapping
unit. We set up a W matrix, and a B matrix, for mapping the
two-dimensional feature vector F to the three-dimensional
feature V . In our implementation, we set the dimension of the
output of the fully connected layer to 1×1024, the dimension
of theW matrix to 4×4×4×1024×128, and the dimension
of the B matrix to 4 × 4 × 4 × 128. The two-dimensional
feature vector F is mapped to the three-dimensional feature
V by

Vi,j,k = Wi,j,k × F + Bi,j,k (1)

where Vi,j,k represents the three-dimensional feature of the
corresponding position of the i, j, k coordinates in the three-
dimensional featureV .Wi,j,k represents aweightmatrix in the
feature mapping unit for mapping to the three-dimensional
feature Vi,j,k of the corresponding position of the i, j, k
coordinates. Bi,j,k represents a bias matrix in the feature

VOLUME 7, 2019 172905



Q. Lu et al.: 3D-FHNet: Three-Dimensional Fusion Hierarchical Reconstruction Method for Any Number of Views

mapping unit when mapped to the three-dimensional feature
Vi,j,k corresponding to the position of i, j, k coordinates.

3) DECODER: 3D RESIDUAL DECONVOLUTIONAL NEURAL
NETWORK
This network is utilized to decode three-dimensional fea-
tures into three-dimensional volumes. For each input image,
the network acquires the three-dimensional feature Vi out-
putted by the feature mapping unit as an input, sequentially
passes through six three-dimensional residual deconvolu-
tional decoder blocks, and normalizes by softmax to obtain
a three-dimensional volume prediction probability Ot . Each
three-dimensional residual deconvolutional decoder blocks
consists of three deconvolution operations and one unpooling
operation. For each residual deconvolutional decoder block,
we pass the data through two paths at the same time, one of
which contains two three-dimensional convolutions, the other
is a 1× 1× 1 convolution, all convolution operations are fol-
lowed by a relu activation function. The data of the two paths
are concatenated, passed through an unpooling, and outputted
to the next operating unit. The convolution kernel size of
the three-dimensional convolution in each three-dimensional
residual deconvolutional decoder block is set to 3× 3× 3.

Since we utilize the characteristics of 3D voxel represen-
tation to transform 3D reconstruction into multiple binary
classification tasks, we can define the loss function as the
cross-entropy loss function commonly utilized in classifica-
tion tasks.

More formally,

Loss = −
32∑
i=1

32∑
j=1

32∑
k=1

[
GTi,j,k × lnOi,j,k

+
(
1− GTi,j,k

)
× ln

(
1− Oi,j,k

)]
(2)

where GTi,j,k represents the value of the voxel grid corre-
sponding to the coordinate position of i, j, k in the ground
truth. Oi,j,k represents the predicted probability of the voxel
grid corresponding to the coordinate position of i, j, k in the
final predicted voxel occupancy probability.

If our model is performing single-view 3D reconstruction,
then the prediction probability Ot is the final predicted voxel
occupancy probability O, and then we will utilize our hier-
archical prediction strategy for prediction; if our model is
performing multi-view 3D reconstruction, then The predicted
probability Ot obtained by each view will be sent to the
multi-view feature combination module to obtain the final
predicted voxel occupancy probabilityO, and then utilize our
hierarchical prediction strategy for prediction.

C. MULTI-VIEW FEATURE COMBINATION MODULE
Multi-view feature combination module is used to combine
features of multiple input images. When we see an object,
we can know the general shape of the object. We have a good
grasp of the shape of the object directly exposed to us. For
the part of the object that is not visible due to self-occlusion,

FIGURE 4. For an input image, the model is biased to determine the
shape of the visible portion of the reconstructed object, while for parts
that are not visible due to self-occlusion, the model will make a
conservative estimate of its shape. For example, when the image of the
upper left part is input, the model is biased to determine the shape of the
front and left of the car. That is, the red part of the upper right picture;
when the image of the lower-left part is input, the model will be biased
to determine the shape of the back of the car. That is, the red part of the
lower right picture.

we can probably guess its shape according to our life experi-
ence, but it is not very sure. When we walk around the object,
we can know exactly what the object is like. Inspired by this
phenomenon, when our model sees a picture, we can get the
current predicted voxel occupancy probability Ot . For this
Ot , the part of the picture that can be directly observed in
this picture will get a more certain probability, while the part
occluded by the object itself, is not visible in this view, our
model will try to guess the occupancy probability of each
voxel grid based on prior knowledge. That is to say, the part
of the reconstructed object that can be directly observed in
an image, the predicted occupancy probability will be closer
to 1, and the part that is not directly observable due to self-
occlusion, the predicted occupancy probability will be a more
conservative prediction based on prior knowledge.

For each input image, we obtain the predicted voxel occu-
pation probability Ot , whose predicted voxel occupation
probability will be biased to the visible part of the object,
as shown in figure 4. As the number of input views increases,
the visible portion of the object increases as the camera
position of each input image is different. When our model
gets information from more and more images, each input
image can make our model convinced that the voxel grids of
some coordinates are occupied, while the occupation of the
voxel grids of other coordinates is temporarily undetermined.
As the number of views increases, more and more voxel grids
can be determined, and the reconstruction performance of our
models is constantly improving.

More formally, for the final predicted voxel occupancy
probability O, we let

Oi,j,k = max
1≤t≤n

O(t)
i,j,k (3)
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FIGURE 5. Some reconstruction examples that failed in the detail
sections. (a) failed to reconstruct the landing gear of the aircraft (b) failed
to reconstruct the complete chair legs (c) failed to reconstruct the
complete table legs.

where Oi,j,k represents the predicted probability of the voxel
grid corresponding to the coordinate position of i, j, k in
the final predicted voxel occupancy probability. O(t)

i,j,k rep-
resents the predicted probability of the voxel grid corre-
sponding to the coordinate position of i, j, k in the predicted
voxel occupancy probability obtained from the i-th image.
max1≤t≤nO

(t)
i,j,k represents the maximum value among the n

O(t)
i,j,k obtained in a total of n input images.
We will verify the performance of our multi-view feature

combination module in Section 4.4.

D. HIERARCHICAL PREDICTION STRATEGY
After obtaining the final three-dimensional volume prediction
probability, the general method sets a threshold, such as
0.5, predicts the voxel grid with the predicted probability
greater than or equal to the threshold as occupied, and predicts
the voxel grid with the predicted probability less than the
threshold as unoccupied. When analyzing the visualization
results of the reconstruction, we found that in the thin part
of the object, it is easy to get the failed reconstruction result.
Benefiting from our multi-view feature combination module,
we have improved our performance on this issue. Utilizing
our proposed hierarchical prediction strategy, we can further
improve the reconstruction results of our model in the thin
part of the object.

As shown in Figure 5, the details of the small parts of the
object such as the legs of the chair, the legs of the table, and
aircraft landing gear are the parts of the model that are most
likely to fail. The failure reconstruction results mostly in the
absence of details. For example, the reconstructed chair has
no chair legs, only the backrest and seat of the chair remained,
or the thick table and table legs get a thinner reconstruction
result. In response to this issue, we propose a hierarchical pre-
diction strategy. After obtaining the final three-dimensional
volume prediction probability O, we determine whether these
voxel grids are occupied from the outer voxel grid to the inner
voxel grid layer by layer. When determining whether a voxel
grid is occupied, we look at the occupancy of the voxel grid
on the outer layer and dynamically adjust the threshold of
the voxel grid according to the occupancy of the outer voxel
grid. If the outer voxel grid is occupied by a small number,
a smaller threshold is used; otherwise, a larger threshold is
used. That is, if a voxel is located on the surface of the object,
our model is more likely to predict it as occupied, and as the

prediction enters the interior of the object, the prediction will
gradually become unbiased.

We evaluate the performance of our hierarchical prediction
strategy in Section 4.5.

IV. EVALUATION
In this section, we discuss the following three questions:
(1) Can our network generate more accurate reconstruc-
tion results? (section 4.3) (2) Can our network improve the
accuracy of reconstruction results as the number of views
increases? (section 4.4) (3) Can our hierarchical prediction
strategy optimize reconstruction results? (section 4.5)

A. DATASET
The ShapeNet dataset is a collection of 3D CAD models
organized according to the WordNet hierarchy. ShapeNet-
Core is a subset of the full ShapeNet dataset with single
clean 3D models and manually verified category and align-
ment annotations. It covers 55 common object categories
with about 51,300 unique 3D models. Since most of the
55 common object categories contained too few 3D models,
we selected 13 categories with more than 1,000 3D models
in the ShapeNetCore dataset. The 13 categories are plane,
car, chair, sofa, table, bench, cabinet, monitor, lamp, speaker,
rifle, telephone, and vessel, which contain a total of 43,783
3D models. For each 3D model, we rendered 12 images
of different angles with a resolution of 1282 and generated
a ground truth voxel occupation with a resolution of 323.
We refer to this dataset as the ShapeNet dataset throughout
the evaluation section. We divided ShapeNet dataset into
a training set, test set, and validation set according to the
proportion of 80%, 16%, and 4%, and refer to these three
datasets as the ShapeNet training set, ShapeNet test set and
ShapeNet validation set throughout the evaluation section.

B. BASELINE
The state-of-the-art method that relevant to our method is 3D-
R2N2 [8]. We compare our method with 3D-R2N2, which
performs both single and multi-view 3D reconstruction using
a 3D recurrent network, combining features by using features
of multiple views as multiple inputs to the LSTM. For a fair
comparison, we trained both 3D-R2N2 and our 3D-FHNet
on the same ShapeNet training set for the same iterations and
ensured that both models have converged. In the test stage,
the two trained models were tested on ShapeNet test set and
evaluated the qualitative results and the quantitative results
separately. We also compared our method with single view
reconstruction methods that generate 323 voxel reconstruc-
tion results. Our comparison targets are PTN(Perspective
Transformer Network) [22] and OGN(Octree Generating
Networks) [34].

C. EVALUATION ON RECONSTRUCTION PERFORMANCE
We use the voxel IoU (intersection-over-union) as an indica-
tor to quantitatively assess the performance of reconstruction.
The voxel IoU is a widely used indicator to measure the final

VOLUME 7, 2019 172907



Q. Lu et al.: 3D-FHNet: Three-Dimensional Fusion Hierarchical Reconstruction Method for Any Number of Views

TABLE 1. Comparison of our method and 3D-R2N2 per-category reconstruction performance on different numbers of views. Except for the reconstruction
of the single view speaker class, our method has much better reconstruction performance than 3D-R2N2.

predicted voxel occupancy. The value is the number of voxel
grids in the intersection of all voxel grids predicted to be
occupied and all voxel grids occupied by the ground truth
values, divide by the number of voxel grids in the union of
all voxel grids predicted to be occupied and all voxel grids
occupied by the ground truth values.

More formally,

IoU =
Prediction ∩ GroundTruth
Prediction ∪ GroundTruth

(4)

where Prediction refers to the final predicted 0-1 voxel occu-
pancy, and GroundTruth refers to the ground truth 0-1 voxel
occupancy.

The voxel IoU punishes the wrong result in twoways. If the
model predicts a voxel grid with a ground truth value of 0 as 1,
it will make the union in the denominator larger; Conversely,
if the model predicts a voxel grid with a ground truth of 1 as 0,
the intersection in the numerator will be smaller. Therefore,
the range of voxel IoU is [0, 1], and the larger the value,
the higher the accuracy of the model.

1) PER-CATEGORY RESULTS
We evaluated the reconstruction performance of 13 categories
on the ShapeNet test set. The evaluation results of IoU are
shown in Table 1.

It can be seen that in the single view reconstruction, our
method is better than 3D-R2N2. In the reconstruction of the
speaker class, the reconstruction performance of our method
is slightly weaker than that of 3D-R2N2. In other categories,
the reconstruction performance of our method is much better
than that of 3D-R2N2. This can be attributed to our feature
mapping unit and hierarchical prediction strategy. Relative
to most models that can perform multi-view reconstruction,
we use feature mapping unit to replace LSTM-based struc-
tures. Compared to LSTM-based models, our feature map-
ping unit can retain more information when mapping 2D
features to 3D features. Moreover, we use a hierarchical
prediction strategy to partially overcome the lack of informa-
tion due to view scarcity, further enhancing our single view
reconstruction performance.

In multi-view reconstruction, our method performs much
better than 3D-R2N2 in all categories, and it has more advan-
tages than single-view reconstruction. The average recon-
struction performance of our method has more than 7%
improvement over 3D-R2N2 when providing all views of
the object to the model. This can be attributed to our multi-
view feature combination module. As the number of views
increases, our model can better combine the information of
different views to improve the reconstruction performance
compared to the LSTM-based method.

We also calculated the F-scores of our method,
which are comprehensive consideration of Precision and
Recall.

F − Score =
(
1+ β2

)
·

Precision · Recall
β2 · Precision+ Recall

(5)

In the case of inputting 12 views, the average F1-Score of the
results obtained by our method is 0.828, and the average F2-
Score is 0.846. In comparison, the average F1-Score of the
results obtained by 3D-R2N2 is 0.789, and the average F2-
Score is 0.783.

2) QUALITATIVE RESULTS
The example of reconstruction results shown in figure 6 qual-
itatively shows that our model can reconstruct better
three-dimensional models from two-dimensional images.
In Figure 6, the columns from left to right are the input
images, the ground truth voxel occupancy, the reconstruc-
tion result of our method, and the reconstruction result
of 3D-R2N2. It can be seen that our method performs better
than 3D-R2N2 in the reconstruction of each category. In the
reconstruction of the aircraft, the results of our method are
better in details such as the landing gear and the curvature
of the wings. When reconstructing the bench, the results of
our method are better in details such as the handrails and
legs of the bench.When reconstructing the cabinet, the recon-
struction of our method performed better in the details of the
hollowing out of the cabinet and the top of the cabinet. In the
reconstruction of the chair, the reconstruction results of our
method are better in details such as the legs of the chair.
In the reconstruction of the lamp, the reconstruction results
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FIGURE 6. Qualitative comparison of our method with 3D-R2N2. The columns from left to right are the input images, the ground truth, the reconstruction
result of our method, and the reconstruction result of 3D-R2N2.

of our method are better in the lampshade, base, pole and
other details. In the reconstruction of the rifle, our method

performed better in the details of the grip, butt, and head of
the rifle.
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FIGURE 7. As the number of views increases, the reconstruction
performance of our network continues to increase and is always better
than the performance of 3D-R2N2. In contrast, when the number of views
is small, the reconstruction performance of 3D-R2N2 increases with the
number of views. However, as the number of views continues to increase,
its performance has not continued to increase, but has declined
somewhat.

D. EVALUATION ON MULTI-VIEW FEATURES COMBINING
We compared our method with 3D-R2N2 in multi-view fea-
ture combination performance.Most of the previousmethods,
including 3D-R2N2, use the features of different input images
as inputs on different time steps of the LSTM, utilizing
the memory function of LSTM, combining the features of
different views. We believe that these LSTM-based methods
lose some of the information when performing a feature
combination because the input images are not time-series.
In contrast, our method utilizes our multi-view feature com-
bination module to combine features of different views.

We reconstructed the single view, 3 views, 6 views, and
12 views, respectively, and compared the reconstruction
performance of the two methods. The results are shown
in Figure 7. It can be seen that when the number of views
is small, the reconstruction performance of our method and
3D-R2N2 increases as the number of views increases; When
the number of views continues to increase, 3D-R2N2 fails in
combining the features of more views, and its reconstruction
performance does not continue to improve, but decreases.
In contrast, our method continues to improve as the number of
views continues to increase. This can be attributed to the fact
that our multi-view feature combination method has better
feature combination ability than LSTM. Using the features
of the different views as inputs to different time steps of the
LSTM can combine the features of the different views and
get the final prediction. However, due to the forgetting and
updating mechanism, the LSTM-based methods rely on the
order of input views when combining features of multiple
views, and will discard some information of early views when
there are too many time steps. In contrast, our multi-view
feature combination method does not depend on the order of
the input views and does not discard any information from
any of the views, which allows our model to achieve better
reconstruction results in multi-view reconstruction.

We also compared our approach to single-view recon-
struction methods, which were able to generate 323 voxel
resolution reconstruction results. The reconstruction results

FIGURE 8. Our hierarchical prediction strategy can effectively improve
reconstruction performance, especially when the number of input views
is small and many details of objects cannot be determined.

obtained by these single-view reconstruction methods are
usually better than the single-view reconstruction results
of the multi-view reconstruction method. The comparison
results are shown in Table 2.

As can be seen from the table, different methods have
some advantages in different categories when performing
the single-view reconstruction. Overall, OGN performs best.
However, as the number of views increases, our method can
outperform the single view reconstruction method in most
categories. This shows that our method can effectively com-
bine the information of different views to get more accurate
prediction results.

E. EVALUATION ON HIERARCHICAL PREDICTION
STRATEGY
We evaluated the performance of our hierarchical prediction
strategy to see if it could improve the reconstruction perfor-
mance of our method.

We performed single view, 3 views, 6 views, and 12 views
reconstruction, one using hierarchical prediction strategy,
and the other without using hierarchical prediction strategy.
The reconstruction performance is shown in Figure 8. It can
be seen that in the reconstruction of a different number of
views, the model using the hierarchical prediction strategy
can perform better. When the number of input views is very
large, the use of hierarchical prediction strategies has lim-
ited improvement in reconstruction performance because the
model determinesmost of the details of reconstructed objects.
However, when the number of input views is limited, our
hierarchical prediction strategy can effectively improve the
reconstruction performance because the reconstruction object
has many details that cannot be determined.

To visually demonstrate the effectiveness of our hierar-
chical prediction strategy, we utilized our model to perform
single-view reconstruction, one using our hierarchical pre-
diction strategy and the other without using our hierarchical
prediction strategy. We have chosen an example of recon-
struction on the same image of the same object, as shown
in Figure 9. On the left side of the figure is the ground truth
voxel occupancy. In the middle of the figure is the result
of single-view reconstruction without using the hierarchical
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TABLE 2. Comparison of the reconstruction performance of our method and single-view reconstruction methods. As the number of views increases,
the reconstruction performance of our method surpasses the single-view reconstruction methods that can generate 323 voxel reconstruction results.

FIGURE 9. A comparison example of using hierarchical prediction
strategy and not using hierarchical prediction strategy. (a) is the ground
truth voxel occupancy; (b) is the reconstruction result without using the
hierarchical prediction strategy; (c) is the reconstruction result using the
hierarchical prediction strategy.

prediction strategy. On the right side of the figure is the
result of single-view reconstruction using the hierarchical
prediction strategy. As can be seen in the figure, in this exam-
ple, when our model does not use the hierarchical prediction
strategy, the single-view reconstruction result is not very
good, such as the leg of the office chair is missing. When our
model uses the hierarchical prediction strategy for reconstruc-
tion, the reconstruction performance is not particularly good
due to the single-view reconstruction. However, more details
have been reconstructed than the result of the reconstruction
without using the hierarchical prediction strategy. Due to the
scarcity of views, the information that can be obtained from
it is limited. It is impossible to know exactly what its voxel
occupancy is in the part of the reconstructed object that is not
directly exposed to the view, so our model can only make a
conservative prediction. The hierarchical prediction strategy
we use dynamically adjusts the thresholds at the time of
prediction so that our model can reconstruct more details of
the reconstructed objects.

V. CONCLUSION
In this paper, we propose 3D-FHNet, which is a 3D fusion
Hierarchical reconstruction method that can perform 3D
reconstructions of any number of views. The model uni-
fies single-view and multi-view 3D reconstruction and pro-
poses a multi-view feature combination method to overcome
the shortcomings of multi-view feature combination method
based on RNN and its variants. In the reconstruction of
the thin parts that failed by other methods, the hierarchical

prediction strategy is utilized to improve the accuracy. Exper-
iments show that our model can generate more accurate
reconstruction results, and as the number of views increases,
the accuracy of reconstruction results is further improved.
Our model has also achieved better results in the reconstruc-
tion of thin parts of the object. In the future, we will try to uti-
lize more efficient data representation to improve the output
resolution, overcoming the problem of voxel representation
requiring too much memory.
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