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CHAPTER I 

INTRODUCTION 

The intensive conceptual development of mathematical models and 

practical solution techniques, as applied to administrative problems, 

began with the development of operations research during World War I I . 

Over the past two decades the use of mathematical models and the imple-

mentation of the appropriate mathematical techniques for f inding optimal 

solutions have become quite extensive as aids to solving administrative 

problems in both private industry and the government. This increased 

u t i l i za t ion of mathematical analysis has brought about deeper inquiries 

into the feas ib i l i t y of applying mathematical techniques to administrative 

problems. At the same time this u t i l i za t ion has brought an increased 

awareness that the su i tab i l i t y and va l id i ty of mathematical analysis--

both conceptually and computationally—depend upon the va l id i ty of the 

assumptions made in formulating the problem and the data used in obtaining 

the solution. 

The necessary conceptual development can only be obtained by careful 

investigation of problem characterist ics, classes of problems, and 

available methodologies. Given the proper development of the problem, 

ava i lab i l i ty of val id data, and implementation of a suitable computational 

technique, optimal solutions can be obtained to the problem under invest i -

gation—provided those solutions exist . However, the val id conceptual 

development of a problem requires a well defined fami l ia r i ty with the 



classes of problems tha t must be analyzed arid solved. This f ami l i a r i t y 

comes only through careful invest igat ion of various categories of problems 

and t h e i r respective c h a r a c t e r i s t i c s . Once the general class of problems 

has been i d e n t i f i e d , there must be an awareness of the solution methods 

tha t are su i tab le for the class of problems under inves t iga t ion . This 

awareness can be achieved only by a match between the generalized problem 

area and the optimization techniques su i ted fo r tha t class of problems. 

At the present time, the l i t e r a t u r e is ne i the r exp l i c i t nor extensive 

in the generalizing process. Although a f a i r l y extensive l i t e r a t u r e 

e x i s t s , the required general izat ions have not been made. Extensive as i t 

i s , the l i t e r a t u r e re la tes to spec i f i c applicat ions and does not contain 

a general c l a s s i f i c a t i o n of problem type and solut ion technique, For 

example, l i nea r programming has been applied to several classes of admin-

i s t r a t i v e problems. These applicat ions include t ranspor ta t ion problems, 

product-mix problems, budgeting problems, and various resource a l locat ion 

problems. In addition research has been done on the relevance of non-

l i n e a r programming and simulation as conceptual, as well as p r a c t i c a l , 

methods f o r analyzing administrat ive problems. This research, coupled 

with conceptual departures from l i n e a r programming, has made f ea s ib l e the 

use of nonlinear optimization as a conceptual and methodological tool fo r 

solving administrat ive problems. However, the f u l l potent ia l of nonlinear 

optimization cannot be rea l ized unti l the general classes of problems to 

which optimization theory can be applied are i d e n t i f i e d . This requirement 

can only be met by analyzing known appl icat ions and generalizing exis t ing 

theory fo r the purpose of extending the areas of appl ica t ion . 



Statement of the Problem 

The problem to be investigated in th i s study is best described in 

terms of two basic needs that must be met before theoretical development 

can be sa t i s f ac to r i ly applied. 

(1) The general character is t ics of the problems that can be solved must 

be iden t i f ied ; 

(2) The theoretical development must be examined for the purpose of 

deriving computational algorithms that enhance the application of the 

technique contained therein. 

With i t s development as a tool of nonlinear analysis, modern optimization 

theory is a natural extension of classical optimization theory. This study 

is a part of the t ransi t ion that must be made from abstract conceptuali-

zation of technique to i t s application. 

The problem character is t ics required for modern optimization theory, 

although reasonably well developed in mathematical theory, have not been 

ident i f ied clearly in terms of administrative analysis. Extensive appli-

cation of modern optimization theory has been largely confined to the 

physical sciences and selected areas of engineering—in par t icu la r , systems 

design and development of industrial processes. This res t r ic ted appli-

cabi l i ty has been of such a nature tha t the solution techniques and the 

problems to which these techniques are appropriate have not been analyzed 

and structured with su f f i c i en t formality to permit the i r extension to 

problems of an administrative nature. The extension of the application of 

modern optimization theory to the area of administration will be achieved 

by (1) identifying general classes of administrative problems amenable to 



the techniques of modern optimization theory, (2) developing general 

computational algorithms su i tab le f o r administrat ive appl ica t ion , 

(3) r e la t ing applicable techniques to the general classes of problems, and 

(4) demonstrating the use of the algorithms by presenting deta i led 

solut ions to selected administrat ive problems which exhibi t cha rac t e r i s t i c s 

that i den t i fy them as belonging to a cer tain problem c l a s s i f i c a t i o n . 

Classical optimization theory i s well developed with respect to 

technique and appl ica t ion. This provides a frame of reference from which 

the techniques and applicat ions of modern optimization theory can be 

i d e n t i f i e d and explained. By presenting new theore t ica l developments 

and ident i fy ing classes of problems, th i s study will serve to extend the 

re la t ing of ex i s t ing theory with new applicat ions by helping to provide a 

basis fo r matching problem c l a s s i f i c a t i o n s to solution techniques. 

Defini t ions and Symbols 

Defini t ions 

Definit ion 1,—The optimum solution to a given problem i s the solut ion 

which best s a t i s f i e s a defined c r i t e r ion of e f f ec t iveness . 

Definit ion 2. —Optimization theory i s the quan t i t a t ive study of 

optima, with modifications to the point of deriving methods fo r f inding 

optimal values. 

Definit ion 3.—Classical optimization theory is defined as tha t set 

of concepts and techniques readi ly sui ted to l i n e a r analysis and the use 

of the d i f f e r e n t i a l calculus and the Lagrange mul t ip l i e r . 



Definition 4.--Modern optimization theory is defined as that se t of 

concepts and techniques readily suited to both l inear and nonlinear analysis, 

Stemming from the Kuhn-Tucker conditions, this set includes i t e ra t ive 

techniques and the multivariable calculus. 

Symbols 

for every, for all 

belongs to the set 

implies 

3 : there exists 

/ / : the product of the following terms 

Thesis 

The thesis of th is study is that modern optimization theory is a 

natural extension of classical optimization theory. As such, modern 

optimization theory will be applied to administrative problems only a f t e r 

interpret ive studies are made that provide (1) an explanation of the 

general theoretical development of the techniques of modern optimization 

theory, (2) computational algorithms for implementing the techniques of 

modern optimization theory, (3) detailed demonstrations of the computational 

aspects of each technique and i t s corresponding algorithm, and (4) an 

ident i f ica t ion of the types of problems to which these techniques are 

applicable. 

Validation of th is thesis will be accomplished by tracing the develop-

ment of optimization theory from i t s roots in classical optimization theory 

to i t s f ront ie rs in modern optimization theory. This presentation will 



provide a base from which administrat ive problems amenable to modern 

optimization theory can be readily i d e n t i f i e d and associated with a su i tab le 

solution technique. The applicat ions of modern optimization theory to 

problems of an administrat ive nature will be fu r the r enhanced by e laborat ing 

on exis t ing computational techniques and by developing and demonstrating 

additional computational algorithms applicable to administrat ive problems. 

Classical optimization theory, in the context of t h i s s tudy, i s 

defined more as an approach to a problem ra ther than a spec i f i c content 

of methods and models. This approach includes the use of l i nea r models 

and those models su i tab le to the maximum-minimum concepts of the d i f -

f e r en t i a l calculus . These problems ( e . g . , input-output ana lys i s , cost -

p r o f i t ana lys i s , inventory, production ac t i v i t y ana lys is , e t c . ) , framed 

with the r e s t r i c t i o n s imposed by l inea r assumptions and the maximum-

minimum cr i t e r ion of the calculus , represent the i n i t i a l applicat ions 

of optimization techniques to administrat ive problems. These app l ica t ions , 

however, have been r e s t r i c t e d in terms of conceptual development and 

implementation of solut ion techniques. 

Modern optimization theory, on the other hand, r e f e r s to the con-

ceptual development of models and solution techniques t h a t are not subject 

to the r e s t r i c t i o n s imposed by the c lass ica l approach. In t h i s respec t , 

modern optimization theory represents an area of development tha t is 

concerned with both l i nea r and nonlinear , univariable and mult ivariable 

analys is . I t is an area of analysis t ha t attempts to provide the analyst 

with a more f l e x i b l e , highly pract ical means of analyzing and solving 

exis t ing problems. 



The incorporation of modern optimization theory as a tool of adminis-

t r a t i v e analysis permits the addressing of the non l inear i t i e s of the real 

world. These techniques are of such soph is t i ca t ion , however, t h a t the 

elaboration of t h i s study i s necessary i f a proper foundation i s to be 

developed which permits fu ture appl ica t ion. Since an understanding of 

technique i s essent ia l to proper implementations th i s study i s developed 

in such a way t ha t i t provides fo r the necessary conceptual understanding. 

This i s evidenced by the de ta i led discussion and presentat ion of the 

techniques and appl icat ions of c lass ical and modern optimization theory. 

A corol lary of t h i s study is tha t c lass ica l and modern optimization 

theory can provide management with more r e a l i s t i c a l l y developed problems 

and be t t e r solut ions to those problems. This will be demonstrated by 

iden t i fy ing the general cha rac te r i s t i c s of those problems amenable to 

c lass ica l and modern optimization theory, matching solut ion techniques 

to problems, and demonstrating the computational aspects of each tech-

nique in a manner not currently avai lable in the l i t e r a t u r e . 

Background and Signif icance of Study 

Background 

In Mathematical Methods of Operations Research, Thomas L. Saaty 

presents a br ief discourse on optimizat ion, the subject of th i s s t u d y J 

In t h i s discourse Saaty indicates tha t the theory of f inding optimal 

solut ions has progressed rapidly since i t s intrusion in to applied adminis-

t r a t i v e areas at the close of World War I I ; but at no point is found a 

^Thomas L. Saaty, Mathematical Methods of Operations Research 
(New York, 1959), pp. 96-162. 
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de f in i t ion or explanation of what is meant by optimization and the theory 

of optima. 

Wilde and Beight ler, in discussing "best" and "optimum," note that 

optimum has become a technical term connoting 
quant i tat ive measurement and mathematical 
analysis, whereas "best" remains a less precise 
word more suitable f o r everyday a f f a i r s . ^ 

In th is regard, the meaning of opt imizat ion, hence optimization theory, 

is found to stem from the root word "optimize." 

The technical verb optimize, a stronger word than 
"improve," means to achieve the optimum, and 
optimization refers to the act of optimizing. 
Thus, optimization theory encompasses the 
quant i ta t ive study of optima and methods fo r 
f ind ing them.^ 

Optimization theory can be described as the study of classes of 

problems fo r which two or more possible solutions ex i s t . The select ion 

of the optimal value, opt imizat ion, refers to the process of choosing 

from among a set of possible a l ternat ives. The optimum value, the end 

resul t of opt imizat ion, is optimal in the sense that of a l l feasible 

a l ternat ives, i t y ie lds the best value as determined by the c r i t e r i on 

of effect iveness. 

Optimization d i f f e rs from problem solving in that i t is a basic 

decision process which requires the fol lowing: (1) de f in i t i on of the 

problem, (2) i den t i f i ca t i on of feasible a l ternat ives, and (3) select ion 

of the solut ion that is optimal in terms of the c r i t e r i on of effectiveness, 

2 
Douglas J. Wilde and Charles S. Beight ler , Foundations of 

Optimization (Enqlewood C l i f f s , 1967), p. 1. 
3 I b i d. 



If the function i s constrained, the optimal solution i s optimal in tha t 

i t i s the best of the f eas ib le so lu t ions . If the function i s unconstrained, 

the optimal solution is the value at which the function achieves i t s t rue 

optimum. Whereas problem solving is associated with unconstrained func t ions , 

optimization is associated with constrained funct ions . 

Signif icance 

The s igni f icance of t h i s inves t igat ion is t ha t i t will provide an 

in te rp re t ive study of c lass ical and modern optimization theory and wil l 

document the app l icab i l i ty of modern optimization theory to problems of 

an administrat ive nature . Although c lass ica l optimization theory i s well 

documented with respect to administrat ive app l ica t ions , avai lable solution 

techniques, and examples, modern optimization theory is not . At present 

there has been a lack of administrat ive research on the techniques of 

modern optimization theory and t h e i r use as a tool of administrat ive 

analys is . The need f o r such research has been noted by o thers . 

I t must be rea l ized , however, tha t not everything 
is l i nea r and tha t occasionally we come across 
constra ints which are mathematically pathological 
types. . . . We need a great deal more basic 
research on optimization methods in the un ivers i t i e s 
and indus t r ia l research labora tor ies . 

This study will help to s a t i s f y th is need. 

Before ex is t ing problems can be solved, there must be an awareness 

of the cha rac te r i s t i c s which define classes of problems. These problems 

must be conceptually developed with regard to t h e i r p a r t i c u l a r charac-

t e r i s t i c s to the point of applying a val id solution technique. Given 

4 
W. W. Garvin, H. W. Crandal1, J . B. John, and R. A. Spellman, 

"Applications of Linear Programming in the Oil Indust ry ," Mathematical 
Studies in Management Science, edi ted by Arthur F. Veinott , J r . 
TNewTork, 19657, pp. 127-128. 
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th is development, the optimizing process i s achieved by matching the 

problem under invest igat ion to s imi lar ones wi th known character ist ics 

and select ing the computational technique that best f i t s the problem 

descript ion. I f the data base from which the problem is formulated is 

s u f f i c i e n t , proper u t i l i z a t i o n of th is matching process w i l l resu l t in 

solutions that are t r u l y optimal. 

Although ident i f y ing the types of administrative problems to which 

modern optimization theory is applicable and matching these problems with 

the computational techniques that are available is s ign i f i can t in i t s e l f , 

th is study w i l l be fur ther enhanced by the development of computational 

algorithms that are based upon the mathematical theory of modern opt imi-

zation theory. These algorithms w i l l then be demonstrated by application 

to speci f ic problems. In th is way, th is study w i l l (1) provide an ins ight 

in to the use that can be made of these new techniques as tools of adminis-

t ra t i ve analysis, (2) provide algorithms fo r implementing these new tech-

niques, and (3) provide a detai led demonstration of the computational 

aspects of each algorithm. 

Scope of the Study 

This study w i l l be l im i ted to the general character is t ics , componentss 

and suf f ic iency conditions for implementation and use of both classical 

and modern optimization theory. As an in terpre t ive study, i t is not 

intended to be an exhaustive presentation of the many techniques and 

modifications to both classical and modern optimization theory. Rather, 

the intent of th is study is centered on the general conceptual and 
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methodological developments of these two areas of optimization, with 

par t icu lar attention being given to administrative applications. 

Since administrative applications of modern optimization theory are 

not readily available, detailed problem examination will be limited to 

selected examples. This lack of current administrative application is 

a t t r ibuted to the newness of the computational techniques of modem 

optimization theory and the lack of an adequate data base from which prob-

lems can be formulated. Hence, some abstract problems are ut i l ized to 

demonstrate the type of problem formulation being investigated and the 

solution technique employed. The next step to proper administrative appli 

cation is the identifying of problems that can be solved by the solution 

techniques that are discussed. By relat ing these problems to those of 

classical optimization theory, i t is possible to in fe r areas of similar 

administrative appl icabi l i ty . From this development, fur ther inquiry 

can be i n i t i a t ed that leads to the investigation and development of 

the data that is necessary for practical application. 

Methodology 

The methodology to be employed in the course of this study includes 

a comprehensive review of developed theory and published applications. 

The purpose of th is review of the l i t e r a tu re i s to (1) establish the 

general character is t ics of the problems to which both classical and 

modern optimization theory can be applied, (2) present the character is t ics 

of the general solution techniques that are available, and (3} describe 

the administrative applications suited to the use of these techniques. 
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In t h i s way the classes of administrat ive problems amenable to both areas 

of optimization theory will be i d e n t i f i e d and correlated with appropriate 

solution techniques. 

The review of the l i t e r a t u r e relevant to optimization theory and i t s 

applicat ion as a problem solving tool will include a comprehensive study 

of the techniques of optimization theory. Since one of the major fea tures 

of t h i s study is the extract ion of exis t ing algorithms and the development 

of algorithms by which new techniques can be applied, t h i s review of the 

l i t e r a t u r e will provide a basis from which th is can be accomplished. The 

detai l and manner of presentation of extracted material and developed 

algorithms will be such tha t administrat ive applicat ion will be enhanced. 

These algorithms will then be demonstrated in a depth that i s not available 

in current l i t e r a t u r e . 

As noted previously, administrat ive appl icat ions of c lass ica l optimi-

zation theory are well documented in current l i t e r a t u r e . This documentation 

i s evidenced by the many conceptual and empirical s tudies which u t i l i z e 

the computational techniques of c lass ica l optimization theory. However, 

administrat ive appl icat ions of modern optimization theory have not received 

the degree of documentation t h a t has been given to c lass ica l optimization 

theory. This lack of documentation has been a t t r ibu ted to the newness of 

the computational techniques of modern optimization theory and the lack of 

empirical data. Hence, unti l empirical s tudies have provided a s u f f i c i e n t 

data base, i t will be necessary to i den t i fy the administrat ive appl icat ions 

of modern optimization theory from the basis of conceptual development. 



CHAPTER I I 

CLASSICAL OPTIMIZATION THEORY 

Introduction 

The use of mathematical models for decision analysis serves a twofold 

purpose: 

(1) The essential variables of the problem are brought together 
in one model accounting for the constraints and the function 
to be optimized. 

(2) The problem [via the mathematical formulation] is now given 
a famil iar structure which can be analyzed for-.solutions, 

the i r existence, uniqueness, and construction. 

These models, properly derived, can serve to better the decision making 

process by enabling the analyst to examine carefully the problem formulation 

and, based upon this formulation, select the most appropriate solution 

technique. 

From the viewpoint of histor ical development, the f i r s t class of 

problems generally considered by the analyst are those characterized by 

non-iterat ive, s t r i c t l y defined solution techniques. Throughout this 

discussion, this class of optimization problems w i l l be considered the 

context of classical optimization theory. 

Definit ion 2J_.--C1 assical optimization theory is defined as an 

association of solution technique and problem formulation for which 

alternative solutions do not exist and for which the search for the 

(Haw vI!!°i1ia^uL*i\^a^^An^a'*:*iei1ia^1'ca'^ ^oc*e^s ° f Operations Research 
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optimum solution is a pseudo search. In t h i s sense, c lass ica l optimization 

theory describes a s t ra ight- forward applicat ion of a formula or a non-

i t e r a t i v e algorithm tha t y i e l d s , in a d i rec t manner, a unique solut ion to 

a given problem. 

Examples of c lass ica l optimization problems include breakeven analys is , 

ra te of re turn , average length of a queue, determining maximum and/or 

minimum values of a given nonlinear funct ion, and some types of product-

mix problems. Solutions to these problems are c l a s s i f i e d as pseudo 

search because they are defined by equali ty conditions and are of such a 

nature tha t unique solut ions r e s u l t . 

Classical optimization techniques include the use of l i n e a r systems, 

matrix algebra, max-min calculus , Lagrange mu l t i p l i e r s , and queueing 

theory. Each provides a d i s t i n c t means of formulating and solving classes 

of problems, and each can be categorized on t h i s bas i s . However, before 

a problem can be solved by a given technique, the problem i t s e l f must 

be recognized and formulated. Given th i s formulat ion, the necessary 

technique fo r solving can be applied and solut ions obtained (provided 

those solut ions e x i s t ) . 

As a means of providing a proper base from which to discuss the 

appl icat ions of decision analys is , the search techniques of c lass ica l 

optimization theory will be ca tegor ica l ly presented. Following th i s 

presentat ion the applicat ions will be discussed. 
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Techniques of Classical Optimization Theory 

A1gebraic Equations 

I n i t i a l l y the analysis of business systems began with algebraic 

expressions representing the pa r t i cu l a r problem under inves t iga t ion . 

Characterized by a s ingle-var iab le expression of the form 

f(x) = aQxn + a^xn~^+.. .+a n , 

t h i s attempt at functional representat ion forced all products in to a 

t h 

homogeneous category. The r e s u l t , f o r aQ f 0 , was the n degree 

polynomials defined by f ( x ) . When equated to zero, f (x) can be solved 

fo r the n roots (solut ions) by means of d i rec t formulas taken from 
2 

numerical analysis and the theory of equations. 

Classical algebraic analysis of administrat ive problems assumes 

an algebraic expression tha t i s at most th i rd degree (cubic) , but generally 

second degree (quadratic) or f i r s t degree ( l i n e a r ) . For the second degree 

equation, by f a r the most common, the normal solution technique i s the 

quadrat ic formula. With the exception of non-univariate functions 

( i . e . , functions with more than one independent va r i ab le ) , applicat ion of 

the quadrat ic formula y ie lds numerical so lu t ions . For m u l t i v a r i a t e 

quadrat ic funct ions , the solut ions are dependent. 

Linear Systems 

The need fo r systems of equations becomes apparent when the problem 

under invest igat ion is such that the products are not homogeneous and 

2 
These methods include the following: Newton's method fo r in tegral 

roots , application of Cardan's formulas fo r solving reduced cubic equations, 
Horner's approximation method, and the method of "regula f a l s i . " 
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cannot be considered as belonging to the same se t ( f o r example, a plant 

operation t h a t produces four d i s t i nc t products: cha i r s , t a b l e s , desks, 

and beds). Such problems a r i se when the composite elements of the problem 

are d i s t i n c t and cannot be considered in terms of a single var iab le . 

In such a case, i t i s necessary to describe the problem by a system of 

n-var iable simultaneous equations. In describing such problems, the 

following def in i t ion i s of value. 

Definit ion 2.2.--The mult ivar iable l i nea r system problem i s defined 

as one in which the object ive is to f ind the set of x, ( j = 1, 2 , . . . , n ) 
J 

s a t i s fy ing the m l inea r equations 

m 
Ti a. . X , = b . , j = 1, 2 , . . . , m . 

i=l 1 J J 1 

The system is said to consist of m equation with n unknowns ( i . e . , m x n) . 

In th i s formulation i t i s assumed tha t to ta l consumption i s required 

of a l l resources and a l i nea r re la t ionship ex i s t s among the var iab les . 

This approach allows more f l e x i b i l i t y because contr ibut ions (as well as 

expenses) of individual elements can be considered. 

Techniques fo r solving such algebraic systems include the subs t i tu t ion 

method, the elimination method, the application of Cramer's ru le , or the 

use of matrices. With the exception of matrix theory, a d i s t i nc t applied 

tool in i t s own r ight due to i t s wide a p p l i c a b i l i t y , each of these 

represents a standard technique fo r solving l i n e a r systems. In the 

discussion to follow, these basic solution techniques will be b r i e f l y 

examined. Because of the elementary nature of some of these techniques, 

the discussion, in some pa r t s , will be l imited to a d i rec t statement of 
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technique. In p a r t i c u l a r , t h i s approach will be u t i l i z e d on the explanation 

of the subs t i tu t ion method and the elimination method. 

Solution by subs t i tu t ion . - -The subs t i tu t ion method, although 

applicable fo r any l i nea r system, is pract ica l only when m and n are at 

most th ree . When m = n exceeds th ree , the subs t i tu t ion method becomes 

unwieldy and be t te r techniques can be applied. An algorithmic approach 

to the subs t i tu t ion method can be described as follows: 

(1) Given an m x n l inea r system, se l ec t one of the variables f o r 

the purpose of subs t i tu t ing i t into the remaining equations. 

(2) Solve one of the m equations fo r the selected var iab le . 

(3) Subs t i tu te the resu l t of (2) into the remaining m - 1 equations. 

For m > 2 the process will have to be repeated unti l a unique solut ion i s 

obtained, a solut ion which can then be used to determine the o ther values, 

or a dependent solution i s obtained. 

Solution by elimi nat ion,--Solving a given l i nea r system by elimination 

involves se lec t ing a variable to be el iminated, multiplying as needed to 

equate c o e f f i c i e n t s , and then subtract ing or adding in such a way tha t 

the chosen variable i s eliminated from the system. The process i s 

repeated unti l the variables are numerically determined, are defined in 

terms of one or more of the var iab les , or the system i s i d e n t i f i e d as 

being inconsis tent (no so lu t ion ) . 

Cramer's rule.—Cramer's rule defines a mathematical technique fo r 
O 

solving simultaneous l i nea r equations. The problem to be solved is one 

3 
Nelson Bush Conkwright, Introduction to the Theory of Equations 

(New York, 1957), p. 132. 
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which is described by n simultaneous equations in n unknowns x-j 

x2 V 

a l l x l + a12x2 + " , + a ln x n " b l ' 

a21x l + a22x2 + , , * + a2nxn ~ b 2 ' 

a n l x l + an2x2 + ' - ' + annxn = V 

Let £ denote the determinant defined by the coe f f i c i en t s of the l i n e a r 

systems; i . e . , 

a l l a12 a ln 

a21 a22 • " a2n 

anl an2 ann 

Let D. ( j = 1, 2 , . , . , n ) denote the determinant obtained by replacing the 
J 

fh 

elements of the j column of 2 by the column of constants b-j, b2» . . . , b ; 

fo r example, f o r j = 1, 

*1 = 

b l a12 a1n 

b2 a22 2n 

bn an2 " • ann 

Then, u t i l i z a t i o n of the following rule provides a means fo r solving the 

simultaneous system fo r each of the n var iables . 



19 

Rule 2.1 (Cramer's Ru le ) . - - I f D j 0, the simultaneous equations 

a l l x l + a12x2 + ' • ' + a ln x n " b T 

a21x l + a22x2 - • • • + a2nxn b2 , 

a n l x l + an2x2 + " " + annxn = b n 

are s a t i s f i e d by a unique (ones and only one) se t of values of the n 

var iables . The values of the n variables are given by the following se t 

of formulas: 

D1 
X1 88 D~' x2 

°2. 
D ' " * 

D„ 
xn D ' 

The use of Cramer's rule provides a means fo r solving an n x n system 

without resor t ing to the tedious techniques of subs t i tu t ion or e l iminat ion. 

I t s appl icat ion requires the evaluation of (n + 1) determinants and the 

evaluation of n ra t ios and i s applied as follows: 

1. Determine the value of the determinant defined by the coe f f i c i en t s 

of the se t of simultaneous equations; i . e . , evaluate 

an 

D = 

a n a i 2 

21 

In 

c l °2n 

nl an2 *•* ann 

2. Determine the value of the determinant £ . , defined as the 
J 

t h 
determinant obtained by replacing the j column of D by the column of 

constants b-j, b ^ , . . . ^ ; i . e . , evaluate 
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V 
a n ai2. ••• a i j - i b i a i j + i 

a 2 ] a 2 2 . . . a 2 j s s l b£ a 2 j + 1 

In 

2n 

anl an2 * a n j - l bn anj+l nn 

j 2 5 . « * n, 

3. For D i 0> apply the solution formula fo r determining the value 

of the J*"*1 variable 

x = _°1 x j D 5 J — 1) 2 , . . . ,n. 

Repeated applicat ion of the t h i rd step r e su l t s in n unique values, 

one fo r each of the n var iab les . Thus, given the value of D, the solut ion 

set i s obtained by evaluating n additional determinants and calcula t ing 

the necessary quot ients . As noted in the statement of Cramer's r u l e , 

the calculated values are the unique (one, and only one) solut ions to 

the given system of l i nea r equations. That i s , the solut ion se t i s the 

unique se t of points at which al l of the n equations i n t e r s e c t each other . 

An obvious drawback of Cramer's rule i s the i n f e a s i b i l i t y of applicat ion 

when the l i nea r system is l a rge . This drawback i s also common to both 

solution by subs t i tu t ion and solution by e l iminat ion. For large systems, 

the use of matrix theory provides a more su i t ab le method of obtaining the 

values of the solution s e t . 

Matrix Theory 

The matrix approach to simultaneous equations provides a means fo r 

describing a given system in an abbreviated form. Defining a matrix as 

an array consist ing of m rows and n columns (with m not necessar i ly equal 
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to n ) , a simultaneous se t of equations given by 

a n x i + a i 2 x 2 + - - - + a in x n = b r 

a21x l + a22x2 + , , * + a2nxn = b 2 ' 

amlx l + am2x2 + , * , + amnxn bm> 

can be wr i t ten in the form 

where 

AX = B, 

a n a i 2 " " a l n " X 1 " " b r 

A = a21 a22 *' " a2n 
•» x = x2 

; and B_ = b2 

aml am2 " mn _ y A 
Proper implementation of the nota t ional aspects of matrix theory 

provides an e f f i c i e n t means of describing mul t ivar iab le l i n e a r problems. 

Although i t i s not r e s t r i c t e d to describing l i n e a r systems, the use of 

the matrix notat ion in c l a s s i c a l opt imizat ion theory centers on the 

simultaneous l i n e a r system. In i l l u s t r a t i o n , consider the fol lowing 

problem: A mining company has demand f o r 1,000 tons of iron ore , 

2,000 tons of crushed rock, and 500 tons of d i r t . Three products , 

x-|, X£, and x^, can be made by blending the ore , rock and d i r t . Product x-j 

requi res 5 tons of iron ore , 10 tons of crushed rock, and 10 tons of d i r t . 

Product requires 5 tons of iron ore , 8 tons of crushed rock, and 5 tons 

of d i r t . Product x^ requires 15 tons of iron ore , 4 tons of crushed rock, 

and 2 tons of d i r t . Demand i s such t h a t i t must be met. Assuming a 

l i n e a r r e l a t ionsh ip between x-j, x ? , and x.g, i t i s poss ible t o describe 
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th is problem by the fol lowing set of simultaneous equations: 

5x-j + 5x^ + 1 5X3 = 1000, 

1 Ox-j + 8X2 + 4X3 = 2000, 

1 Ox-j + 5x2 + 2x3 = 500. 

Applying matrix notat ion, the problem takes on the form 

5 5 1 5 ~ X . j ~ I O O O " 

1 0 8 4 
X 2 

=: 2 0 0 0 

10 5 2 
_ X 3 _ 

5 0 0 

In addition to the abbreviated form, the use of matrices provides a 

method by which systems with the proper character ist ics can be solved more 

feasibly and more e f f i c i e n t l y than by any other technique. Solutions to 

the given system, expressed by the solut ion vector 

x-, 

X = 

n 

- A £X] S X 2 , . . . , x^} ^ , 

can be obtained by mul t ip ly ing the abbreviated system on the l e f t by the 

inverse of the matrix of coef f ic ien ts ; i . e . , denoting the inverse of A 

by A - 1 , 

A"1(AX) = A_1B 

y ie lds 

X = A - 1 B . 
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I t is assumed that the inverse matrix, A""', ex i s t s . I f i t does, A~̂  

is the unique matrix such that multiplication of the coeff ic ient matrix 

A by A"1 reduces A to the identi ty matrix I_. The identi ty matrix is 

defined as the n x n matrix whose diagonal elements are equal to unity 

and elements off the diagonal are equal to zero; i . e . , 

I = 

1 0 

0 1 

0 

0 0 . . . 1 

Thus, solving a system of simultaneous l inear equations using matrix 

theory requires four basic operations: (1) write the given l inear system 

in matrix form; (2) calculate the inverse of the coeff ic ient matrix A; 

(3) multiply the column vector of constants, B̂ , on the l e f t by the inverse 

of A; (4) write the solution vector that resul t s : X. = In th is 

discussion i t is t ac i t ly assumed that the inverse ex is t s .^ 

Before the matrix-inverse approach to solving simultaneous equations 

can be applied, several conditions must be s a t i s f i e d . These conditions 

are given by reference to some of the theorems of matrix theory. For th is 

reference, the following defini t ions of terminology are required. 

Definition 2 .3 . - - I f A denotes the m x n matrix of coeff ic ients of 

9*j *| X-j 2^2 * ' + a lnxn = b l ' 
a21xl + a22x2 + " ' + a2nxn ^29 

amlxl + am2x2 + ' " + aranxn = bm 

* T i » 

The existence of an inverse yields a unique universe; i . e . , for 
any nonsingular square matrix A, there is only one inverse for A. 
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the augmented matrix C is defined as the . » [ n M | matrix obtained by 

attaching the column of constants, B, to the matrix A; i . e . , 

i f A = 
11 a12 " • a ln 

a a21 a22 * 2n and B 

in'! m2 mn 

b i ] 

L bm J 

c = 

d l l 12 a ln b l 

a21 a22 a2n b2 

Laml V amn bm 

Defini t ion 2.4.—The m a t n - v a . , , 
" . E MATRIX A is said to be nonsingular I F there 

exists a matrix D such that M - I . ad, where 1_ is the iden t i t y matrix. 

x i s t s , then D - A . i f d does not ex is t , the matrix A is said to 

be singular. 

JMlJILtlon, 2J5. —The row rank of the matrix 

a l l a12 a ln 
A = 

21 a22 " • a2n 

aml am2 mn 

( a i j ) » 1 - 1» j = 1, 2. . .n , 

i s defined as the number of nonzero rows of A when A is expressed in ™ 

equivalent s impl i f ied form; i . e . , the matrix A has been reduced by a series 
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of row operations to a matrix such t h a t : 

(a) the f i r s t r rows, fo r some r > 0, are nonzero arid a l l remaining 

rows, i f any, are zero; 
J. L 

(b) the f i r s t nonzero element in the i row (i = 1, 2 r) i s 

equal to unity, the column in which i t occurs being numbered c^; 

( C ) C*j ^ c«2 ^ ^ C r , 

(d) the only nonzero element in column c^ i s the 1 in row i . 

The matrix to which A has been reduced i s said to be the row equivalent 

5 

matrix of A. 

The term "row operation" r e fe r s to any one of three operations on 

a matrix: 

(1) interchange of two rows; 

(2) mul t ip l ica t ion of any row by a nonzero constant; o r , 

(3) replacement of the row by the sum of the row and k times 
fh 

the i row, where i f j , and k i s any nonzero constant . 

The purpose of the row operation is to reduce a given matrix to the 

form described in Definit ion 2 .5 . For example, the matrix 

1 2 3 

4 5 6 

7 8 9 

can be reduced by a se r i e s of row operations to the iden t i ty matrix 

1 0 0 

0 1 0 

0 0 1 
'Sam P e r l i s , Theory of Matrices (Reading, 1958), pp. 42-45. 
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Definit ion 2.5 then s t a tes tha t the or iginal matrix has row rank, r , 

equal to 3; i . e . * the row equivalent form of the or iginal matHx contains 

three nonzero rows. 

The concept of row operation, in conjunction with the preceding 

de f in i t i ons , provides the necessary base from which the conditions 

required f o r obtaining solut ions to given l inea r systems can be wr i t t en . 

The following condit ions, found in any standard t e x t on the theory of 

matrices, are taken from Perl i s . 

1. A system of simultaneous l i nea r equations has a solut ion 
i f and only i f the [row] rank of the augmented matrix equals 
the [row] rank of the coe f f i c i en t matrix. 

2. A homogeneous system of l inear equations [a system such 
tha t al l of the constant terms are zero] has a nontr ivia l 
solution [al l x. f 0] i f and only i f the numbergof unknowns 
exceeds the row rank of the coe f f i c i en t matrix. 

As noted previously, a given l inea r system, i f i t has a so lu t ion , 

can be solved by multiplying the column vector of constants by the 

inverse of the c o e f f i c i e n t matrix. The mul t ip l ica t ion i s achieved by 

multiplying on the l e f t . Symbolically, i f AX = B_, and A~̂  e x i s t s , 

A"1(AX) = A_1B, 

(A_1A)X = A_1B, 

U = A-1B, 

X = A_1B_. 

This inverse can be uniquely determined from the c o e f f i c i e n t matrix by 

reducing the coe f f i c i en t matrix to the iden t i ty matrix. The ser ies of 

row operations which reduces the coe f f i c i en t matrix to the iden t i ty matrix, 

6 I b i d . , pp. 45-62. 
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i f performed on a s imi lar iden t i ty matrix, will transform i t into the 

unique inverse of the coe f f i c i en t matrix. The procedure i s as fol lows: 

(1) se t up the par t i t ioned matrix [ A j l j , A any n x n c o e f f i c i e n t 

matrix and I_ any iden t i ty matrix of equivalent s i ze ; 

(2) reduce the matrix A to the iden t i ty matrix X by a se r ies of 

row operat ions; a t the same time, perform the same se r ies of row operations 

on the augmented matrix I_; 

(3) the resul t ing pa r t i t i on has the form: [A~^A|A~^IJ = [I_ |A~^]> 

the matrix to which the iden t i ty matrix has been transformed being the 

inverse of the coe f f i c i en t matrix A. 

As a mathematical t oo l , the theory of matrices provides a means 

whereby problems formulated as l inea r systems can be wri t ten in an 

abbreviated form. In addi t ion, the use of matrices provides a more 

e f f i c i e n t method fo r solving a given system of simultaneous equations 

through the use of the inverse. Since the system being invest igated 

defines a se t of simultaneous l inea r equations s the resu l t ing solut ion 

vector i s unique; i . e . , i t defines the only se t of solutions which 

s a t i s f i e s all of the equations simultaneously. 

As a tool of c lass ica l optimization theory the applicat ion of the 

theory of matrices "solves" the defining system in a d i rec t manner. No 

attempt i s made to determine whether or not a l t e rna t ive solut ions ex i s t 

since the use of the equali ty implies one and only one solution s e t . 

Examples of problems su i t ab le f o r t h i s method of analysis include budget 

a l loca t ions between departments of a f i rm, a l loca t ion of labor to productive 

endeavor when f ixed amounts of production are required, and a l locat ion of 

investment opportunit ies to y i e ld a f ixed do l la r (or percentage) re turn . 
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Max-min Calcuius 

The use of the calculus as a tool f o r solving administrat ive problems 

can be traced to the mathematical school of economic thought. Although 

i so la ted application to administrat ive problems can be found pr io r to 

t h i s time~-notably the work of Coumot, Jevons, and Walras in p r o f i t 

analys is , marginal u t i l i t y and marginal productivi ty of c a p i t a l , and 

marginal u t i l i t y and demand ana lys i s , respec t ive ly- - the accepted use of 

mathematics (especial ly the calculus) as a tool of decision analysis 

received i t s g rea tes t impetus from the work of these pioneering appl i -

cat ions . In i t s capacity as a c lass ical optimization technique, the 

max-min calculus has been used in applicat ions such as inventory ana lys is , 

c o s t - p r o f i t ana lys is , and the study of isoquants and t h e i r re la ted 

famil ies of curves. 

The techniques of the calculus are divided into two major d iv is ions : 

(1) the s ingle variable case, where the dependent variable i s defined 

as a function of a s ingle independent variable and (2) the multi vari abl e 

case, where the dependent variable i s defined as a function of n inde-

pendent var iab les . In the f i r s t case, the approach fo r determining 

maxima or minima is based upon the use of the der iva t ive . In the second 

case, the approach fo r determining maxima or minima is based upon the use 

of the pa r t i a l der ivat ive . Because of the nature of the appl ica t ions , the 

same division of topics will be used in th i s study. 

Functions of a s ingle variable.—The development of the calculus as 

a tool of analysis is based on the following concepts: l i m i t , cont inui ty , 

der iva t ive , r e l a t i ve maximum (minimum), and absolute maximum (minimum). 
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These concepts are defined and explained as a basis f o r l a t e r discussion. 

Defini t ion 2.6.—Let f (x) be any function defined fo r the independent 

var iable x. The function f(x) approaches a l imi t L as the variable x 

approaches the value c i f and only i f f o r every posi t ive number, e , there 

i s another number 6 > 0, such t h a t , whenever the absolute d i f fe rence 

between x and the point being approached is less than Ss the absolute 

value of the d i f ference between f(x) and L is less than e; i . e . , 

lim f ( x ) = L -h ¥ e > 0 3 6 > 0 3 0 < | x - c | < 6 + j f ( x ) - L | < e , 
X -*• c 

The meaning of t h i s concept can be explained in the following manner: 

Consider the function f(x) defined over the relevant range of x. As the 

independent var iable , x, approaches the value c (from e i t h e r side) in such 

a way that the absolute d i f fe rence between x and c i s i n f i n i t e l y small, 

the value of the funct ion, f ( x ) , approaches a f ixed value ( i . e . , as the 

value of the independent variable approaches a given value, the d i f ference 

between the value of f (x) evaluated a t the point in quest ion, c, and 

the l imi t ing value, L, becomes i n f i n i t e l y small) . Thus, as x approaches 

(or i s l imited by) c, the funct ion , f ( x ) , approaches L as i t s l i m i t . 

Defini t ion 2 .7 . - -Let f (x) be any function defined for the independent 

var iable x. The function f (x) is said to be continuous at x = c (where c 

i s in the acceptable domain of f (x) ) i f and only i f the following conditions 

are s a t i s f i e d : 

(1) f (x) i s defined at x = c; 

(2) as x approaches c, the l imi t of f (x) e x i s t s ; and, 
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(3) the l imi t of f (x) as x approaches c equals f (x) evaluated a t 

x = c. 

The importance of continuity to the calculus centers on the der iva t ive . 

In addition to guaranteeing a smooth curve, continuity must be es tabl ished 

before the existence of the der ivat ive can be assumed. Continuous functions 

are functions containing no gaps ( i . e . , the curve is not kinked or stepped) 

and functions fo r which the der ivat ive can be defined. 

Definition 2 .8 . - -Let y = f(x) be any function defined over a given 

i n t e rva l . The derivat ive of y = f ( x ) , denoted by y ' = f ' ( x ) , i s defined by 

y< = f . ( x ) = a ^ Q , provided the l imit e x i s t s . 

Upon examining this de f in i t ion i t i s seen tha t the der ivat ive 

defines the average ra te of change in f (x) as th i s ra te of change becomes 

i n f i n i t e l y small (approaches zero) . Further ins ight in to the meaning of 

the der ivat ive can be obtained by considering the r a t io 

f(x+Ax) - f ( x ) . 

AX 

The numerator, f(x+Ax) - f ( x ) , i s the d i f fe rence between two values of 

the dependent var iable ; as such, i t represents the amount of change 

produced in the dependent variable due to a change of magnitude AX in 

the independent var iable . Dividing the amount of change in the dependent 

var iable by the amount of change in the independent var iable , / ( X + A X ) ~ f ( x l s 
AX 

resu l t s in the average ra te of change of f (x) over the in terval (x, X + A X ) . 

As a graphic i l l u s t r a t i o n consider the function shown in Figure 2 .1 , 

a discussion of which follows. In t h i s i l l u s t r a t i o n the variable y is 
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said to be a function of the variable x. Incremental changes in x will 

be denoted by Ax. 

,= fcx) 

(*, ft*)) 

?£*) 

Xf A-X 

Fig. 2.1--The derivative 

As the change in x becomes increasingly small (AX-^0), the value of AX is 

said to approach zero as a l imi t . This l imiting process, applied to the 

r a t io , ~ ^ ~ A , X \ X > 1 S called the instantaneous ra te of change of f(x) 

with respect to x; thus f ' ( x ) is the derivative of f(x) with respect to 

the changing (independent).variable x. I t i s the ra te of r i se (or f a l l ) of 

the function at any point defined for tha t function; and, as such i t defines 
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the slope of the tangent to the curve a t any given p o i n t / This i s 

e a s i l y demonstrated by const ruct ing a r igh t t r i a n g l e as shown in Figure 2 .1 . 

Since the tangent of the angle i s defined as the r a t i o between the l i n e 

segment opposite the angle (f(x+Ax)) and the l i ne segment adjacent t o the 

angle (AX), the tangent of the angle formed (©) i s F(x + A x) ~ 
AX 

For AX taken in successively small increments the curve i s approximated by 

a s e r i e s of s t r a i g h t l i n e s , the slope of which i s given by the tangent value. 

Thus, as AX-M3 the l i ne tangent t o f (x ) a t X+AX has slope 

l im f(X+AX) - f ( x ) 

Ax-*0 A X ~ S 

which i s the der iva t ive of f ( x ) . 

The de r iva t ive is one of the most important concepts of the d i f f e r e n t i a l 

ca lcu lus . In addit ion to i t s use as a tool f o r determining points of maxima 

and minima, the der iva t ive (as a measure of the average r a t e of change) 

def ines the marginal r a t e of change in the dependent var iab le due to a 

change in the independent va r i ab le . In t h i s use the der iva t ive can be used 

to describe such concepts as 

(1) marginal p r o f i t — t h e average r a t e (or amount) of change in 

p r o f i t due to a change in the var iab le which def ines p r o f i t ( say , un i t s 

produced); 

(2) marginal u t i l i t y - - t h e average ra te (or amount) of change in 

u t i l i t y due to a change in some defined independent va r i ab l e ; 

(3) marginal demand—the average ra te (or amount) of change in 

demand due to a change in some independent var iable (say, p r i c e ) ; 

^Gordon Ful le r and Robert M. Parker, Analyt ic Geometry and Calculus 
(Pr inceton, 1964), pp. 66-67. 
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(4) marginal consumption—the average rate (or amount) of change 

in consumption due to a change in some independent var iable (say, 

income); and 

(5) marginal output (product iv i ty ) - - the average ra te (or amount) 

of change in output due to a change in the input of productive f a c t o r s . 

From th i s l imited select ion i t i s eas i ly seen that the der ivat ive functions 

as a very important tool f o r solving those problems amenable to i t s 

implementation. 

The application of the d i f f e r e n t i a l calculus includes the determination 

of points of maximum and/or minimum value of given d i f f e r e n t i a b l e funct ions . 

In c lass ica l optimization theory th is is accomplished by the d i rec t 

applicat ion of a set of def in i t ions and theorems, a se t tha t completely 

defines the conditions by which the maximum and/or minimum values are 

i d e n t i f i e d . These condit ions, as well as the necessary terminologies, 

are presented as def in i t ions or theorems. 

Definition 2.9. —The c r i t i c a l point (or points) of a given continuous 

function is defined as tha t point (or se t of points) such tha t the der ivat ive 

vanishes at zero; i . e . , fo r a given continuous function f ( x ) , the c r i t i c a l 

point c i s defined as follows: 

c = { x | f ' ( x ) = 0}. 

In an operational context the c r i t i c a l point of a given function rep-

resents the point at which the slope of the l ine tangent to the curve a t tha t 

point has a value of zero. Thus, the c r i t i c a l point represents the value of 

the independent variable a t which the l ine tangent to the curve at that 
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point is paral le l to the axis defined by the independent variable. 

Recalling that the derivative of a function ( i f i t exists) represents 

the slope of the l ine tangent to the function at every point defined 

along the curve, the relationship between the derivative and the c r i t i c a l 

point can be easily seen: the c r i t i c a l point ident i f ies the point at 

which the l ine paral le l to the axis representing the independent variable 

is tangent to the curve. 

Def in i t ion 2.10.---Let f (x) be a function defined over the open 

interval a < x < b. Let x.j and x^ be any two points of th is in terva l . 

Then, for x-j < X£S 

(1) f (x) is said to be increasing on the interval a < x < b i f 

f(x.j) < f ( x 2 ) ; 

(2) f (x) is said to be decreasing on the interval a < x < b i f 

f(x-j) > f ( * 2 ) . 

The meaning of th is de f in i t ion , i l l u s t r a ted in Figure 2.2, is described 

as fol lows. 

J. •Tck'i 

i \ 
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1 \ 
1 \ 
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l 

— X 

Fig. 2.2(a)--Increasing function Fig. 2.2(b)—Decreasing function 
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(1) Consider Figure 2.2(a). Let x-j and x2 be any two points belonging 

to the open interval (a, b) such that x-| < x2< Evaluating f ( x ) at x = x-j 

and x = the resul t ing values, f(x-j) and f ( x 2 ) , respect ively, are such 

that f(x-j) < f ( x 2 ) . As x increases in value (from x^ to x2) the value 

of the funct ion, f ( x ) , increases (from f(x-j) to f (X2))- Therefore, as 

x increases in value the function defined for x increases; f (x ) is 

said to be increasing fo r x-j < x ? . 

(2) Consider Figure 2.2(b). Let x^ and x^ be any two points belonging 

to the open interval (a, b) such that x-( < x2> Evaluating f ( x ) at x = x-j 

and x = x2 , the resul t ing values, f(x-j) and f ( x 2 ) , respect ively, are such 

that f(x-j) > f ( x 2 ) . As x increases in value (from x^ to x2) the value of 

the funct ion, f ( x ) , decreases (from f(x-j) to f ( x 2 ) ) . Therefore, as x 

increases in value the function defined for x decreases; f (x ) is said 

to be decreasing for x-j < x2 . 

Assuming that the given funct ion, f ( x ) , is continuous over the 

open interval (a, b) the der ivat ive can be readi ly applied to determine 

whether f (x ) is increasing or decreasing over (a, b). When using the 

der ivat ive to determine the nature of the function (increasing or decreasing) 

the fol lowing theorem is useful. 

Theorem 2.1. - -Let f (x ) be any continuous function defined over the 

in terva l (a, b). The function f (x) is increasing or decreasing according 

to the sign of the derivat ive of the function. I f the derivat ive is 

posi t ive the function is increasing; i f the derivat ive is negative the 

function is decreasing. 
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Symbolical ly, 

(1) f ' ( x ) > 0 indicates f(x) to be increasing; 

(2) f ' ( x ) < 0 indicates f (x) to be decreasing. 

An i n t u i t i v e in te rp re ta t ion of t h i s theorem can be obtained by 

re fe r r ing to Figure 2.3. In the f igure the given func t ion , y = f ( x ) , 

is assumed to be continuous over the interval (a, b). As a means of 

s implifying the i l l u s t r a t i o n y = f (x) is assumed to be parabolic (unimodal) 

Fig. 2.3--Graphic representat ion of Theorem 2.1 

For values of x such tha t a £ x < xOJ y = f(x) i s an increasing func t ion . 

At every point along the curve fo r the given i n t e r v a l , f ' ( x ) > 0. This 

means tha t fo r a l l x lying within the interval a £ x < xc the l ine tangent 

to y = f(x) has posi t ive slope. For values of x such tha t x0 > x _> b, 

y = f(x) i s a decreasing funct ion. At every point along the curve fo r 
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the given i n t e rva l , f ' ( x ) < 0. This means tha t fo r a l l x lying within 
i 

the interval xc > x >_ b the l ine tangent to y = f (x) has negative slope. 

In conjunction with the concept of an increasing and/or decreasing 

function is the concept of the in f l ec t ion point . This concept re la tes 

to the concavity of the given function and is defined in the following 

manner. 

Definit ion 2.11.--The in f l ec t i on point of a given continuous function 

is defined as the point a t which the graph of the function changes i t s 

direct ion of concavity. 

In t h i s context the in f l ec t ion point of a given continuous function 

i s simply tha t point at which the function changes i t s opening; i . e . , 

i f the curve i n i t i a l l y opens upward the i n f l ec t i on point i s t ha t point 

where the curve begins to open downward (or vice versa) . As a means of 
8 

obtaining f u r t h e r ins ight in to the concept of the i n f l ec t i on poin t , 

consider the graph of the function shown in Figure 2 .4 . I t i s assumed 
3 

y= fcx) 

Fig. 2 .4 - - In f l ec t ion point 

8 I b i d . , pp. 103-104. 
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that the function is continuous, given by y = f ( x ) , and is such that the 

l ine tangent to y = f(x) moves in a positive direction ( l e f t to r igh t ) . 

As the tangent l ine rotates in a clockwise direction to point A, the 

direction of rotation is posit ive. At point A the tangent l ine reverses 

i t s direction of rotat ion; i . e . , as the tangent l ine rotates along y = f ( x ) , 

point A is the point at which the curve changes direct ion. As the tangent 

l ine follows the curve between points A and B the rotation is counter-

clockwise. At point B the tangent l ine again begins a clockwise rotation 

due to a change in the concavity of the curve. 

I t is possible, using the derivative, to determine the concavity of 

a given function. In this application the function is assumed to be 

different!'able through at least the second derivative, an assumption 

which, i f sat is f ied, leads to the following operational def in i t ions. 

Definit ion 2.12. — Let f (x) be any continuous function d i f f e r e n t i a t e 

through at least the second derivative. Let f ' ( x ) decrease within the 

interval where x increases. Then the function f(x) is defined as being 

concave downward. 

Definit ion 2.13.--Let f (x) be any continuous function d i f t rentiable 

through at least the second derivative. Let f ' ( x ) increase wl > the 

interval where x increases. Then the function f(x) is defined ;:s being 

concave upward. 
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Theorem 2 . 2 . - - I f y = f (x) has a second der ivat ive on an i n t e r v a l , 

then the abscissa of any in f l ec t i on point of the in terval will be a root 

of y" = f"(x) = 0 . 9 

The meaning of Theorem 2.3 is inherently c lea r : to determine the 

c r i t i c a l values for which a continuous function may have points of 

i n f l e c t i o n , solve f"(x) = 0 fo r all possible roots . These roots are the 

points at which the given function may have a change in the concavity of 

i t s curvature. Although the condition f"(x) = 0 does not guarantee points 

of i n f l e c t i o n , i t does represent a prerequis i te f o r a given point to be 

a point of i n f l e c t i o n , a r e su l t tha t can be used to a s s i s t in determining 

concavity. This r e su l t i s summarized by the following: 

(1) i f f"(x} < 0, the graph of the function at the point x i s concave 
downward; 

(2) i f f"(x) > 0, the graph of the function a t the point x i s concave 
upward; 

(3) i f f"(x) = 0S the function must be tes ted fo r (X+AX) so as to 
apply (1) and ( 2 ) . i U 

The procedure employed in the method i s explained as fol lows: To 

determine the i n f l ec t i on points of a given funct ion , se t the second 

derivat ive equal to zero and solve. This will y ie ld c r i t i c a l points f o r 

the given function which may be in f l ec t ion poin ts . I t i s then necessary 

to t e s t the roots of f"(x) = 0 to determine any change in direct ion of 

f ( x ) . A common method is to simply s t raddle the roots of f"(x) = 0: 

9 I b i d . , p. 104. 

^ C h r i s A. Theodore, Applied Mathematics: An Introduction (Homewood, 
1965), p. 433. 
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suppose x is a root of f"(x) = 0; obtain xm + Ax and subs t i t u t e into m 

f " ( x ) . If f"(x) changes sign within the defined i n t e r v a l , xm i s an 

i n f l ec t i on point with value f (x m ) . 

3 2 

As an example, consider the function f(x) = x - 6x + 9x, 

0 < x < ». Test f (x) f o r i n f l ec t ion points . 

Solution: The necessary f i r s t and second der iva t ives , f ' ( x ) and 

f " ( x ) , respect ively , are given by 

f 1 ( x ) = 3x2 - 12x + 9, 

f"(x) = 6x - 12. 

For f"(x) = 0, x = 2, a s ingle c r i t i c a l point f o r f"(x). To t e s t fo r any 

change in concavity, l e t Ax = 1; evaluate f " (x + AX): 

(1) at x = 2, f11 (x + AX) = f 1 (3) = 6 > 0. 

(2) at x = 2, f"(x - AX) = f " 0 ) = -6 < 0. 

As x approaches the value 2 from the l e f t the function f (x) is concave 

upward; as x approaches 2 from the r i g h t , f (x) is concave downward. Thus 

the point (x, f (x ) ) = (2, 2) is an i n f l e c t i on point ; i t is the point a t 

which the function s h i f t s from concave upward to concave downward. (See 

Figure 2 .5 . ) 
Pc*}- x3- + 

Fig. 2.5--Graph of f (x ) = 6x + 9x 
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An i n t u i t i v e look at the preceding example leads d i rec t ly to the 

concepts of maxima and minima fo r a given funct ion. At x = 1 the function 

has a value of y = 4; a t x = 3 the function has a value of y = 0, and, 

f o r x > 3, y i s an increasing funct ion. Observationally, a maximum exis t s 

at the point (1, 4) and a minimum at (3, 0) . However, th is same obser-

vational approach reveals tha t f o r x > 3, y = f (x) is increasing without 

l i m i t . Thus, the point (1, 4) represents a r e l a t i v e maximum and (3, 0} 

an absolute minimum within the defined in t e rva l . 

Conditions under which maxima and/or minima ex i s t are r ig id ly defined 

in the mathematical theory of the calculus . These condit ions, expressed 

as theorems and d e f i n i t i o n s , are presented in the following discussion. 

Since the in tent here is i n t e r p r e t a t i o n , proofs are not included. 

Theorem 2.3 (Necessary Condition fo r a Maximum).--Let f (x) be any 

continuous d i f f e r e n t i a b l e function defined over the closed in terval 

a £ x £ k. c be any point in the open interval (a , b) such tha t 

a < c < b. Let f (a ) < f ( c ) , and f (b) < f (c ) fo r a < c < b. Then there 

ex i s t s at l eas t one value X, a < X < b, such tha t 

(1) f (x) £ f (X), a £ x £ b, 

(2) f ' (X) = 0 . 1 1 

The conditions f (a ) < f (c ) and f(b) < f ( c ) guarantee tha t f (x ) will have 

a t l e a s t one maximum point in the interval (a , b). This point(s) x defined 

fo r the closed interval [a , b] , is (are) such t h a t , f o r a t l e a s t one X 

belonging to (a, b) , f (x) is a t most equal to f (X), the maximum point of 

11 
David V. Widder, Advanced Calculus (Englewood C l i f f s , 1961), p. 119. 
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the curve. In addi t ion, the derivat ive of f(x) i s such tha t i t equals 

zero, guaranteeing a horizontal tangent l ine a t all points f o r which 

f 1 (x ) = 0. 

Theorem 2.4 (Necessary condition fo r a_ minimum).--Let f (x) be any 

continuous d i f f e r e n t i a t e function defined over the closed interval 

a <_ x £ b. Let c be any point in the open interval (a , b) such that 

a < c < b. Let f (a ) > f ( c ) , and f (b) > f (c ) f o r a < c < b. Then there 

ex i s t s at l e a s t one number X, a < X < b, such tha t 

(1) f (x) >_ f(X), a £ x £ b, 

(2) f ' ( x ) = 0. 

The conditions f (a ) > f (c ) and f(b) > f (c ) guarantee tha t f (x) wil l have 

a t l e a s t one minimum point in the interval (a , b) . This point(s) x 

defined fo r the closed interval [a, b] is (are) such t ha t , f o r at l ea s t 

one x belonging to [a , b] , f (x) i s at l eas t equal to f (X), the minimum 

point of the curve. In addi t ion, the der ivat ive of f (x) is such that 

i t equals zero, guaranteeing a horizontal tangent l ine a t all points f o r 

which f ' ( x ) = 0. 

The primary contribution of these two theorems is the statement of 

conditions necessary fo r a given continuous d i f f e r e n t i a b l e function to have 

at l e a s t one maximum (minimum) value. The given assumptions are regarded 

as necessary prerequis i tes before the "then" clause of the " i f - then" 

phrases and must be s a t i s f i e d before conditions are su i t ab le f o r a maximum 

(minimum); given th i s s a t i s f a c t i o n , the theorems go on to s t a t e that a hor i -

zontal tangent exis ts ( f ' ( x ) = 0) and the function is such that fo r the point 

X (within the defined in te rva l ) i s a point of maximum (minimum) value. 
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Having presented the conditions necessary fo r a maximum (minimum) 

point (or set of such points) on a given continuous curve, i t i s necessary 

to define what i s meant by a maximum (minimum) point . This d e f i n i t i o n , 

however, i s not as simple as i t might seem as a given function may be 

such tha t i t has more than one maximum (minimum) point . Such conditions 

are handled by defining two types of maximum (minimum) poin ts , r e l a t i ve 

and absolute. 

Definit ion 2.14.—Let f (x) be a given funct ion , defined fo r the closed 

interval a <_ x £ b. Let f (x ) be the function f (x) evaluated at x = x , 
0 0 

where xq is contained in [a , b]. The point xq i s a point of r e l a t i ve 

maximum i f the value of f (x) at x = xq i s at l eas t as great as f (x) 

evaluated a t any point in the neighborhood of x q ; 

i . e . , x = xq i s a point of r e l a t i ve maxima i f 3 s > 0 such tha t 

f (x 0 ) l f (x) fo r al l x e [a, b] such that |x - x j < 6 , 

Definit ion 2.15.--Let f (x ) be a given func t ion , defined fo r the closed 

interval a <_ x £ b. Let f (x ) be the function f (x) evaluated at x = x , 
0 0 

where xq i s contained in [ a , b]. The point xq i s a point of r e l a t i ve 

minimum i f the value of f (x) at x = xq is at most equal to f (x) evaluated 

at any point in the neighborhood of x q ; 

i . e . , x = xq is a point of r e l a t i ve minima, i f 3 6 > 0 such tha t 

f ( x J £ f ( x ) f o r x e [a , b] such tha t |x - x I < 5. 
O i o ' 

Defini t ion 2.16.—Let f (x) be a given funct ion , defined f o r the closed 

interval a £ x <_ b. Let f(x-,) be the function f (x) evaluated at x = x-|, 

a 1 X1 £ b- The point x = x-, i s an absolute maximum i f the 
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value of f(x-j) is at l eas t as great as the value of f (x) at any other 

point in the given i n t e rva l , 

i . e . , x = x-j i s an absolute maximum i f f(x-|) >_ f (x) for all x 

belonging to [a s b]. 

Definit ion 2.17.--Let f ( x j be a given funct ion, defined fo r the 

closed interval a £ x £ b. Let f(x-j) be the function f (x) evaluated at 

x = x-j, a £ x-| £ b. The point x = x-j i s an absolute minimum i f the value 

of f(x-j) is at most equal to the value of f (x) at any other point in 

the given i n t e r v a l . 

i . e . , x =: x-| is an absolute minimum i f f(x-j) £ f (x) f o r a l l x 

belonging to [a , b]. 

Theorem 2.5 (Suf f i c i en t Conditions fo r Relative Maxima).--Let f (x) 

t h 
belong to the 2n class of continuous functions defined over the closed 

On fti 

in terval [a , b] such tha t f ( x ) , the 2n 1 derivat ive of f ( x ) , e x i s t s . 

Let X be any value contained in the open interval (a, b). Let the k^1 

derivat ive (k = 1, 2 , . . . , 2 n - l ) equal zero fo r some X belonging to the 
"fc h 

open interval a < X < b. Let the 2n ' der ivat ive of f (x) evaluated at X 

be less than zero. Then there ex i s t s some posi t ive number e such tha t 

fo r any small neighborhood around X less than e the value of the function 

at any point exceeds the value of the function at X. Symbolically, 
9n 

l e t f (x) e C" , a £ x £ b; 

l e t fk(X) = 0, a < X < b; 

l e t f 2 n (X] < 0; 



then, there ex is t s e > 0 such that f(x} > f(X) when 0 < [x - X[ < e. 
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Theorem 2.6 (Suf f i c ien t Conditions for Relative Minima).—Let f(x) 

belong to the 2n ' class of continuous functions defined over the closed 
I r-

interval [a , b] such that the 2n derivat ive of f(x) e x i s t s . Let X be 
j*U 

any value contained in the open interval (a , b). Let the k derivat ive 

(k = 1, 2 , . . . » 2 n - l ) equal zero for some X belonging to the open interval 
i L 

a < X < b. Let the 2n ' derivat ive of f ( x j , evaluated a t X, be greater 

than zero. Then there ex i s t s some posi t ive number e such tha t fo r any 

small neighborhood around X less than e the value of the function a t any 

other point i s less than the value of the function a t X. Symbolically, 

l e t f (x) e C 2 n , a £ x £ b; 

le t fk(X) = 0, k = 1, 2 , . . . , 2 n - l ; a < X < b; 

l e t f2 n(X) > 0; 

then there exis ts some posi t ive number e such that f (x) < f(X) when 

0 < [ X - X | < e . 

The two theorems ci ted previously give the conditions that are 

s u f f i c i e n t fo r a given function to have a maximum (minimum) value at some 
j*h 

point in the interval over which i t is defined. Solving the k 
1/ 

derivat ive for those values of X, a < X < b, fo r which f (X) = 0 y ie lds 

c r i t i c a l points to be tes ted by the 2 n ^ der ivat ive . The sign of the 

2 n ^ der ivat ive , when f 2 n ( x ) is evaluated a t x = X, can then be used to 

determine whether or not the point X is a maximum or minimum point within 

the defined in t e rva l . 1 2 I b i d . , pp. 119-120. 
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Because of the use made of these concepts in more advanced analys is , 

a conceptual development is in order. This development will serve to 

i l l u s t r a t e the d is t inc t ion between points of re la t ive and absolute maximum 

(minimum) value, a d is t inc t ion that i s analogous to points of local and 

global maximum (minimum) value. Consider f i r s t the necessary conditions 

fo r a point of maximum or minimum. 

In a given problem the desired e f f e c t i s usually known: the function 

i s e i the r being solved for maximum values or minimum values. For a function 

to have a maximum (or minimum) the graph of the function must be concave 

downward, f a l l i n g away from the maximum point (concave upward, sloping 

upward away from the minimum point) . This condition is met by the require-

ment t h a t , fo r a < c < b, f (a ) < f (c) and f(b) < f (c ) fo r a maximum; fo r 

a < c < b, f (a ) > f ( c ) and f(b) > f (c ) fo r a minimum. This guarantees 

the existence of at leas t one point on the graph of f(x) t ha t represents 

a maximum (or minimum). 

With the existence of the extremum (maximum or minimum) es tabl ished, 

i t remains to determine the type of extremum (maximum or minimum) which 

has been reached. In th i s respect the emphasis will be on whether or not 

a given extremum i s a r e l a t ive maximum (or minimum) or an absolute maximum 

(or minimum). 

Consider f i r s t the concept of maximal value, given a maximum point 

fo r a funct ion. This maximum point can e i the r be an absolute maximum 

or a r e la t ive maximum, depending upon i t s re la t ionship with the other 

acceptable points lying within the defined in t e rva l . Tf the point in 

question yields a value for the given function tha t exceeds (or equals) 
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the value of the function evaluated at every other point within the 

i n t e rva l , then the point in question is the point of r e l a t i ve maximum; 

i . e . , i t i s a maximum within a given in t e rva l . If the interval i s changed, 

the maximum point may change. If the point in question i s a maximum for 

a l l points at which the function is defined, then the point in question 

is an absolute maximum. (See Figure 2 .6 . ) 

Fig. 2.6--Relat ive and absolute maxima 

In the above f igure point A represents an absolute maximum fo r the 

function y = f ( x ) , defined for the se t of real numbers. Points B and C 

represent points of r e l a t ive maxima: point B for the interval [a , b ] , 

point C fo r the interval [c , dl . An in te res t ing application of th is 

concept i s the production function where the defined closed in te rva l s 

( [a , b] and [c , d]) represent levels of production ac t i v i t y ; although 

the function y ie lds maximal values within the given in t e rva l s , maximum 
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production i s not achieved unless the firm is capable of production 

within the closed in terval [d, a ] . 

The concept of minimal value can be developed in a s imi lar manner. 

Suppose a given function i s to be minimized, and some minimal point has 

been determined. As was the case in the discussion of maximum values, 

the minimal point can e i t h e r be an absolute minimum or a r e l a t i v e minimum;, 

depending upon i t s re la t ionship with the other acceptable points lying 

within the defined i n t e r v a l . Tf the point in question y ie lds a value 

fo r the given function tha t i s less than (or equal to) the value of the 

function evaluated at every other point within the i n t e r v a l , then the 

point in question is the point of r e l a t ive minimum; i . e . , i t is a minimum 

within a given i n t e rva l . Tf the interval i s changed, the minimum point 

may change. If the point in question i s a minimum f o r a l l points at 

which the function i s defined, then the point in question i s an absolute 

minimum. (See Figure 2 .7 . ) 
y 

Fig. 2 .7--Relat ive and absolute minima 
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In Figure 2.7 point A represents an absolute minimum fo r the function 

y = f ( x ) , defined fo r the se t of real numbers. Points B and C represent 

points of r e l a t ive minima: point B fo r the in terval [a , b], point C 

fo r the in terval [c , d]. An in te res t ing application of th i s concept i s 

a curvi l inear cost function where the defined closed in t e rva l s ( [ a , b] 

and [c , d]) represent levels of ac t iv i ty y ie ld ing minimum cost f i gu re s ; 

but, these cost values (B and C) do not y i e ld the minimum cost fo r the 

defined funct ion . The minimum cost value (absolute minimum) occurs at 

point As a point which requires ac t iv i ty in excess of tha t achieved at 

ac t iv i ty level b. 

The suff ic iency conditions fo r r e l a t i v e extrema can be explained in 

the following manner: Over the defined closed interval the given function 

i s continuous (hence d i f f e r e n t i a t e ) through the defined c lass of continuous 

func t ions , and the der ivat ive i s equated to zero and solved fo r the 

c r i t i c a l points . These c r i t i c a l points l i e in the open interval (a, b), 

* t h 
defined by a < X < b. The (2n) der ivat ive of the given function i s 

then evaluated at each c r i t i c a l point and the r e su l t s in te rpre ted as 
4* k 

follows: (1) i f the (2n) der ivat ive i s less than zero, there ex i s t s 

some neighborhood of X of radius e > 0 such t ha t the function f (x ) i s a 

maximum; (2) i f the ( 2 n ) ^ derivat ive i s grea ter than zero, there ex i s t s 

some neighborhood of X of radius e > 0 such that the function f (x) i s a 

minimum. 

The re su l t s of the discussion of s ingle variable maxima and minima 

can be summarized in the following manner. If y = f (x) is a function of 

one var iab le , i t achieves a maximum at the point x = X i f f(X) > f (x ) 
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fo r a l l values of x lying within an £ neighborhood about X. I t i s not 

13 

necessary tha t f(X) exceed f(x) outside the e neighborhood. The 

function y = f(x) achieves a minimum at the point x = X i f f(X) £ f(x) 

f o r a l l values of x lying within an e neighborhood about X. I t is not 

necessary tha t f(X) be less than f (x) outside the e neighborhood. 

I n t u i t i v e l y , 
[a] function tha t has a maximum (or minimum) i s , by 
d e f i n i t i o n , ne i ther increasing nor decreasing at i t s 
extreme point . But the f i r s t der ivat ive i s the 
func t ion ' s ra te of i n c r e a s e . . . t h e r e f o r e [ i t must] 
equal zero at an extreme point { indicat ing a zero 
ra te of increase] . IIn the case of a maximum point] 
a function f i r s t increases , becomes s t a t iona ry , and 
then decreases. Thus the second derivat ive (the ra te 
of change of the f i r s t derivat ive) i s [ l e s s than zero] 
a t a maximum.'4 

These concepts can be extended to a minimum point in the following manner. 

In the case of a minimum point a function f i r s t decreases, becomes s t a t ionary , 

and then increases . Thus, the second der ivat ive (the ra te of change of the 

f i r s t der ivat ive) i s g rea te r than zero a t a minimum. 

A s imi lar summary can be made on the necessary and s u f f i c i e n t 

conditions fo r a maximum (or minimum) 

[the funct ion] f(x) a t ta ins a maximum (minimum) at 
[x = X] if and only i f (1) dy/dx [or f ' ( x ) ] = 0 a t 
[x = X], (2) the f i r s t (n-1) (where n i s even) 
der ivat ives are all zero and the f i r s t nonzero 
derivat ive (the nth) is negative (posi t ive) at 
[x = X ] J 5 

13 
James M. Henderson and Richard E. Quandt, Microeconomic Theory: A 

Mathematical Approach (New York, 1958), p. 265. 
1 4 I b i d . , pp. 265-266. 

1 5 Ib i d . , p. 267. 
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The existence of a maximum or minimum point for a continuous function 

on a defined closed interval is guaranteed. This guarantee i s framed within 
16 

the context of two of the basic theorems of the d i f fe rent ia l calculus. 

Theorem 2.7.--Let f(x) be a continuous function, defined on the closed 

interval a £ x £ b. Then the function f(x) has an absolute minimum and an 

absolute maximum. 

Theorem 2.8 (Rolle's Theorem).--Let f(x) be a continuous function 

with the following properties: 

(1) f(x) is continuous on the closed interval a <_ x <. b. 

(2) f(a) = f(b) = 0 . 

(3) f ' ( x ) exists on the open interval a < x < b. 

Then there exists at least one value c, a < c < b, such that f 1 (c ) = 0. 

The f i r s t of these two theorems guarantees that the set of values 

for which f(x) is defined have an upper bound; i . e . , the set of values 

determined by f(x) for the interval a £ x £ b has both a greatest value 

and a least value. The second, Rolle's theorem, guarantees the existence 

of a point c in the open interval (a, b) such that the value of the 

derivative at that point is zero ( f ' ( c ) = 0). Thus, for any function 

sat isfying the conditions of Rolle's theorem there is at leas t one point 

aich that the line tangent to the curve there is horizontal to the x-axis. 

This horizontal tangent is such that i t l i e s between any two points 

sat isfying f(x) = 0. (See Figure 2.8.) 

16 
Fuller and Parker, op. c i t . , p. 130. 
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V<x)--o 

Fig. 2 .8 - -Rol le ' s theorem 

Having surveyed the theorems and def in i t ions from which the appli~ 

cation of the rnax-min calculus stems, i t i s now feas ib le to point out 

the methodology by which a given continuous, d i f f e ren t !ab le function i s 

t es ted for rnax-min values. In administrative use the function i s generally 

of such a nature tha t i t i s one which i s known, fo r example, to be a 

minimizing function (cost) or a maximizing function ( p r o f i t ) ; however, 

fo r functions of degree greater than two (as might be found in inventory 

analysis with f luc tua t ing order levels) there ex i s t s the poss ib i l i t y of 

r e l a t ive minima or re la t ive maxima. In such a case the function must be 

tes ted for minima and/or maxima. 
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There are two fundamental methodologies by which a given function 

is tested for points of maximum-minimum value, the f i r s t derivative t e s t 

and the second derivative t e s t . Of the two, the second derivative t e s t 

is the more di rect , even though i t requires the existence of the second 

derivative. Both methodologies are presented here because there might 

ex i s t , in practical application;, s i tuat ions in which the use of the 

second derivative t e s t is e i ther impractical or impossible. 

Although both the f i r s t derivative t e s t and the second derivative 

t e s t are given by two separate theorems, both of these t e s t s stem from 

the same source. This source provides the base on which these two t e s t s 

are bui l t and is presented as an introduction to the f i r s t and second 

derivative t e s t s for extrema. 

Theorem 2.9.--Let f(x) be any function defined on the closed interval 

a £ x <_ b. Let f(x) be such that a relat ive extremum (maximum or minimum) 

exis ts at x = c, where a < c < b. Let f(x) be d i f fe rent iab le at x = c. 

Then, f ' ( c ) = 0. 

This theorem serves to verify that a point of extremum has a tangent 

l ine passing through this point parallel to the x-axis. Since the derivative 

of a function represents the slope of the l ine tangent to the function, 

(for x = c, f ' ( x ) = f ( c ) ) i t s value at the extreme point must be zero, a 

condition which indicates that the curve is no longer increasing or 

17 
decreasing. 

1 7 Ib id . , p. 97. 
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Theorem 2.10 (F i r s t Derivative Test) .—Let f (x ) be a given func t ion , 

d i f f e r e n t ! able in the interval c - < 5 < c < c + 6, S > 0. 

(1) In t h i s interval l e t f ' ( c ) = 0. The function f(x) has a 

re la t ive maximum at the point x = c i f 

(a) f ' ( x ) > 0 when x < c , and 

(b) f ' ( x ) < 0 when x > c. 

(2) In t h i s interval l e t f ' ( c ) = 0. The function f (x) has a 

r e l a t i ve minimum at the point x = c i f 

(a) f 1 (x ) < 0 when x < c , and 

(b) f" (x) > 0 when x > c J 8 

A graphic in te rp re ta t ion i s shown in Figure 2.9. I t i s assumed 

t ha t f (x) i s continuous and d i f f e r e n t ! a b l e . 

f Cx)<o 

foo * o 

Fig. 2 . 9 - - F i r s t derivat ive t e s t 

^ bi d . , p. 98. 



55 

From Theorem 2.10 i t i s known tha t i f f (x) has a r e l a t i ve extremum 

at x = c, the value of f ' ( x ) i s equal to zero a t tha t point . Solving 

f ' ( x ) = 0 y ie lds c r i t i c a l points tha t must be examined fo r nax-min value. 

If a given c r i t i c a l point , x = c, i s a maximum then fo r values of x less 

than c, f ' ( x ) will be pos i t ive ; fo r values of x = c, f ' ( x ) will equal 

zero (Theorem 2.10) ; and, fo r values of x greater than c, f 1 ( x ) wil l be 

negative. This case i s shown by x = c^. If a given c r i t i c a l point , 

x = c , i s a minimum then fo r values of x < c , f ' ( x ) will be negat ive; 

f o r values of x = c , f ' ( x ) will equal zero; and, f o r values of x greater 

than c, f ' ( x ) will be pos i t ive . This case i s shown by x = Cg* Thus, 

a given function has a r e l a t i v e maximum at the c r i t i c a l point x = c i f 

f ' ( x ) changes from a posi t ive value to a negative value as x passes 

through c from l e f t to r igh t ( i . e . , c - s < c < c + s ) ; a given function 

has a r e la t ive minimum at the c r i t i c a l point x = c i f f ' ( x ) changes from 

a negative value to a pos i t ive value as x passes through c from l e f t to 

r i g h t . This resu l t is summarized by the following algorithm. 

Algorithm 2.1 (F i r s t Derivative Test) . --Let f(x) be a given continuous, 

d i f f e r e n t i a b l e funct ion. Let f ' ( x ) ex i s t a t x = c. 

Step 1. Calculate f ' ( x ) ; se t f ' ( x ) = 0 and solve fo r the roots of 

f ' ( x ) = 0. [Denote these roots by the l e t t e r c . ] 

Step 2. For each root of f ' ( x ) = 0, determine the sign of f ' ( x ) 

f o r values of x which are less than the root c and fo r values of x which 

are greater than the root c. 
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Step 3. Apply the following c r i t e r i o n : 

(a) i f f ' ( x ) changes sign from + to - as x increases through c 
( l e f t to r igh t ) the point c i s a r e l a t i ve maximum with value 
f ( c ) ; 

(b) i f f ' ( x ) changes sign from - to + as x increases through c 
( l e f t to r ight ) the point c is a r e l a t i v e minimum with value 
f ( c ) ; 

(c) i f f ' ( x ) does not change sign as x increases through c, the 
point c i s ne i ther a maximum nor minimum. 

Theorem 2.11 (Second Derivative Tes t ) . - -Le t y = f (x) be a given 

funct ion, d i f f e r e n t i a b l e in the interval a £ x < b. Let c be any 

c r i t i c a l point of f ( x ) ; i . e . , f ' ( x ) = 0 a t x = c. 

(1) The function f(x) has a r e l a t i v e maximum a t x = c i f f " (c ) < 0; 

(2) The function f(x) has a r e l a t i ve minimum at x = c i f f " (c ) > 0. 

The logical consequence of th i s theorem stems from both Theorems 2.9 

and 2.10, I t i s known tha t at points of r e l a t i v e extremum (x = c) the 

value of f ' ( x ) equals zero. When f"(x) < 0, f ' ( x ) is decreasing as x 

increases . Since f*(c) = 0, f ' ( x ) i s posi t ive fo r x < c and negative for 

x > c; hence, f" (c) < 0 implies a maximum value at x = c. When f"(x) > 0, 

f ' ( x ) is increasing as x increases . Since f ' ( c ) = 0, f ' ( x ) i s negative 

for x < c and posi t ive for x > c; hence, f " (c ) > 0 implies a minimum 

value at x = c. Thus the c r i t e r ion for extremum: (1) f" (c) < 0 y ie lds 

a maximum at x = c; (2) f" (c ) > 0 y ie lds a minimum at x = c. As was 

the case fo r the f i r s t der ivat ive t e s t , the use of the second derivat ive 

t e s t can be expressed in algorithmic form. 

Algorithm 2.2 (Second Derivative Tes t ) . - -Le t f (x) be a continuous, 

d i f f e r e n t i a b l e funct ion. Let f ' ( x ) and f"(x} both ex i s t at x = c. 
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Step 1. Calculate f ' ( x ) ; se t f ' ( x ) = 0 and solve fo r the roots of 

f ( x ) = 0. [Denote these roots by the l e t t e r c . ] 

Step 2. Calculate f " ( x ) . Subst i tute each value of x = c into 

f"(x) and evaluate. 

Step 3. Apply the following c r i t e r i o n : 

(a) i f f"(x) < 0 at x = c, the given function achieves a maximum 
at x = c with value f ( c ) ; 

(b) i f f"(x) > 0 at x = c , the given function achieves a minimum 
at x = c with value f ( c ) ; 

(c) i f f"(x) = 0 at x = c, the t e s t f a i l s and the f i r s t der ivat ive 
t e s t must be used. 

Functions of two or more var iables . - -The extension of the d i f f e r e n t i a l 

calculus to functions of two or more variables is done in a manner analogous 

to t ha t fo r functions of one var iable . The concepts involved are , bas ica l ly , 

the same ( fo r example, r e l a t i ve maximum, r e l a t i ve minimum, e t c . ) . For t h i s 

reason the necessary tools for mult ivariable analysis are presented without 

additional context; the underlying conceptual developments have not been 

changed, ju s t the magnitude of appl icat ion. 

Definit ion 2.18 (Function) .--Suppose there i s a col lect ion of points 

(Xp x2». . .»x n ) in n-dimensional space and to each of these points there 

is a uniquely determined number y y ie ld ing an n- tuple (x-j, X g , . . . ^ , y ) . 

The col lect ion of n-tuples thus es tabl ished is cal led a function of the 

independent variables (x-j, X g , . . . ^ ) . The col lec t ion of points 

(x^, x 2 , . . . , x n ) i s cal led the domain of the funct ion; the se t of 

corresponding values of y i s cal led the range of the funct ion . Notat ional ly , 

y = f(x-j, X g , . . . ^ ) . (As a matter of note, administrat ive applicat ion 
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of a lgebraic funct ions and/or systems requires t h a t the domain of the 

funct ion be r e s t r i c t e d to the se t of x . , i = 1, 2 , . . . s n , such t h a t 

i s a t l e a s t zero.) 

Defini t ion 2.19 (L imi t ) . - -The l imi t of the funct ion y = f(x- | , x 2 , . . . , x n ) 

as x-| approaches a-j, x2 approaches a 2 , . . . , x approaches a n , i s L i f fo r 

any e > 0 

[ f (x-| j X£ s . . . » x n ) L[ < e 

whenever |x - a-j [, |x - a 2 | , . . . s | . x - a n | are s u f f i c i e n t l y small but 

d i f f e r e n t from zero. Symbolically, 

lim f ( x - j . . ,x n ) = L as x-j a^, x2 a 2 , . . . , x n -> a n . 

Defini t ion 2.20 (Continuity)•--The function y = f (x^ s x 2 , . . . , xn) 

i s continuous a t a-|, a 2 , . . . , a ) i f each of the following three conditions 

i s s a t i s f i e d : 

(1) f (x^ , x 2 , . . . , x n ) i s defined a t (a-p a 2 , . . . . a ) ; 

(2) lim f(x-j, x2 xn) ex i s t s as x-j -> a-j, x2 -+• a 2 , . . . , x -> a n ; and 

(3) lim f (x-j, x 2 , . . . , x n ) = f(a-j , a ? , . . . , a n ) as x-j a-j, x2 -»• a 2 » . . . » 

xn - V 
With these concepts in hand, the use of the der iva t ive in m u l t i v a r i a t e 

func t ions can be def ined. In t h i s p a r t i c u l a r case the use of the der iva t ive 

as a tool of optimization involves two app l ica t ions : (1) the p a r t i a l 

der iva t ive and (2) the t o t a l d i f f e r e n t i a l . 

Defini t ion 2.21 (Par t ia l Der iva t ive) . - -Let y = f(x-j , x 2 , . . . , x ) be 

a funct ion defined over a given i n t e r v a l . Then the pa r t i a l der iva t ive of 
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y with respect to x. ( i = 1, 2 , . . . , n ) is defined as the function obtained 

by d i f f e ren t ia t i on with respect to x^ alone, a l l other independent variables 

being held constant. 

i * e *» - l i m y ( x T , , x .+3x . , . . . , x j - y ( x , , x 9 , . . . » x ) . 
ax, ax,-K) — — — — 

' J 3 X . 

The par t ia l derivat ive is thus a measure of the average rate of change 

in the given function with only one independent variable allowed to vary. 

Such techniques are useful in production functions re la t ing multiproducts 

or cost functions exh ib i t ing mult ivar iable tendencies or in terre lat ionships 

among the cost elements. Economic theory u t i l i zes th is concept as a means 

of in terpre t ing marginal product, marginal cost, marginal u t i l i t y , etc. 

The geometric in terpretat ion of the par t ia l derivat ive is demonstrated 

graphical ly in Figure 2.10. For purposes of s imp l ic i ty the given function 

is expressed in terms of two independent variables, x-j and x^. The analysis 

can be generalized to par t ia l derivat ives of functions with n independent 

variables. 

Fig. 2.10--Geometric in terpretat ion of the par t ia l derivat ive 
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Let y = f (X| , be represented by the graphic surface in Figure 2.10. 

Let P represent any set of coordinates (x 1 , , x ^ , y] on the given surface. 

The plane y = x ' , intersects the surface y = f[x^, along the curve APB; 

the plane y = x ^ intersects the surface y = f(x^, along the curve CPD. 

Along the curve CPD the value of is constant, making y a function of 

one independent variable x-j. Thus, = f-j (x-j, Xg) represents the slope 

of CPD at point P. Similarly, = f 2 - j » Xg) 1S s^°Pe APB at 

point P. Since the value of the slope at a given point for a given function 

is identical to the tangent of the angle made by the line tangent to the 

curve at that point, 

tan ©1 = f x , , x 2J ; 

t a n 02 = f x ^ = V X 1 ' V * 

This type of analysis has been applied to several areas of economic 

19 

analysis. Tn par t icular , suppose total p ro f i t is defined in terms of 

the average cost per unit and the level of sales . If y denotes total 

prof i t and x, arid x^ denote the average cost per unit and the level of 

sales , respectively, the p ro f i t function i s written y = f ( x , , x^,)- A 

graphic representation of this relationship would result in a hi l l similar 

to that in Figure 2.10. The partial derivative | ^ - c a n be used to determine 

the change in prof i t due to a change in the average cost per unit , with 

the level of sales 'held constant. Similarly, the par t ia l derivative 
2 

19 
William J . Baumol, Economic Theory and Operations Analysis 

(Englewood C l i f f s , 1961), pp. 51-58. 
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can.be used to determine the change in prof i t due to a change in the level 

of sales , with the average cost per unit held constant. 

With the understanding that the application of the d i f ferent ia l 

calculus to functions of two or more variables i s , in essence, an extension 

of the techniques for a function of one variable, the techniques for 

determining maximum or minimum values will be presented without discussion. 

Included in this presentation will be the concepts of the saddle-point, 

a relationship somewhat similar to the inflect ion point, and the Oacobian, 

which is primarily a computational technique for l a te r use. For th is 

presentation f^ (x-j , . . . ,x n ) , (i = 1, 2 , . . . , n ) , will denote the derivative 
4-

of f ( x ^ , . . . , x } with respect to the i variable. The expression 

f i j ( x i , . . . , x n ) , ( i , 3 = 1, 2 , . . . , n J , will denote the second part ial 

derivative of f ( x p . . . , x }, 

f i j ^ x r x 2 " " > x n ^ = 3x7 W7 f ( x l> x 2 , . . . , x n ) , 
' J 

i; = 1, 2 , . . . , n ; j = 1, 2 , . . . , n . 

The extension of this concept to the n^1 part ial derivative is accomplished 

in a similar manner. I t is assumed that f(x^, x £ , . . . , x n ) is d i f f e r e n t i a t e 
J.. L. 

through the n ' partial derivative. 

The conditions by which points of maxima-minima are ident i f ied will 

be presented with reference to two cases. The f i r s t will be for a function 

defined in terms of two independent variables. The second will be for a 

function defined in terms of three or more independent variables. 

Theorem 2.12.--Let y = f (x-j, Xg), where the partial derivatives exist 

through at least the second part ial derivatives of both x̂  and Then 
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y = f(x-| , x2) has a re la t ive maximum at i f and only i f the 

fol lowing conditions are sa t i s f ied : 

(a) f-j(x-j, x2) = » x2) = 0 at the c r i t i c a l points (X-j, X 2 ) ; 

2 
(b) f 1 2 ( x i ' x2^ ~ ^11 ^ X1' x2^ ^22^xl ' x2^ ^ (X-|» X2j j and, 

(c) f ] ] (x i > x2) < 0 at (X-j, X2). 

Theorem 2,13.--Let y = f (x-|, x 2 ) , where the par t ia l derivatives 

ex is t through at least the second par t ia l derivatives of x-j and x2> 

Then y = f ( x ^ , x2) has a re la t ive minimum at (X-,, Xp) i f and only i f 

the fol lowing conditions are sa t i s f ied : 

(a) f - j ( xp x2) = f2(x-jS x2) = 0 at the c r i t i c a l points (X-|» X2) ; 

? 
(b) f 12( x i 5 *2) ~ ^11 ̂ X1' x2^ f 22^ x i ' x2^ ^ ^ at (X-j Xp) 5 and , 

(c) f 1 •](x-j, x2) > 0 at (X-j, X2). 

Because of the nature of m u l t i v a r i a t e funct ions, i t i s possible 

for a given function to contain both posi t ive and negative values in 

every neighborhood of a given set of c r i t i c a l points (X-j, X2). I f the 

point approached from one side tends to decrease the value of the defined 

funct ion, i t exhibi ts properties s imi la r to those which iden t i f y a minimum. 

I f the point i s approached from the other side and tends to increase the 

value of the defined funct ion, i t exhibi ts properties s imi lar to those 

which iden t i f y a maximum. Such a condition is described by the term 

saddle-point and is shown in Figure 2.11. 
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y= 

Fig. 2.11--Saddlepoint 

A cursory examination of Figure 2.11 reveals that the saddle-point 

concept i d e n t i f i e s a point tha t i s a minimum point with respect to one 

variable and a maximum point with respect to the other var iab le . For 

example, any point along APB will indicate tha t a minimum occurs at P. 

However, any point along CPD will indicate tha t a maximum occurs at P. 

Thus, P i s a saddle-point f o r the i l l u s t r a t e d function since i t i s both 

a maximum and a minimum fo r neighborhoods around P. The conditions tha t 

must be s a t i s f i e d i f a given point i s a saddle-point are contained in. 

the following theorem. 

Theorem 2.14. - -Let f(x-j, x ?) be continuous through at l e a s t second 

pa r t i a l der iva t ives . Then f(x-| , x^] has a saddle-point at (X-j, X2) i f 

the following conditions are s a t i s f i e d : 
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(a) f-|(x-j, x2) = f 2 ( x l ' *2) = 0 a t t f i e c r i t i c a l P°in 1 : s (x]» x
2 ) ; a n d ' 

n OA 

(b) f 12(x"j5 x2^ ~ f-j 1 (x-j 5 x2) ^22^x1 * XZl > ^ ^ 5 ." 
1 

The importance of the saddle-point concept can be i l l u s t r a t e d in 

the consideration of game theory. Game theory describes a decision process 

which i s concerned with the determination of optimal s t r a t eg i e s (courses 

of action) in competitive s i t ua t i ons . Tn th i s form of decision ana lys i s , 

the game s i tua t ion i s one s imi la r to co l lec t ive bargaining, business 

competition, and con f l i c t s i t u a t i o n s . The object ive is to s e l ec t tha t 

s t ra tegy which minimizes maximum loss and maximizes minimum re turn . 

Such a s t ra tegy is called minimax and corresponds to the saddle-point , 

tha t point which represents a minimum on one side and a maximum on the 

other . 

Much of the work done in c lass ica l optimization i s r e s t r i c t e d to 

the quadrat ic func t ion . For example, a cost curve fo r a multiproduct 

firm (in t h i s case three cost inputs) can be assumed quadrat ic . Such 

a function has the quadrat ic form 

3 3 

f ( x r x 2 . x3) = £ Z. a i j X i X j 
i=l j=l 

a ^ X j " + a ^ x 1 x 2 + a13XlX3 + a21x2x l + a22X '2 

+ a23X2X3 + a31 x3 x l + a32X3X2 + a33X32" 

20 2 
If the t e s t described here is such tha t f ^2^X1s x2^ " ^11 ^ x l ' x2^ " 

^22^xl" x2^ = ® ^2^s S 1 v e n funct ion , f (x-j, x2) must be 
invest igated near x-j = X-j and x? = X2< 
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In t h i s context the a . . values represent constants (cost c o e f f i c i e n t s 
' u 

in th i s example), the values of which are f ixed . The analysis of t h i s 

pa r t i cu l a r class of funct ions requires that the given function be of a 

given quadrat ic form; i . e . , pos i t ive d e f i n i t e , pos i t ive semi-def in i te , 

negative d e f i n i t e , or negative semi-def in i te . Defini t ions of these 

terms follow. 

Defini t ion 2 .22.- -Let f(x-j, x^ xn) be a given function in n 

var iab les . Then f (x-j, x £ , . . . , x } is pos i t ive de f in i t e (negative de f in i t e ) 

i f , and only i f , f ( x p X g , . . . ^ } > 0 (< 0} except when x. = 0 fo r 

i = 1, 2 , . . . ,ri. 

Definit ion 2 .23.- -Let f (x-j, X g j . . . , ^ ) be a given function in n 

var iables . Then f (x^ , X g , . . . ^ ) i s pos i t ive semi-def in i te (negative 

semi-def in i te) i f , and only i f , f (x^ , x2 x } >_ 0 (< 0) , with the 

equal i ty holding fo r cer tain values of x. f 0 f o r i = 1, 2 , . . . , n . 

Fortunately, the function f(x-j, Xgs.-.jX ) can be wri t ten in a 

matrix form. This form s impl i f i es the problem of determining the 

def in i teness of a given funct ion. As an example, consider the two 

var iable function 

f ( x ] } x2) = a . ^ + a^x-jxg + a2lx2xl + a22xl * 

This function can be wri t ten 

2 
l(x-]j Xg) — d-j-J x*j "1* 3]2x1x2 

+ a21x2Xl + a22X2 

X
 

11 a l l a l 2 X1 

.a21 a22 ^ 1 
X ro
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The function f (x^ , x2) is said to be posi t ive d e f i n i t e i f , and only i f , 

21 
a-j-| > 0, and 

a l l a12 

a21 a22 

> 0. 

The use of the double bars , j j , indicates the determinant of the 

enclosed values. 

The re su l t s of th is example can be eas i ly extended to the three 

variable case. In t h i s extension the function being examined has the form 

3 3 
f ( x r X2. x3) = £ J 2 a ^ . X j 

i=l j=1 

a H x l + a 12 x l x 2 + a l 3 x l x 3 + a21x2x l + a22x2 

+ a23 x2 x3 + a31 X CO
 X + a 3 2 x 3 x 2 + a 33X! 

2 ^ 
a l l X l a i 2 x l x 2 + a l3 X l X 3 

+ a 2 ] x 2 x 1 + a22X2 + a23x2x3 

+ a 3 1 x 3 x 1 + a3 2x3x 2 + a33X3 

5 X2 5 
" a n 

a21 

a12 a l 3 

a22 a23 

" x f 

x2 

a31 a32 a33 - X 3 

The function f(x-j, x2> x^) is said to be posi t ive de f in i t e i f , and only i f , 

^11 ^ ^ ' 

a n a i 2 > 0; and, 
a n a12 a l 3 O

 A ^11 ^ ^ ' 
a21 a22 a21 a22 a23 

a3'i a32 a33 

21 
Widder, op. c i t . , p. 132. 



67 

S imi la r opera t ions can be used t o extend these r e s u l t s to func t ions 

def ined in terms of more than th ree v a r i a b l e s . 

These r e s u l t s have def ined pos i t i ve d e f i n i t e forms as determined 

by the c o e f f i c i e n t s and determinants of the given f u n c t i o n . When the o ther 

forms are being considered, i t i s b e t t e r to r e s o r t t o the analys is of the 

22 
c o e f f i c i e n t matr ix . 

Functions with th ree or more va r i ab les are examined f o r po in t s of 

maxima or minima by considering the determinant of second p a r t i a l 

d e r i v a t i v e s . I t i s assumed t h a t the funct ion i s continuous, with 

ex i s t i ng second p a r t i a l d e r i v a t i v e s . Each of the second p a r t i a l 

de r iva t ives is evaluated a t the c r i t i c a l points of the given func t i on . 

Theorem 2.15.—Let f(x-j , Xp, x^) be continuous through a t l e a s t 

second d e r i v a t i v e s . Let 

•F -

i j ~ 3X * 3X, 
' u 

f (*1 > Xp5 Xg) > (i j j ~~ 1» 2, 3) j 

be evaluated a t the c r i t i c a l point (X-j, X2, X3). 

Then f ( x p x 2 , x 3) has a r e l a t i v e minimum a t (X1, X2, X3) i f the fol lowing 

condit ions are s a t i s f i e d : 

(a) f ^ x - , , x 2 , x 3) = f 2 ^ x r x 2 ' x3^ = f 3 ^ x l s x 2 ' x3^ = 0 a t ( x r X2' V 

11 

o A
 

fU f12 o A
 

f n f12 fl3 

f21 f22 f21 f22 f23 

f31 f32 f33 

> 0. 

22, 
"Franklin A. Graybi l l , An In t roduct ion to Linear S t a t i s t i c a l Models, 

Vol. I (New York, 1961), pp. 3-4. 
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Application of Theorem 2.15 requires that 
3x-< f (x-j» X2 5 x3) 

f ( x p x2 , x 3 ) , and f (x-j, x2 , x 3 ) , respectively, be equated to 
2 3 

zero and solved for c r i t i ca l points (X-j, X2, X3). The second part ia l 

derivatives of f (x-j, x2, x^) are then obtained and evaluated at the 

c r i t i ca l point(s) of f(x-j, x 2 , x3) . If (X-j, X2, X }̂ defines a point 

of re la t ive minima, i t is necessary that ^11 (x*j» x2» *3) e x c e e <3 zero 

at (X-j, X2> X-j). In addition, i t is also necessary that the determinants 

exceed zero in value. The numerical 
f l l f12 and 

f l l f12 f13 

f21 f22 f21 f 2 2 f23 

f31 

C
M

 
00 f33 

value of each of the elements of the respective determinants is obtained 

by evaluating the indicated second partial derivative at (X-j, X2> X^). 

The conditions for determining re la t ive maxima are similar to those 

of Theorem 2.15. The difference is found in the sign of f-j-j and the three 

by three determinant. 

Theorem 2.16.--Let f(x-j, x2> x3) be any continuous function through 

at least second derivatives. Let 

10 ax. 2X, 
f (X-j» x25 x^) , i = 1, 2, 3j j — 1, 2, 3, 

1 

be evaluated at the c r i t i ca l point (X-j, X2, X3). Then f (Xp x2 , x3) 

has a relat ive maximum at (X-j, X2, X3) i f the following conditions are 

s a t i s f i ed: 

(a) f-J (X-j, x 2 , x3) - f 2 ( x i , x2> x3) fs(X-j, x
2 >

 — 0 s t (X-j, X2, X3) 
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(b) f n < 0; 0; 
f l l f12 > 0*, and 

f l l f12 

CO 

f21 f22 f21 f 22 f 2 3 

f31 f32 f 
33 

< 0. 

The Jacobi an 

The Jacobian i s a specia l ized notation fo r a determinant whose 

elements are par t ia l der ivat ives and i s especia l ly useful in mul t i -

variable analysis . I t s use provides a c r i t e r ion for determining the 

funct ional dependence of two or more functions as well as a means for 

23 

analyzing problems which require a change of var iab le . In t h i s appli-

cation the Jacobi an provides a necessary and s u f f i c i e n t condition fo r 

two or more functions to be re la ted via some i d e n t i f i c a l function.-

Theorem 2.17. —Let u = u(x-j, X£) and v = v(x-|, X£) be any two 

functions in x-j and x^• A necessary and s u f f i c i e n t condition tha t 

u = u(x-j, X2) and v = v(x-j, x^) be connected by an ident ica l re la t ion 

f ( u , v) = 0 is that the Jacobian vanish (= 0). I t is assumed t h a t 

f ( u , v) has no s ta t ionary value in the domain under considerat ion. 

The existence of f (u , v) = 0 indicates a functional dependence between 

u and v. 

As noted previously, the Jacobian is a determinant whose elements 

are pa r t i a l der iva t ives . As a determinant, the Jacobian funct ions as a 

computational too l . I t i s defined as follows. 

23, Widder, op. c i t . , p. 48. 



Definit ion 2. 24 . - - Con s i de r the system of simultaneous equations 

f (X-j, X £ , . . . , x^} = y i , 

f (x-j, x2»• • • >x
n) = y2 ' 

70 

f ( x p x ^ s . . . 5xn) = yn» 

The Jacobian, the determinant of the f i r s t pa r t i a l der ivat ives of 

f (x-j , X£ , . . . ,xn) , is defined by 

J = 
_ 3 ( y r y2 yn) 

HX]» ^2' • * •5x»T)-

9 y l ay-1 8 y i . , a y l 
8X-| BX2 9 x 3 9X i 

ay2 sy2 9y2 . . . . 3y2 
9X-| BX2 8X3 9xn 

5 
3yn 3yn 
9X, 8X- sx.. \*L O A A O A A 

1 ^ 3 n 

Evaluation of the determinant defined by the Jacobian provides a 
means of examining a system of simultaneous equations fo r the existence 

of unique solu t ions . In addi t ion, evaluation of the Jacobian provides 

a means of determining the existence of dependent s o l u t i o n s . 2 4 

Iheorer, 2 J 8 . - L e t f k ( v x2 X[1), (k - 1, 2 n ) , be a s e t of 

n continuous functions with continuous f i r s t pa r t i a l der iva t ives . Let 
° O o 

(Xp x 2 > . . . , x n ) be any point within the domain of def in i t ion fo r which 

the system of equations 

24 
Henderson and Quandt, op. c i t . , p. 275. 
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f ( x ^ • 9x^) y*j > 

2 
f (x-j • 5 ^ ) - y£* 

f (x-j 5 x^ 5... 5 x n ) ~ y n 5 

is s a t i s f i e d . A necessary and su f f i c i en t condition f o r the system 

defined by x 2,...,x n) = y^, (k = 1, 2 n), to have a solution 

x k = ^ y V y 2 y n)s ( k = 2,...,n) is that the Jacobian, 

3 ( y r y 2 » . . .»y n ) 

9 ( X-j j X£ > • • • j XnT 

sy-j 9 y l sy-] . • • • 3y-| 

3X-j 3X2 3X3 

9 y 2 ay2 9 y 2 . . , . 8 y 2 
3X-j BX2 9 x 3 9 x n 

9 y n 9 y n 9 y n * ' ' * 9 y n 
9X-| 3X2 9X3 9 x n 

V V/ V 

not equal zero in a neighborhood about (x-j, X g » . . - »x n ) . 

Theorem 2,19.--Let f %(x 1, x 2 x n), (k = 1, 2 n), be a set of 

n continuous functions with continuous first partial derivatives. A 

necessary and sufficient condition for the existence of a function, 

G(y 
l ,y n) = 0, which expresses functional dependence among the 

system of equations 

f (x-j» x 2 , * • • sx n) y-j» 

f (X-j , X q )... jX ) ~ yn > 

f (x 1, x 2 $ . . . , x n ) = y n > 
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is for the Jacobian to vanish identically or to vanish at every point 
o o o 

in a neighborhood about a point (x-j, x 2 , . . . , x n ) . 

If the system of equations is l inear , Theorem 2.18 i s identical to 

the Cramer's Rule requirement that the determinant of coeff ic ients be 

nonzero. Theorem 2.19 is identical to the requirement that a vanishing 

determinant of coeff ic ients implies dependent solutions for the given 

system. For example, consider the functions 

2 
V1 2 Xr ^1 

4 ? 2 
x*j 4x*j x 2 4 x 2 y 2 * 

The Jacobian is given by 

J = 
3(y-j > y2) 

Kxy X2I 

2x, 

4x-j *™ 8x 

- 2 

-4x-| + 8x2 

Evaluating the determinant, 

2x^(-4x^.+ 8x2) - C(-2) (4x^ - 8x.jx2)] = -8x3 + 16x-jx2 - [-8x^ + 16x-jx2] 

= -8x3 + 16x-j Xg + 8x3 - 16x-jx2 

= 0. 

Since the Jacobian vanishes, the given system of equations will have a set 

of dependent solutions. For the given system, a solution set is 

2 
2 _ 6x2 " y2 s Xo independent. 
1 2 - y y 

2 
If x-j - 2x2 - 2 = is solved for x2 and the solution i s substi tuted into 

4 2 2 2 X1 - 4x-jx2 + 4x2 = y2> the result ing expression, (y-j + 2 ) - y2 = 0, 

defines the functional dependence for the system. 
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The Total Di f fe ren t ia l 

The use of the total d i f f e r e n t i a l can be shown by reference to a 

u t i l i t y function defined by U° = f(x-j, x 2 ) , where U° is a given (assigned) 

constant . By changing the values of U°, a s e r i e s of pos i t ive quadrant 

curves ( fo r x-j, x2
 > 0) can be obtained as shown in Figure 2.12. This 

se t of curves, i s defined as an ind i f fe rence map with each curve representing 

the locus of al l commodity combinations from which the consumer derives 

the same level of personal s a t i s f a c t i o n . 

H 5 

X, 

Fig. 2 .12 - -Ut i l i t y curves 

Of pa r t i cu l a r i n t e r e s t in th i s type of analysis i s the ra te at which a 

given consumer subs t i tu tes x-j fo r x^> or x2 fo r x-j. 

The analysis of functions s imi lar to those of Figure 2.12 u t i l i z e s 

the total d i f f e r e n t i a l . 

Definit ion 2 .25. - -Let y = f(x-j, x 2 , . . . , x n ) be a continuous function 

i n n var iables . Then the to ta l d i f f e r e n t i a l of the function y = 

f (X-j, X2>...,X ) i s defined by 
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dy = f 1 ( x 1 , . . . , x n )dx 1 + f 2 ( x 1 , . . . , x n )dx 2 +. . .+ f n Cx p . . . 5 x n )dx n , 

The expression defined by the total d i f ferent ia l is 

the general form of the equation of the tangent plane 
(or hyperplane) to the surface (or hypersurface) 
defined by y = f(x-j, x 2 , . . . , x n ) . I t also provides 

an approximate value of the change in the function 
when al l variables are permitted to vary, provided 
that the variation in the independent variables 
is small. The total derivative of the function 
[y = f ( x ^ , . . . , x R ) ] with respect to x^ is 

= f d x l + f dx2 +. . .+ f . +. . .+ f d x
n dx, " '1 t - ! - T '2 M dX i ' d^7 1 n d^T 

or the rate of change of y with respect to x. when 

al l other variables are permitted to vary and where 
al l x. are specified functions of x . . 25 

J 1 

In the previous example, the rate at which the consumer w i l l substitute 

x-j for x2 (or vice versa) is expressed by 

dx2
 f ] ( x ] » x

2 ) 2 6 

d)?j f ^ x r x2T 

This rate of substitution holds so long as the consumer chooses to 

maintain a given level of u t i l i t y . 

The Lagrange Mult ip l ier 

As a tool of classical optimization theory, the Lagrange mult ip l ier 

technique represents an extension of the multivariable calculus and a 

step toward a more rea l is t i c representation of problem situations. This 

25 
Ib id . , pp. 269-270. 

26 
For U - f(x-j, x2 ) , the total change in u t i l i t y tends to approach 

zero as a l im i t . Thus, dU = 0. Applying the concept of the total 
d i f ferent ia l f^dx-j + f2dx2 = 0. Solving for dx2 gives dx2 _ f^ 

dx^ dxY • 
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is accomplished by structuring the mathematical formulation in such a 

way that any competitive or res t r ic t ive conditions are written into the 

functional model as side res t r ic t ions . These side res t r ic t ions are 

written as equali t ies and are incorporated into the function to be 

optimized through the use of the Lagrange mult ipl ier . 

The mathematical formulation of a problem requiring the use of the 

Lagrange multiplier is characterized by a function to be optimized 

subject to a defined set of equality constraints. The use of the 

Lagrange multiplier provides a method for analyzing optimization problems 

that removes the necessity of considering, in a special way, variables 

27 

which are regarded as independent. 

In the tradit ional unconstrained optimization problem, the "optimal" 

solution is achieved by par t ia l ly d i f ferent ia t ing the unconstrained 

function with respect to each variable, equating these part ial derivatives 

to zero, and solving the resulting set of simultaneous equations. Such 

a system of equations has as many equations as variables. The existing 

solutions, consequently, are unique. 

When the decision problem consists of a function to be optimized 

subject to a set of constraints expressed as equal i t ies , the part ial 

d i f ferent ia t ion process of the unconstrained problem results in a set 

of simultaneous equations that has more equations than unknowns. The 

use of the Lagrange multiplier technique avoids this problem. Utilization 

of the Lagrange multiplier increases the number of variables in such a 

way that the system of partial derivative equations has as many unknowns 

as equations. This system then has a unique set of solutions. 

^V idder , op. c i t . , p. 135. 
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Definition 2.26.--Lagrange multipliers are defined as arbitrary 

parameters introduced into an optimizing process to increase the number 

of variables to equality with the number of part ial derivative equations 

and constraint equations. The purpose of the Lagrange multiplier is to 

serve as an agent to transform a res t r ic ted (or constrained) problem 

into an unrestricted [or unconstrained) problem. 

The role of the Lagrange multiplier i s i l lus t ra ted by the following 

non-numeric example. Let f (x^, x ^ , . . . ^ ) be an n-variable di f ferent iable 

function representing cost for a part icular firm. The problem is to , 

minimize f(x-j, x2>. . . ,xn) subject to m dif ferent iable equality res t r i c t ions . 

The res t r ic t ions are imposed by labor, cost of materials, budget, e t c . , 

and are defined by g ^ X p x 2 , . . . , x n ) = 0 , ( j = 1, 2 , . . . , m ; m < n). Let 

Xj(j = 1) 2 , . . . ,m) denote the Lagrange multiplier for the res t r i c t ion . 

Incorporation of the m Lagrange multipliers as part of the cost function 

f (x 1 , x2'* ,*' xn^ r e s i J l t s in the following Lagrange function: 

F(x-|, x2» . . . ,x n ; X-], ^2»• • • > X )̂ = f(x-|, X g , . . . ^ ) + ^ ^ j ^ j ^ x l ' x2'*** ,xn^* 
j=l 

The expanded form of the Lagrangian function is given by 

F(xi > x 2 " ' * 'xn' 1̂® * 2 ' " * ~ ^ x i ' x2'* " 5xn^ 

^2 ̂ 2^X1' x 2 ' * * * ® Xf\ ̂  

Am9 i /X l ' x 2 " * " x n ^ 

This function is minimized by direct application of the part ial derivative.^® 

2 8 Ib id . , p. 136. 
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The Lagrange mult ipl ier technique is a tool of analysis that is 

sui table for optimizing a function subject to a set of constraint 

equal i t ies . Under certain conditions i t is applicable to functions that 

are to be optimized subject to a se t of constraint inequal i t ies . When 

applied to inequal i t ies , the Lagrange mult ipl ier technique t rea t s the 

inequali t ies as though they were equal i t ies . When the optimal solution 

is obtained, the sign of the Lagrange mult ipl ier is used to determine 

whether or not the inequality res t r ic t ion is actually limiting the 

optimum value of the given function. 

The application of the Lagrange mult ipl ier technique u t i l i zes two 

of the basic tools of classical optimization theory. F i r s t , i t uses the 

d i f fe ren t ia l calculus to construct a se t of simultaneous equations. Then , 

i t uses Cramer's rule or the techniques of matrix theory to solve the 

constructed system. As a computational technique, the use of the Lagrange 

multiplier requires the following sequence of steps: 
4" pj 

(1) set up the res t r i c t ing j functional relationship such that i t s 

value is zero when multiplied by a variable, the Lagrange mult ipl ier , A.; 
J 

(2) add the product of (1) to the original function that is to be 

optimized; 

(3) optimize the resulting function described in (2) by equating the 

part ial derivatives of all the variables, including A-, to zero; 

(4) i f the res t r ic t ions are inequal i t ies , and the given function is 

to be maximized, interpret as follows: 
I"! 

(a) A. > 0 indicates that the j " inequality is not r e s t r i c t ive to 
J 

the maximum value, and the given function can be optimized without regard 

to the j r es t r i c t ion ; 
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J . L 

(b) x • ± 0 indicates tha t the j inequal i ty i s r e s t r i c t i n g 

the optimum value and se t t i ng th is inequal i ty equal to zero will r esu l t in 

an optimal so lu t ion . 

The meaning associated with the Lagrange mul t ip l ie r depends upon 

the function being optimized. However, the use of the Lagrange mul t ip l i e r 

removes the necessity of s t i pu la t ing the independent var iable in the 

solut ion s e t . That i s , the use of the Lagrange mul t ip l i e r transforms a 

problem that would have a se t of dependent solut ions into one tha t has a 

unique se t of so lu t ions . 

As a means of i l l u s t r a t i n g the Lagrange mul t ip l i e r technique, consider 

the following problem. I t i s assumed tha t both the object ive function and 

the const ra int equations are d i f f e r e n t i a t e . Output (y) is defined to 

be a function of two input fac tors (x-j and x 0 ) . The input fac tors have 

unit costs c-j and c^> respect ive ly . In addition, i t is assumed tha t a 

f ixed cost (c0) ex i s t s f o r al l other input f a c t o r s , assumed f ixed . The 

problem is to maximize the production funct ion, y = f (x^ , x^), subject 

to the cost r e s t r i c t i o n C = c0 + C-JX-J + where C is f ixed by budget 

r e s t r i c t i o n s . A graphic i l l u s t r a t i o n of th is problem is shown in Figure 2.13. 

Applying the Lagrange mul t ip l ie r technique, the object ive of the 

problem will be to f ind values of x-j, Xg, and A such tha t 

y = f ( x - J , x2) + ^(c 0 + c-JX-J + CgXvp - c) = 0 

achieves a maximum. This is accomplished by equating (i = 1, 2) and 
i 

to zero and solving the resu l t ing system of simultaneous equations. 
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y*?oc,,xo 

ĴroAuc-H^n Surface 

Ccnŝ fa-nt. cos-L >̂\ame 

Fig. 2.13—Production funct ion with cost r e s t n ' c t i on 

This procedure is wr i t t en symbolically as 

f i r , = V v x 2 ^ + A c i = 0 

f ^ - = f 2 ( x r x2) + xc2 = 0 

•|̂ — = Co + C-jX-j + C2X2 - C = 0, 

where c o s c-j, c 2 , and C are cons tants . A cursory inves t iga t ion of t h i s 

system of equations reveals the following r e l a t i onsh ip between and 
3Xi 
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i. (i = 1, 2) : 

sy/sx-j sy/sx2 

C1 c2 
= -A. 

Since 9y/sx^ represents the marginal product of x^, the optimum combination 

of inputs occurs at the point where the marginal product per do l la r i s 

the same for all input f a c t o r s . Thus, 

i f the marginal product per do l la r i s the same fo r 
two inputs , a do l la r taken out of one f ac to r and 
spent on the other will cause no change in to t a l 
product. If the marginal products per do l la r are 
not equal, a dol lar taken out of the f ac to r with 
the smaller r a t io ^y/sx. and budgeted to the 

_ _ _ _ _ 

f ac to r with the la rger r a t io will cause an increase 
in total product. 

Queueing Theory: Models 

Unlike the preceding tools / techniques of c lass ica l optimization 

theory, queueing theory is not a de terminis t ica l ly or iented approach to 

the analysis of decision problems. Rather, queueing theory is a time-

oriented approach to solving a cer ta in class of problems character ized 

by congested points of entry or se rv ice . These points of congestion 

(examples of which include bottlenecks in production operat ions , delays 

in the shipment of materials ( l o g i s t i c s problems), and service f a c i l i t i e s , 

e t c . ) are of such a nature tha t a waiting l ine r e s u l t s . The development 

of the waiting l ine is due to the f a c t that the elements a r r ive in such 

a manner that the capacity of the entry point is exceeded. 

29 
Donald J . Clough, Concepts in Management Science (Enqlewood C l i f f s , 

1963), pp. 150-153. " 
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Queueing theory is a mathematical approach to the study of waiting 

l ines (queues) and provides a formal s t ruc ture through which various 

classes of t ime-service oriented problems are analyzed. Queue systems 

represent s i tua t ions in which a customer (person, product, un i t , e t c . ) 

a r r ives sequent ia l ly over time at a service f a c i l i t y ( s t o r e , work s t a t i o n , 

bank cage, e t c . ) . Such systems are completely described by four major 

c h a r a c t e r i s t i c s : (1) arr ival pa t t e rns , (2) service pa t t e rns , (3) the 

number of ent ry /service channels, and (4) p r io r i t y r a t ings . The wide 

variety of queueing problems tha t are found in decision problems resu l t 

from var ia t ions in these four basic charac te r}s t ics . 

Queueing theory is used to examine and to describe the random 

character of a given queue system. This i s accomplished by an analysis 

of the system's var iab les . The variables most commonly considered fo r 

th i s analysis are the following: (1) the s t a t e of the system ( e . g . , the 

30 

queue i t s e l f where the number of customers" waiting in l ine at any given 

time is a random va r i ab le ) , (2) customer waiting time,and (3) the id le 

time of the f a c i l i t y ( id le time, generally measured as the percentage of 

f a c i l i t y u t i l i z a t i o n , occurs when the ra te of service exceeds the ra te of 

a r r i v a l s ) . These variables are defined and described by three numerically 

determined se ts of data: (1) the average length of the waiting l ine and 

i t s average waiting time, (2) the average arr ival ra te and the associated 

average service r a t e , and (3) the probabi l i ty that a given number of 

elements are in the waiting l i n e . The data from which the waiting l i ne 

30 
The term "customer" is used in a generic sense and r e f e r s to any 

en t i t y (person, product, e t c . ) tha t i s waiting for service a t a given 
f a c i l i t y . 
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values are derived are taken from records or surveys. This data is then 

analyzed to determine the character is t ic behavior of the problem under study. 

Of par t icular in teres t and application are queueing models which 

describe the following generalized problem: (1) the system being invest i -

gated provides a speci f ic service; (2) units (customers, products, e tc . ) 

arrive at random to receive the service made available; (3) there exists 

an expected or average rate of arrival of units for service, with a 

distr ibution of arrival rates around the mean arrival ra te ; and (4) there 

exis ts an expected or average rate of servicing uni ts , with a distr ibution 

of service rates around the mean service r a t e . These models are of such 

a nature that they require four basic inputs: (1) the probability d i s t r i -

bution of service times, (2) the probability dis tr ibut ion of arrival times, 

(3) the number of channels or points of service, and (4) the queue disc i -

pline (conditions of ar r ival -service) . 

The problem in queue formation arises because of two major fac tors : 

(1) at any given time, i t is possible for more units to arrive for service 

than had been expected, or (2) the ra te of service for a run of units will 

be less than the average service ra te , thus causing a backlog (queue). 

Under such circumstances a queue can develop even though the system has 

su f f i c i en t capacity and is capable of providing more service than is 

normally demanded. At other times, less than the expected number of 

units can arrive or shorter than average service rates can occur, a 

s i tuat ion which resul ts in idle time for the service f a c i l i t y . An 

obvious indication of these comments is that the arrival rate and service 

rate in teract with each other. This is par t icular ly true when the output 
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of one queue consti tutes an input to another queue. Tt is highly feasible 

that arrival and service distr ibutions will depend on each other. For 

example, i f an assembly l ine is composed of sequential s ta t ions , the output 

of one stat ion serves as an input to the next s ta t ion . Tn such a case, 

the service rate of one s tat ion is a def ini te factor in determining the 

arrival rate for the next s ta t ion . 

The primary use made of queueing models has been the reduction of 

costs. Costs, in th is sense, are not necessarily dollar costs , but 

include time, service, e tc . Since overloaded or idle f a c i l i t i e s tend 

to increase costs , the use of the queueing model centers on evaluating 

the following: 

(1) the average number of elements in the queue, denoted L ; 
M 

(2) the average number of elements in the system, denoted L 

(includes the number of elements in the queue and the number of elements 

being serviced); 

(3) the average waiting time or delay before service begins, 

denoted W : 
q 

(4) the average time spent by an element in the system, denoted 

W (includes the delay before service begins and the time required to 

complete service); 

(5) the probability that any delay will occur, denoted Pr(N > M), 

where N represents the number of elements in the system, M the number 

of service f a c i l i t i e s ; 

(6) the probability that the total delay, W, will exceed some value 

of t s denoted Pr(W > t ) ; 
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(7) the probabi l i ty tha t all service f a c i l i t i e s will be i d l e , 

denoted Pr 0 ; 

(8) the expected per cent i d l e time of the to ta l service f a c i l i t y , 

I , where T = ~ Pr0 + ^ Pr-, + . . .+ ^ Prn + PrM, and Prp 

denotes the probabi l i ty tha t n elements will be in the system, both 

waiting and receiving service from M f a c i l i t i e s ; 

(9) the probabi l i ty of turn-aways, where turn-aways r e s u l t from a 

lack of su i tab le queue accommodations. 

The se lect ion of a su i t ab le queueing model (Erlang, Poisson, e t c . ) 

can be made only by comparing the cha r ac t e r i s t i c s of the given problem 

with those of defined models. A selected sample of the basic queueing 

models i s presented in the discussion tha t follows. 

Deterministic Queues.--Deterministic queueing models are characterized 

by known arr ival ra tes and a known (exact length) service time. As such, 

these models are described by known, n on random variables with s t r i c t l y 

31 

defined re la t ionsh ips . 

The determinis t ic queueing model, in general , i s based upon two 

basic assumptions: (1) a constant ra te of ar r ival (A) and (2) a constant 

ra te of service (y). The numerical values associated with A and y are 

determined inversely by the regular time interval of a r r iva l (denoted by 

a) and the length of the service interval (denoted by b) , respec t ive ly ; 

i . e . , A = 1/a and y = 1/b. 
O] 

Thomas L. Saaty, Elements of Queueing Theory (New York, 1961), 
pp. 27-30. 
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If the regular time of arrival exceeds the length of the service 

interval (a > b), the service rate GO will exceed the arrival rate (A)-

When p > i , a queue will not be formed since service on units currently 

at the service point will be completed before additional units arr ive. 

If the regular time of arrival equals the length of the service interval 

(a = b), the arrival rate 00 will equal the service rate (y). When 

A = y, a queue will resul t only if there were a queue at the beginning 

of the process. If the interval of service exceeds the interval of 

arrival (a < b), the arrival rate (x) will exceed the service rate (y). 

When a > y, the arrival rate exceeds the service ra te , forming a queue 

of arriving units. 

Probabil is t ic Queues.--In general, the probabi l i s t ic queueing 

problem is such that the amount of time a customer spends in service is 

not known. However, i t is possible that the re la t ive frequencies with 

which a customer requires service of a given length can be obtained. 

With these relat ive frequencies, i t is possible to obtain a ra t io between 

the number of times a customer requires a certain length of service and 

the total number of times a customer required any service. The ra t io can 

be used to define the probability that customer service time will l a s t 

up to a given length of time. 

The probabi l i s t ic queueing model is concerned with arrival and 

service rates of unknown time durations. Since the values corresponding 

to these time-duration intervals are free to assume any value within a 

given in terva l , the time-duration variables are defined as random (or 

chance) variables. For a probabi l i s t ic queueing model, these variables 



86 

are such t h a t they e x h i b i t f i v e c h a r a c t e r i s t i c s : (1) the time i n t e rva l 

i s continuous ( i . e . , f r e e to assume any value; (2) the p r o b a b i l i t y of 

occurrence of any value, x, ly ing in an i n t e r v a l of length dx can be 

described by f (x )dx ; (3) X denotes a chance v a r i a b l e , f r e e to assume 

any of the poss ib le values of se rv ice - t ime dura t ion ; (4) Pr(X <_ x) = 

F(x) = $ f (y )dy ; and, (5) the only parameter ( d e s c r i p t i v e measure) 

involved i s t ime. 

The p r o b a b i l i s t i c queueing model is such t h a t the " h a b i t s " 3 2 of a 

un i t (customer) vary over t ime. The p r o b a b i l i t y of t ime-dura t ion of 

s e rv i ce i s described by a p r o b a b i l i s t i c va r i ab le t h a t i s a func t ion of 

t ime. The durat ions are described by a random (or chance) v a r i a b l e , 

denoted X t , t ha t depends on time. As such, the dura t ions can be 

described by a p robab i l i t y d i s t r i b u t i o n func t ion def ined a t time t by 

Pr(Xt < x] = F(x; t ) . For each value of t , the random va r i ab le a t 

time t , X t , has a defined p r o b a b i l i t y d i s t r i b u t i o n . For a range of 

values of t , the cumulative funct ion F(x; t ) descr ibes a family of 

random v a r i a b l e s . A family of random var iab les t h a t depends upon a 

parameter def ines a s t o c h a s t i c p r o c e s s . 3 3 I f t he r e i s no reason to 

d i s t ingu i sh between the se rv ice - t ime dura t ions of d i f f e r e n t customers, 

32 . ~ ' ~ ' 
The term "habi t" r e f e r s to the se rv ice - t ime durat ion exhib i ted bv 

each a r r iva l to the se rv ice s t a t i o n . 
33 

A s t o c h a s t i c process i s defined as a col 1 ec t ion of random var i ab les 
def ined at some point in t ime, i nd i ca t i ng t h a t a s t o c h a s t i c process i s 
any process such t h a t the outcomes of the process are not known with 
c e r t a i n t y . Such a process i s one in which the changes t h a t occur are 
r e l a t e d by the laws of p r o b a b i l i t y and are such t h a t events occur in 
random fashion a t random (or f ixed) i n t e r v a l s . 



87 

the same stochastic process can be used to describe the times of all 

those arriving units which require service. If i t is necessary to 

distinguish between service-time durations, then a stochastic process 

must be defined for each unit [customer] being served. By defining a 

stochastic process for each unit to be served, the identi ty of the 

entering unit and i t s time of entry into the service station i s described. 

This individual assignment i s denoted by X(k, t) and indicates that the 

distr ibution of the random variable X i s defined by the time at which 
fh 

the k customer entered service. 

As a means of i l l u s t r a t ing the concept described in the preceding 

discussion, consider a production process which consists of a ser ies of 

paint operations. The items to be painted include door panels, tables , 

and other various pieces of furni ture . Each item entering the paint . 

station requires a dif ferent amount of time to complete service. Assuming 

that arr ivals occur at random and are defined by a stochastic process, 

the item which arrives to be painted is the "customer" for that service 

s ta t ion. Since the arriving units require d i f ferent lengths of time to 

complete service, the stochastic process which describes the entrance of 

a unit fo r painting will be defined in terms of i t s number (k) and the 

time i t entered service ( t ) . 

The use of probabi l is t ic models in describing waiting line phenomena 

is based on four basic models: the Poisson probability model, Erlang's 

model, the exponential probability model, and the gamma probability model. 

As a means of providing an adequate survey of suitable time-oriented 

models, each of these four models is discussed in this study. 
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Poisson d i s t r ibu t ion : The Poisson probabi l i ty model is based on 

three- postulates which s t i pu l a t e the conditions under which a pa r t i cu la r 

probabil i ty d is t r ibu t ion i s described by a Poisson process. These 

pos tu la tes , taken from Hogg and Craig , 3 4 follow. 

M l S I t l o n 2,27.--Let g(x, hj denote the probabi l i ty of x changes 

in an interval of length L. Let T(h] denote any function such that the 

l imit as h approaches zero of the quotient I j ^ L equals zero. Let A be 

the ar r iva l (or service) r a t e . A Poisson process i s one such that 

(1) 9 0 , h) = xh + T(h) where A > 0 and h > 0; 

oo 

(2) g(x, h) = T(h); and, 
x=2 

(3) the number of changes in nonoverlapping in tervals is s tochas t ica l ly 

independent.3^ 

A Poisson process i s one such that the probability of one change in a 

short interval h is independent of changes in other nonoverlapping intervals. 

As indicated by postulates CD and (3) , this probability is approximately 

proportional to the length of the interval. In addition, postulate (3) 

34 ' ~ ~ ~ ™ — —— 

S t a t i s t i c s (New*York! *965)! 1pp.T87-89l9* 
35 

P d s , d , M s ° n ; & & , 

and the marginal density functions f , (X , ) and f (X ) , respectively. The 

ran om variables X, and X? are said to be stochastically independent i f , 

an on y i f , f(x]f x2) = f , tX , ) ' f2C*2l- This definition of stochastic 

?? E ^ o ^ T S a ^ ^ S i ^ f S o l ™ i 4 1 * 
of the variables' respectlve'fSnrtion"? W " t t e n a S a p r o d u c t 
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indicates that the probability of two or more changes in the same short 

interval h is essential ly equal to zero. 

A discrete distr ibut ion, the Poisson probability function is inde-

pendent of previous events. Tn addition, the Poisson dis t r ibut ion, in 

defining the probability of a number of arr ivals or length of service as 

a function of time, requires but two quantitative measures: (1) the 

elementary probability of an arrival per unit of time and (2) the f i n i t e 

period of time in which the study is made (total time). Given these two 

units of measure, the Poisson distr ibution for n arr ivals at rate X 

during the time period T is given by 

f (n; xj T) = —i , 0 <_ n <_ » and 0 < 1 < <». 

As a matter of note, the function defined by f (n; x, T) is a discrete 

distr ibution and the only admissable values of n are integer values 

( i . e . , n = 0, 1, 2 , . . . } . For time t and arrival rate x» the probability 

that n items arrive at the queue by time t (denoted Pr n ( t ) ) is given by 

Prn( t) = , n = 0, 1, 2 , . . . 

= 0 elsewhere. 

Although the unit interval of time is free to assume any value, 

practical application dictates that th is interval be set equal to unity 

( i . e . , t = 1). The unit interval of time is defined to be equal to 1 

because, regardless of the actual length of the tine in terval , the unit 

intervals will be of equal length. For example, although the time 

interval between observations may be 2 hours, a scale of 2 hours per unit 

of time would yield t = 1. 
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Definition 2.28.—Let A > 0 be the mean of a Poisson process, 

expressed per unit of time ( t = 1). The Poisson distr ibution function, 

defined in terms of A , gives the probability of exactly x occurrences 

of some given form. This probability is obtained by evaluating 

Pr(x) = ~ r - > x = 0, 1, 2 , . . . 

= 0 elsewhere. 

The form shown in Definition 2.28 i s the one normally associated with 

the Poisson dis t r ibut ion. I t should be remembered that this form is 

applicable when t = 1. For t f 1, 
* 

Pr n ( t ) = , n = 0, 1, 2 , . . . 

= 0 elsewhere. 

When t f 1, the mean number of arr ivals by time t (denoted by L) and 

the variance are given by 

oo 

L = 2 1 - » t ; 
n=0 n 

-2 - 9 v a r = (n - L ) P r , ( t ) = At. • 

n=0 

The widespread use of the Poisson distribution for describing random 

arrival processes is due to the fact that the three postulates of Definition 

2.27 are "approximately f u l f i l l e d in all phenomena involving random 

ar r iva ls . " In addition, there exists a relationship between service 

rate distr ibutions and Poisson arrival dis t r ibut ions. This relationship 

is given by the following: 

Arnold Kaufman, Methods and Models of Operations Research 
(En gl ewood CI i f f s , 1963}, p~. 84. 
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(1) when the arrival rates are distributed according to a Poisson 

process, the interarr ival rates are distributed according to a related 

exponential dis tr ibut ion; and, 

(2) when the service rates are distributed according to an exponential 

dis t r ibut ion, the arrival rates for service are distributed according to 
37 

a Poisson dis t r ibut ion. 

Erlang distr ibution: The Erlang queueing model f i r s t appeared as a 

means of explaining problems relat ing to telephone communications. Since 

the appearance of this model, i t s formulas have been used to calculate 

a number of dif ferent average dimensions. Tn addition, i t s formulas 

have been generalized to provide descriptions of stationary cases in 
QO 

transient or permanent systems. Although there exis ts a set of 

distr ibutions called Erlang dis t r ibut ions, distributions of the form 

• r-1 p_r iJX 

i (x) = (ryx) (r-1}! 

the most common Erland model is that model for which r = 1. This reduces 

the function to f(x) = ye pX which i s the exponential dis t r ibut ion. 

Problems suitable for application of the Erlang model follow s t r i c t l y 

defined character is t ics . Of these character is t ics , the following are the 

most str ingent: 

37 
The exponential distribution is defined by the probability density 

function 
f(x) = ^e_ocX, x >_ 0 

= 0 elsewhere. 
38 

Kaufman, ojd^ c i t . , p. 340. 
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(1) An operation starts with no items (units) waiting in l i ne ; 

(2) Inputs to the system follow a Poisson distr ibut ion with 
parameter A; 

(3) Holding time (service) follows an exponential d istr ibut ion 
with parameter n; 

(4) Arrivals are serviced on a first-come, f i rst-served basis; 

(5) Arriving units can enter the system at only one location; and, 

(6) The probabil i ty of n units being in the system at time t + At 
is given by 

(a) for n j> 1, 

P r n ( t + fit) = P r n ( t ) I l - ( a + P ) A t ] + P r n _ i ( t ) At + P r n + 1 ( t ) y A t . 

(b) for n = 0, 

IPr0(t + A t ) = P r 0 ( t ) ( l - A A t ) + Pr-j ( t J - p A t . " ^ 

Ut i l iz ing a t r a f f i c intensity factor (or u t i l i za t ion factor) defined 

by p = x/y, the Erlang model is extremely useful for calculating the 

expected number of elements in the system, the variance of the distr ibut ion 

defining the queue, and the expected number in the queue. Given the 

arrival rate ;v, the service rate y, and the steady-state probabil i ty pr 

these values are given by direct application of the following set of 

unique value formulas: 

(1) the expected number in the system, L, 

n5 

L = npn = A - ; 
n=0 1 p 

39 
Verbally, the probabil i ty of n items in the system at time t + At 

equals theprobabi l i ty of n items in the system at time t . mult ipl ied by 
the probabil i ty of no arrivals and no departures, plus the probabil i ty of 
n-1 items in the system at time t mult ipl ied by the probabil i ty of one 
arr ival and no departures, plus the probabil i ty of n+1 items in the system 
at time t mult ipl ied by the probabil i ty of a single departure and no arr ivals. 
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(2) the variance of the d i s t r ibu t ions V, 

2 
V = + ™—5" ' a n d> 

1 _ P (1-P)2 

(3) the expected number in the queue, L , 
H 

l . - • £ Cn-DPn = i ! 
q n=0 n 1-p ' 

Exponential d i s t r i b u t i o n : The exponential d i s t r i bu t ion i s well 

sui ted to the analysis of waiting l i n e s . In t h i s appl icat ion i t i s 

p a r t i c u l a r l y useful in determining the length of time spent waiting 

when the sequence of occurrences follow a Poisson d i s t r i b u t i o n . 

The exponential queueing model is described by the exponential 

p robab i l i ty d i s t r i b u t i o n . This d i s t r i bu t ion i s defined in terms of 

the random var iable x and the constant I t i s assumed t h a t admissable 

values of x are those values such t ha t x is at l e a s t zero and « i s 

posi t i ve. 

Defini t ion 2 .29 . - -Let « > 0. The exponential d i s t r i b u t i o n , defined 

in terms of «, gives the p robab i l i ty of exactly x occurrences of some 

given form. This p robabi l i ty is obtained by evaluat ing 

Pr(x) = cce~reX f o r x >_ 0, 

= 0 elsewhere. 

Unlike the Poisson d i s t r i b u t i o n , which i s a d i sc re te func t ion , the 

exponential d i s t r i b u t i o n i s a continuous function and is amenable to the 

ca lculus . The use of the calculus i s espec ia l ly sui ted fo r cumulative 

problems but i s not necessary. For example, i f i t were necessary to 
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evaluate the exponential function fo r all x less than or equal to 6, 

t h i s could be accomplished in one of two ways: 

r 6 -ax 
(1) evaluate Pr(x <_ 6) = J «e dx, or 

0 

(2) evaluate Pr(x _< 6) = 1 - e - ccX
5 fo r x = 6, 

With the a v a i l a b i l i t y of tables f o r exponential func t ions , the second 

approach i s the most p rac t i ca l . 

The mean and the variance of the exponential d i s t r ibu t ion are 

determined once « i s known. This is because the mean and the variance 

of the exponential d i s t r ibu t ion are ~ and respec t ive ly . The numerical 
cc 

value associated with cc is the ra te a t which the queue elements arr ive 

(or are serviced) . 

As a matter of note, the exponential d i s t r ibu t ion o f fe r s an advantage 

over the Poisson model. This advantage i s evidenced by the f a c t t h a t , 

whereas the exponential d i s t r ibu t ion is equally sui ted fo r both arr ival 

ra tes and service r a t e s , the Poisson d i s t r ibu t ion applies only to ar r iva l 

r a t e s . 
The crucial d i s t inc t ion is t ha t , when there are no 

elements in the system, none can be serviced. The average 
service t i m e . . . i s the average time taken for servicing 
while servicing is going on. Idle time is not counted. . . 
the d i s t inc t ion between arr iving and servicing is tha t 
ar r iv ing is always going on, and time between a r r iva l s 
i s counted in computing the average arr ival r a t e . 
Se rv ic ing . . . t akes place only when one or more elements 
are in the system. Thus, the average service r a t e . . . i s 
the average number of elements serviced per unit time of 
continuous servicing.40 

40 
Samuel B. Richmond, Operations Research fo r Manaaement Decisions 

(New York, 1968), p. 412. 
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Gamma d i s t r i bu t ion : The gamma d i s t r i bu t ion , also a continuous 

probabi l i ty funct ion, is sui ted for the same type of analysis as the 

exponential d i s t r i bu t ion . In p a r t i c u l a r , the gamma d i s t r ibu t ion can 

be used to f ind the to ta l ar r ival time for any number of consecutive 

arr i val s . 

The gamma funct ion, denoted r ( ' ) , i s defined fo r « > 0 by 

co -

rC°=) = S X<x~ e X(^x-
0 

This function i s defined in terms of the constant « and the random 

variable x. Although defined as an integral funct ion, i t is not necessary 

to u t i l i z e the integral calculus. Rather, t h i s integral i s evaluated by 

applying the property t h a t , fo r <= > 1, r(=) = Ck - 1)1 

Examination of the l i t e r a t u r e reveals tha t the gamma function can 

be defined in a var ie ty of ways. The most common of these de f in i t ions 

i s shown below. Although these de f in i t ions appear d i f f e r e n t , t h i s 

d i f fe rence i s only in the manner in which the de f in i t ions are wr i t t en . 

Definit ion 2.30(a).—Let * > 0, g > 0 be defined parameters. Let 

x be a continuous random var iable . Let f (x) be the defined gamma function, 

Then, 

f (x) = x ^ e o < x <<»,. cc = 1, 2 , . . . 

= 0 e lsewhere .^ 

Definit ion 2 .30(b) . - -Let A > 0, r > 0, be defined parameters. Let x 

be a continuous random var iable . Let f(x) be the defined gamma funct ion . 

41 
Hogg and Craig;, op. c i t . , p. 91. 
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Then. 

f ( x ) _ j | - O x J r ] e Ax
5 f o r x > 0, r = 1 , 2 , . . . 

A*? 
= 0 elsewhere. 

M i s i t t o n 2 ^ 1 . - L e t j > 0, „ > 0 be defined parameters. Let 

x be a continuous random variable. Let f (x) be the defined gamma function 

Then, 

f f x ) = ^ » ? " " 1 3 - > X . 
^ ( r T T T i " 5 f o r y i °» n = 1* 2 , . . . 

= 0 e l sewhere .^ 

As noted previously, the gamma dis t r ibu t ion function can be used 

to determine the probabil i ty of total arr ival time for any number of 

consecutive arr ivals. This application is made by considering the random 

variable x as representing the sum of n independent values. These n 

independent values are taken from the defined gamma function and define 

the sum of the total intervals for any n consecutive intervals. Thus, 

["total interval for any 1 \ . x n j , T ,k -aT 
Pr [n consecutive a r r iva l s < Tj = J f W d x = 1 - H , where 

0 k=l K ! 

f ( x ) = l ( 2 ^ ) n " V x x 

1 ' 0WT11 9 x > " > 0, 

= 0 elsewhere. 

The mean and variance of the gamma distribution are defined in terms 

° f the parameters which describe the function. For example, i f the gamma 

42 ~ ~~ " — —-—— 
(New r o r k ! ' ^ 9 6 0 ) ^ " i e S T ^ IheorjL and I ts Applications 

43 

CIi-f-fs,lt?969^>
Mp.^845?r' ~ QEgratlgPi. Research (Englewood 
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function i s defined by 

f^ x ) = —] y" ^ e 0 < x < <», cc = 1, 2 , . . . 
r W f 

= 0 elsewhere, 

the mean and variance are and ccg , respec t ive ly . Similar expressions 

can be writ ten fo r 2.30(b) and 2.30(c) by equating l ike terms. 

Having b r i e f l y considered the four major d i s t r ibu t ion funct ions 

sui ted fo r the analysis of waiting l i n e s , i t is necessary to give 

consideration to o ther fac tors which would influence the se lect ion of 

a p a r t i c u l a r formula. Chief among these other considerations i s the type 

of queue tha t has developed, single-channel or multiple-channel. In 

the f ina l analys is , i t i s t h i s decision tha t d ic ta tes the formula to 

be employed as a means of solving a given problem. 

Single-channel queues.--Sing!e-channel queueing problems are 

characterized by only one service f a c i l i t y . Arriving uni ts are 

compelled to en te r service at only one s ta t ion which may or may not be 

capable of meeting service demand. When the ar r ival ra te exceeds the 

service r a t e , a queue r e s u l t s . These comments lead to the following 

d e f i n i t i o n . 

Definit ion 2.31.--Single-channel queues are queues such that 

arr iving units (customers) are able to receive service at only one 

service f a c i l i t y ( s t a t i o n ) . 

Other cha rac t e r i s t i c s of the single-channel queue include random 

a r r iva l s and service time tha t i s independent of queue length. Units 
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are admitted on a f i r s t -come, f i r s t - s e r v e d bas is , such as service at a 

service s t a t i o n , service at t e l l e r windows in banks, or units passing 

along an assembly l i n e . (See Figure 2.14.} Additional ins ight into 

the single-channel queue can be obtained by considering the work of 

di Roccaferrera. 

When the a r r iva l s and service time are both at random, 
th i s type of problem i s also called a single-exponential 
channel in accordance with the Poisson d i s t r ibu t ion of 
values indicat ing the time of a r r i va l s and the t i r e of 
service . When the service i s busy, the incoming element 
waits in l ine in order of a r r iva l until the previous 
element leaves the channel at the end of i t s service . 
This rule is called s t r i c t queue d i sc ip l ine . . . . The 
elements in l ine do not always form a sor t of l ine which 
proceeds in unchanged order toward the s t a t i o n . Some-
t ines ari element in l ine may leave the queue and the 
l ine i s shortened. This case is defined as a "queueing 
problem with impatient customers. . . The expected 
escape rate i s t rea ted as a function of the l imited 
time of the a v a i l a b i l i t y of the element in l ine (customer). 
The element leaving the system is a los t customer or a 
l o s t potential c u s t o m e r . 4 4 

Go s-tomcrs 

o o o o o o 

Service 

© 1 

Fig. 2.14--Single-channel queue 

44 Giuseppe M. Ferrero di Roccaferrera, Operations Research Models 
f o r Business and Tndustry (Cincinnat i , 1964], p. 324. 
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Multiple-channel queues,--Whereas the single-channel queue r e s t r i c t s 

the ar r iv ing unit to a s ingle point of serv ice , the multiple-channel 

queue permits the arr iving unit to s e l ec t any one of a number of serving 

f a c i l i t i e s . In th i s respect , the multiple-channel queue is character ized 

by n service f a c i l i t i e s , with a r r iva l s unres t r ic ted in queue se lec t ion . 

Definit ion 2.32.--Multiple-channel queues are queues such tha t 

ar r iv ing units (customers) are permitted to obtain service at any one of 

a number of serving s t a t i o n s . 

The primary consideration of the multiple-channel queue i s directed 

a t two points of i n t e r e s t : (1) the type of queue ( f i n i t e or i n f i n i t e ) 

and (2) the arrangement of the serving s t a t ions (in para l le l or in 

sequence). These points great ly a f f e c t the manner in which a queueing 

problem i s analyzed and must be determined pr io r to actual analysis due 

to the influence made on the queue d i s t r i b u t i o n . Because of t h e i r 

importance, each i s defined and described in the discussion to follow. 

Multiple-channel queues in p a r a l l e l : Many queueing s i t ua t i ons 

( e . g . , r es tauran ts , customers at shops) consis t of a f i n i t e number of 

service channels arranged in p a r a l l e l . For completely random a r r iva l s 

and service times and no departures from the system except for service , 

the ar r iv ing unit will be serviced immediately i f a service channel is 

i d l e . A queue is formed when the number of a r r iva l s exceeds the number 

of channels or service points . Elements (or uni ts ) belonging to the 

queue are f r ee to move from one queue to another until they are serviced. 

I t i s to be noted tha t when an element cannot pass from one l ine 

to another, even i f the system i s apparently composed of two or more 
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s ta t ions , the problem i s not a multiple-channel problem. Instead, i t 

is a single-channel problem composed of several dichotomous problems. 

In th is par t icular case, i t is assumed that the formation of each queue 

is independent of the others. Once an element selects a queue, i t 

45 

becomes part of the single-channel system. 

As an example of the multiple s ta t ion, single-channel queue concept, 

consider the intersection of several routes where each route has a 

separate entry s ta t ion. Each of these routes lead to a d i f ferent location, 

(See Figure 2.15.) 
O O O O ' 

B O O O o M ** B 

q —y » . . • * • o o 
G 

Fig. 2.15—Parallel s ta t ions , single-channel queue 

Reference to Figure 2.15 reveals that an arrival in channel A i s not 

free to receive service at s tat ions B or C and then return to channel A. 

In th is case, the waiting line i s not multiple channel. I t consists 

of a ser ies of parallel s ta t ions , with single-channel queues leading to 

each of the s ta t ions . Elements entering the system are not f ree to 

change 1ines. 

4 5 I b i d . , p. 837. 
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Thus, the primary consideration to be made in defining (or des-

cribing) a problem involving multiple-channel queues in para l le l i s the 

manner in which elements in the queue gain admittance to serving s t a t ions , 

If the queue elements are unable to pass from one queue to another ( e . g . , 

cars entering a t o l l bridge s t a t i o n ) , the queue is not a multiple-channel 

queue but one that i s s ingle channel, multi-problem. If the queue i s 

one such tha t the queue elements are f r ee to change channels at will 

until served, then the queue i s a multiple-channel queue ( e . g . , shoppers 

at a checkstand), as shown in Figure 2.16. 

US 

°<y^^c\^b~or'0~ 
q 

Fig. 2.16--Multiple-channel queue, four s t a t ions in para l le l 

From th i s discussion can be drawn several cha rac t e r i s t i c s of multiple-

channel queues in p a r a l l e l : (1) the queue is such that f r ee mobility 

among queue elements i s allowed; (2) elements in the queue can be served 

equally well at any available s t a t i on ; and, (3) there ex i s t at l e a s t two 

serving s ta t ions to which arr iv ing elements may go. These points are 

formalized in the following d e f i n i t i o n . 
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Definit ion 2.33.--Queues are said to be multiple channel in para l le l 

when entry into the system allows f ree d i s t r ibu t ion to two or more service 

s t a t i ons ; i . e . , elements in the queue can be served equally well by more 

than one s t a t i on . 

Multiple-channel queues in sequence: As previously noted,mult iple-

channel queues can be, and usually are, categorized on the basis of the 

type of queue considered. Queues in para l le l are those queues such that 

the service f a c i l i t i e s ( s ta t ions) are arranged in p a r a l l e l , with f ree 

mobility of queue elements. In con t ras t , queues in sequence are those 

queues such that the output of one service f a c i l i t y serves as an input 

into another service f a c i l i t y ; in addi t ion, the service a t each stage 

must be performed before another service can begin. The multiple-channel 

queue in sequence can then be formally defined in the following manner. 

Definit ion 2.34.--Queues are said to be multiple channel in sequence 

when the output of one service f a c i l i t y is an input to another service 

f a c i l i t y , and the service tha t i s performed on the unit must be completed 

before another service begins. 

Sequential queues thus represent queueing problems in which the 

output of one stage serves as the input to the next s tage , an example 

of which is an assembly l i n e . Such queues are generally found to be of 

two types: (1) multiple-channel entry with a f ixed sequence of se rv ice , 

or (2) multiple-channel entry with a multiple-channel service sequence. 

In i l l u s t r a t i o n , consider the queueing problem with multiple-channel 

entry and a f ixed sequence of serv ice . Such a system is characterized by 

a f r ee select ion of the entry s t a t i o n . Once the system i s penetra ted, 
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subsequent queues are single channel. (See Figure 2.17.) This case is 

i l l u s t r a t ed by a cafeter ia serving line with multiple ports of entry. 

Until the serving l ine reaches the food stat ion the persons forming 

the queues are free to move from line to l ine . Once the serving of 

the food begins, the person (queue element] is fixed with regard to 

the par t icular l ine . 

0~v~» o 51 

o _ o ^ o ^ o 

6 ^ , 0 , 

a. U 

Fig. 2.17—Multiple-channel entry, fixed sequence 

Consider next the queueing problem with multiple-channel entry 

and multiple-channel service. Entry into the system is such that each 

element is f ree to se lect any available s ta t ion . Once the system is 

penetrated, the output of one station serves as an input to another s tat ion, 

Each input is f ree to change channels up to the point of actual service. 

(See Figure 2.18.) This case is i l l u s t r a t ed by the job shop, where a 

par t icular job proceeds through a ser ies of operations on d i f fe ren t 

machines. Each machine represents an independent service center. The 

jobs arrive at random intervals from other machines in the system. Each 

machine may have a queue of jobs competing for the service of that f a c i l i t y . 
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Fig. 2.18-~Multiple~channel ent ry , multiple sequence 

The preceding discussion has centered on both the c l a s s i f i c a t i o n 

of queues according to the type of model describing the system and the 

pa r t i cu l a r type of channel ( s ingle- or mult iple-) tha t is employed. 

Although these two c l a s s i f i c a t i o n s are of primary importance, consideration 

should be given the following i f the problem is to be properly described. 

The context of these other fac tors is taken from Saaty. 

1. Types of a r r iva l s and service-t ime d i s t r i bu t ions . Arrivals in to 

a queue occur by assumption according to a certain frequency d i s t r i b u t i o n , 

as do the in te rva l s between a r r i v a l s . These a r r iva l s may be independently 

d i s t r ibu ted for applicat ion purposes, or they may be dependent. 

2. I n i t i a l - i n p u t var ia t ions . The i n i t i a l number of units in a 

system when an operation begins may be given by a d i s t r ibu t ion because 

i t i s d i f f e r e n t fo r each complete run of the operation. The input to 

^ S a a t y , op. c i t . , pp. 9-12. 
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a queue may be from a l imited ( f i n i t e ) or an unlimited ( i n f i n i t e ) 

population which may also consist of several categories (populations) 

of customers, each of which may arr ive by a d i f f e r e n t d i s t r i b u t i o n , 

s ingly or in batches, and may queue in a prescribed order. 

3. Unit behavior. 

a. Balking. Unit behavior can vary. Arriving uni ts may 

balk ( i . e . , not join the queue) because of the length of the ex i s t ing 

queue, or simply because they have to wait ; these units are los t to the 

queue. 

b. Influence of incomplete information. For many problems 

a decision may be required as to which l ine of a multiple-queue operation 

to jo in when information about only a few is immediately available—a 

case of incomplete information. 

c. Unit adaptation to queue condit ions. On the basis of 

experience, passengers may learn to t ravel e a r l i e r or l a t e r to avoid 

in to le rab le queueing, and such measures, when adequately s tudied, may 

even re l ieve congestion. An item may join a large waiting l ine at 

closing hours fo r fear t h a t a short l ine which i t encounters may be 

closed suddenly. But there are s i tua t ions in which an item which arr ives 

before another must go into service before the following one. Also, 

there are cases in which each service f a c i l i t y has i t s own spec i a l t y - -

consequently, i t s own queue [ e . g . , stamp-sale counter and money-order 

or special r eg i s t ry counter at the Post Of f i ce ] . 

d. Collusion, jockeying, and reneging. Several units may 

be in col lusion whereby only one person waits in l ine while the r e s t 
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are f ree to attend to other business. Some may even arrange to take turns 

waiting. Units may jockey from one line to another; or , a customer may 

lose patience and leave the queue. 

4. Queue and channel variations. 

a. Full or limited avai labi l i ty . Service channels may be 

available to any unit waiting in a system ( fu l l avai labi l i ty) or may be 

available only to some waiting units . Other units are blocked and must 

wait until a channel that can provide the required service becomes 

avail able. 

b. Service procedures or discipl ine. While in line customers 

may be chosen for service by allocation to the channels in an ordered 

first-come, f i rs t -served manner or at random, they may be assigned p r io r i t i e s 

with errors committed when i n i t i a l l y i t is not clear which pr ior i ty to 

assign, or the pr ior i ty assignment may change in time. Pr ior i t i es may 

be preempted if higher pr ior i t i es arrive, or they may be allowed to f inish 

the service. Finally, items may be chosen for service on a last-come, 

f i rs t -served basis. 

c. Specialized service channels. Some of the service channels 

may specialize while others remain general. Parallel channels may al l 

cooperate to serve the many needs of each customer. Customers may cycle 

by returning to the waiting line for additional service. 

d. Queue interference. Two (or more) queues may in te r fe re 

with each other. Such si tuations could present themselves on narrow, 

one car per time bridges, four-way stops, e tc . 
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5. The output of a queue. The output of a queue may also be of 

importance, part icularly when i t forms an input to another queue in 

series with the f i r s t one. Arrival and service distributions may depend 

on each other. 

Queueing Theory: Techniques 

Although queueing theory contains both deterministic and probabi l is t ic 

applications, these applications are such that they belong to the techniques 

of classical optimization theory. This c lass i f ica t ion of queueing theory 

is based upon the fact that solutions to given problems are obtained by 

direct application of a given formula. Tn addition, the solutions 

obtained are unique. For a given set of input data, al ternative solutions 

do not exis t . 

As a means of presenting the techniques of queueing theory, the 

following format will be followed: (1) the notation for i n f in i t e source 

queues will be presented; (2) the deterministic queue is reviewed and 

applicable formulas presented; (3) the probabil is t ic queue is reviewed 

and applicable formulas presented. The section on probabi l is t ic queues 

is fur ther divided into in f in i t e source and f i n i t e source analysis. 

Since the f i n i t e queue is a special case of the in f in i t e queue, the 

notation required for the study of f i n i t e queues is presented as i t i s 

needed. Both in f in i t e and f i n i t e source queues are fur ther subdivided 

according to the number of service channels in the system. 

The following set of symbols will be used for the study of i n f in i t e 

source queues. These symbols are presented here to f a c i l i t a t e the dis-

cussion to follow. 
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X = mean arrival rate (the number of arrivals per unit time) 

y = mean service rate per channel 

s = number of service channels 

n = number of units in the system 

p = t r a f f i c in tensi ty , or u t i l iza t ion factor 

PrnCt) = the probability tha t , at time t , there will be exactly n 

units in the system, both waiting and in service 

Prn = steady-state (time-dependent) probability that there will be 

n units in the system, both waiting and in service 

00 CO 

T. P r f t ) ' V p - 1. 

Pr(=0) = the probability of no waiting 

Pr(>0) = the probability of any waiting 

Pr(>T) = the probability of waiting greater than T 

L = the average number of units in the system, both waiting and in 

service 

Lq = the average number of units waiting in the queue 

W = the average waiting time in the system 

b = time length of service interval 

a = time length of arrival interval 

Deterministic queues with an i n f i n i t e source. —In formulating a 

deterministic queueing problem, i t is necessary to make some assumptions 

regarding the arrival and service ra tes . These assumptions are the 

following: 
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0 } arr ival times and service times are f ixed; 

(2) the s ingle channel arr ival ra te A equals the reciprocal of the 

regular time interval of arr ival "a"; i . e . , A = 1/a; 

(3) the service ra te v equals the reciprocal of the regular time 

interval of service b; i . e . , y = 1/b; and, 

(4) both a r r iva l s and services are regular in occurrence. 

If the time interval of service is l e ss than the time interval of 

a r r i v a l , the arr ival rate will be less than the service r a t e ; i . e . , 

i f b < a, then a < p. 

When x < y, no queue will be formed. Tf the time interval of service 

exceeds the time interval of a r r i v a l , the arr ival ra te will exceed the 

service r a t e ; i . e . , 

i f b > a, then A > P . 

When x > y, a queue will form. Tf the time interval of service equals 

the time interval of a r r i v a l , and no queue existed at the s t a r t of the 

process, the arr ival ra te will equal the service r a t e ; i . e . , 

i f b = a, then A = p. 

When A = p, and there was no queue at the s t a r t of the process, a r r iva l s 

will be serviced immediately, with no id le time between ar r iva ls and 

service . 

In developing the basic formulas for the determinis t ic queueing 

model, two cases will be presented. In the f i r s t case, i t will be assumed 

that a queue of s ize n >_2 i s already in existence. Tn the second case, 

i t i s assumed tha t servicing is begun with one of the i n i t i a l n queue 

members being admitted to service . Arriving units are serviced as they 
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arrive, with the queue member admitted to service between ar r ivals . In 

both cases, i t is assumed that the service rate exceeds the arrival rate 

(ji > A) • 

Case I: Suppose the operation begins with a line consisting of n 

units waiting to receive some service, n >_2. If n = 1, service on any 

given unit will be completed before a new unit arrives for service. All 

n of the queue elements will have been served by the end of a time interval 

of length nb. By this time customers would have arrived and would 

have to wait. (Note: the brackets indicate the greatest integer k, 

such that k £ customer to arrive will wait for the service 

f a c i l i t y to complete i t s service. 

The probability that there exists a queue of length n at time t is 

expressed by 

p CO) f o r n - J ; 
1.0 for n 1 j . 

The value of j equals the length of the queue at the s t a r t of the process. 

The length of time required to serve all of the customers that have waited 

is given by 

Case I I : Suppose the operation begins with the admission of one of : 

the n i n i t i a l queue members to service. Additional queue members will be 

admitted according to the following cr i ter ion: i f a customer arrives when 

the service f a c i l i t y is being used, the arriving customer will be admitted 

to service ahead of the in i t i a l queue members.. Since the service rate is 
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assumed to exceed the arrival rate , this amounts to providing service 

during excess service time in such a way that the in i t i a l queue will be 

eliminated. As a means of c l a r i f i ca t ion , assume that the service f a c i l i t y 

is being used. During this period of service, i t i s possible that a new 

customer will arr ive. Since the service ra te , p, exceeds the arrival 

ra te , the time interval of service is less than the time interval of 

ar r ival ; i . e . , 

p > A implies a > b. 

Thus, the possibi l i ty that the system has a new arrival prior to the 

completion of the service in process depends upon the magnitude of a - b. 

The arriving customer will enter service once the f a c i l i t y becomes vacant, 

and all customers who may have arrived will also be serviced. When no 

arr ivals are waiting, another of the original n customers is admitted into 

service. Additional arr ivals are again served once the f a c i l i t y is empty, 

and so on until all n customers go into service. When the las t of the 

in i t i a l customers goes into service, there will be no one waiting. If 

anyone arrives during this service time he waits and is then served, 

e t c . , until arriving customers do not have to wait. 

Since b < a, there is a gain of a - b time units from each of the 

arriving customers. Theoretically, since the service time is b, b/(a-b) 

customers must arrive to generate enough slack time to service one of 

the n - 1 waiting customers who would be there a f t e r the operation begins. 

At this point the f i r s t customer in the queue has already gone into 

service. In order to vacate the line customers must arr ive. 
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The total number of customers who have waited in the line a f t e r the 

operation began is — 

The total number of customers who have waited in the line a f t e r the 

operation began, including the i n i t i a l customer in service is *?a~b. 
U-b ] ' 

The tota l time until the service f a c i l i t y f i r s t becomes idle is 

T = 0 p r " ] & -

At time t the number of customers ahead of an arrival is 

The waiting spent in the line by a customer arriving at the f i r s t 

multiple of a past t is 

W(t) = 

0 

f t + n Jb, 

T < t 

0 < t < T 

t = 0 

ab 

a - l j b 

where W(0) is the time in the l ine for the k t f l member of the in i t i a l 

group of n customers. 

The total time spent in the system by a customer arriving at the 

f i r s t multiple of a past is 

w r(t) 1 C f + n - t ) b 

kb 

T < t 

° < t _< T 

t = 0 

This includes the time spent in service. 
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Probabilist ic queues.--In general, the queueing problem is of such 

a nature that the amount of time an arriving customer will spend in 

service is not known. In such s i tuat ions , i t is often possible to obtain 

the relat ive frequency with which customers require services of given 

lengths; i . e . , i t is possible to determine the ra t io between the number of 

times a customer requires a certain length of service and the total number 

of times a customer required any service. In obtaining these re la t ive 

frequencies, however, i t is necessary to give consideration to whether or 

not the customers arrive from an in f in i t e source or a f i n i t e source. -

Because of the need for such consideration, the techniques of probabi l is t ic 

queue analysis will be subdivided into techniques based upon an in f in i t e 

source and a f i n i t e source. 

In f in i t e source: The term source is used as a means of defining 

the population from which customers emanate. A source i s considered 

i n f i n i t e i f i t is s a t i s f ac to r i ly large or so large that i t is uncountable. 

The use of ei ther of the four basic distributions of queueing theory 

yields the probability that a given number of occurrences will be observed. 

An occurrence in this sense can be interpreted as the arrival of a customer 

for service or the servicing of a customer. For example, the gamma d i s t r i -

bution is used to determine the probability that the total arrival time 

for n consecutive arrivals is at most T. The Poisson distr ibution can be 

used to determine the probability that exactly x occurrences will be 

observed at a given time. If the probability associated with the Poisson 

distr ibution i s concerned with the probability of the total number of . 

a r r iva ls , this can be obtained by summing the Poisson distr ibution over 
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the range of a r r i v a l s ; i . e . , i f the arr ival d i s t r ibu t ion is Poisson, then 

the probabi l i ty of at most k a r r iva l s during time period t i s given, by 

^ («)Vxt 

TT 

In appl ica t ion , queueing theory centers on answering such questions 

as the probabi l i ty that no elements will be in the queue, the average 

length of the waiting l ine CpueueJ, or the average waiting time of a 

member of the queue. As such, the solut ion to a given problem, in many 

ins tances , requires the use of a s p e c i f i c formula. I t i s in th i s sense 

t h a t queueing theory is a tool of c lass ica l optimization theory. 

As a means of providing a t oo l , applied queueing theory u t i l i z e s 

a breakdown into single-channel and multiple-channel queues. This format 

will be u t i l i z ed here. 

Single-channel queues: Single-channel queues have been defined as 

queues served by only one service f a c i l i t y . Formulas sui ted for analyzing 

single-channel queues require two numerical values: \ , the ar r iva l r a t e , 

and y, the service ra te . Since t h i s study is only concerned with technique, 

the formulas f o r single-channel queue analysis are presented without proof 

or der ivat ion . 

The probabi l i ty that the queue will be empty, P 0 , i s given by 

Po = 1 -
y 

The f a c i l i t y u t i l i z a t i o n f ac to r , p, i s given by p 

The probabi l i ty that the queue contains one un i t , P-,, (excluding the 

unit in service) is given bv P.. = ^P c . 
1 v 
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The probabi l i ty that the queue contains n un i t s , P , (excluding the 

unit in service) i s given by P = P0(~)n 

n p 

The probabi l i ty of having a queue of length n9 n >_0, i s given by 

PN = PNO - P) > where p = — and — < 1. 
n r p p 

The average (mean) number of uni ts in the system, L, (both waiting 

and in service) i s given by 

L = , f o r x/y < 1. 

The expression fo r L can be writ ten as L = x 
5 1 V 

The average (mean) length of the waiting l i n e , , (excluding the 

unit being serviced) i s given by 

/ 
q = w h e r e ^ < 1 ' 

The mean time between a r r iva l s i s given by 1/x. 

The average (mean)waiting time of a unit in the system, W, is given 

by 

w = j r r n r - • w h e r e ^ < 

As a means of demonstrating the s ingle channel, i n f i n i t e source 

queueing problem, consider a hypothetical firm engaged in both shipping 

and receiving a c t i v i t i e s . Since rapid and e f f i c i e n t service has been a 

prime f ac to r in maintaining sales and good customer r e l a t i o n s , management 

i s in te res ted in maintaining t h e i r current image. As such, suggestions 

which might improve th i s image are always given careful considerat ion. 

I t has been noted t ha t a rough comparison between the cost of id le 

trucks and drivers and the costs of the id le service f a c i l i t y indica tes 
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tha t there are too many trucks waiting for too long a period of time. 

I t has been suggested tha t loading ?nd unloading of trucks be s t an -

dardized and t ha t uniform quant i t i es be carr ied on each t ruck. In 

addi t ion, i t has been suggested tha t pa l l e t i z ing the loads and using 

l i f t t rucks will subs tan t i a l ly reduce the waiting time at the docks, 

A study of the current loading and unloading procedure was made. 

This study provided the following information r e l a t ive to the current 

loading and unloading procedure: 

(1) The arr ival d i s t r ibu t ion i s a Poisson d i s t r i b u t i o n . 

(2) The service-t ime d i s t r ibu t ion i s exponential . 

(3) I n f i n i t e waiting l ines are theore t i ca l ly possible . 

(4) The queue d isc ip l ine is f i rs t -come, f i r s t - s e r v e d . 

(5) Trucks arr ive at the plant every 40 minutes (on the average). 

This y ie lds an average ar r iva l r a t e of 1.5 trucks per hour. 

(6) The loading and unloading dock and workers can unload or load 

a t ruck, on the average, every 30 minutes. This y ie lds an average service 

ra te of two trucks per hour. 

This study fu r t he r revealed tha t the current s i tua t ion was such that the 

three c r i t e r i a for a queue s i tua t ion were present : (1) a d i s t r ibu t ion 

of inputs or a r r iva l s at the service f a c i l i t y , (2) a number of servers 

whose service time could be described by a d i s t r ibu t ion func t ion , and 

(3) a defined queue d i sc ip l ine . 

With the resu l t s of t h i s study in hand, management decided t o evaluate 

the current loading and unloading procedure by obtaining answers to the 

following quest ions: 
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(1) What i s the average number of trucks in the waiting Tine? 

(2) What i s the average number of trucks in the waiting l i n e , 

including the one being serviced? 

(3) What i s the average waiting time of trucks in l ine? 

(4) What is the average waiting time of trucks in l i ne , including 

the one being serviced? 

(5} What i s the probabi l i ty tha t the loading and unloading dock and 

workers will be id le? 

The potent ial improvement offered by standardizing loading and unloading, 

using uniform quant i t i es on t rucks , and using l i f t trucks is to be 

evaluated on the basis of two addit ional questions and answers. 

(6) What reductions are possible i f loading and unloading is 

standardized and uniform quant i t i es are placed on the trucks? 

(7) What reductions are possible i f l i f t trucks are used? 

Solution: Let A equal the average a r r iva l r a t e . Let P equal the 

average service r a t e . Let n equal the number of trucks being serviced. 

From the study, the numerical values of A and Y were found to be 1,5 

and 2.0, respect ively . 

(1) The average number of trucks in the waiting l i n e , L , is found 

' q 

by applying L = — - (Y - A ) . Subst i tu t ing fo r A and Y, 

Lq. __iuy
z 

2.0(2,0 ~ 1.57 

2.25 
" 2(751 

= 2.25. 

There is an average of 2.25 trucks waiting in l ine . 
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(2) The average number of trucks in the waiting l i n e , including the 

A 
one being served, L, is found by applyinq L ~ 7-. Subs t i tu t ing for 

p - A 

\ and v , 

1.5 L I2T0" - 1757 

1.5 

" 1757 

= 3.0. 

There i s an average of 3.0 trucks waiting in l i n e , including the one in 

servi ce. 
(3) The average waiting time of trucks in l i n e , W , i s found by 

applying W„ = -7-^—~r • Subst i tu t ing fo r a and -u, 
q yyi - A] • 

F _ 1.5 
q ~ 27oT27o"^T;57 

_ 1.5 

2.0(0757 

= 1.5. 

The average waiting time per truck is 1.5 hours. 
(4) The average waiting time of trucks in l i ne , including the truck 

in service , W, is found by applying W = —•!—. Subs t i tu t ing fo r a and y. 
]Jl "•* A 

1 
2.0 - 1.5 

1 
= 675. 
= 2. 

The average waiting time of trucks in l i n e , including the one in service , 

is 2 hours. 
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(5) The probabi l i ty tha t the loading and unloading dock and workers 

will be i d l e , P , i s found by applying Pp = (1 - A/y)(A/y)n . Subst i tu t ing 

fo r x and p , 

P„ = O - 1 ^ ' ) C 1 g 5 ) n 

= (1 - .75)(0.75) n 

= C0.25)(0.75)n . 

For the f a c i l i t y to be i d l e , n must equal zero. Therefore, 

Pn = P0 = (0,25)(0,75)° 

= 0.25. 

The probabi l i ty tha t the service f a c i l i t y will be id le i s 0.25. 

(6) The reduction achieved by standardizing loading and unloading 

and using uniform quant i t ies on trucks is calculated as follows: Assuming 

tha t loading and unloading of trucks i s standardized and tha t uniform 

quan t i t i e s are carr ied on the t rucks , i t is possible tha t the service 

times would become constant instead of exponential . Assuming no other 

changes in the basic assumptions, the average number of trucks in the 

,2 

waiting l i ne is given by anc* a v e r a 9 e waiting time is 

given by Subst i tu t ing fo r a and y, 

i - (i - u L 
q 2 (2) (2 TO- - 1.5T 

2.25 
= 4T75T 

_ 2.25 
2 

= 1.125, 
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and 

n - I - 5 

q " 2 [ 2 J I 2 " X ^ T 3 T 

1.5 
= 4 m 

1.5 
~ 2.0 

= 0.75. 

The incorporation of constant service times reduces the number of trucks 

waiting from 2.2:5 trucks to 1.125 t rucks . In addition i t also reduces 

the waiting time per truck from 1.5 hours to 0.75 hours. 

(7) The reduction achieved by using l i f t trucks is based upon the 

reduction made in the service time per truck- Suppose th i s reduction 

in service time is a constant 15 minutes per t ruck, or 4 services per 

hour. The use of the l i f t truck will reduce the length of the waiting 

l i ne , Lq, and the waiting time per t ruck , W .̂ Assuming these are the 

only measures of i n t e r e s t , these can be determined by applying 

2 
L = o—r--—rr and W, = *-7 -y . In t h i s case, x = 1.5 and y = 4. 
q 2y(y - Xj q 2y(y - X] 

Subst i tu t ing for x and y, 

, _ „ ( 1 . 5 ^ 
q ' 2141(4 - 1751 

= 2.25 
8(T."5T 

2.25 
20 

= 0.1125, 
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and 

Wq = 2(4JT"4J-""!.5) 

_ 1.5 
" 812.51 

1.5 
~ 20 

= 0.075. 

The use of l i f t t rucks--under the given assumptions--reduces the number 

of trucks waiting in l ine from 2.25 to 0.1125. r t also reduces the 

waiting time per truck from 1.5 hours to 0.075 hours, i . e . , a time saving 

of 85.5 minutes. 

Multiple-channel queues: When the service channels are composed of 

s para l le l s t a t i o n s , the s t a t e of the system n (the number of elements 

present in the system at a cer tain point in time t ) can assume one of 

these values; 

(1) n £ s : There is no queue because al l elements are being served. 

(2) n > s: A queue is formed of length n - s (provided the formation 

of the waiting l ine is permitted by the nature of the problem). 

When n of the s channels are occupied ( fo r n < s ) , the ra te of 

change from n elements present to n - 1 (because one element has com-

ple te ly received a service) is "nyP dt" (where Pn = the probabi l i ty of 

having n elements in the system) since any one of the n occupied s ta t ions 

may f in i sh i t s job in the next ins tant dt . 

When n > s , a queue is formed. The system is defined as being in 

s t a t e En i f there are n elements present in the system—waiting and/or 
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in service. Hence, a queue is created when the system is in s ta te 

with n > s and n - s elements waiting in the queue. 

As in the case for the single-channel queue, the formulas applicable 

to multiple-channel queues will be presented without proof or derivation. 

I t is assumed that the system consists of s service f a c i l i t i e s and that 

each of the s service f a c i l i t i e s has a mean service rate y. I t is fur ther 

assumed that units arrive at the service f a c i l i t i e s at a mean arrival rate 

equal to A . 

The relationship between the mean service rate and the s service 

stat ions is given by yn = v s 5 n _> s . 

The u t i l i za t ion factor , p , for multiple-channel system is equal to 

the ra t io between the mean arrival rate a and the maximum possible rate 

of service of all the s channels; i . e . , p„ = ~ . 

' S yS 

For n < s and s ^ 2 , the probability that there are n elements in 

the system, P s n , is given by 
Psn = HT = °" 1 s 2 " ' " S ' 

The probability that there are no elements in the system, P $ o , is 

gi ven by 

P 

S ° — f - - ) n + ~ ( A ) s _ j j s 

fco n ! y s ! v A 

, ]iS > a , s > 1 . 

If s = 1, the probability that there are no elements in the system is the 

same as the single-channel case, Po = 1 - The probabili ty that an 

arrival must wait for service is given by P = \ / v . 
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The p robab i l i ty tha t an element approaching the se rv ice f a c i l i t i e s 

has to wait to receive se rv i ce , P s n u ' s given by 

p =, p U Z i j i l p 

sn ' (s - 1 ) ! (ys - A ) S O ' 

where n1 = any value between s up to and including n, and ys > A. 

The average (mean) length of the queue, L , (excluding the elements 
qs 

under serv ice) i s given by 

I _ _ Ay (a/y i _ n 
qs (T^Tfl fyS - A ! S O ' 

where ys > A . 

The average number of elements in the system, L, i s given by 

I = m W - v L ~ • p + 2l 
(s - 1] ! {ys - A ) 2 so Y ' 

where ys > A . 

(1) For T = 1, f ( n ; A ) = ? 0 < n < » ; 

(2) The mean a r r iva l ra te i s the expected number of a r r i v a l s occurring 

in a uni t in te rva l of time T. The mean time between a r r i v a l s i s 1 / A . 

(3) The densi ty funct ion of T is given by the expression 

f (T; A) = Ae" A T . 

The average (mean) wait ing time of an element tha t has ar r ived in the 

system, W , i s given by 

l ( 2 M 
"s / 

(s 
where ys > A . 

w = . p 
s (s - U K b s - i)z so' 



124 

The average (mean) time that an ar r iva l spends in the system, Was, 

i s given by 
s 

as ~ 7 , ' V \ u . 7 . . \ 2 ' so ' ji » 
14 = HÎ ZHI p + I 

(s - l)!(]iS - aj~ 

where ys > 

As an example of the multiple channel queue with an i n f i n i t e source, 

consider the problem of determining [1) the average number of a r r iva l s per 

average serving time, (2) the average waiting time, (3) the expected number 

of a r r i v a l s , (4) the to ta l daily service time, and (5) the to t a l cost of 

waiting fo r a firm which u t i l i z e s a tool cr ib fo r storage and supply 

purposes. As a means of f a c i l i t a t i n g storage and supply, the f irm has k 

of these cr ibs located throughout the p lan t . Each cr ib i s maintained by 

two clerks who hand out the tools as the mechanics request them and take 

them back when the tools are returned to the c r ib . 

Arrival and service d i s t r ibu t ions were obtained by noting the time 

at which a man arrived fo r service (request a tool) and l e f t with his 

requested too l . This timing process f a c i l i t a t e d the determining of both 

service and arr ival d i s t r ibu t ions at each c r ib . The t o t a l i t y of these 

individual d i s t r ibu t ions provided a d i s t r ibu t ion which described the 

ar r iva l d i s t r ibu t ion and the service d i s t r ibu t ion fo r a l l of the k c r ibs . 

The queue nature of the problem became evident when i t was noted tha t 

the varying nature of the service time arid the random nature of a r r i va l s 

resul ted in the formation of a l ine at the counters. Tf the mechanic 

arrived at a counter at the very moment the mechanic receiving service 

completed service , there was no queue. Without a queue, there was no time 
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loss due to idle mechanics. The lack, of a r r iva l s or mechanics receiving 

service produced id le time on the part of the c le rks . 

Analysis of the ar r ival d i s t r ibu t ion revealed that, a mechanic 

arrived for service every 35 seconds. The average service time was 

found to be 50 seconds per mechanic. 

Solution: (1) The average arr ival r a t e , A, i s determined by the. 

r a t io between the number of a r r iva l s per time unit and the average 

serving time per time un i t . Subst i tu t ing as indica ted . 

A = (1/35) * (1/50) 

= 50/35 

= 1.43. 

The average number of a r r iva l s per average serving time is 1.43 mechanics. 

I t i s assumed tha t the average service ra te for the time i n t e r v a l , ; j, i s 

equal to unity. 

(2) The average waiting time, T , i s found by applying 

P 0 r X\S T y (A.}3 

W sp ( s ! ) [ l - 7,/p]2 V 

where 

P„ = 1 

I~1 U / p ) V + {(A/p}S / [s ! ( l - %!yS)} 
n=0 

For s = 2, a = 1.43, and v = 1, 

Po = 
( I ^ 0 / 0 1 + < ^ 4 3 , 1 / , + , { 1 ^ 2 ^ , . 1L43,, 

1 

(1.00 + 1.43) + 
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1 

I2743T+T3.5] 

1 6.01 

= 0.166". 

The probability of no mechanics waiting is approximately 0.166. For s = 2. 

A = 1.43, ji = 1, and PQ = 0.166, 

T 0.166 , 'L/ii\2 

" ' z o j z ' i n - { j f f r y ] 2 1 

0.166 (T.43)2 

4(0.285)2 

= 1.04. 

There are 1.04 units of average waiting time. With an average serving 

time of 50 seconds per mechanic, the average waiting time is 52 seconds 

(1.04 x 50 = 52). 

(3) The expected number of a r r iva l s , E(n), is determined by the 

rat io between total seconds worked per work day and the average arrival 

ra te . Substituting as indicated for a 7.5 hour work day, 

E ( n ) a I L 5 ^ 3 6 0 0 I 

27000 
35" " 

= 770. 

In a 7.5 hour work day, there are 770 expected arr ivals for service. 

(4) The total daily service time, TDST, is the rat io between total 

expected service time and the total i irx « 
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rate of 50 seconds per a r r i v a l , 770 expected a r r i va l s , and 3600 seconds 

per hour, 

-rncT - C770H50? 
I us I 3 6 0 0 

_ 38,500 
3600 

= 10.7. 

The to ta l dai ly time spent in service i s 10.7 hours. 

(5) The to ta l cost of wait ing is the sum of the id le time cost for 

the two clerks and the id le time cost for the mechanics. The id le time 

cost fo r the two clerks is the to ta l hourly cost paid during idleness. 

The id le time cost for mechanics is the product of the hourly wage per 

mechanic and the expected wait ing time of the mechanics in a 7.5 hour 

work day. 

Two clerks furnish 15 hours of service time per day. Of th is 15 

hours, only 10.7 hours is spent in service. This results in 4.3 hours of 

id le time for the two clerks. At c-j dol lars per hour, to ta l dai ly cost 

for clerk i d le time is 4.3c-j. 

With an expected wait ing time of 52 seconds per a r r i va l and 770 

expected ar r iva ls per day, the expected dai ly wait ing time is 11.1 hours. 

770 x 52 
This is calculated as fol lows: — — • At c„ dol lars per hour, to ta l 

3600 c 

dai ly cost for mechanic id le time is 11.1 c^-

With to ta l cost of wait ing equal to the sum of to ta l da i ly cost for 

clerk id le time and to ta l dai ly cost fo r mechanic i d le t ime, the to ta l 

cost of wait ing is given by the sum (4.3c^ + 1 1 . G i v e n c^ and 

Cg, th is cost is easi ly determined. 
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Fini te source: When consideration is given to the possible existence 

of a f i n i t e population of queue inputs , i t becomes necessary to modify the 

techniques of the previous discussion. Fini te queueing problems have been 

c l a s s i f i e d as queueing problems with l imited inputs or f i n i t e - i npu t - sou rce s . 

Regardless of the cl ass i f i c a t i o n , the study of the f i n i t e queueing problem 

involves the use of a f i n i t e number of a r r i v a l s . The importance of such a 

study is evidenced by the appl icat ions made of f i n i t e queue analysis in 

the t e x t i l e industry, machine r epa i r , and inventory analys is . 

As an example of t h i s problem, consider the machine in te r fe rence 

problem which follows. A machine operator tends a se t of N machines. 

If a machine f a i l s and the operator i s f r e e , i t i s immediately repaired. 

If a machine f a i l s and the operator i s busy, the repair ing of the disabled 

machine is delayed unti l the operator is again f r e e . When a broken machine 

must wait to be repaired, a loss of production r e s u l t s . This loss i s 

a t t r ibu ted to in t e r f e rence . If the operator i s required to service a 

large number of machines, the loss of production due to in te r fe rence is 

l a rge . If the operator i s required to service a smaller number of machines, 

the loss of production will decrease; but, the cost of operation will 

increase. The problem then becomes one of minimizing production cos t . 

This i s accomplished by balancing the cost of operator per machine against 

the loss of production resu l t ing from in t e r f e rence . 

A cursory analysis of th i s problem reveals tha t the "customer" i s 

the machine to be repaired. The service f a c i l i t y i s the operator . The 

arr ival time i s the ra te at which machine breakdown occurs and causes an 

"a r r iva l " at the repa i r f a c i l i t y . The service time i s the ra te at which 
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the operator is able to repair broken machines. The input source i s 

f i n i t e since the operator i s responsible for a fixed number of machines. 

Arrival rates can be determined by calculating the mean breakdown ra te . 

Service rates can be determined by calculating the mean service ra te . 

If such data is available, these calculations can be made from historical 

data. If historical data i s not available, the values associated with 

arrival and service rates can be estimated. Although the dis tr ibut ions 

which describe the arrival pattern and the service pattern can be 

estimated by curve f i t t i n g , i t is generally assumed that arr ivals follow 

a Poisson distr ibution and that service is e i ther constant or distr ibuted 

exponenti al l y . ' ^ 

Single channel: The single channel, f i n i t e source queueing problem 

is one in which there is one service f a c i l i t y and all arr ivals to the 

service f a c i l i t y come from a f i n i t e source. Arrivals are assumed to be 

distr ibuted according to a Poisson distr ibution with parameter A. Service 

rates are assumed to be constant or exponentially d is t r ibuted. 

Constant service ra te : Under the assumption of a constant rate of 

service, Cox indicates that "the rate of [service] increases as the 
B Q 

dispersion of service-time decreases." r( This indicates that the constant 

service rate concept i s , in r e a l i t y , a l imit value. This inference is 

supported by Saaty. 
...suppose that service is accomplished in k stages, 
each of which is exponentially distributed with mean 
1/n- The total service time will be a chi-squared 

47 ' 
Saaty, op. c i t . , p. 323. 

48, "D. R. Cox and Walter L. Smith, Queues (London, 1961), p. 102, 
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d i s t r ibu t ion with 2k degrees of freedom and mean k/y. 
If k and y become i n f i n i t e , so that k/y remains *g 

constant , we have. . .the constant-service-t ime case. 

Exponential service r a t e : Under the assumption of an exponential 

service r a t e , units leave the queue according to the exponential d i s t r i -

bution. The analysis of the f i n i t e queue with an exponential service 

ra te requires the i d e n t i f i c a t i o n of two parameter values: (1) the 

mean number of units leaving the queue source and (2) y, the mean number 

of units returned to the queue source. For example, in the machine 

in ter ference problem ^ is equal to the mean number of repai rs completed 

by the operator per unit of his repa i r time. With \ equal to the mean 

number of units leaving the queue source, 1/a i s equal to the mean time 

fo r units to remain in the queue source. With y equal to the mean number 

of uni ts returned to the queue, l / y i s equal to the mean service time. 

In defining the following assumptions are made: 

(1) All elements in the queue source have the same mean time in the 

queue, 1/x; 

(2) The system consist ing of the queue source and the service 
50 

f a c i l i t y i s in a s t a t e of s t a t i s t i c a l equil ibrium. 

(3) The periods tha t queue members remain in the queue source are 

independent random variables with an exponential d i s t r ibu t ion of the form 
P(wj <. t ) = • ~ e " e t > • 

I r%aaty, op. c i t . , p. 329. 

50 
S t a t i s t i c a l equilibrium is defined as a s t a t e in which the proba-

b i l i t i e s associated with arr ival ra te d i s t r ibu t ion arid service ra te d i s t r v 
bution are independent of time. (See I b i d . , p. 15.) 
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th 

where g is a constant, w.. is the length of the i period spent in the 

queue source, and t is the unit of time. 

(4) The service periods follow the discrete dis tr ibut ion 

P ( u = u ^ = (i = 1, 2 , . . . ) , 

where u denotes the i ^ service period, and y.. denotes the exponential 

distr ibution which describes the i^'1 service ra te . As a matter of note, 

the mean service time, l / p , i s equal t o i i . . . 
i 1 1 

Having br ief ly discussed the two types of service d is t r ibut ions , the 

formulas applicable to the analysis of single channel, f i n i t e queues will 

be presented. These formulas are presented without proof or derivation. 

As a means of providing a common notational base, the symbols used in 

describing the formulas for analyzing f i n i t e queueing problems are 

defined below. 

A = the mean number of units leaving the f i n i t e source 

y = the mean number of units returned to the f i n i t e source 

xm = n i e a n ^ e n 9 ^ the service period 

xm = the mean number of services performed during a service period 

P ( t ) = the probability that i f , at some ins tan t , m units are in 

ill § r 

the f i n i t e source, there will be exactly r units remaining a f t e r a time t 

PQ = the probability that there will be no units in the service queue 

Pn = the probability that there vail be n units in the service queue 
7 = the mean number of units in the queue 
t^ = the mean time on the waiting l ine 
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n = the number of units in the service f a c i l i t y (e i ther undergoing 

service or awaiting service or in need of service] 

m = the number of units in the f i n i t e source 

p = the t r a f f i c in tens i ty ( f a c i l i t y u t i l i za t ion fac tor) 

As previously noted, this- study is primarily concerned with applied 

technique. Therefore, the formulas applicable to f i n i t e source, s ingle-

channel queues are presented without proof or derivation. 

The t r a f f i c in tens i ty ( f a c i l i t y u t i l i za t ion factor) is given by the 

r a t io p = —, 
- p 

The probabili ty that there will be no units waiting for service . 

P q S is given by 

p 1 

o 

1 + z . ^ n=l "n") | 

where TL P = 1. 
r£o n 

The probabil i ty that there will be n units in the service queue, P , 

i s given by 

P - m! mn 
n - ( i t r n r j i p V 

The mean number of units in the queue, v, is given by 

v « m - 0 - p j -
p 0 

The mean time spent in the queue, t^ , is given by 

T - - v _ = 1 f IT1 UiJL\ 
zf - aGT- TvT " - Pq p } 
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The probabi l i ty tha t i f , a t some i n s t a n t , m units are in the f i n i t e 

source, there will be exactly r units remaining a f t e r a time t i s given by 

d - ra! -Atxm-r 
m, r - rl(ro - r ) ! ' e 0 " e ' ' 

The mean number of services performed during a service period is 

given by 

x - yxm. 

Multiple channels: The introduction of multiple service channels 

( f a c i l i t i e s ) i s an extension of the s ingle channel case. With a f i n i t e 

source5 a r r iva l s to the multiple f a c i l i t i e s come from a f ixed number of 

a r r i v a l s . For example, consider the problem involving the repa i r of m 

machines with s operators avai lable . Arrivals to the r epa i r f a c i l i t i e s 

cannot exceed m in number since the source of a r r iva l s i s f ixed a t m. 

Machines requiring repa i r are the customers for the operator (service 

f a c i l i t y ) . Assuming tha t there are fewer service f a c i l i t i e s than source 

elements ( i . e . , s < m) and tha t n elements are in need of se rv ice , 

1 <_ n <_ s implies that s - n service f a c i l i t i e s are i d l e . With s ~ n 

service f a c i l i t i e s id le and n units receiving serv ice , no queue e x i s t s . 

^ s ± 11 <. m> there are s units receiving serv ice ; n - s units are waiting 

to enter serv ice . These waiting units form a queue of length n - s . 

Although arr ival ra tes can follow any probabi l i ty d i s t r i b u t i o n , 

Poisson a r r iva l s are the most common. Service ra tes tend t o be 

exponentially d i s t r ibu ted . The use of these d i s t r ibu t ions provides 

tools for calcula t ing p robab i l i t i e s s imi lar to those of the preceding 

sec t ions . 
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In working with multiple-channel queues, consideration is given to 

the s ta te of the queueing system. The "state of the system" concept 

relates to the number of units of the .original m units which remain in 

the queue source. If i t i s found that m - n units remain in the queue 

source, the system is said to be in s ta te En. The possible s ta tes of 

the system are then EQ (no units in service or waiting), E-j (m - 1 units 

remaining in the queue source) , . . . ,E m (no units remaining in the queue 

source). In th is l ight the system is in s ta te En i f m - n units remain 

in the queue source and e i ther (1) n > s or (2) n _< s . If n < s , s 

units are receiving service; and n - s units are waiting. If n _< s , n 

units are receiving service. It i s assumed that service periods, u, 

are independent random variables. The service periods are described 

by the exponential dis t r ibut ion, 1 - e~yU, where y i.s the service ra te . 

Having br ief ly discussed the f i n i t e source, multiple-channel queueing 

problem, the formulas applicable to the study of these problems will now 

be presented. In keeping with the procedure of the previous presentations, 

these formulas are given without proof or derivation. The symbols used, in 

writing these formulas are given below. 

A = the mean number of units leaving the f i n i t e source (arrival rate) 

y = the mean number of units leaving the service f ac i l i t y (service rate) 

p = the t r a f f i c intensity ( f a c i l i t y ut i l iza t ion) ra t io 

k̂  = the coeff icient of unavailability for units in the f i n i t e source 

k2 = the coeff icient of service f a c i l i t y idleness 

v = the mean number of units in the queue 

— = the mean number of units in all of the queues and in service 
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m = the number of units in the queue source 

•s = the number of service f a c i l i t i e s 

n = the number of units leaving the queue source 

Pn = the probability that there will be n units waiting for service 

PQ = the probability that there will be no units waiting for service 

5 = the mean number of vacant (idle) service f a c i l i t i e s 

T = time interval of delay due to waiting 

a„ = the ra t io between P„ and P„ ( i . e . , a„ = P„/P„, with a„ = 1) n n o n n o o 

t^ = the mean waiting time for service 

Lg = the mean number of units receiving service 

^{t^) = the expected waiting time 

P = the probability of waiting of a delay) 

These symbols are ut i l ized in writing the following set of formulas. 

These formulas apply only to f i n i t e source, multiple-channel queueing 

problems. 

The t r a f f i c intensity ra t io ( f ac i l i t y u t i l iza t ion fac tor ) , , is 

given by p = K 

The value of a n , defined as an = Pn/P0» is given by 

'""m - n + 1 

V 
n • P * a

n_i> 0 < 0 < s - 1 

a " | m - n + l e „ n - m 
' P " an-l* — — 

wi th aQ = 1. 

The probability that there will be no units waiting for service, P , is 

given by 1 p = _ o m 

1 + El a„ 
n-1 " 
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The probabi l i ty that there will be n uni ts waiting fo r se rv ice , P , 

is given by 
f m! np n 
1 "(m - n j ! n f p o ' — n - s 

P = i 
n n! m! nn 

, s n - s " T m ^ n T i n l p o ' s ^ n -

m 
with V P = 1. 

n=0 n 

The coe f f i c i en t of unava i lab i l i ty for uni ts in the f i n i t e source, 

k-j, is given by 

k = the mean number of units waiting for service _ v 
1 to ta l units in the"queue source" m~ ' 

The c o e f f i c i e n t of service f a c i l i t y id leness , k2 , is given by 

= the mean number of id le service faci 1 i t i e s _ j-
2 to ta l number of"service f a c i l i t i e s s" ' 

The mean number of units waiting fo r serv ice , 7, is given by 

__ m 
v = ( n - s j p . 

n=s+i 

The mean number of vacant ( id le ) service f a c i l i t i e s , ? , i s given by 

s 
C = E . (s - n)p 

n=0 n 

The mean number of units in the queue and in service , FT, i s given by 

s 
n = s + 2 _ (n - s)P - H (s - n)P . 

n=s+l n n=-0 n 

The probabi l i ty of a delay, P(>0), is given by 

p(>°) = fl p„-
n=s 
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The mean waiting time for service, t p is given by 

"v 1 m 

"ff = i(m - if! ' -"n) ' £ + , C n " s ) P n" 

The mean number of units receiving service, l_s, is given by 

s j 
L_ = s - (s - n)P„. 

s P o " 

The expected waiting time, is given by 

V 
= PltoT* 

The economic function in queue analysis has been defined as the 

total cost of the customer's waiting time and the service f a c i l i t y ' s 

idle time. This is the mathematical expectation of expenses caused by 

51 

delays to both customers and service f a c i l i t i e s . 

In calculating the mathematical expectation of expense caused by 

delays to both customers and service f a c i l i t i e s , use is made of two 

numerical values. The two values are 0 ) the cost of customer delay 

and (2) the cost of service f a c i l i t y idle time. These two values are 

obtained as follows: 

cost of customer delay = (cost per unit of customer time)(mean time 

lost by customers); 

cost of idle services = (cost per unit of service time)(mean time 

lost due to idle services). 

The mean time lost by customers is the product of the time interval 

of delay, T, and the mean number of customers waiting in l ine , v; i . e . , 
ct> 

Kaufman, op., c i t . , p. 118. 
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mean time lost by customers = vT. 

The mean time lost due to idle services is the product of the time interval 

of delay, T, and the mean number of idle services, 5; i . e . , 

mean time lost due to idle services = t j . 

If c-j and C£ denote the costs per unit of customer time and the cost per 

unit of service time, respectively, 

cost of customer delay = c-jVT; 

cost due to idle services = c ^ T . 

Therefore, the total cost of delay for s stations in para l le l , T(S], 

is given by 

T(s) = C-jVT + CzQJ 

= T[Clv + c 2c] 

m s 
= T [ c , £ Cn - s J P + c 2 £ ( s - n ) P J . 

n=s+l " c n=0 n 

The total cost of delay per unit of time is given by 

TCS) S 

~T C1 ^ . Cn - sJP + c2 Z (s - n)P . 
n=s+l " d n=0 n 

This cost function, which is to be minimized, is defined in terms of the 

number of service f a c i l i t i e s , s . 

As an example of the f i n i t e source queue, consider a numerical example 

of the machine interference problem. A maintenance man is responsible for 

servicing four machines. Machines tend to need repair at a mean rate of 

two per eight hour day. r t i s assumed that arr ivals follow a Poisson 

dis t r ibut ion. Machine repair requires 30 minutes per machine. I t i s 
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assumed that service follows an exponential distr ibutions and the order 

of service is first-come, f i r s t - served . Determine (1) the mean arrival 

ra te , (2) the mean service ra te , (3) the probability of n units waiting 

or being serviced, (4) the expected length of the queue, and (5) the 

expected waiting time-

Solution: (1) The mean arrival ra te , A , is the ra t io between the 

expected daily arr ivals and the hours of service available. Substituting 

as indicated, 

2 
A = g = 0.25 units per hour. 

(2) The mean service ra te , y, is the ra t io between the time unit 

and the repair time. Since repair time is expressed in minutes, the time 

unit per hour is 60 minutes. Substituting these values as indicated, 

60 
30 2 units served per hour. 

(3) The probability of n units waiting or being serviced, P , i s 

given by 

P„ = 1 

n m , 
i + E h t 

n=l 

Substituting for m, y, and A , 

P- = 
n 4 , 

1 + £ (8)" 
n=l " 

The probability of n units waiting or being serviced is calculated by 

subst i tut ing the appropriate value of n into the relation defining P , 



(4) The expected length of the queue 7 . 
? v» ts given by 

v = m - l i e . q _ p , 

where m . the „ u * e r o f p o s s i H e f n p u t s > p _ 
P 0' 

and 

Po - in | in 
1 + 

I m n^i Im-nTT 
For m = 4 a n d p = ^ / z = ^ 

1 + 4 
V = 4 - —y-2. "I 1 

P i Jl* ( N 1 
1 + L . T4-H1T ^ n-

= 4 - 9 i „ 

4 - 9 1 - __ 1 
1 + i + ]2 + 24 _ + 24~~ 

8 64 512 4096 

The 

= 4 - 9(1 - - J \ 
7128 J 

4096 

= 4 - 9(1 - 1916} 
U 7128j 

= 4 - 9(1232, 
7128"-' 

= 4 - 3.82 

~ 0.18 units. 

expected length of the qu e u e i s 0 . 1 8 units. 

140 
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(5) The expected wai t ing t ime, t f S is given by 

t f = r r - V I , _J) 1 + p 
f Mm - n) JJ M - p ~ — ) . 

0 M 

Subst i tu t ing fo r m = 4 , U - ? P - ^096 
' P f o ~ 7128"' a n d P * 1/8, 

r _ 1 r 4 1 + i 
f 2 1 4096 1—) 

" 7128 8 

, i r " _ 4 " ' , 
2 I303277T28J" " > 

= l f 4 f Z l i 8 ) Q-i 
2^ 3032' ~ 9^> 

= I f 2 8 5 1 2 ~ 27288-1 
2L "J* 

~ ^ i 
~ 2l303YJ> 

= § l i _ 
3032' 

= 0.20 hours. 

The expected wai t inq t inp ic n on 
0.2G hours. This is equivalent to ,2 rai„„tes, 

Appl icat ions of Classical Optimization Theory 

In t roduc t ion 

Mathematical approaches to d e c i s i o n s , n g a c t i v i t i e s u t i l i z e son* 

f m 0 d e , ' T h e ' s t h e n use, to r e p . s e n t reality A s 

3 ^ the mode, i s res t r i c ted „ m y b y the a b i l i t y of the decision-maker 

and the manner in which l 
r e a n t y can be desc r ibed . 
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Classical optimization theory u t i l i z e s a c lass of models that can be 

defined as problem solving, or unique solut ion, models. The purpose of 

the c lass ical optimization theory model i s to determine the re la t ionships 

between input and output f ac to r s , describe these re la t ionships with some 

functional expression, and then solve the resu l t ing expression with an 

appropriate solution technique. I t i s important to note tha t the object ive 

of c lass ica l optimization theory i s not determining an ideal level of 

a c t i v i t y . The nature of the expressions and the manner in which solution 

techniques are applied do not take into account the p o s s i b i l i t y of a l -

t e rna t ive so lu t ions . 

The tools and models of c lass ical optimization theory are idea l ly 

sui ted fo r the problems to which they have been applied. As a d i r e c t , 

computational approach to decision-making, the use of c lass ica l optimization 

theory provides the solution to a given problem. Since al l of the problems 

are formulated in terms of e q u a l i t i e s , the solution achieved i s the only 

solut ion. There are no a l t e r n a t i v e s , a r e su l t guaranteed by the formu-

la t ion of the problem i t s e l f . 

In the appl icat ions to follow, i t i s to be noted tha t al l of the 

problems seek the answer, not an answer. The mathematical expressions 

are such tha t there i s but one answer to a given problem. These expressions 

are then solved by a s traightforward computational formula ( fo r example, 

the quadratic formula). 

A1gebraic Equations 

Although the algebraic equation has been used to describe functional 

re la t ionships between sales and revenue, costs and labor . ' 
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e t c . , the classic use of the algebraic equation in classical optimization 

theory i s breakeven analysis . The typical type of mathematical function 

u t i l ized in breakeven analysis i s a l inear function. This l inear function 

i s generally used to represent such concepts as p r o f i t , total revenue, 

total costs , and to analyze economic trends via time series analysis . 

The l inear assumptions are important for several reasons, the most promi-

nent being the following: 

(1) the rate of increase (or decrease) per unit change is constant; 

(2) there exis ts a one-to-one relationship between the dependent 

variable and the independent variable ( i . e . , i f y = f(x) defines a l inear 

function, for every value of x there exis ts a unique value of y, and vice 

versa); 

(3) graphic representations are practical (in two-space); 

(4) l inear equations are easi ly understood. 

In addition to these four basic assumptions, the use of l inear 

functions as a means of defining revenue and cost guarantee that equilibrium 

(if i t i s achieved) exis ts at a single point. 

Although l inear analysis has been a major tool for classical breakeven 

analysis, the val idi ty of the l inear function must be carefully considered. 

With an increasing cost function ( i . e . , a cost function with a positive 

slope), cost increases at a constant ra te . With an increasing revenue 

function ( i . e . , a revenue function with positive slope), revenue increases 

a t a constant ra te , a situation which prohibits diminishing return. The 

use of l inear function resul ts in a constant change in the dependent variable 

for every unit change in the independent variable. This constant change 
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isaqual to the value of the slope of the l i nea r funct ion. For example, 

suppose y = f (x) = 350 + 5x3 where y equals to ta l cost and x equals uni ts 

produced. This function indicates that the phenomenon being described 

has a f ixed cost of 350 dol la rs and a variable cost of 5 dol lars per unit 

produced. If production increases, to ta l cost will increase 5 dol la rs f o r 

each unit produced. If production decreases, then total cost will decrease 

5 dol lars per unit decrease in production unti l the f ixed cost of 350 

dol la rs i s reached. At the 350 dol lar mark, tota l cost i s incurred fo r 

cost f ac to r s other than variable cos t . 

I t i s important to note that the use of economic cost i s f o r con-

venience only. The input-output re la t ionship defined by the a lgebraic 

equation depends upon the en t i ty described. The coe f f i c i en t s represent 

some type of contribution (cost , revenue, p r o f i t , u t i l i t y , e t c . ) . The 

input def ines some type of c h a r a c t e r i s t i c by which output i s described 

( fo r example, labor costs-hours worked, total s a l e s - -un i t s sold, job 

replacement--aptitude t e s t score, e t c . ) . 

Breakeven analysis has been extensively applied as a tool f o r mana-

gerial and economic planning. In t h i s appl ica t ion , i t has been used to 

determine the r e l a t ive p r o f i t a b i l i t y of products and the e f f e c t of various 

sales mixes on p r o f i t s . In addi t ion, i t has been used as a means of 

determining the point a t which sales revenue is s u f f i c i e n t to meet all 

52 

costs f o r various productive a c t i v i t i e s / 

Although generally associated with sa les -cos t r e l a t ionsh ips , breakeven 

analysis can be traced to concepts in c lass ical economics. In p a r t i c u l a r , 
52 

Theodore, op. c i t . , p. 210. 
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breakeven analysis can be traced to the c lass ica l concepts regarding the 

53 

equilibrium level of employment and the theory of i n t e r e s t . 

As an example of c lass ica l breakeven analys is , consider the revenue 

and cost funct ions shown in Figure 2.19. I t i s assumed tha t both revenue 

and cost are l i nea r funct ions defined in terms of uni ts produced and sold. 

Kcvenoe= 

"tec 

Cost, = 

Breakeven 

OniVs J X 

Fig. 2.19--Linear breakeven analysis 

The breakeven point occurs at x 0 . At x0 un i t s , total revenue equals total 

cos t s . If the firm produces and s e l l s x0 + k u n i t s , the firm will have a 

p r o f i t equal to f ( x 0 + k) - g{xQ + k). 

If the assumption i s made tha t revenue is nonlinear (say, quadratic) 

and cost i s l i n e a r , the resu l t i s a graph s imilar to tha t shown in Figure 2.20. 

In t h i s pa r t i cu l a r i l l u s t r a t i o n , the firm has two breakeven points , x-j and 

x,,. Maximum p r o f i t will occur somewhere between x-j and 

C-5 
Wallace C. Peterson, Income, Employment, and Economic Growth 

(New York, 1 967), pp. 91-100. 
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C»3C3° 
Pro? i-t 

Un«Vi / X 

Fig. 2.20--Nonlinear ravenue with l i nea r cost 

If the assumption i s made tha t both revenue and cost are nonlinear , 

the resul t ing problem i s s imilar to that of Figure 2.21. Ir. t h i s i l l u s -

t r a t ion i t i s assumed tha t both revenue and cost are quadratic funct ions. 

boss 

C-

UnHs /x 

Fig. 2.21--Nonlinear breakeven analysis 
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Under these assumptions, there are two breakeven points, x-j and 

Maximum p r o f i t w i l l occur somewhere between x-t and x^. An immediate 

consequence of these graphic i l l u s t r a t i ons is the real izat ion that the 

technique is the same regardless of the functions involved. Nonlinearity 

in the revenue or cost function or both simply introduces the poss ib i l i t y 

of more than one point of economic equi l ibr ium, or breakeven. At each 

point of intersect ion fo r the graphed equations, the return equals the 

cost incurred. 

Although graphic breakeven analysis i s generally l im i ted to two-space, 

the technique is a useful tool of classical optimization theory. However, 

in appl icat ion, certain l im i t i ng factors must be given careful consideration, 

These factors include the fol lowing: 

(1) Breakeven analysis requires va l id data re la t i ve to the quant i t ies 

being studied. 

(2) Linear assumptions are r ea l i s t i c only over narrow ranges of 

output. 

(3) A l l inputs are grouped in a homogeneous manner ( i . e . , mul t ip le 

inputs are not considered). This presumes any quanti ty of a homogeneous 

product at a single price—do! 1 ars, time, or e f f o r t . 

(4) Because of the poss ib i l i t y of "lumped inputs," breakeven analysis 

tends to present an over ly -s impl i f ied picture of r e a l i t y . 

(5) Breakeven analysis, at best, is f ixed with respect to t ime. 

Because of t h i s , i t i s best used only for short-run problem-solving. 

As a means of describing the applications that have been made of 

breakeven analysis, three primary areas of appl icat ion have been selected 
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f o r p r e sen t a t i on . These th ree areas a r e : (1) economics, (2) product ion, 

and (3) cost-volume a n a l y s i s . This se l ec t ion was based on the c r i t e r i a 

t h a t breakeven ana lys i s i s pr imar i ly concerned with the determining of 

poin ts of equi l ibr ium. Equilibrium i s achieved by balancing (equating) 

re turn to cos t . The return may be d o l l a r s , s a t i s f a c t i o n , e f f i c i e n c y , e t c . 

Economi c appl i ca t ions . - - Jevons , Walras, Co urn a t , and Marshall con-

t r i b u t e d much toward the u t i l i z a t i o n of mathematics as a tool of economic 

ana lys i s . As a means of f i g u r a t i v e l y explaining the r e l a t i o n s h i p s which 

ex i s t ed between supply and demand, cost and p r i c e , these e a r l y mathematically 

i nc l i ned economists s t r e s sed the a p p l i c a b i l i t y of the basic concepts of 

mathematical func t ions to solving these problems. Their work l a i d the 

foundation on which f u t u r e app l i ca t ions would be b u i l t . 

The primary use made of breakeven ana lys i s as an economic tool cen te r s 

on the a reas of demand-supply analys is and market supply-pr ice a n a l y s i s . 

In these two areas the c l a s s i c a l approach to the problem-solving a c t i v i t y 

i s through the use of l i n e a r r e l a t i o n s h i p s . By def ining s t r i c t l y l i n e a r 

f u n c t i o n s as being r ep resen ta t ive of the problem being i n v e s t i g a t e d , the 

i n t e r s ec t i on of the def ining equat ions y i e l d s the s ingle solut ion to the 

problem. This i s t rue so long as the def in ing equat ions are not p a r a l l e l 

l i n e s . 

As a means of i l l u s t r a t i n g the use of breakeven ana lys i s as a tool of 

demand-supply ana lys i s , consider the problem of determining the equi l ibr ium 

level of employment from the breakeven point of aggregate supply and 
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aggregate demand. This r e l a t i o n s h i p i s g raph ica l ly depicted in Figure 2.22 

Both axes are defined in terms of d o l l a r s . The v e r t i c a l axis measures the 

expenditures of the economy. The horizontal axis measures t he revenue 

from the economy ( the money paid f o r employment). Both aggregate supply 

and aggregate demand are expressed as l i n e a r func t ions of real income. 

E x p a n d i t - u r e j C s ) 
/ 

Oû pot ($ ) 

Fig. 2.22—Aggregate demand-aggregate supply 

In Figure 2 .22 , l i n e 07. def ines the aggregate supply func t i on . Line DD 

def ines the aggregate demand func t i on . Points along 0Z represent the pro-

ductive output of the economy. Points along DD represent the spending 

decis ions of the economy. When DD exceeds 0Z ( the i n t e rva l from 0 to x-j), 

the productive capaci ty of the economy will expand t o meet an excess of 

demand. When DD i s l e s s than 0Z ( the in te rva l from x̂  to « ) , the productive 

capaci ty will decrease s ince more i s being produced than i s being demanded. 
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t . Economic balance is achieved at coordinate (x-j, Xp) * the breakeven poin 

Point (x-j, X2) thus defines the level of income at which the expenses of 

the economy (the money paid for employment) are equal to the revenues from 
r ̂  

the economy (the expenditure by units in the economy). This point is 

reached when aggregate supply (OZ) is equal to aggregate demand (DD). I f 

OZ were defined as g(x) and DD were defined as f ( x ) , the equi l ibr ium level 

of employment is that level such that f (x ) = g(x) . This is reached for 

f(x-|) = g C x2) -

When applied to problems re la t ing market supply and market demand, i t 

is necessary to redefine the independent var iable. In th is case the common 

variable is the price that consumers are w i l l i n g to pay for a given number 

of units of a given product. The breakeven point (or point of equil ibrium) 

then defines the price at which supply equals demand. As in the previous 

case, the market supply and market demand functions are assumed to be l inear . 

Production applications,--The primary use of breakeven analysis in 

production ac t i v i t y is to give management an improved understanding of the 

relat ionships between sales income, costs, and p ro f i t s at d i f fe ren t volumes 

of production and sales. As a managerial tool i t has been used to answer 

such questions as 

(1) What w i l l be the e f fec t on p r o f i t i f the company raises or lowers 
pr i ces? 

(2) What w i l l be the ef fect on p r o f i t of increases or decreases in 
costs such as taxes, rent , sa lar ies, supplies, and equipment? 

(3) How much w i l l p ro f i t s incradse with an increase in production 
and sales? 

(4) Should the company go through with a proposed plant-expansion 
program? 

54 
I b i d . , pp. 122-123. 
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(5) How much increased volume will be needed to cover the cos t 
of a wage increase? 

(6) Is the company's budget in l i ne? 

(7) Where iSr the " f i n e - l i n e " between p r o f i t and loss f o r the 
company? 

Although not r e s t r i c t e d to l i n e a r f u n c t i o n s , the primary use of break-

even ana lys i s in production work has been based on assumptions of l i n e a r i t y . 

This i s p a r t l y because l i n e a r approximations are reasonably va l id f o r shor t 

per iods of time and l i n e a r ana lys i s i s more e a s i l y understood and explained 

than nonl inear ana ly s i s . 

Administrat ive app l i ca t i ons . - -Of p a r t i c u l a r importance to management 

i s a va l id cos t -vo lume-prof i t ana ly s i s . This p a r t i c u l a r area i s of special 

importance because i t "provides a t t e n t i o n - d i r e c t i n g and problem-solving 

background f o r important planning decis ions such as se l ec t ing d i s t r i b u t i o n 

channels , p r i c i n g , special promotions, and personnel h i r i n g . " 5 6 Knowledge 

of cos t behavior p a t t e r n s can be used as a valuable aid in planning both 

shor t - run and long-run opera t ions . 5 ' 7 

In addi t ion to the r egu la r assumptions appl icable to l i n e a r breakeven 

ana ly s i s ( e . g . , constant p r i c e s , c o s t s , homogeneous products , e t c . ) the re 

are some addi t iona l assumptions to be considered. Among these are the 

fo l lowing: 

(1) Expenses may be c l a s s i f i e d in to va r i ab le and f ixed c a t e g o r i e s . 
Total va r iab le expenses vary d i r e c t l y with volume. Total 
f ixed expenses do not change with volume. 

(2) E f f i c i ency and p roduc t iv i ty will be unchanged. 

5 5 
Richard J . Hopeman, Production: Concepts, Analys is , and Control 

(Columbus, 1965), pp. 80-81, " 
56 

Charles T. Horngren, Accounting f o r Management Ctontrol: An 
In t roduct ion (Englewood C l i f f s , 196577 p. 162. 

57 
I b i d . , p. 172. 



152 

(3) Sales mix will be constant . The sales mix i s the re la t ive 
combination of quant i t i es of a var ie ty of company products 
that compose to ta l sa les . 

(4) The dif ference in inventory level at the beginning and at 
the end of a period is i n s i g n i f i c a n t . ' 

As in the previous examples, the approach to the problem via break-

even analysis i s to f i r s t express a cos t - sa l e s re la t ionship in terms of a 

common var iab le . In t h i s case the common variable i s the product t ha t 

i s produced and sold. I t then becomes a problem in determining the volume 

(in terms of uni ts) at which to ta l sales equals total cos t s . This i s the 

breakeven point . 

Systems of Equations 

Simultaneous l i nea r equations represent a col lect ion of one-to-one 

mappings subject to one of three p o s s i b i l i t i e s : (1) unique solut ions 

e x i s t , in which case the system is said to be cons is ten t , (2) no solution 

e x i s t s , in which case the system is said to be incons i s ten t , or (3) multiple 

solut ions e x i s t , in which case the solutions are dependent. These three 

p o s s i b i l i t i e s indicate tha t a given system of simultaneous l inear equations 

has exactly one set of solut ions , no solu t ion , or an i n f i n i t e number of 

solut ions . 

Applications of simultaneous equations overlap those of simple algebraic 

equations. Their use permits mu'Itivariable descript ions of given problems 

and a be t t e r analysis of problems for which homogeneous groupings are not 

va l id . Problems amenable to simultaneous equations include product-mix 

ana lys i s , input-output analys is , cost a l locat ion analys is , and f inancial 

5 8 I b i d . , p. 174. 
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investment a l loca t ions . Each of these appl icat ions i s characterized by 

the same set of general iza t ions: (1) the re la t ionships are l i n e a r , 

(2) there ex i s t i n t e r r e l a t ionsh ips between the var iables of the system, 

and to ta l consumption (or use) i s guaranteed. In addi t ion , there are no 

r e s t r i c t i o n s placed on the var iables with respect to possible numerical 

values. 

The input-output model developed by Wassily Leontief represents an 

applicat ion of simultaneous l inea r equations to a s t a t i c economic s t ruc tu re . 

The purpose of the model i s to determine indust r ia l production, given changes 

in f inal demand. Solutions to input-output models are obtained by applying 

matrix algebra to the defining system. The model i t s e l f provides a method 

of recording systematical ly the input f ac to r s tha t are used by al l indus t r ies 

in a given economic system. , . 

Assume tha t an economy i s divided into n indus t r ies and 
that each industry produces only one type of output. Indust r ies 
are usually interconnected in the sense tha t one must use some 
of the o thers ' product in order to operate. An economy must 
usually produce some f inished products fo r f ina l demand as well 
as fo r the use of other indus t r i e s . One of the basic problems 
of input-output analysis i s determining the production of each 
of the indus t r ies i f f ina l demand changes, assuming the s t ruc ture 
of the economy does not change. 

In input-output ana lys i s , use i s made of a tabular set of data recording 

n producers, n users, f ina l demand, and to ta l output. This data i s tabulated 

in general form in Table 2 . 1 . 6 ^ 

59 
"Jean E. Draper and Jane S. Klingman, Mathematical Analysis (New York. 

1 967), p. 491. 
6 0 I b i d . , pp. 491-492. 
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GENERAL INPUT-OUTPUT TABLE 
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User Final Total 

Producer 1 2 . . . n demand output 

1 b l l b12' ' *b ln h l X1 

2 b21 b22* * ' b2n 
» * * 

h2 x 2 
• 

n 

• * * 
bnl bri2 * * *bnn hn 

• 

xn 

Table element (i^ = 1, 2 , . . . , n ) denotes the do l l a r amount of the 

products of indus t ry i consumed by indus t ry j . Table element h.j denotes 

the f i n a l demand f o r indus t ry i . Total output f o r indus t ry i , denoted by 

x.j, i s obtained by summing the components of row i ; i . e . , 

; i " h i V 
i = 1, 2 , »n. 

Associated with the input -ou tput t ab le i s a technological matr ix . 
b i i 

This technological matrix i s given by A = (a.- . ) , where a . . = — T h e 
I J TJ ^ j 

value assoc ia ted with a..^ i s the d o l l a r value of the output of indus t ry i 

t h a t indus t ry j must purchase to produce one d o l l a r ' s worth of i t s own 
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4* h 

p r o d u c t s . To meet the needs of a l l i n d u s t r i e s , the i i n d u s t r y 

( i = 1, 2 , . . . , n ) must produce a l eve l of ou tpu t t h a t i s equal to 

a i l x l + a i 2 x 2 + * , , + a i n x n * ~^ e i n t e r " i n ( ^ u s t r y demand i s given by the 

l i n e a r system 

a l l x l + a 12 x 2 + ' " + a l n x n 

a 21 x l + a 22 x 2 + , * , + a 2n x n 

a n l x l + a n2 x 2 + * " + a nnV 

Since i n t e r i n d u s t r y demand and f i n a l demand f o r the i ^ i n d u s t r y must equal 
4* 

t he ou tpu t f o r the i i n d u s t r y , 

x i ^ » i - 1, 2 , . . . ,n . 
n 

j= i 

This form can be expanded i n t o the l i n e a r system 

X1 = a l l x l + a 1 2 x 2 + , ' , + a l n x n + h T 

x 2 = a 2l x-j + a 2 2 x 2 + " ' + a2nxn + h 2 ' 

xn = a n 1 x l + a n 2 x 2 + - - * + ann xn + V 

Solving f o r 1% (i = 1, 2 , . . . , n ) , 

( l - a 1 1 ) x 1 - a i 2 X 2 - • • • " a i n x
n

 = h r 

~a21 X1 + H ~a22x2^ a2n xn = h 2 ' 

ft#**#*#**#******* 

~ a n l x l " a n2 x 2 " • • • " ^ 1 _ a nn^ x n = V 
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(Xj, x 2 , . 
, T xn) denotes the output fo r the industry If the vector X 

and the matrix A denotes the technological matr ix, the in te r indus t ry demand 

can be written as the product matrix AX, where 

A = 

a l l a12 " *a1n 

a21 a 2 ° . ' ' a 2 n 

anl an2 '* ' a nn 

,T 

and X 
'1 

If H_ = ( h p h > hn) denotes the f inal demand, the output system for 

the industry can be written as X - AX + H. 

The solution system fo r f ina l demand, 

( l - a 1 1 ) x 1 - a i2 x 2 

"a21x l ~ a22x2 

a ln xn 

a2nxn 

h 1 

" anlx l " an2x2 ^~anrt^xn ~ ^n; 

can then be writ ten in the matrix form 

( I " A)X = H. 

Where I_ i s an appropriate n x n iden t i ty matrix. The solution to the system, 

given by the X̂  vector, can be obtained by calcula t ing the inverse of (I_ - A ) ~ \ 

and multiplying on the l e f t ; i . e . , 

( I - A)"1 [ ( I " A)] = ( I - A)-1H_. 

This operation expresses the solution vector X as 

X = (I_ - A)_1H-

Although the input-output model i s somewhat long, i t t y p i f i e s the use 

of simultaneous l inear equations in administrat ive ana lys i s . I t demonstrates 

the l i n e a r i t y that i s generally assumed, the in t e r r e l a t ionsh ips among the 

independent var iab les , and the to ta l consumption requirement. The formulation 

of problems re la t ive to cost a l locat ions between products or departments, 
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product-mix allocations,, budget analys is , e t c . , proceed in a simi l a r manner. 

With the exception that solutions must be nonnegative, there are no re -

s t r i c t i o n s other than al l equations be s a t i s f i e d simultaneously. 

The use of simultaneous l inear equations i s characterized by several 

assumptions regarding the formulation of the problem-expression. These 

cha rac t e r i s t i c s r e f l e c t the assumptions made when describing any class of 

a l loca t ion -d i s t r ibu t ion problem and are as follows: 

1. Linear i ty . As was the case in l inear breakeven ana lys i s , 

describing the problem in terms of l i nea r equations requires tha t the 

re la t ionships among the var iables be proport ional ; i . e . , the rata of 

subs t i tu t ion among the var iables i s constant. 

2. Certainty. The use of l i nea r equations makes the assumption 

that all of the relationships among the variables of the problem are 

known. (This i s an inherent assumption of any determinis t ic model.) 

3. Total Consumption ( tota l use). The use of the equal i ty indicates 

tha t the resource is to be t o t a l l y consumed. 

4. Addi t iv i ty . The total amount speci f ied by the system as a whole 

equals the summation of the various inputs (inflows) minus the summation 

of the various outputs (outf lows). The resu l t i s a "material balance 
fi] 

equation." 

5. Nonnegativity. Since business ac t i v i t y i s not defined fo r negative 

input (or output) , the l inea r systems must have nonnegative so lu t ions . 

In Cartesian coordinate space t h i s places all allowable solut ions in the 

upper r igh t quarter of the coordinate system. 

61 
George B. Dantzig, Linear Programming and Extensions (Princeton, 

1 963), p. 33. ' ~ " 
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6. The use of the simultaneous system permits cons idera t ion of 

mu H i va r i ab le phenomena. This provides a useful expression f o r any type 

of ' l inear d i s t r i b u t i o n / a l l o c a t i o n type problem. 

Max-Min Calculus 

As a tool of c l a s s i c a l opt imizat ion theory, the max-mi n ca lcu lus i s 

assoc ia ted with nonl inear a n a l y s i s . In t h i s app l ica t ion the func t ion 

being i nves t i ga t ed i s a continuous, nonl inear cost o r p r o f i t func t ion and 

i s not subjec t to a system of l imi t ing c o n s t r a i n t s . Many of the basic 

desc r ip t ions of business a c t i v i t y ( f o r example, revenue and cos t curves , 

production f u n c t i o n s , and learning curves) can be described by nonl inear 

f u n c t i o n s . The most common nonl inear func t ions are quadra t ic f u n c t i o n s , 

cubic f u n c t i o n s , and exponenti al f u n c t i o n s . As in the c l a s s i c a l use of 

the a lgebra ic equat ion , the typica l nonl inear func t ion u t i l i z e s a s ingle 

independent v a r i a b l e . In t h i s a p p l i c a t i o n , a l l inputs are described by a 

homogeneous term. For example, cos t s may be def ined in terms of hours 

worked, regard less of the product ; revenue may be defined in terms of 

t o t a l un i t s so ld , with no e f f o r t being made to d i s t i n g u i s h the sa le of 

d i f f e r e n t products . 

Various app l i ca t i ons of non l inea r , max-min ana lys i s e x i s t in ad-

m i n i s t r a t i v e a reas . For example, a production funct ion i s genera l ly 

described by a parabol ic curve opening downward. In a d d i t i o n , isoquant 

and i so cost ana lys i s i s based on nonl inear assumptions. The isoquant 

curve i s used to show the d i f f e r e n t combinations of resources a f i rm can 

use to produce equal amounts of a given product . The i s o c o s t curve i s 
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used to show the d i f f e r e n t combinations of resources which the firm can 

purchase, given the price per unit of resource and the cost outlay made 

by the f irm. Of pa r t i cu l a r i n t e r e s t to the administrator is the analysis 

of a p r o f i t function to determine maximum p r o f i t or the analysis of a 

function to determine minimum cost . 

The c lass ica l approach to solving problems of t h i s type is through 

the use of the d i f f e r e n t i a l ca lculus . As an acininistrative tool > the 

d i f f e r e n t i a l calculus i s employed to i den t i fy points of maximum or minimum 

value (or both) on given continuous and d i f f e r en t i ab l e func t ions . Functions 

are generally assumed to be continuous and different!*able, as well as 

unimodal. These assumptions guarantee the existence of the necessary 

der ivat ives and the existence of a maximum or a minimum. ( I t should be 

noted that such max-min points may be local and not g lobal . ) 

Consider the following inventory problem: A company has a contract 

to supply R uni ts of product per month at a uniform daily r a te . Monthly 

storage ra tes are given as c-j dol lars per unit of product held in storage. 

Setup costs are f ixed a t c^ do l la r s . I t i s assumed tha t production i s 

instantaneous and shortages do not occur. Determine the number of uni ts 

to be made at each production run that will minimize the to ta l average 

monthly cost . 

Solution: Let x denote the number of units-produced per production 

run. Average inventory i s given by x/2 . Average storage cost i s c-jX/2. 

Each production run l a s t s x/R months, yielding an average setup cost (the 

cost to set up to produce x uni ts) of c2R/x. Assuming to ta l cost i s 
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defined as average s torage cos t plus average setup c o s t , t o t a l cos t i s 

given by 

C(x) = c ^ x / 2 + CpR/x . 

The number of u n i t s , x, to be produced so as to minimize C(x) i s t ha t 

quan t i ty f o r which C'(x) - 0 and C"(x) > 0. Therefore- assuming d i f -

f e r e n t i a b i l i t y , the t o t a l cos t funct ion can be minimized as fo l lows: 

C(x) = ( f l ) x + ( C ^ x " 1 ; 
2 " * 

C'(x) = - (C9R)x~2; 
2 

C"(x) = (2c 2 R)x - 3 . 

Se t t i ng C'(x) = 0 and solving f o r x, 

- (c9R)x"2 - 0, 
2 ' - c 

f l = <c?R)x~2, 
2 

c C?R 

JL 31?"» 
2 x 

X = + ^ ~ 2 c 2 R / c r 

Although the so lu t ion to C'(x) = 0 i s both pos i t i ve and nega t ive , only 

pos i t i ve values of x are permissable. 
2c?R 

To minimize t o t a l average monthly c o s t , s e l e c t x such t h a t > 0 . 

x 3 

Since c-|, c^, and R are known in advance, the value of x i s completely 

determined. This value of x then ind ica t e s the number of un i t s to be 

made a t each production run to minimize t o t a l average monthly c o s t . Because 
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of the quadratic nature of the defined cost function, x = 2c?R/ , i s 
0 

the only point of minization. That i s , i t i s the production quantity that 

produces a minimum value for the given cost function. 

This example can be used to distinguish several character is t ics 

peculiar to problems similar to this one. 

(1) The function to be maximized or minimized is described in terms 

of one independent variable. This forces all product units to be grouped 

into a single identifying se t . 

(2) For purposes of d i f ferent ia t ion the functional relationship is 

assumed to be continuous and different! 'able through at leas t the second 

derivative. 

(3) The function is assumed to be unimodal; i . e . , the function has 

an absolute maximum or an absolute minimum. This assumption generally 

l imits the functional relationship to a quadratic expression. 

Although the classic nonlinear textbook problem is generally 

univariable, rnultivariable cases do appear ( e .g . , demand defined as a 

function of both supply and pr ice) . Cost (or p rof i t ) functions can be 

defined in terms of the various products contributing cost (or p r o f i t ) . 

The end resul t is a nonlinear, multi van able expression that i s solved 

by applying the concepts of part ial derivatives. This application usually 

resul ts in a set of simultaneous equations which can be solved algebraically 

or by matrix algebra. Examples of such problems include multimarket 
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equil i briurn,G2 multiperiod production f u n c t i o n s , 6 3 demand surface a n a l y s i s , 6 4 

and mult ivariable p ro f i t - e aming functions.®^ 

As a means of demonstrating m u l t i v a r i a t e max-min appl ica t ions , two 

general areas will be explored. These two areas are pricing decisions and 

revenue-cost-productivity analysis . I t should be remembered tha t these areas 

are spec i f i c cases of a general c lass of problems. Any problem possessing 

cha rac t e r i s t i c s s imilar to these spec i f ic appl icat ions i s amenable to the 

solution techniques used in solving the demonstrated problems. 

(1) Pricing decisions. Common to both economic and marketing areas, 

pricing problems usually evolve in response to supply-and-demand re l a t ion -

ships. Since every pricing decision involves a balancing of cost and 

demand con si derat ions, i t i s necessary to f ind a price "in between that 

which drives most customers away and that which does not cover cos t s . 

This i s accomplished in c lass ica l analysis in the foilowing manner: A 

function i s derived (uni variable or mul t i variable) tha t depicts the 

re la t ionship between demand f o r a product and i t s se l l ing p r i ce . Applying 

the d i f f e r e n t i a l calculus (derivat ive or par t i a l de r iva t ives ) , the price 

62 
Henderson and Quandt, op. c i t . , pp. 126-163. 

6 3 I b i d . , pp. 241-243. 
64 

If two re la ted commodities ex i s t f o r which the quan t i t i e s demanded 
are x and v and the respective pr ices are p and q, then the demand functions 
can be defines by x - f ( p , q) and y = g(p, q ) , assuming that the quan t i t i e s 
demanded aepend only on the prices of the two commodities. If a demand 
function of two independent variables i s continuous and single-valued, i t 
can be represented by a surface , defined as a demand surface. (Note: 
Draper and Klingman, op. c i t . , pp. 292-297.) 

65Theichroew, op. c i t . , pp. 266-294. 
£\C 

Baumol, op. c i t . , p. 306. 
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y ie ld ing maximum demand (or some sat is factory combinations of p r ice-

demand-supply) can be uniquely determined. 

As an example of t h i s approach to problem-solving, consider the 

fo l lowing: The forecasted sales function for a commodity is given by 

"*2 

s 1 0
 = (15000,000) (1 - x ) , where x>_ $1.5 represents the advert is ing 

budget in mi l l i ons of do 11 ars and S-jq i s the annual sales in units at a 

price of $10 per un i t . The annual production cost funct ion, assumed 

l i nea r , i s given by: C = 200,000 + 5S, S <1,200,000. Here S i s the number 

of units produced per year. 

Solution 1: Assuming that no other information is avai lable, i t i s 

possible to determine the level of advert is ing necessary fo r the f i rm to 

achieve maximum p r o f i t . Since p r o f i t i s given by the di f ference between 

to ta l revenue and to ta l cost, the p r o f i t function can be wr i t ten 

P ro f i t - Revenue - (Production Cost + Advert ising Cost), 

P(x, S) = 10S - [200,000 + 5S + 1 ,000,000x], 

P(x, S) = 5S - 200,000 - 1,000,000x. 
I t i s assumed that potent ia l sales reach a maximum of 1,000,000 uni ts . 

The p r o f i t funct ion, as shown, is a function in two var iables. However, 

there is a defining function fo r S which can be used to express P(x, S) as a 

funct ion of one var iable. This function i s S ~ 1,000,000 (1 - x~^). I f 

th i s is subst i tuted into P(x, S), the resu l t i s a function which defines 

p r o f i t in terms of the single independent var iable, advert is ing cost (x) . 

P(x) = -200,000 + 5,000,000 (1 - x~2) - 1,000,000 x, where 

x represents the level of advert is ing. 
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Since p r o f i t i s to be maximized, the max-min c r i t e r ion will be as 

follows: (1) set P' (x) = 0 and solve for the c r i t i c a l points ; (2) 

evaluate P"(x) fo r a l l x such tha t P ' (x) = 0; (3) P"(x) < 0 indica tes a 

maximizing solution at the x value for which P"(x) < 0. The required 

der ivat ives are 

P '(x) = -1,000,000 + 10,000,000x~3, 

and 

P!'{x) = -305000,000x"4. 

Set t ing P1(x) = 0 and solving for x, 

-1,000,000 + 10,000,000x~3 = 0, 

10,000,000/x3 = 1,000,000, 

x 3 = 10, 

x - ^TTo , 

x = 2.1544. 

At x = 2.1544, P " ( x ) = -30.000,OOOx 1 < 0. This implies that maximum p r o f i t 

i s rea l ized with an advert is ing budget of $2,154,400. 

By adopting an advert is ing budget of $2,154,400,the firm will r ea l i ze 

a p r o f i t (at a se l l ing price of $10 per uni t ) of $1,568,300. Note tha t 

t h i s p r o f i t i s achieved with a f ixed se l l ing price of $10 per unit and a 

maximal advert is ing budget of $2,154,400, based on an assumed 1,000,000 

un i t s . Actually, the number of units sold, S, i s given by 

S = 1,000,000 (1 - x~2). 

At x = 2.1544, S - 784,500 uni t s . 
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Solution 2: Assume that price i s to be one of the variables to be 

considered, where 5 < p <20. The defend function, as a function of price, 

is given by: 

Sp = S-j Q^2J^jl_!L) * 
p iu 1() 

In th is expression, p denotes the price per uni t , S-^ denotes the quantity 

sold at a price of $10, and Sp denotes the quantity sold at price p. 

The p rof i t function i s again given by the difference between total 

revenue and total cost: 

Prof i t = Total Revenue - (Production Cost + Advertising Cost) 

P(p, S , x) = pS - (200,000 + 5S ) - l,000,000x. 
r r r 

P(p, Sp, x) defines p rof i t in terms of three independent variables. However, 

i t i s possible to express the p rof i t function in terms of two independent 

variables. This is accomplished by ut i l iz ing the relationship between Sp 

and S-jQ and substituting into P(p, Sp, x). 

Since S1 0 = 1,000,000 (1 - x~2) and S = S,n(20 - p), S can be written 
I u P 10 

as 

S„ = 1 ,000,000 (1 - x~2) (20 - p). 
P 10 

Substituting this relation for S„ into P(p, S , x) will express the p ro f i t 
H r 

function in terms of p and x: 

P(x, p) = p[l ,000,000 (1 - x'"2) (20 - p)l - 200,000 - 5,000,000 (1 - x"2) 
10 

(20 - p) - 1,000,000x. 
10 

This expression reduces to 

P ( x , p) = [1,000,000 (1 - x~2) (20 - p)] (p - 5) - l,000,000x - 200,000. 
10 
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In order to determine the values of x and p fo r which P(x, p) i s 

maximized, i t i s necessary to use the par t ia l derivat ive concept. This 

requires se t t ing 3P/3x and 3 P / 3 p equal to zero and simultaneously solving 

the resul t ing system fo r the c r i t i c a l values of x and p. The c r i t e r i a fo r 

a maximum i s given by 

(1) ax P(x, p) = sp P(x, p) = 0; 

3. 32 32 
_2_ — r . —-2-

(2) 3X9p P(x5 p) - gx P(x, p) ' 3p P(x, p) < 0 at values of x 
3 3 

and p for which •gx- P(x, p) = "3frP(x, p) = 0; and, 

-4 -i 
(3) gx P(x, p) < 0 at values of x and p fo r which gx P(x, p) = 

3p P(x, p) = 0. 

Di f fe ren t ia t ing P(x, p) with respect to x and p yie lds 

sP i t n . 3 
3X 1,000,000 (2/x J ) (20 - p) (p - 5) - 1,000,000, and 

10 

™ = 1 ,000,000 (1 - x"2) (20 - p) + (p - 5) (1 ,000,000) (1 - x"2) ( -1 ) . 
1 0 T o 

Sett ing the par t ia l der ivat ives equal to zero gives the simultaneous system 

1,000 (2/x~3) (20 - p) (p - 5) - 1,000,000 - 0, 
10 

1,000,000 (1 - x*"2) (20 - p) + (p - 5) (1 ,000,000) (1 - x"2) (-1) = 0. 
1 0 T o 

This sytem can be solved fo r values of x and p which simultaneously s a t i s f y 

the given system. 
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% ( ~ V J ? " , ( P " 5 ) " 1 = 0 > 

X 

( i - x - 2 ) ( 2 a ^ - E ) . ( P . 5 ) o - x"2)( tJ-> = o. 

This system can be reduced to 

2(2 - . lOp)(p - 5) - x 3 = 0 , 

- <" " 5 " W » = °" 

Further reduction y i e l d s 

- x 3 - .20p2 + 5p - 20 = 0, 

2 - .10p - .10p + .50 = 0. 

Col lect ing l i k e terms, 

- x 3 - .20p2 + 5p - 20 = 0, 

- .20p + 2.50 = 0. 

The values of x and p f o r which ~~~ P(x, p) = — P ( x , p) = 0 are obtained 

OA c3 P 

by simultaneously solving the reduced system. Since - .20p + 2.50 = 0 i s 

l i n e a r in p, t h i s equation wil l be solved f o r p and the r e s u l t s u b s t i t u t e d 
J\ rs 

in to the o the r equat ion . With t h i s approach, — P(x, p) = — P(x, p) = 0 
o X d p 

at p = 12.50 and x = 2.24. 
2 

If P(x5 p) i s maximized when p = 12.50 and x = 2.245 —w P(x, p) and 
9x 

,2 ,2 2 
•7,-—- P(x, p) — P ( x , p) • P(x, p) wil l both be l e s s than zero . 
0 ax'1 9p 
The necessary p a r t i a l de r iva t ives are 

2 
~ ~ ^ p ( x , p) = -3 ,ooo,ooo(- j ) ( p " 
3X X 

-3-~p P(x, p) = [ " - P(x, p ) ] = _ 200,000x3(p - 5 ) ; 
X 
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2 
2 P (x , p) - -200,000 + --̂ Q-Q-Q-

3P • 
2 p 

At x " 2.24 and p = 12.50. P/y - i o c r 9 rw * 

p . .DU, P(x5 p) - 534o,265, — P(x5 p) = -16,933.929, 

a2 
and „ p(x, p) - -160,141. Using these numbers, 

2 
3X 

3 2 

~ 2 - P ( x s p) = -1 ,345,265 < 0 , and 
3X 

92 - 2 2 
3x3P P ^ X ' " ~ T P ( X > p) * P(X, p) - -142,804,706,294 < 0. 

3 x 3p 
Thus, at x = 2.24 and p = 12.50, P{x, p) achieves a maximum value. 

Based upon the resu l t s of the preceding paragraph, the price per unit 

of product wil l be $12.50. The advertis ing budget wil l be $2.24 per unit . 

At a price of $12.50 per uni t , sa les wi l l to ta l 600,700 uni ts . The number 

of uni t s so ld i s ob ta ined by eva lua t ing 

S P = 1 >000,000(1 - x""2) (~yg—"—) 

at p - 12.50 and x - 2 .24 . At p . 1 2 . 5 0 and x - 2 .24 , the amount of p r o f i t 

wi l l be $2,064,000. The amount of p r o f i t to be real ized i s obtained by 

evaluating 

P(x. P) - D,000 ,000(1 - x - V < V ^ ) ] { p - 5) - 1,000.000* - 200,000 

a t p = 12.5 and x ~ 2 .24 . 

This example incorporates advertis ing expenditures into the problem and 

demonstrates the use of c l a s s i c a l max-min calculus . In the f i r s t so lu t ion , 

price per unit was not an independent variable. The only independent 

variable was the advertis ing expense per unit of potential s a l e s . In the 

-.econd so lu t ion , both price per unit and advertis ing expense per unit were 

allowed to vary. The approach shown in the second solut ion resul ted in a 

price per unit that f luctuated in response to f luctuat ions in advert is ing 

expense per u n i t . 
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(2) Revenue-Cost-Productivity Analysis . The use of the ca lcu lus 

as a tool of maximal-minimal ana lys i s i s wall documented in economic 

theory , p a r t i c u l a r l y microeconomic theory. This documentation i s 

evidenced by the app l i ca t ion of marginal ana lys i s to the following 

func t iona l express ions : 

(a) the production f u n c t i o n , Q = f ( x ) s which records how the 
required quan t i ty of labor or some raw m a t e r i a l , x , v a r i e s 
with the production l e v e l , Q, of some commodity; 

(b) the cos t f u n c t i o n , C = g(Q)s which records the t o t a l c o s t , C, 
a ssoc ia ted with some production level Q; 

(c) the demand f u n c t i o n , P = F(Q), which shows how high a p r i c e , P, 
can be changed per uni t in order to se l l Q un i t s ( i . e . , the 
demand func t ion ind ica te s the expected quan t i t y at d i f f e r e n t 
p r ice l e v e l s ) ; 

(d) the revenue f u n c t i o n , R = G(Q, P) , which shows the t o t a l income 
(or revenue) accruing to the f i rm from the sa le of Q un i t s a t 
p r i ce P; and, 

(e) the u t i l i t y f u n c t i o n , U(Q), which measures the pleasure thajUthe 
individual der ives from the possession of some q u a n t i t y , Q, 1 

of some commodity. 

The most p rac t i ca l tool f o r marginal ana lys i s i s the d e r i v a t i v e , previously 

defined as the average ra t e of change in the dependent var iab le per uni t 

change in the independent va r i ab le as the change in the independent var iab le 

approaches zero as a l i m i t . In t h i s a p p l i c a t i o n , the de r iva t ive i s i n t e r -

pre ted as fo l lows: 

(a) marginal product , 

(b) marginal c o s t , 

(c) marginal p r i c e , •gq-; 

(d) marginal revenue, - j | ; and, 

(e) marginal u t i l i t y , -jy. 

6 7 I b i d . , pp. 59-60. 
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Each of these in te rp re ta t ions measures the rate of change in the respective 

function fo r every unit change in the independent (input) va r iab le . 

To i l l u s t r a t e t h i s applicat ion and usa of the calculus , consider the 

production function y = f (x). This function defines the re la t ionship 

exis t ing between a given f i rm ' s outputs and i t s inputs . Assuming the 

production function is defined in terms of a single independent var iable , 

the re la t ionship can be plot ted in Cartesian coordinate space as shown in 

Figure 2.23, The various inputs are p lo t ted on the horizontal axis and 

are represented by the variable x. The output associated with a given 

input i s p lo t ted on the ver t ica l axis and i s i d e n t i f i e d by the variable y. 

y 

Fig. 2.23--The production function 

In describing the production function several cha rac t e r i s t i c s are 

to be noted: 
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(1) The production function is expressed free of any cost. 
The input factor is measured in factors of production 
(generally technological factors such as man-hours or 
units of raw material) while output is measured in units 
of commodity production. 

(2) Dif ferent technological factors define d i f fe rent production 
functions. The defined relat ionship applies to one given 
productive process and is va l id for a given state of techno-
logical development. 

(3) A l l input factors not considered as independent variables are 
defined as f ixed factors of production. 

(4) The usual shape (one independent variable) of the production 
function is parabol ic, opening downward. (This is not a 
necessity, as a production function can be described by any 
degree equation.) This description better describes the 
concept of diminishing returns, the point beyond which increases 
in input resul t in smaller changes in output. 

(5) The point of maximum product iv i ty is defined as the point where 
marginal p roduct iv i ty , dy/dx, equals zero. So long as dy/ds> 0 
the f i rm can increase product iv i ty by increasing input. When „ p 
dy/dx < 0 the f i rm i s decreasing product iv i ty by increasing inpu t . b o 

Although these character ist ics are not a l l inclusive, they serve to bring 

out certain points of par t icu lar in terest . Among these are the fol lowing: 

(1) As required for functional analysis, the univariable case resul ts 

in a "lumping together" of factors. This i s necessary to establ ish a common 

input. M u l t i v a r i a t e assumptions allow for better analysis, but these result 

in complex functions that are not easi ly ( i f ever) graphed. 

(2) The point of maximum product iv i ty is achieved at the level of 

input fo r which the l ine tangent to y = f (x ) has- zero slope. This re la t ion -

ship i s handled in the m u l t i v a r i a t e case by equating the n par t ia l derivatives 

of y = f (x - j , . . . , x n ) , ay/x.j(i = 1, 2 , . . . , n ) to zero. This defines the point 

r O 

Clough, op. c i t . , p. 146. 
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a t which the surface tangent to the production surface equals 

zero, 

(3) The analysis i s s t a t i c , i . e . , val id only at tha t point in 

t i me. 

From these f ea tu re s , additional cha rac t e r i s t i c s applicable to the 

class of funct ions described here can be derived. If these cha r ac t e r i s t i c s 

are s a t i s f i e d by a given problem, the tools of the max-min calculus can be 

e f f e c t i v e l y u t i l i z e d . 

(1) The required functions are defined in terms of n input var iab les . 

If n = 1, the function i s univariable and, assuming cont inu i ty , amenable 

to the d i f f e r e n t i a l ca lculus . If n > 2 and the function i s assumed to be 

continuous, the function i s amenable to the use of par t ia l der iva t ives . 

(2) The required functions are generally assumed to be unimodal. 

This assumption guarantees the existence of only one maximum point or one 

minimum point . • 

(3) If the der ivat ive e x i s t s , marginal analysis i s appl icable . In 

addi t ion, the concept of diminishing returns i s s a t i s f i e d . 

(4) A common cha rac t e r i s t i c i s the parabolic nature of the funct ions . 

This i s , in pa r t , due to the f ac t tha t the funct ions are generally quadratic 

( i . e . , second degree func t ions ) . 

(5) With the exception of the cost function (which has a minimum), 

all of the appl icat ions are maximal in nature . The desire i s to locate 

the point at which p r o f i t , demand, u t i l i t y , e t c . , i s maximum; f o r the 

cost function the desire i s to locate the point at which cost i s minimal 

in value. 
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(6) Although the curve i s def ined to be unimodal (or the sur face to 

have one peak), the maximum u t i l i z a t i o n of input f a c t o r s i s def ined f o r 

each of the cases in the following manner. 

(a) maximum p r o f i t : tha t input -ou tput combination such t h a t 

marginal cost and marginal revenue are equal ; i . e . , dR/dQ = dC/dQ. 

(b) maximum u t i l i t y : t h a t point at which the consumer's 

marginal u t i l i t y per d o l l a r ' s worth of goods i s equal f o r a l l goods. 

(c) maximum p roduc t iv i t y with a given cos t ou t l ay : t h a t point 

on the to t a l product surface (or curve) such tha t the marginal product 

of a d o l l a r ' s worth of one resource ( input) equals the marginal product 

of a d o l l a r ' s worth of every resource used. 

These d e f i n i t i o n s r e l a t e the respec t ive de r iva t i ve s o r p a r t i a l de r iva t ives 

of the def ined func t ions in proport ion to t h e i r respec t ive un i t co s t s . Of 

a l l of these , perhaps the most common (from the viewpoint of the ca lcu lus ) 

i s the assumption tha t marginal revenue equated to marginal cost y i e l d s 

maximum p r o f i t . This assumption fo rces the economic requirement t h a t maxi-

mum p r o f i t occur a t the point of minimum cos t . 

Consider the following numerical example. Pr ice per un i t f o r a p a r t i -

c u l a r product i s assumed to be l i n e a r l y r e l a t ed to weekly production in 

the fol lowing manner: p - f ( q ) - 100 - 0.01 q, where p equals the p r ice 

per u n i t , and q equals the amount of weekly product ion. Cost of product ion, 

C, i s assumed to be l i n e a r l y r e l a t ed to weekly production and i s def ined 

by the funct ion C = g(q) = 50q + 30,000. Determine the p r i ce and quan t i t y 

f o r which p r o f i t i s maximized. 
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Solution 1: The p r o f i t funct ion i s def ined by the r e l a t i o n 

P r o f i t = Revenue - Cost. Revenue i s def ined as uni t p r ice times uni t s 

sold and i s f u n c t i o n a l l y described by pq = q • f (q ) = q(100 - O.Olq). 

Given the def ined cost f u n c t i o n , the p r o f i t f unc t i on , P, i s wr i t t en in 

terms of the s ing le var iab le q. 

P(q) = (100 - .01q)q - (50q + 30,000) 

= --01q2 + lOOq - 50q - 30,000 

= - .Olq 2 + 50q - 30,000. 

To t e s t f o r maximization, s e t P' (q) » 0 and solve f o r q. I f P"(q) < 0 f o r 

values of q such t h a t P1 (q) = 0, then P(q) i s maximized a t t h a t value of q. 

The de r iva t ive of P(q) , P' (q ) , i s given by 

P1(q) = -.02q + 50. 

Se t t i ng P' (q) = 0 and so lv ing , q = 2500. 

P"(q) = - . 0 2 . 

At q = 2500, P"(q) < 0, i nd i ca t ing tha t the p r o f i t funct ion i s maximized 

a t q = 2500. 

At q = 2500, p = 75 uni t s of cos t to the consumer, say d o l l a r s . The 

cost incurred i s $155,000. The p r o f i t r e a l i z e d i s $32,500. 

Solut ion 2: I f i t i s assumed t h a t marginal revenue (^j~) i s equal to 

marginal cost ) , i t i s necessary to obtain func t ions f o r and 

f j - - n ° ° q - -Olq2) - 100 - 0.02a; 

- f - = (50q + 30,000) = 50. 
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Equating marginal revenue and marginal cost and solving f o r q , 

100 - 0.02q = 50s 

-0.02q = -50, 

q = 2500. 

At q = 2500s the p r i c e , c o s t , and p r o f i t are the same as in Solution 1. 

Solut ion 3: Had the i n t en t of the problem been to minimize c o s t , then 

quan t i ty produced would have been zero ( i . e . , q = 0) . At t h i s value of q , 

there would have been no p r o f i t . Rather, there would have been a loss of 

$30,000. 

Solut ion 3 demonstrates an important phenomena of c o s t - p r o f i t a n a l y s i s . 

This phenomena r e l a t e s to the f a c t t h a t the point of maximum p r o f i t i s not 

always equal to the point of minimum cos t . A p a r t i c u l a r case i s a cubic 

s a l e s (or revenue) funct ion with a quadra t ic cost f unc t i on . Only when i t 

i s assumed t h a t marginal revenue equals marginal cost i s i t guaranteed t h a t 

the poin t of minimum cos t will equal the point of maximum p r o f i t . 

Analogous app l i ca t ions of these two c lasses of problems can be found 

in a l l phases of business a c t i v i t y . Pr ic ing problems are found in accounting, 

f i nance , marketing, economics, and management. The "pr ice" i s given in 

terms of some o the r considera t ion ( f o r example, goodwill , l abor , i n t e r e s t , 

e t c . ) . Revenue-cost-product ivi ty problems can be t r a n s l a t e d in to such con-

t e x t s as cos t ana lys i s f o r accounting, adver t i s ing expenditure and/or con-

sumer exposure f o r marketing, s a l e s maximization f o r management, o r maximi-

zat ion of investment r e t u r n s . The major point i s t ha t a l l of these 

app l i ca t ions are s p e c i f i c examples of a general c l a s s of admin i s t r a t ive 
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problems. This general class of problems i s i d e n t i f i e d as unconstrained, 

continuous functions which describe defined re la t ionships between the 

variables of the problem. Such functions can be e i t h e r univariable or 

m u l t i v a r i a t e . 

The Lagrange Multio'l i e r 

The Lagrange mul t ip l i e r i s applicable to the same c lass of problems 

as the max-min calculus . In f a c t , the Lagrange mul t ip l i e r technique i s 

an extension of the max-min calculus. I t allows the incorporation of a 

minimum number of const ra in t funct ions into the problem. These const ra in t 

funct ions are written as e q u a l i t i e s . 

The only difference between the use of the Lagrange mul t ip l i e r and the 

t rad i t iona l max-miri calculus i s the inclusion of the r e s t r i c t i v e condit ions. 

Examples of such r e s t r i c t i o n s are rnaximinization of consumer uti 1 i t y subject 

to a f ixed budget cons t ra in t , maximization of p r o f i t subject to cost con-

s t r a i n t s , and minimization of cost subject to f ixed labor requirements. 

Since the only di f ference between the use of the Lagrange mul t ip l i e r 

and the t rad i t iona l max-min calculus i s the inclusion of the const ra in t 

equations, the application area for the Lagrange mul t ip l ie r i s the same as 

tha t for the max-min calculus . Ut i l iza t ion of the Lagrange mul t ip l i e r pro-

vides a means of incorporating cons t ra in ts into the function to be maximized 

or minimized. Given t h i s incorporat ion, the solution technique duplicates 

that of the max-min calculus . 

*? 7 

Consider the problem of maximizing f (x-j, x^) = 5x, + 6x^ - x-jXp 

subject to the l inea r const ra in t g(x-|, x^) = x-j + 2x^ - 24 = 0. The 

Lagrange mul t ip l i e r technique requires the construction of the Lag rangi an 

function 
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L (x-j) Xg9 X) ^^X-| 5 Xp) - Ag(x-j n X2) • 

Only one A i s required since there i s only one c o n s t r a i n t . The funct ion 

def ined by L(x-jS Xp, X) i s a mul t iva r iab le funct ion and i s t e s t e d f o r a 

minimum value according to the t r a d i t i o n a l max-min ca l cu lu s . However, 

since the o r ig ina l funct ion only contains two variables . , the c r i t e r i o n f o r 

minimization i s 

(1) L-j (x-js x 2 5 X) — t_2 (x 15 X£ X) - L ̂  (x -J» X2» X) — 0 

> 0. (2) L-ji > 0 and L11 L12 

L21 L22 

L.. denotes the p a r t i a l de r iva t ive of L(x-j, x^, x) with respect to va r i ab le i 

(i = 1, 2, 3) . L^.j denotes the second par t i al deri vat i ve of L(x-|, x2> X) 

with respec t to va r i ab le s i and j , (i = 1, 2, 3; j = 1» 2, 3) . 

The required p a r t i a l de r i va t i ve s are as fo l lows: 

L
1 (x 1 

l~2 (^1 

L 3 ( x 1 

A) - {5x-j2 + 6x2
2 - x 1

x
2 

N1 
= 10x^ - x2 

2 

x(x-| + 2x2 - 24) ] 

X. 

X) = 3x^-5x1 ^ + 6 x 2^ " x l x 2 ~ X^ x l + 2 x 2 " 

12x, x ] - 2x . 

o ? 
x ) = . -1 1.5X-] + 6x2" - x-jx2 - X(x-j + 2x2 - 24) ] 

= -(x-j + 2x2 24) 

L11 (x -j, x 2 * X) 3 ^ ' h ^ x i 5 x 2 ' 

9X-| 

= 10. 

(10x-j - x2 - x) 
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L
1 2 ( x - | , X 2 : - ^2i (x-j * Xg 5 A) 9x-j L2^ x1' x 2 ' 

9Xi 
(12xc x ] - 2 x) 

l
2 2 ( x 1 , X 2 > A) - ^ L 2 ( X ] , X 2 ! X) 

= ax^ ^12x2 " x i ~ 
= 12? 

The system of equations defining the c r i t i c a l values of x , , x 0 . and x is 
I L. 

given by 

10x-| ~ x2 - x •- 0, 

-x-j + 12x2 - 2x = 0, 

x-| + 2x? = 24. 

The solution to th is system is the unique solut ion-set x-j = 6, x2 = 9, and 

X - 51. 

The numerical value associated with each L i . ( x , , x 2 , x ) , ( i , j = 1 , 2 , 3 ) 

is obtained by subst i tut ing fo r x-j, x 2 , and x. This operation yields the 

fol lowing numerical values: = 10; L£ 2 = 12; L3 3 = 0; L ] 2 = |_21 = -1; 

h s " 4 l ~ ^23 = *~32 = ~2 ' 4 3 = Applying the c r i te r ion for 

minimization, 

L-jl = 10 > 0; 

h i L12 —
j 

C
D

 

!
 

L21 L22 -1 12 « 
= 10(12) - (-1) (-1) = 120 - 1 = 119 > 0 

Since L^ {x - j , x 2 , x) and (L-]-|L22 - L ] 2
L

2 2 ) are both posit ive at the c r i t i c a l 
P 2 

points, f (x- j , x2) = 5x-j~ + 6x2 - x^x2 i s minimized at x-j = 6, x2 = 9. The 

minimum value is f ( 6 , 9) = 612. 
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An i n t e r e s t i n g consequence of t h i s example i s the role played by the 

Lagrange m u l t i p l i e r . The c r i t e r i o n used to determine whether or not the 

c r i t i c a l points i d e n t i f y points of maximization or poin ts of minimization 

does not incorpora te the Lagrange m u l t i p l i e r o the r than in the evaluat ion 

of the var ious p a r t i a l d e r i v a t i v e s . I t i s not pa r t of the determinant 

system defined in Theorem 2.15. The role played by the Lagrange m u l t i p l i e r 

i s t h a t of def in ing the c r i t i c a l po in ts which s a t i s f y the def ined funct ion 

and the l im i t i ng c o n s t r a i n t s . 

Adminis t rat ive problems solvable by the method of the Lagrange mu l t i -

p l i e r exh ib i t some common c h a r a c t e r i s t i c s , among which are the fo l lowing: 

(1) The funct ional r e l a t i o n s h i p descr ibing the problem can be 

un ivar iab le or m u l t i v a r i a t e , depending upon the problem. 

(2) Functional r e l a t i o n s h i p s can be l i n e a r or non l inea r ; bu t , the 

func t ions are assumed to be d i f f e r e n t ! a b l e . 

(3) Constraint func t ions are genera l ly e q u a l i t i e s , i nd i ca t i ng tha t 

the resource i s such t h a t i t i s t o t a l l y consumed. I f an inequa l i ty condi-

t ion e x i s t s , the Lagrange m u l t i p l i e r technique requ i res a minimal number of 

such r e s t r i c t i o n s . (This i s t rue f o r e q u a l i t y c o n s t r a i n t s , a l s o . ) 

(4) Optimization via the use of the Lagrange m u l t i p l i e r method r e s u l t s 

in an optimum value which l i e s on the boundary of the so lu t ion space. This 

i s due to the f a c t t h a t a l l c o n s t r a i n t s are described by e q u a l i t i e s ( i n e q u a l i t i e s 

are converted to e q u a l i t i e s by int roducing appropr ia te slack or a r t i f i c i a l 

v a r i a b l e s ) . 

(5) The f ina l so lu t ion i s obtained from a system of equa t ions , usual ly 

l i n e a r , t h a t i s solved a l g e b r a i c a l l y or with matrix a lgebra . This f i na l 

so lu t ion i s genera l ly based upon the s ize of the r e s u l t i n g system. 
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Queueing Theory 

The a p p l i c a t i o n of queueing theory r e q u i r e s l e s s mathematical e x p e r t i s e 

than any o t h e r tool of c l a s s i c a l op t im iza t i on t h e o r y . This i s due to the 

general n a t u r e of queueing a p p l i c a t i o n s . These a p p l i c a t i o n s g e n e r a l l y 

r e q u i r e the d i r e c t a p p l i c a t i o n of a s p e c i f i c formula as a means of answer-

ing a s p e c i f i c ques t ion ( f o r example, the average length of a queue, the 

average time spent by a queue element in the system, o r the p r o b a b i l i t y t h a t 

a l l s e r v i c e f a c i l i t i e s wi l l be i d l e ) , In the a p p l i c a t i o n , i t i s g e n e r a l l y 

assumed t h a t the queueing problem i s desc r ibed by a s u i t a b l e p r o b a b i l i t y 

d i s t r i b u t i o n such as the Poisson or Erlang model. 

When ana lyz ing queueing problems, an impor tan t p o i n t to remember i s 

t h a t a r r i v a l and s e r v i c e d i s t r i b u t i o n s may not be desc r ibed by the " e s t a b -

l i s h e d " p r o b a b i l i t y d i s t r i b u t i o n s . I f the a r r i v a l and /or s e r v i c e d i s t r i -

bu t i ons are not d i s t r i b u t e d according to a Po f s son , Er l ang , e x p o n e n t i a l , 

o r gamma d i s t r i b u t i o n , i t i s neces sa ry t h a t t he d e f i n i n g p r o b a b i l i t y d i s -

t r i b u t i o n s be determined. This can be accomplised by employing the c h i -

CQ 

square t e s t f o r goodness of f i t . In t h i s way, the most a p p r o p r i a t e 

p r o b a b i l i t y d i s t r i b u t i o n can be determined f o r queueing phenomena t h a t 

does not fo l l ow a d e f i n i t e d i s t r i b u t i o n . 

Consider the fo l lowing problem: A f i rm i s c o n f r o n t e d with the 

problem of determining the number of load ing and unloading docks t h a t wi l l 

be needed in shipping and r e c e i v i n g department of the f i r m . As a means of 

of answering the q u e s t i o n s necessa ry f o r so lv ing the problem, i t i s assumed 

cq 
Charles T. Clark and Lawrence L. Schkade, S t a t i s t i c a l Methods f o r 

Business Decis ions ( C i n c i n n a t i , 1969), pp. 426-430. 
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t h a t the f i rm wants to know how many t rucks will be wait ing f o r loading 

and unloading, as well as the p r o b a b i l i t y t h a t the loading and unloading 

dock and workers will be i d l e . Given the necessary assumptions regarding 

the a r r i va l d i s t r i b u t i o n , the serv ice- t ime d i s t r i b u t i o n , f i n i t e or i n f i n i t e 

queues, queue d i s c i p l i n e , e t c . , these ques t ions can be answered by the 

app l ica t ion of a s p e c i f i c formula. 

I t i s assumed t h a t the a r r i va l pa t t e rn fol lows a Poissori d i s t r i b u t i o n 

with a mean a r r i va l ra te equal to A. The service ra te fol lows an exponential 

d i s t r i b u t i o n with a mean service ra te equal to p. I n f i n i t e queues are theo-

r e t i c a l l y poss ib l e . The queue d i s c i p l i n e i s f i r s t - c o m e , f i r s t served. The 

number of t rucks being serv iced i s equal to n. Under these assumptions, 

1. the average number of t rucks in the queue, denoted L i s given by 
9 H 

X 
'"q y ( y - A ) 5 

2. the average number of t rucks in the waiting l i n e , including the 

one being serv iced , L, i s given by 

L s J L . ; 
VI-X 

3. the average waiting time of t rucks in the l i n e , , i s given by 

4. the average waiting time of t rucks in l i n e , including the t ruck 

being serv iced , L, i s given by 

L - ; and, 
\1" A 
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5. the p robab i l i t y t ha t the loading and unloading dock and workers 

will be i d l e , Pn, i s given by 

Pn = (1-A/y) (A/y) ! \ n > J . 

For n = 0, Pc = 1 - x/y. 

Although t h i s example i s an elementary app l i ca t i on , i t serves to po in t 

out the nature of c l a s s i c a l queue a n a l y s i s . Once the values of x and y are 

known, the answers to the given ques t ions are e a s i l y determined by d i r e c t 

use of a given formula. This i s t rue except f o r the i r r e g u l a r a r r i v a l and 

service d i s t r i b u t i o n s sometimes encountered in queueing phenomena. When 

these i r r e g u l a r d i s t r i b u t i o n s are encountered, the formulas shown do not 

7f) 

apply. Rather, i t i s necessary to consider each problem on i t s own mer i t . 

The i r r e g u l a r queueing problem can be demonstrated in the fol lowing 

manner. A s ingle channel queue receives a r r i v a l s a t random with r a t e a. 

The service time p r o b a b i l i t y d i s t r i b u t i o n i s given by 

(k/b-j) (kx/b- j ) k - 1
 e " k x / b T 

(k-1)! 

where k equals the number of s tages of s e rv i ce , b-j equals the mean-service 

t ime, and x i s the random va r i ab l e . I f the service d i s t r i b u t i o n we re 

exponent ia l ly d i s t r i b u t e d , the s t a t e of the system could be defined by the 

number of un i t s in the system. However, in order to work with t h i s d i s t r i -

but ion, the s t a t e of the system must be defined in terms of the cur ren t 

s t a t e of s e rv i ce . The s t a t e of the system at any point in time must be 

der ived, and appl icable formulas developed ( i f poss ib le ) before the ana lys i s 

of the system can be accomplished. 

70 
Cox and Smith, op. c i t . , p. 110. 
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Let Pn i-(t) denote the probabi l i ty that a t time t there are n units 

in the system and the customer in service i s in the "i^ stage of service 

(n = 1, 2 , . . . ; i = 1, 2 , . . . ,k). Let p 0 ( t ) denote the probabi l i ty tha t 

there are no uni ts in the system at time t . I f a r r i va l s occur in groups 

of k each with an arr ival rate of^C, and i f the service-t ime, i s exponential 

with parameter a , the equilibrium probabi l i ty p^ of there being r units 

in the system a t an a rb i t r a ry point in time i s given by 

»tpo = oP-j > 

(ol+c)pr = ap r + 1 + ^ P r „ k ( r ~ 1, 2 k) , 

p r_ k = 0 fo r r < k. 

71 

In t h i s form, r = nk - i + 1. Further modifications can be ut i1ized to 

determine computational schemes fo r calculat ing the long-run proportion of 

time for which the service f a c i l i t y i s occupied and the waiting time of a 

unit in the system. 

The point of t h i s example is to demonstrate the f ac t tha t not all 

queueing s i tua t ions can be neat ly categorized into one of the four basic 

d i s t r i bu t ions . When the probabi l i ty d i s t r ibu t ion associated with a given 

queueing process i s exponential or Poisson, the analysis of the system i s 

g rea t ly s impl i f ied . This i s due to the existence of spec i f i c formulas 

applicable to the given problem. Saaty discusses i r r egu la r d i s t r i bu t i ons , 
1? 7? 

with pa r t i cu la r a t tent ion being given to non-Poisson queues ~5 Markov chains . 

general- input and a rb i t r a ry - se rv i ce - t i rne -d i s t r ibu t ions 7 4 , and general 
7t: 

independent-input exponential-service times. 
71 I b i d . , pp. 111-114. 
1? 

"Saaty, op. c i t . , pp. 153-170. 
7 3 I b i d . , pp. 171-190. 7 4 I b i d . , pp. 1 93-196. 75Ibid._, pp. 198-216. 
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The l i t e r a t u r e i s well documented with queueing a p p l i c a t i o n s : persons 

passing through checkout counters , machine breakdown and ope ra t ion , 

r e s t a u r a n t s e rv ice , customers en te r ing and leaving supermarkets, bake r i e s , 

e t c . , to mention a few. S p e c i f i c app l i ca t i ons are described below. 

Machine breakdown and r epa i r . - -A company f i n d s i t necessary to minimize 

the number of machines not ava i lab le f o r use. This i s accomplished by 

careful assignment of mechanics to r e p a i r machines so tha t production losses 

from the lack of adequate equipment i s minimized. The machines which are 

not ava i l ab l e f o r use c o n s t i t u t e a queue waiting f o r r e p a i r s ; the mechanics 

c o n s t i t u t e the a v a i l s b l e service f a c i l i t y . There i s a point such t h a t the 

cos t of having mechanics ava i l ab l e f o r machine r epa i r exceeds the po ten t i a l 

l o s s incurred f o r l o s t product ion. By building a di s t r i but ion t ab l e (varying 

the input data and c o l l e c t i n g the output) i t i s poss ib le to determine the 

number of mechanics which would allow the best use of the company's cost 

7 Pi 

resources . The end r e s u l t i s a minimization of the t o t a l cos t of the 

service and a maximization of u t i l i z a t i o n of mechanic 's t ime. 

Flows in p roduc t ion . - - I t ems in a production l i n e are in a queue. They 

may a r r ive a t varying r a t e s , o r they may a r r i ve a t a cons tant r a t e . Holding 

time i s assumed to be cons tant . Items in the queue may go through a number 

of p a r a l l e l channels o r through a s ingle channel. Service f a c i l i t i e s may 

be ca r r i ed on in p a r a l l e l or in mul t i - s t age systems. Single channel queues 

may be serviced in sequence. Although not r e s t r i c t e d to inventory and 

app l i ca t ion problems, business use of queueing theory in t h i s area has been 

76 
baaty , op. c i t . , p. 365. 
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ex tens ive , the data obtained via the queueing appl ica t ion being used as 

77 

input data f o r some o ther model. 

Servicing problem. - -Servic ing problems are cha rac te r i zed by a given 

ra te of a r r iva l and a given departure r a t e fol lowing r e c e i p t of the 

se rv ice . Servicing problems are genera l ly concerned with achieving an 

economical balance between the annoyance of wait ing uni ts and the number 

of ava i l ab le service f a c i l i t i e s . As an example, consider the fo l lowing: 
Customers a r r ive a t and leave a r e s t a u r a n t at known r a t e s . 
Both the a r r iva l ra te and the service r a t e are measured. 
If the c o l l e c t i o n of these data i s performed in such a way 
t h a t i t i s poss ib le to detect the behavior of both events , 
such measurements can be converted in to a p r o b a b i l i t y 
d i s t r i b u t i o n . From t h i s d i s t r i bution the probabi 1 i t y of 
a r r i v a l s can be computed. The r a t i o s of the average 
a r r iva l ra te over the average service r a t e , and of the 
average number of persons in l i n e waiting to be accommo-
dated a t the t a b l e s per un i t of time over the average 
wait ing time required to de l ive r the service per un i t of 
time are two e s s e n t i a l elements f o r determining the 
t h e o r e t i c a l behavior of the waiting l i n e . [Obviously] . . . 
the waiting time spent by customers decreases as the 
number of f a c i l i t i e s ( t a b l e s , w a i t e r s , and equipment in 
the ki tchen) i nc rea se s . . , to increase the f a c i l i t i e s 
[ i t i s necessary] to consider a means of balancing the 
cost of los ing pa t rons , i f the l ine and the wait ing 
s e rv i ce . For any number of f a c i l i t i e s added, there i s 
a corresponding reduction in the average time spent 
in wai t ing . When the cos t per unit of waitir,g time 
as well as the cos t of operat ing each f a c i l i t y known, 
the t o t a l cos t of each f a c i l i t y can be computed. The 
optimum solu t ion i s secured when the optimal number 
of f a c i l i t i e s i s determined and simultaneously the 
minimum cost i s achieved. 

Other a p p l i c a t i o n s . - - O t h e r app l i ca t ions of queueing theory include 

the a n a l y s i s of b u f f e r s tocks (components wai t ing f o r machining), the 

77 

di Roccafer rera , op. c i t . , p. 345. 

'^1 b i d . , p. 812. 
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analysis of warehouse stocks ( f in ished goods wai t ing f o r customers), 

cars in l i n e at service s ta t ions , cars in l i n e at t o l l booths, the analysis 

of the optimum number of bank t e l l e r s during given periods o f the day, and 

the determination of the most economical combination among type and number 

o f machines to maintain a given level of p roduc t i v i t y . Inherent in a l l of 

these i s a central character iz ing theme: there ex is ts something which 

requires some type of service from at least one of a l im i ted number of 

avai lable f a c i l i t i e s and f o r which there i s a cost associated w i th any 

delay caused by wai t ing f o r the desired f a c i l i t y . Given t h i s cha rac te r i s t i c , 

the problem i s amenable to queueing theory and i t s techniques of a n a l y s i s . ^ 

(Note: Certain types of inventory control problems can be t reated as queueing 

problems: associated wi th the condi t ion "ou t -o f -s tock" i s a cost f o r wai t ing. 

Given t h i s cost i t i s possible to determine the amount o f stock (service 

un i ts ) necessary to minimize wai t ing costs and inventory costs.) 

In addi t ion to these app l i ca t ions , queueing theory has been used to 

determine the optimum number o f inspectors required to inspect a product 
O A 

while in process, to determine the amount of o i l ind iv idua l pumping sta-

8 1 

t i ons should handle , and to determine whether or not the service of a new 

product should be added to the l i n e . 8 2 In the l a t t e r app l i ca t ion , the 

problem i s multidimensional and involves p r i o r i t y considerat ions. 
79 

David W. M i l l e r and Martin K. S ta r r , Executive Decisions and Opera-
t ions Research (Enqlewood C l i f f s , 1 965), p. 397. " ' ' 

80 
L. F. Sespaniak, "An Appl icat ion o f Queueing Theory fo r Determining 

Manpower Requirements f o r an I n - l i n e Assemble Inspection Department," 
Journal o f Indus t r ia l Engineering, vo l . 4 (July-August, 1 959), 265-267. 

O I 
Saaty, op. c i t . , p. 351. 

82 
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CHAPTER r n 

MODERN OPTIMIZATION THEORY: BASIC TECHNIQUES OF OPTIMAL SEARCH 

Int roduct ion 

As an admin is t ra t ive t o o l , mathematical models which seek to optimize 

the use of l imi ted resources when these resources are subjec ted to competing 

demands are described by the term mathematical programming. The problems 

to which t h i s p a r t i c u l a r c lass of models i s applied are genera l ly expressed 

as func t iona l r e l a t i onsh ips in which the independent va r i ab les (or unknowns) 

represent the resource quan t i ty (or q u a n t i t i e s ) t h a t def ines the un i t s 

being demanded. Typical problems su i t ed to the techniques of mathematical 

programming include the fol lowing: 

1. A ce r t a in machine shop has a va r i e ty of l a t h e s . In a ce r t a in 
time per iod , a s e t of jobs i s assigned to the l a the department 
f o r process ing. Each job may be routed a l t e r n a t i v e l y to more 
than one type of l a t h e . There i s i n s u f f i c i e n t l a the capac i ty 
t o assign each job to the lowest cost process . The problem 
i s to determine the optimum assignment of jobs so t h a t t o t a l 
processing costs are minimized. 

2. A saw mill produces a va r i e ty of end products . The input t o 
the mill i s a va r ie ty of types and s i zes of logs . The problem 
i s to decide how the logs are to be a l loca ted t o the production 
of end products . Each end product wil l have a given c o s t , 
depending on the log type and process , and a given market 
p r i c e . The ob j ec t i ve i s to maximize the pr ice of the output 
over a given time per iod . 

3. A company produces a s e t of products with seasonal v a r i a t i o n . 
The problem i s to decide on a production plan t h a t wi l l 
designate month by month bow much of each product i s to 
be produced, amounts of overtime, inventory l e v e l , and 
employment l e v e l s , such t h a t the t o t a l cos t of the plan i s 
minimized. 

187 
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4. An oil company wishes to determine an optimum plan for i t s 
re f inery operat ions, given estimates of external condi t ions , 
such as market demands f o r end products, crude oil a v a i l a b i l i t y , 
e t c . , and given internal company d i r ec t ive , such as ref inery 
unit construct ion, minimum contracted crude, e t c J 

In the preceding chapter, optimization of such problems was achieved 

under the assumption tha t resources were unlimited and al l resources 

were t o t a l l y consumed. In actual p rac t ice , however, the firm usually 

f inds i t s e l f operating in an environment in which resources are l imited 

in terms of quanti ty and a v a i l a b i l i t y . For example a production company 

may be able to se l l every product i t produces. However, because of l imited 

manpower, daily production i s r e s t r i c t e d . Any attempt to optimize p r o f i t 

must take into consideration the l imited a v a i l a b i l i t y of manpower. Problems 

formulated under r e s t r i c t i v e conditions will take on one of the following 

forms: 

(1) Find the values of x . ( x . > 0) which maximize the function 
vJ J 

f(x-j, x 2 , . . . ,x n) subjec t to the constra int equations g.{ (x-j, x ^ , . . . , xn) <_ b.. 

(i = 1, 2 , . . . , m ) . The b̂  are constants , and the system involves an m x n 

system, i . e . , m const ra int equations with n var iables . Examples of such 

problems are (a) maximizing to ta l p r o f i t (the function to be optimized) 

subject to the cons t ra in t equations r e l a t ing budget a l loca t ions , production 

a l loca t ions , and (b) maximizing output subjec t to inventory r e s t r i c t i o n s , 

labor hours avai lable , and component-mix. 

(2) Find the values of x. (x. >_ 0) which minimize the function 
u J 

f(x-j, Xg , . . . , x^ ) subject to the const ra in t equations (x-j, x ^ , . . . , x n ) >_ b.., 

1 
J . William Gavett, Production and Operations Management (New York, 

1 968), pp. 58-59. 
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(i = 1, 2 , . . . , m ) . The are constants, and the constraint equations are 

m x n in s i ze . Examples of such problems are (a) minimizing a given cost 

function subject to r e s t r a i n t equations r e l a t ing man-hours ava i lab le , 

minimal output required, and minimum time avai lable on machines at f ixed 

cos ts , and (b) minimizing t ransporta t ion costs when the cons t ra in t equations 

are defined by minimal accepted lot shipments at both warehouse and fac tory . 

(3) Find the values of x . ( x . >_ 0) which optimize (maximize or minimize) 
0 vJ 

a given object ive function f(x-j, . . ,*n) subject to the mixed cons t ra in t 

equations â . ( x ] , x ? , . . . , x k ) < b j and g^(xk+1 , *k + 2>- . . ,m) >_ a £ , (i = 1 , . . . , k; 

l = k + l , . . . , m ) , with the b- and ao constant. Such systems are characterized 

by k cons t ra in t equations with at most b. (i = 1, 2 , . . . ,k) units available 

and m - x. cons t ra in t equations with at l e a s t a (;, = k+1, . . . ,m) units 
^ I 

avai lable . The function to be optimized can be one of maximization ( p r o f i t ) 

o r one of minimization (cos t s ) . 

These mathematical formulations can be described in terms of e i t h e r 

l i nea r programming, quadrat ic programming, geometric programming, or 

dynamic problem. In terms of basic optimal search, the c l a s s i f i c a t i o n 

i s dic ta ted by the. object ive funct ion. For example, a l i nea r object ive 

function with l i nea r cons t ra in ts i s a l inear programming problem while a 

quadrat ic object ive function with l inea r const ra in ts is a quadrat ic 

programming problem. Give t h i s problem c l a s s i f i c a t i o n , a su i t ab le 

se lec t ion technique can be selected fo r determining the optimal solution 

t o the problem under study. Solution techniques fo r the types of problems 

c i t e d are presented in th i s study. 
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Basic Techniques of Optimal Search 

Kuhn-Tucker Conditions 

The use of the Lagrange multiplier as a tool of classical optimization 

theory requires equality constraints on the function to be optimized. 

In addition, the function under investigation is assumed to be continuous. 

However, in practical application the constraints are not necessarily 

defined by equal i t ies . The function being optimized is optimized subject 

to a system of constraints that is defined by inequali t ies or a mixture 

of inequali t ies and equal i t ies . 

For optimization problems subject to one inequality constraint , the 

use of the Lagrange multiplier i s sa t i s fac tory . When the constraining 

system contains more than one inequality, however, proof of optimization 

becomes more d i f f i c u l t . As a means of describing conditions under which 

multiple inequality constraints lead to optimum solutions, mathematicians 

Kuhn and Tucker in i t i a ted a study into the poss ib i l i ty of extending the 

Lagrange multiplier technique. The resul t of the i r work is summarized as 

the Kuhn-Tucker conditions. This set of conditions defines optimality 

for a function which is res t r ic ted by a set of inequal i t ies . These 

conditions provide the base on which the concepts and techniques of 

mathematical programming are bui l t . 

Kuhn 

maxima 

-Tucker conditions for maximization.—A point (x^, X2, . . . ,x n J 

imizes a function f (x^, ;x 2 , . . , ,x n } subject to ĝ -Cx-p x 2 , . . . , x n ) <_ 0, 

j = 1, 2 , . . . ,m i f there exis ts a set of \ . , j = 1, 2 , . . . ,m, Aj 0, 
J J 

such that 
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af # - 3 g i 
h - _- - \ - Os i - l y 2 , . . . ,n. ; 

1 i j= i 0 i 1 

Xj9j(^is *2 ' " "* *x
n^ ~ ^ ^ ^ ® 

p 
9 j ( x i > J • •»s ) j< 0 • 

Since maximization involves consideration of both local maxima and 

global maxima, Kuhn and Tucker defined sufficiency conditions under which 

the point in question could be tested for local or global maxima. These 

conditions are summarized by the following: 

Local maximum: Let f(x-j, Xgj .- . jX ) be a function of n variables sub-

ject to the constraint g(x-j, Xg.-.-jX ) <_ 0. A point x* = (x^, x | , . . . , x * ) 

is a local maximum of f(x-|, x2».. . ,xn) subject to g(x-|, x2»...»xn) only i f 

there exists x >_ 0 such that x and x* = (x | , x2>-** 'xn) satisfy 

u = =0* i = 1 2 n -

i 3xi
 Aax i

 u ' 1 ' ' d " - > n > 

Xg (x-j , X2, • • • ) ~ 0 5 an d, 

g(x*| , x2* * * * >x
n) — 

These conditions are also suf f ic ient i f f(x-|, X2>...sxn) is concave and 

the constraint is convex. 

Global maximum: Let f (x^ , X g , . . . , ^ ) be a function of n variables 

subject to the j constraints 9 j ( x i > x2>---»x
n) <_ 0, j = 1, 2 * . . . ,m. A 

point x* = (x^, x | , . . . , x * ) is a global maximum i f there exists a set of 

2 
Daniel Teichroew, An_ Introduction to Management Science: Peterministic 

Models (New York, 1964), p. 523. 
3 
Jean E. Draper and Jane S. Klingrnan, Mathematical Analysis: Business 

and Economic Applications (New York, 1967), pp. 514-515. 
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nonnegative ^ , x? , . . . ,x , such that 

m 3q. 

h. - —~ ~ Y > _ 1 = n -
1 a x i 8 x i 

x j 9 J = 0 : 

9-i < 0 . 4 

These conditions are su f f i c i en t for a global maximum i f both f ( x , , x „ , . . . , x ) 
I <L n 

and g ( x j , x2 > • • •»x
n) > j = 1? 2 , . . . , m, are concave and di f fe rent iab l e. I f 

the x.j must sat is fy x^ >_ 0, the necessary conditions for a global maximum 

are 
<x-F m 3(3-; 

h i " S t - ? ; ^ i ^ 1 0 ; 

h1-xi = 0; 

V j = 0 ; 

9j i 0; and, 

x1 > 0. 

At th is point several points require c l a r i f i c a t i o n . The f i r s t o f 

these is the di s t i n c t i on between convex and con cave functions, 

3J_- —A function is said to be s t r i c t l y concave i f a l ine 

segment drawn between any two points on i t s graph f a l l s en t i re ly below the 

graph. (See Figure 3.1a.) 

4 
leichroew, op. c i t . s p. 563. 
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Definition 3.2. --A function is said to be s t r i c t l y convex i f a l ine 

segment drawn between any two points on i t s graph l i e s en t i r e ly above 

the graph. (See Figure 3.1b.) 

y v 

? C x ) 

Fig. 3.1a--Concave function Fig. 3.1b--Convex function 

S t r i c t l y concave (convex) simply means tha t al l points contained in the 

defined region do not l i e on the boundary ( i . e . , s t r i c t inequal i ty prevai ls) 

These functions are such tha t concavity or convexity ( f o r functions whose 

second der ivat ive ex i s t s ) can be determined by inves t iga t ing the value of 

the second der ivat ive . For example, l e t y = f(x) be examined at the point 
9 9 

x = a. If the second derivat ive y, d y/dx", i d e n t i f i e s the slope 

(at x = a) of the curve defined by dy/dx, the following holds: 

2 ? 

(1) i f d y/dx" < 0 at x = a, dy/dx i s decreasing at x = a , and 

y = f(x) i s said to be concave; 
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? 9 

(2) i f cTy/dx > 0 at x = a , dy/dx is inc reas ing a t x - a , and 

y = f ( x ] i s s a id t o be convex. 

The funct ion y = f (x ) i s then concave within a given i n t e rva l i f and only 

i f y" = f " (x ) 0 v x lying in the i n t e r v a l ; i f y" = f " (x ) _> 0 v x ly ing 

in the i n t e r v a l , the funct ion i s convex. Note tha t concavity i s assoc ia ted 

with maximization, convexity with minimizat ion. A global maximum occurs 

i f a given func t ion i s concave throughout a defined region and has a 

s i ng l e s t a t i o n a r y poin t . S i m i l a r l y , a global minimum occurs i f a given 

funct ion i s convex throughout a defined region and has a s i ng l e s t a t i o n a r y 

po in t . 

The second point r e l a t e s to the i n t e r p r e t a t i o n of the Kuhn-Tucker 

cond i t ions . In developing these condit ions* Kuhn and Tucker brought out 

the fol lowing f a c t s : 
(1) For a wide c lass of [mathematical] programming problems 

( inc luding a l l l i n e a r problems and a l l d imin i sh ing- re tu rns 
nonl inear problems) a Lagrangian expression can be formed in 
exac t ly the [same] way as . . . f o r the ca lculus case, and 
t h i s Lagrangian expression will have the same useful 
property—whatever values of the va r i ab le s maximize (minimize) 
the value of the o r ig ina l ob jec t ive funct ion sub jec t t o i t s 
equa l i ty or i nequa l i t y cons t r a in t s wil l maximize (minimize) 
the value of the Lagrangian express ion . 

(2) Suppose [one i s ] deal ing with a maximization problem and i t 
tu rns out t h a t the optimal values of the va r i ab les x , , x 9 , . . . , x 

-k "k * *~"k 

a re . . .numbers which [ a r e ] designated by x^ 3 Xg , . . . , x n . . . . 

Suppose. . . these numbers [a re s u b s t i t u t e d ] f o r the x ' s in the 
Lagrangian express ion . I f the Lagrange m u l t i p l i e r s are then 
t r e a t e d as va r i ab les [ the Lagrange m u l t i p l i e r s being denoted 
by A ] and the Lagrangian expression minimized with respec t to 
the A'S, the minimizing values of the x ' s are the same as the 
constant Lagrangi an m u l t i p l i e r s required f o r the so lu t ion of 
the o r ig ina l maximization problem. The o r ig ina l problem i s 
sa id to be solved when and only when the values of the x ' s 
which maximize the Lagrangi an expression and the values of 
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the A1s which minimize the Lagrangian expression have been 
found. [Such a point is ca l led a saddle p o i n t . ] 

(3) If the func t ion to be optimized ['the ob j ec t i ve f u n c t i o n ] 
and the cons t ra in ing expressions are a l l l i n e a r , the 
Lagrangian m u l t i p l i e r s are the optimal values of the 
assoc ia ted dual func t ion . Given any primal and i t s dual , 
the Lagrange expressions f o r both are i d e n t i c a l . 

(4) This dua l i t y r e l a t i o n s h i p leads to the saddle -po in t proper ty . 
Consider a primal problem seeking to maximize p r o f i t . The 
dual of the primal i s one which seeks to minimize cos t . . 
Le t t ing P, C, and L denote the p r o f i t (p r imal ) , cos t 
( dua l ) , and Lagrangian express ions , r e s p e c t i v e l y , the 
fol lowing ana lys i s r e s u l t s : The values of the primal 
v a r i a b l e s , x-j, x . , , . . . , x , which maximize P must a lso be 

, those which maximize L. S imi l a r ly , the values of the 
dual v a r i a b l e s , the Lagrange m u l t i p l i e r s Ap ^2 5 ' * ' '^m5 

which minimize C must also minimize L. The r e s u l t i s t h a t 
of minimax (saddle p o i n t ) : i f one f i nds a combination of 
x ' s and A's which c o n s t i t u t e so lu t ions to the primal and 
dual problems, r e s p e c t i v e l y , the Lagrangian expression w i l l - -
f o r these values--itave the minimum value poss ib le f o r any A 
and the maximum value f o r any x . ° 

With these po in t s in mind, the meaning (and f u l l importance) of the Kuhn-

Tucker condi t ions fo l lows: these condi t ions serve as ex is tence theorems 

f o r opt imizat ion under i nequa l i t y cond i t i ons . For the c l a s s of programming 

problems f o r which they are v a l i d , the Kuhn-Tucker theorems s t a t e t ha t a 

so lu t ion e x i s t s f o r a given problem i f and only i f the corresponding 

Lagrange expression i s simultaneously s a t i s f i e d . 

For example, consider a funct ion f(x-j , x^) t h a t r ep re sen t s the 

r e l a t i o n s h i p e x i s t i n g between commodities x-j and Xg and t h e i r respec t ive 

con t r ibu t ion to p r o f i t . This p r o f i t funct ion i s to be maximized sub jec t 

to the c o n s t r a i n t equat ions g-j (x-j, x^) < 0 and g ^ x - j , Xg) ± 0- The 

William J . Baumol, Economic Theory and Operations Analysis 
(Englewood C l i f f s , 1961), pp, 51-58. 
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Kuhn-Tucker condi t ions then s t a t e t h a t f o r a point (x^ s x 2 ) t o be 

a maximum, the fol lowing must hold: 

, 5 , 3 = 0 
3X-| ' 1 3X-j l23X-| 

c , 5 > ! l z _ n 
3X2 19X2

 A23X2 

g-j ( x i » ) ~ ® 

^2^2(^"j> x2 ^ ~ ^ 

g-j (x 1 3 x 2 ) <_ 0 

g2 ( x |» x2) ^ • 

I f a l l x >_ 0, the po in t in quest ion i s a local maximum;^ i f f (x- j , x 2 ) , 

9*1 (x-j, x 2 ) , and g ? (x-j, x 2 ) are a l l concave (and d i f f e r e n t ! a b l e ) , the 

7 

point in quest ion i s a global maximum. If the se t of adnrissable values 

of the x . i s r e s t r i c t e d to non-negativa va lues , as would be the case f o r 

p r o f i t maximization, the necessary condi t ions are given by 
1 1 - , ! ! l , igT n 
9x-j 1 ax-( 23X-| -

af 8 g l 3 g ? 
< 0 3X0 '1 3X0 23X 2 2 2 

3f , 9 g l , 3 g2 3f , 9 g l , 3 9 

X1 3X-j ~ A1 3xY " A23X^~ + X2 3X̂ ~ " A1 3X "̂ " X2 3X~ 
2 

6 

Teichroew, op. c i t . , p. 307. 

7 I b i d . , p. 563. 
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9] (x-j > x-j) - 0 

^2^2 ' x2) = 0 

g^x- j , X2) _< 0 

g 2 ( x ! ' x
2 ) 1 0 

x i 1 0 

X 2 ° * 

The results of the Kuhn-Tucker investigations, although given for 

maximization of a concave function subject to concave constraints, are 

extended to minimization of convex functions subject to convex constraints 

by noting that a maximum noint of f ( x , , x 2 , . . . , x n ) i s a minimum point 

of - f{x-| , x 2 , . . . , x n ) . This extension then takes the following form. 

KuhrL-!Uck_e£ conditions for minimization . —A point (x-j, x 2 , , . . ,x̂  ) 

minimizes a function f ( x r * 2 xn) subject to g ^ x , , x? X[1) > 0, 

j = ' ' 2 ™ i f t h e r e e x i s t s a s e t ° f V S = 1, Xj > 0, such that 

9 f m 9g, 
i "" i = 1 * 2 , . . . ,n; 

X j 9 j ^ X T = 0 ; a n d 

> Xg 5.. . ,x^) > 0. 

Suf f ic iency condi t ions f o r local and global minima are s i m i l a r l y extended. 
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Li near Programming 

Linear programming has been defined as 

. . .a technique for specifying how to use l im i ted resources 
or capacities of a business to obtain a par t icu lar ob ject ive, 
such as least cost, highest margin, or least time, when 
those resources have alternate uses. I t i s a technique 
that systematizes for certain conditions the process of 
selecting the most desirable course of action from a num-
ber of available courses of act ion, thereby giving manage-
ment information for making a more e f fec t ive decision about 
the resources under i t s contro l .8 

Since i t s introduct ion as a tool of the operations researcher (or the 

administrator) , l inear programming has received extensive at tent ion from 

both the mathematician and the prac t i t ioner . Although the intent of 

t h i s study centers on the appl icat ion made of l inear programming in 

administrative analysis, the de f in i t i ons , theorems, and explanations 

necessary for a f u l l understanding of the technique are presented in the 

discussion that fo l lows. 

The general l inear programming problem can be described in the 

fol lowing manner: Assume that a given amount of resources (manhours, 

machine-time, quanti ty of resource, e tc . ) are available for use in a 

productive a c t i v i t y . Given the output per un i t of resource consumed 

and the return per uni t of output consumed, determine that combination 

of inputs which optimizes some defined function (e .g . , maximizes p r o f i t 

or minimizes cost) . I t is fur ther assumed that the function to be 

optimized and i t s constraining functions are l inear expressions of the 

various quant i t ies produced by the productive a c t i v i t y . 

8 
Richard A. Johnson, Fremont E. Kast, and James E. Rosenzweig, The 

Theory and Management of Systems (New York, 1 967), p. 291, c i t i n g Robert 
0. Ferguson and Lauren F. Sargent, Linear Programming, p. 3, 
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Thus, the l i n e a r programming problem can be of such a nature t h a t 

the ob j ec t i ve i s to maximize the re turn of the productive process or to 

minimize the e f f o r t required to complete the productive process . The 

cons t ra in ing func t i ons can be e q u a l i t i e s or i n e q u a l i t i e s or combinations 

of both. This type of problem i s def ined .in the fol lowing manner. 

Def in i t ion 3 .3 . - -Let f (x-J , x ^ , . . . ,xn) denote a def ined l i n e a r 

o b j e c t i v e func t ion of the form f(x-j , x 2 , . . . s x n ) = c-jX-j + C 2 X 2 + " '* + c n x n 

where the c. (i, = 1, 2 , . . . , n) represent the assoc ia ted return ( i f 

f ( x l , x^>• • • , x n ) i s to be maximized) per u n i t output or the assoc ia ted 

cost ( i f f (x- | , X £ , . . . ,x n ) i s to be minimized) per un i t inpu t . Let 

n 
y a . . x . (<, = , >_, <, >) b. denote the condi t ions under which 

i , j = l 1 J 

f (x *j , x ̂  $ . . . ,x n ) i s to be optimized (maximized or minimized as needed). 

In the system defined by the c o n s t r a i n t f u n c t i o n s , only one of the symbol: 

(<, =, >_> <> >) appears , and a l l of the c o n s t r a i n t func t ions are l i n e a r . 

The l i n e a r programming problem i s then def ined as a problem of the 

fol lowing type: Optimize (maximize or minimize) 

f ( x r X 2 , . . . , X n ) = C-JX-J + c 2 x 2 + . . . + c n x n 

sub jec t to 

a l l x l + a12x2+" * ' + a l n x n = 5 - 9 < J >^ t )l 

^2]X] ^ a 2 2
x 2 + . * • + a 2n x n 

a ml x l + am2 x2+ ' '*+ amn xn "* >^bmt 
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The func t ion to be optimized i s said to be the ob j ec t i ve f u n c t i o n , and 

the condi t ions under which the ob j ec t i ve func t ion i s to be optimized are 

ca l l ed the c o n s t r a i n t s . A f e a s i b l e so lu t ion i s a se t of values defined 

by the n component vector x_ = (x-j, X g , . . . ^ } s a t i s f y i n g a l l of the 

c o n s t r a i n t s of the problem. The solu t ion of the problem r e f e r s to any 

one of three p o s s i b i l i t i e s : (1) an optimal so lu t ion has been determined, 

along with the corresponding value of the o b j e c t i v e f u n c t i o n ; (2) i t has 

been proved t h a t no f e a s i b l e so lu t ion e x i s t s ; o r , (3) i t has been proved 

t h a t , although f e a s i b l e so lu t ions e x i s t , there i s no optimal so lu t ion 

Special cases.--A1though the term l i n e a r programming has been used 

to de f ine a general c lass of a l loca t ion problems, there are some special 

cases of the general case t h a t deserve p a r t i c u l a r mention. These special 

cases are such tha t "the c o e f f i c i e n t s in the c o n s t r a i n t s have special 

10 

fo rms , ' " and there e x i s t spec ia l ized computational techniques f o r 

handling these special problems. The most common are presented in t h i s 

d i scuss ion . 

(A) Transpor ta t ion problem. The t r a n s p o r t a t i o n problem descr ibes 

a p a r t i c u l a r sub-c lass of the l i n e a r programming problem t h a t i s concerned 

with shipping a given product (or se t of products) from m sources to n 

d e s t i n a t i o n s . These problems are of special importance "both because 

9 
William R. Smythe, J r . and Lynwood A. Johnson, In t roduct ion to 

Linear Programming, with Appl ica t ions (Englewood C l i f f s , l"9ltT7 p. 68. 
1^Teichroew, op. c i t . , p . 503. 
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they occur often in pract ice; and because they can be solved by 

algorithms which are more e f f i c i e n t fo r th i s class of problems." 

The classical description of the transportat ion problem involves 

the determination of an optimal schedule for product shipments that 

(1) or ig inate at sources (supply houses, warehouses, e tc . ) where 
the to ta l amount of product available for shipment is f i xed; 

(2) are sent d i rec t l y to the f i na l point of disposi t ion ( re ta i l 
stores, demand source, e tc . ) where the to ta l amount of product 
required is known, although i t may vary from destination to 
dest inat ion; 

(3) exhaust the source of supply and f i l l the demand quant i ty; 
th i s forces the condition that to ta l supply equals to ta l demand. 

The cost incurred for the operation is such that 

(4) i t i s l inear ; i . e . , the cost of each shipment is proportional 
to the amount shipped, and the to ta l cost of the,.operation is 
given by summing the individual costs involved J 2 

Thus, the transporation problem is concerned with the shipping of a 

homogeneous product (or set of homogeneous products) from in sources 

(or or ig ins) to n destinations (or demand points). Each o r ig in furnishes 

a f ixed amount of the product, and each destination requires a f ixed 

amount of the product. This relat ionship requires that to ta l supply 

equal to ta l demand. The amount stored at the source is completely 

exhausted in such a way that to ta l demand is completely sa t is f ied . 

The mathematical de f in i t ion of the transporation problem fol lows 

from th i s discussion. 

11 
Douglas J. Wilde and Charles S. Beight ler, Foundations of 

Optimization (Engiewood C l i f f s , 1 967), pp. 187-188. 
12 

George B. Dantzig, Linear Programming and Extensions (Princeton, 
1963), p. 299. * 
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Definition. 3.4. __ L e t a_, denote the to ta l quant i ty of product 

avai lable f o r shipment from source 1 (i = ! , 2 , . . . , m ) . Let b. denote 

the to ta l quanti ty of product demanded a t dest inat ion j ( j = ] s n) . 

Let c.jj denote cost of shipping (or t ransport ing) the product from source 

i to dest inat ion (or demand point) j . Let x ^ denote the quant i ty of 

product tha t i s shipped from source i to dest inat ion j . Then, the 

t ransposi t ion problem i s defined as: minimize the to ta l cost of 

shipping x i j . uni ts of product from source i to dest inat ion j in such 

a way tha t to ta l demand equals tota l supply, i . e . , 

subject to 

m m 
min El E c . . x . . 

i=l j = 1 U iJ 

n 
X i j = ai> 1 = 

11 
x j j ~ > J = l j 2 , . . . ,n; 

m n_ 
<L = £_ b . ; and 
1=1 1 j=l J 

x j j il 0 for a l l i and j . 

The notation given in the definit ion can be expanded in the manner shown 

below. 

m , n ( c n x n + c i 2 x i 2 + c i m
x

l r a ) 

+ ( C 2 , X 2 1 + C 2 2x 2 2+. . .+c 2 mx 2 m ) 

+ - " + ( c r a l x m l + ---+c
ran

xmn» 

subject to 
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X11 + x12 + x 13 + ° ' , + x lm a l 

X21 + X22 + X23+"*+ X2m a 2 

xml + xm2 + xm3+ ' • '+xmn s am 

X11 + X21 + x31+- ' " + x n l bl 

X12 + X22. + X32+ ' *"+xn2 = b2 

x l n + x2n + x 3n + ' '*+xmn = bn 

a-| + ; a2+. *'+am = bl + b2+ 

and x. • > 0 f o r all i and j . 

In p r a c t i c a l a p p l i c a t i o n , t o t a l supply and t o t a l demand are not 

n e c e s s a r i l y equal . Such a s i t u a t i o n can be handled by the use of a 

dummy (non-ex i s ten t ) supply or dummy demand point t h a t suppl ies o r 

demands the quan t i ty necessary f o r e q u a l i t y . Another approach to the 

same s i t u a t i o n (unequal supply and demand t o t a l s ) i s explained by 

di Roccafer rera . 

When the to t a l items required [demanded] i s more than 
production capac i ty [ supply] , t h i s d i f f e r e n c e can be 
d i s t r i b u t e d among a l l the receiving points (by 
reducing t h e i r demand), thus s a t i s f y i n g the ob jec t ive 
func t ion [minimizing t o t a l t r anspo r t a t i on c o s t ] . In 
the opposi te case , when to t a l production [supply] ,« 
exceeds requirements [demand], an inventory i s c r ea t ed . 

(B) The assignment problem. The assignment problem descr ibes a 

sub-c lass of l i n e a r programming problems t h a t i s concerned with the 

a l l o c a t i o n of n jobs to n f a c i l i t i e s . In t h i s p a r t i c u l a r c l a s s of 

13 
Giuseppe M. Ferrero di Roccafer rera , Operations Research Models 

fo_r Business and Indust ry (C inc inna t i , 1964) f p". 345. 
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th 
problem, i t i s assumed t h a t (1) the value of assigning the i person 

to the j^'1 job can in some way be determined ( s u b j e c t i v e l y or o b j e c t i v e l y ) 

arid (2) the ind iv idua l s (or niacinnes) vary in t h e i r s u i t a b i l i t y f o r a 

14 

given job . The ob j ec t i ve i s to minimize the cost of completing a l l 

of the jobs and to u t i l i z e a l l ava i l ab le resources , i . e . , each of the 

ind iv idua l s (or machines) will be assigned to exac t ly one j o b . 

Although s t ruc tu red in the same manner as the t r a n s p o r t a t i o n problem, 

the assignment problem d i f f e r s in t h a t i t ass igns exac t ly n non-zero and 

uni t -va lued v a r i a b l e s in any f e a s i b l e so lu t ion . In add i t i on , e x i s t i n g 
1 R 

algori thms are such tha t degenerate p o s s i b i l i t i e s are avoided. The 

mathematical d e f i n i t i o n of the assignment problem fo l lows . 

Def in i t ion 3 . 5 . - - L e t c.. . denote the cos t of job i being done by 

individual (or machine) j . Let x . . denote the assignment of j ob i to 
* J 

individual (or machine) j . Then the assignment problem i s defined as : 

minimize the cost of assigning job i to individual (or machine) j in 

such a way t h a t each job i s assigned to exac t ly one individual (or machine), 
i . e . , 

JL JQ. 
minimize z - c. .x. . 

i=l j=l 1 3 1 3 

sub jec t to 

14 
Dantzig, op. c i t . , p. 316. 

15 
The case f o r degeneracy i s defined as fo l lows : degeneracy occurs 

whenever one or more of the basic v a r i a b l e s are zero . The term "basic 
va r i ab l e" r e f e r s to the dependent va r i ab le (or v a r i a b l e s ) of the given 
problem. (Note Dantzig, op. c i t . , p. 81.) 
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r, 
E x , , = i 
j=i i j 

n 
and El x. . = 1 

i= l 13 

where 1 i f job i i s performed by j 

x i j ( 

otherwi se 

i , j = 1, 2 , . . . ,n. 

(C) Network problems. Also known as the shor tes t - route problem, 

the class of problems known as network problems can be described as one 

in which the objective i s to find the shor tes t path between a se r ies of 

connected poin ts . These points are connected by arcs of predetermined, 

f ixed length, with the arcs ending at a desired terminal point . 

Consider a network comprised of a set of nodes [events 
or s t a tes of a system], certain pai rs of which are 
connected by directed ( i . e . , d i rec t ion-or iented) arcs . . . 
one node i s dist inguished as the terminal . Then the 
problem i s to f ind the shor tes t path to the terminal 
from at l eas t one other designated point , and sometimes 
from every other point . The amount c._. represents the 

1 o 
length associated with t raversing the arc tha t s t a r t s 
a t node i and ends at node i . . . . the c . . ac tua l ly 

i j 
may be measured in units other than dis tance. To 
i l l u s t r a t e , c . . may denote the cost of going from 
node i to node j . In tha t case, the problem i s to 
f ind the l eas t - cos t path. Or c^j may represent the 

time to travel between the nodes. Then the object ive 
i s to f ind a minimum-duration pa th . 1 ° 

p. 178. 

16 
Harvey M. Wagner, Operations Research (Englewood C l i f f s , 1969), 
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Although genera l ly assoc ia ted with the minimizing o b j e c t i v e , the 

network problem can be of such a nature tha t the i n t e n t i s the maximi-

zat ion of the f low of m a t e r i a l , in format ion , e t c . This approach i s the 

converse of the s h o r t e s t - p a t h , minimum-duration problem in t h a t maximum 

flow i s genera l ly associa ted with the s h o r t e s t - p a t h minimum-duration 

17 

problem. Regardless of the p a r t i c u l a r approach involved, the network 

problem can be def ined as fo l lows . 

Def in i t ion 3 . 5 . - - L e t x. . denote the branch from node i to node j . 
" u 

\ 1 i f the branch from i to j i s in the s o l u t i o n . 

Let X i J -

0 i f the branch from i to j i s not in the so lu t i on . 

Let c ^ denote the assoc ia ted cos t measure. The network problem f o r 

minimizing the cos t of shipping through the network i s given by the 

fol lowing: 
n n 

minimize T~ EI c . - x . . 
i=l j=l 1 J 

sub jec t to 

and 

n 
HI x , , = 1 f o r j - 1, 2 , . . . , n ; 
i=l 1 3 

jn 
EI x. . = 1 f o r i = 1, 2 , . . . , n : 
j=l 1 3 

x = 1 ^ vr 1 ' 

^ G a v e t t , op. c i t . , p. 84. 

1 8Robert W. Llewellyn, Linear Programming (New York, 1966), 
pp. 336-339. ' 
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(D) The dual problem. 

For every l inear programming problem there i s another 
int imately related l inear programming problem. . . . 
For every maximization (or minimization) problem in 
l inear programming, there is a unique s imi lar problem 
of minimization (or maximization) involving the same 
data which describe the or ig inal problem J 9 

Thus, for every l inear programming problem there exists a corresponding 

problem: I f the or ig inal problem (the primal) i s one of maximization, 

i t s dual i s one of minimization; i f the or ig inal problem is one of 

minimization, i t s dual i s one of maximization. The significance of 

th is relat ionship can be seen when the primal problem presents considerable 

d i f f i c u l t y in obtaining a solut ion: i t i s possible to bypass many 
on 

d i f f i c u l t i e s by formulating and solving the dual problem. The 

selection of the primal problem, when given a set of data, is a matter 

of individual judgment. (For example a problem defined by a set of cost 

and p r o f i t data could be approached as fol lows: minimize cost or maximize 

p r o f i t . In e i ther case, the data describing the problem remain the same.) 

According to di Roccaferrera, 
. . .the reckoning of the dual instead of the primal may 
o f fe r the advantage of shortening the time of computation, 
or may allow a check on the primal problem. When very 
large problems are analyzed to determine the sets of 
or ig inal data, the computation time represents an 
important factor to be considered care fu l l y . . . . 
The interpretat ion of the solution [ to the dual] can 
be referred back to the primal provided there exists 
a s t r i c t connection (generally equal i ty) with the 
solut ion. 

1 9 ' 
di Roccaferrera, op. c i t . , p. 683. 

2 0 I b i d . , p. 683. 2 1 I b i d . , pp. 683-684. 
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From th is statement comes one of the most important contributions of the 

dual problem: the dual can resul t in fas ter , more e f f i c i e n t solut ions. 

In addition when the dual problem has been solved, the primal problem 

22 

has been solved. 

As a means of i l l u s t r a t i n g the relat ionship which exists between 

the primal problem and i t s dual, consider the fol lowing: 
maximize f (x- j , x 2 , . . . , x n ) = c ^ + C2X2+- • •' i 'cn

xn 

subject to 

a l l x l + a12x2+> " + a l n x n - b l 

a21x l + a22x2+* " + a 2 n x n - b2 

a n l x l + V V - ^ V n ^ n 

where a l l x >_ 0. 

Applying standard notation,the problem statement is condensed into the 

form 

maximize T_ c .x . 

subject to 

n 
ET a . . x . < b . , i = 1, 2 , . . . ,m , 
j = l 1 J J ~ 3 

and x. > 0 fo r j = 1, 2 , . . . ,n. 
J 

The dual i s wr i t ten 

minimize g(u-j, u2 uffl) = b ] u ] + ^2
U2+* * *+bmum 

subject to 

22 
Wagner, op. ci t , , pp. 134-139. 
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a l l u l + a 21 u 2 + " ' , + a ml u m - C1 

a12Ul + a 22 u 2 + * , , + a m2 u m - c 2 

a l n u l + a 2n u 2 + * ' ' + a mn u m — cm 

Condensing the form, 

where a l l u > 0. 

m 
minimize b..u. 

| J i=l 

sub jec t to l_ a , . u . > c.., j = 1, 2 , . . . , n , 
i=l U 1 J 

and u. > 0 f o r i = 1, 2 , . . . , n . 

23 

With re fe rence to these two forms. i t i s to be noted t h a t 

(1) the column c o e f f i c i e n t s of the primal are the row c o e f f i c i e n t s 

of the dual ; 

(2) the row c o e f f i c i e n t s of the primal are the column c o e f f i c i e n t s 

of the dual ; 

(3) the c o e f f i c i e n t s of the primal ob j ec t i ve func t ion become the 

r e s t r a i n t cons tan ts of the dual (with no change in o r d e r ) ; and, 

(4) the r e s t r a i n t constants of the primal become the c o e f f i c i e n t s 

of the dual ob j ec t i ve func t ion (with no change in o r d e r ) . 

I f matrix nota t ion i s app l i ed , the computational technique of moving 

from primal to dual i s ev iden t . 

23 
An important point to note i s t ha t in the i l l u s t r a t i o n the 

i nequa l i t y s igns are not mixed; i . e . , the primal (a maximization 
problem) i s completely described by "a t l e a s t " cond i t ions , leading to 
a dual completely described by "at most" cond i t i ons . Thus, the 
i nequa l i t y s igns of the dual are the reverse of the primal . 
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PRIMAL DUAL 

max f ( x ) = CS min g(U) = B̂ JJ 

sub jec t to sub jec t to 

AX < B ATU > CT 

* 1 0 1 L 0 

In t h i s form the supe r sc r ip t T denotes t ranspose ; A i s an m x n, 

nonzero c o e f f i c i e n t matr ix ; B i s m x 1 matrix and C i s 1 x n matr ix . 

The s ign i f i cance of these r e s u l t s r e s t on the d u a l i t y theorem of 

l i n e a r programming. 

Theorem 3 . 1 . - - I f one of the two problems 

Maximize CX_ sub jec t to the c o n s t r a i n t s AX_ <_ B, > 0 

T T T 
Minimize B_ U_ sub jec t to the c o n s t r a i n t s A U > C , U >_ 0 

has a s o l u t i o n , then so does the o t h e r . In addit ion, i f so lu t ions e x i s t , 

then the ob jec t ive func t ion values are e q u a l ^ 

The importance of t h i s theorem l i e s in the f a c t t h a t i t guarantees 

equivalence of primal-dual s o l u t i o n s . In f a c t , 

(a) i f both the primal and dual problems possess f e a s i b l e 
s o l u t i o n s , then the primal problem has an optimal so lu t ion 
x ,* , j = 1 , 2 , . . . ,n , the dual problem has an optimal 

J 
solut ion u.j*5 i = 1, 2 5 . . . ,m, and 

m 
I 

j=l J J i=l 

; i hi 

L y j * • 

(b) i f e i t h e r the primal or dual problem possesses a f e a s i b l e 
so lu t ion with a f i n i t e optimal ob jec t ive func t ion value , then 
the o the r problem possesses a f e a s i b l e so lu t ion with the same 
optimal ob jec t ive funct ion va lue . J 

24 
Thomas L. Saaty, Mathematical Methods of Operations Research 

(New York, 1 959), p. 118. 
25 

Wagner, op. c i t . , p. 135. 
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As a means of i l l u s t r a t i n g the dual formulat ion of the s tandard 

?& 

l i n e a r programming problem, consider the fol lowing example." A f i rm 

opera tes two separate production l i n e s , each of which produces the same 

th ree products . For s i m p l i c i t y , denote the production l i n e s by P and Q, 

the products by A, B, and C. Because of technological r e s t r i c t i o n s the 

r e l a t i v e da i l y output i s f ixed a t the q u a n t i t i e s shown below. 

Line P Line Q 

Product A 300 100 

Product B 100 100 

Product C 200 600 

I t i s assumed t h a t the f i n n i s not opera t ing a t f u l l capaci ty even 

though i t has orders f o r 2,400 u n i t s of product A, 1,600 u n i t s of product B, 

and 4,800 u n i t s of product C. These orders are to be completed within 

the coming month. Based upon past experience management has assumed t h a t 

l i ne P incurs a da i l y va r i ab le cos t of $600, l i n e Q a d a i l y va r i ab l e cos t 

of $400. As a means of determining the optimum number of days to operate 

each of the production l i n e s , i t i s assumed t h a t production cos t s f o r 

the month should be minimized. 

So lu t ion : Let x-j denote product l i n e P and product l i ne Q in 

terms of operat ing days. Then the primal problem can be wr i t t en 

minimize f(x-j , x^) = 600x^ + 400x2 

subjec t to 

O C. 

The context of t h i s example was taken from Donald J . Clough, 
Concepts in Management Science (Englewood C l i f f s , 1963), pp. 326-328, 
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3GQx-j + 100x2 >. 2,400 

1 OOx-j + 100x2 > 1 ,600 

200x-j + 600X2 ^ 4 5 800 

x^ _> 0 

x ? >_ 0. 

The dual i s given by 

maximize g(u-j, u^) = 2,400u.j + 1 ,600u£ + 4,800u3 

sub jec t to 

• 300u-j + 1 OOUr, + 200u3 < 600 

1 OOu-j + 1 OOû  + 6Q0u^ £. 400 

u-j ^ 0 

«2 >_ 0 

u3 > 0 

where the ( 1 = 1 , 2 , 3) denote the shadow p r i ce s of products A, B, and C, 

In t h i s example the primal funct ion has as i t s ob j ec t i ve the 

minimizing of the monthly production c o s t ; the dual func t ion has as i t s 

ob j ec t i ve the maximizing of the shadow pr ices assoc ia ted with products 

A, B, and C. Shadow p r i c e s represen t the t rue accounting value of the 

assoc ia ted commodity. Whereas the primal c o n s t r a i n t s ind ica te t h a t the 

f i rm must opera te a s u f f i c i e n t number of days to meet minimum monthly 

o r d e r s , the dual c o n s t r a i n t s ind ica te t h a t the accounting value of the 

d a i l y output of a production l i ne cannot exceed the da i l y cost of operat ing 
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the individual l i n e s . (As a mat te r of no te , a u-j value of ze ro , 

i = 1, 2, 3 , i nd i ca t e s t h a t the assoc ia ted product i s produced in 

surplus as a by-product . ) 

Examination of these special cases revea l s t h a t each one e x h i b i t s 

the basic c h a r a c t e r i s t i c s of the l i n e a r programming problem; i . e . , 

(1) there i s some ob jec t ive to be a t t a i n e d ; (2) there are a la rge number 

of v a r i a b l e s to be handled simultaneously; (3) there are many i n t e r a c t i o n s 

between the v a r i a b l e s ; (4) there e x i s t o b j e c t i v e s tha t c o n f l i c t with the 

p r inc ipa l ob j ec t i ve of the problem; and (5) a l l e x i s t i n g r e l a t i o n s h i p s 

a re l i n e a r . Each of these special cases can be solved by the same 

techniques t h a t are app l icab le to the general l i n e a r programming problem. 

Of these ava i l ab le techniques , the foremost i s the simplex method of 

George Dantzig. 

Although the simplex method i s the most widely used technique f o r 

solving l i n e a r programming problems, i t i s not the only solu t ion technique 

t h a t i s a v a i l a b l e . Modif icat ions to the simplex procedure have produced 

more e f f i c i e n t techniques , notably the revised simplex and the MINIT 

(minimum i t e r a t i o n ) method, f o r solving l i n e a r programming problems. 

In addi t ion special computational techniques have been developed f o r 

solving t r anspo r t a t i on problems (the modified d i s t r i b u t i o n method and 

the Vogel approximation method) and assignment and network problems 

(the Hungarian method). 

This study will be l imi ted to an ana lys i s of the simplex method 

and the simplex a lgor i thm. These two techniques are the p r inc ipa l 
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techniques fo r solving l inear programming problems and are the base 

from which the other techniques stern. 

The simplex method.--The simplex method represents the basic 

technique fo r solving l inear programming problems. This method i s 

distinguished from the simplex algorithm on the basis of i t s form and 

content. Whereas the simplex algorithm defines an i t e r a t i v e technique 

tha t cons is t s of a se r ies of pivot operations which systematical ly 

introduce selected var iables into the solution unti l the optimal 

combination of solution points i s achieved, the simplex method defines 

the procedure fo r solving a system of simultaneous l i nea r equations fo r 

non-negative values which optimize a given funct ion . This i s accomplished 

by (1) expressing al l inequa l i t i e s as e q u a l i t i e s , (2) solving the 

resul t ing system of simultaneous l inear equations f o r non-negative 

values, and (3) t es t ing the system fo r opt imal i ty . The approach taken 

by the simplex method thus operates under the same solution c r i t e r ion 

imposed upon the l inear algebraic system. For the given set of simultaneous 

l i nea r func t ions , now defined as e q u a l i t i e s , three solution p o s s i b i l i t i e s 

e x i s t : (1) the given system i s inconsis tent and has no solu t ion; (2) the 

given system i s consis tent and has a set of unique solut ions ; (3) the 

given system has an i n f i n i t e number of solutions only one of which 

minimizes the object ive funct ion . 

An algorithmic approach to the simplex method requires tha t a 

systematic procedure be developed f o r obtaining a l l possible solution 

combinations fo r the var iables of the problem. If the system of equations 
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to which the algorithm is applied is inconsistent (no so lu t ion) , the 

work is minimal. I f the system is consistent (unique so lut ions) , the 

work may be tedious but i t terminates in the optimal solut ion. I f the 

system i s dependent (an i n f i n i t e number of solut ions) , the work is not 

only tedious but infeasible without some electronic assistance from a 

computer. 

The fol lowing algorithm represents a technique for applying the 

simplex method to l inear programming problems. This algorithm is 

derived from the general theory of the simplex method and has proved 

to be e f fec t ive when the number of independent variables i s not excessive. 

Algorithm 3.1 (Simplex Method).--Step 1. Locate a l l corners of 

the solut ion space by t reat ing the constraint functions as equal i t ies and 

solving for a l l points of intersect ion. 

Step 2. Check a l l solut ion points for the l inear system to determine 

whether or not the constraints are v iolated. This is accomplished by 

subst i tut ing the solution points, the points of in tersect ion, into the 

constraint functions. 

Step 3. Eliminate a l l solut ion points which v io late the constraint 

set. 

Step 4. Substitute the admissable corner points into the objective 

function to test fo r optimal i ty . 

Step 5. The optimal solution i s the solut ion points which corresponds 

to the optimal value of the object ive function. 

Inspection of th is set of rules reveals that use of the simplex 

method iden t i f i es a l l possible solutions to the constraint system. These 
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so lu t ions are then checked to guarantee tha t the so lu t ions to be 

evaluated f o r optimal i t y s a t i s f y al l of the r e s t r i c t i n g cond i t ions . 

With non-admi ssable so lu t ions el inn nated , the ob j ec t i ve fun ct i on i s 

evaluated a t the remaining solu t ion p o i n t s . The optimal so lu t ion i s 

then se lec ted by observa t ion . 

As a means of i l l u s t r a t i n g the simplex method, consider the 

fol lowing two-dimensional problem. A firm i s engaged in the manufacture 

of two products , A and B. Product A con t r ibu te s $2 p r o f i t per uni t 

while product B con t r ibu te s $3 p r o f i t per u n i t . Maximum time ava i l ab l e 

f o r manufacture i s 60 hours per week. Product A requ i res 5 hours per 

u n i t , and product B requ i res 6 hours per un i t . Product B requ i res 

twice as much inspect ion time as does product A, with only 16 t o t a l 

hours ava i l ab le f o r in spec t ion . Current market demand f o r A p r o h i b i t s 

more than 6 u n i t s per week. Determine the product mix f o r A and B tha t 

will maximize t o t a l p r o f i t . 

So lu t ion : The func t iona l represen ta t ion of the problem i s given by 

max f(A, B) = 2A + 3B 

subjec t to 

A _> 0 

B >_ 0 

A £ 10 

B < 6 

5A + 6B £ 60 

A + 2B < 16. 
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Applying the simplex method, 

Step 1. Locate a l l corner solutions by t reat ing the constraint 

functions as though they were equal i t ies and solving for points of 

intersect ion. 

e-|: A + OB = 0 ~ A = 0. 

e 2 : OA + B = 0 ~ B = 0. 

e 3 : A + OB =10 ~ A =10. 

e 4 : OA + B = 6 ~ B = 6. 

eg : 5A + 6B =60. 

e g : A + 2B =16. 

Corner combinations (A, B) are given by (0S 0) ; (0, 6); (0, 10); (0, 8 ) ; 

(10, 0); (12, 0); (16, 0); (10, §); (10, 3); (10, 6); (|i, 6); (4, 6); 
and (6, 5). These corner combinations are obtained by (1) l e t t i ng A = 0, 

solving for B; (2) l e t t i ng B = 0, solving for A; (3) l e t t i ng A = 10, 

solving for B; (4) l e t t i ng B = 6, solving for A; (5) solving e,- and e , 
v D 

for intersection points. As a matter of note, e^ and e^ define the 

axes of the Cartesian system, any point ly ing on the axes being a 

possible solut ion; e3 defines the l ine passing through the point A = 10, 

B = 0, paral le l to the B axis; e^ defines the l ine passing through A = 0, 

B - 6, paral le l to the A axis. Were i t not for the fact that only corner 

solutions need be considered, i t would be necessary to consider a l l 

possible points ly ing on the axes. The same would apply to the space 

bounded by the constraint functions, defined as the feasible region. 

(See Figure 3.2.) 
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0 
A 

Fig. 3.2--Graphical representation of the simplex method 

Step 2. Check a l l solut ion points to determine v/hether or not they 

sat is fy a l l of the constraint functions simultaneously. 

Solution Point Sat is f ies Constraints? Admi s sable 

( 0 , 0) Yes Yes 

( 0 , 6) Yes Yes 

o 00
 

No--violates e^ No 

o o No—violates e, and ec 4 6 
No 

( 1 0 , 0) Yes Yes 

( 1 2 , 0) No—violates e^ No 

( 1 6 , 0) No—violates e^ No 

( 1 0 , | ) Yes Yes 
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O0» 3) No—violates N0 

( l 0 ' 5 ) No---violates e and e Ho 
24 o b 
5̂""» No—violates 6g l\i0 

( 4 ' 6 ) Ves yes 

<6 , 5> Yes y e s 

Step 3. Eliminate ai l corner points which v io la te the constraint 

se t . From the tabulation i t i s seen that the only admissable corner 

combinations are (0, 0); (0, 6); (10, 0); (10, f ) ; (4, 6); and (6, 5) . 

Step 4. Substitute the admissable corner points into the objective 

func t ion to t e s t f o r optimal i t y . 

Solut ion Point Value of ob j ec t i ve func t ion = 2A + 313 

(0, 0) 0 

(0> 6) i g 

(10, 0} 20 

(10, | ) 25 

(4, 6) 26 

(6, 5) 2 7 

Step 5. Se lec t the optimal combination by inspect ion of the r e s u l t s 

of Step 4. Since the ob j ec t i ve func t ion i s to be opt imized, A = 6, B = 5 

i s the des i red combination; i . e . , the f i rm should produce 6 u n i t s of 

product A and 5 un i t s of product B in order to achieve maximum p r o f i t 

of $27. 

Although limited to the two-dimensional case , t h i s examples does 

i l l u s t r a t e the mechanics of the simplex method. These mechanics requi re 

the eva lua t ion of al l corner po in t s (poin ts of i n t e r s e c t i o n ) and then the 



220 

evaluating of these points for f e a s i b i l i t y . Although all possible 

solution points are considered a t the ou t se t , only feas ib le (adniissable) 

points are tested f o r optimal i t y . 

The simplex algori thm. --The simplex algorithm i s an i t e r a t i v e 

procedure whereby a problem formulated as a l inea r programming problem 

i s systematical ly invest igated for the optimal solut ion. I t has been 

shown tha t i f a feas ib le optimal solution ex i s t s i t i s located a t a 

corner of the convex set described by the l inear system. The simplex 

algorithm, through i t s i t e r a t i v e search, se lec t s t h i s optimal solution 

from among the se t of f eas ib le solutions to the problem. This select ion 

i s made by systematically considering the corner points of the solution 

space of f eas ib le solution points . Only those points contained in the 

f eas ib l e set are evaluated. Points outside the feas ib le se t are not 

considered. The algorithm terminates at the optimal solut ion. 

The simplex algorithm i n i t i a t e s i t s i t e r a t i v e process by assigning 

value only to an appropriately selected set of var iables tha t have been 

introduced into the problem. This approach i s based upon the i n i t i a l 

assumption tha t the primary var iables of the problem are all zero in 

value. This assumption is analogous to s t a r t i ng the i t e r a t i o n s a t the 

point of origin of the defining coordinate system. From t h i s i n i t i a l 

assignment, the algorithm se lec ts the variable which i s to en te r the 

solution according to the rule of s teepest ascent , a rule which asse r t s 

tha t the variable to en te r the solution is the one contributing the 

most to the desired optimal value. The variable to be replaced by the 
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entering variable i s the one creating the bottleneck to the optimal 

solut ion. This procedure is repeated until no f u r t h e r improvements can 

be made. At t h i s point the algorithm terminates at the optimal solution 

or indicates that the given problem has no solut ion. 

Although the rules governing the simplex algorithm apply to both 

maximization and minimization problems, the method by which the entering 

solution variable i s selected i s d i f f e r e n t . In the maximization problem 

the entering variable i s i d e n t i f i e d as the variable which contr ibutes the 

most to . the value of the object ive funct ion. In the minimization problem 

the entering variable i s i den t i f i ed as the var iable which contr ibutes 

the l ea s t "cost" to the object ive func t ion . This process has been 

iden t i f i ed as the rule of s teepest ascent and i s defined as fol lows. 

Definit ion 3 .7 . - -Let x . denote the j ^ va r iab le . Let c. be the 
vJ 0 

cost (or p r o f i t ) associated with the variable x - . Let z . be the total 
3 3 

cost (or p r o f i t ) associated with the var iables in the current solut ion; 

i . e . , z . i s the cost (or p r o f i t ) obtained by multiplying the cost (or 

p r o f i t ) associated with the variable current ly in the solution by the 
t h 

corresponding element in the j ' column of the s t ructured l inea r programming 

problem and then column summing the individual products obtained f o r the 

elements in each of the j columns. The rule of s teepest ascent then 

i d e n t i f i e s the variable to enter the solution as tha t var iable s a t i s fy ing 

(1) max (c- - z- ) > 0 for maximization, 
O nJ 

(2) min (c. - z •) < 0 fo r minimization. 
J J 
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The simplex algorithm can be applied to any l inear programming 

problem which requires maximization or minimization of a defined objective 

function. However, the d is t inc t ion between the use of the simplex 

algorithm fo r maximization or minimization is not presented in the same 

manner nor in the same detai l as w i l l be done in th is study. Since the 

intent of th is chapter is the examination and explanation of the basic 

techniques or optimal search, algorithms for both maximization and 

minimization w i l l be presented. 

Algorithm 3,2 (Simplex algorithm for maximization).--The problem 

to be solved has the form 

max f ( x , , x ? , . . . , x ) = c,x, + c0x9+.. .+c x 1 <- n I I 2 2 n n 
subject to 

a n x l + a 1 2 x 2 + ' " ' + a l n x n - b l 

a 2 1 x l + a 2 2 V " - - + a 2 n x n ± b 2 

amlx l + am2x2+" " + a - x - < b-mn n — m 

and x. >0 for i = 1, 2,...,m. 

This system is converted to a system of l inear equations by adding 

a slack variable, s . , to each l inear inequal i ty . The slack variable is 

assumed to y ie ld a contribution to the objective function of value 0 and 

is so included in the objective function. Addition and inclusion of the 

appropriate slack variable yields the fol lowing form: 

max f (X-,, x 2 , . . . , x n , s-,, s2 S fJ = C ] x 1 + ^ 2
X 2 + ' ' , + cn xn + 0 s l + 0 s 2 + " , + 0 s n 



subjec t to 

a l l x l + a 12 x 2 + - " + a l n x n + S1 + 0 ^ sk 
n 

a21Xi + a22 x2 + " ' * + a2nxn + 0 s l + s 2 + 0 sk 
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- b. 

n-1 
a ml x l + am2x2 + " - famnxn + 0 ^ sk +s„ b n ' 

Inspect ion of t h i s l i n e a r system reveals the fol lowing p o i n t s : 

(1) f o r maximization, the con t r ibu t ion of the slack v a r i a b l e , represen t ing 

unused capac i ty , i s zero ; (2) the slack va r i ab l e s are augmented to the 

o r i g i n a l , basic va r i ab le s of the problem in such a way t h a t the o r ig ina l 

matrix of c o e f f i c i e n t s , A_ = ( a - j j K i s augmented by an i d e n t i t y matrix of 

the appropr ia te s i z e ; (3) the addit ion of the k slack va r i ab l e s t ransforms 

the o r ig ina l m x n system of l i n e a r i n e q u a l i t i e s in to an m x (n + k) 

system of l i n e a r e q u a l i t i e s . In matrix n o t a t i o n , t h i s t ransformat ion i s 

wr i t t en as fo l lows : 

subjec t to 

where 

fc , 

max f (x ) = Cx 

Ax < b. 

: 2 ' " ' * crP ' 
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A = 

an a12 ' 3 In 

a21 a 22 a2n 

aml am2 amn 

; and, 

n J 
In t roduct ion of the slack v a r i a b l e s r e s u l t s in the fo l lowing: 

n 
max f (x, s j = Cx + 0 s, 

k=l 

subjec t to 

(A, I ) ( x , s) < b 

where 

(A, I_) = the o r ig ina l c o e f f i c i e n t matrix augmented by the n-dimensional 

i denti ty matr ix ; 

(x» s j = (x-j, x2 

b 

• > 5 S "J 5 S r> 5 . • . S ^ 

( b - j > b ^ , • • • s b n ) • 

This l i n e a r system i s converted f o r a lgor i thmic app l ica t ion by 

cons t ruct ing a t ab le cons i s t ing of m + 4 rows and (n + k + 4) columns. 

This arrangement provides row and column space f o r the fo l lowing: (1) the 

ob j ec t i ve funct ion c o e f f i c i e n t s , c . 5 (2) the v a r i a b l e s contained in the 
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transformed formulation, (3) the z . values, (4) the (c. - z^.) computations, 
J J u 

(5) the contribution of the variables in the solut ion, (6) the solution 

mix--the bas is , (7) the constants representing the value of the corresponding 

solution var iab le , and (8) the loca tor fo r the variable which i s to leave 

the solut ion. (See Table 3 .1 . ) At each i t e ra t ion of the algorithm a new 

table i s constructed. The process i s repeated unti l the optimal solution 

i s reached. At the optimal solution the value of the object ive function 

is taken from the in tersec t ion of the z . row and the column of constants . 
J 

Given th i s tabular formulation, the application of the simplex 

algorithm requires but f ive s teps . However, there are some undefined 

terms that require introduction since they are part of the algorithm. 

These terms are as follows and apply to both maximization and minimization: 

(1) pivot column: the column headed by the variable which i s to 

en te r the solution and i s i d e n t i f i e d by the rule of s teepest ascent; 

(2) pivot row: the row corresponding to the variable current ly in 

the solution but destined to be replaced by the var iable i d e n t i f i e d by the 

pivot column; 

(3) pivot element: the element located at the in te rsec t ion of the 

pivot row and the pivot column; 

(4) row element: the individual elements in each of the m rows of 

the body matrix; 

(5) replacement pivot row: the row elements obtained by dividing 

each element in the or iginal pivot row by the pivot element. 
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In the steps to follow, i t i s assurnsd tha t the l inea r programming 

problem has been converted to equa l i t i e s and arranged in the form of 

Table 3.1. In addition i t i s assumed tha t the necessary c ., z . , and 
\J 0 

,c . - z . ca lcula t ions have been made. The form represented in Table 3.1 
J 

i s the one associated with the i n i t i a l solution to the given maximization 

problem. All var iables of the or iginal problem are equal to zero. The 

only nonzero variables are the slack var iab les . 

Algorithm 3.2 (Simplex Algorithm for Haximization). —Step I. Locate 

the pivot column. The pivot column is i d e n t i f i e d as the column corres-

ponding to m?x (c . - z . ) fo r c . > z . . 
J 0 J J 3 

Step 2. Locate the pivot row. The pivot row i s i d e n t i f i e d as the 

row corresponding to the minimum posi t ive quotient obtained by dividing 

the row constant , b•, by the corresponding element in the pivot column; i . e . 
P mm 

i 
o element > 0. Pivot column element 

The remaining steps r e f e r to the construction of a new table of 

values showing the c o e f f i c i e n t s that r e su l t from a change in the solution 

s e t . This change i s recorded in a table s imi lar to tha t of Table 3.1. 

At each i t e ra t ion i t i s necessary to construct a table that summarizes 

the operations performed on the current solution matr ix- table . The 

constructed table i s then checked to determine if an optimal solution has 

been achieved. If i t has, the process stops; i f i t has not , the i t e r a t i o n s 

continue. 

Step 3. Replace the pivot row by dividing the pivot element into each 

element of the pivot row (including the pivot element i t s e l f ) . 
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Step 4. Replace a l l non-pivot row elements by applying the following: 

/Elements of Row\ f Element at the f Corresponding Elements\ 
( to be 
1 Replaced 

Intersection of Pivot 
Column and the Row 

of the Replacement ] 
Pivot Row / 

\ J \ Being Replaced / \ J 

Step 5. Recalculate the z. values. Recalculate c. - z. for each 
J J J 

of the j columns. The maximal value has been achieved with the new 

solution mix i f and only i f (c. - z.) <_ 0 for a l l c. - z. values. I f 
J J J • J 

(c-i ~ L 0 "fr°r c i " z i » r ePsat steps 1 through 5. I f (c. - z.) > 0 
<J vJ vJ 0 J J 

but a.. < 0 for al l a. . in column j , as dictated by c. - z. > 0, the 
' J ' J J J 

objective function is unbounded and no unique maximum exists. 

• As a means of i l l us t ra t ing this algorithm, consider the i l l us t ra t ion 

of the simplex method. In that example the problem was one of combining 

two products in such a way that p ro f i t was maximized. With x-j = A and 

Xg = 8, the functional expression is written 

max f(x. j , x2) = 2x-j + subject to 

x-| <10 

x2 - 6 

5x-j + 6Xg 60 

X1 + 2x2 <. 16 

X| > 0 

x2 -

I t is necessary to f ind that combination of nonnegative values of x^ 

and Xg that maximize the given objective function. 
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Since the objective function is res t r ic ted by four constraint 

funct ions, i t is necessary to introduce four slack variables. I t is 

important to note that the form of the constraints is uniform; i . e . , 

each of the constraint funct ions is defined by a "less than or equal to" 

inequal i ty . This is the necessary form (or at least "less than") i f 

only a slack variable i s to be introduced. Introduction of the necessary 

four slack variables s-j, Sg, and redefines the problem as fol lows: 

max f(x-,, Xg, , Sg, s^, s^) = 2.x-, + 3x^ + Os-j + Osg + 0sq + Oŝ  

subject to 

x-j + OX2 + s j + 0s? + Oŝ  + Os^ = 10 

Ox-j + Xg + Os-j + s^ + Oŝ  + Oŝ  = 6 

5x-j + 6x2 + Os-j + OSg + s^ + Oŝ  = 60 

X-j + 2x2 + Os-j + OSg + 0s3 + s ̂  

The i n i t i a l - s o l u t i o n is shown in Table 3.2. 

16. 

TABLE 3.2 

INITIAL SOLUTION 

c j 2 O 
O 0 0 0 0 

Contribution Solution Set X1 : x2 S1 S2 S3 S4 Po V a i j 

0 S1 1 0 1 0 0 0 10 CO 

0 S2 0 1 0 1 0 0 6 6 

0 s3 5 6 0 0 1 0 60 10 

0 S4 1 2 0 0 0 1 16 8 

Z j 0 0 0 0 0 0 0 

C3 Z j 2 3 0 0 0 0 
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The values shown in the contribution column were taken d i r ec t l y 

from the object ive c o e f f i c i e n t s shown in the c . row corresponding to the 
\J 

variables in the solution s e t . The z. values were obtained by f i r s t 
j . J 

multiplying each element in each of the variable columns by the cor res-

ponding row contribution and then to ta l ing the products f o r each column. 
i" H 

The respective column tota l i s the z, value f o r the j column. For example, 

z-j = 0(1) + 0(0) + 0(5) + 0(1) = 0; 

z 2 = 0(0) + 0(1) + 0(6) + 0 (2) = 0 ; 
e t c . 

Application of the (c. - z . ) rule fo r maximization reveals the 
J vJ 

variable of column 2 with a c. - z . value of +3 should enter the solut ion. 
<J u 

This indica tes tha t variable x2 will contr ibute more to the object ive 

function than the var iables current ly in the solut ion. At the next 

i t e r a t i o n , variable x^ will enter the solution s e t . I t will contribute 

a per uni t value of 3 as shown in the c . row. This contribution value 
vJ 

will be placed in the contr ibution column, replacing the contribution of 

the var iable leaving the solut ion. The simplex algorithm will be used 

to construct the next solution t ab l e . 
Step 1. Locate the pivot column. The pivot column i s i den t i f i ed 

as the column corresponding to max (c. - z . ) > 0. Sine the c . - z- value 
J O J J 

of +3 i s the maximum of the (c, - z , ) values, column 2 i s i d e n t i f i e d as 
u J 

the pivot column. 

Step 2. Locate the pivot row. The pivot row i s i den t i f i ed as the 

row corresponding to the minimum posi t ive quotient — 
1 pivot column element 
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These q u o t i e n t s are shown in the column labe led P Q / a ^ . Inspec t ion of 

t h i s column revea l s t h a t the minimum p o s i t i v e q u o t i e n t i s given by 

P /a^2 = 6 / 1 = 6 . This value corresponds to row 2 . The re fo re , the 

p ivo t row i s row 2. Variable wil l e n t e r the so lu t ion se t in place of 

si ack v a r i a b l e s^ • 

Step 3. • Replace the p ivo t row by d iv id ing the p ivo t element i n t o 

each element of the p ivo t row. The pivot element i s the element loca ted 

a t the i n t e r s e c t i o n of the p ivot row and p ivo t column. For t h i s i t e r a t i o n , 

the p ivo t element i s 1. Replaced p ivo t row = (0, 1> 0, 1, 0, 0, 6 ) . 

Step 4 . Replace a l l non-pivot row elements by applying the fo l l owing : 

Elements of Rowj j Element a t the ""\ f Corresponding Elements'! 
to be - ( I n t e r s e c t i o n of Pivot } ' / of the Replacement ] . 

y Replaced J \ Column and the Row J [ Pivot Row I 

^ Being Replaced / \ / 

Row 1. I n t e r s e c t i o n Element: 0 

1 - (0 ) (0) = 1 

0 - (0 ) (1) = o 

1 - (0 ) (0) = 1 

o - ( 0 ) 0 ) = 0 

0 - (0 ) (0) = 0 

0 - (0) (0) = 0 

10 - (0) (6) = 10 

Row 3. I n t e r s e c t i o n Element: 6 

5 - (6 ) (0 ) - 5 

6 - ( 6 ) 0 ) = 0 

0 - (6 ) (0 ) = 0 

0 - (6 ) (1) = -6 
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1 - (6)(0) = 1 

0 - (6)(0) = 0 

60 - (6 ,6) = 24 

Row 4. In ji section Element: 2 

1 - (2)(0) = 1 

2 - (2)(1) = 0 

0 - (2)(0) = 0 

0 - (2)(1) - -2 

0 - (2)(0) = 0 

1 - (2)(0) = 1 

16 - (2)(6) = 4 

The r e su l t s of these ca lcu la t ions i s summarized in Table 3 . 3 . , I t e r a t i on I, 

The f i f t h step of the simplex algorithm i s applied to t h i s summary t ab le 

to determine whether or not the solution set i s optimal. 

TABLE 3.3 

RESULTS OF FIRST ITERATION 

C j 2 3 0 0 0 0 

Contri bution Solution Set X1 x2 S1 s2 S3 s 4 Po V a i j 

0 S1 1 0 1 0 0 0 10 10 

3 x2 0 1 0 1 0 0 6 00 

0 s 3 5 0 0 -6 1 0 24 24/5 

0 s 4 1 0 0 -2 0 1 4 4 

z,-
j 

0 3 0 3 0 0 18 

c . - z • 
J J 

2 0 0 -3 0 0 
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Step 5. Recalculate the z . values. Recalculate c . - z . . The 
J J J 

solution set i s maximal if and only if ( c . - z . ) £ 0 f o r all values of the 
J J 

c- - z . . Inspection of Table 3.3 reveals that c, - z, = 2 > 0. All 
J J « « 

other c . - z . values are a t most zero. Since there ex i s t s a posi t ive 
J J 

c . - z . value, the solution i s not maximal. I t i s necessary to repeat the 
J J 

algorithm using the values contained in Table 3.3. 

Reapplication of the simplex algorithm indicates tha t variable x-j 

will enter the solution set and replace slack variable s^. Application 

of the simplex algorithm yields the r e su l t s shown in Table 3.4. 

TABLE 3.4 

RESULTS OF SECOND ITERATION 

2 3 0 0 0 0 

Contribution Solution Set X1 X2 S1 s2 S3 S4 Po P / a . . o' 1J 

0 S1 0 0 1 2 0 -1 6 3 

3 x2 0 1 0 1 0 0 6 6 

0 s 3 0 0 0 4 1 -5 4 1 

2 X1 1 0 0 -2 0 1 4 

Z j 2 3 0 -1 0 2 26 

~
 Z3 

0 0 0 1 0 -2 

Inspection of Table 3.4 reveals that the indicated solution is not the 

maximal combination. This i s evidenced by the +1 c . - z- value f o r the 
J J 
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s 9 column. Application of the simplex algorithm to t h i s t ab l e of values 

i n d i c a t e s t h a t slack va r i ab le s^ will be replaced by slack va r i ab le 

S2 in the solut ion s e t . The r e s u l t s are summarized in Table 3 .5 . 

TABLE 3.5 

RESULTS OF THIRD ITERATION 

°3 2 3 0 0 0 0 

Contri bution Solution Set X1 x2 S1 S2 S3 S4 
P 

0 

0 S1 0 0 1 0 1 
" 2 ' 

3 
2 4 

3 x2 0 1 0 0 1 
"4 

5 
4 5 

0 s2 0 0 0 1 1 
4 

5 
"4 

1 

2 X1 1 0 0 0 1 
2' 

3 
"2 6 

ZJ 
2 3 0 0 1 

"4 
3 
4 27 

C3 ~Z3 
0 0 0 0 1 

"4 
3 

"4" 

Inspect ion of Table 3.5 revea ls t h a t (c , - z . ) < 0 f o r a l l values 
•J o 

°f C. - zj. Thus, the so lu t ion se t i s the one f o r which the given ob jec t ive 

func t ion i s maximized. This so lu t ion se t y i e l d s s-| = 4; x2 = 5; s 2 = 1; 

and x-j = 6. In order to achieve maximum p r o f i t , i t i s necessary to produce 

6 u n i t s of x-j and 5 un i t s of x g . This combination will r e s u l t in a maxi 

mum p r o f i t of $27. The s-j value of 4 i n d i c a t e s t h a t there will be 4 

u n i t s of u n s a t i s f i e d demand f o r x-j as given in the o r ig ina l formulat ion 
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of the problem. The s 2 value of 1 i n d i c a t e s t h a t the market f o r x2 wil l 

have one u n s a t i s f i e d u n i t . Production and inspect ion time wil l be 

t o t a l l y consumed. 

A graphic represen ta t ion of the problem solved by the simplex 

algorithm i s shown in Figure 3 .3 . Although t h i s graph i s i den t i ca l to 

t h a t shown with the simplex method, i t i s reproduced here along with the 

appropr ia te change of v a r i a b l e s , so t h a t the simplex algorithm can be 

v i s u a l l y demonstrated. 

(0,to> 

(0,<3) 

/ / / / / / ^ 
' / / heasiWe / / / . / / 
/ / ' R^iorv f ' ' / / / / 

Fig. 3.3-~Graphic so lu t ion to cons t ra ined maximum 

By assigning values to slack v a r i a b l e s only in the i n i t i a l s o l u t i o n , 

the simplex algori thm s t a r t e d a t the o r i g i n . At t h i s point the algori thm 

ind ica ted t h a t a maximal so lu t ion had not been achieved. Application of 

the ru le of s t eepes t ascent ind ica ted t h a t va r i ab le Xg should be placed 
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into the solution set in l ieu of slack variable • The e f f e c t of th i s 

was to "move" from the origin to the point x-j = Qs = 6. This solution 

was found to be non-maximal; and according to the rule of s teepest ascent , 

variable x̂  should replace slack variable . The e f f e c t of t h i s was to 

"move" from the coordinate (0, 6} to the coordinate {4, 6). At t h i s 

point , x-j = 4, Xg = 6, the object ive function was not maximized. Appli-

cation of the rule of s teepes t ascent indicated tha t slack var iable 

should reenter the solut ion, replacing slack variable s 0 . This "moved" 

the solution set from coordinate (4, 6) to coordinate (6, 5) . Coordinate 

(6, 5)» indicating tha t the required uni ts of x-j and x^ were 6 and 5, 

respec t ive ly , was then shown to be the maximal combination. 

An important point of t h i s demonstration i s the f a c t that at no time 

did the algorithm consider solution combinations outside the region 

bounded by al l of the cons t r a in t s . Whereas the simplex method requires 

consideration of a l l possible corners (points of i n t e r s ec t i on ) , the 

simplex algorithm considers only those corner points which simultaneously 

s a t i s f y all of the cons t ra in t func t ions . The algorithm simply moves from 

one corner to another until the optimal solution i s achieved. However, 

these moves are ne i ther random nor haphazard. Each move from one corner 

point to another i s based upon the c r i t e r ion of the rule of s teepest 

ascent . This guarantees tha t the new solution point will be an improvement 

relative to the current solution point . The "moving process" continues 

unt i l the algorithm terminates in the optimal solution or the problem i s 

found to have no optimal solut ion. 
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Simplex algorithm fo r minimization: The problem to be solved has 

the form 

min f ( x , , x , , . . . , x n ) = c,x-, + c„x9+.. .+c x0 
i c n i f l l n n 

subject to 

a l l x l + a12x2+* " + a l n x n - bl 

a21x l + a22x2+" • •+a2llxn - b2 

amlxJ + W - X x n i b l 

and x. > 0 fo r i = 1 s 2 , . . . , m . 

This system i s converted to a system of l i n e a r equations by sub-

t r a c t i n g a slack va r i ab le , s^., from each l i nea r inequa l i ty . The slack 

var iable i s assumed to y ie ld a uni t contr ibut ion of zero to the value of 

the objec t ive funct ion . However, fo r every slack var iable tha t i s piaced 

into the system i t i s necessary to also include an a r t i f i c i a l va r i ab l e , 

d.j, so t h a t the i n i t i a l solut ion i s defined f o r non-negative so lu t ions . 

In t h i s way an i n i t i a l basic f eas ib le solution i s guaranteed. In order 

to e l iminate the a r t i f i c i a l var iable from the so lu t ion , each a r t i f i c i a l 

var iable i s assigned a high cost c o e f f i c i e n t of value M and i s included 

in the ob jec t ive funct ion . The re su l t i s a l i n e a r system of the following 

form: 

min t (x 1 , X£ j•••>x^, s-j, s 2 ' *" * : sm' ^1 ' A p , . . . , ) 

= V , + c 2 x 2 + . . . + c r x n + Os, + 0s 2+. . .+0sm . 

+ M-, d-, + M0d„+.. ,+M d 1 1 2 2 mm 

subject to 
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a n x l + a 1 2 x 2 + - " + a l n x n " S1 + d l ° b l 

a21Xl + a 2 2 x 2 + ' " + a 2 l 1 X n " S2 + d2 = b2 

amlx l + a m2 x 2 + ' ' ' + a mn x n " sm + " bnT 

As in the case of the maximization problem, the i n i t i a l so lu t ion i s 

constructed from the non-negat ive , non-basic va r i ab l e s of the cons t ruc ted 

system of l i n e a r e q u a l i t i e s . For the minimization problem defined here, 

t h i s i n i t i a l so lu t ion will be composed of a r t i f i c i a l va r i ab l e s only. 

(See Table 3 . 6 . ) 

Each z . value f o r Table 3.6 i s ca lcu la ted in the same manner as 
^ m 

f o r the maximization problem; i . e . , z . = /L M • a. . , i = 1, 2 s . . . , n . 
J j=l 1 U 

The c . - z . row i s then obtained by sub t rac t ing each z. value from i t s 
3 3 u 

corresponding c . va lue , exac t ly as in t he case f o r maximization. Appli-

cat ion of the rule of s t eepes t ascent will serve to ind ica te the va r i ab le 

which i s to en t e r the so lu t ion . This app l i ca t ion of the ru le of s t eepes t 

a s cen t , however, i s made with some modi f i ca t ion : 

(1) s e l ec t tha t var iab le corresponding to max [--(c^ - Zj) > 0] ; o r , 

(2) s e l e c t t h a t va r iab le corresponding to min [(c_. - z •) < 0 ] . 
3 3 

In e i t h e r case the r e s u l t i s the in t roduc t ion in to the so lu t ion the 

va r i ab le con t r ibu t ing the "most" to the minimization process . 

With the new solu t ion va r i ab le i d e n t i f i e d , the simplex algorithm i s 

appl ied to determine the body matrix c o e f f i c i e n t s and the value of the 

so lu t ion v a r i a b l e s . This i s accomplished by proceeding in the same manner 

as d i c t a t e d by Steps 2, 3S and 4 of the simplex algori thm f o r maximization. 
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The d i f f e r e n c e in the two a lgor i thms, minimization and maximization, i s 

found in the solut ion se t i t s e l f . Whereas the simplex algori thm f o r 

maximization sys temat ica l ly rep laces slack va r i ab l e s with basic v a r i a b l e s , 

the simplex algorithm f o r minimization replaces a r t i f i c i a l va r i ab l e s with 

basic va r i ab l e s or s lack v a r i a b l e s . Slack va r i ab l e s remaining in the 

solut ion set ind ica te unused or excessive capac i ty o r resource . 

As previously noted, the simplex algorithm f o r minimization u t i l i z e s 

three s teps of the algorithm f o r maximization. The d i f f e r e n c e between 

the algori thms i s the manner by which the p ivot column i s located and 

the manner by which an optimal so lu t ion i s ind ica ted . 

In the algori thm to fol low i t i s assumed t h a t the problem has been 

expressed as a system of l i n e a r equa t ions . The necessary s lack and 

a r t i f i c i a l va r i ab le s have been introduced and a t ab le of the form shown 

by Table 3.6 cons t ruc ted . Although tlvi s i n i t i a l cons t ruc t represen ts 

the i n i t i a l so lu t ion to the problem, the algori thm proceeds from solut ion 

to so lu t ion in the same manner as the algori thm f o r maximization. 

A1 gori thin 3 .3 (Simplex Alqori thrn f o r Minimization). - -Step 1. Locate 

the p ivot column. The p ivot column is i d e n t i f i e d as the column cor res -

ponding to m1n ( c . - z . ) < 0. This i s equiva len t to m? x [ - ( c . - z - ) > 0] . 
J J J J J J 

Step 2. Locate the p ivot row. The p ivot row i s i d e n t i f i e d as the 

row corresponding to the minimum pos i t i ve quo t i en t obtained by dividing 

each row cons tan t , b.j = P s by the correspond!ng element in the pivot 

co1umn; i . e . , 

P 
mi n 

i 
o element 

Pivot column element > 0. 
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Step 3. Replace the p ivot row by dividing the p ivot element in to 

each element of the p ivot row ( including the p ivot element i t s e l f ) . 

Step 4. Replace all non-pivot row elements by applying the fol lowing: 

'Elements of Rowj / Element at the \ / Corresponding Elements^ 
to be - [ i n t e r s e c t i o n of Pivot j • / of the Replacement j. 

Replaced / I Column and the Row J I Pivot Row J 
\ Being Replaced / V / 

Step 5. Recalculate the z . va lues . Recalculate c . - z . f o r each 
J J J 

of the j columns. The minimal value has been achieved with the new 

solut ion mix i f and only i f c,. - z . _> 0 f o r al l c . - z . . If c . ~ z . £ 0 
j J J 3 J J 

f o r a l l c . - z , repeat s teps 1 through 5. I f c . - z . < 0 but a. . < 0 
J j J J i J 

f o r a l l a. . in column j , the ob j ec t i ve funct ion i s unbounded and no unique 
* J 

minimum e x i s t s . 

As a means of i l l u s t r a t i n g t h i s a lgor i thm, consider the fol lowing 

s imp l i f i ed example. A firm opera tes two production l i n e s . Each l i ne 

produces th ree products , A, B, and C. Relat ive da i ly outputs are f i xed 

as fo l lows: 

Line 1 Line 2 

Product A 300 100 

Product B 100 100 

Product C 200 600 

Minimal orders f o r A, B, and C are 2,400 u n i t s , 1,600 u n i t s , and 4,800 

u n i t s , r e s p e c t i v e l y . Production costs f o r both l i n e s are assumed to be 

v a r i a b l e : $600 f o r l i n e 1 and $400 f o r l i ne 2. Determine the number of 

days t h a t the two l i n e s are to run in o rder to s a t i s f y order requirements 

and minimize t o t a l production cos t s . 
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So lu t ion : Let x-j denote the number of days l i n e 1 i s to ope ra te . 

Let x2 denote the number of days l i ne i s to ope ra t e . The problem can 

then be described by the fol lowing l i n e a r system. 

sub jec t to 

min f ( x 1 , x^) = 600x-j + 400x2 

300x-j + 100x2 i 2,400*5 

1 OOx-j + 100x2 > 1 ,600; 

200x-j + 60UX2 >. 4 , 8 0 0 ; 

x-j >_ 0; and, 

x2 ~ 0* 

The in t roduc t ion of the necessary slack and a r t i f i c i a l v a r i a b l e s 

( s . and d̂  5 r e s p e c t i v e l y , i = 15 2 , 3} r e s u l t s in 

min f (x., s Xg, s-j, S^j d^, d 9 , d^) 

= 600x-j + 400x2 + 0s^ + 0s2 + 0s^ + Md-j + Md2 + Md̂  

sub jec t to 

3OOx-j + 100x2 - S-j + o-| = 2,400; 

10Ox-j + 100x 2 - s 2 + d 2 = 1 , 6 0 0 ; 

200x1 + 600x2 - s 3 + d3 = 4,800. 

The i n i t i a l so lu t ion i s shown in Table 3 .7 . 

Since M represen t s a very la rge number, the c . - z . row conta ins 
J 3 

values of c^ - z^ t h a t are nega t ive . This i n d i c a t e s tha t the e x i s t i n g 

solut ion i s not opt imal . Applicat ion of the c . - z . ru le i n d i c a t e s t h a t 
3 3 

va r i ab le x2 can e n t e r the so lu t ion and reduce the cost from i t s p resen t 

level of 8800M. 
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I N I T I A L SOLUTION 
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C j 600 400 0 0 0 M M M 

Cost Solution Set X1 X2 S1 S2 S3 d l d2 d 3 
P 
0 V a u 

M d] 300 100 -1 0 0 1 0 0 2400 24-

M d2 100 100 0 -1 0 0 1 0 1600 16 

M ; d3 200 600 0 0 -1 0 0 1 4800 8 

ZJ 
600M 8GQM -M -M -M M M M 8800M 

c j " zo 
600-
600M 

400-
800M 

M M M 0 0 0 

Step 1. Locate the pivot column. The pivot column i s i d e n t i f i e d as 

the column corresponding to m i n ( c . - z . ) < 0.. Since the 400 - BOOM value 
J J 3 

of column 2 i s l e s s than t h a t of 600 - 60QM f o r large M, column 2 i s 

i d e n t i f i e d as the pivot column. 

Step 2. Locate the pivot row. The pivot row i s i d e n t i f i e d as the 

row corresponding to the minimum pos i t ive quot ient obtained by dividing 

each row cons tan t , b̂ . = PQ, by the corresponding element in the pivot 

column. These quot ien ts are shown in the column headed P / a . . . 
o i j 

Inspection of t h i s column ind ica t e s tha t var iable will replace d^ 

in the solut ion s e t . The minimum PQ / a . j j value is the 8 corresponding 

tO dg. 

Step 3. Replace the pivot row by dividing the pivot element into 

each element of the pivot row. The pivot element i s the element located 
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at the i n t e r s e c t i o n of the p ivot row and the p ivot column. For t h i s 

i t e r a t i o n the p ivot element i s 600. 

1 - 1 1 
Replaced pivot row = 1, 0, 0, 0, 0, 8 ) . 

Step 4. Replace a l l non-pivot row elements by applying the fol lowing: 

/Elements of Row\ f Element a t the fCorresponding Elements^ 
I to be j - / i n t e r s e c t i o n of Pivot j* ( of the Replacement j , 
\ Replaced / I Column and the Row j I Pivot Row J 

Being Replaced ' ^ ' 

Row 1. I n t e r s e c t i o n Element: 100 

300 - (100) (I) = 

100 - (1 00) (1 ) = 0 

-"I - (100) (0) - -1 

0 - (100)(0) = 0 

0 - (100)(gQg) = 5 

1 - (100)(0) = 1 

0 - (1 00) (0) = 0 

o - (100) (^"qq) = -g 

2400 - (100) (8) - 1600 

Row 2. I n t e r s ec t i on Element: 100 

100 - O 0 0 ) ( l ) _ 200 
3 

100 - ( 1 0 0 ) 0 ) = 0 

0 - (100)(0) = 0 

-1 „ (100)(0) = -1 

0 - ( 1 0 ° ) ^600^ 
= 1 

6 

0 - O00)(0) = 0 



1 (100)(0) 

0 - <100%cro> 
1 
6" 

1600 - (100) (8) = 800 

These resul ts are summarized in Table 3.8. 

TABLE 3.8 

RESULTS OF FIRST ITERATION 
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Cost Solut ion 

C j 
Set 

600 

X1 

i 

400 

X2 

0 

S1 

0 

S2 

0 

S3 

M 

d ] 

M 

d2 

M 

d3 Po 

M d i 
800 . __ 0 -1 0 1 

6 1 0 -1 
6 1600 

M d2 
200 
3 0 0 -1 1 

6 0 1 -1 
6 800 

400 X2 
1 
3" 1 0 0 1 

"600 0 0 1 
600' 8 

Z j |(400+1000M) 400 -M -M 
31 3 M M 2 M 

3~3" 3200 

c. - z . 
3 3 

1400-1000M 
3 0 M M 2 M 

3 "3 0 0 4M 2 
3"3 2400M 

Step 5. Recalculate the z . values. Recalculate c.. - z . f o r a l l i 
J J 

The minimal value has been achieved with the new solut ion mix i f and only 

i f c j - z. _> 0 f o r a l l C j - z .. Inspection of the c. - z . row reveals 
J J 

that c-j - z-j < 0 fo r large M and cg - zg < 0 f o r large M. Therefore, 

the current solut ion is not opt imal. The cost f igure of 3200 + 2400M 

can be reduced s t i l l f u r the r . 
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Reappl ica t ion of the simplex a lgor i thm .yields the values shown in 

Table 3 .9 . Appl ica t ion of Step 5 i n d i c a t e s t h a t the minimum cos t has 

not been achieved with the new so lu t ion s e t : column 3, i d e n t i f i e d as 

s-| , has a ĉ . - ẑ . value of ^ 7 - M ) ; column 5, i d e n t i f i e d as s 3 > has a 

1 
C j ~ z j v a ^ u e For large M, both of these are n e g a t i v e . 

The c u r r e n t cos t of 6000 + 400M can be reduced. 

TABLE 3 .9 

RESULTS OF SECOND ITERATION 

C j 600 400 0 0 0 M M M 

Cost Solu t ion Set X1 X2 S1 S2 S3 d l d? d 3 P 
0 

600 X1 1 0 3 
"800" 0 1 

1600 
3 

800 0 
*1 
[ 

T600 
6 

M d? 0 0 1 
4 -1 1 

8 
1 

"4 1 1 
"8 400 

400 X2 0 1 1 
800 0 -9 1 

0 9 
6 X2 

1 
800 0 

4800 800 0 
4800 6 

ZJ 
600 400 M-7 

4 -M M-3 
8 

7-M 
4"" M 3-M 

8 ~ 6000 

C j " Z j 0 0 7-M 
"4 M 3-M 

" 8~ 
5M--7 

4" 0 9M-3 
8~ 

4* 

400M 

According to the c. - z. ru le the v a r i a b l e to e n t e r the so lu t i on i s 

s r This s lack v a r i a b l e wil l rep lace a r t i f i c i a l v a r i a b l e d 0 . The 
C 

coiiiputations of the simplex a lgor i thm are summarized in Table 3 .10 . 



TABLE 3 . 1 0 

RESULTS OF T H I R D ITERATION 
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C3 
600 400 0 0 0 M M 

[ 
M j 

Cost Solut ion Set X1 x2 S1 s 2 S3 d l d2 d3 Po 

600 X1 
1 0 0 12 4 0 12 4 12 600 X1 
1 0 0 "800 16 00 0 800 1600 12 

0 S1 0 0 1 -4 I nT 
L 

-1 4 
1 

"2 1600 

400 X2 0 1 0 4 12 
0 4 12 4 400 X2 0 1 0 800 "4800 0 "800 4800 4 

Z j 600 400 0 -7 . 5 0 7 - . 5 8800 

C3 " 2 j 
0 0 0 7 

L_ 
- . 5 M M-7 

i 
M+,5 

Since a l l c . - z . in the c . - z . row are not p o s i t i v e or zero , a 
3 3 3 3 

b e t t e r solut ion e x i s t s . Reappl i ce t ion of the simplex algorithm r e s u l t s 

in slack va r i ab le s^ replacing slack va r i ab le s-j. The new solut ion set 

i s given by x-j, and s^ and i s shown in Table 3.11. 

Since ĉ . - z . >_ 0 f o r a l l c. -- Zj va lues , the solut ion se t i s opt imal . 

Minimum cos t i s achieved by operat ing Line 1 f o r 4 days, Line 2 f o r 

12 days. This operat ing schedule produces a minimum cost of $7,200. 

This opera t ing schedule will produce an excess of 3,200 un i t s f o r 

Product C during the operat ing per iod . This i n d i c a t e s t h a t the production 

f a c i l i t y i s producing C as a by-product of the t o t a l production process . 

The q u a n t i t i e s produced for A and B are the minimal; i . e . , the production 

f a c i l i t y i s capable of meeting minimal orders f o r A and B. I t i s producing 

8000 un i t s of C, with a minimum requirement of 4,800 u n i t s . 
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FINAL SOLUTION 
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c , 
u 

600 400 0 0 0 M M M 

Cost Solution Set X1 X2 S1 S2 S3 d l 
d2 d 3 P 

0 

600 X1 1 0 4 
"800" 

4 
800 0 4 

800" 
-4 
800 0 4 

0 S3 0 0 2 -8 1 -2 8 -1 3200 

40 x 2 0 1 
I 

24 
"4100 

72 
"4800 0 -24 

4800" 
72 

4800 0 12 

Z j 600 400 -1 -3 0 1 3 0 7200 

C3 " \ i 
0 0 1 3 0 M-l M-3 M 

The techniques shown were applied to s i t u a t i o n s in which the problem 

desc r ip t ion followed the s t r i c t d e f i n i t i o n of the given l i n e a r programming 

problem. Maximization was achieved sub jec t to " l e s s than or equal to" 

c o n s t r a i n t s , and minimization was achieved sub jec t to "g rea te r than or 

equal to" c o n s t r a i n t s . Such s t r i c t n e s s i s not necessary since the 

algori thm f o r e i t h e r maximization or minimization u t i l i z e s the same 

basic technique. I n i t i a l so lu t ions are wr i t t en in terms of the slack or 

a r t i f i c i a l v a r i a b l e s . All t h a t i s necessary i s t h a t the i n i t i a l so lu t ion 

be composed of the pos i t i ve slack and a r t i f i c i a l v a r i a b l e s . Thus, a 

problem can be formulated sub jec t to mixed c o n s t r a i n t s ; i . e . , the def ined 

ob jec t i ve func t ion i s to be optimized sub jec t to equa l i t y cond i t ions , 

" l e s s than or equal to" cond i t i ons , and "g rea t e r than or equal to" 
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cond i t ions . With the e q u a l i t y an a r t i f i c i a l va r i ab le i s added to maintain 

the i d e n t i t y system necessary in the i n i t i a l so lu t ion matr ix . Given the 

i n i t i a l so lu t ion matr ix , the proper algorithm i s employed f o r f i n a l 

so lu t ion . 

For example, the l i n e a r system 

min f(x-j 5 x 2 , x 3 ) = 2x ] + 4x2 + x 3 

such tha t 

x-j + 2x? ~ x 3 £ 5 

2x-j - x 2 + 2x3 = 2 

-x-j + 2X2 + 2X3 >_ 1 

x-j s, x2 >_ 0 

can be wr i t t en 

m i n f ^ X l ' X 2 ' x 3 ' S 1 ' s 2 5 d l ' d2^ " 2 x ] + 4 x
2

 + x
3

 + 0s ] + 0s2 + Md-j + Md 

such that 

x-j + 2Xg X3 + s-j = 5 

+ 2x^ + d-j = 2 

"X! + 2 x
2

 + 2 x 3 ~ s
2

 + d
2

 = 1 

X 1 5 X rp > 0, 

The i n i t i a l so lu t ion matrix i s shown in Table 3.12. The s o l u t i o n , i f 

i t e x i s t s , can be found by applying the simplex algori thm f o r minimizat ion. 

This a lgori thm i s required because the ob jec t ive func t ion i s to be 

minimized.. 
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TABLE 3.12 

INITIAL SOLUTION, MIXED CONSTRAINTS 

c-i 
O 

2 4 1 0 0 M M 

Cost Solut ion Set X1 X2 x 3 S1 S2 d l d2 P 
0 

0 S1 1 2 -1 1 0 0 0 5 

M d l 2 n 
- i 2 0 0 1 0 2 

M d2 -1 2 2 0 -1 0 1 1 

2 j M M 4M 0 -M M M 3M 

° j ~ Z J 2-M 

t- : 

4-M 1-4M 0 M 0 0 

Quadratic Programming 

A natural extension of l i n e a r programmi ng, quadra t i c programming 

represen t s a c l a s s of problems concerned with optimizing a quadra t i c 

func t ion sub jec t to l i n e a r c o n s t r a i n t s . As such, i t i s a type of problem 

exh ib i t i ng two e s s e n t i a l c h a r a c t e r i s t i c s : (1) there e x i s t s a quadra t i c 

func t ion to be opt imized, and (2) the func t ion to be optimized i s r e s t r i c t e d 

27 

by l i n e a r r e l a t i o n s h i p s . " These c h a r a c t e r i s t i c s lead to the fol lowing 

d e f i n i t i o n . 

Def in i t ion 3 . 8 . - - L e t f (x ) = f ( x 1 , x 9 , . . . , x ) be an n -va r i ab l e func t ion 

defined by 

1 5 2 ! 

n n _ _n 
f (x-j, x p , . . . , x ) = 1/2 cl b - . x . x . + c-x.. 

1 ^ n i=l j=l 1 J 1 J i=l 1 ! 

27 John C. 6. Boot, Quadratic Programming (Amsterdam, 1964), p. 5. 
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Let tf>-(x) = 4>-(x-> „ x 0 , . . . , x ) be a system of l i n e a r i n e q u a l i t i e s , 
3 3 * ^ ** 

j = 1, 2 , . . . , m , def ined by 

* j ( x V x 2 " - " x r a > = a j l x l + a j 2 x 2 + - " + a j n x n + a j ± ° ' 

The quadra t ic programming problem i s def ined as t h a t problem involving 

the opt imizat ion of f ( x ^ , x 2 s . . . > x n ) subjec t to ^ ( x - j , x 2 » . . . s x n ) . 

As a means of reducing the s ize of the problem, the quadra t ic 

programming problem can be wr i t t en in matrix n o t a t i o n . This abbreviated 

descr ip t ion i s given by 

sub jec t to 

optimize f ( x ) = 1/2 x'gX + Ĉ X 

AX < b 

X > 0 

where 

X1 ~ci~ 9 n g12 ' ' ' • - In ~ 

X = x. c C2 » il ~ g21 g22 * ' 1 * g2n CQ-J 5 9 25 8 * * * 3 9 

x r cn . ̂  
gm2 * ' 

• . q Jmn _ ! 

A - [a ] s a 2 , . . . s a n ) 

a l l a12 

a 21 a 2 2 

aml am2 " 

In 

2n 

^nn 

, and b 

The general app l i ca t ion of the quadra t i c programming has been t h a t of 

minimizing a given ob jec t i ve f u n c t i o n . This has led to the fol lowing se t 

of assumptions r e l a t i v e to the formulat ion of the problem. 
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(1) The matrix def in ing G i s both symmetric and p o s i t i v e d e f i n i t e . 

T 
The symmetric property assures element g . . = q . . and G = G , The pos i t i ve 

i j "Oi -

d e f i n i t e proper ty guarantees t h a t a l l values of the quadra t ic form are 

pos i t i ve except when the var iab les , are a l l i d e n t i c a l l y zero . A necessary 

and s u f f i c i e n t condi t ion f o r 6 to be pos i t i ve d e f i n i t e i s f o r 

> 0 

g ' i l 
g12 ' ' ' * 9 l n 

V
 

o 

g l l 9 1 2 

> 0,..., 
g21 g22 ' ' ' ' g2n 

j » 2 1 
g22 

gnl gn2 * ' . . Q Jmn 
00 

to be s a t i s f i e d . v 

(2) The r e s t r i c t i n g condi t ions def ine a region containing an i n t e r i o r 

poi n t . 

(3) The ob jec t ive func t ion def ines a convex s e t . This r equ i res G 

to be pos i t i ve semidcf im' te . 

From these assumptions the general nature of the quadra t i c programming 

problem can be derived as fo l lows: although sub jec t to l i n e a r c o n s t r a i n t s , 

the func t ion to be optimized i s nonl inear ( q u a d r a t i c ) , permit t ing optimal 

so lu t ions within the f e a s i b l e region . Kunzi, Tzschach, and Zehnder 

d i s t ingu i shed three problem formul a t ions f o r the general quadra t i c 

programming problem, each of which y i e l d s so lu t ions not n e c e s s a r i l y 

on the boundary of the c o n s t r a i n t s e t . These three formulat ions are 

(1) min { ( x } } such tha t Ax < b, x > 0; 

28, 
/M */ F r a n ? i \ n , A - G r a y b r i l > An In t roduct ion to Linear S t a t i s t i c a l Models 
(New York, 1961), p. 3. ' — 
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(2) min {<f>(x)} such tha t Ax_ = b_, x > 0; 

(3) min { ^ ( x ) } such that Ax < b.^"' 

Although s imi la r to l i nea r programming (the only d i f ference being 

the quadrat ic ob ject ive func t i on ) , quadrat ic programming has several 

d is t ingu ish ing charac te r i s t i cs : (1) the so lut ion (optimal) to the problem 

can occur at a corner of the feas ib le set , on an edge (boundary) of the 

feas ib le set , or at a point i n t e r i o r to the feas ib le se t ; (2) wi th no 

degeneracy, at most n of the m + n i nequa l i t i es are s a t i s f i e d as equations 

at the so lut ion point ( i n l i nea r programming exact ly n of the inequa l i t i es 

are s a t i s f i e d as e q u a l i t i e s ) ; (3) nonnegat iv i ty i s not necessary since 

30 

i t can be absorbed in to the const ra in t funct ions; and, (4) the quadratic 

formulat ion tends to be more r e a l i s i t c in determining c o s t - p r o f i t 

re la t ionsh ips , espec ia l ly when dealing w i th marginal concepts. 

Another in te res t ing feature of quadratic programming concerns the 

so lu t ion tha t is obtained. Although the ob jec t ive funct ion i s quadrat ic 

subject to l i near const ra in ts , the so lut ion tha t i s obtained i s exact; 

and, as in l i n e a r programming, l i nea r methods can be used to obtain t h i s 

31 

exact so lu t ion . Although there does not yet ex i s t an algor i thm s imi la r 

to Dantzig's simplex method that can be appl ied to the general quadrat ic 

programming problem, there e x i s t several d i f f e r e n t techniques that have 

been developed fo r solving t h i s pa r t i cu la r class of problems. A cursory 

select ion of these techniques i s presented here. 
29 

Hans P. Kunzi, H. 6. Tzschach, and C. A. Zehnder, Numerical Methods 
of Mathematical Optimization (New York, 1968), p. 66. 

^ B o o t , op. c i t . , p, 5. 

31 
Phi 1 ip Wol f e , Recent Developments ui_ Nonl inear Programming, Report 

No. R-401-PP (Santa Mon'ica,' 1962T", p. 21. 
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Although each of these techniques i s taken from a documented source, 

the de ta i l of the p resen ta t ion in t h i s study i s unavai lable elsewhere. 

This de ta i l i s provided as a means of f a c i l i t a t i n g the understanding of 

the p a r t i c u l a r computational technique under discussion and as a means of 

formally present ing the technique in an opera t ional format . 

Method of Wolfe and Frank.--The problem to be solved has the form 

minimize f ( x j = p_x_ + x_ Cx 

subjec t to 

Ax = b 

and :L G" 

In t h i s formulat ion x_ i s a column vec tor wi th n components, p_ i s a row 

vec tor with n components, and b i s a column vec tor with m components. 

C_ and A are n x n and m x n matrices,, r e s p e c t i v e l y . The func t ion f (x) 

i s a quad ra t i c expression and i s assumed convex. This assumption guarantees 

t h a t the n x n matrix £ i s a pos i t i ve semi d e f i n i t e mat r ix . 

The method of Violfe and Frank u t i l i z e s the simplex algori thm from 

l i n e a r programming to solve the ind ica ted quadra t ic express ion . This 

i s achieved by transforming the given quadra t ic programming problem in to 

an equivalent l i n e a r programming problem. The solu t ion t h a t i s obtained 

i s then t e s t e d f o r optimal i t y . I f the so lu t ion i s not opt imal , a g rad ien t 

vec tor i s derived and i t s elements used to redef ine the c. c o e f f i c i e n t s 

of the simplex t ab leau . Given these new c . va lues , the (c . - z . ) t e s t 
3 0 3 

of the simplex algorithm i s appl ied to determine a new b a s i s . I f t h i s 

new bas i s i s not opt imal , the general programming technique i s reappl ied . 
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The fol lowing algori thm was developed from a comprehensive ana lys i s 

of sample problems. Because of l imi ted problem a v a i l a b i l i t y , one of 

these problems has been r ecas t and i s used here to demonstrate in de ta i l 

the app l i ca t ion of t h i s algori thm. 32 

A1 gor ithm 3.J[ (Algorithm f o r method of Wolfe and Frank). --Step 1. 

Form the matrix equation 

Bw •- d 

j 
where g_ i s the t ranspose of the row vector p_; B_is the matrix determined by 

T 

B 
A 0 I 0 

2C A1 0 -I 

T 
w i s the vec tor of va r i ab l e s def ined by 

T T T 
w = [x , u, y. , v ] . 

j j j 

The components of w are def ined as fo l lows: x and are the t ransposes 

of va r i ab l e s x_ and the slack vec tor y_, r e s p e c t i v e l y ; 

Ax + y = b; 
f(-l) = + X' an^> 

vx + uy - 0. 

Step 2. Formulate the convex quadra t ic func t ion 

9(w) = vx + MX = Jik + M. + 2^TC*.* 

The func t ion g(w) i s to be minimized to zero (reduced in numerical value 

to z e r o ) , sub jec t to the l i n e a r c o n s t r a i n t Bw = d, where d_ = 

32 
Saaty, op. c i t . , pp. 197-203. 
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Step 3. Using the l inear constraint Bw = d, select an arbi trary 

in i t i a l basic feasible solution. This is accomplished by a rb i t ra r i ly 

equating k of the variables of the l inear constraint to zero, placing the 

remaining variables into the solution se t , and solving the reduced 

system for the values of the solution variables. 

Step 4. Construct the solution matrix. This operation is composed 

of two steps: (1) introducing the values corresponding to the solution 

variables and (2) determining the row elements of the body matrix which 

correspond to the variables in the solution. The f i r s t step i s accom-

plished when the reduced system of Step 3 is solved. The second step i s 

accomplished by writing each column of the body matrix as l inear combi-

nations of the solution set variables. 

Step 5. Using the solution set, a contracted form of the solution 

T T T T 
vector w., write the total solution w.* , where w. * = Qx , u_, , v j . 

J v i J 

Step 6. Test g(w) = vx + uy to determine if g(w) = 0 for w = w .̂*. 

If g(w) = 0, the optimal solution has been found and is equal to Wj*. If 

g(w) f 0, go to Step 7. 

Step 7. Construct the cost-coeff ic ient vector defined by the 

gradient vector of g(w). Evaluate th is gradient vector at the current 

solution. The elements of the gradient vector define the value of the 

corresponding contribution coeff ic ients in the c. row of the simplex 
J 

al gorithm. 

Step 8. Construct a solution matrix that includes the c. values. 
J 

The resul t will be a standard simplex tableau. 

Step 9. Apply the simplex algorithm to determine a new basis. 

Return to Step 5 and repeat Steps 5-9 as needed. At each i terat ion i t 
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is necessary to construct a new cost -coef f ic ient vector as determined 

by the solution set at that i t e ra t i on . 

This algorithm w i l l be demonstrated by solving the fol lowing modified 

problem. A new product, i s to be added to an exist ing product l i n e . 

Since the f e a s i b i l i t y of adding the new product i s subject to question, 

a study is made to determine i f the minimal expected return brought about 

by the addit ion w i l l exceed a predetermined value. The expected return 

function is given by 

f (x-j j x2) = lOOOx̂  + 3000X2 - 4000x-j - 6OOOX2 j 

where x-j and X2 define products x-j and in units of 100 each. Because 

of l imi ted funds, promotional e f f o r t w i l l be expended in units of 1000 

with a 1:2 proportion. Product Xg is to receive the concentration of 

funds. The expression defining promotional e f f o r t i s assumed to be l inear 

and equal to at most $4000; i . e . , 

g(X|S X2) = lOOOx-j + 2000x2 <.4000. 

I t is fur ther assumed that x^ and X2 are both nonnegative. 

The system defined by th is problem can be wr i t ten in the form 

minimize f (x- j , x2) = 1000x^ + 3000x1̂  - 4000x-j - 6OOOX2 

subject to 

g(x-|, * 2 ) = + 2000x2 £ 4000 

X1 1 0 

x2 >. 0. 

This system can be fur ther reduced to the form 

2 2 
minimize f (x- j , Xg) = x-| + 3x^ - 4x^ - 6X2 

subject to 
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•> ^2) " x -| 'I- < 4 

x, > 0 

X2 ^ ° -

This formulation corresponds to the quadratic form 

minimize f (x) = px_+ xTCx 

subject to 

Ax < b 

x >_ 0. 

From this correspondence, the fol lowing vectors and matrices can be 

wri t ten: 

' l l x 
T 

= [ x p x 2 ] ; £ = [ - 4 , -6 ] ; c 1 0 

0 3 
A ~ D» 2] ; and b_ ^ [4 ] . 

Since the objective function is a quadratic expression and is rest r ic ted 

by a l inear 'unction, the quadratic programming technique of Wolfe and 

Frank is applicable. 

I tera t ion 1: step 1. Form the matrix equation Bw 

B = 
A 0 I_ 0 

2C AF 0 - I 

-p T , where 

(y ) » w [_x_ , u5 V s yj 5 a n d 1 s t h e t r a n s p o s e Q f ^ Substituting 
as indicatedj 

^ 2 0 1 0 0 

1 = 2 0 1 0 -1 0 

i. 0 6 2 0 0 -1 

~PJ 

4 

4 
6 J 
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The vector x is given by x 
l X 2 

Since there i s only one constraint 

funct ion, the slack vector is given by v = [y ] . Since x is 1 x 2 

and consists of one element, vx. + uy_ = 0 defines v as the row vector 

(v-j, v2) and u_ as the vector [u ] . From th is development the vector w"*" 

i s wr i t ten as fol lows: 
j 

w = [ x 1 , x 2 , u, y , v 1 , v 2 ] . 

The necessary matrix equation is 

1 2 0 1 0 0 

2 0 1 0 - 1 

0 6 2 0 0 

0 

-1 

Expanding th is system yie lds 

X1 4 " 

x2 r: 4 
u 

y 6 

v i 
V2 

0v-| + 0v2 = 4 

V-j + o <
 

ro
 = 4 

Ox-j + 6Xg + 2u + Oy + Ov-j - Vg ~ 6. 

Step 2. The convex quadratic function to be reduced to zero is 

g(w) - vx, = uy_. This i s given by g(w) = £v.j, v^J 

b 
Step 3. U t i l i z i ng Bw = d 

'x-

x„ 
+ uy = v-JX-J + v0X£ + uy. 

select an arb i t rary i n i t i a l solut ion. 

Let x.|, x2» and v-j a l l equal zero. This places u, y , and v^ in the solution 

matr ix. For x 1 - Xg = v.j = 0S the reduced system is given by 

y = 4 ; 

u = 4 ; 

2u 
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S u b s t i t u t i n g f o r u, Vp i s found to have a value of 2. There fore , the 

f i r s t value of w.* i s w-,̂  = [4, 4, 2] . 
vJ • 

Step 4. Construct the solut ion matr ix . This matrix will have the 

form 

1 -1 x2 U y V! V
2 

Wn * X 

u 4 

y 4 

v2 2 

with the elements of the body matrix to be determined. The elements 

in the body matrix are obtained by wr i t ing each column as a l i n e a r combi 

nat ion of the i n i t i a l bas is u, y , and Vp. 

( ! ) Column x-j. Determine k-j # kg, and kg such t h a t 

~0~ ! ~ 0 " " 1 " 

kl 1 + k? 0 + k3 0 = n 
L 

2 _ _0_ . - • > - _0_ 

The solu t ion i s given by k-j = 2, kp = 15 and kg = 4. The elements in 

the body matrix under column x-j are ? , 1, and 4S in t h a t o rde r . 

(2) Column Xp. Determine k-j, kp, and kg such t h a t 

"<f "l " ~ o" ~2~ 

k l 1 + kp 0 + K3 0 = 0 

2 _ ° _ _ 6 _ 

The solu t ion i s given by k 1 ~ 0 s k2 = 2 s , and 11 00 

-6 

the body matrix under column Xp are 0, 25 and -6 , i n 

The elements in 
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(3) Column u. Determine k p k^, and kg such t h a t 

r o~ - 1 - ro~ 
t 

" 0~ 
i 1 + k2 0 + k3 0 1 

I 2 , _0_ _-l _ _2_ 
The solu t ion i s given by k-j = 1 , k2 = 0 = kg. The elements in the body 

matrix under column u are 1, 0, and 0„ in t h a t o rde r . 

Repeated app l i ca t ion of t h i s process will produce values f o r the 

remaining columns. The r e s u l t s are shown in Table 3.13. 

TABLE 3.13 

INITIAL SOLUTION MATRIX 

* 

W-j X1 x 2 u y v i V2 

u 4 2 0 1 0 ~i 0 

y 4 1 2 0 i 0 0 

V2 2 4 -6 0 0 -2 1 

Step 5. Form the so lu t ion matr ix , u = 4, y = 4, and vg - 2. The 

values of x. , x^•, and v-j are zero. 1 he re fo re , 

w *T 
.] L(x-| j x2^5 ^ ' ^V1 5 v 2 ^ ~ f- x] ' x 2 5 v i > v2-^ 

_ [0, 0, 4) 4 , 0, 2] . 

Step 6. Test g(w) = vx + ux to determine i f g(w) = 0. From w-j*\ 

i t i s noted t h a t xT = {0, 0) ; u_ = 4; y_ = 4; and _v = (0, 2 ) . Thus, 



262 

g(w) = vx + ux = (o, 2) Q + (4)(4) 

= 0(0} + 2(0) + 16 

= 16. 

From these calculat ions, g(w) f 0. The current solut ion is not optimal. 

Go to Step 7. 

Step 7. The gradient vector fo r th is problem is defined by 

v q ( w ) = ! £ M 13. M J 3 _ a9__ 
g i - ; 9x-|' dx2' 5u ' ay' 3V1

5
 dv? ' 

The expanded form of g(w) = vx_ + irv is given by g(w) = v^x-j + ^2X2 + u ^ ' 

Hence, 

vg(w) = [ v l s v 2 , y5 u, x - j x 2 ] . 

At w, * , vg(w) -- [0, 2, 4, 4, 03 0] . From th i s the corresponding c. 
' vi 

values are found to be c-| - 0, = 2, c^ = 4, c^ = 4, Cg -- 0, and 

c6 = °* 

Step 8. Using vg(w-j) to determine the cos t -coef f ic ien ts , construct 

the standard simplex tableau by attaching the cost -coef f ic ients to the 

solution matrix of Step 4. The results are shown in Table 3.14. 

TABLE 3.14 

SIMPLEX TABLEAU #1 

* 
c i C2 C3 C4 C5 : C6 

C = vg(W-|): 0 2 4 4 0 0 

c Solution W* X1 X2 u y V1 V2 

4 u 4 2 0 1 0 -1 0 
4 y 4 1 2 0 i 0 0 
0 v2 2 4 -6 0 0 -2 1 

z i 32 12 8 4 4 ~4 0 
c, - z. -12 -6 0 0 4 0 
3 J 

0 
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Step 9. Application of the (c . - z . ) rule f o r minimization requi res 
J J 

(c , - z . ) be nonnegative f o r a l l va lues . Inspect ion of Table 3.14 reveals 
3 3 

t h a t (c . - z..} f_ 0 f o r a l l va lues . The va r i ab le to en t e r the solut ion 

i s t h a t va r i ab le which corresponds to the most negat ive value of c.. - z . . 
j >1 

Since -12 i s the most negat ive value of c . - z . s va r i ab le x-, will en t e r 

the s o l u t i o n . The var iab le to be replaced i s the va r i ab le corresponding 

to the minimum pos i t i ve value of e , where 

comoonent of w 
1 

p o s i t i v e components of en te r ing vec tor * 

From t h i s i t i s found t h a t will leave the s o l u t i o n . The new bas i s 

can now be e a s i l y determined by app l ica t ion of the simplex algori thm. 

The r e s u l t s are shown in Table 3.15. 

TABLE 3.15 

SOLUTION MATRIX #2 

Sol utiori Y!% 

7 
2 

1 
2 

0 

0 L 
"2 

3 
2 

0 

0 

1 
2' 

1 
" 2 

I 
" 2 

J 
4" 

1_ 
4 

I t e r a t i o n 2: Step 5. From the solut ion matrix of Table 3 .15, 

3 • y - X-j 2". The values of Xg> v-|» and v^ are a l l zero . Therefore , 

*T r-1 7 
—2 ~ 2"' ^ ^ , 2~y Oj Oj. 
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Step 6. Test g(w) = vx + 10/ to determine of g(w) = 0. From 

w^", i t i s noted that x j = (|-, 0; u_ = 3; %_ = and = (0, 0). Thus, 

g(w) = vx + = (0, 0) 2" + 3(|-) 

0 

= 0(1) + 0(0) + f -

_ ? ! 

2 ' 

From these calculations g(w) f 0. The current solution i s not optimal. 

Go to Step 7. 

• Step 7. The gradient vector is given by vg(w) = [v-j, v 2 , y> u, x^, x 2 ] . 

At w|, vg(w) = [0, 0, p 3, p 0]. From th is the corresponding ĉ . values 

are found to be c-| = 0, c 2 = 0S c^ = = 3, c^ = p and Cg = 0. 

Step 8. Using the cost-coef f ic ients defined by vg(w|)s the corres-

ponding simplex tableau is constructed. The results are shown in Table 3.16, 

Step 9. Reapplication of the simplex algorithm for minimization 

indicates that variable x2 w i l l enter the solution and replace ei ther u 

or y. I f x2 replaces u, reapplication of the preceding process w i l l 

y ie ld an optimal solut ion. For x^ = 2, x2 = 1, and y = 0, g(w) = 0. 

I f x2 replaces y , addit ional i terat ions w i l l be needed. The i terat ions 

w i l l terminate at x-j = 2, x2 = 1, and y = 0. For these values, f (x ) = -7. 

I f the f i rm chooses to add product x 2 , the expected return function 

is minimized fo r 200 units of x-j and 100 units of x2- The minimal expected 

return is a loss of $7,000. 
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SIMPLEX TABLEAU #2 
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*k 

C = Vg(w2) 0 0 

1 

3 1 
2 0 

c Solution W2 X1 X2 u y V1 V2 

7 
2 u 3 0 3 1 0 0 1 

"2 

3 y 7 
2 0 7 

2 0 i 1 
2 

1 
"4 

0 X1 
1 
2 1 3 

"2 0 0 1 
"2 

1 
4 

z. 
j 21 0 21 7 

2 3 3 
2 

5-"2 

C j ~ Z3 0 -21 0 0 -1 5 
2 

I t i s to be noted that the method of Wolfe and Frank combines the 

essential ideas of an optimum on the boundary as a means of l inear iz ing 

the problem. This permits the use of the simplex algorithm to obtain 

a convergent series which terminates in the f ina l solut ion. 

Method of Theil-Van de Panne.--The problem to be solved has the form 

T 1 T 
maximize f (x ) - a x - g-x Gx 

subject to 

a \ _ £ b_. 

In th i s formulation x i s a column vector of n components. The matrix 

G_ is a posi t ive def in i te symmetric matrix of order n x n. The matrix A 

is of order m x n, 
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The Thei!-Van de Panne technique locates the solution vector x* by 

f inding the subset S out of the m cons t ra in ts 
T 

Ax < b. A of order m x n. 

such tha t 

f ( x ) - aTx - 1/2XTGX 

i s maximized with al l cons t ra in t s in S expressed as e q u a l i t i e s . This 
e * c 

optimal solution vector i s given by x_ = x_ , where x_ "is defined as the 

T T 

vector maximizing f(x) = x_ - l/2x_Gx_with al l cons t ra in t s of S expressed 

33 

as e q u a l i t i e s , S being any subset of the m cons t r a in t s . 

This procedure is implemented by f i r s t optimizing the object ive 

function without regard to any exis t ing cons t r a in t s . If the uncon-

s t ra ined optimum i s not a f eas ib le solution ( i . e . , the unconstrained 

optimum vio la tes a t l e a s t one of the c o n s t r a i n t s ) , the technique 

successively adds cons t ra in t s unt i l the i t e r a t i on r e su l t s in a f eas ib le 

optimum. This i s accomplished by an i t e r a t i v e process which determines 

on which side of the cons t ra in ts being considered the solution l i e s ; the 

technique then moves in the direct ion of an unsa t i s f ied cons t r a in t . As 

each i t e r a t i on produces i t s own optimum, the f eas ib le solution i s the 

f ina l optimal solut ion. The optimal solution i s i den t i f i ed as the 

solution vector which s a t i s f i e s the following ru le : 

The feas ib le vector x s i s optimal if and only if f o r 

a l l hcS the vector x 5 - ' 1 (s-h i s the set S with the h^'1 
cons t r a i n t deleted) v io la t e s cons t ra in t h.^4 

33 
H. Thei1 and C. Van de Panne, "Quadratic Programming as an Extension 

of Classical Quadratic Maximization," Mathematical Studies in Management 
Science, edited by Arthur F. Veinott , Jr." "(Ww York", "19657", pp". 129-1*48. 

34 
Boot, op. c i t . , p. 98. 
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The genera] procedure of the Thei1-Van de Panne technique f o r 

maximizing a quadra t ic funct ion subjec t to l i n e a r c o n s t r a i n t s can be 

summarized by a su i t ab l e a lgori thm. The algori thm to fol low i s the 

r e s u l t of a de t a i l ed study of the work of Thei1 and Van de Panne and a 

thorough ana lys i s of sample problems. Following t h i s algorithm i s a 

d e t a i l e d example. Although the problem i s of a type common to the 

l i t e r a t u r e , the de ta i l of the presen ta t ion i s no t . 

Algorithm 3.5 (Algorithm f o r method of Thei1-Van de Panne) . - -

Step 1. Maximize the given quadra t ic func t ion without consider ing any 

e x i s t i n g c o n s t r a i n t . Denote the i n i t i a l maximizing solu t ion vec tor 

by x°. This i n i t i a l so lu t ion vector can be obtained by s t r a igh t fo rward 

d i f f e r e n t i a t i o n of the ob j ec t i ve func t ion 

f (x) = a jx - -yjX̂ Gx 

or by obta in ing and using the inverse of the matrix G. 

Step 2. Test the i n i t i a 1 maximal s o l u t i o n , x° , to determine whether 

or not x° s a t i s f i e s the c o n s t r a i n t s imposed cn the ob j ec t i ve f u n c t i o n . 

I f x° s a t i s f i e s the c o n s t r a i n t s of the problem, then x° i s the solut ion 

which maximizes f(x_). (A cons t ra ined maximum can never exceed the uncon-

3 5 

s t r a ined maximum.) I f the i n i t i a l solut ion x° v i o l a t e s one or more 

c o n s t r a i n t s , then i t i s known t h a t the optimal so lu t ion vec tor will be 

such t h a t a t l e a s t one of these v io l a t ed c o n s t r a i n t s will be s a t i s f i e d 

in e q u a l i t y form. If the so lu t ion x° i s not op t imal , go to Step 3. 

35 
Thei1 and Van de Panne, op. c i t . , p. 130. 
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Step 3. Given tha t the i n i t i a l solut ion, x°, v io la tes at l ea s t one 

of the cons t ra in t s , i t i s necessary to determine the optimal solution 

vector subject to the defined l inea r cons t r a in t s . This i s accomplished 

by systematical ly considering x s fo r a l l of the s subsets of the m 

cons t ra in t s , (x_s has been defined as the vector maximizing f{x) subject 

to s of the m const ra in ts expressed as e q u a l i t i e s . ) The se ts s to be 

considered are those containing a t l e a s t one constraint tha t i s violated 

by the i n i t i a l solution x°. The procedure to be followed consis ts of 

the following set of operat ions: 

(1) Let the i cons t ra in t be t rea ted as an equa l i ty . Maximize 

f (x ) subject to the i**1 cons t ra in t . Denote the solution vector by x1'. 

If x1 i s not f ea s ib l e for some i 5 go to (2). 

(2) Let cons t ra in t s i and j be t rea ted as e q u a l i t i e s . Maximize 

f(x) subject to the pair of equal i ty cons t ra in ts i and j . Denote the 

solution vector by x_1J. If x_1J i s not f eas ib le f o r some pair ( i , j ) , 

go to (3) . 

(3) Continue the process, adding one additional equal i ty cons t ra in t 

each time, unt i l an optimal solution i s obtained. The optimal solution 

will be that solution vector which maximizes f (x) subject to s -cons t ra in t s 

t reated as e q u a l i t i e s . I t i s necessary to consider a l l possible combi-

nations of the equa l i ty - t rea ted cons t r a in t s . When a feas i ble solution 

is obtained, go to Step 4. 

3 6 I b i d . , p. 136. 
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Step 4. Test the f e a s i b l e solut ion fo r op t ima l i t v . A f e a s i b l e 

solut ion i s optimal if and only if 

0 ) A .1!?_> a r |d 

(2) the optimal solut ion to the se t of k+1 problems generated by 

37 

de le t ing one a t a time, one of the cons t r a in t s v io l a t e s t h i s c o n s t r a i n t / 

As a means of i l l u s t r a i n g t h i s technique, consider the problem of 

determining the amounts of product x-j and x^, r e s p e c t i v e l y , t h a t must be 

produced to maximize the continuous p r o f i t function 

f(x-j , - 1 Ox-j + 25Xg - 1 Ox̂  " x2 " 4X-JX£ 

subject to the demand func t ions 

x-j + x 2 < 9; 
X1 + ^Xg i 10; 

x ] 1 o; 

x2 ~ 

This type of problem i s s imilar to production a c t i v i t y problems 

where the c o n s t r a i n t s are those imposed by labor and/or resource a v a i l a b i l i t y , 

I t i s a lso s imi la r to investment problems in which return on investment 

i s to be maximized subject to the a v a i l a b i l i t y of investment funds . 

Solut ion: Step 1. Maximize 

f(x-j , x^) = lOx-j + 25x? - 10x^ ~ x2 " ^ x ] x 2 

without considering any ex i s t ing c o n s t r a i n t . This i s accomplished by 

3f (X-, , X2) 
0 f o r a l l x^ 5 (i = 1 , 2) and t e s t i n g f o r a maximum solut ion 

37 
Ronald L. Que and Michael E. Thomas, Mathematical Models in 

Operations Research (London, 1968), p. 242. 
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by applying the c r i t e r i on 

f'l (x-j, x2) " f o (x 1 , Xg) = 0 at the c r i t i c a l points (X-j, X^); 

f- j2^x i» ) ~ fi-j (x-j) Xq) ' '22 ̂ X15 ^ 0 at \_X-j, ^2^' '• 

f 1 -j (x 1 , Xg) < 0 at (X-j 5 X2) • 

3f (X, , X?) 
(1) Equating = 0 for i = 1, 2, y ie lds 

i 

3f (x-j , X2) 
10 - 2Ox, - 4x0 = 0; 

Sx-j 1 2 

3f{x-j » x2 ) 
= 25 - 2x0 - 4x, = 0. sx2 2 1 

The c r i t i c a l points fo r the given function are those points sat is fy ing 

th is l inear system. Since the system is l i near , the set of c r i t i c a l 

points is unique. Solving th is system yields X-j = and X>2 = . 

(2) Testing (X-j, X2) = ( ~ j p -^jp) for maximization yields the 

fol lowing: 

(a) * 2 ) = 3 x T f ^ x l * x2^ = 0 a t ( x p x?)* T h l ' s i s 

1 2 

evident since th i s condition was used to determine both X-j and X2> 

2 
(b) f ] 2 ( x i > ^2) ~ f•] •[ (^-j 5 ^2 ) • f 2 2 ( x - j , x2 ) < 0 at (X-j 5 X2). 

I t i s necessary to determine the appropriate par t ia l derivatives and 

evaluate these at (X-j, X2). 
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f-j (x-j, x2) = x
2 ) = l u ~ 20x-j ~ 4 x 2 ' 

2 
f l l < V *2> = 3 ~ f ( X l ' X2> = 4 " ^ ' f ( X T X2' = " 2 ° ; 

^2(^]5 x2^ ~ ax""" f (x-j 9 Xrj) = 25 - 2X2 ~ 4x*|1 

f 2 2 ( x l ' x2 } = f ( x l ' x2 ) = Dx̂ * 3^" f ( x l ' x 2 ) = ~2 ; 

fll(Xl 5 X2} = 3 ^ ' ^ f ( x1' X2} = 9x̂~ 3^ f ( x l ' x2} 

= 3 ^ 3 ^ f < x r X2 } = ~4 ' 

40 . v . 115 Evaluating these par t ia l derivat ives at and X2 = --"--y ields 

^1 (^1» ^ ) ~ fgCX-j, Xp j ~ 0 j 

f 12(X j» X2) - -4; 

^11^1 ' X2 ̂  ~ ~20; 

f 2 2 ^ T X2^ = ~2 , 

Subst i tut ing these values into the relat ionships which iden t i f y (X ] , X^) 

as a maximum, i t is found that 

f - | ( x r x2) = f 2 ( x r x2 ) = 0 at (X ]S x 2 ) ; 

2 
fT2(X1 ' x2^ " f n ^ x T x2^ ' f 2 2 ^ x r x2^ = ~36 < 0 a t ( X T x 2 ) ; a n d 

f'j •] (x-j > * 2 ) = 0 < 0 at (X-j, X2). 
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The given function achieves an unconstrained maximum at X-j = - y p 

X2 = 115-. Define x° as x° = (X-,, X2)T = (x ] S x 2 ) T = ( - ^ , - 1 ^ ) T . 

Step 2. Test the i n i t i a l solut ion x_° fo r f e a s i b i l i t y . This is 

accomplished by subst i tut ing x ] = and x£ = in to each of the 

constraints. 

(1) at x° , x-j + x2 £ 9 is v io lated: x-j + x2 = l s | / 9; 

(2) at x° , x-j + 2x2 £ 10 is v io lated: x-j + 2x2 = 35 £ 10; 

(3) at x°s x-j _> 0 i s v io lated: x-j = 0; 

(4) at x° , x? > 0 i s sa t is f ied : x0 = 4̂— > o. 

c — l b 

From these calculat ions i t i s evident that the unconstrained 

solution is not optimal since i t v iolates constraints (1) , (2) , and (3). 

At least one of these three constraints w i l l be sa t is f ied as an equal i ty 

in the f i na l solut ion. 

Step 3. Given that the i n i t i a l solut ion x° is not optimal, i t i s 

necessary to determine x^ for a l l of the possible subsets of the three 

v io lated constraints. This is done by considering the v io lated constraints 

ind iv idua l l y , in pai rs, and then as a un i t . I f an optimal solut ion occurs 

at any po in t , the i te ra t ions cease. 

(1) Subsets of one equal i ty constraint 

(a) max f (x-j, x2) subject to x-j + x2 = 9. 

(b) max f ( x 1 ? x2) subject to x-j + 2x2 = 10. 
(c) max f(x- j , x2 ) subject to x-j = 0. 
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Consider 1(a). 

max f ( x - j , x 2 ) - 1 Ox-j + 25x2 - 10x^ - x2 - 4 x ^ 
2 

subject to x-j + x2 - 9. Solving the constraint equal i ty fo r x 2 , x2 - 9 - X j , 

and subst i tut ing in to f ( x ] , x2) results in a one dimensional funct ion, 

f f x , ) 

f ( X ] ) = 144 - 33x- - 7x?. 

This function can be optimized by sett ing f ' (x - j ) equal to zero to 

determine the c r i t i c a l point . This point can then be used to calculate 

The derivat ive of f ( x ] ) , f ! ( x ] ) , is given by f ( X ] ) = -33 - 14x ]. 

p p Since f"(x-j 

X2' 

Equating f 1 (x-j) to zero yields x-j = -y|~. Since f " ( x 1 ) = -14 < 0 at 

x, = _33 
14' > the given function i s maximized at th is point . At x, - 4 J 

x2 ~ 9 ~ X1 f i e l d s a value of fo r x 
14 

%2' 

The solution set x' - ( x , , x£) - ( M ) must be tested for 

feas ib i1 i t y . Substi tut ion of these values into the constraint functions 

yields the fol lowing: 

(1) at x ' , x-j + x2 <_ 9 i s sa t i s f ied : x-j + x^ = 9; 

(2) at x ' , x1 + 2x2 <10 i s v io lated: x ] + ?x2 = 20j|- £ 10; 

(3) at x ' , x-j >_ 0 is v io lated: £ 0; 

(4) at x_', x2 >_ 0 i s sa t i s f ied : x2 
115 

0. 6 

The solution vector x_ is not a feasible solut ion, hence not optimal 

Consi der 1 (b). 

max f ( x r x2) - 10x1 + 25x2 - 10x^ - xf - 4 x ^ 2 

subject to x-j + 2x2 = 10. Solving the constraint equal i ty fo r x-j, 
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x-j = 10 - 2x2, and substituting for x-j in f(x^ , x0) resul ts in the one 

dimensional function, f(x^) 

f(x2)= -900 + 365X2 - 33x2. 

This function can be optimized by setting f ' (x^) equal to zero to determine 

the c r i t i ca l point. This point can then be used to calculate x-j. The 

derivative of f ( x 2 ) , f ' ( x 2 ) , is given by f 1 (x ? ) = 365 - 66x2. Equating 

f 1 (x2) to zero yields x2 - Since f"(x2) = -66 < 0 at x2 = - g p the 

given function is maximized at th is point. At x0 = ~ ~ t x, = 10 - 2x0 
2 66 1 2 

or 

yields a value of for x-j. 

The solution set x2 = (x-j, x2) = ( m u s t be tested for 

f e a s i b i l i t y . Substitution of these values into the constraint functions 
yields the following: 

2 
(1) at x ' , x-j + x2 <_ 9 i s sa t i s f i ed : x-j + x2 = 5 < 9; 

? 

(2) at x_~, x-j + 2x2 £ 10 is sa t i s f i ed : x-̂  + 2x9 = 10; 

(3) a t x2 , x-| >_ 0 is violated: x-j = £ 0; 

(4) at x2 , x0 > 0 is sa t i s f i ed : x0 = > 0. 
— L ~ (_ 6o 

9 
The solution vector x j is not a feasible solution, hence not optimal. 

Consi der 1 (c) . 
max f (x-j, x2) = 10x] + 25x2 - 1 Ox2 ~ x2 + 4 x ^ 2 

subject to x̂  = 0. With x-j = 0 the function to be maximized is given by 

f(x2)= 25x2 - x2 . 

This function can be optimized by setting f1(x) equal to zero to determine 

the c r i t i ca l point. The derivative of f{x 2) , f '{x 2) i s given by 
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f ' ( ) = 25 - 2x2. Equating f ' (x2) to zero yields x2 = Since 

25 

f " (x 2 ) ~ -2 < 0 at x2 = the given function is maximized at th is 

point. 

The solution set x3 = ( x r x£) = (0, - | ) must be tested for 

f eas ib i l i t y . Substitution of these values into the constraint functions 
yields the following: 

3 1 
(1) at x , x^ + x2 £ 9 is violated: x-j + x2 = 12-,4 9; 

O 
(2) at x , Xi + 2x2 <_ 10 is violated: x-j + 2x2 = 25 £ 1 0 ; 

(3) at x , x-j >_ 0 is sat isf ied: x^ = 0; 

(4) at x3 , x2 >_ 0 is sat isf ied: x2 = — > 0. 

The solution vector x3 is not a feasible solution, hence not optimal. 

At th is point an optimal solution has been found. Each of the three 

subset possib i l i t ies of one equality resulted in solution vectors which 

violated at least one constraint. 
*1 oo "} r Q 

1(a) x = - j q violated constraints (2) and (3). 

1(b) x- = — v i o l a t e d constraint (3). 

1(c) x3 = 0, ^ - v i o l a t e d constraints (1) and (2). 

Since no optimal solution has been found, i t is necessary to consider 

maximizing f (x-|, x2) subject to a l l possible pairs of equality constraints. 

These pairs of equality constraints are then used to determine values of 

x-| and x2» These values are then tested for both feas ib i l i t y and optimality. 

(2) Subsets of two equality constraints 

(a) x1 + x2 = 9 
X1 + ^x2 = ^ 
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(b) x-, + x2 = 9 

(c) x 

(d) x 

= 0 

+ 2X2 = 10 

x2 = 9. 

. x2 = 5. 
= 0 J 

+ x2 = 9 

x2 = 0 

Xj = 9. 

(e) x-j + 2x2 = 10 

x2 = 0 

, x-j = 10. 

Before beginning, note that one of the equality conditions violates the 

original constraints of the original problem: x ] = 0, x2 = 9, violates 

constraint (1). Thus, 2(b) need not be considered. 

Consider 2(a) 

subject to 

max f ( x ] 5 x2) = 10x.j +25x2 - 10x2 - x2 + 4 x ^ 2 

X-j + x2 = 9 

x^ + 2X2 = 10. 

Solving the l inear system, x ] = 8, and x£ = 1, this solution, x12 = (8, 1), 

satisf ies a l l the inequality constraints imposed on f(x-j, x 2 ) . 

X1 + ^2 — 9 

x-j + 2x2 £ 10 

x, > 0 

x
2 1 ° = 

and thus constitutes a feasible solution. Since x^2 is feasible, go to Step 4. 
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1 ? 

Step 4. Test the f eas ib l e solution x_ " = (8, 1} fo r opt imal i ty . 

The feas ib le solution is optimal if and only if the solution to the 

problems obtained by holding one const ra in t act ive v io la tes the relaxed 

cons t ra in t ; i . e . , solving the problems generated by relaxing one cons t ra in t 

at a time must y ie ld points that v io la te the cons t ra in t t ha t has been 

relaxed. 

In the f i r s t i t e r a t i o n , the relaxed cons t ra in t s were writ ten as 

X -j "** X ry ~ 9 » 

x-j + 2x2 = 10; 

x-j = 0. 

The solution vectors achieved by relaxing these cons t ra in t s one a t a 
1 _ / 33 159s 2 _ , 35 365* , 3 , n 25\ c , , . 

time were x - ; x_ = ( - j j j » and x_ = (0, —,£). Solut ion 
1 . ? 

vector x viola ted x-j + x^ < 9 and x1 >. 0. Solution vector x_~ violated 
9 X1 0- The solution given by x_ does not v io la te x-j + x2 1 9. Hence, 

the solution achieved by using const ra ints 1 and 2. simultaneously as 

12 

an equal i ty system, x_ i s not an optimal solut ion. Return to Step 3 

and continue the i t e r a t i on process. 

Step 3 (continued). Consider 2(c) . (2(b) was discarded at the ou t se t . ) 

max f ( x 1 , x2) = 1 Ox-j +25x2 - 1 Ox? - x2 + 4x-jx2 
subject to 

x-j + 2x2 - 10 

x-j = 0. 

Solving t h i s l i n e a r system, x1 = 0 and x2 = 5, t h i s so lu t ion , x 2 3 = (0, 5) 

s a t i s f i e s the inequal i ty cons t ra in t s , const i tu t ing a f eas ib l e so lu t ion . 
23 

Since x_" i s f e a s i b l e , go to Step 4. 
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Step 4. lest the feasible solution x2 3 - (0, 5) for opt imal i ty . 

The feasible solution is optimal i f and only i f the solution to the 

problems obtained by holding one constraint active violates the relaxed 

constraint; i . e . , solving the problems generated by relaxing one constraint 

at a time must y ie ld points that v iolate the constraint that has been 

relaxed. 

In the f i r s t i terat ion the relaxed constraints were wri t ten as 

x, + x2 = 9; 

x.j + 2X2 = 10; 

x-, = 0. 

The solution vectors achieved by relaxing these constraints one at a time 

were x = -J-i) • y
2 - / 35 365s. , 3 25^ 

" [ W 14 J ' * - ( -33 ' ~66 ) ; a n d * =•• (0, Since the current 

solut ion i s x % the maximum value of f ( X ] , x2) subject to the-pa i red 

equal i ty constraints 2 and 3, the solutions to x2 and x3 are the only 

ones to be considered. Solution vector x2 - (-§§, 365, v 1 o l a t e d ^ 

Solution vector x3 violated x, + xg < 9 and x, + 2x2 < 10. 

I t is necessary to consider one of the constraints violated by x2 . 

The only violated constraint was x, > 0. The test for opt imal i ty 

requires that x3 v io late x, • 2x2 <10 . Since x2 v iolates the th i rd 

constraint , x, » 0, and ^ v i o l a t e s the second constraint, x, + 2x < 1 0 ) 

the solut ion defined by x 2 3 i s optimal. 2 

When f ( x r x^) i s maximized subject to the pa i r of e q u a l i t i e s 

x ] + 2x2 = 10 

X1 = 0, 
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the solut ion to the c o n s t r a i n t e q u a l i t i e s i s opt imal : x-j = 0, Xg ~ 5. 

Optimali ty i s v e r i f i e d by examining the s ingle equa l i t y so lu t ions and 

t h e i r e f f e c t upon the c o n s t r a i n t s paired t o g e t h e r . Since c o n s t r a i n t s 

(2) and (3) are pa i red , the un i t so lu t ions to the s ing le e q u a l i t i e s 

maximizing f (x-j, x,,) will be examined. The so lu t ions were 
on j o 

(2) max f ( x 1 , x^) sub jec t to x-j + 2x,, = 10: x-j = x^ = 

o 
(3) max f (x-j, Xg) sub jec t to x-j = 0: x-j = 0; x,, = - y . 

O 

Optimal i t y e x i s t s i f and only i f the solut ion x_'~ v i o l a t e s c o n s t r a i n t (3 ) , 

x-j >_ 0, and the so lu t ion xl v i o l a t e s c o n s t r a i n t (2 ) , x-j + 2x^ < 1 0 . 

Since t h i s i s the case , the solut ion to the pa i r ( ( 2 ) , (3)) optimizes 

f(x-j , x 2 ) . 

Maximum p r o f i t will be achieved by concentra t ing a l l production 

on product x^j i . e . , produce 0 uni ts of x-j, 5 u n i t s of x^. Maximum p r o f i t , 

in d o l l a r s , will be $100. 

Different! ' al a lgor i thm of Wijde_ an_d Be igh t le r , - -The d i f f e r e n t i a l 

algori thm (developed by Candler and Town send, and independent ly , by 

Be igh t l e r , Crawford, and Wilde) uses a special c h a r a c t e r i s t i c of quadra t i c 

programming, decis ion d e r i v a t i v e s . Defined as the appropr ia te p a r t i a l 

{or regular ) de r iva t ive of a given set of independent v a r i a b l e s , these 

de r iva t i ve s are l i n e a r func t ions of the decision v a r i a b l e s . These decis ion 

de r iva t i ve s represent the r a t e of change in the ob jec t ive funct ion r e s u l t i n g 

from f e a s i b l e (not a r b i t r a r y ) changes in given (or se l ec ted ) decision 

v a r i a b l e s . 
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The use of a d i f f e r e n t i a ! algorithm requires that the object ive 

function be expressed in terms of the decision var iab les . With t h i s 

expression the object ive function can then be p a r t i a l l y d i f f e r e n t i a t e d 

with respect to each of the decision var iables ; any other constrained 

variables are t rea ted as constants . (A more deta i led treatment of the 

d i f f e r e n t i a l algorithm as an optimization tool can be found in Wilde 

and Beightler: Ibid. , pp. 58-78.) 

Pr ior to the presentat ion of the d i f f e r e n t i a l algorithm as a tool 

fo r solving quadrat ic programming problems, cer ta in terminologies and 

notat ions are necessary. These are given below. 

Definition 3.9.--The m '̂1 decision derivat ive r e l a t ive to the current 

set of s t a t e var iables (var iables tha t adjust to changes in the decision 

va r i ab les ) , denoted v , indica tes whether an increase or a decrease in 

the value of the corresponding deci si on var iab le , d , would be des i rab le . 

As noted in the d e f i n i t i o n , the m^' decision derivat ive indicates 

the necessary change of value in the corresponding decision var iab le , d , 

i . e . , increase or decrease. The necessary direct ion of change in the d^ 

value (increase or decrease) i s given by the sign of the v . 

(1) If vm < 0 increasing the decision variable dm (while holding 

a l l other decision var iables constant) will decrease the value of the 

object ive funct ion. 

(2) If vm > 0 decreasing the decision variable dm (while holding 

all other decision var iables constant) will increase the value of the 

object ive funct ion . 



281 

The algorithm takes these values and, beginning with an i n i t i a l so lu t ion , 

i t e r a t i v e l y moves through the feas ib le region. At each i t e r a t i on the 

value of the object ive function i s reduced ( fo r minimization); however., 

a f eas ib le solution i s maintained tha t s a t i s f i e s the cons t ra in t s given by 

k 

^ aknxn ~ xn+k = bk* 

In t h i s manner the object ive function i s decreased (or increased) by 

adjust ing one decision variable at a time. All other decision var iables 

are held constant . 

Appl ied to quadrat ic programming, the d i f f e r e n t i a l algorithm i t e r a t i v e l y 

evaluates the value of each decision derivat ive at successive stages of 

the procedure. This algorithm i s taken from Wilde and Beightler and is 
OQ 

presented here in a manner s imilar to that of i t s authors. 

A1 gori thm 3.6 (P i f f e r en t i a l al gori thm of Wil_d_e_ and Beight ler ) . —Step 1. 

Define v. as the smallest decision derivat ive l ess than zero. Define v, 
i h 

as the 1argest deci si on derivat ive such that the correspondi ng deci sion 

var iab le , d^, exceeds zero (Is pos i t i ve ) . (vk = syAx^, the pa r t i a l 

derivat ive of the object ive function with respect to var iable k.) 
j- U 

Step 2„ If there does not ex i s t some m ' decision derivat ive tha t 

i s negative, l e t v.. = 0; i . e . , i f v^ < 0, l e t v = 0. For every posi t ive 

decision derivat ive having decision var iables equal to zero, l e t v^ = 0. 

Step 3. If v.. = v^ = 0, an optimal solution has been found. 

38 
Wilde and Beight ler , op. c i t , , pp. 63-66. 
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Step 4. Suppose and Vj are not both equal to zero. Then i t 

i s necessary to compute a value V defined as fo l lows: 

V = » i + vh . 

Tnonposi t ive l ,, l increase d. 
V pos i t ive )• [ d e c r e a s e 

If v i s \ t , then i "i I, with all other decision 

var iab les held constant u n t i l : 

I . some s t a t e va r i ab l e , s^, equals zero; or , 

I I . v = 0; i f V > 0, r = h. 

i f V < 0, r = i . 

H I . dh = 0. 

Step 5. I f a cons t r a in t i s v io la ted by a solut ion po in t , i t i s 

necessary to change the s t a t e s e t . This i s accomplished by the following 

s teps : 

(1) solve the viol ated cons t r a in t f o r the vari able leaving the 

so lu t ion ; 

(2) s u b s t i t u t e the r e s u l t of (1) in to the ob jec t ive func t ion ; 

(3) determine the new decision de r iva t ives ; 

(4) reapply Steps 1 - 4. 

As a means of i l l u s t r a t i n g the d i f f e r e n t i a l a lgori thm, a sample 

problem which incorporates a l l of the computations i s taken from Wilde 

3 9 

and Beight le r . This example requi res tha t a quadrat ic funct ion be 

minimized subjec t to two l i n e a r cons t r a in t s and nonnegativi ty of the 

v a r i a b l e s . As a means of f u l l y demonstrating the algori thm, the presen-

t a t ion here i s in g rea t e r de ta i l than tha t of Wilde and Beight le r . 

3 9 I b i d . , pp. 73-78. 
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Determine the values of y,} and x2 f o r which the quadra t i c func t ion 

y = 2x^ - 2X-|X2 + 2xd
z - 6x-j + 6 

achieves i t s minimum value . I t i s assumed t h a t y i s d i f f e r e n t i a t e . The 

funct ion i s r e s t r i c t e d by 

X1 
> 0, 

X2 
> 09 

3x^ + 4x2 < 6, 

"X1 + 4 x 2 
< 2. 

" x ] ~ 

i 
o " 

Let x° = " x ] ~ 

n 
,X2. i 

n be the i n i t i a l so lu t ion , 

Step 1. Let v i denote the smal les t negat ive decision d e r i v a t i v e , 

v i ~ 3xT" L vf| - e n o t h e l a r g e s t pos i t i ve decision de r iva t ive such 

that tne corresponding deci si on v a r i a b l e , d^, i s p o s i t i v e . Calcula te 

v . = £ L 
1 8X 

1 

min y = 2x? - 2 x ^ 2 + 2x* - 6x 
1 

sub jec t to 

6 = 3x.j + 4x2 + x 3 . 

2 = -x, + 4x„ + x 4 5 

where x^ and x^ are a r b i t r a r y va r i ab l e s which change each i n e q u a l i t y 

to an e q u a l i t y . 

V1 ax-j 4 x l " ^x2 " 

V2 ~ 8x7 ~ ~2 x] + ^ x 2 ' 
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For xc 
X1 0 

x2 0 5 the i n i t i a l so lu t i on , = -6 and Vg = 0. At 

x° , v^ and v^5 i d e n t i f i e d by and x^, equal 6 and 2, r e s p e c t i v e l y . 

(See Table 3 .17 . ) 

TABLE 3.17 

INITIAL SOLUTION 

Solution ->• 0 0 

S ta te Set + x i X2 X3 X4 Sta te Set Values 

x 3 3 4 1 0 6 

x4 -I 4 0 1 2 

y -6 
_ 

0 5— 

I i 

0 

V l t v 9 t 

Step 2. Examine the r e s u l t s of Step 1. If v < 0 , l e t v. = 0 

For a l l vm > 0 having decision va r i ab l e s equal to ze ro , l e t v. - 0. 

At x° » v, -6 and v^ - 0, Since v-j i s the smal les t negat ive 

va lue , x-j i s the decision var iab le t h a t i s to be a d j u s t e d ; i . e . , d-j = x-

Step 3. Since v i and vh are not all ze ro , an optimal so lu t ion has 

not been found. Go to Step 4. 

Step 4. Since v.. and vh are not all ze ro , c a l c u l a t e V, where 

v i + v h . 
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I f V i s i s [nonpos i t i v^ t h e n ^increase d. ] w h , l e h o l d 1 n g ^ o t h e r 
j jDOsit ive J (decrease j 

decision variables constant un t i l 

I . some state var iable, Sp, 

I I . = 0; i f V > 0, r = h; 

0; or 

i f V < 0, r = i , 

I I I . dh - 0. 

For the f i r s t solut ion, x° 

v i = V1 

Vh = V2 

~6; 

0; 

v - -6. 

Since V <_ 0, the decision variable d-j must be increased. A l l other 

decision variables w i l l be held constant. 

For v^, the i n i t i a l rate of change with respect to x-j is given by 

dy 
3X I 

4x-j - 2x2 - 6. 

With held constant at zero, x° = 

of change -6. Thus, fo r = 0, 

n h 1̂ — is l inear in x-, with rate 
lOJ dX i I 

ax 1 
4x^ - 6. 

x2 = 0 

Equating — - to zero when x9 = 0, 4x-ax 0 requires that x-j - 3/2. 

For x^ = 3/2, v-j = 0, and 

3x-| + 4Xg < 6 is s t i l l sa t is f ied ; 

-x-, + 4Xg < 2 is s t i l l sa t is f ied . 
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When x., = 3/2 and x2 05 the values of and x^ are 3/2 and 7 /2 . 

r e s p e c t i v e l y . The value of y i s -9 /2 . Thus, at the second t r i a l p o i n t , 

Xjj, where x-j = 

v-j =• 4x-j - 2Xg - 6 

v0 = -2x, + 4x0 2 i L 

- 6 - 3x-j - 4x? 

x •4 - 2 + x ! 
2 

4x 

.2 
2x-jXg + 2Xg - 6x-| y = 2x] 

These results are summarized in Table 3.18 

= 0; 

= -3 ; 

= 3/2; 

= 7/2; 

- -9 /2 . 

TABLE 3.18 

FIRST ITERATION 

Solution 

S ta te Set 4-

3/2 

X1 

0 

X2 

... „ — n 

x 3 

r ~ ' v ~ ~ 

X4 S ta te Set Values 

x 3 

X4 

3 

-1 

4 

4 

1 

0 

0 

1 

3/2 

7/2 

y 0 -3 0 0 -9/2 

<
 

1 

V 

I t e r a t i o n 11: Step 1 
3 V Calculate v.. = - g — w h e r e v. i s evaluated 

\ O A j 1 

at x-,. 
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i t 
' 1 3X n 

4X-j - 2Xg : 

= f>X_. 

At x_-j = 
X1 z: 

~3 ' 

2 

-X2 0 . 

ax, 

, v-j = 0 and Vg 

+ 4x, 

-3. 

Step 2. Examine the resu l t s of Step 1. If v < 0, l e t v.. = 0. 

For al l v > 0 having decision derivat ives equal to zero, l e t v. = 0. 
IT} n 

3 
At x = 05 v2 -6, x^ = 0, and = 0. Since v. -6 i s the 

0 

smallest negative value, i s the decision variable tha t is to be 

adjus ted; i . e . , s Xg. 

Step 3. Since v.. and v^ are not al 1 zero, an optimal solution has 

not been found. Go to Step 4. 

Step 4. Since v.: and v, are not a l l zero, calculate V, where i f ! 

T f . fnonposi t ive 
i T ; l j [pos i t ive 

V = v i + vh . 

, then I i n c r e a s G c'-j ^ while holding al l other 
^decrease d^ j 

decision variables constant unti l 

I . some s ta te var iab le , Sp = 0; or 

I I . v r = 0; i f V > 0, r = h; 

if V <_ 0, r - i . 

I I I . dh - 0. 

For the second solut ion, x n , 

V5 = v2 = -3; 

vh = V1 = 0; 

V = -3. 
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S i n c e v i ° > t h e decision var iab le d? must be increased . All o the r 

deci si on var idblos will bs h8l ci cons tan t . 

For v 2 , the i n i t i a l r a t e of change with respect to x 2 i s given by 

f~~= ~2x-| + 4X 2 . 

With x-j held constant at 3 /2 , x.j = 
rx V 
|~r~ i s l i n e a r in x2 with r a t e of 

change equal to -3 . Thus, f o r x-f = 3 /2 , 

£L 
DX2 

3 + 4x, 

x-t - 3/2 

Equating J|~- to zero when - 3 /2 , -3 + 4x£ - 0 r equ i res t h a t x2 - 3 /4 . 

For x ] - 3 /2 , x2 = 3 /4 , v-j - 0, v2 = 0, and 3x-f + 4x,, _< 6 i s v i o l a t e d , 

~X1 + 4 x
2 5 2 1 s s a t i s f i e d . When X ] = 3/2 and x ? - 3 /4 , the values of x0 c 3 

and x4 are and | 5 r e s p e c t i v e l y . Thus, a t the t h i r d t r i a l po in t , x„, where 

x^ = •3 I x 
1 

l " 2 

0 o 

2 

A 

v-j - 4x] - 2x2 - 6 

v2 = -2x-| + 4x2 

x^ = 6 - 3x-j 4x2 

x
4 - 2 + x-j - 4x2 

y = 2x1 - 2 x ^ 2 + 2x2 - Gx-j 

25 

3. 
2" 

1 
V 

45 
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n c e a constraint i s viol a ted, i t i s necessary to change the s ta te 

; s e t . t That i s , since = 3/4 v iola tes x3> variable x3 will enter as a 

decision variable . Variable x? will leave as a s ta te var iable . The 

- required procedure i s as follows. 

(1; Solve tne constraint containing ? the variable entering the 

solut ion, for x 2 , the variable leaving the solut ion. Substi tute th i s into 

the remaining constraint to eliminate x£ from that const ra in t ; i . e . , 

3x, + 4x9 + x0 = 6 
1 L O 

y i e 1 c l s x2 " V4 (6 - 3x-| - x 3 ) ; 

the constraint -x, + 4x0 + x, = 2 
I L, 4 

can then be written as 

-x, + (6 - 3x-j - x3) + x4 -- 2 

-4x, - x3 + x4 = -4. 

(2) Subst i tute x2 = 1/4 (6 - 3x, - x3 Into the objective function, 

y = 2x^ - 2x-|X2 + 2Xj - 6x1 

= 2x2 _ ^ ( f. _ 3)<i _ ̂  + 2[i_ ( 6 _ ^ ^ 

' 2x^ _ ((. _ ^ ^ + ^ ^ ^ ^ ^ 

° 2xf " 3xl + 1*1 + + i"f36 - 36x, - 12x3 + 9x̂  + 6 j < ^ + ^ 

= h \ - 3 x l + ?(*iX3) + -31 - f x , - ^ x3 + | x2 + | x ,x 3 

+ I x 3 - 6 x l 
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(3) The new decision d e r i v a t i v e s are given by 

108 , 10 
'1 

74 
"1 

10 

8 X1 8 1 '8 X3 ; 

2 
o x i + "5™ X 8 1 8 6 

12. 
89 

1 
x 2 = d'^6 ~ 3 x ] " x 3 ^ ' a n c i 

-4 + x , + 4xn , where 

V i 

37 2 108 , 1 0 8 X1 3 X"l + 8 1 A 3 
^ 1 .2 , 36 x,x„ + 3 x 3 + - g . 

I t e r a t i o n I I I : Step 1, Let x. V I! 

2 

X 3 _ 
_ 0 . 

be the i n i t i a l so lu t ion 

f o r the cons t ruc ted system. Calculate v• = , where v. i s eval uated 
M I X» i 

at 

—3* 
..y._ - 1 / 1 f\ y + 1 fix 
x-j 8 l 1 3 

108) 

X. 
x- "5'(10x-j + 2x« - 12); 

a t x. 
X1 
x. 

3 
2 

0 

= 2 , v. and v. 

Step 2. Examine the r e s u l t s of Step 1. I f v^ < 0 , l e t v. = 0. 

For a l l vffl > 0 having decision de r iva t ives equal to ze ro , l e t = 0. 

| 5 V1 I 9 v 3 = t s Xf At x, 8' a n d x/. 

Step 3. Since v. and v^ are not al l ze ro , an optimal so lu t ion has 

not been found. Go to Step 4. 

Step 4. Since v̂ . and v^ are not al l ze ro , c a l c u l a t e V, where 

V = Vi + V 
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I f v 1 s t e t ? ™ V e l - t h e n r i n c r e a s e d l ] , While holding a l l other decision 
I " ^decrease ' 

variables constant unt i l 

I . some s ta te var iable , s = 0; or 
r 

I I . v r = 0; i f V > 0, r = h; 

if V < 0, r = i ; 

I I I . dh = 0. 

At the f i r s t adjusted solut ion, x^, v-| ancl v3 a r e both pos i t ive . Hence, 

V > 0. Since there i s no v̂  < 0, the variable to be decreased, x-| or 

x 3 , i s a r b i t r a r y . However, since x 3 = 0, only x̂  can be decreased. The 

amount of decrease i s determined by the ra t io 

V1 
t 9 rn 

, 2 
where t-,-, = . The required calcula t ions are summarized below. 

3X^ 

(1) Compute t , , = -Mp . 
3x^ 

t - 3 3y 
*11 8X1 9X1 

" 3 f r [ § < 7 4 x l + 1 0 * 2 - 1 0 8 ) ] 

- R 
8 

- 37 
4* 

Vn 

(2) The amount of decrease i s determined by the r a t io x—^ . The 
11 

3 37 
value of v-| i s g-. From (1) , t-j-j = Variable x-j i s to be decreased 
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3 37 3 by (g-) * This r a t i o . i s equal to Therefore, x-j will be 

decreased from to | y . 

(3) The fourth solution point, x^, i s defined by 
X1 " A x ] 

. x3 i 

3 3 X*j ^ X̂  ™ 0, and AX-j ** , 

At x^, 

*4 = 

54 
37 

0 

V1 = •|{74x1 + 10x3 - 108) = 0; 

v3 = 8^10xl + 2 x 3 " 12^ 
1L 
37' 

For 

x2 ~ 4̂ ® ~ ^xi ~ x3) l i . 
37' 

x^ = -4 + x3 + 4x-j 

v = J 9 8 
y 37* 

54 

68. 
37' 

The decrease in x-j (from - to j j ) has brought about the following: 

15 
(1) X£ increased from p to 

68 (2) x^ decreased from 2 to 

In general if a decision variable d^ is to be increased, i t is suf f ic ien t 

to consider i t s e f fec t s on those state variables having positive entr ies 

in the d^ column; i . e . , consider only the state variables s^ such that 

3fi. 
kr = 

3X. 
> 0. 

Conversely, if d^ is to be decreased, i t i s suf f ic ien t to consider the 
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e f f e c t s of t h i s decrease on j u s t those s t a t e va r i ab l e s having negat ive 

e n t r i e s in the column. I t i s necessary to t e s t f o r op t ima l i t y . 

Go to Step 2. 

Step 2. At , there i s no decis ion de r iva t ive l e s s than zero; 

i . e . , v {•- 0. Hence, v, = 0 = v . . For a l l v > 0 with decision va r i ab les m 1 i m 
1 ? 

equal to zero , l e t v^ = 0, At x^ v^ - j y , and i t s corresponding decision 

var iab le - 0. Thus v^ = v^ ~ 0. Go to Step 3. 

Step 3. Since v.. - V| -- 0, the so lu t ion defined by x^ i s opt imal . 54 The minimum value of y i s achieved a t x-j = -^y, x^ - 0, x 
15 
37' 

and 

68 1Q8 x4 " oj- This minimum value equals —jj-. These r e s u l t s are shown in 

Table 3 = 19. 

TABLE 3.19 

FINAL SOLUTION 

Solut ion -> 

S ta te Set 4-

y 

54 
37 

x 1 

3 
4' 

V-j f 

1 
4 

] 2 
37 

V 

Sta te Set Values 

15 
37 

68 
37 

" 37 
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Geometric Programming 

One of the most recent advances in the techniques of mathematical 

programming, geometric programming represen ts a technique by which a c l a s s 

of decision problems i s solved by inspect ion of the def ined ob jec t ive 

40 

func t ion or by a " r e l e n t l e s s e x p l o i t a t i o n of the p r o p e r t i e s of i n e q u a l i t i e s . " 

Developed by Richard J . Duffin and Clarence Zener in 1 961 , geometric 

programming i s a technique by which problems formulated as posynomials 

can be solved f o r poin ts of op t ima . 1 

As a means of descr ibing the posynomial formulation of the geometric 

programming problem, consider the f o i l owing t heo re t i c a l cos t f u n c t i o n , f ( x ) : 
fl'xl - r / 0,1 y °12 y + r v y v a a m + + r y 3 n i y y a 

V l x2 "" m 2 1 2 * m + * * - + c
n

x l x2 *'-xrn 

This expression can be v/ri t ten as 

n m 

f(x) = £ (Ci 77x. a ). 
i=i 1 j=i 3 

In t h i s formulat ion f (x ) represen ts the sum of n component cos t s . The 

c i , ( i = 1, 2 , . . . , n ) , are a l l pos i t i ve and represent the cos t assoc ia ted 

with va r i ab le x^, ( j = 1, 2 , . . . ,m). The a— define the exponents a t tached 

t h • 
to the m ' va r iab le with cos t c.. and are such tha t they can be pos i t i ve 

40 
Richard J . Duff in , L"l;nor L. Pe tersen , and Clarence Zener, 

Geometric Programminq--Theory arid Application (New York, 1967), p. 1. 

The term "posynomial" def ines a c l a s s of func t ions described by 
pos i t i ve polynomials; i . e . , a c l a s s of func t ions such tha t the 
c o e f f i c i e n t s of the terms are p o s i t i v e . 
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or n e g a t i v e . ^ func t ions of the type described by f ( x ) are sa id to 

be posynomi a l s . 

Although geometric programming i s genera l ly assoc ia ted with 

muTtivar iable , nonl inear f u n c t i o n s , t h i s i s not i t s only app l i c a t i on . 

Examination of f (x ) revea ls tha t the ob jec t ive f u n c t i o n , f o r p a r t i c u l a r 

values of the a ^ , can be wr i t ten as a l i n e a r func t ion . For example, 

T ( X ] , X r > ) """ 2 X - j 3 X ry 

can be wr i t ten as 

f ( x - j j x 2 ) = Z x ^ + 3 x ° x 2 , 

with c-| = 2; c 2 - 3; a-| j ~ 1; a-j2 ~ a2-| = £nc® a22 ~ t h i s 

f(x-|5 x2) s a t i s f i e s the requirements of a posynomial funct ion while 

maintaining the necessary c h a r a c t e r ? s t i e s of a l i n e a r f unc t i on . The 

c o e f f i c i e n t s of the terms are p o s i t i v e , and the funct ion f(x-j , x 2 ) 

def ines a power func t ion in x-j and Xp. 

Although maximization problems can be solved using the technique of 

geometric programming, the primary appl ica t ion has been in solving 

problems such tha t the ob j ec t i ve func t ion i s to be minimized. This i s 

a t t r i b u t e d to the i ac t tnat i t s o r ig in and subsequent development stems 

from the minimization of posynomial cost f u n c t i o n s . In t h i s app l ica t ion 

(cos t minimizat ion) , geometric programming d i s t r i b u t e s the t o t a l i t y of 

the summed components (coscs) among the various terms of the ob j ec t i ve 

4? . ~ 
_ "Negative values of the exponents ( a . . ) i nd i ca t e the ex is tence of 

an inverse r e l a t i o n s h i p . Examples of such1 ^ func t ions include demand 
func t i ons and income di s t r i but;ion f u n c t i o n s , a p a r t i c u l a r one of which 
i s faseco s law of Dis t r ibu t ion func t ion N = a /x^ . This funct ion def ines 
che number of ind iv idua l s N from a given population of s ize a whose 
income exceeds x. The value of b i s a known population parameter , 
genera l ly assigned the value of 1.5. 
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func t ion . Given these i n i t i a l optimal a l l o c a t i o n s , genera l ly obtained 

by inspect ion of a set of l i n e a r equa t ions , the minimal (optimal) 

solut ion usual ly fol lows via some simple c a l c u l a t i o n s . These ca lcu -

l a t i o n s involve the evaluat ion of the ob j ec t i ve funct ion a t the i n i t i a l 

so lu t ions and e i t h e r i n i t i a t i n g the ac t ion necessary to implement the 

decision or modifying the ob jec t ive in order to achieve workable 

( f e a s i b l e ) s o l u t i o n s . The f i r s t case represents the t rue optimal s o l u t i o n ; 

the second case represen ts a sub-optimal sol u t ion . 

Geometric programming can be used in the evaluat ion of des igns , 

p r o j e c t s , products , e t c . , p r i o r to the actual commitment of product ive 

resources . This a f f o r d s management the oppor tuni ty to f i n d optimal 

so lu t ions to problems ( f o r example, budget a l l o c a t i o n s ) when knowledge 

of the pol icy to be used i s not yet known. This i s accomplished whenever 

the ob jec t ive funct ion i t s e l f and a i l e x i s t i n g c o n s t r a i n t s are polynomials 
A A 

in the independent va r i ab l e s . " The necessary form i s se t f o r t h in 

Def in i t ion 3.10. 

Def in i t ion 3.10.—Let m denote the number of independent v a r i a b l e s . 

Let n denote the number of terms in the cos t func t ion . Let p denote the 

number of c o n s t r a i n t s imposed on the ob jec t ive func t ion . Let n denote 

the number of terms in the ob jec t ive f u n c t i o n . Let x. denote the i t h 

J 
independent va r i ab l e . Let a . , denote the exponent of the independent 

' J 
var iab le x . , with cos t c . . The geometric programming problem i s def ined by 

43 

Wilde and Be igh t l e r , op. c i t . , p. 28. 

4 4 I b i d . , p. 99. 
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subject to 

Qo Rl_ 
min f (x ) - (c, ~ / f x A ) 

i = 1 ' j = i J 

^n-| _m_ 
g-i(>0 = L (c. H x . a , j ) < i , 

i=n0+l j= l J 

np JL 
3 p ( x ) = _ Z ' (c . / / * ) < 1 , 

i = n +1 j= i 3 

whe l"e i = 1 . 2 . . . . . n , 

c j > 0, i = 1 , m , and 

a-j -j = any arb i t rary power. 

Def ini t ion 3. i 0 defines the class of problem i n i t i a l l y investigated 

by Zener ana Duff in, Their investigat ion led to the conclusion that "the 

sum of component costs sometimes may be minimized almost by inspection 

when each cost deoends on products of the design variables, each raised 

to arb i t ra ry but known powers.''45 

The expanded form of Def in i t ion 3.10 can be used to point out some 

oi the dist inguishing features of the geometric programming problem. This 

expansion takes on the form 

min f (x, j x 2 , . . . , x m ) = c 1 x - , a " x / - . . . x r a
a ~ + ^ x / - x / " . . .x r a

a» + . . , + 

c n/1 ^ V x 2 £ ' V • • •> ' 'm a • v • , 
'o i ^ m 

45 J I b id . , p. 1 00. 
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subject to 

g l ( x ) • + c n . + 2 , 1 l V ' * 2 ^ " - " 

+ 4 p v > y v t l n m i 

• ' • Cml 1 2 ' • ' Xn, 1 I > ni 

V x ) ~ °n , , x ] a ? v r t x 2
a V ? . . . x c x,aV.1 ' x a V* 2 . . . x , a v , t 2 M 

P-i ^ 

4- 4- r* y wsr} ! v a w JW 

np 1 r 2 r ' m f 1 1> 

and i s of such a nature that 

(1) the object ive funct ion, f (x^ , x £ , . . . , x ^ ) , i s composed of a sum 

of values, each of which i s given by a power function in the var iables x • 
j * 

(2) the const ra in t funct ions are of the same form as the object ive 

funct ion; 

( J ) t^ i e function need not be constrained in order to apply the 

solution techniques of geometric programming since the primary consideration 

centers on the optimal d i s t r ibu t ion of some commodity or resource among 

the various terms of the object ive funct ion; and, 

(4) a l i const ra in t funct ions must be represented by inequa l i t i e s 

ra ther than e q u a l i t i e s , the cons t ra in t function having a maximum value of 

un i ty . 

In addition to describing the makeup of the geometric programming 

problem, the preceding discussion has b r i e f l y out l ined the basic method-

ology of the minimization process employed by geometric programming, has 

pointed to potential applicat ion and use, and has defined the basic 
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geometric programming problem. Basic f e a t u r e s of the geometric programming 

problem have been i d e n t i f i e d and the riotational aspec ts demonstrated. This 

i n i t i a l i n s igh t makes i t f e a s i b l e to begin an exp lora tory study of geometric 

programming. This study will be accomplished by discussing f i ve bas ic 

t o p i c s , (1) the geometric-mean~inequa1ity, (2) orthogonal cond i t ions , 

(3) dua l i t y theory: minimization of posynomials and maximization of 

product f u n c t i o n s , (4) computational techniques : unconstrained pr imal , 

and (5) computational techniques: cons t ra ined pr imal . 

Geometric-mean~inequality.--The underlying bas is of geometric 

programming i s the geomet r ic -a r i thmet ic mean inequal i t y which s t a t e s 

t h a t the arithmetic, mean i s a t l e a s t as g rea t as the geometric mean. 

This r e l a t i o n s h i p permits the determining of lower bounds f o r posynomial 

func t ions and i s defined as fo l lows . 

fK 
Def in i t ion 3.11. --Let x. denote the i vari ab l e , i = 1, 2 , . . . , N . 

N_ 
Let 7 T x. def ine the product of the N v a r i a b l e s . Then the geometric-

i=l 1 

ar i thmet ic mean inequa l i t y i s given by 

I T 'w i f 
' I x,- 5 ¥ C. X,- • i=l 1 N - -1 

A cursory examination of Def in i t ion 3.11 revea l s t h a t the l e f t side of 

1 

the i nequa l i t y . 
N 

77 Xi 
i=l 1 

def ines the geometric mean. The r i g h t side of 

l JL 
the i n e q u a l i t y , -n- £ x • , de f ines the a r i thmet ic mean. The combining of these 

N i=l 1 

two r e su l t ed in the term "geometr ic-mean- inequal i ty ." 
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When appl ied to a general summation ( f o r example, c-|U-| + C2U2+ '* " + c n u n ' ' 

the use of the geometric mean inequa l i ty r e s u l t s in 

c l u l + c 2 u 2 + " - + c n u n - u
1 ° ' U2°* ' ' ' " n ' " ' 

The u. values (i = 1, 2 , . , . ,n) are defined as ari b t r a r y , non-negative 

numbers. The c i values (i = 1, 2 , . . . ,n) are defined as a r b i t r a r y weights 

s e l ec t ed in such a way t h a t E c, = 1. The r e l a t i o n s h i p 
i=l 

c l u l + c 2 u 2 + ' " + c n u n - ^ ^ 

can then be wri t ten in the form 

n n 
> l | u ,C i 

i=l 1 1 i=l 1 
I " c .u . 

I 1 

Since the o r ig ina l funct ion i s to be minimized and the sum of the 

weights (the c i values) must equal one, d i r e c t app l ica t ion of t h i s r e l a t i o n -

ship genera l ly requ i res a change of v a r i a b l e s . This change of va r i ab l e s 

i s accomplished by def in ing 

X1 = c l u l ' x 2 C2U2 ;" * ; x n ~ CnUn 

Solving f o r the u. and s u b s t i t u t i n g the r e s u l t in to the geometric-mean 

i nequa l i t y y i e l d s 

x, + x„+. . .+x„ > i ~ L i I - q ] 

This r e l a t i o n s h i p can then be wri t ten as 

n n / x . ^C|" 

£ x i i 7 T h r 
1=1 1 1=1 \ c i 
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In the solut ion techniques to fo l low, the r e s u l t j u s t obtained i s 

of primary importance as i t i s the foundation upon which they are basea. 

Recollect ion of the i n i t i a l i nves t i ga t i on of Zener and Puff in reveals 

the necess i ty f o r the posynomial formulat ion: pos i t i ve c o e f f i c i e n t s are 

necessary because they are r a i sed to f r a c t i o n a l powers in the geometric 

i n e q u a l i t y . . 

Orthogonal i ty 3nd normalitv.—Two s t i p u l a t i o n s placed upon the 

a r b i t r a r y weights (6 . ) of the geometric programming problem are such 
3 

t h a t these weights s a t i s f y the fol lowing set of cond i t ions : 

P 
/EL 5̂  - 1"5 and, 
j=l J 

P 
"El a. .6. - 0, k = 1, 2 S . . . , N . 
j=l k J J 

P 
The f i r s t condi t ion , )EL 6. = 1, i s defined as the normali ty condi t ion ; 

j=l 3 

P 
the second condi t ion , £~T a, . 6. ~ 0 f o r k = 1, 2 , . . . , N , i s defined as 

j = 1 k j j 

the o r thogona l i ty condi t ion . Both of these condi t ions r e s u l t from the 

c l a s s i c a l max-min ca lculus approach to obta ining the maximum or minimum 

solu t ion of a mul t iva r iab le ob j ec t i ve funct ion ( i . e . , , s e t t i n g the n p a r t i a l 

de r iva t ives equal to zero and solving the r e s u l t i n g system of equat ions) 

^ D u f f i n , Peterson, and Zener, op. c i t . , pp. 2-5; Gue and Thomas, 
op. c i t . , pp. 143-145. 
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In t h i s fo rmula t ion 4 7 the funct ion to be optimized i s given by 

JL 
m'n f (x ) = 2 - c .P . ( .x j , 

3=1 3 J 

~Fr . with c . > 0 and P - {x) - / / x. J . The 6. are def ined by the t ransformat ion 
J J "" - j ] 1 3 

5• ~ s 3 = 1» 2 , . . . >P, 
c . P . 

, = JUL. 
yi f ( x ° ) 

with f (x°) represent ing the optimal (minimal) s o l u t i o n . The r e s u l t of 

the p a r t i a l d i f f e r e n t i a t i o n i s a homogeneous system of equat ions ( i . e . . 

a system such tha t al l equat ions are equated to zero) given by 

*k h a y C j P j = ° ' 

Each c . > 0, and each x^ > 0. Because of t h i s f ( x ° ) s the value of the 

ob jec t ive funct ion a t the vector x° , will bs p o s i t i v e . Therefore , 

1 £. 
— U a, . c .P . = 0 
x,, t::T. kJ 3 J 
K j ~ I 

can be wr i t t en in the form 

P 
YL a, .c .P . = 0. 
j=l J J 

This in turn can be wr i t t en as 

P a - ..c.P. 
C KJ 3 3 _ n 
j r , - f T H T " " ° ' 

c i P 1 c* a ^ . c . P . 
For s fr-] - reduces to = 0, the orthogonal 

3 1 

requi rement. 

47 
Cue an<J Thomas, 0£._ c j t ^ 5 pp. 145-146. 
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I f the 6. are summed, 
vJ 

D 

E o 
j=i j 

P C .P 
y 3 3 
C— T'f x7o\ ' 
j-1 

the normali ty condition results; i . e . , = 1 • This i s t rue because 
j=l 

P c .P. , P 
r J J . 1 . c 
L. T ( ^ T - T(x°y 

48 

c.P . 
3 3 

must equal uni ty at the optimal s o l u t i o n . 

Gue and Thomas^ have reduced t h i s dual requirement of o r thogona l i ty 

and normali ty to the point t h a t d i r ec t use i s made of matrix theory . Their 

work de f ines the c o e f f i c i e n t matrix as 

1 . . . 1 

A a 11 'IP 

aNl * * * aNP 

the matrix of weights as 

and the matrix of cons tan t s as 

L o. 

4 8 Ib id J L , p. 146. 49 
Ib id . , pp. 146-148. 
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In t h i s form the . values are given by the exponents of the product 
* J 

funct ion 

rr , j 1 O ,P, 
i=l 

and the 6, values ( j 
vJ 

1, 2 , , . . ,P) are t r e a t e d as unknowns. The values 

in the matrix of constants are those cons tan ts required to s a t i s f y the 

condi t ions of o r thogonal i ty and normal i ty . In order to solve the 

geometric programming problem, i t i s necessary to solve 

A5 = b 

f o r 6. The set of 6 values s a t i s f y i n g As = b_ i s the set of 6 values 

which solves the l i n e a r , nonhomogeneous equat ions def in ing the weights 

f o r the funct ion to be minimized. 

The se t of simultaneous equat ions defined by 

As_ - _b 

i s given by 

>1 + 60 +. . . + 6P 

a H + a"J p<524 * ' ' + alP ~p 

1 

0 

aNl' : l + aN262+...+aN> V ° 

and i s of order N x P; i . e . , the system i s composed of N equat ions with 

P v a r i a b l e s . This system has as i t s augmented matrix 

1 1 . . . 1 l" 

(A, b) a l l a12 
a i p 0 

aN 1 aN2 ' ' ' aNP °-
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arid can be analyzed by the techniques of matrix theory. This ana lys i s 

will y i e l d one of th ree p o s s i b i l i t i e s . 

(1) The rank of the augmented matrix (A, b) exceeds the rank of the 

c o e f f i c i e n t matrix (A). In t h i s case the system i s i ncons i s t en t and has 

no so lu t ion . This i n d i c a t e s t h a t the o r ig ina l func t ion 

n . x ) = Z c i P , ( x ) , P 4 ( x ) - 77" x . a U , 
j=i J J J i=i 1 

has no vector x > 0 f o r which i t achieves a minimum. 

(2) The rank of the augmented matrix (A, b) equals the rank of the 

c o e f f i c i e n t matrix (A), and the matrix (A) i s square. In t h i s case the 

system i s cons i s t en t and has a unique solut ion„ When t h i s r e s u l t s the 

so lu t ion vector 5 i s obtained by pre-mul t ip ly ing Ao = b by A"1; i . e . , 

As = b 

(A-1 A)6_ =-• b 

16 = A" 1 b 

A = A"1 b. 

The optimal solut ion i s expressed in terms, of the 6, values and i s 
vJ 

obtained fol lowing some a lgebra ic manipulat ion. 

(3) The rank of the c o e f f i c i e n t matrix (A) i s "less than the number 

of unknowns or the number of unknowns exceeds the number of equat ions 

plus one; i . e . , r(A) < P or P > N + 1. In t h i s - c a s e the given system 

of equat ions has an i n f i n i t e number of s o l u t i o n s . This condi t ion requ i res 

t h a t addi t ional work be done to loca te the global minimum. 
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Dual i t y . —A! though the development of geometric programming i s 

rooted to the minimizing of a r e s t r i c t e d c l a s s of func t iona l r e p r e s e n t a t i o n s , 

the work of Duffin has provided a developed theory of dua l i t y f o r geometric 

programming. This dua l i t y theory , when applied to geometric programming, 

i s based upon the observat ion t h a t 

i f the o r ig ina l "primal" func t ion [y] were considered 
a weighted a r i thmet ic mean. . .and the dual funct ion [d] 
a weighted geometric mean of the same q u a n t i t i e s . . . 
then Cauchy's i n e q u a l i t y . . .g ives y d with equa l i t y 
only when a l l q u a n t i t i e s in pa ren thes i s [ the items being 
weighted] are e q u a l . ^ 

For example, consider the t heo re t i ca l cost func t ion 

y = c l X ] + c f y X . / 2 + c 3 x 2 ' \ 

The primal form of t h i s funct ion i s given by 

y = w 1 ( ^ ) + w 2 ( ^ - ) + W 3 ( ^ -

with w1, W£, and as a r b i t r a r y weights . This primal form can be wri t ten 

in the dual form 

f c l x l ^ wi f C2X] x 2 1 ^ w2 f C3X2 1 

W1 / V w? / I w'' 

The primal func t ion i s equal to the dual func t ion only when 

C1X1 C2x'i 

w-j ^'?x2 W3X2 

Thus the primal funct ion can be solved by maximizing the dual with respect 

to the weights . In addi t ion any choice of weights in the dual can be used 

> 0 
' 'Wilde and Be igh t l e r , op. c i t . > pp. 100-101 
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as a means of providing a lower bound on the optimum value of the 
51 

p n ma 1. 

Examination of the dual function formulated in the preceding example 

reveals a major c h a r a c t e r i s t i c of the dual geometric programming problem: 

whereas tne primal problem (minimization) requires a posynomial expression) 

the dual problem requires a product expression of the form 

n 
f(x> = I T C . x . a ' \ 

i=l 1 1 

The dual formulation of the primal problem, written as a function of the 

weights wt and the c o e f f i c i e n t s c t > takes on the form 
T fc+ \ w t 

Minimization i s achieved by maximizing d(w) with respect to the weights 

and requiring that the weights s a t i s f y the conditions imposed by the 

requirements of orthogonal i ty and normal i ty . 5 2 

An important point to note i s that the dual problem defined by 

d{w) represents the dual of an unconstrained minimization problem. When 

the primal problem i s constrained, the dual formulation i s modified to 

account f o r the r e s t r i c t i v e funct ions . This i s accomplished by d i rec t 

appl icat ion of two basic programs developed by Duffin, Peterson, and Zener . 5 3 

ErijIiiiL I"ind the minimum value of a function g0(x) subject 

to the cons t ra in t s x.( > 0, x2 > 0 , . . . , x m > 0 and g ^ x ) <_ 1, g 2 ( x ) < 1 , . . . , 

51 ~ " 
Ibid . 

52 
Tne theoret ica l development, including proofs , i s qiven by Duffin 

Peterson* and Zener, on. c i t . , pp. 77-122, 164-226. 

I b i d . , pp. 78-88. 
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9p{x) :i 1 • The func t ion g k (x) i s defined by 

g j x ) = c - x , ^ ' x a i t . . . x a i * \ k = 05 1 , . . . ,p . 
k i=J [k] 1 ! ^ m 

J [ k ] i s the set {mk> mk+l, m k + 2 , . . . , n k > , k - 0> 1, 2 , . . . ,p , and 

mc = 1, m-, = n0 + 1, m? = n, 1 , . . . , m n = n . + 1, rin = n. The a. . 
c 1 P r - i p 13 

are a r b i t r a r y real numbers. The c. are p o s i t i v e , thus def in ing the 

g.j(x) to be posynornia'i s . 

In the primal program gG(x) i s defined as the primal f u n c t i o n . The 

va r i ab l e s x j , ( j = 1, 2 , . . . , m ) , are def ined as primal v a r i a b l e s . The 

nature of the app l ica t ion which r e s t r i c t s the x . to nonzero p o s i t i v e values 
vJ 

i s defined as a natura l c o n s t r a i n t . The requirement t ha t the g k (x ) be 

a t most one ( i . e . , g k (x) £ 1) f o r a i l k i s said to be a forced c o n s t r a i n t . 

The expanded form of the primal program i s iden t ica l to the form shown 

in Def in i t ion 3.10; i . e . , 

if.\ nn'n g 0 (x ) - c .x a " x 9
a ^ . . . x a 

i=J [0] 1 , 2 m ' 

where 0[0] = {mQ, m
0 + 1, mQ + 2 , . . . ,nQ} = {1, 2, 3 , . . . ,no> , since = 1. 

This func t ion i s constrained by 

g-i(x) = ZL c - x , a " x 0
a ' ' . . . x m

a ' v < 1, 

g 2 (x ) = IE- c.x-j3 ' ' x ?
a ~ . . . x a*'M < 1, 

i=J[2] 1 1 d m 

3D(X) - zl_ c-x 1
a f ' x „ a ^ . . . x a«'« < 1, P i = j [ p ] i 1 < m -



309 

whe re 

J [11 = {it»i , m-j+1,... ,n.j} = {nQ+l » n + 2 , . . . ,n^}, since = n +1; 

J [ 2 ] = {m?, m^+l , . . . .iig} ~ (n-|+l, n~+2 , . . . , n 2 ) , since = n-j+1; 

J[p3 = {fn_, rn +1 } = {n +1, n + 2 , . . . , n > , since mn = nB +1, and 
P P P P r * 

n
P

 = n * 

Dual program. --Find the inaximum value of a product funct ion v(<s) 

sub jec t to the l i n e a r c o n s t r a i n t s 6-, > 0, 69 > 0 , . . . ,5 > 0, /L. 6. = 1, 
1 - ' 1 - i ^ ) [ 0 ] 1 

n 
and 2 7 a • ,• 6 • = 0, j = 1, 2 , . . . ,m. The funct ion v(s) i s defined by 

1=1 ^ 1 

x.^(s) 
v ( i ) - TJ 77 U « 

where x . (6) = I L <S,., k = 1, 2 , . . . ,p ; 6 = (s , 60 5 . . . , 6 j . J [ k ] i s 
k i=J[k] ' " 

the se t , mk+l, m^+2, . . . .n^}, k = 0, 1, 2 , . . . , p , and rnQ = 1, 

ml = n
0

+ 1 ' - " > m p = np., + 1» Hp - n. The c . are pos i t i ve and the 

c o e f f i c i e n t s a... are real numbers. 

In the dual formula t ion , v(s) i s defined as the dual f u n c t i o n . The 

6. are defined as dual va r i ab l e s and represent the weight assoc ia ted with 

the dual func t ion . Inspect ion of the dual program revea ls t h a t the 

requirement <5. = 1 i s the normali ty cond i t ion . The reauirement 
i = J [ 0 ] 1 
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that 

£_ a j i 6 i ~ 0, j = 1, 2 rri, 
-j ™ | <J

 i 

is the orthogonal condit ion. The expanded form of the dual program is 

given by 

Cl ^ / c2^ 2..Y CJl\S'nlj /.nA1 xX2̂  xr,($) 
L 6n ) ) h *2 - •••Ap (-6 ) 

max y(6) = 

where 

V V 62 

X , ( 5 ) = 1 ^ [ 1 ] 6 1 = V i + \ + 2 + - " + < i n r 

^ ° l l f [ 2 ] 4 j = V l + 5 n , ^ - " + { n 2 ; 

A M J = £_ 6, 
i=J[p] 1 V 1 v ; ' 2 + &n , 0 +, . .+6n„ . 

The dual function is res t r ic ted by 

£ . 

and 

~ <S-i + Sc>
+'*« + 6 = 1 

i=J [0 ] 1 1 2 n0 

• a i -j5i J ~ 1 > 2 , . . . }m. 
1=1 J 

The expansion of 
Z"=j a i j 5 i ( j 1, 2 , . . . ,m) j results in the fol lowing 

system of homogeneous l inear equations: 

a l l 5 l + a21 °2 + a31 63+ - - -+ anl 5n = 0 

a126 l + a2252 + a32<53+" * *+an25n = 0 

a lm6 l + a2m62 + a3m63+* * * + i W 6 n = °-



311 

Simultaneous ' inspection of the primal and dual programs r evea l s 

the fo l lowing : (1) the in the dual f unc t i on are taken from the primal 

func t ion ( f o r example, c-j in the primal i s a l so in the d u a l ) ; 

h i* I*) 
(2) the i " weight in the dua l , 6 . , corresponds to the i term of the 

p r imal , c j x ] a i i x?
a"- . . • > a r e s u l t which i n d i c a t e s t h a t t he re wil l 

be as many weights in the dual program as the re are terms in t he primal 

program; (3) the correspondence between the weights of the dual and the 

terms of the primal i s such t h a t the correspondence i s one - to -one : each 

term of the primal program corresponds to one and only one of the weights 
A , ( 6 ) 

of the dua l ; (4) the f a c t o r s de f ined by xk(f i) K in the dual func t ion 

A, (6) 
are taken from the primal c o n s t r a i n t f u n c t i o n s : each ^ ( 6 ) f a c t o r 

i s taken from each of the g, (x) < 1 c o n s t r a i n t s ; and (5) t he a . , values 
T 3 

HL 
f o r a i j 5 i ~ ( j = 1 j 2 , . . . , m ) , are taken from the exponents of the 

primal program. Of p a r t i c u l a r note i s the f a c t t h a t the f a c t o r def ined by 
\(§) 

x!<(.§) v i s n o t conta ined in the primal f u n c t i o n . This i s due to the 

normal i ty condi t ion imposed on A q ( s ) , The normal i ty condi t ion i s the 

only p a r t of the dual program t h a t d i s t i n g u i s h e s the primal func t ion g (x) 

from the posynomials g k ( x ) , k = 1, 2 , . . . , p appearing in the fo rced con-

s t r a i n t s . In add i t i on x x = x" x - 1 f o r x = 0 i s assumed. 5 4 

As an example of the r e l a t i o n s h i p which e x i s t s between the primal 

program and the dual program, cons ide r the fol lowing cost minimizat ion 

54 
I b i d . , p. 79. 
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problem: 

subject to 

min gQ(x) = 40x] x2 x 3 + 20x-jx3 + 2 0 x ^ ^ 3 

91 * J X1 x2 + "3" X2 x 3 i 1 ' 

X-j 5 X̂  5 X 2 > ^ * 

According to the primal program, t h i s problem has the form 

nn'n gQ(x) - c- jX^" x ^ x / " + x 2
a » x 3

a « + a*' x 2
a * x 3

a « 

subjec t to 

M * ) * c v , x , ^ " ' x 2
a " - " ! X 3 a v . 3 + + c ^ V x / v A j 3 . . ' ! 1 

< 1. 

The values of the ĉ . and the a.j .. values can be obtained by eci uating l i k e 

c o e f f i c i e n t s and exponents. This r e s u l t s in the following se t of values: 

°1 " 4 0 8 C2 * 2 0 ! °3 " cn„ " Z 0 ; V c 4 * b < W C 5 ° l ; 

1 l 
a n " ~ U a12 = T ; a 13 = " l ; a21 = 1 ' a22 = ° ' a23 = 1 ; a31 = 1 ; a32 = 

a 33 a v . 1 ~ a41 = ~ 2 ; an..,2- * a42 = ~ 2 ' V * 3 = a43 = 0; a ^ , = a g l = 0; 

V a 2 " 352 = h V t 3 = a53 = "1 • 

With these values the dual funct ion can be wr i t ten by d i r e c t a p p l i -

cation of the dual program 

max v(6) ' [ n ( ^ ) ' 1 1 4 - , M s ) 
11 X,(6) k 

i = l K " 

sub jec t to 

H 
i= J [0 ] 1 
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E 
i = l 

a. .6. 
i j J 1, 2, 3. 

Xk(6) = ZL (•< 

Since the primal program has a to ta l of f ive terms (three in the primal 

function and two in the cons t ra in t funct ion) , n = 5. Since there is but 

one g ^ x ) <_ 1 cons t r a in t , p = 1. The dual program i s then given by 

subject to 

max v(6) 
V 

i=] N 6i 
M § ) 

M § ) 

IL = 1 
i=J[0] 1 

L a-jjS-j = 0, j = 1, 2.. 
i=l 

j . 

V1 (S) - L 41 

The set of values defined by J [0] i s {1, 2, 3}. The set of values defined 

by J[1 ] i s {4, 5}. Therefore, the expanded form of the dual problem i s 

given by 

.5r 

max v(5) ( y «5) 
64 + 6 5 

subject to 
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6-, 
i 

•f 62 
4. 63 

— 1 

a n 6 i 
+ a21 "2 

+ 3, ̂  ̂  (S ̂  * t34'j 6 4 
+ a51 65 = 0 

a 1251 •f Snn (J 0 
LL L 

+ ?l32^3 * a4254 •J i~. vj 
0 

a135"! 
+ 

^ 9 3 ^ 2 
+ 

0 0 0 
a43 64 

+ a5355 0 . 

For k = 1, X. (S) = A,(5) = c . 6,- = = {5/1 + «ni- With 
k 1 i = J [ l ] 1 i~{4, 5} ' 4 S 

three v a r i a b l e s , j - 3. Direct s u b s t i t u t i o n of the c, and a . . values 
K »J 

y i e l d s the fo 11 owi r. g: 

{64 + 6'g) A o V l ( 2()Y2 f 20.Y'3 f 1/3 \°4 f 4 /3 V s 
max v(s) -{J") [ $2 J [ 63 J {' sj J { " o5 j (64 + 65) 

sub jec t to 

61 + 52 + 63 = 1 

-6 , + 6Z + 63 - 2S4 = 0 

4®1 + s 3 ' 2 5 4 + 2% = 0 

+ 62 + 63 - «5 = 0 

In order to complete the problem and f ind the minimum value of the 

primal problem, i t i s necessary to f i nd those values of 6-j , s 2 , 6^, 

and o5 which maximize v(s) and, at the same t ime, s a t i s f y the cons t ruc ted 

l i n e a r system. This can be accomplished by performing a s e r i e s of row 

opera t ions on the given system in order to reduce i t to row equiva len t 

form. Since the system has more unknowns than equa t ions , i t will e i t h e r 

be incons i s t en t {no so lu t ion) or i t will have dependent s o l u t i o n s . 
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From a computational point of view, geometric programming has no 

s p e c i f i c so lu t ion technique such as the simplex algori thm f o r l i n e a r 

programming. However, c e r t a i n c h a r a c t e r ! s t i e s can be a t t r i b u t e d to 

e x i s t i n g methods of obtaining the optimal so lu t ion to a given problem. 

These c h a r a c t e r i s t i c s include the fo l lowing: (1) rewri t ing the primal 

funct ion as the dual and sol ving the dual ; (2) appl i c a t i on of the ca lcu lus 

of maxima-minima to determine the optimal weights f o r the dual f u n c t i o n ; 

(3) app l i ca t ion of matrix algebra to solve a l i n e a r system of simultaneous 

equat ions wr i t t en as a func t ion of the weights; and, given the optimal 

assignment of weights , (4) determining the pol icy assignment t h a t 

s a t i s f i e s those weights . 

Although the ca lcu lus can be used to determine the weight assignment 

in both the cons t ra ined and the unconstrained case , the primary appl ica t ion 

i s made when the func t ion to be optimized i s unconstrained. This i s due 

to the f a c t t h a t the dual of a minimizing posynomial i s a product funct ion 

and i s su i t ab l e f o r the use of the p a r t i a l de r iva t ive concept of maxima-

minima. In t h i s app l ica t ion the dual i s maximized with respect to the 

weights . Once the weight assignment i s known, the values of the primal 

va r iab les can be su i t ab ly determined. 

Computation technique: unconstrained primal .—In the unconstrained 

case , the primal func t ion i s defined by an m~variable func t ion of the 

fol lowing type: 

JL m a • .• 
min f ( x , , x ? , . . . , x ) = h , c, 7T x, 1 , 1 , c •, x . > 0. 

1 L 111 -j~] 1 j~*| J « J 
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This funct ion has as i t s dual 

T 6 
7T 
t=i 

-i 

max g(w) - 7 T ( c t / 6 t )
 t , c v 6 t > 0. 

For 6̂ . 0, (<5 )̂ i s def ined as un i ty , thus guaranteeing con t inu i t y . 

Although i t i s poss ib le to d i f f e r e n t i a t e the unconstrained primal 

funct ion and loca te the values of x . t ha t minimize the primal 
vj 

the 

most f e a s i b l e approach i s to maximize the dual funct ion sub jec t to the 

condi t ions on the wt values imposed by normali ty and o r thogona l i t y . This 

i s because the d i r ec t appl ica t ion of the max-min ca lcu lus will normally 

require solving a system of simultaneous nonl inear equat ions f o r a 

vanishing f i r s t d e r i v a t i v e . 5 6 Solving the dual r equ i res solving a 

l i n e a r system of simultaneous equat ions f o r the appropr ia te weights . 

These weights are then used to evaluate the primal va r i ab les by applying 

the r e l a t i o n 

= C j P j / f ( * o > -

The CjPj de f ines the j t h term of the primal funct ion and i s taken d i r e c t l y 

from the def ined pr imal . The value of f ( x 0 } i s the minimal value of the 

primal func t ion . 

As noted, the most f e a s i b l e approach f o r solving the unconstrained 

primal funct ion i s to solve the dual . Since the dual i s maximized by 

solving the simultaneous l i n e a r system f o r the weights , i t i s poss ib le 

to achieve a solut ion se t t h a t i s dependent. That i s , n - k of the n 

weights are defined in terms of k independent weights . When t h i s occurs , 

55 x -x 
x = x = 1 f o r x = G. This guarantees c o n t i n u i t y . 

5 6 
Wilde and Be igh t l e r , op. c i t . , p. 28. 
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the dual function is maximized by the technique of the d i f f e r e n t i a l 

cal cuius. 

As an example of t h i s technique, consider a two product inventory 

problem in which to ta l inventory cost per shipment i s to be minimized. 

I t i s necessary to determine the quant i ty of each product to be produced 

per run i f (1) the carrying cost per unit of time fo r product x-. i s $10; 

(2) the carrying cost per unit of time fo r product x„ i s $20; (3) the 

to ta l number of pieces of product x-, and x0 to be supplied in a given 
f L 

time period i s 500 un i t s ; and (4) production of product x-j coincides 

with tha t of product x^. 

The problem to be minimized consis ts of three component cos ts : the 

average carrying cost of product x-j, the average carrying cost of product 

XgS and the setup costs f o r products x-j and Xg. I t is assumed tha t the 

time period has a uni t interval of 1 and tha t there i s but one setup 

cost for both x-j and With these assumptions the problem can be 

described by the following functional expression: 
c -T CA Nc T ^ 

min f ( x , . x2) = - T x . , W y — 

where c-j i s the carrying cost per unit of time fo r product Xj s c2 i s the 

carrying cost per uni t of time fo r product x2> c ^ i s the setup cost 

per uni t of time fo r products x-j and x^, and N i s the to ta l order quant i ty . 

Subst i tut ion of the appropriate values y ie lds 

min f (x-j, x2) = 5x^ + ] 0x2 + 500X-] x 2 . 

This function corresponds to the primal program of the unconstrained 
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geometric programming problem 

min f(x-j , x^) = c - j x - j ° + C2X-J 3x1 x 0
a ? - s + c^x-,031 x, 83 

'3 1 

Equating l ike pa r t s y i e l d s the fol lowing se t of values : c-| - 5; Cg = 10; 

05 Sp^ 15 a21 -1 s and 3^2 = * ~ 500; a-j -j
 = 1; a ^ ~ 0 \ ^2"\ 

Let t ing 5 represent the t ^ weight ( t = 1, 2, 3 ) , the dual program i s 

wr i t t en as 

max v( 6) 1 / 10\ 2 / 500 \ 3 

sub jec t to 

6 l + 62 + 5 3 = 1 

6-| 

62 - S3 = 0. 

This system of l i n e a r equat ions i s s a t i s f i e d by 6-j ~ ~ 6^ - 1 /3 . Thus, 

the dual func t ion has a maximum value of [ ( 1 5 } ( 3 0 ) ( 1 5 0 0 ) ] ^ ° = 87.72. This 

57 

value i s a lso the minimum value of the primal program. Hence, the 

minimum cost i s $87.72. 

To determine the quan t i t y of each product to be ordered , i t i s 

necessary to apply the r e l a t i o n 
C i P i 

<5j - f o r j - 1, 2 , . . . ,n . 

In t h i s r e l a t i on f ( x ° ) i s the optimal value of the primal program. The 

' j 1 5 p j r e l a t i o n def in ing P.. i s = x-| a-M x ^ 2 - . . . *m
a j V . For the given problem, 

57 
Duff in , Peterson, and Zener, op. c i t . , p. 80. Theorem 1, pa r t ( i i ) 
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V ] 3 " X 2 ^ . 
i • " 5 

a-.x-A' x , a ^ 

^2 = ~ ~ " ~ r ( p y ' a n d 

. 

3 

Subs t i tu t ion of the proper numerical values r e s u l t s in 

I = i x L • 
3 87.72 ' 

] 1 0 x 2 . 
3" " 87.72 ' 

1 500x-j 

3 87.72 

This system then y i e l d s the fol lowing values: x-j = 5.848 and = 2.924, 

Thus, each production run should c o n s i s t of 5.848 un i t s of x-j and 2.924 

u n i t s of x^. This will r e s u l t in a minimum inventory cos t of $87.72. 

Computational technique: constrained primal,---In the cons t ra ined 

case the primal funct ion i s def ined by an m-variable func t ion of the 

following type: 

n m a . . 
min f(x-j s x 2 , . . . , x m ) = £ c i 7 7 Xj 1 J , c.x. > 0. 

This funct ion i s to be minimized sub jec t to the se t of p c o n s t r a i n t s 

g , ( x r x } . . . , x ) - X . c .x®' 1 x 0
a ' " l . . . x a t " \ k = 0, 1, 2 , . . . , p . 

K 1 d m i= J [k ] 1 1 m 

In t h i s form J [ k ] i s the set {mk> mk + 1, mk + 2 , . . . , n k } s k = 0, 1, 2, 
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6.~! p X k ( 5 ) 

This problem has ar. I t s dual 

max v(6) - j ]T ( c . / O j 7i xk(6) 
" L i=i 1 ' J k=l k ~ 

where x.(s) = /£__ S-» k = 1, 2 , . . . sp; 6 = (s-,, 5 0 , . . , , 5 J . The dual !< ~ i=J[k] 1 — 1 2 

i s r e s t r i c t e d by the following se t of equa l i ty c o n s t r a i n t s : 

L 6, = 1 
1 = J t o] 1 

n 
^ — 0S j - 1 j ^ , . . . , i n. 

i=l J 

Although the procedure f o r minimizing a constrained geometric 

programming problem i s s imi la r to t h a t of the unconstrained problem, there 

are two basic d i f f e r e n c e s . The f i r s t i s the f a c t t h a t the exis tence of 

the cons t r a in t s in the primal program makes the use of the ca lculus 

imprac t ica l . The second i s the manner in which the primal va r iab les 

are determined. With these two except ions , the two approaches are 

bas i ca l ly i d e n t i c a l : (1) write the dual program and solve the l i n e a r 

system defined by the weights; (2) using these weights, maximize the 
CQ 

dual, thus minimizing the pr imal; ' and, (3) determine the primal 

v a r i a b l e s . 

Assume tha t the weights which maximize the dual program of a con-

s t ra ined primal program have been determined. The value of each of the 

primal va r iab les i s determined by applying the fol lowing: 
5 8 I b i d . 
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j J e J [ 0 ] , 

c . x . , ^ ' X 7
a " . . . X a j « --1 

J 1 2 m S s 

[ r j s j ' J' e J [ k ] , 

where k i s d e f i n e d f o r t hose p o s i t i v e i n t e g e r s f o r which A, (5) > 0 . 5 9 

r \ ~ 

This r e l a t i o n can be i n t e r p r e t e d in the f o l l o w i n g manner: (1) f o r those 

weights cor responding to terms in t h e primal f u n c t i o n , 

c . P . c . x , ^ ' ' x 3 ' * . . . x 
5. = J J. __J_J <- _ m . ,1. . 

3 v ( T ) ~v~(T) " 5 J f- J [ 0 ] ; 

(2) f o r t h o s e weigh ts co r respond ing to terms in t h e c o n s t r a i n t f u n c t i o n s , 

6J = C j V V ^ - c j x i a j ' *2
ajz . . . x J U , j 0 j [ k ] . 

As « means of demons t ra t ing the c o n s t r a i n e d c a s e , c o n s i d e r t h e 

p r e v i o u s l y mentioned c o n s t r a i n e d problem, 

min g 0 ( x ) = 40X ] x 2 x 3 + 2 0 ^ X 3 + Z O x ^ 

s u b j e c t to 

9-j ( x ) -- j x-j x 2 + | x 2 x 3 < 1 

5 5 x 3 > 0. 

I t has been shown t h a t the dual program i s d e f i n e d by the f o l l o w i n g : 

v ( 5 , - f a s t ) ) 5 3 ( ' f ) 5 4 ( - f ) % K + « 5 > ( ' 4 ' " 5 -j - j. . + 

s u b j e c t to 

59 1 b i d . , Theorem 1, p a r t ( i v ) . 
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61 + 5 2 + 5 3 

-5^ + <50 4 £ 

T 6 ! 

'2 ' u 3 

+ 

^ /s, 

2S4 + - ^ 5 

1 

0 

-§! + 62 + 63 

0 

fic
 = 0. 

o 

The s o l u t i o n to the l i n e a r system def ined by the weights <5̂ , s^. 

63, 6^ j and s 5 i s ob ta ined by the fo l lowing s e t of rcw o p e r a t i o n s , 

where <2\(k) i n d i c a t e s t h a t row j was m u l t i p l i e d by k and the r e s u l t 

added to row i : 

1 1 

-1 1 

T 0 

-1 1 

0 0 

-2 0 

o 1 
2" 

0 -1 

^ ^21 ^ ^ ^ 

( i ) 

CO1-" 

1 1 1 0 0 1 

0 2 2 -2 0 1 ( • i ) 

0 1 
2 

3 
2" -2 1 

'2 
1 
2 

i 1 \ / 

0 * z . C-i) 
0 2 2 0 ~1 1 

. C-i) 

1 

0 

0 

0 

0 

2 

0 

0 

0 

2 

1 

0 

3 
"2 

0 

0 

1 
2 

-1 

1 
2 

1 

I 
4 

( i ) 
0 

0 

- . 0 

0 

1 

0 

0 

0 1 

1 

0 

"1 

3 
"2 
? 

1 

1 
2 

1 1 

-1 0 

^ 3 <-> 

1 

0 

0 

0 

0 

0 

0 

0 

1 

0 

1 0 

1_ 
'2 

3 
" 2 

] 
T 

1 
2 

^ ( - 0 ' 
^ 3 4 (%) 

1 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

2 

1 
2 

I 
~4 

1 
"4 

-1 0 
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This s e r i e s of row opera t ions duces the o r ig ina l c o e f f i c i e n t 

matrix to i t s row equivalent form. This form i s shown by the solut ion 

matrix 

0 1 

0 

0 

1 

0 0 

0 0 

0 

0 

0 

0 

0 

2 

1 
2 

1 
T 

1 
"4 

-1 

which has row rank equal to fou r . In t h i s case the rank of the c o e f f i c i e n t 

matrix (4) i s l e s s than the number of unknowns (5) . Hence, the l i n e a r 

system lias dependent s o l u t i o n s . These so lu t ions are obtained d i r e c t l y 

from the solu t ion matrix 

1 3 Z°5 

b 
4 "5 

1 
4» 

I s = 1 
4 5 4 s 

26/ 

This so lu t ion se t can be wr i t ten as 

61 - ^( 1 - <$5) 

~ 7rO +
 ) > 

63 = 4"-1 + 55^5 

54 = 2*̂ 5 ' 
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Since 6. >_ 0 for i = 1, 2, 3, 4, 5, i t is possible to define limits 

on the values of the 6^. The most crit ical restraint is the value of 6-j. 

Setting 5̂  > 0, i t is found that -],-(! - 6g) >_ 0. This implies that 

1 - 6̂  >_ 0, which indicates that 1 >_ sg. Thus can assume only those 

values in the closed interval [0, 1], The 6,- weight is is the independent 

variable for the solution set. 

With the given set of dependent solutions, i t is necessary to 

arbi trar i ly assign values to and calculate the value of the remaining 

weights which correspond to the selected value of 6,.. Suppose the random 

selection of values for 5,- is = 0, = 1/5, <$5 = 2/5, = 1/2, and 

- 3/4. The corresponding set of weights, written as (fi-j, ^ , 6^, 6^, 6g) 

is then given by (1/2, 1/4, 1/4, 0, 0), (2/5, 3/10, 3/10, 1/10, 1/5), 

(3/10, 7/20, 7/20, 1/5, 2/5), (1/4, 3/8, 3/8, 1/4, 1/2), and (1/4, 3/8, 

3/8, f/4, 3/4). Evaluating the dual function at each of the given solutions 

yields the following: 

vf-1 1 1 0 01 - f 4 ° Y Y 2 ° f /20V71 /3T[4/3Y\n + Qn . 
V(2' 4' 4s ° ' 0 ) ~ (T?2J l l / T j V174I t~F"A~o7 (0+0 ) = 80, since 

X -*X 
x = x =1 for x ~ 0, by definition; 

v(2 3.„ 3 1_ K = ( w i y j S L t Y 20 f l / 3 f A / 3 ^ ,1 + 1 _ o n Q. 
45 10' 10' 10' 5 \2/5 j ^3/1 0 j t l /To j \T/TqJ \J75 j (T0 + 5} " 90 '9> 

V(3 .Z_ 1 2_) _ ( 40 f ' Y 20 Y° / 20 f f ] / 3 ^ /4 /3^ /1 , 2 > l _ Q7 M H 1 05 20' 20' 5' 5 1.3/10/ (7720 J (7720/ (j/57 {275] (5 5' " 9/'14> 

v f i i . i 1 1. = ( 40 \* / 2 0 f Y i O t / W / W ,1 , L « + * 
M* 8s 8' 4' ?' \ 1 /& I ?/',<*) I I 1 >4 / l io'\ 7̂T o) 4"' 8s 8' 4 5 V " \ 1 /4j ( j / 8 j U /8 j V f / t j {ijZJ {4 + 2] = "*27*5 

V(1 J. J... 3 3\ _ f40 i f 23 \ " (. 2o j f (1 / 3 \ V v 3 f 1 , 3 , 3 v H Qp ft, 
8* 16' 16' 8' 4' v, 1/8] [7/16/ \J/l6j \3/Sj (3747 % 4̂  " %-05-
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Examination of the values of v(_s) reveals t ha t the maximum value of 

v(_6_) occurs < j . This i s because v ( l / 4 , 3 /8 , 3 /8 , 1 /4 , 1/2) < 

v ( l / 8 3 , 7/16, 7/16, 3/8, 3 / 4 ) . Further eva lua t ions are necessary to f i n d 

the optimal weight f o r 6^; i . e . , the value of <$j- t h a t will be such t h a t 

v(6_) i s maximized. Since the value of determines the value of each 

of the remaining weights , the optimal value of 6^ will also y i e l d optimal 

values f o r the o the r weights. 

The general theory and computational aspects of geometric programming 

are summarized in Algorithm 3.7. Although t h i s algori thm i s wr i t t en in 

a general form, i t i s appl icable to the types of problems discussed in 

t h i s study and does provide a synthes i s su i t ab l e f o r p r a c t i c a l app l i ca t i on . 

Algorithm 3.7 (geometric programming al gor i thm) . - -S tep 1. Transform 

the primal program in to i t s corresponding dual program. This r equ i re s 

in t roduc t ion of an appropr ia te se t of weights , def ined as o^., where 

t = 1, 2 , . . . ,T. 

Step 2. I f the primal program i s unconstrained, go to Step 3. I f 

the primal program i s cons t ra ined , go to Step 4. 

Step 3. The system of equat ions defined by the values i s l i n e a r . 

Solve t h i s system by an appropr ia te a lgebra ic or matrix technique. 

(1) I f the l i n e a r system i s c o n s i s t e n t , the 6^ values are uniquely 

determined. Go to Step 7. 

(2) If the l i n e a r system i s i n c o n s i s t e n t , terminate the process . 

The problem, as given, has no optimal so lu t ion . 
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(3) If the l inea r syste;-, i 3 dependent, express k of the 5 values 

in terms of T - k of the 6 values. T equals the to ta l number of weights 

introduced into the problem. Go to Step 5. 

Step 4. The system of equations defined by the 6^ values i s l i n e a r . 

Solve tin's system by an appropriate algebraic or matrix technique. 

(1) If the l i nea r system i s cons is tent , the 5^ values are uniquely 

determined. Go to Step 7. 

(2) If the l i nea r system i s incons i s ten t , terminate the process. 

The problem, as given, has no optimal solut ion. 

(3) If the l i nea r system i s dependent, express l< of the 6 values in 

terms of T - k of the s values. T equals the total number of weights 

introduced into the problem. Go to Step 6. 

Step 5. Subst i tu te the k dependent values of 6 into the dual program 

object ive funct ion. This will express the object ive function of the dual 

program as a function of T - k of the 6 ! s , where these remaining 6 ' s 

are t r ea ted as independent var iables . Apply the d i f f e r e n t i a l calculus 

to determine the set of 61s fo r which the modified object ive function of 

the dual program i s maximized. These values then uniquely determine the 

remaining k values of the 6. Given t h i s optimal assignment, go to Step 7. 

Step 6. Arb i t r a r i l y assign values to T - k of the 6' s. Thi s will 

determine the value of each of the remaining 5' s f o r tha t assignment. 

Determine r such se ts of the d ' s . Evaluate the object ive function of the 

dual program at each of the r s e t s , where r i s a sui table number of 

these a rb i t r a ry assignments. Select that set of 61 s fo r which the 

object ive function of the dual program i s maximal. Go to Step 7. 
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Step 7. Given values f o r the <$t ( t = 1, 2 , . . . ,T) , determine the 

maximum value of the dual program. The maximum val ua of the dual program 

i s equal to the minimum value of the primal program. Denote t h i s optimal 

value by f ( x ° ) . Go to Step 9. 
C y dJ» v v djVn 
C.X'i . . .X 

Step 8. Solve the system defined by 6̂  = fix5") 5 

( j = 1, 2 , . . . , T ) , f o r the in primal va r i ab les x.. ( i = 1, 2 , . . . , m ) . 

Terminate the process . 

Step 9. Solve the system defined by 

c,x,aj> x / J i . . .x 
6 . = 5! s j E j [ 0 ] ; 

= A k ^ - ) c j x l a j l *1** ' j e 

f o r the primal va r i ab le s x-j, x 2 ' • • ' >xm' *n def ining t h i s system, the 

symbol j e J [ 0 ] i n d i c a t e s t h a t the f i r s t r e l a t i on i s used only f o r those 

weights which correspond to terms in the primal f unc t i on . The symbol 

j e J [ k ] i n d i c a t e s t h a t the second r e l a t i on i s used only f o r those weights 

"t h \ 
which correspond to terms in the k cons t r a in t func t ion . i s 

determined by applying the fo l lowing: 

A (/ (*5) ™ 2-— 5 •» i . e . 

i e J [ k ] 1 

^ ( s ) i s the sum of the weights which correspond to terms in the 

c o n s t r a i n t s where A ^ s ) > 0. 

Duff in , Peterson, and Zener point out t h a t the dual c o n s t r a i n t s are 

sometimes s a t i s f i e d by unique values f o r each of the weights in the 

c o n s t r a i n t system. This f r equen t ly occurs "when the number of t e r n s in 
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60 

the pr imal program i s one g r e a t e r than the number of pr imal v a r i a b l e s . " 

Such a system i s one in the fo l lowing form: 

P r i m a l : minimize f ( X p x^) " 40X-|X2 + 2OX2X3 s u b j e c t t o 

x-| > 0, Xg > 0 

1 , . ~ i , 3 .:~z>3 
f-| (x1 , X£> X^} = g- X, X , ~ z + g- Xg X3 <_ 1 . 

This problem w i l l be used to demons t ra te the a l g o r i t h m t h a t was developed 

in t h i s s tudy f o r geome t r i c prograrnming prob lems . In keeping wi th the 

e s t a b l i s h e d pa t t e rn . , a l l c a l c u l a t i o n s wi l l be shown. 

S tep 1. Transform the primal program i n t o i t s c o r r e s p o n d i n g dual 

program. Let 6̂ . be t h e t ! w e i g h t . The pr imal program c o r r e s p o n d s to t h e 

genera l form 

minimize f ( x 1 , x 2 , x 3 ) = c-jX-ja" x 2
a ' ? - + c ? x i 

s u b j e c t t o 

f 1 (x-j , >'2> x 3 ) = x 2
a » x 3

a " + c
4 x 1

a * i x 2 ' « x , - , 

Equat ing c o r r e s p o n d i n g t e r m s , t h e f o l l o w i n g s e t of v a l u e s i s o b t a i n e d : 

C -J - 4 0 el'j -J - 1 0 cl 0 -j - -1 | ~ 0 

] 

c
2 = 20 a i 2 " 1 a 22 = 1 a32 = T a42 = _ 1 

C3 = '5 a 1 3 = 0 a 2 3 = 1 a 3 3 = 0 a 4 3 = T 

With t he se v a l u e s the dual program f o l l o w s immedia te ly : 

6 0 I b i d . , p . 92. 
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maximize v(s) = 

subject to 

( « 3 + \ ) 

(63 + 6 ^ 

61 + 62 

- 6, 

= 1 

= 0 

61 + 62 "2 S3 64 ~ 0 

" 3^4 = 0> 

Step 2. Since the primal program i s constrained, go to Step 4. 

Step 4. The system defined by the 6^ values i s l i nea r . Solve t h i s 

system by an appropriate algebraic or matrix technique. Inspection of 

the l inear system reveals that i t i s 4 x 4, 4 rows and 4 columns. This 

system has a unique solution if the rank of the augmented matrix equals 

the rank of the c o e f f i c i e n t matrix. The ser ies of row operations 

necessary to reduce the augmented matrix 

1 

1 

1 

0 

1 

0 

1 

1 

0 

-1 

1 
" 2 

0 

0 

-1 

2 
"3 

to i t s row equivalent form is shown below: 

1 1 0 0 1 1 1 0 0 1 1 0 -1 0 0 

1 0 -1 

1 
~2 

0 0 - <%, ( - 0 - 0 -1 -1 

1 
"2 

0 -1 0 -1 -1 : 0 -1 

1 1 

-1 

1 
~2 -1 0 - <%< C - i ) - 0 0 

-1 

1 
"2 -1 -1 0 0 1 

"2 -1 -1 

0 1 0 2 
3 0 0 1 0 4 0 0 -1 2 

"3 -1 
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^ £-2}-

C-i)-

1 

0 

0 

0 

0 -1 

1 1 

0 1 

0 1 

0 

0 

2 
3 

0 

1 

2 

1 

Oj3 O) -

<^13 C~ 0 

1 0 

0 1 -1 

0 1 

0 0 0 1 

f - « 

<%, O ) 

L ~ x ) 

1 0 

0 1 

0 0 

0 0 

1 

0 

0 

0 

The solution matrix fo r t h i s system is given by 

1 0 0 0 

0 1 0 0 

0 0 1 

0 

0 

1 

0 

2 

-2 

4 
"3 

0 

1 

0 

0 

2 

-1 

2 

-1 

0 

0 

1 

0 

0 

0 

0 

1 

1 
2 

1 
2 

I 
1 

3 
4 

The given l inea r system has a unique solut ion. The rank of the augmented 

matrix equals that of the coe f f i c i en t matrix. This .solution is given by 

Si = 1/2; Sg = 1/2; 63 = 1/2; and 6^ = 3/4. Go to Step 7. 

Step 7. Determine the maximum value of the dual program fo r 

6-| = 1/2; &2 ~ 1/2; = 1/2; and 6^ = 3/4. Subst i tut ing these values 

into y{s) $ 



331 

• H ) fej 

= (80)* (40)4 (2 /5 ) i (4/5f" (5/4)** 

= (1600)^ 

= 40. 

The maximum value of the dual program equals 40. Hence, the minimum 

value of the primal program equals 40. Let f (x° ) = 40. Go to Step 9. 

Step 9. Determine the primal variables x , , x ? , . . . , x . This i s 
• ^ m 

accomplished by solving the system defined by 

M f i ) , j e J [0 ] , 
c,.x1

aj'1 X o
a j l . . . x 3 * = ) 

x r f i r r ' j e 

T l 2 " m 

\K2J 

where k is defined for those posit ive integers for which x. (s) > 0. This 

relat ion can be interpreted in the following manner: 

(1) for those weights corresponding to terms in the primal function, 

c.P, c , x , a - x a « . . . x a -
= —s|—yL — J * m • itat 

j V(6j v l « j J 6: 

(2) for those weights corresponding to terms in the constraint function, 

6 j = c j P j = [ \ ( « ) ] CjX,3'-' x 2
a " . . . x m

a i « , j e 0 [ k ] . 

Application of these forms to the current problem results in the following 

set of functional equal i t ies: 

» . <=,?! _ C,X,a" 
1 " vW vTO 
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c2P2 c y ^ ' x / ^ x 

2 vT iJ ' = T © ; 

63 = x.,(£) 03X^3' x 2
a32x 3

a 3 3 ; 

64 = ^ ( s ) c 4 x 1
a " ' x 2

a ^ x 3
a ^ ; 

^1 (j5) = <S- = (60 + 5;,). 
1 1 e j [ l ] 1 3 4 ' 

Substi tut ion of the proper numerical values results in 

4 0 V 2 
2 " 4 0 ' 

1 20x^3 
2 = 40 ' 

1 - / I 4. 3% . 1 -• ~ * 
2 '2 4 ' 5 X1 x2 ' a n d } 

3 _ / I , 3v 3 -• 
4 - ( j + 4 ) • 5 x

2 x 3 ' 

The value of each of the primal variables is found by solving the simul 

taneous system 

X1X2 ~ V 
1 
2 

X2X3 = 1; 

X ^ 2 = I ; 

X2X3 = 1 

This system can be solved by (1) use of logarithms or (2) d i rect algebraic 

in terpreta t ion. The system has as i t s solution x-, = i , x0 = 1, and x = 1, 
I c Z 9 3 
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In order to minimize f(x-j, x^) = ^Ox-jx^ + 20X2X2, i t i s necessary 

to l e t x-j = p x^ = 1, and x^ = 1. This solution set resu l t s in a minimum 

value of 40 fo r the primal funct ion. 

The c h a r a c t e r i s t i c s of geometric programming are not readi ly apparent. 

This i s possibly due to the lack of ex is t ing appl icat ions or the newness 

of the technique i t s e l f . However, cer ta in advantages do e x i s t and will be 

i d e n t i f i e d . This l i s t of c h a r a c t e r i s t i c fea tu res i s taken from the 
ft! 

pioneering work of Duffin, Peterson, and Zener. 

(1) Geometric programming provides a systematic method fo r formulating 

a c lass of optimization problems. Although applicable to l i nea r func t ions , 

geometric programming generally involves funct ions tha t are both nonlinear 

and convex. Suitable var iables must be c a r e f u l l y selected and al l con-

s t r a i n t s expressed as i n e q u a l i t i e s . 

(2) For meaningful problems, e i t h e r with or without cons t r a in t s , 

geometric programming always produces a global minimum, not j u s t a r e l a t i ve 

minimum. The minimum i s equal to the maximum of a dual problem whose 

cons t ra in t s are l i n e a r . 

(3) The dual problem i s e s s e n t i a l l y without cons t ra in t s . This 

fea ture i s important from a computational point of view. Even though 

the cons t ra in ts of the primal program are nonlinear , the dual program, 

under cons t ra in t s , i s l imited by a se t of l inea r funct ions . 

(4) Each value of the dual function provides a lower bound on the 

minimum value of the primal funct ion. In addi t ion, a maximizing sequence 

fo r the variable weights of the dual program produces a minimizing sequence 

fo r the var iables of the primal program. This property provides an 

6 1 I b i d . , pp. 12-13 
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increasing sequence of lower bounds and a decreasing sequence of upper 

bounds on the minimum value of the primal funct ion. Since the minimum 

value of the primal i s equal to the maximum value of the dual, the 

increasing-decreasing sequence property can be used to estimate the 

optimum solut ion. 

(5) The weights of the dual are in one-to-one correspondence with 

the posynomial terms of the primal problem. This property can be used 

to furn ish information regarding the r e l a t ive size of the posynomial terms. 

Dynamic Programming 

Unlike the preceding search techniques, dynamic programming represents 

a d e f i n i t e deviation from the r e s t r i c t i o n s of s t a t i c ana lys is . Realizing 

tha t s t r i c t adherence to s t a t i c analysis poses severe l imi ta t ions to r e a l -

l i f e problems ( for example, sequential analysis of inventory problems), the 

f e a s i b i l i t y of a sui table technique tha t incorporates time fac to rs into the 

analys is i s eas i ly recognized. This awareness of the r e s t r i c t i v e nature 

of s t a t i c analysis techniques led to the inves t igat ion and development of 
f\9 

dynamic programming. 

62 
The recognized pioneer in dynamic programming i s Richard Bellman. 

His t e x t , Dynamic Programming (Princeton, 1957), represents the f i r s t of 
several compilations r e l a t i ve to the theoret ica l analysis and prac t ica l 
applicat ion of dynamic programming. Other wri t ings include George Hadley's 
Nonlinear and Dynamic Programming (Reading, Mass., 1964), George Nemhauser's 
Introduction to Dynamic Programming (New York, 1966), and Harvey M. Wagner's 
Pr inciples of Operations Research (Enqlewood C l i f f s , 1969). Since these 
inves t iga t ions , sample problems and indust r ia l appl icat ions have been 
included as part of current l i t e r a t u r e and basic current textbooks ( fo r 
example, J . William Gavett 's Production and Operations Management (New York, 
1968), Samuel B. Richmond's Operations Research f o r Management Decisions 
(New York, 1968), and Richard B. Maffe i ' s "Planning Advertising Expenditures 
by Dynamic Programming," Decision Theory and Information Systems, edi ted by 
William T. Greenwood (Cincinnat i , 1969), p.p~. 416-424.) 
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The pract ica l importance of the inves t igat ive studies and textual 

discussions can be i d e n t i f i e d by considering some of the areas of appl i -

cation to which dynamic programming has been applied. These areas include 

the following: 

(1) inventory analysis so as to determine when an item should be 

replenished and in what quant i ty ; 

(2) capital-budgeting procedures f o r the purpose of a l loca t ing 

scarce resources into po ten t i a l l y productive a c t i v i t i e s ; 

(3) select ion of advert is ing media so as to achieve maximum exposure 

a t minimum cos t ; and, 

(4) long-range s t ra tegy select ion fo r the optimum time fo r replacing 

asse ts subject to depreciat ion. 

The analysis of these problems, and s imi la r ones, has led to the rea l iza t ion 

tha t the dynamic programming model i s of economic importance because i t 

can make possible the taking of a wide range of act ions via a routine 
co 

approach tha t contains a minimum amount of human in tervent ion . Properly 

implemented, the models and techniques of dynamic programming can resu l t 

in reductions of a t l e a s t 25 per cent in terms of product costs without 
fiH 

reducing the qua l i ty of service . 

The dynamic programming problem.--Basical ly, dynamic programming 

does not r e f e r to a pa r t i cu l a r type of programming problem. Rather, i t 
/rr 

r e f e r s to a computational technique tha t has been successful ly applied 

£*D 
^Harvey M. Wagner, op. c i t . , p. 255. 

64 . 
Ibid. George Hadley, op. c i t . , p. 350. 
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to problems with the following c h a r a c t e r i s t i c s : 

1. The [problem] s i tua t ion involves mult is tage processes containing 
a large number of va r i ab l e s . 

2. The re la t ionsh ip between the stages i s not a complex one. 

3. At each s tage , the s t a t e of the process i s described by a small 
number of parameters. 

4. The e f f e c t of a decision a t any stage i s to transform t h i s set 
of parameters in to a s ingle se t .66 

Problems which have been solved and which exh ib i t these c h a r a c t e r i s t i c s 

include scheduling and inventory problems, resource a l loca t ion problems, 

and dividend and investment problems. 

Further inquiry into the nature of the dynamic programming problem 

reveals t h a t i t s basic f ea tu re i s a s tep-by-s tep approach to the optimum 

decision required in a given problem. The problem i t s e l f i s not one in 

which al l of i t s stages are considered simultaneously and, although time 

periods may be involved, they are not necessary. The approach to the 

solut ion can take one of the following two forms: (1) begin a t stage one 

and proceed forward through the N stages of the problem, or (2) begin a t 

t h 

the N stage and backtrack through the stages to the i n i t i a l s tage . 

Regardless of the approach taken, an optimum solut ion will be achieved. 

Richmond has described the dynamic programming problem as one involving 

a sequence of decis ions , 
each of which produces an outcome t h a t inf luences the 
next . . .each decision must take into account i t s e f f e c t 
on the next decision and, indeed, i t s e f f e c t on the 
succeeding chain of d e c i s i o n s . ^ 

^Edward H. Bowman and Robert B. F e t t e r , Analysis f o r Production and 
Operations Management (Homewood, 1967), p. 136. 

f\ 7 
Samuel B. Richmond, op. c i t . , p. 470. 
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In th i s context the dynamic programming problem is described as one 

which encourages step-by-step optimization. At the f i r s t decision point 

an optimum solution i s achieved for that stage only. This optimum solution 

i s then used as an input to the second decision point . Utilizing th is 

input, the second decision point is optimized for that stage only, the 

only consideration being given to the inputs and parameters of the second 

stage. This optimum solution for the second decision point is then 

ut i l ized as an input for the third decision point. At th i s third 

decision point, an optimum solution is achieved re la t ive to the input 

from the second stage and the given parameters of the thi rd stage. This 

process i s repeated until all decision points have been examined and the 

optimum solution for each point obtained. The optimum solution to the 

i n i t i a l problem i s the solution obtained at the f inal decision point . 

In terms of the two possible approaches to the step-by-step analysis 

of a given problem, th i s optimization technique takes on one of the 

following forms: 

(1) forward optimization—the optimum solution at the k̂ *1 decision 

point i s carried forward so as to be u t i l ized at the (k + 1 ) ^ decision 

point; 

(2) backward optimization—the solution i s achieved which optimizes 

the effect iveness of the l a s t decision point for each of the possible 

inputs to that l a s t point (the output for the next- to- las t point) , the 

process being carried successively backward from the l as t decision point 

to the f i r s t ; i . e . , from point k to (k - 1) , from (k - 1) to (k - 2) , e tc . 

These two approaches are shown in Figure 3.4. 
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STAGS STAGE S-TPJGC 
- ^DECISION — * STRSE - ^DECISION — * STRSE 

I 2 H~T N 

Forward Recursion 

Backward Recursion 

Fig. 3.4--Recursive optimization 

From th i s discussion i t i s eas i ly seen tha t the dynamic programming 

problem i s one in which the decision-stages are somewhat l ike a chain 

with each decision point linked to the next. The resu l t is a problem 

consis t ing of N stages or N points of decision. This construction then 

transforms the original problem from one problem with N dimensions in to 

N problems with one dimension per problem, each of which is interdependent 

with the other parts of the to ta l problem. 

As previously indicated, dynamic programming re fe r s to a procedure 

fo r analyzing mult i-s tage decision problems in a s tep-by-step manner, a 

process t h a t can be considered, as indicat ive of sequential decision 

making. This process i s summarized in the following de f in i t i on . 

Definit ion 3.12.--Dynamic programming i s the technique (or theory) 

of mult i -s tage decision processes which are characterized by (1) a defined 
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optimal return funct ion, (2) a derived functional equation fo r the optimal 

return funct ion, and (3) an optimal policy (any rule fo r making decisions 

which y ie lds an allowable sequence of decisions which optimizes the 

preassigned function of the f inal parameters) derived from the optimal 

decision funct ions given by the use of the functional equation. 

In application the de f in i t ion provides the t o t a l i t y of the operations 

of the optimization process and i t s units of composition. However, i t 

only describes a process which applies two basic ideas: recursive 

optimali ty and summarization in terms of the parameters of the problem. 

Principle of optimali ty.--The crux on which the techniques of dynamic 

programming re s t i s the pr inc ip le of opt imal i ty . Formulated by R. Bellman, 

t h i s pr inc ip le s t a t e s tha t 

An optimal policy [set of decisions] has the property 
tha t whatever the i n i t i a l s t a te and i n i t i a l decision 
are , the remaining decisions must cons t i tu te an optimal 
policy with regard to the s ta te resul t ing from the 
f i r s t decision. 

This pr inc ip le i s the key to the decision process i d e n t i f i e d as 

dynamic programming. I t guarantees tha t an optimal decision in any s t a t e , 

say n, will lead to an optimal decision in the next s tage, say n + 1. By 

successive applicat ion of the stage-by-stage optimal decis ions, the process 

leads to the optimal decision fo r the en t i r e sequence which represents the 

original decision problem. Whatever decision i n i t i a t e s the decision process, 

the remaining decisions will be optimal with respect to the outcome r e s u l t -

ing from the i n i t i a l decision. 

CO 

Richard Bellman, op. c i t . , p. 83. 
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General theory.--The underlying theory to the formulation of the 

dynamic programming problem i s that complex problems can often be 

decomposed (broken down) into a series of smaller problems. Each of these 

smaller problems i s solved, and the solutions to the smaller problems 

are combined in such a way that the whole problem is solved. The 

t rans i t ion from one small problem to another is accomplished by defining 

a function which transforms one state into another. The resul t ing system 

is a series of states (or stages) connected by funct ional ly defined trans-

formations. The determining of th is transformation function i s a crucial 

step in solving the problem. 

Consider the problem of maximizing 

R(x-j s x2» • • • )*n ) ~ 9] ( x ] ) * 92^x2^+* ' ,+^n^xn^ 

n 
subject to the fol lowing constraints: x- >_ 0 and x. = x. The function 

1 " i = l 1 

defined by R(x-j, Xg j . - . jX ) i s such that i t is separable, a requirement 
r q 

that i s imposed upon a l l objective functions in dynamic programming. I t 

i s required that al locat ions be made, one at a t ime, in such a way that a 

quant i ty of resources i s assigned to the N**1 a c t i v i t y , then to the (N - 1 ) ^ 

a c t i v i t y , etc. With the al locat ion required in th is manner, the resul t is 

a dynamic al locat ion problem. 

For the sequence of functions { f ( x ) } , n + 1, 2,. . . ,>^.> 0, l e t 
f n ( x ) = Max R(x-j, x2 xn) 

{x^} 

69 
The term separable defines a condition such that the function can be 

broken down into n individual return stages. According to Gue and Thomas, 
op- c i t . , p. 174, th is requires that the objective be composed of the 
individual stage returns. 
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n 
where 0 and 21 x.j = x. Then f n (x) represents the optimal return 

(maximum) from an allocation of the quantity of resources, x, to the N 

required ac t i v i t ies . For N = 1, 2 , . . . and for g^(0) = 0 for each i 

( i = 1, 2 , . . . ,n) , define fn (0) = 0. For x j> 0, l e t f-j (x) = g-j (x). 

Allowing N and x̂  to be arbi t rary, a recurrence relat ion can be 

obtained connecting fn(x)and fn_-|(x)* To the ac t i v i t y , allocate 

resource xn> 0 £ xn £ x. Then, regardless of the value of xn , the 

remaining quantity of resources, x - x n , w i l l be used to achieve maximum 

allocation to the remaining (N - 1) ac t i v i t i es . The optimal return for the 

(N - 1) remaining ac t iv i t ies is a function of the resources remaining 

to be allocated, x - x . This function is defined by fn_-|(x - xn ) . 

t h 

Thus, the i n i t i a l allocation of xn units to the N ac t iv i ty yields a 

total return of 9 n ( x
n ) + ^n_i^ x " x

n ) - This return is over the entire 

N-act iv i ty process, and the optimal choice for xn is the one which 

maximizes the total return. Thus, 

f " ( X ) * OcxS C g "< X n ) + " X n ) ] 

defines the basic functional equation for N = 2, 3 , . . . , x 0, where 

f-j(x) = g-j(x). The function jus t derived is defined as the recursive 

relat ion by which the original problem w i l l be maximized. 

The essence of the recursive relat ion defined in the preceding para-

graph can be explained as follows. Consider a l imited resource, with 

x. the quantity of resource allocated to ac t i v i t y j . The function f . ( x . ) 
J J J 

represents the return from act iv i ty j when x. units are allocated to the 
J 

ac t i v i t y . With x . being the optimum resource selection and f - ( x - ) 
J J J 
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the optimal return from the al locat ion of x . , the process moves to 
J 

a c t i v i t y ( j + 1). The solution from a c t i v i t y j i s incorporated with 

a c t i v i t y ( j + 1) to achieve opt imal i ty in stage ( j + 1). In t h i s way 

an optimum solution at each stage i s car r ied into the next stage of the 

problem. The e f f e c t of t h i s procedure i s to transform "one n dimensional 
70 

problem into n one (possibly two) one dimensional problems." In 

addi t ion, the r e su l t of stage {j + 1) i s a function of the resu l t 

obtained in stage j . 

The heart of the dynamic programming approach to decision making 

i s the recursive r e l a t ion . Because of i t s importance, the term i s 

formally defined in Definition 3.13. 

Definition 3.13.--A def in i t ion in which a property is defined fo r 

the natural number n* whenever i t i s defined fo r n i s cal led a recursive 

71 

d e f i n i t i o n . The n i s defined as n* = n + 1. Thus, i f a re la t ion i s 

defined fo r stage n in a recursive manner, i t is also defined for stage 

n + 1. 

Bellman explains the working of the recursive re la t ion in the follow-
72 

ing manner. Consider a quant i ty of resource tha t i s to be a l located 

in such a way that the return from the to ta l investment i s to be maximized. 

Let x denote the to ta l quanti ty of resource tha t i s to be a l loca ted . I f 

y denotes the quanti ty a l located to the f i r s t of two investments, then 
70 

Bowman and Fe t t e r , op. c i t . 
71 

Richard E. Johnson, F i rs t Course in Abstract Algebra (Englewood 
C l i f f s , 1961), p. 15. * 

72 
Bellman, op. c i t . , pp. 3-9. 
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x - y denotes the quantity of resource that remains for allocation to 

the second investment. Let g(y) denote the return from the investment 

of the y units of resource and h(x - y) the return from the investment 

of the remaining x - y units of resource. The problem can be written 

in the functional form 

Max R(x, y) = g(y) + h(x - y), 

where R(x, y) denotes the return function. The value of y can assume 

any value between 0 and x, inclusive. 

Assuming that the allocation process is composed of N-stages, the 

maximizing of the total return is accomplished in the following manner. 

For the first stage of the allocation process, the maximum return, R-j, 

is obtained by maximizing R-j(x, y) = g(y) + h(x - y). Since the return 

of g(y) is achieved only at some expense (or price), let ay denote the 

amount that remains of resource y, 0 <_ a < 1. Similarly, the return 

h(x - y) is achieved only by paying some expense (or price); let 

t>(x - y), 0 £ b < 1, denote the amount of x - y that remains after 

obtaining return h(x - y). For the second stage of the N-stage allo-

cation process, ay + b(x - y) units of resource remain to be allocated. 

Since the initial quantity to be allocated has been symbolized by the 

letter x, let x-j = ay + b(x - y) denote the total quantity to be allo-

cated at the second stage. Then, allocating y-| units of the available 

x-j units to the first investment leaves (x^ - y-j) units to be allocated 

to the second investment. The function to be maximized is the return 

realized from this second allocation process, R2(x-|, y^). But, the 
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object ive is to maximize the to ta l return from both stages; therefore, 

the function to be maximized is given by the to ta l return funct ion 

R2(x> y» y^) = Cg(y) + h ( x - y)3 + g(y-j) + h(x1 - y ^ , 

where 

(1) 0 £ y £ x 

(2) x-j = ay + b(y - x) and 0 £ y-j <. x^. 

The real locat ion process is continued throughout the N-stages. At 

each new stage, the to ta l quanti ty to be al located, x^_-|, is the quanti ty 

of resource that remains, ayN_2
 + b(xj\|_2 ~ y^-2^ ' 1 , e -> 

V l = ayN-2 + b^xN-2 " yN-2^ 

where 

0 - yN-2 - xN-2 ; 

0 - y N - l - XN-1* 

Since the object ive is to maximize the to ta l return from a l l of the N 

stages, the to ta l return function is given by 

RN(X, y , y 1 , . . . , y N _ 1 ) = [g(y) + h(x - y ) ] + [g(y.,) + h(x ] - y ] ) + . . . + 

Cg(yN_]) + h(xN - 1 - y N - 1 ) ] , 

where the quant i t ies of resource avai lable for a l locat ion at the end of 

the f i r s t , s e c o n d , ( N - l ) s t stage are given by 

x-j = ay + b(x - y ) , 0 £ y £ x 

x2 = ay-j + b(x ] - y 1 ) , 0 £ y ] £ x-, 

XN-1 = ayN-2 + b^xN-2 ~ yN-2^' 0 - yN-2 - XN-2' 0 - yN-l - XN-1* 
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f h 

At the N stage, no fur ther al locat ions are necessary as the f i na l 

a l locat ion, the quant i t ies at the (N - 1)st stage, have been used to 

maximize the return of the stage. The maximum value of the to ta l 
73 

return function is the sum of these individual maximal returns. 

I t is important to note that the process j us t described is iden t i f i ed 

as the "forward approach" to solving a given problem. In th is approach 

the input of the stage is the output of the (N - l ) s t stage. The 

optimal solut ion is obtained by proceeding forward in time from the 

i n i t i a l stage (time 0) to the f i na l stage, and the recursive re la t ion 

u t i l i z e d to accomplish the optimizing process is defined as the forward 

recursive re la t ion . 

As might be surmised from the preceding paragraph, another recursive 

re la t ion exists for solving dynamic programming problems. This other 

recursive re la t ion is defined as the backward recursive re la t ion and 

achieves optimization by reversing the order of the sequential steps. 

That i s , backward recursive optimization proceeds from stage N to stage 1. 

This is accomplished by (1) def ining the successive stages of the problem, 

(2) optimizing the effectiveness of the las t stage (say, stage) for 

each of the possible inputs to that las t stage (these inputs would have 

come from stage N - 1), and (3) solving the previous (N - 1)st stage in 

the same manner as the stage was solved. In th is manner, the or ig inal 

problem is solved by backing through the N stages of the N-stage process. 
73 

This is the resu l t guaranteed by the pr inc ip le of opt imal i ty . By 
maximizing at each stage of the stage-by-stage process, the maximum value 
of the to ta l return is obtained. 
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As a means of demonstrating these concepts, consider the following 

example. A body shop offers three types of work situations: metal work, 

painting, and touchup. The shop is constructed in such a way that all 

work must proceed through these three departments in that order. In 

addition, each of the three departments has three parallel alternative 

stations; i.e., three metal working stations, three paint stations, and 

three touchup stations. Each of the nine individual stations has its 

own techniques, equipment, costs, and different output characteristics 

which affect the costs in the next department. 

A work assignment is to be processed through the body shop in such a 

way that the total cost of the work is to be minimized. The work is to 

be scheduled in such a way that it will proceed through exactly one 

station in each department. As a means of initiating the work, estimates 

of $400, $420, and $395 are submitted from metal stations 1, 2, and 3, 

respectively. Table 3.20 summarizes the cost associated with work that 

passes from a given metal work station to a given paint station. 

TABLE 3.20 

COST SUMMARY: (m, p) 

Paint Station 1 2 3 

Metal Work Station 

1 2 3 

1 40 50 45 

2 50 35 40 

3 45 60 70 
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Table 3.21 summarizes the cost associated with work tha t passes from 

a given paint s ta t ion to a given touchup s t a t i o n . 

TABLE 3.21 

COST SUMMARY: (p, t ) 

Touchup Stat ion 

Paint Stat ion 

1 2 3 

1 18 24 15 

2 21 18 20 

3 12 15 5 

The en t r i e s in the table are read as the pai r (m, p) or (p, t ) with 

(m, p) denoting from metal s ta t ion m to paint s ta t ion p and (p, t ) 

denoting from paint s t a t ion p to touchup s ta t ion t . 

Solution 1 (forward recursion).--The use of the forward recursive 

re la t ion requires tha t the sequential stages of the decision-making process 

begin a t the i n i t i a l point of the N-stages; i . e . , a t the metal working 

s t a t i on . At th i s i n i t i a l point the s ta t ion is chosen tha t minimizes the 

cost ( s t a t ion 3) and then select ion of the paint s ta t ion begins. The 

possible se lec t ions are shown in the decision t rees shown in Figure 3.5. 

Each t r ee corresponds to the i n i t i a l select ion of one of the three metal 

work s t a t i o n s , M.., i = 1, 2, 3. 
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Fig. 3.5--Forward recursion 
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For example, if the i n i t i a l assignment of the incoming work is M-j, 

the second stage assignment is faetv/een , P^, and P^. Suppose the 

second stage assignment is P^. Then the th i rd and f ina l stage assign-

ment is between t- | , t a n d t^ . Suppose the th i rd stage assignment i s 

t 2 . Then the decision process is defined as the sequence (M^, P^, t ^ ) . 

In t h i s type of ana lys is , the output of each stage serves as an input 

to the next s tage. Thus, the decision to u t i l i z e metal work s ta t ion 1 

serves as the input to the select ion of the paint s t a t i o n , e t c . 

Since the object ive of th i s problem is the minimization of the to ta l 

cost of the process, the f i r s t decision will be to choose the metal work 

s ta t ion which corresponds to minimum cost . This d ic ta tes metal work 

s ta t ion 3 with a cost of $395. Given th i s decision, the paint s ta t ion 

with minimum cost will be se lec ted . This r e su l t s in paint s ta t ion P̂  

with a cost of $45. Given th i s decision, the touchup s ta t ion with minimum 

cost must be se lec ted . This r e su l t s in the select ion of t 3 with a cost 

of $15. This completes the process. The sequence of forward decisions 

necessary to minimize the to ta l cost of the process is given by the 

decision set 

{rfl-j, (m-j, P-j), (m*j, Pi , t ^ )} • 

The minimum cost f o r t h i s se t of decisions is $455. 

A functional descript ion of t h i s problem requires that the t o t a l i t y 

of three component costs be minimized. These three cost elements are 

the cost of optimizing a t the i n i t i a l stage (stage 1), the cost of 

optimizing at the second stage (stage 2) , and the cost of optimizing a t 

the f ina l stage (stage 3) . The function to be minimized is the function 
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R(y, y r y2)» where R(y-j, y 2, y 3 )
 = y-j + y 2

 + y3» anc' y] denotes the cost 

associated with the decision to assign the job to metal work station 

» i = lj 2, 3; y 2 denotes the cost associated with the decision to 

assign the job to paint station p. , j = 1, 2S 3, given the initial 
J 

assignment of work to ; and, y^ denotes the cost associated with the 

decision to assign the job to touchup station t^, k = 1, 2, 3, given the 

assignment of work to p^. 

Since R(y-j, y 2, y^) is to be minimized, the minimum cost associated 

with each of the values y^, y^, and y^ depends upon the work station 

assigned to the job. Thus, the value of y^ depends upon the initial 

assignment m^; i.e., y-| = h^ (m^), i = 1, 2, 3. The value of y 2 depends 

upon the assignment p.; i.e., y ? = h.(p.); but, since p. is functionally 
J £- J J J 

dependent upon the initial assignment (i.e., p^ = f^Cm^)), y 2 = h[f(m^.)]. 

Similarly, the value of y^ depends upon the assignment t^; i.e., 

^3 = ^k^k^"' ^ s i n c e 1 S f u n c t i o n a l l y dependent upon p^ (i.e., 

tk = f j ^ p j ^ ' y 3 = (Pj)U- This expression for y^ can be written 

in the form y^ = h[f(p^)] = h{f[f(m^)]}, which defines y^ in terms of 

the initial assignment m^. Substitution of these expressions into 

R(y-p y2> y 3 ) yields 

min R(y1, y 2 > y 3 ) = y ] + y 2 + y 3 

= h 1(m 1) + hj(Pj) + hk(tk> 

= h-(mi) + hj[f i(m i)] 

+ h|<{fj[f^ (mi)]}, 

i s Js k — lj 2, 3 • 
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This function defines the recursive re la t ion connecting the decision at 

stage 2 with the decision at stage 1 and the decision at stage 3 with the 

decision at stage 2. However, since the decision at stage 2 is connected 

to the decision a t stage 1, the decision at stage 3 i s connected with the 

decision at stage 1. This re la t ion car r ies the decision at stage 1 

forward to the f ina l decision a t stage 3, a process which demonstrates 

the pr inc ip le of opt imal i ty . 

Solution 2 (backward recursion).—The use of the backward recursive 

re la t ion requires that the sequential stages of the decision making 

begin at the l a s t (N*^) stage and progressively move backward through 

the stages of the decision process. At th i s point the process requires 

se lect ing the optimal (minimal) cost and, using th i s se lec t ion , determine 

the optimal (minimal) cost at the second decision point . This second 

decision then leads to the f ina l se lec t ion , that of choosing the s ta t ion 

at which the work assignment will enter the process. The decision t rees 

shown in Figure 3.5 can be used to t race a backward path, with the path 

selected being the one corresponding to the minimal cos t ; o r , the decision 

t rees shown in Figure 3.6 can be used to point out a l t e rna t e decis ions. 

Proceeding in a manner s imilar to that of the forward recursive 

approach, the to ta l minimum cost of the decision process can be calculated. 

This i s accomplished by f i r s t se lec t ing the t . (i = 1, 2, 3) which corres-

ponds to the minimum cost . Inspection of Figure 3.6 reveals tha t touchup 

s ta t ion 3, receiving input from paint s t a t ion p^ has a minimal cost of 

$5. Thus, the backward path begins along ( t ^ j Pg). At p^, evaluation 
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i 

of the paths (p 3 , m-j), (p 3 , m2), and (p 3 , m3) y ie ld costs of $445, 

$460, and $465, respec t ive ly , obtained by adding the cost of se lec t ing 

a path and the cost at the end of t ha t path. Thus, the minimum cost 

of $450 is achieved by se lec t ing the decision process defined by the 

decision set { ( t 3 , p 3 ) , ( t 3 , p 3 , m-j)}. 

These two approaches to solving the same problem reveal that the 

r e su l t of the forward recursive re la t ion does not y ie ld the same r e su l t 

as the backward recursive r e l a t i o n . However, the r e su l t s serve to point 

out the implications of the pr inc ip le of opt imal i ty: given the condi-

t ions resu l t ing from the decision made at the preceding s tage , the 

remaining decisions at every stage cons t i tu te an optimal policy (set of 

decis ions) . In addi t ion, these two approaches demonstrate the manner in 

which both the forward and backward recursive re la t ions are u t i l i z e d . 

According to Hadley, 

f o r de terminis t ic sequential decision problems, one is 
able to use e i t h e r . . . a forward solut ion or a backward 
so lu t ion , and one has the option of se lect ing one or the 
other . A forward solution works forward in t ime, with the 
f i r s t stage in the dynamic programming problem being tha t 
corresponding to the f i r s t decision to be made. The 
backward solution works backward in time so that the 
f i r s t stage of the dynamic programming [problem] 
corresponds to the l a s t decision (in time) to be made. 
The c r i t e r ion tha t determines whether a forward or a 
backward solution is to be prefer red often depends 
on whether some parameter in the problem is spec i f ied 
to be a given value at the s t a r t of the process or at the 
end of the process (or both at the end and the beginning). 

Computational considerations.--D.ynamic programming has been described 

as a technique for analyzing mult i -s tage problems. In t h i s respect 

74 
Hadley, op. c i t . , p. 376. 
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dynamic programming does not u t i l i z e an algorithm of the same type as the 

simplex algorithm of l inear programming. Instead, the manner in which a 

given problem is solved is t o t a l l y dependent"upon the nature of the 

problem being analyzed. This is readi ly apparent when consideration is 

given to the fact that there is no d i s t i nc t defining class of problems 

categorized in the same manner as that for the previous techniques. 

Dynamic programming is applicable to l inear or nonlinear problems, 

stochastic or determinist ic problems, and is equally suited so long as 

the problem being investigated is characterized as one of sequential 

analysis. 

Nemhauser has described th is solut ion technique as one in v/hich the 

object ive is the solving of a set of recursive relat ions of the form 

f„(Xn) = opt Qn(Xn, Dn). n = l , 2 N 

where n 

and 

with 

W Dn' = r n < V Dn> " = 1 

« n < V Dn> = Dn> ° W W 

76 
V l - V V D n > 

The symbol "o" is used to indicate the re la t ion that connects the N 

stages of the problem under study. For example, i f 

^ n ^ n ' Dn^ ~ rn^Xn' Dn^ + r n - l ^ X n ' D
n^ + * " + r l ^ X l s D1 ^' 

7 5 i b i d . 

76 
Nemhauser, op. c i t . , p. 46. 
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the symbol "o" represents the addit ive property. I t s primary function 

is to s t ipu late a condition described as separab i l i ty , where separabi l i ty 

i s defined as the property whereby a given-problem can be broken down 

into N individual stages. 

In solving this set of recursive re la t ions , Nemhauser u t i l i zes the 

general algorithm described by the flow chart in Figure 3.7. This chart 

and fol lowing discussion is taken from Nemhauser.^ In th is flow char t , 

the c i r c les , l i nes , and boxes serve the fol lowing functions: 

(1) so l id l ines indicate the sequence in which the steps are followed; 

(2) so l id rectangular boxes contain information re la t ive to calculat ions; 

(3) so l id c i rc les contain information re la t ive to settings or 

adjustments of the index n; 

(4) diamond-shaped boxes relate to binary questions; 

(5) dashed boxes indicate storage or saving of information, with 

the dashed l ines indicat ing use. 

The computational procedure begins at stage 1, the i n i t i a l a l locat ion; 

i . e . , n = 1. At th is state the function defined by r (X , D ) is evaluated 
J nx n n' 

(optimized) and found to be ^ (X- j , D-|); i . e . , fo r n = 1, 

W Dn> " r n < V Dn> 

is given by 

Ql (*1 > ) = (X-|, D-j). 

This resul t is u t i l i z e d by applying 

W Dn> = °D*' « „ < V Dn>' 

^ 1 bi d . , pp. 46-48. 
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which, fo r n = 1, yields 

f l ( X l > D l ) = [)f Q1 ( X1' V = S f r l ( X l ' V * 

At th is point the problem under investigation is optimized with respect 

to the f i r s t decision, D-j „ and the f i r s t al location, X-j. As indicated, 

i t is necessary to calculate f-j(X-j) and D-|{X )̂ for storage. The value 

associated with represents the optimal return for an input of 

X-j units . The "value" associated with D-j(Xi) represents the optimal 

decision policy. For n = 1 f N, the algorithm begins the recursive 

procedure by applying n = n + 1 = 2 for n = 1. 

Since n = 1 f N, the recursive relation n = n + 1 re i te ra tes the 

process for n = 2. This is the second stage of the computational process 

and requires that i"n(X » Dn) be evaluated for n = 2; i . e . , ^(Xg, D^). 

Since n f 1, the i t e ra t ive procedure requires the use of 

W Dn> " r n < V Dn> 0 W V l > 

where Xn_-j = D
n)- F° r n = 2, this yields 

Q2(X2, D2) = r2(X2 , D2) o f ^ ) 

where X-j = t 2 (X 2 , D2). At this point the stored value f i (X-j) i s ut i l ized 

subject to the property defined by the symbol "o." The process then moves to 

W V = W V = D2 ^2^X2' D2^5 f o r n = 2-

This movement requires that 

Q2(X2, D2) = r2(X2 , D2) o f-j (X-|) 

be optimized for the decision D2, subject to the return r2(X2 , °2^ anc l 

the value of f^(X-j). I t is here that the resul t of stage 1 is incorporated 



358 

into the optimization at stage 2. I f n = 2 i N, i t is necessary to 

calculate the optimal return at stage 2, and D2(X£), the optimal 

decision pol icy for stage 2. These values are stored (retained) for use 

in the next i t e ra t i on . 

Repeated appl icat ion of th is process for n = 3, 4 , . . . , N results in 

the optimal return for the N stage sequential process. The return at 

the n = N stage y ie lds 

W Dn> = Dn> 0 fn-l<Vl> 

where Xn_-| = ^ (X > D
n) • The optimal return is found by evaluating 

W Dn> " D * W Dn> * °of <n<>V Dn»' 

In th is manner the problem is optimized for n = N with respect to the 

n = decision, D , and the n = a l locat ion, X . The value 

associated with fn (X ) represents the optimal return for an input of 

Xn> The "value" associated with D (X ) represents the optimal pol icy 

decision for stage n = N. 

Since n = N, i t is necessary to determine the optimal set of 

inputs, Xn*, fo r n = 1, 2 , . . . , N - 1 , and the optimal set of decisions, 

Dn*, n = 1, 2 , . . . , N . This is accomplished by assuming the existence of 

a given (or prescribed) value of X^, given by X^* = X^, n = N. The 

value of D^* is obtained from storage, where D^* = Dn(Xn) = D^(X^) for 

n = N. In order to calculate , i t is necessary to apply the re la t ion 

Vl = W - "„>• n = N-
Since n = N f 1, i t i s necessary to compute D^_-j from X̂ *_-j and the stored 

"value" of DjSj_i(Xjy|_-j). When n = 1, the process terminates. 
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As previously noted, the functional connectors depends upon the 

problem being inves t iga ted . However, there are some cha rac t e r i s t i c s 

tha t dis t inguish one problem from another. These major dis t inguishing 

cha rac t e r i s t i c s are 

(1) the return funct ions r ( X . D ) and the transformations 
t (X , D ); n n n 
nv n n ' 

(2) the in t e rp re ta t ion of the operator "o" which spec i f i e s how 
rn anc* ^n-1 a r e ^ ^ i n e d t 0 obtain Qn; and 

(3) the technique used to [optimize] CL(X . D ) to obtain r ( X „ ) 
a n d D n ( X n ) . 7 8 • n n n n n 

Although the preceding discussion out l ines a general methodology 

fo r solving a dynamic programming problem, i t does not cons t i tu te an 

algorithm of the same magnitude as the simplex algorithm of l i nea r 

programming or the algorithms fo r quadratic programming. According to 

W. Emory and P. Nil and, 

other than the general statement tha t the to ta l problem 
should be broken down into sequent ia l , independent s tages , 
[ i . e . , separable] there ex i s t s no set of ins t ruc t ions fo r 
dynamic programming formulation. Nor does there e x i s t a 
general purpose algorithm. . . f o r solving a dynamic 
programming problem—this [the method of obtaining the 
so lu t ion] depends upon how i t [the problem i t s e l f ] has 
been fo rmula ted . ' 9 

This lack of a spec i f i c algorithm, however, does not negate the importance 

of the dynamic formulation. This formulation has two d e f i n i t e advantageous 

fea tu res r e l a t i ve to the solving of given problems: 

7 8 I b i d . , p. 48. 

79 
William Emory and Powell Nil and, Making Management Decisions 

(Boston, 1968), p. 240. 
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(1) [dynamic programming o f f e r s ] a [problem] formulation which is 
[ po t en t i a l l y ] simpler to solve than an a l t e rna t ive formulation; 
and, 

(2) [dynamic programming o f f e r s ] a way of achieving an exact 
solution to a problem fo r which the calculus is not adequate 
[ fo r example, a discontinuous cost function s imi lar to one in 
which a new machine with cost f ac to rs d i f f e r e n t from the 
or iginal must be purchased to expand the volume of production]. 

From these fea tures i t i s evident that dynamic programming r e fe r s to 

a decision-making process that is not characterized by a pa r t i cu l a r 

solution technique. Rather, dynamic programming re fe r s to a conceptual 

method, not a computational one. 

Applications of Basic Optimal Search 

Introduction 

The development of modern optimization theory as a tool of applied 

analysis begins with the u t i l i z a t i o n of the techniques of basic optimal 

search. Although these techniques can be described as extensions of 

c lass ica l optimization theory, the manner in which they are used and the 

types of problems to which they apply iden t i fy them as a d i s t i n c t class 

of problem formulations and solution techniques. 

Modern optimization theory u t i l i z e s a class of models that can be 

defined as optimum-seeking. The purpose of the modern optimization 

theory model is to determine the optimum level of a c t i v i t y for a given 

problem. This is accomplished by formulating the i n i t i a l problem as one 

in which a defined object ive function is to be optimized subject to a 

se t of constra int funct ions . The object ive function defines the re la t ionship 

8 0 1 bi d. 
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which describes the a c t i v i t y that is to be optimized. The constraint 

functions define the re lat ionships which describe the l im i ta t i ons w i th in 

which the optimal a c t i v i t y is to occur. 

The tools of basic optimal search have been i d e n t i f i e d as those 

which seek the optimum value of a defined object ive funct ion that is 

res t r i c ted by a set of l i near constra ints . With the exception of dynamic 

programming, the so lut ion technique is d ictated by the manner in which 

the problem is formulated. In each case, however, the object ive is to 

select that level of a c t i v i t y from a set of a l te rnat ive a c t i v i t i e s fo r 

which the object ive funct ion achieves i t s optimal value. 

The solut ion techniques of basic optimal search are such that th i s 

optimum level of a c t i v i t y is located by a series of sequential i t e r a t i o n s . 

At each i t e r a t i o n , the so lut ion is tested f o r both, f e a s i b i l i t y and 

op t ima l i t y . The optimal so lu t ion to the problem being invest igated is 

only one of several possible so lu t ions. However, the optimal solut ion 

is the so lu t ion which produces the best value of the object ive funct ion 

while sa t i s f y i ng a l l of the given constra ints. 

In the appl icat ions to fo l low, i t i s to be noted that the areas of 

a p p l i c a b i l i t y of the techniques of basic optimal search and c lass ica l 

opt imizat ion theory overlap. This is due to the fact that the implementation 

of basic optimal search techniques does not change the type of problem 

being invest igated. Basic optimal search j u s t provides a bet ter means o f 

formulat ing and solving problems that are unduly res t r i c ted when formulated 

as problems of c lassical opt imizat ion theory. This improved problem formu-

la t i on is evidenced by the incorporat ion of the constraint functions in 
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the mathematical model which is used to describe the given problem. 

The techniques of basic optimal search provide the means for e f f i c i e n t l y 

solving these improved problem formulations. 

Linear Programming 

The development of l i nea r programming evolved from the i n a b i l i t y of 

simultaneous l inea r equations to adequately describe the real problem under 

considerat ion. Rather than locate the point (or points) a t which a given 

system t o t a l l y consumed a l l resources or commodities (money, machine-

time, man-hours, e t c . ) , the object ive became the maximization (or mini-

mization) of a defined function subject to a system of competing con-

s t r a i n t s . This introduced a multitude of possible solution poin ts , only 

one of which was the maximum or the minimum. Since to ta l consumption was 

not always possible (or f e a s i b l e ) , the introduction of the inequal i ty 

b e t t e r represented the t rue s i t u a t i o n . 

As an administrat ive tool l i nea r programming has been characterized 

as a method of analysis with certain d i s t i nc t advantages. Among these 

are the following: 

1. Insight and perspective into problem s i t u a t i o n s . Linear programming 
forces logical organization and study of information in the same 
way tha t the s c i e n t i f i c approach to a problem requires . This 
generally resu l t s in a c lea re r pic ture of the t rue problem, 
which frequently is as valuable and revealing as the answer 
i t s e l f because i t leads more surely to dealing with causes 
ra ther than e f f e c t s - - s o l u t i o n s ra ther than stop-gap expedients. 

2. Consideration of all possible solut ions to problems. Many manage-
ment problems are so complex that d i f f i c u l t y is encountered in 
planning any feas ib le so lu t ion , l e t alone an optimum solu t ion . 
By using l inea r programming, the manager makes sure he considers 
the best solution or solut ions as well as any other that he 
might want to consider. 
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3. Bet ter and more successful decisions. With l i nea r programming 
the executive. . .builds into his planning a t rue re f lec t ion 
of the l imi ta t ions and r e s t r i c t i ons under which he must 
operate . . .when necessary to deviate from the best program 
[he] can evaluate the cost or penalty involved. 

4. Better tools f o r adjus t ing to meet changing conditions. Once 
a basic plan is arr ived at through l i n e a r programming, the 
basic plan can be reevaluated for changing conditions. Plans 
can be la id fo r several se ts of conditions to f ind out how to 
prepare best f o r possible fu ture changes. If conditions change 
when the plan is par t ly carr ied out, changes can be determined 
so as to adjus t the remainder of the plan for best r e s u l t s . 

Other advantages include (1) improved use of productive fac tors by 

indicat ing the best use of ex is t ing f a c i l i t i e s , (2) assis tance in pre-

paring fu tu re managers in analyt ical techniques, and (3) providing a base 

from which the a l locat ion of scarce resources can be made. 

The primary purpose of l i nea r programming (as well as any mathematical 

programming technique) is the best al locat ion of some commodity or resource, 

The al locat ion process involves the best possible assignment of resources 

( e . g . , man-hours, money, machines, raw mater ia ls , e t c . ) to s p e c i f i c a c t i -

v i t i e s in such a way that defined object ives are s a t i s f i e d . Because of 

l imited a v a i l a b i l i t y of productive resources, the resources must be 

assigned subject to res t ra in ing condit ions, e . g . , 

The production manager must a l locate the avai lable machine 
time and labor hours in each department, along with the raw 
mate r ia l s , to the a c t i v i t i e s of producing the d i f f e r e n t 
products which have been scheduled. He is l imited by the 
a v a i l a b i l i t y of machines and labor , the amount of raw 
materials on hand, and the number of units required to 
be produced fo r each type of product. 

The shipping department must a l locate the time and 
capacity of his trucks to del iver spec i f i c orders by a 
given time. He is l imited by the number of trucks and the 

81 
Robert 0. Ferguson and Lauren F. Sargent, Linear Programming 

(New York, 1958), pp. 11-14. 
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capacities of each. Also he must consider the allowable 
delivery time associated with each order, and he must 
del iver the order wi th in that in te rva l . 

. . . [ i n capi tal budgeting] the company managers 
problem [may be that o f ] a l locat ing a l im i ted supply of 
capital to ac t i v i t i es represented by the available 
investment opportunit ies. 

In each of these examples the objective must be obtained wi th in the 

l im i t s of the manager's capabi l i t ies . That i s , he must select the optimum 

al locat ion of his resources ( f a c i l i t i e s ) so as to achieve maximum return. 

In b r i e f , th is is the function of the l inear programming model. 

Although much of the work in the area of l inear programming analysis 

has centered on the development of computational algorithms (e .g . , the 

simplex algorithm of Dantzig, the revised simplex, the VAM (Vogel 

approximation method), algorithm, e t c . ) , the problems to which they 

apply exhib i t a basic, common character is t ic : a defined l inear objective 

function that is to be optimized (maximized or minimized) subject to a 

system of l inear restra in ing functions. The restrain ing functions can 

be equal i t ies or inequa l i t ies , and they are used to define the res t r i c t ion 

placed upon the ava i l ab i l i t y of each resource. 

In addit ion to the defined l inear objective function and the same 

requirements of l inear analysis (with to ta l consumption removed), problems 

amenable to l inear programming exhib i t some additional character is t ics. 

Among these other character ist ics are the fol lowing: 

(1) The quant i t ies of flow of various items into and out of the 

productive ac t i v i t y are proportional to the level of a c t i v i t y . (For 

82 
William R. Srnythe, J r . and Lynwood A. Johnson, Introduction to 

Linear Programming, with Applications (Englewood C l i f f s , 19661, PP. 189-
202. " ' 
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example» doubling the ac t iv i ty level i s accomplished by doubling all of 

the corresponding flows fo r the unit ac t iv i ty l eve l . ) 

(2) There must be some way of describing the a v a i l a b i l i t y of resources 

fo r various combinations. (For example, in preparing an advert is ing 

budget the a l locat ion of $X to market A reduces the amount of money 

available f o r use in market B.) 

(3) The problem must be such tha t the decision maker has a choice 

of input combinations, or courses of act ion. One of these courses of 

action must achieve the desired objec t ive . 

(4) The problem under invest igat ion must be such that i t can be 

expressed in defined mathematical re la t ionsh ips . For l i nea r programming 

these re la t ionships are a l l l i nea r . 

Other considerations include the following: 

(1) Raw material is available in unlimited quan t i t i e s at a f ixed 
cost per uni t . (The firm may be buying in a pe r fec t ly com-
pe t i t i ve market or from a monopoly with a f ixed price pol icy . ) 

(2) The output of each ac t iv i ty can be sold in unlimited quanti ty 
a t a f ixed pr ice . 

(3) The f irm engages in " a c t i v i t i e s " to transform raw materials 
into products. These a c t i v i t i e s require the use of "internal 
resources" such as machine time or plant space. 

The appl icat ions tha t have been made to problems possessing these 

cha rac t e r i s t i c s have been many. In addition to indus t r ia l and administrat ive 

appl ica t ions , l inea r programming has been applied to problems involving 

agr icu l tu re , a i r c r a f t , and various mi l i ta ry problems. For convenience 

these appl icat ions are summarized according to the general category. 

oq 
Teichroew, op. c i t . , p. 416. 
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Industr ia l appl ica t ions . - -Linear programming has been used to solve 

a var ie ty of indus t r ia l problems. Each of these applicat ions i s such that 

the general object ive is to determine a plan for production and procurement 

in each of the time periods under considerat ion. I t i s necessary to 

s a t i s f y all demand requirements without viola t ing any of the cons t ra in t s . 

The objec t ive is to be optimized by maximizing a defined return or 

minimizing a defined cost . Examples of these applicat ions follow. 

(1) Production pianning--the product mix problem. An indus t r ia l 
concern has avai lable a cer tain productive capacity on 
various manufacturing processes and has the opportunity to 
u t i l i z e th i s capacity to manufacture various products. 
Typically, the d i f f e r e n t products will have d i f f e r e n t 
s e l l ing pr ices , will require d i f f e r en t amounts of production 
capacity a t the several processes, and therefore will have 
d i f f e r e n t unit p r o f i t s . . . there may be minimum or maximum 
production levels se t fo r given products. The problem is 
to determine the optimum, i . e . , maximum p r o f i t , mix of 
products to produce fo r the capacit ies avai lable . The 
solution would s t a t e how many units of each product to 
manufacture during the planning period. 

(2) Production pianning--the production-smoothing problem. An 
indust r ia l concern has the problem of scheduling i t s pro-
duction over a number of fu ture time periods, with the 
to ta l time span being considered cal led the "planning 
horizon." 

(3) Production scheduling—alternate routings. In t h i s type of 
problem the quan t i t i e s of product to be manufactured during 
a period are f ixed ; however, there may be several a l t e rna te 
sequences (routings) of production processes by which a 
product can be manufactured. Each routing would have a 
d i f f e r e n t cost associated with i t . Each manufacturing 
process would have a certain capaci ty , and the various 
products would have to compete for t h i s capacity according 
to the pa r t i cu l a r routings selected fo r each product. The 
problem is to produce the required quanti ty of each product 
a t minimum cost , subject to the constra ints on process 
capacity. For each product, the solution would s t a t e how 
much of the required quanti ty of t ha t product was to be 
produced by each a l t e rna t ive production routing. 
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(4) Dis t r ibut ion. There ex i s t cer tain sources of supply ( e . g . , 
warehouses, f a c t o r i e s , mines) geographically d i s t r ibu ted and 
cer ta in other locations ( e . g . , r e t a i l s t o r e s , warehouses) 
where a need ex is t s f o r the materials avai lable a t the 
sources. Depending upon the r e l a t i ve geographical loca t ions , 
f r e i g h t r a t e s , and possibly other considerat ions, there i s a 
cer ta in cost associated with t ransport ing a unit of product 
from a given source to a given des t ina t ion . Given these 
t ranspor ta t ion cos ts , the resources at each source, and the 
requirements at each des t ina t ion , the problem is to determine 
the minimum-cost shipping program. The solution would s t a t e 
what quant i t i es are to be shipped from each source to each 
des t ina t ion . 

(5) Product ion-dis t r ibut ion problems. These problems occur 
when the products needed by the various dest inat ions in a 
d i s t r ibu t ion problem do not ex is t in f in ished form, but 
ra ther must be manufactured at the sources before shipment. 
The sources may have d i f f e r en t production costs . . . the 
solution would s t a t e what is to be produced at each source 
and where the goods are to be shipped. 

(6) Blending problems. These products will occur when a product 
can be made from a variety of avai lable raw materials of 
various composition and p r i ces . The manufacturing process 
involves blending (mixing) some of these materials in 
varying quant i t i es to make a product conforming to given 
spec i f i ca t ions . The supply of raw materials and the speci-
f i ca t ions serve as constraints in obtaining the minimum-
cost material blend. The solution would s t a t e the number 
of units of each raw material which are to be blended to 
make one unit of product.84 

In each of these appl ica t ions , the solution should specify the number of 

units of each product to be obtained from each production or procurement 

sources in each of the defined time periods. 

Agri cultural appl i ca t ions . - -L inea r programming has been used to 

determine the optimum al locat ion of a se t of l imited resources that 

maximizes the return from the al locat ion ac t iv i ty or minimizes some 

defined cost . Charac ter i s t ic of these applicat ions are the following: 

84 
Smythe and Johnson, op. c i t . , pp. 186-187. 
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(1) The die t (mixture) problem. Assume tha t the daily requirements 
of cer tain substances such as pro te ins , f a t , carbohydrates, 
vitamins, e t c . are given, the contents of these substances 
in avai lable products are known, and the cost per unit of 
each product is also known. The problem is to compound a 
rat ion tha t will s a t i s f y the daily requirements of the 
necessary substances and minimize costs . [An analogous 
application is the compounding of a mixture of petroleum 
products meeting minimum technical requirements with 
minimum c o s t . ] 

(2) Best use of arable land. Assume tha t n crops are to be 
grown on m plots with areas of a-j, > a reas , 

respect ive ly , where the average y ie ld of the crop from 
t h 

the i l o t i s a . , units per acre. . . the return from one 
4-U J 

unit of the j crop is p. do l l a r s . [The problem] is to 
vi 

determine the area in each p lo t that should be sown in each 
crop so tha t a maximum return is obtained under a policy 
in which no less than b. units are planted in the 

3 
crop ( j = 1, 2 , . . . , n ) . [This pa r t i cu l a r problem i s one 
involving mixed c o n s t r a i n t s . ] ^ 

Flight-scheduling appl ica t ions•- -Linear programming has been 

e f f e c t i v e l y applied to problems of operational scheduling. This problem 

is s imi la r to the t ranspor ta t ion problem and is characterized by the 

f l ight -schedul ing problem. 

Assume tha t there are n d i f f e r e n t types of a i r c r a f t tha t 
must be scheduled fo r m routes , and assume that the monthly 

th th load transported by an a i r c r a f t of the i type on the j 
route is a . , un i t s , with an associated monthly operating cost 

* vJ 

of b. . do l l a r s . I t i s necessary to determine the number x 
th 

of a i r c r a f t of the i type tha t must be assigned to the j 
route to provide t h i s l ine with a - , units (i = 1, 2 , . . . , n ; 

J 
j = 1, 2 , . . . , m ) of carrying capacity with a minimal total 
operating cost when i t is known tha t N. a i r c r a f t of the 
. th 
i type (i = 1, 2 , . . . , n ) are available ( i . e . , determine 

85 
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the optimal assignment of a i r c r a f t to given routes so as 
to provide the necessary carrying cepcity with minimal 
to ta l operating cost) .86 

Administrative appl icat ions . - -The use of l i nea r programming as a 

tool, of administrat ive problem-solving is exampled by a variety of 

appl ica t ions . Included in these areas of applicat ion are the following: 

(1) Balancing of production and inventor ies . A company desires 
to schedule production according to a r e l i ab le sales fo re -
cas t . The plant supervisor ' s i n t e r e s t is to s t a b i l i z e his 
labor force and l e t inventories supply the s lack , to which 
the t r easu re r objects since invest ing capital in inventories 
i s not a very p ro f i t ab l e en te ro r i se . I t i s necessary to 
study the problem with a view to minimizing inventory costs 
and meeting sales fo recas t s . 

(2) Personnel-assignment problem. Given a f ixed number of 
persons and jobs , as well as the expected product ivi ty of 
each person r e l a t ive to each job, f ind an assignment of 
persons to jobs which maximizes the average product ivi ty 
of the assigned personnel. 

(3) Bid evaluat ion. Consider a problem with n depots and m 
separate bidders. Each of the m bidders wishes to 
produce an amount not exceeding a . ( i = 1, 2 , . . . , m ) . The 

demands at n depots are bj ( j = 1, 2 , . . . ,n ) . I t costs an 

amount c . , to del iver a unit from the i t h bidder to the j t h 

*hh 
depot. If x . . denotes the quanti ty purchased from the i 

h 
manufacturer f o r shipment to the j des t ina t ion , then the 
problem i s to minimize [delivery costs subject to a 
maximum acceptable shipment quanti ty and the condition 
t ha t demand is met exac t ly ] . 
i . e . , . .. 

minimize c . , x , , 
i . j J J 

such tha t 
x i j t . 0 f o r al 1 i and j ; 

^ 6 I b i d . , pp. 103-106. 
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E x . . < a. fo r each i ; and j 1 J ~ 1 

E x . . = b- for each j . 

(4) Optimum estimation of executive compensation. The object 
i s to determine a consis tent plan of executive compensation. 
Salary, job rank, and the amounts of each f ac to r required 
on the ranked job level are taken into consideration by the 
constra ints of l i nea r programming. 

(5) Policy of a f irm. Consider a firm which has access to certain 
fac tors of production whose supply, f o r one reason or another, 
cannot be increased in the time period in view. These resources 
l imit the opportunit ies open to the firm. They may be u t i l i z ed 
in various ways or not at a l l , and, depending on what i s done 
with them, the resources, expenses, and p r o f i t s of the firm 
will vary. The problem facing management i s to f ind the 
productive program which will make the p r o f i t s of the firm 
as great as poss ible , subject to the l imi ta t ion that th i s 
program must not require more than the to ta l available supply^ 
of any resource. The production problem becomes one of choosing 
which productive forces to use and the level at which to use 
each of them. [Application makes] i t possible to s t a t e in 
advance how many d i f f e r e n t processes [need] to be used in 
order to maximize profit .®'7 

Other a p p l i c a t i o n s . - - I t i s eas i ly seen tha t l i nea r programming has 

been employed in many d i f f e r e n t areas. Other applicat ions include invest-

ment decisions and 

problems of gasoline blending, s t ruc tura l design, 
scheduling of a mi l i ta ry tanker f l e e t , minimizing. 
the number of ca r r i e r s to meet a f ixed schedule, 
the l ea s t ba l l a s t shipping required to meet a 
spec i f i c shipping program, product d i s t r i b u t i o n , . . . 
cost cutt ing in business, fabr ica t ion scheduling, 
p r o f i t scheduling, . . .computation of maximum flows 
in networks, s teel-product ion scheduling, stocks 
and flows, the balancing of assembly l i n e s , e t c . 

07 
Saaty, op. c i t . , pp. 168-174. 

8 8 I b i d . , pp. 174-175. 
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In a d d i t i o n , l i n e a r programming lias been used as an a id in maximizing 

p o r t f o l i o s e l e c t i o n s , a l l o c a t i n g a d v e r t i s i n g budgets between competing 

media f o r maximum p e n e t r a t i o n , and designing boxes f o r maximum s to rage 

. . . 89 

space to minimize moving c o s t s . 

The use of l i n e a r programming, as p rev ious ly no ted , has been q u i t e 

e x t e n s i v e . Since i t s i n t r o d u c t i o n as a tool of l i n e a r op t imiza t ion 

a n a l y s i s , l i n e a r programming theory has been well researched and extended 

with r e spec t t o both a p p l i c a t i o n and computational technique ( e . g . , the 

simplex method, the r ev i sed s implex, the MINIT method, i n t e g e r programming, 

e t c . ) . 

Whatever the a p p l i c a t i o n , however, problems so lvab le by the techniques 

of l i n e a r programming possess c e r t a i n d i s t i n c t i d e n t i f i a b l e f a c t o r s . 

These f a c t o r s are (1) a de f ined func t ion t o be maximized or minimized, 

(2) resources f i x e d in terms of supply o r a v a i l a b i l i t y , and (3) a 

compet i t ive environment among a l t e r n a t i v e uses f o r a v a i l a b l e r e sou rces . 

All of these f a c t o r s are assumed t o be de f inab l e as l i n e a r e x p r e s s i o n s , 

i . e . , a l i n e a r o b j e c t i v e func t i on s u b j e c t to l i n e a r c o n s t r a i n t s . 

Quadra t ic Programming 

Quadra t ic programming r e p r e s e n t s a na tu ra l ex tens ion to the use of 

l i n e a r programming as a tool f o r a d m i n i s t r a t i v e a n a l y s i s . Whereas the 

l i n e a r programming problem r e s t r i c t s the ana lys i s to t o t a l l i n e a r a n a l y s i s , 

q u a d r a t i c programming allows the use of a q u a d r a t i c o b j e c t i v e func t ion 

89„ 
A. Channes and W. W. Cooper, "Optimizing Engineering Designs Under 

I n e q u a l i t y C o n s t r a i n t s , " Reprint No. 185 ( P i t t s b u r g h , 1962). 
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subject to l i nea r cons t ra in t s . For cer ta in types of appl ica t ions , th i s 

r e su l t s in a be t t e r representation of the real s i t ua t i on ; in f a c t , i t i s 

feas ib le tha t quadratic programming be applied to the same type of 

problems as l i nea r programming, pa r t i cu la r ly those involving production 

planning (both product mix and production-smoothing), bid evaluat ion, 

investment se l ec t ions , and c o s t - p r o f i t analys is . 

However, the use of quadrat ic programming as an administrat ive tool 

of analysis has been somewhat l imited. According to Beale there are 

three primary reasons fo r t h i s lack of use. 

(1) In pract ical problems the non l inea r i t i e s in the cons t ra in ts 
are often more important than the non l inear i t i e s in the 
object ive funct ion; 

(2) When one has a problem with a nonlinear object ive function 
there are generally ra ther few variables tha t enter the 
problem nonlinearly. But most methods fo r quadrat ic 
programming work no more simply in th i s case than with a 
completely general quadratic object ive funct ion; and, 

(3) Quadratic perturbat ions on a bas ical ly l i n e a r problem may 
well not be convex, although one may be f a i r l y confident 
t h a t , since they are per turba t ions , they will not introduce 
local minima. But most methods fo r quadrat ic programming 
cannot cope with such problems. 

Even with these drawbacks quadrat ic programming can be (and has been) 

applied to some classes of business problems, examples of which follow. 

Minimum variance.--Quadratic programming has been applied to problems 

requiring the solution of a l i n e a r program with variable cost coe f f i c i en t s , 

These variable cost coe f f i c i en t s are such that they have been given 

^ E . M. L. Beale, "Numerical Methods," Nonlinear Programming, edi ted 
by J . Abadie (New York, 1967), pp. 143-144. ' * 
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expected costs and minimum variance. This application is characterized 

91 

by Boot in the following manner. 

An inves tor has m dollars to invest in the stockmarket. His concern 

i s the po r t fo l io select ion for his investments ( i . e . , the optimal combination 

of s e c u r i t i e s ) , a concern that will be r e f l ec ted by the inves to r ' s a t t i tude 

toward the rate of return on the individual investments and the amount of 

risk involved. As a means of quantifying his concern, i t i s assumed t h a t 

the ra te of return on investment in secur i ty i i s normally d i s t r ibu ted with 

expected ra te of return y.. and variance a ^ . 

As a measure of r i sk , the variance defines the amount by which the 

real ized rate of return deviates from the expected ra te of re turn . The 

greater the variance, the grea ter the r i sk . I f investments are made in 

two d i f f e r en t s e c u r i t i e s , say i and j , the covariance ( a . . ) of t h e i r 

returns defines the amount of correlat ion tha t ex i s t s between the rates 

of return on secu r i t i e s i and j . For a,-. > 0 the in te rp re ta t ion is 
1 J 

tha t an increase in the return on secur i ty i will be matched by an 

increase in securi ty j ; a decrease in the return on secur i ty i will also 

be matched by a decrease in the return on secur i ty j . (As a means of 

reducing r i sks , however, decreases in secur i ty i should be o f f s e t by 

increases in secur i ty j , a s i tua t ion tha t i s much desired.) 

The investor i s assumed to be one whose chief concern is the select ion 

of an e f f i c i e n t p o r t f o l i o , where an e f f i c i e n t po r t fo l i o i s defined as one 

in which the following rules are observed: (1) given equal expected ra tes 
91 

John C. G. Boot, Quadratic Programming (Chicago, 1964), pp. 1-3 . 
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of re turn , se lec t the investment with minimum variance; and (2) given 

equal variances of re turns , se lec t the investment with the grea tes t 

expected rate of re turn . An i n e f f i c i e n t po r t fo l io can be s imilar ly 

defined", i . e . , an i n e f f i c i e n t po r t fo l io i s one such that the construction 

of another po r t fo l io r e su l t s in one of the following: (1) given equal 

expected ra tes of re turn , a lower variance is observed in the newly 

constructed p o r t f o l i o ; o r , (2) given equal variances of re turns , a 

po r t fo l i o ex i s t s with a grea ter expected ra te of return than the one 

se lec ted . 

The investor must now se l ec t the amount per investment to be made 

from the m dol lars avai lable for investment. The amount tha t will be 

invested in secur i ty i i s given by ir., the ra t io between the dol lar 

amount invested in secur i ty i and the m dol lars available for investment. 

Given a r isk aversion c o e f f i c i e n t of p >_ 0, the inves to r ' s problem is 

summarized by 
n n n 

max f ( t t , p , <J, p) = E HJP: - p t IE. a-.TT.-ir. 
1=1 1 1 i=l j=l 1 3 

n 
K IT. . , IT. > 0 f o r i = 1 , 2 , . . . , n . 
i=l 1 1 " 

n 
In the object ive func t ion , the term X TT .U . defines the to ta l expected 

i=l 1 

n 
subject to K 

ra te of return f o r the po r t fo l i o made up of n separate secur i ty investments, 
n n 

The term ZL H, a. .H.IT . defines the to ta l variance. The value assioned 
i=l j=l 1 J 

to p defines the r isk aversion determined by the investor . (For example, 

i f p = 0 the investor has no r isk aversion and will simply maximize his 

expected rate of re turn; i f p i s large the investor will minimize the 
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variance of the rate of re turn , a case exemplified by an investor 

seeking a cer tain f ixed amount of incorro.) 

Given any value of p , maximizing 2T - P Z1 cr.-ir-ir_. 
• „ N I 1 * „ T I «J » 

n n n 
a. -

J 1 3 1=1 ' 1 1=1 j=l 

f o r known (or determined) values of 7r. r e su l t s in the most e f f i c i e n t 

p o r t f o l i o : no other po r t fo l i o has a higher expected rate of return 

1 n n 
CL. IT• ]i.j) with the same variance (Z H cr. .TT.TT.); nor does there ex i s t 
i=l 1 1 i=l j=l 1 J 7 1 

another po r t fo l io tha t has the same expected ra te of return with a 

lower variance. If such did ex i s t then the object ive function was not 

maximal a t the outse t . 

That th is problem i s one of quadratic programming is ve r i f i ed by 

n n n 
examining the object ive function 51 ir.y. - p E I a-.ir. ir . and the 

i=l 1 1 i=l j=l 1 J 1 3 

n 
cons t ra in ts IR. = 1; TT. 0 f o r i = 1, 2 , . . . , n . The object ive function 

i=l 1 1 

i s quadrat ic with respect to the decision variables ir^. This quadrat ic 

function is to be optimized subject to a s e t of nonnegative conditions 

and a l i nea r equal i ty . 

Production analysis .--Production analysis via quadrat ic programming 

generally involves maximization of p r o f i t s subject to l i nea r production 
Q? 

funct ions and l inear ly varying marginal costs . This pa r t i cu l a r class 

of applicat ion is described in the following manner. 

92 
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A firm is capable of producing n commodities x-j (i = 1, 2 , . . . , n ) . 

Each of the n products can be sold at a price of p. (i = 1, 2 , . . . , n ) . 

As the number of commodities produced increases , the p r o f i t per unit 

decreases l i n e a r l y ; i . e . , p̂  - â  - b^x^, (a^ > 0 , b̂  > 0 v i ) . Thus, 

defining p r o f i t as the p r o f i t per un i t , p.., times the number of uni ts 

n 
of commodity x- produced and sold, tota l p r o f i t i s given by P^x

n-> 
1 i=l 

(i = 1, 2 , . . . , n ) . Since the p r o f i t per unit i s a function of the number 

of commodities produced, subs t i tu t ion fo r the p. r esu l t s in a to ta l p r o f i t 

function defined in terms of the n commodities; i . e . , to ta l p r o f i t i s 

given by ^ n n , 

(a. - b-x.)x . = ZL a.x„. - ZL b-x. . 

•Z\ i i v i i i 1 1 

This to ta l p r o f i t function i s quadratic with respect to the units produced. 

In addition to a decreasing p r o f i t per unit as the number of units 

produced increases , the production functions are assumed to be such that 

technical coe f f i c i en t s (denoted by ) are f ixed; resources (m in number) 

are scarce, where the resources are labor , c ap i t a l , machine capaci ty, e t c . 

As a means of describing the r e s t r i c t i o n s placed on the productive process, 

i t i s assumed tha t the r e s t r i c t i o n s are defined by l i nea r funct ions and 

are such tha t a t most d^ units of resource are avai lable (h = 1, 2 , . . . , m ) . 

The problem confronting the firm is that of maximizing to ta l p r o f i t 

subject to resource l imi ta t ions and nonnegative units of production; i . e . , n n 2 max £1 a .x . - b-x.' 
1=1 1 1 i=l 1 1 

n 
subject to ^ 7 C^ixi < d^ (h = 1, 2 , . . . , m ) , and x̂  0 fo r i = 1, 2 , . . . ,n. 
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The p r o f i t function i s a quadrat ic funct ion. The cons t ra in t set i s 

a system of l i nea r equations. These two c h a r a c t e r i s t i c s are the primary 

requirements of a quadrat ic programming problem. 

Regression analysis . --Quadratic programming has also been used as 

a tool of regression analys is . In t h i s use the object ive i s to f ind 

the optimal leas t -squares l ine f i t t i n g a given set of data, given tha t 

"certain parameters are known a pr ior i to s a t i s f y l i nea r inequa l i t i e s 

t. 94 

cons t ra in t s . 

S t a t i s t i c a l regression analysis i s concerned with the development 

of a regression funct ion, y . = a + px. + t . , where y . denotes the 
vi J v l J 

fh 

observation of the dependent var iable , x. the j observation of a 

(nonrandom) independent var iable , x . a random noise , and a and 3 the 
vJ 

regression parameters. This regression function is such tha t the resul t ing 

curve (or l ine) minimizes the e r ro r of estimation ( i . e . , the resu l t ing 

curve minimizes the di f ference between the value of the variable to be 
estimated, y . , and the corresponding curve value, y t ) . Minimal e r ro r i s 

J J 
achieved by obtaining parameter estimates such tha t the regression equation 

n ? 

i s given by y* = a + bx., where a and b minimize Y1 (y- - y*) = 

j=l 3 J 

J i ? 
(y . - a - bx.) . 

j=l 3 3 

Due to the fac t tha t the minimizing process can lead to u n r e a l i s t i c 

a pr ior i values, i t i s sometimes necessary to impose r e s t r i c t i o n s upon the 

parameter estimate b. This r e s t r i c t i o n takes the form of an interval 

94 
Dantzig, op. c i t . , p. 490, 
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within which the value of b might f a l l and transforms the regression 

analysis problem to one of the following form: 

n 2 
min 2 1 (y,- " a - bx.) 

j=l J J 

95 
subject to b^ £ b £ b-j. The necessary requirements for quadrat ic 

programming are again present : a quadratic object ive function subject 

to l i n e a r cons t ra in t s . 

Other applications.—Excluding the applicat ions previously noted, 

and those in engineering design analys is , the primary use of quadrat ic 

programming has been in economic ana lys i s . In f a c t , the uses most quoted 

as numerical examples in the l i t e r a t u r e re la te to economic considerat ions: 

c o s t - p r o f i t ana lys is , demand analysis , and the study of u t i l i t y funct ions . 

Consider the following two examples. 

Example 1: A monopolist i s confronted with m l i nea r demand funct ions 

expressing demand as a function of the prices of the various m products 

produced by the monopolist. I t is assumed tha t the quant i t i es produced 

are sold ( i . e . , supply equals demand). The problem considered by the 

monopolist is tha t of maximizing to ta l gross revenue subject to constraints 

tha t are l i nea r representat ions of certain fac tors of production. I t is 

f u r t h e r assumed tha t to ta l gross revenue i s quadrat ic , given tha t demand 
n 

i s l i nea r in the pr ices ; i . e . , gross revenue is given by Yi P-x-» which 
i = l 1 1 

k 
is l i n e a r , where x. = b. + ]EL c . p . , i = 1, 2 , . . . , m . The quadrat ic 

1 1 j=l J 0 

95 
Boot, op. c i t . , p. 3. 
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representation for gross revenue can be wr i t ten in terms of the quant i t ies 

demanded by solving the system of l inear demand functions for the p . ' s 

and subst i tu t ing these into the gross revenue function. This is pernrissable 

so long as the coef f ic ients of the functions are known with cer ta inty. 

The l i m i t i n g factors confronting the monopolist are of two types: 

(1) a l l quanti t ies produced are nonnegative, and (2) the factors of 

production are such that ex is t ing relat ionships are l i nea r l y defined. 

This condition allows representation of the l im i t i ng factors by a system 

of l inear inequal i t ies . Thus, the problem faced by the monopolist i s 
n k 

given by max X p ,x . , where x. = b, + Y I c . p . , i = 1, 2 , . . . , m subject 
i= l 1 1 j = l 3 J 

n 
to EL d.x. < h. and x. > 0 fo r i = 1, 2 , . . . , n 

i= l 1 1 1 1 -

96 

Example 2: Assume that the u t i l i t y of an individual is a quadratic 

function of the quant i t ies of goods avai lable. The income of the individual 

and the prices paid for goods is known. Then, according to classical 

economic theory, the individual w i l l seek to maximize his u t i l i t y subject 

to the to ta l consumption of income and nonnegativity of quanti t ies 

purchased; i . e . , l e t t i n g x i denote the quant i t ies purchased, f (x ) the 

u t i l i t y funct ion, B the income of the consumer, and p^ the price per unit 

of x^, the problem is given by max f (x) = f (x- j , x 2 , . . . , x ^ ) subject to 

n 
x, >_ 0 fo r i = 1, 2 , . . . ,n, and YL p.x. = B. 

i = l 

96 
H. Theil and C. Van de Panne, "Quadratic Programming as an Extension 

of Classical Quadratic Maximization," Mathematical Studies in Management 
Science, edited by Arthur F. Veinott , J r . (New York, T9657," pp. 143-7477 
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The object ive of th i s problem is to determine the combination of 

purchases t ha t will maximize the u t i l i t y function of the purchaser without 

exceeding his income. The budget constra int i s l i n e a r , whereas the u t i l i t y 

function i s quadrat ic . The resu l t ing system thus defines a quadratic 

object ive function subject to l i n e a r r e s t r i c t i o n s , the necessary form for 

quadrat ic programming problems. 

From these two examples i t can be seen tha t there e x i s t several 

problems exhibi t ing cha rac t e r i s t i c s s imi lar to those shown in the examples. 

In p a r t i c u l a r , the second can be extended to the theory of the firm with 

l i t t l e e f f o r t . Consider a firm with the production function f(x) = 

f (x-j, x 2 j . . . s x n ) . With f ixed output the x̂  can vary in such a way tha t 

an isoquant (the locus of al l combinations of the x̂  y ie lding a f ixed 

output) i s constructed. Varying the value of f(x) will y ie ld a family 

of isoquant curves. Given a f ixed outlay of cos t , the firm will seek to 

maximize the production function subject to the f ixed cost outlay (budget). 

A variat ion of t h i s problem would be to minimize cost subject to a 

required level of output (budget). I t i s assumed tha t the r e s t r i c t i o n s 

are l i nea r ly re la ted and the object ive function quadrat ic . 

As noted in the beginning, quadratic programming represents a natural 

extension to l i n e a r programming. The only d i f ference with respect to 

problem formulation is the quadratic nature of the object ive function and 

the lack of required nonnegativity. However, administrat ive applicat ion 

forces the nonnegative r e s t r i c t i o n with the resu l t tha t the nature of 

the object ive function is the primary d i f f e rence . 
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Potential appl icat ions of quadratic programming re l a t e to areas 

well entrenched by l i nea r programming. In addition to those noted, 

other applicat ions include (1) inventory problems s t ructured in the form 

of quadrat ic programming so as to minimize inventory costs without 

exceeding storage capacity and maintaining a minimum order level 

( i . e . , orders must exceed f ixed q u a n t i t i e s ) , (2) curv i l inear (quadratic) 

analysis of growth and decay subject to a master planning budget, and 

97 

(3) problems re l a t ive to aggregate planning models. In each case 

there ex i s t s a quadrat ic function to be optimized subject to a s e t of 

l i n e a r cons t ra in t s . Given these, the problem can be solved as a 

quadrat ic programming problem. 

Geometric Programming 

Although applicable to generalized polynomials, geometric programming 

has been r e s t r i c t e d to s t r i c t l y posynomial formulations. Wilde and Beightler 

98 

indicate that t h i s i s due to the newness of the technique. However, 

the posynomial case has been u t i l i z ed in solving problems of the following 

types: (1) minimization of costs fo r a hauling operat ion, (2) design of 

e l e c t r i c a l transformers f o r optimal performance, (3) minimization of 

costs f o r chemical processes, and (4) design of vapor condensers. Addi-

t ional appl icat ions include the minimization of to ta l cost f o r a given 

system in terms of the costs of the subsystem components, minimization of 

97 
Charles H. Kriebel, "Coeff ic ient Estimation in Quadratic Programming 

Models," Reprint No. 315 (Pi t t sburgh, 1 967), p. B-476. 
98Wi Ide and Beight ler , op. c i t . , p. 130. 
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to ta l capi tal cost fo r a shipping operation so as to determine minimal 

cos t , the optimal (minimal) number of ships , cargo weight, and speed, 

and minimization of costs of indust r ia l operat ions. 

As a means of describing the types of problems amenable to geometric 

programming, a select ion of ex is t ing applicat ions will be presented. 

Following th i s presenta t ion , cha r ac t e r i s t i c s common to the demonstrated 

appl icat ions will be i d e n t i f i e d . These cha rac t e r i s t i c s will then be 

extended to problems sui table fo r administrat ive analys is . 

Shipping operat ions.--A long-term contract i s to be l e t to the 

lowest bidder for the t ranspor t of a given quanti ty of two types of ore 

a given distance of nautical miles. The shipment i s to be made between 

two ports and is such that the return t r i p will cost of l ike tonnage of 

s imilar products. Due to the tonnage that i s to be t ranspor ted , a 

successful bid will require purchasing a new f l e e t of completely automated 

cargo vessels . Of p a r t i c u l a r i n t e r e s t is the optimum number of ships 

necessary to perform the work, t h e i r tonnage, t h e i r speed when under 

s a i l , and the minimum cost incurred. 

In solving th i s problem i t is assumed tha t the capi ta l cost of each 

cargo vessel i s composed of two principal terms: the cost of the power 

plant and the cost of the vessel exclusive of the power p lan t . Consider 

f i r s t the cost of each vessel exclusive of power p lan t . 

With the power plant excluded, each vessel i s assumed to have a 

cost that i s proportional to the cargo tonnage, q. The weight of each 
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cargo vessle i s then assumed to equal half the tonnage of the cargo; 

i . e . , ]pq. With a cost of $C-j per ton* the to ta l cost of N new cargo 

vessels i s given by ^-(NC-jq). 

The cost of the power plant i s based upon the per shaf t horsepower 

of the plant i t s e l f . Shaf t horsepower i s dependent upon displacement 

tonnage, qD , the speed (veloci ty) of the vesse l , V, and a f ixed constant , 

K-j. With a cost of $C^ per sha f t horsepower, the to ta l cost of the N 

power plants i s given by 
t/ 3 

C2NV V . 
K1 

In addition to the capital cost of the new f l e e t , the bid of a given 

company must take into consideration the minimum amount of cost f o r the 

f u e l . The cost of the fuel i s to be considered as a capi ta l cost and 

CO O 
i s calculated by applying the formula $f q^ V . The f ac to r f 

defines the time duration during which each cargo vessel i s under steam. 

For N vesse ls , the to ta l fuel cost to be capi ta l ized i s given by 

$ f N C 2 q D ' i V 3 

Assuming tha t the to t a l cost i s the sum of the three component cos ts , 

the to ta l cost to be capi ta l ized is given by the expression 

N C-j q C2Nqp'3V3 f N C ^ J S 3 

" 2 + K~
 + k~ • 

The var iables N, q, V, and f are subject to cer tain cons t ra in t s . These 

cons t ra in t s are given by the quanti ty to be t ransported per year and the 
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docking f a c i l i t i e s imposed on the time duration f . In defining these 

cons t ra in t s i t i s assumed t h a t hours are spent in t ravel per year , 

tha t unloading and reloading time i s proportional to the cargo tonnage q 

and i s known—say, K^, and t h a t loading and unloading operations are 

car r ied on 24 hours per day. Assuming a minimum yearly shipment of Q 

tons, a distance of T miles (one-way), and a minimum amount of travel 

time f , these const ra in ts are given by the following: 

1/ 
(1) minimum tonnage per year : NqVtgy) 

T / V 
(2) l imited docking f a c i l i t i e s : f < + (2'q7i<~T " 

3 

The problem to be solved thus takes on the following form: 

C-jNq C 9 q ? NV3 C-q*'3 fNV3 

minimize H(N, q, V, f ) = —5— + ^ + 2 K1 . K1 

subject to 

NqV(K9/2T) > Q; 

f < (T/V) 
H / T ) + (2q7K3y 

where K-j, K2> K^, T, C-j, C2, and q^ are known. The values of Ns q, Vs 

go 
and f are assumed to be nonnegative. 

Transformer design.--An a i r -cooled, two winding transformer with a 

f ixed ra t ing and f ixed voltage i s to be designed. The transformer has an 

expected load fac to r of 0.77 during a projected economic l i f e , corrected 

fo r present-worth calculat ion of 20 years . The cost of e l e c t r i c power i s 

99 
Duffin, Peterson, and Zener, op. c i t . , pp. 161-163. 
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expected to average 0.03 monetary units per k i lowatt -hour. The manufacturer 

desires to keep the variable production costs down. Sales l i t e r a t u r e w i l l 

advertise low operating cost and low noise leve l . To meet competitors' 

claims of e f f i c i ency , the f u l l load losses cannot exceed 28 watts. 

The problem is to design a transformer meeting the speci f ied require-

ments of ra t ing and e f f i c iency . This transformer is to be of such a design 

that the cost to manufacture and the cost to operate is minimal. In 

addi t ion, the transformer's surface heat d issipat ion should not exceed 

0.16 watts/cm^. 

The mathematical formulation of t h i s problem is given by the fo l lowing: 

minimize f ( x ) = c ^ x ^ t x - j + x2 + x3) + c2x2x3(x-| + 1.57x2 + x^) 

p p 
+ c^x-jX^Xi + x2 + *g)x5 + c ^ x ^ x i + 1.57x2 + x^)xg 

subject to 

f 1 (x) = ex-iXjjX^x^XgXg - 1080 = 0 

2 9 
f 2 ( x ) = c3x-jx4(x-| + X2 + x3)_x5 + c gx 2x 3 (x 1 + 1.57X2 + x^)xg - 28 _< 0 

f (Y \ _ C3X1X4^X1 + x2 + x3^x5 + C6X2X3^X1 + 1 , 5 7 x 2 + V X G 
t 3 k - j ~ 2)^(2x^ + '4X2 + 2X3 + 3 x j r + 4x2TI.57x2 + 1.57x3 + x4) + 2X3X4' " , l 6 - 0 

x > 0 . 

The x r i = 1, 2, 3, 4, define the dimensions of the transformer. 

The x.j, i = 5, 6 define the magnetic f l ux density and the current densi ty, 

respect ively. This problem is of special s igni f icance due to the quadratic 

nature of both the primal function and the primal constraints J 0 0 

Schinzinger, "Optimization in Electromagnetic System Design," 
Recent Advances in Optimization Techniques, edi ted by Abrahim Lavi and 
Thomas P. Vogl (New York, 1966X, ppT l63-168, 
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Design and t ranspor ta t ion .--Four hundred cubic yards of gravel must 

be f e r r i e d across a r ive r . The grave"! i s to be shipped in an open box 

of length x-j, width and height x^. The sides and bottom of the box 

cost $10 per square yard and the ends of the box cost $20 per square 

yard. The box will have no salvage value and each round t r i p of the 

box on the fer ry will cost $0.10. I f i t i s required tha t the sides and 

bottom of the box be made from scrap mater ia l , and only four square yards 

are ava i lab le , determine the minimum cost and the dimensions. 

The solution to th is problem is found by minimizing the to ta l cost 

of the operation subject to the a v a i l a b i l i t y of mater ia l . This to ta l 

cost i s comprised of four separate cost f igu res : (1) cost of fer ry ing 

the 400 cubic f e e t of gravel , (2) cost of the two ends, (3) cost of the 

two s ides , and (4) cost of the bottom. The const ra in t function i s defined 

by the sum of the material needed fo r two sides and the bottom. 

The mathematical descript ion of the problem is given by 

min f(x-p x 2 , x3) = + 4 0 x
2

x 3 + 2 0 x ] x 3 + ^Ox-^ 

subject to 2x-jx^ + x-jx^ <_ 4. The x . , i = 1, 2, 3, values are nonnegative 
1 m 

by d e f i n i t i o n . 

From th i s l imited select ion of known appl icat ions can be drawn several 

common c h a r a c t e r i s t i c s . F i r s t , each of the defined object ive funct ions i s 

one of minimization. Second, in every case the object ive function i s 

nonlinear . Third, the problems are mult ivariable and are such tha t the 

existence of i n t e r r e l a t i onsh ips i s f e a s i b l e . Fourth, the cons t ra in t 

^ D u f f i n , Peterson, and Zener, op. c i t . , pp. 5-11. 
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functions can be l i nea r or nonlinear. The f i n a l , and perhaps most important 

common c h a r a c t e r i s t i c , i s tha t the defined funct ions represent the sums of 

component costs and are constructed as posynomials. 

A cursory examination of these examples and c h a r a c t e r i s t i c s reveals 

some in t e re s t ing points r e l a t i ve to geometric programming as a tool f o r 

administrat ive analysis . These points are as follows: 

(1) Although a nonlinear technique, the class of problems to which 

geometric programming has been applied includes those of both l i n e a r and 

quadrat ic programming. Thus, geometric programming could be used to determine 

(a) the best product mix fo r cost minimization, (b) the best routing to 

minimize t ranspor ta t ion cos t s , (c) minimum-cost shipping programs, (d) proper 

balance between production and inventories to minimize cos t , and (e) minimum 

bids under competitive bidding s i t ua t i ons . 

(2) Unlike both l i n e a r and quadrat ic programming, the geometric 

program allows e i t h e r l i nea r or nonlinear cons t ra in t funct ions . In th i s 

sense i t i s t ru ly a nonlinear technique. 

(3) Geometric programming can be applied to a variety of mathematical 

funct ions: inverse functions of the type x^nx~m, general n t h degree 

funct ions , and general mult ivariable funct ions . With any type of funct ion , 

e i t h e r in the primal function or the primal cons t ra in t , the geometric 

program i s equally competent. 

(4) Each application is minimizing a defined posynomial cost funct ion. 

The usefulness of geometric programming as an administrat ive tool i s 

twofold: (1) i t a f fords the administrator with a somewhat s impl i f ied means 

of solving nonlinear minimization problems, and (2) i t reduces a nonlinear 
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problem to a l i near one. The need fo r such a tool becomes apparent 

when l inear analysis f a i l s , as evidenced by the fol lowing two examples. 

Example 1: 

Consider a company in the i n i t i a l stages of developing a 
model fo r corporate-wide long-range planning. A management 
sc ien t i s t usually knows tha t , even i f he is an experienced 
businessman, i t is d i f f i c u l t to give accurate, detai led 
forecasts of optimal production levels and market pene-
t ra t ions for his company fo r the next 10 or more years. 
Indeed, a major reason for an executive employing such 
a model i s that he realizes how easi ly his i n t u i t i o n can 
be amiss when t ry ing to fathom the influence of economic 
factors projected beyond the present. I f production 
costs and revenues vary nonlinearly with the scale of 
operations, l inear ized guesses may not be good enough to 
gi ve val i d an swe rs J ^ 

Example 2: 

Consider a f i rm that schedules production by employing 
a dynamic, mul t i - i tem model that re f lects the presence 
of s ign i f i cant machine setup times, l im i ted machine-
group capacit ies, and f luc tuat ing demand requirements. . . 
the essence of the optimization problem is to modulate 
the various nonlinear ef fects of scheduling decisions. . . 
any simple l inear iza t ion of the problem is l i k e l y to 
violence to the fundamental nature of the optimizat ion. 

Obviously, nonlinear assumptions can be made when suitable techniques 

are available for solving the problem thus formulated. As a tool of 

l inear analysis, geometric programming is at best a check on some other 

technique. As a tool of nonlinear analysis, geometric programming 

represents a method by which s t r i c t l y nonlinear, posynomial problems can 

be formulated and solved. Character ist ic of these problems are the 

fo 11 owi n g: 

10? 

Wagner, op. c i t . , pp. 514-515. 

1 0 3 I b i d. 
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(1) Gasoline blending. A model for blending gasoline from ref inery 

raw stocks usually contains nonlinear const ra in ts re la t ing to each blend's 

octane ra t ing , since t h i s qual i ty cha rac te r i s t i c varies nonlinearly with 

the amount of te t rae thyl lead added to the mix. The object ive i s to 

minimize the cost of the blend without exceeding or f a l l i n g below the 

104 

necessary octane ra t ing . 

(2) Multi-item order quan t i t i e s . A wholesaler f requent ly replenishes 

his inventory by ordering several items at one time from a given suppl ier . 

In t h i s manner the wholesaler takes advantage of economies in shipping 

cos t s , paperwork, and quanti ty discounts o f fe red by the suppl ier . In 

t h i s application the problem i s to minimize the to ta l cost when the 

associated costs of replenishment appear as nonlinear functions of the 
105 

several order quan t i t i e s . 

(3) Inventory analysis . The typical inventory problem is one in 

which the to ta l cost of carrying inventory is to be minimized. The to ta l 

cost function may or may not be r e s t r i c t e d by a se t of l i nea r or nonlinear 

cons t ra in t s . When cons t ra in ts are imposed on the cost funct ion , they 

generally define the maximum amount of space avai lable for s tor ing the 

inventory. Of pa r t i cu la r i n t e r e s t i s the inventory problem where the 

makeup of inventory includes a t l e a s t two d i f f e r e n t products re la ted in 

terms of a nonl inear-mult ivar iable cost funct ion. The geometric program 

reduces t h i s nonlinear analysis to a l i nea r case su i tab le f o r algebraic 

analysis . 
^ I b i d . , pp. 516-518. 

1 0 5 i b i d . 
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As an example of this type of analysis, consider the following 
1 A/" 

problem. Units of a certain model are in constant demand at a rate 

of h units per unit of time. I t is assumed that stock shortages are not 

allowed. Additional assumptions include the following: (1) units are 

stocked in l o t s , (2) the set-up cost i s independent of the number of 

pieces in the lot and is denoted by c.j, (3) the carrying cost for one 

piece per unit of time is c s , (4) the total demand over a time interval 

6 i s N, and (5) all lo ts contain an equal number of pieces, n. Determine 

the number of pieces in each l o t that will minimize the total cost for 

set-up and carrying N pieces in inventory i f : (1) there i s but one 

product, (2) there are p different types of products, and (3) the 

multiple inventory i s subject to a set of restr ict ive constraints. 

Case'. 1: One product inventory. Assuming one common product carried 

in inventory, the mean inventory level during a period of time T i s n/2. 

nc T 
Carrying cost during that time period i s i . e . , mean inventory times 

the cost for the time period of length T. The total cost for one lot 

i s then given by summing set-up cost and the carrying cost for time 

period T: c-j + <f n c
s T. At a demand rate of h units per unit of time, 

the number of pieces required will be given by n = hT. The number of 

lots to be run, r, i s determined by the ratio between the total demand, N, 

and the number of pieces per l o t , n: r = N/n = e/T. The total cost for 

the time interval e i s the product of the cost for setting up one run 

times the number of runs. Denoting total cost by F, 

106Arnold Kaufman, Methods and Models of Operations Research 
(Englewood C l i f f s , 1963), pp. 156-160. " 
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nTĉ , 

1 ' T 

nTce 

1 " vnJ 

F = (ci + —5 )r 

= (C, 

Nc, NT c n 
= _ ! + _ _ (_L_) 

n n { 2 } 

N c l e c s N e + — n, since - = T . 

Since the quanti t ies N, e, , and cg are known, F is a function of the 

single variable n: 
Nc, ec 

F(n) = — + n. 

The function F(n) is to be minimized and ca be written as 

min F(n) = C n̂~^ + C2n, 

where C, = Nc, and C0 = i ec . Both C, and C0 are constants. 1 1 2 2 s 1 2 

Case 2: Multiple product inventory. The problem being considered 

here i s one in which the inventory consists of p d i f ferent types of 

p r o d u c t s . F o r this problem the following notation will be used: 

c. = carrying cost per piece per unit of time for product i ; 

y. = setup cost per lo t or order for product i ; 

N. = tota l number of pieces of product i ; 

n.j = number of pieces in a lo t or order of product i ; 

T. = time interval between two lo ts or orders; 

e = length of the supply period. 

For th is problem total inventory cost will be the sum of the individual 

costs of set t ing up each of the p product runs and producing r runs of 

107 
Ib id . , pp. 396-399. 
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each product. Thus, since each of the p products has a cost function 

defined by 
N.y. ec. 

f i ( n i ) = - ^ 7 - + — n ^ 1 = 1, 2 p, 

the tota l cost for the multiple product inventory is given by 

f r ( n
i ) = £ ^ (n1) 

1 i=l 

P 
= ZT 

i=l 

f N-y- ec, 

V + ~r n i 

The function to be minimized i s the multivariable total cost function. 

This function can be written in the form 

mini 
P i 

imize F(n.) = C_. (n.) + C*n. 
• n —1 1 1 I I i=l 

where and C| = oc^. Both C. and C| are nonnegative coeff icients , 

The function defined by F(n^) is the sum of p separate component costs 

and i s thus amenable to the technique of geometric programming. 

Case 3: Multiple product inventory with constraints. The problem 

to be considered i s an extension of the one discussed in Case 2. In Case 2 

the to ta l cost function i s derived free from any type of r es t r i c t ive 

constra int . When there are additional considerations other than jus t the 

order quantity to minimize inventory costs and s t i l l meet total demand 

during a given time period (for example, the amount of money available for 

carrying inventory), these considerations can be written into the mathe-

matical program as constraint functions. These constraints can be e i ther 

l inear or nonlinear and are not res t r ic ted in number. 
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The multiple product inventory cost function must be modified to 
I A O 

incorporate the addition of constraints into the problem. In order 

to modify the results of Case 2, the following notation is necessary: 

ĉ  = unit cost of raw material and labor for product i ; 

y^ = all costs relat ing to one lot of product i ; 

n. = number of units of product i in a l o t ; 

«... = monthly sales of product i (a known constant); 

a = monthly cost of inventory, expressed as a percentage of the 

average value of the inventory for some period. 

The cost per unit of product i is the sum of the unit cost of raw 

material and labor for product i and the mean related cost per unit of 

product in each lo t ; i . e . , ĉ  + Y-j/n^. The cost for one month of 

productive act ivi ty is found by calculating the product of monthly sales 

(production must equal sales) and the cost per unit ; i . e . , [c^ + y^/h^]. 

Assuming that demand is constant fo r each of the products and that 

shortage costs are negligible, the mean level of inventory maintained is 

^•n^. The inventory cost for the mean inventory level is given by the 

product of the monthly cost of inventory, a, the cost for one month's 

productive ac t iv i ty , [c^ + Y^/n^ls and the mean inventory, ^ ; i . e . , 

a(^1-)[^1-(c i + y^/n-j)]-

Since the total inventory cost fo r any one of the p products is the 

sum of the mean inventory cost and the cost for one month's productive 

ac t iv i ty , the total inventory cost for product i is given by 

1 0 8 I b i d . , pp. 399-413. 
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an. 
^ i [

c
1 + Y i / n i 3 + - J - !>-,•( c i + y ^ ) ] . 

The to ta l inventory cost fo r the p products is the sum of the i r individual 

inventory costs. Lett ing to ta l inventory cost be defined by G(n..)5 

p an. 
G(n i) = Z {^1Cc i + Y ^ ] + — [ t 1 ( c i + Y- j /^ . ) ] } 

X * i Y i a n i , A1Y i* 
= /» {&.c. + + —̂— (it - c - + )} 

i= l 1 1 n j 2 1 1 n i 

= £ U c + " " i ' l S , - v ^ . 

1=1 1 1 n i 2 2n. * 

P , aJt-Y,-

where a, , c^., and y^ are known constants. Lett ing B.. =a&.c., 

P ctJl - Y-j 

A.. = Y ^ - * aid K = Z [ j l . C . + — g t h i s function can be writ ten in 

the form 
G(nJ = K + £ [ 4 n f + A. (n . ) _ 1 ] . 

1 i= l L 1 1 1 

Since inventory cost is to be minimized, G(n.) is wri t ten as 
p B. 1 

minimize G(n.j) = K + £ [ ~ n^ + A ^ n . ) " 1 ] . 

Possible constraints to the inventory level are costs, space for 

storage, and the time span a l lo t ted for inventory maintenance. These 

constraints can be expressed as ei ther l inear or nonlinear functions. 

The existence of these constraints yields an inventory cost function of 

the following form: 
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p_ B. -l 
ize G(n.j) = K + 1 . [ - j n.. + ( n ^ " ] 

subject to 

(n•) M. (i = 1) 25 . . . »p j j - 1» 2 , . . . , m . ) 
J ' J 

n i l O -

The function defined by G(n.j) i s a posynomial cost function that is to ba 

minimized. This can be accomplished by the technique of geometric 

programming where G(n.) is the primal function and H.(n.) <_ M. is the 
* J ' J 

set of primal constraints . 

(4) Portfolio select ion. In the portfol io problem an investor has a 

given amount of money he wishes to invest. There are n ac t iv i t i e s in 

which he may invest any amount. The return from the ac t iv i t i e s d i f f e r : 

some consistently pay a reasonable return» others f luctuate widely. Data 

are available for the past m periods. Let a . , denote the return per dollar 
' J 

JL I* 

in the j ' act ivi ty during period i ( j = 1, 2 , . . . , n ; i = 1, 2 , . . . ,m .} 

The problem is to determine the amount to be invested in each act iv i ty 

so as to achieve a minimum return of r and in such a way that the deviation 

from r i s minimized. 

The mathematical statement of th is problem takes on the quadratic 

form 
subject to 

T 
minimize Z CZ 

ATZ > r 

1Z < 1 

Z > 0, 
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where I denotes the vector of investments Z., £ denotes the matrix of 
J 

1 M 

coeff icients defined by c i j . = ^ £1 b k i b k j 5 b i j = t h e d 1 f f e r e n c e 

k~l 

between the return per dol lar , a . . , and the average y ie ld of the j t h 

• \J 
1 M 

ac t i v i t y , a^ = pj- EI a^.. The value of M s the minimum rate of return 

desired on investment. The problem to be solved then becomes one of 

minimizing a nonlinear objective function subject to a system of l inear 

constraints. 

Other applications.—Although additional applications and examples 

have not been presented, those discussed serve to demonstrate the types 

of problems to which geometric programming has and can be applied. Of 

part icular note is the fact that each of these applications requires 

minimization of a function that is described as a posynomial. In addition, 

constraints, when they ex is t , are not restr icted to l inear functions. I t 

i s this characteristic that makes geometric programming an important 

addition to the administrator's k i t of mathematical tools. 

Potential applications for this new tool exist in areas of research 

and development of project designs, budget al locations, economic analysis 

for cost minimization, and investment analysis. I t is possible to solve 

l inear programming problems with geometric programming, a poss ib i l i ty 

that makes geometric programming applicable to minimization problems 

formulated as l inear posynomials. However, the geometric programming 

technique is best u t i l i zed for nonlinear functions i f i t s f u l l usefulness 
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1s to be u t i l i z e d . This usefulness l i e s in the fact that geometric 

programming reduces nonlinear analysis to the techniques of l inear 

analys is . 

Dynamic Programming 

As a solution technique, dynamic programming has been applied to 

a variety of problems. Included in these applications are problems 

related to (1) the optimal assignment of machinery, (2) investment 

analys is , (3) the minimization of nonlinear cost functions, (4) multi-

product production analys is , (5) the maximization of p r o f i t , (6) the 

maximization of expected demand, (7) network analys is , (8) replacement 

problems, (9) transportation analys is , and (10) the optimal al location of 

productive rcnourcec. Other applicat ion1 : include (1) capaci ty design. 

(2) job sequencing, (3) budget analys is , (4) optimal timing for equip-

ment replacement, (5) optimal se lect ion of advertising media, (6) systematic 

search for locating v i ta l resources, and (7) long-range strategy planning 

for replacement of depreciating asse t s . 

It i s evident that dynamic programming can be applied to a wide 

variety of problems. However, for a given application, there i s no defined 

solution technique. Each problem i s optimized on i t s own merit according 

to the manner in which the problem i s formulated. This character is t ic 

marks dynamic programming as the forerunner of true optimal search. I t 

u t i l i z e s whatever solution technique i s best applicable to the problem 

being invest igated. 

Unlike the previous solution techniques discussed, dynamic programming 

does not define a class (or family) of problems. I t defines a computational 
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technique whereby a mult i-s tage problem can be optimized as a ser ies of 

one-dimensional problems. As such, any attempt to c l a s s i fy the problems 

to which dynamic programming can be applied must be somewhat general. 

With t h i s in mind, the c l a s s i f i c a t i o n of problem types will be accom-

plished in the following se r ies of s teps : (1) describing the general 

cha rac t e r i s t i c s of the dynamic programming formulation, (2) presenting 

a se lec t ive sampling of spec i f i c appl ica t ions , (3) re la t ing (1) and 

(2) , and (4) generalizing from (1) , (2) , and (3) . This approach will 

provide two basic ingredients : (1) a genuine fee l ing fo r the dynamic 

programming formulation and (2) a means whereby given problem types can 

be i d e n t i f i e d . 

•The formulation of a given problem as a dynamic progranming problem 

requires the s a t i s fy ing of a sequence of s teps . I f the problem under 

inves t igat ion is such that these requirements are s a t i s f i e d , the problem 

i s one t h a t can be c l a s s i f i e d as belonging to the dynamic programming se t . 

These requirements are as follows: 

(1) the problem is of such a nature tha t i t can be broken down into 

n-decision stages; 
f*h 

(2) given an n-stage process, the decision at the k stage involves 

the se lect ion of at l ea s t one decision var iable ; 

(3) the problem must be defined fo r any number of stages and, regard-

less of the number of s tages, must be described by the same functional 

re la t ionsh ip at any of the n s tages; 

(4) given a problem consis t ing of k defined s teps , there ex i s t s a 

se t of parameters describing the s t a t e of the system ( i . e . , values on 
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which the decision variables and the value of the objective function 

for stage k depend}; 

(5) the set of parameters describing the s ta te of the system at 

stage k are the same parameters describing the s ta te of the system for 

al l n stages; and, 

(6) the selection of the decision variable(s) for stage n in an n-

stage problem has no e f f ec t on the remaining n - 1 stages other than that 

of changing the parameters which describe the s ta te with n stages into 

the se t of parameters which describe the s ta te with n - 1 stages. 

Although formal documentation of problems to which dynamic programming 

is applicable has not been done in current l i t e r a t u r e , examination of some 

of the applications that have been made can be used to document, in a 

formal manner, the types of problems to which dynamic programming can be 

applied. For this examination process, applications of dynamic programming 

have been selected from the areas of design, a l locat ion, inventory analysis, 

d is t r ibut ion analysis, equipment replacement, and production analysis. 

Capacity design.--The term "capacity" i s used in reference to the 

potential of a production or service f a c i l i t y to produce some rate of 

output. The manner in which capacity is measured and the manner in which 

i t i s changed is dependent upon the f a c i l i t y , the available technology, 

the product mix, the extent of the change, and the period of time for 

which the capacity is needed. 

The dominant variable in capcity decisions i s usually the rate of 

product demand expressed as capacity requirements for d i f ferent time 
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periods. This rate of demand tends to vary according to random, seasonal, 

general business, and long-term growth determinants. These factors 

necessitate the major decisions of when and how much capacity should be 

added. 

Situations are often encountered in the long-term planning of 

production f a c i l i t i e s in which the demand for output is an increasing 

function of time. The use of the S-curve, as shown in Figure 3.8, 

typi f ies the growth pattern of a product. 

I o u t 

Growth 
' Period 

fWt i 

I 'Ptvio<4 1) fccU f 

Time (Vfcfejrs} 

Fig. 3.8--Product growth pattern 

A variety of policies exis t for meeting the demand function. At 

one extreme, these policies include building capacity at the present time 

to meet all future requirements. At the other extreme, these policies 

include the adding on, in small increments, of capacity as demand 

increases. Between these two extremes l i e a multitude of combinational 

pos s ib i l i t i e s . 
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In order to e f f e c t a choice, i t i s possible that cost tradeoffs 

must be made. The building of excess capacity o f fe r s the economies of 

scale in construction or i n i t i a l capital costs. (For example, the larger 

a warehouse, the lower the cost per square foot of warehouse requirement.) 

Expanding the capacity at the current time to meet future requirements 

avoids the repeating of fixed costs of construction. Another consideration 

i s that current expansion will reduce inf lat ionary e f fec t s in l a t e r periods. 

On the other hand, increasing capcity in small increments avoids tying up 

capital in unused capacity. In addition, the cormritment to smaller time 

intervals permits management to u t i l i ze improved technology and to avoid 

the risks inherent in long-term estimates. 

In formulating th is problem as one of dynamic programming, the 

following notation will be used:: 

t A t l = capital cost of building the requirements of period t in 

period t 1 ; 

V., = capacity bui l t at time period t = 

l v t • t = 

t 1 

PWF(s)^ = present worth of building costs at time t ' and in teres t 

rate i . 

I t is assumed that capacity is bui l t at the beginning of any period t and 

that the costs are incurred and discounted as of the end of the period to 

the present. If an economy of scale in capital costs is introduced such 
v t . 

tha t - (i + cy • ) + k, c, k constants, the problem involves a tradeoff 
t 

between the economy of scale and the capital costs of unused capacity. The 

v t + Vj._.|+. . ,+v^,, t > t ' 
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problem is to select the time period t for which 

z t * t f t
A f [ P W F ( s ) i ' + h-i» 

109 is minimal. 

The problem described is one such that the expansion of capacity 

can take place a t any one or more of n points in time. These points of 

expansion are located over the growth cycle of the product. (See 

Figure 3.9.) With n periods, there are 2n - 1 possible expansion policies. 

1 2 3 4 W*v* 
r\-Z n-i r\-\ a 

time 

Fig. 3.9--Capacity design: expansion points 

These policies range from building to meet future demand a t the s t a r t of 

the growth period or building to meet increased demand at each of the 

n points (or stages). 

109 Gavett, op. c i t . , pp. 355-366. 
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Manpower loading.--A manufacturer is faced with the problem of 

determining the optimal size of his work force in each of the coming n 

months. Production requirements have been predetermined for the coming 

time period. I t is assumed that in month j , m. men would be the necessary 
J 

number of men to complete the work during that period. I f the manufacturer 

were not faced with layof f and hi r ing costs, he could use exactly m. men 
J 

during month j . I t is fur ther assumed that the work must be done in month j , 

but by working overtime i t is possible to use less than m. men. 

Let x . be the optimal number of men to do the work during month j . 
J 

Let f ^ ( x . - x . •») be the cost of laying o f f men or h i r ing men in month j ; 
w J J • 

i . e . , f j ( x j - l s the c o s t incurred when the size of the work force 

i s changed from month x.._i to month x^, where 

(1) (x . - x- , ) > 0 indicates a h i r ing cost and 
J J "" ' 

(2) (x . - x . •,) < 0 indicates a layof f cost. 
\J J • 

I f there is no change in the work force from month j - 1 to month j , 
V x j - x j - i ' = °-

Let g . ( x . - m.) be the cost incurred by not having the optimal number 
J J J 

of men, x . , on the job during month j ; i . e . , g^(x. - m.) is the cost incurred 
J J J J 

when the size of the work force is e i ther inadequate (x. < m.) or too large 
3 J 

(x. > m.). Thus, 
J J 

(1) (x. - m.) > 0 indicates a cost of having men i d l e , and 
J J 

(2) (x . - m.) < 0 indicates a cost of working men overtime. 
J 

I f x. = m., x. - m. = 0 and g ^ x . - m.) = 0. 
vJ \J <J %J J v) ij 

The problem confronting the manufacturer is one of minimizing the 

to ta l cost of both layo f f and h i r ing , f . ( x . - x. and the tota l cost of 
J J J ' 
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not having the optimal number of men on the job, g ^ x . - m.); i . e . , 
J J J 

the minimal cost z is given by 

n 
z = mi" X . ~ x i _ i ) + 9^(x. - m.)] , 

js="| J J J 1 J J J 

where x0 = m0 defines the size of the work force at the beginning of 

the work p e r i o d . ^ An important point to note i s that no mention i s made 

of the size of the work force in month j = n + 1. With j = n + 1 not 

specif ied the recursive relation uti l ized to solve this problem will be 

a backward relation. Had j = n + 1 been speci f ied, with x0 = mQ known, 

the recursive relation ut i l ized would be a forward r e l a t i o n . ^ 

Distribution of effort .--The distribution of e f fort problem i s a 

modification of the t rad i t iona l a l locat ion of product problem in which 

management is seeking to allocate N products to s sources in such a way 

that total return, prof i t , i s maximized. It i s assumed that all N items 

available for distribution will be distributed to the s sources, a 
n o 

restriction that can be expressed linearly or nonlinearly. 

Let R.(x„.) be the return associated with the distribution of x . 
J J J 

units of product to store j . The x. values are assumed to be nonnegative 
J 

^ H a d l e y , op. c i t . , pp. 376-379. 

^Hadley provides the development of both the forward and backward 
solution to this problem in his work. The selection of a forward or 
backward relation i s dependent upon the nature of the problem i t s e l f . 
For example, the forward solution indicates the influence of the work 
force in period n + 1; the backward solution indicates the influence 
of the work force at the start of the period. 

112 
Wagner, op. c i t . , pp. 331-337. 
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integers. Then, the problem to be solved is given by 

s 
max EL R.(x.) 

3=1 3 3 

s 
such that H x. = N and x. i s a nonnegative integer. 

j=l J J 

In order to convert th is formulation into one of dynamic programming, 

the following are required: 

g.(n) = prof i t when n items are optimally distributed to each of the 
J s sources; 

x.(n) = a distribution amount for source j yielding g.(n) . 
J J 

In th i s notation, the l e t t e r g indicates the prof i t received, n the 

number of items dis t r ibuted, and j the source receiving the n items. 

A fur ther consideration is the fac t that th i s is not a time-oriented 

decision problem. The multistage property is that of considering one 

additional source at a time. 

The dynamic programing problem is concerned with the maximization 

of the to ta l return associated with the distribution of all N products to 

the s sources. Thus, the problem is described by 

9 j ^ = T W + 9 j - l ^ n " X j ^ ' f o r J = ^ 2 , . . . , s ; 

90(n) = 0 for j = 0. 

The maximization i s for all nonnegative x. such that x. ^ n , n = 0, 1 , . . . ,N . 

The objective of the problem is to find the value of gs(N). This is 

accomplished by evaluating g.{n) for n = 0, 1, j = 1, 2 , . . . , s . 

Given th i s set of values, the optimal distribution i s found by tracing 

through to find those values of x. that together yield g (N). 
J s 
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Capital budgeting.—Each year a manufacturer of heavy equipment 

considers a large number s of independent proposals for major plant and 

machinery investments. Proposal j requires an outlay of K. dollars 
J 

from a fixed capital investment fund of M dollars . The expected return 
jlL 

on the j proposal i s R. dollars . I t is desired that total expected 
J 

return be maximized. 

Other factors to be considered include the limited avai labi l i ty 

of supervisors. Therefore, the total number of projects being considered 

in any one year cannot exceed N. Each proposal i s unique, and the firm 
I 1 O 

must decide to accept or re jec t the proposal for the ent i re year. 
"Hh 

Let x . denote the j proposal. Then, x. = 0 indicates that x. 
3 3 3 

was rejected; x. = 1 indicates that x. was accepted. Using this notation, 
3 3 

the problem being studied can be written as 

s 
max 2_ M x . ) 

j=l 3 3 

subject to 

IEI Xj £ N 
j=i 3 

s 
F . K.(x.) < M 
j=l J 3 

f o , r e j ec t , for each j , j = 1, 2 , . . . , s 
x i = 1 

J U , accept. 

The dynamic programming formulation of th is problem is accomplished 

by f i r s t defining gj(n , m) to be the total return when m dollars are 

available to invest optimally in n projects . An appropriate recursive 
1 1 3 I b i d . , p. 328. 
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relation i s given by 

9j (n, m) = + ~ x j ' m ~ ^ j ^ ̂ j) 3 J» j = 2 , . . . , s . 
3 

In th i s re la t ion, n = 0, 1, 2 , . . . , N , and m = 0, 1, 2 , . . . ,M. Maximization 

i s over all nonnegative integers x. such that x. £ n and K.(x.) £ M, where 
J u J J 

K.(x.) denotes the dollar outlay associated with proposal x . . At each 
J J J 

stage consideration i s given to the total number of proposals to be l e t 

and the amount of funds remaining for dis tr ibut ion. 

Equipment replacement.--The equipment replacement problem is concerned 

with determining the optimal policy fo r replacing worn out or obsolete 

equ ipmen t . ^ Equipment in this context can be anything from tools to 

machinery to trucks, e tc . For major pieces of equipment, neglecting 

such tools as hornmsrs, p l i e r s , e t c . , age tends to increase operating and 

maintenance costs , while decreasing productivity and salvage value. 

The customary cri ter ion used to determine an optimal replacement 

policy i s tha t of maximizing the discounted expected prof i t or minimizing 

the discounted expected cost over some period of time. From a practical 

point of view, the usual approach is that of cost minimization. This i s 

true for three primary reasons: 

(1) when a product must undergo operations on a number of machines, 
i t is d i f f i c u l t to determine what the contribution of any single 
machine is to the total p r o f i t ; 

(2) the output is frequently specif ied, and therefore the revenue 
received is a constant so that p ro f i t maximization is equivalent 
to cost minimization; 

^ H a d l e y , op. c i t . , pp. 396-401. 



408 

(3) when known, los t p rof i t s from lower productivity can be included 
as a c o s t . " 5 

I t i s assumed that decisions on equipment replacement are made 

periodical ly. I t i s also assumed that existing equipment can be main-

tained indef in i te ly i f enough money and time is spent on repairs . The 

decisions relevant to equipment replacement will be made in l ight of the 

age of the equipment and i t s cost , with cost being a function of age. 

The analysis will be made on the basis of discounted expected cost. Thus, 

all t ha t is necessary is the expected cost function. 

Case 1: Replacement with no technological improvement. Under the 

condition of no technological improvement, i t is assumed tha t replaced 

equipment is replaced by equipment of the same type. Costs to be con-

sidered are (1) ins ta l led costs , (2) expected operating and maintenance 

costs , and (3) salvage value, salvage value being defined as the sale 

price at time of salvage less dismantling costs. All of these costs are 

assumed to be the same for each new piece of equipment that is purchased. 

In addition, all operating and maintenance costs incurred during a given 

period of time are treated as though they were incurred at the end of 

the period. 

For the analysis of th is problem, suitable notation must be in t ro-

duced. This requirement is met by the following: 

I = the ins ta l led cost of the equipment; 

C(j) = the expected operating and maintenance costs for the j**1 period; 

S(j) = the salvage value of the equipment a f t e r j periods of use; 

1 1 5 I b i d . , p. 397. 
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a = a discount factor for discounting costs known a t the end of 

the period to the f i r s t of the period; 

a'' = the discount factor which discounts costs known at the end of 

period j to the beginning of period 1; 

N = the number of periods for which a machine i s kept; 

H = the cost of a piece of equipment over the period of time i t is 

kept, discounted to the date of purchase; and, 

K = the discounted cost of an i n f i n i t e sequence of purchased equipment. 

Since there i s no technological improvement to be considered, an 

optimal replacement policy will be one such that the equipment is kept 

fo r N periods and is then replaced. With this arrangement, the value'of 

N will be determined by assuming that equipment of the type being con-

sidered for replacement will be used for an in f in i t e period of time and 

then minimizing the discounted cost over the i n f i n i t e time period. 

The cost of a piece of equipment over the time i t is kept i s 

calculated by summing the ins ta l led cost of the equipment and the expected 

cost of operating and maintaining the equipment for N periods, less 

salvage value. This cost is discounted to the date of purchase; i . e . , 

H = I + £ r c ( J ) ] A J
 - [ S ( N ) ] c N , 

j=l 

N 

where S(N) = the salvage value a f t e r N periods of use; a = the discount 

fac tor over N periods; = the discount factor over j periods, j £ N . 

The discounted cost for an i n f in i t e sequence of such units of equipment is 

found by discounting each unit in the sequence back to the date of purchase. 

Letting K(N) denote the discounted total cost of the equipment over N 
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periods of t ime, 

K(N) = H + HaN + Ha2N + H a 3 N + . . . 

- u n + N + 2 N i. 3N+ l 
= HL1+O£ + a + a + 

Since the sequence (1 + aN + a2N + a 3 N +. . . ) represents an i n f i n i t e 

N 
geometric sequence with f i r s t term equal to unity and comnon ra t io a , 

K(N) = H [ - j ^ ] , 
1 - a 

where — - — ^ defines the sum of the sequence (1 + a1^ + a2N + a 3 ^+ . . . ) 
1 - a 

Subst i tut ing fo r H. 

N 
K(N) = — L - f [ I + H [C( j ) ]o , j - [S(N)]aN ] , 

1 - a" j - l 

The optimal replacement period is found by f ind ing the nonnegative integer 

N f o r which K(N) i s minimized. This i s accomplished by evaluating K(N) 

f o r N = 1, N = 2 , . . . . 

Given th i s straightforward approach to the problem being invest igated, 

the dynamic programming problem can be developed. Using th is formulat ion, 

i t i s assumed that at the beginning of each period a decision i s made as 

to whether or not the equipment in current use w i l l be replaced. This 

assumption defines a sequential decision problem. 

Case 2: Replacement with technological improvement. With consideration 

being given to the influence of technological improvement, i t is assumed 

that the to ta l period of time under consideration i s f i n i t e in length. I t 

is also assumed that the to ta l production of a piece of equipment is f ixed 

over t ime. The assumption of constant product iv i ty on the part o f the 

equipment guarantees that increased product iv i ty due to technological 



411 

improvement will be reflected in lower operating costs . I t i s also 

assumed that the f in i t e period under consideration consists of n one-

year periods. All decisions relative to the equipment are made at the 

beginning of a given time period. The n one-year periods are assumed 

to begin with period 1. It i s further assumed that the instal led cost 

of a piece of equipment may depend upon the time period in which the 

equipment i s purchased. Similarly, the operating and maintenance costs 

and the salvage value of a piece of equipment will depend not only on 

the age of the equipment, but also on the year in which the piece was 

purchased. I t i s further assumed that the state of technological 

improvement of the equipment i s reflected by the year of purchase. 

Inventory analysis .--Case 1: Nonlinear cost with l inear constraints, 

The problem to be solved i s one of determining an optimal production 

schedule and the cost associated with the optimal production schedule. 
"I *1 C 

It involves an analysis of both production-scheduling and inventory. 

The assumptions made in formulating the problem are as follows: 

(1) a f ixed number of units, k, are to be produced and delivered 

over a given period of time consisting of n time periods; 

(2) contract requirements require that k-j units be delivered at 

the end of n̂  days, k2 units at the end of n^ days, and k^ units at the 

end of n3 days, e t c . , with the total time lapse not to exceed n days 

and total production not to exceed k. 

(3) rather than expand existing f a c i l i t i e s , overtime will be 

allowed, with the following nonlinear cost function being representative: 

^Richmond, op. c i t . , pp. 472-477. 



412 

y. = a. + bx.(x,. - 1) 
J i i v i ' 

where y. = the cost in dollars of manufacturing x̂  units in the time 

interval n. - n^, i > j , and â  and b_. are suitable cost constants. 

(4) any excess units or parts of units produced and not u t i l i zed 

during a given time interval are carried over into the next period at a 

holding cost, h. , of c.. per unit of carryover, v.., and holding costs are 

assumed to be proportional for part ial units held over; i . e . , h.. = C . . V . . , 

where v̂  = the start ing inventory for period i ; 

(5) at the start of any given production cycle, there is no start ing 

inventory, but units carried from one period to the next ( for example, 

10 units in time period 1 held over for time period 2) constitute the 

start ing inventory for the new time period; and, 

(6) units held as carry-over stock are not restr icted to whole 

units ( i . e . , units are not defined as integer values only). 

The problem to be solved is one of determining the number of units 

to be produced in a given period so that the sum of the manufacturing 

costs and the holding costs is minimized. 

The cost function to be minimized is found by summing the holding 

costs for the periods being considered and adding this to the sum of the 

manufacturing costs for the periods involved; i . e . , 

Total cost = total holding cost + total manufacturing cost. 

This relationship is described by the nonlinear cost function 

n n 
TC - T h. + H y . , 

i= l 1 i= l 1 

where h i = c^v. and y. = a i + b . x ^ x . - 1), i = 1, 2 , . . . , n . This cost 
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function i s to be minimized subject to the res t r ic t ions imposed by the 

nonnegative values of x . , the quantity produced in the f i r s t period, , 

the total quantity produced in the f i r s t two periods, k-j + k g , . . . , and 

the total quantity that must be produced by the end of the time period, 

n 
k = 21 k . . Thus, the general problem to be solved takes on the following 

1=1 1 

functional form: 
n n 

min (TC) = T . c.v. + Zi [a. + b.x.(x. - 1)] 
i=l 1 1 1=1 1 1 1 1 

subject to the l inear constraints 

x.. >_ 0, i = 1, 2 n; 

^1 — » 

m + x2 - ( k i + y ; 

x-| + x2+...+xn >_ (k-j + k 2+. . .+k n ) . 

In expanded form, th is problem is given by 

min (TC) = c ]v 1 + c2v2+.. .+cnvn + [a ] + b ]x1(x1 - 1)] 

+ [a2 + b2x2(x2 - l ) ] + . . . + [ a n + bnxn(xn - 1)] 

subject to 

x. > 0, i = 1, 2 , . . . ,n; 

x-j > k p 

x-j + x2 >_ k1 + k 2 ; 

X-j + x2+...+x^ = (k-j + k2+.. .+kn), 

where x i defines the number of units to be produced in the i t h period, n i , 

and k̂  defines the required units during the i t f l period. 
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As a means of bet ter i l l u s t r a t ing this model, consider the case when 

the problem involves three time periods of equal duration. The problem 

can then be written as 

min (TC) = c ^ + c2v2 + c3v3 + [a1 + b-jx-^x, - 1)] + [a2 + b2x2(x2 - 1)] 

+ fa3 - 1)3 

subject to 

(x-j, x2> x3) >_ 0; 

Xi > k-j \ 

x-j + x2 (k-j + k2); and, 

x-| + x2 + x3 = (k-j + k2 + k 3 ) . 

Since v. defines the number of units to be carried forward into period i , 

V1 = 0; 

v2 = X1 - k1 ; and 

v3 = (X-j + x2) - (k-, + k2) . 

These expressions for v^, v2> and v3 can be substi tuted into the total 

cost function to yield an expression defining total cost in terms of 

the variables x-j, x 2 , and x3 : 

min (TC) = c2(x-j - k-j) + c3(x-j + x2 " kl " k2^ + ^-al + b ] x l ^ x l " ^ 

+ [a2 + b2x2(x2 - 1)] + [a 3 + b3x3(x3 - 1)] 

C2X1 ~ c2 k l + C3X1 + C3X2 ~ C3kl " C3k2 + a l + b l X l " b lX l 

+ a2 + b2x2 - b2
x

2 + a3 + b3x3 - b3x3; 

min (TC) = [a ] + a2 + a3 - (c2 + c3)k1 ~ c3k2] + [(c2 + c3) - b^x-j 

+ [c3 - b2]x2 - b3x3 + b-,x| + b2x3 + b3x3< 
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This function is to be minimized subject to the l inear constraints 

x. >_ 0, for i = 1 , 2 , 3; 

x-j >. k1 ; 

x ] + x2 - + k2^*' a n c l ' 

X1 + *2 + x 3 = ( k l + k2 + k2>-

Although the problem can be solved by the use of the calculus and 

Lagrange mult ipl iers , dynamic programming provides a simpler method of 

solution. In th is respect, i t i s important to remember that , b^, c^, 

and k. are numerical constants for all i (i = 1, 2, 3). With this in 

mind, the dynamic programming formulation follows: 

Let f(v.j, x*) = the optimum total cost fo r the remaining product-

schedule s tar t ing at the s t a r t of period i . Let f ( , x^) = the total 

cost for period i plus the optimum total cost for the next period, i + 1. 

Then, g(v.j, x^) = (h^ + m )̂ + f f v ^ ^ , x*+.j) defines the recursive relat ion. 

Substituting for h. and m., 
3 1 i 

g(V V " civi + ai + bixi(xi " " + £ cjvj + .21 + bjxj(xj " D]-
J=l+1 J J J=l+1 u 

This relation best u t i l i zes the backward solution technique of dynamic 

programming because all terms beginning with ,j = i + 1 vanish at the final 

stage. The i t e ra t ive process i s begun by assigning the optimal value to 

x | . This optimal assignment is equal to the number of units required in 

the l a s t period less the carryover from the preceding period; i . e . , 

"n* = kn " vn E kn " ^ *1 " ^ 
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The recursive relat ion at period n is given by 

9 ( V xn' = cnvn + an + bn xn ( xn " 11 • 

Substi tut ion of the optimal value of x . x* = k - v , results in 
n n n n 

g(v , x*) = q(v ) = c v + a + b ( k - v ) ( k - v - 1 ) . s n ' n' n' n n n nv n n / v n n ' 

Expansion of g(vn) y ie lds f ( v n , x*) 

f ( v j x*) = b v^ - 2b k v + b v + c v + b k^ - b k + a . v n* r\' n n n n n n n n n n n n n n ' 

which is nonlinear in v . n 

Had the objective been to minimize carryover in to period n, g ( ) 

could be solved for vn such that g' (vn) = 0 and g"(vn) > 0. However, 

since th is is not the case, i t is necessary to go back to stage n - 1, 

to derive the dynamic programing relat ion that can be u t i l i zed throughout 

the problem. At stage n - 1 , 

s ( V l > V l > = <hn-l + V l > + f < V xi?> 

= c n - l v n - l + K - l + b n - l x „ - l ( x n - l " ^ + f < V ' 

Application of the backward technique results in the optimal solution 

{ least cost and production requirements) for the given problem. The 

solution set w i l l be defined in such a way that 

V-J - 0, Xi = d-j; 

Vg = d-j - k-|, x^ = $2' 

- (d-j + d^) ~ (k-j + k£) > Xg = d^» 

Vn = (d , + d 2 + . - - + d n _ , > - ( k , + k 2 + . . . + k n _ 1 ) ; Xn = k n - v n . 

This backward process w i l l result in a to ta l cost function wr i t ten in 

terms of the stage 1 production variable x^. This function, which w i l l be 
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at most a quadratic function, can be minimized by applying the max-min 

calculus. Given th is resu l t , can be determined. At stage 2, the 

total cost function will have been expressed as a function of both 

and Xgi with Xg written as a function of Vg. The process continues until 

i t terminates at stage n. 

Case 2: General inventory processes. The inventory problem discussed 

in Case 1 represents a speci f ic application of inventory analysis subject 

to a set of res t r ic t ing l inear functions. This is a special application 

of the general inventory problem to be discussed in th is section. 

The problem to be analyzed is one in which a firm is confronted with 

the establishing of a production schedule for a given item during the' 

next'N time p e r i o d s . ^ In this analysis, i t i s assumed that an accurate 

forecast of the inventory required to meet demand during each of the N 

periods has been presented to the management s t a f f . Other assumptions 

include the following: 

(1) production during time period i can be used to f i l l , completely 

or pa r t i a l l y , the demand during period i ; 

(2) due to the varying nature of demand from one point to another, 

i t i s often economical for the firm to produce more of the item than is 

needed in one period, with the excess being stored for l a te r use; 

(3) the cost of storing excess production—attributed to such factors 

as in te res t on financial capital obtained through loans, rental fees for 

storage space, insurance, and maintenance—is lumped into a storage cost 

per unit of excess capacity; and, 

(4) ending inventory will be zero. 

117Wagner, op. c i t . , pp. 261-271. 
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In order to establish a production schedule for the coming N 

periods, i t is necessary to define a suitable cri terion on which to base 

thte optimal production schedule. I t is assumed that the cri ter ion of 

optimality will be the production schedule which minimizes total cost for 

the production-inventory period. As a means of formulating this problem, 

the following notation will be ut i l ized: 

x.j = the quantity produced in period i ; 

k. = the inventory at the end of period i ; 

£j(x.j, k..) = the cost function to be minimized; 

D.. = the demand requirement in period i . 

I t is assumed that the demand requirement in period i is a nonnegative 

integer and is known at the beginning of period i . 

Assuming that the cost in each period depends only on the production 

quantity and the ending inventory leve l , the cost function to be minimized 

can be written as 

N 
min 2 1 c . ( x . , k . ) , 

i=l 1 1 1 

where the summation is taken over all of the N production periods. Restrictions 

placed on the and k̂  variables are as follows: 

(1) fo r each period i , x.. is assumed to be an integer; 

(2) inventory at the end of the N periods is zero; 

(3) demand for each period is to ta l ly s a t i s f i e d . 

The th i rd condition is met by defining two additional requirements: 

(1) inventory at the end of period i = (inventory at the beginning of 

period i) + (production in period i) - (demand in period i ) ; i . e . , 

ki ~ ^ i - l + x j ~ D.j; and, 
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(2) each period's entering inventory and production must be large 

enough to guarantee that ending inventory fo r each period is a non-

negative integer; i . e . , k. = 0, 1, 2 , . . . fo r period i , i = 1, 2 , . . . ,N -1 . 

As a matter of note, the equal i ty = k^_^ + x.. - can be wr i t ten 

as D.j = (k.j_-| + x.) - k . . This is a l inear res t r i c t i on . As such, i f 

c.j(x.j, k.j) is l inear fo r a l l i , the problem is equivalent to a network 

problem and can be solved as one. However, i f the cost function is such 

that i t is necessary to batch the production, then the incremental unit 

cost o f items in period i is less than that fo r items in period i - 1. 

Production in excess of the normal level fo r a given period may give 

r ise to an increase in incremental cost because of overtime. Such 

problems are generally represented by nonlinear cost functions. 

Problems of th is general category can be solved by u t i l i z i n g the 

dynamic programming formulation. However, the u t i l i z a t i o n of the dynamic 

programming requires that the fol lowing parameters be iden t i f i ed : 

d^ = the demand requirement in the given period, with n periods 

remaining; 

c n (x , j ) = the cost of producing x units of product with j units of 

ending inventory for the period under consideration, n periods remaining; 

f n ( k n ) = the minimum policy cost when entering inventory is a level k 

with n periods remaining; and, 

xn (kn ) = the production level y ie ld ing -fn(k ) . 

A cursory analysis of th is problem reveals that the variable which 

determines the state of the production system at the s ta r t of the period 

is entering inventory. Another consideration is the amount of product 
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demanded during the given period. Thus, i t would be reasonable to 

assume t h a t the minimum policy cost f o r a given period is a function of 

both the amount to be produced during the period and the inventory at the 

end of the period; i . e . , fo r any given n, 

W = ° n ( V kn-l + xn " dn>' 1 - 0 , 1, 2 . . . 

As an example of how th i s re la t ion funct ions , consider the following 

general analyt ical approach. A value of n = 0 indicates tha t the production 

process i s operating in the l a s t s tage . Thus, fQ(k) = f o (0 ) = 0 since 

no periods remain. When n = 1, th i s indicates that the production 

process is into i t s n e x t - t o - t h e - l a s t s tage . At t h i s point (n = 1), 

the productive capacity must be such tha t the to ta l demand during the 

l a s t ' s t a g e is s a t i s f i e d and ending inventory fo r the l a s t period will be 

zero; i . e . , f-]{kn) = c-|(xi = 0 ) . When n = 2, the indicat ion 

is t ha t two production periods remain. The minimal policy cost will be 

the cost defined by 

~ c 2 ( x 2 ' ^1 x2 ~ ^ ^1^1 ^1 ~ ^2}' 

This formulation represents the cost of producing x units with two periods 

remaining with an ending inventory of (k-j + x2 - d2) uni ts . This cost 

will be minimized subject to d9 - k2 _< x2 £ d1 + d2 - k2> where d2 - k2 

equals the excess of demand over entering inventory in period 2 and 

^1 + ^2 " ^2 e cI l j a^ s ^he e x c e s s of to ta l demand in the l a s t two periods 

over inventory at the end of period 2. This simply defines the range 

within which x 2 , the quanti ty produced with two periods remaining, can 

f a l l . A continuation of t h i s process resu l t s in the following recursive 

r e l a t i on : 
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W = 7 ^cn^xn' kn-l + xn " V + V l ^ V l + kn-l " d n ^ 

where n = 0, 1, 2 , . . . ,N, i = 0, 1 , . . . ,d j + d2+.. .+dn, and the val ue of xn 

l i e s in the interval d„ - k < x„ < d, + d„+...+d„ , - k . 
n n — n — 1 2 n-1 n 

The recursive relation jus t developed developed defines the productive 

ac t iv i ty for a given period in terms of the entering inventory at the 

s t a r t of that period. I t is applied by f i r s t determining the production 

level x„(k ) which gave the minimal policy cost f (k )*, i . e . , how much 
n o n o 

production is necessary with N periods remaining to minimize policy cost 

with N periods remaining, given an i n i t i a l period inventory of k units. 

At the next i t e r a t ion , the entering inventory will be k + x (k ) - dM. 
o n o N 

Given th is inventory, determine the production level xN_-|(k-|) that 

minimizes fN .-j(ko + xN(kQ) - dN), e tc . 

From th is development can be drawn two major points. These points 

are that (1) the level of entering inventory completely describes the 

s t a te of the system when n periods remain, and (2) the quantity produced 

in one period a f fec t s the quantity of inventory remaining at the s t a r t of 

the next period. 

Other applications.--Although the preceding selection has been 

l imited, i t does serve to i l l u s t r a t e some of the speci f ic problems to 

which dynamic programming has been applied. In addition i t demonstrates 

the wide range of problems to which dynamic programming i s applicable 

and the manner in which given problems are formulated as dynamic programming 

problems. 
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Nemhauser indicates some general classes of problems suitable for 

118 

formulation as dynamic programming problems. These classes are divided 

into multistage inventory problems, nonlinear allocation problems, 

sequential processes, and combinational optimization problems. His 

work is summarized below. 

Multistage inventory problems: The typical inventory problem is one 

in which the combined costs of production, inventory (both ordering and 

production inventory), and shortage are to be minimized in such a way that 

an optimal production scheduling-inventory level is established. The 

central thread in the structure of the dynamic inventory problem is that 

the optimal stock level in a given period, n, is that level which 
th 

minimizes the cost in the n period and yields an optimal inventory at 

the beginning of period n - 1. The n ^ period refers to the number of 

periods remaining. 

Nonlinear allocation problems: The nonlinear allocation problem is 

defined by 
N 

max E I fn(X ) 
n=l n n 

subject to 
N 

21 h
n i U n ) £ k j > i = 1, 2 , . . . ,m. 

In th is formulation Xn defines the quantity of resource, product, 

or e f f o r t allocated to the n ^ source of return. The individual terms 

W define the return associated with the allocation of Xn< The 

hn i (Xn) define the constraints within which the optimal allocation is to 

118Nemh auser, op. c i t . , pp. 244-247. 
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be achieved. By a l ter ing the terminology, th is problem can be used to 

(1) analyze economic problems involving the al locat ion of productive 

resources, (2) analyze budget problems involving the al locat ion of 

advert is ing expenditures, and (3) analyze market areas fo r the optimal 

a l locat ion of salesmen. 

Sequential process problems: Sequential process problems involve 

the analysis of multistage systems. Applications in th is area have 

centered on the minimization of cost of designing and bui ld ing d i s t i l l a t i o n 

towers, separation equipment, and chemical reactors. Other problem 

analysis has dealt with the optimization of both design and control 

processes. 

Combinational optimization problems: Combinational optimization 

problems are problems involving sequencing, scheduling, or routing. 

Characterist ic of such problems is the t rave l ing salesman problem in which 

a t e r r i t o r y consisting of n si tes is to be covered in such a way that the 

to ta l distance traveled in v i s i t i n g these si tes is minimal. This problem 

type can be extended to l ine balancing, machine scheduling, and job 

sequencing. The objective is to determine the multistage sequence or 

arrangement which optimizes the given objective function. 

Analysis of these applications of dynamic programming reveals that 

in each case the basic requirements o f the dynamic programming problem 

are sa t i s f i ed as fol lows: 

(1) the problem being analyzed is separated in to a series of n stages; 

(2) the decision to be made at any one stage involves the selection 

of at least one decision variable ( fo r example, in the section on inventory 
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analysis , case 2, the decision variable is the quantity produced in the 

• th . . 

l period; 

(3) each problem is defined for every stage by the same functional 

relat ionship; 

(4) fo r each problem, the s ta te of the system is described by a given 

set of parameters at each defined stage ( for example, in the section on 

inventory analysis, case 2, each stage is defined, or se t , by two known 

parameters, demand fo r tha t period and entering inventory); 

(5) the set of parameters describing the s ta te of the system at any 

given stage in the problem is the same for every stage; and, 

(6) the selection of the decision variable at the nt^1 stage has no 

e f f e c t on the remaining (n - 1) stages other than that of changing the 

values of the parameters describing stage (n - 1). 

Since each of the ci ted examples sa t i s fy these basic requirements, 

each is a valid example of the dynamic programming formulation. Analysis 

of these examples reveals that each one groups the decision variables and 

associated res t r ic t ions into a ser ies of sequential stages, summarizes 

the information from previous stages that is relevant to the selection of 

the optimal values for the current decision variables, provides a fore-

castable influence on the s ta te of the system at the next stage (the current 

decision, given the present s ta te of the system), and determines the 

optimality of the current decision in l igh t of i t s potential impact on 

the present stage and on all following stages. 

As previously noted, dynamic programming currently does not refer to 

a speci f ic mathematical model as does, say, l inear programming. Rather, 
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the term refers to a manner in which problems are viewed. In this way, 

dynamic programming is applicable to a variety of mathematical models, 

not to j u s t one class of models. This charac ter i s t ic alone i s the main 

contributing factor to the lack of a general dynamic programming model. 

From a practical point of view,the general dynamic programming problem 

i s one in which a given set of resources (time, money, labor, e tc . ) is to 

be allocated in such a way that a defined cri terion is optimized. I t is 

th i s c lass i f ica t ion into which the problems confronting the management 

analyst f a l l . Administrative problems involve allocations of jobs to 

machines, dollars to projects , capacity expansion to points in time, 

workers to time periods, products to warehouses or sales areas, production 

to points in time, e t c . ; and, given the sat isfact ion of the six require-

ments for dynamic programming formulation, these allocations are such 

tha t they are dynamic and respond to the environment at the time of 

decision. With these thoughts in mind, the administrative dynamic 

programming problem is defined in the following manner. 

Definition 3.14. —Administrative dynamic programming is defined as 

an allocation problem in which a given resource or set of resources is 

to be distr ibuted in a series of n sequential stages over a defined period 

of time in such a way that a defined cr i ter ion of effectiveness is optimized. 

The allocation is made in such a way that any constraints are sa t i s f ied 

and the following set of conditions are met: 

(1) the problem consists of n defined stages; 

(2) each stage is defined by at leas t one decision variable; 
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(3) the defining parameters remain the same for all stages; 

(4) the objective function is defined in such a way that i t is the 

same a t each of the n stages; 

(5) the values of the defining parameters are known at each stage; and, 

(6) with the exception of the parameter values, the decision values 

at each stage are selected in an independent manner. 

An important point to note in th i s definition is that no mention is 

made of the form of the objective function or i t s constraints . This is 

a t t r ibuted to the fac t that the cr i ter ion of effectiveness can be l inear 

or nonlinear. In addition, i t can be res t r ic ted by l inear or nonlinear 

constraints . At each stage in the optimization process, dynamic programming 

permits the function to be optimized in the manner best suited to the 

problem being analyzed. Regardless of the number of stages, optimization 

at each stage in the multistage problem yields the optimal solution for 

the to ta l problem. 



CHAPTER IV 

MODERN OPTIMIZATION THEORY: ADVANCED TECHNIQUES 

OF OPTIMAL SEARCH 

Introduction 

The presentation of optimization theory has moved from the classic • 

techniques of l inear and nonlinear functional analysis, systems of l inear 

equations, the max-min calculus, the Lagrange mul t ip l ier , and queueing 

theory to the basic techniques of modern optimization theory. The tech-

niques of modern optimization theory considered as basic optimal search 

have been idant i f iod as l inear programming* quadratic programming, 

geometric programming, and dynamic programming. The discussion has traced 

administrative application of optimization theory from simple breakeven 

analysis to dynamic inventory analysis and constrained nonlinear analysis 

for cost minimization and/or p ro f i t maximization. Related problems have 

been ident i f ied. From this development i t is evident that a wide range 

of optimization-oriented administrative problems exist . I t is also evident 

that these problems can be solved by a variety of techniques. 

The development of the advanced techniques of modern optimization 

theory begins with the realization that the term "modern optimization 

theory" refers to the conceptual development of a given problem and the 

implementation of the solution technique best suited to solving the 

part icular problem. The technique does not dictate the formulation of 

the problem. Rather, the formulation of the problem dictates the selection 

i 

427 
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of a suitable solution technique. In th is way modern optimization theory 

can be considered as having two central character is t ics : (1) the problem 

under investigation is described by the most appropriate mathematical 

formulation, and (2) given th is formulation the most appropriate solution 

technique is u t i l ized to find the optimal solution. 

I t is important to remember that the optimal solution may be one that 

is suboptimal in theory but optimal in application. This concept can be 

explained in the following manner. Consider the nonlinear p ro f i t function 

shown in Figure 4.1. I t is assumed that the firm is capable of achieving 

a p rof i t of y i dollars when units are available for sa le . Sales are 

such that they may range between any values of x^. Suppose the firm "is 

y 

y 

Y=?Cx) 

Fig. 4.1—Nonlinear p rof i t function 
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attempting to maximize p r o f i t . This maximization is to be achieved subject 

only to the number of units sold. I f the f i rm has only x-j units available 

fo r sale, then the maximum p r o f i t w i l l be y^ do l la rs , y-j = f ( x ^ ) . I f the 

f i rm has x-j ± * 2 L , n i t s available fo r sale, the p r o f i t w i l l range 

between y-j = f(x-j) and y^ - f(xg) do l la rs , with the maximum p r o f i t occurring 

at some point x , y = f ( x ) , l y ing in the interval x-, < x < x0 . However, o o v o I — — 2 

neither of these "optimal" solutions is. the point at which maximum p ro f i t 

i s achieved. The point o f maximum p r o f i t is x^, with a p r o f i t of 

y 3 = dol lars. I f i t is assumed that attempting to se l l x^ units 

is not feasible, then the decision to s t r i ve fo r a p r o f i t of y = f ( x ) 
o 0 

or y ] = f(x-j) or some other f igure is one that is theoret ica l ly suboptimal 

but p rac t i ca l l y optimal. The analysis of the problem is then described 

as optimum-seeking. 

Modern optimization theory is a combination of both optimization and 

optimum-seeking techniques and approaches to problem solving. I t is a 

tool of optimization in that i t s basic techniques select the optimal 

solut ion from among a set of defined feasible solut ions. I t is optimum-

seeking in that i t provides means whereby problems that are not as clear ly 

defined and constructed as those of mathematical programming can be solved. 

As an optimum-seeking technique, modern optimization theory seeks the 

optimum solut ion without the confining l imi ta t ions of s t r i c t l y s ta t i c 

analysis. As such, the term optimum-seeking relates more to the techniques 

o f modern optimization theory and the manner in which each technique seeks 

the optimal solut ion to a given problem. 

The framework wi th in ^/hich the advanced techniques of modern optimization 

theory w i l l be discussed w i l l have two major headings: ind i rec t search and 
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direct search. Although the discussion w i l l not include a l l possible 

subdivisions, the discussion w i l l be su f f i c ien t to point out the major 

character ist ics of the optimum search c lass i f i ca t ion . In th is way i t is 

hoped that a " fee l " fo r the techniques w i l l be achieved, as well as an 

appreciation fo r the technique i t s e l f . 

The Optimum-Seeking Problem 

Kunzi, Tzschach, and Zehnder have described the optimum-seeking 

problem as one in which both the objective function and i t s constraints 

are nonlinear. Their formulation is one in which the objective function 

is to be minimized subject to a set of m constraints.^ For example, 

minimize G(x) = G ( x r x 2 , . . . , x n ) 

suhjoct to 

(x) 0 ( j = 1, 2 , . . . ,m), and 

x i > 0 ( i = 1, 2 , . . . ,n ) . 

Such a problem, in the two dimensional case, is shown in Figure 4.2. 

t G(x)= k 

1 1 ' - V " 

v° 

Fig. 4.2--Nonlinear optimizati on 

1, 
M 9* ^schach, and C. A. Zehnder, Numerical Methods o f 
Mathematical Optimization (New York. IQfiRl. nn. 
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This problem can be described in the following manner. Suppose G(x) = k 

defines a cost function tha t has a f ixed value of k; i . e . , x-j and x2 can 

vary f r e e l y , but the combined mix of x-j and x2 i s such tha t the cost is k. 

The function defined by 9j(x-]> x2) = 0 ( j = 1, 2, 3) represents the constraints 

forced on the possible combinations of x-j and x2> The problem is to f ind 

the optimum mix of x-j and x2 with a cost of k that does not violate the 

cons t r a in t s . 

2 

Baumol describes the optimum-seeking problem as one which seeks to 

optimize an n-var iable object ive function subject to a se t of m cons t ra in t s . 

He also assumes the n-variable to be nonnegative. This description takes 

on the form 

maximize (or minimize) f (x-j, x2 xn) 

subjec t to 
9i (X-j, x 2 , • • •, xn) <_ c-j 

g2(X"|, X 2 > " " V - c2 

g m ( x r x 2 ' ' " ' x n ^ - cm 

(X-j, x 2 , *«•, x^) > 0. 

In providing a geometric representat ion, Baumol r e l a t e s his analysis 

to the i s o - p r o f i t curve, or p ro f i t indi f ference curves. His work i s 

presented here in surrcnary form. Reference will be made to Figures 4 .3 , 

4 .4 , and 4 .5 . 

Figure 4.3(a) represents a nonlinear p r o f i t function defined in terms 

of the two units x-j and x 2 . Because of the curvature of the surface of the 

2 . 
William J . Baumol, Economic Theory and Operations Analysis, 2nd ed. 

(Englewood C l i f f s , 1968), pp. 129-1337"* 
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< a i tV» 

Fig. 4.3--Nonliriear p ro f i t analysis 

•V X. 

function, the problem is one of diminishing returns; i . e . , increases in 

outputs reach a point such that additional increases y ie ld decreased return 

per unit of increase (marginal return). Examination of Figure 4.3(a) 

reveals that f (x^ , x2) w i l l increase for every increase in x-j and x2 

unt i l the point M' on the curve is reached. At th is point the combination 

of x1 and x2 which maximizes f(x1 , x2) is that combination M = (x^, x2) 

with a maximum value of M'. 

Figure 4.3(b) represents the l inear representation of the same 

problem. The use of a functional approach such as that shown in Figure 4.3(a) 

allows greater freedom in describing the iso-pro f i t curves corresponding 

to various mixtures of the input variables. The l inear case does not 

3 
The term "curvature of the surface of the function" refers to the 

U-shape of the cross-sections. 
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permit the direct ion of p ro f i t ab le movement to change as does the nonlinear 

appli cat ion. 

Figure 4.4(a) represents a se t of i s o - p r o f i t curves such that moving 

from curve H to J to K to L increases the amount of p r o f i t defined by f(x-j, 

•> X. 

Fig. 4 . 4 - - I s o - p r o f i t analysis 

Curve L corresponds to the ridge t ha t y ie lds the maximum p r o f i t , shown by 

MM'. If a move i s made to curve L ' , the amount of p r o f i t will f a l l . 

Figure 4.4(b) represents the l inea r formulation of the problem. 

Figure 4.5 represents the concept of increasing returns due to 

spec ia l i za t ion . As one of the outputs , say X.|, increases , the p r o f i t 

defined by f(x-j, X2) increases along the upward curvature of OCT1. Such 

functions r e su l t in increasing marginal re turn . 
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Fig. 4 .5--Increasing returns due to specia l iza t ion 

A cursory examination of Figures 4.2 to 4.5 reveals that the tech-

niques of c lass ica l optimization theory are i l l - s u i t e d for solving such 

problems. In addi t ion, the pronounced nonlineari ty of the problems 

prohib i t s ready applicat ion of e i t h e r classical techniques or basic 

optimal search techniques. Thus, i t i s prudent that consideration be 

given to the a v a i l a b i l i t y and u t i l i z a t i o n of more su i table techniques of 

opt imizat ion, pa r t i cu l a r ly nonlinear optimization. 

. . . the prac t ica l value of the solution of these 
problems i s high. Almost no real problem i s l i n e a r ; 
l i n e a r i t y represents our compromise between r ea l i t y 
and the l imi ta t ions of our tools fo r dealing with i t . 
The user who has only l i nea r techniques. . .must 
accept the resu l t s of a l inear iza t ion of his problem 
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and bear the expense of t he i r deviation from rea l i ty , 
or undertake the imprecise and laborious task of 
making the resul ts bet ter by heur is t ic methods [ i . e . , 
applying selected routines to reduce the size of the 
problem].^ 

With such concepts as marginal productivity, marginal cost , marginal 

product, and marginal p r o f i t , and such problems as inventory control, 

por t fol io select ion, pricing, and cost analysis to be considered, i t is 

f i t t i n g that administrative analysis concern i t s e l f with the su i t ab i l i ty 

of advanced optimization techniques. I t i s more f i t t i n g that these tech-

niques be integrated into the "kit of tools" available for administrative 

problem solving. Such an integration will provide a greater var iabi l i ty 

of problem formulations due to the avai labi l i ty of suitable solution 

techniques. 

In the context jus t presented, the administrator is confronted with 

the problem of optimizing a given objective function subject to a defined 

set of constraints. The objective function and any existing constraints 

can be l inear or nonlinear, univariable or multivariable. The problem to 

be solved is one which s a t i s f i e s Definition 4.1. 

Definition 4.1.--Given the n-variabled objective function 

f(x) = f ( x , , x 2 , . . . , x n ) and the m constraint functions g^x) = g^x^ , x 2 , . . . , x }; 

i = 1, 2 , . . . , m , determine x̂  = (x-j, x 2 , . . . , x ) so that f(x) is optimized 

without violating g i (x) for any i and x ^ 0 for all x = (x-j, x 2 , . . . , x n ) . 

4 . . 
Philip Wolfe, "Recent Developments in Nonlinear Programming," A 

Report Prepared for United States Air Force Project Rand, Report No. 
R-401-PP (Santa Monica, 1963), pp. 1-2. 
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This def in i t ion can be further c la r i f i ed by considering Figure 4.6. 

5^ ?Cx̂ = c? 

^ o 

>xt 

Fig. 4.6--Nonlinear optimization problem 

Suppose f (x) = f(x-| } Xg) defines a p ro f i t function and g.(x) = g^(x-j, 

( i = 1, 2, 3), defines the constraint functions. By defining f (x) = c . , 

( j = 1, 2, . . . ) , i t is possible to construct a set of contours which define 

the p r o f i t , c^, obtained by the indicated combination of x-| and x^. 

Assuming that p ro f i t is to be maximized, the solution is that combination 

2L* = (x*> x|) that yields the highest value contour without violat ing the 

constraint set, i . e . , remains within the feasible region. Unlike the 

l inear programming case, the optimal solution is not required to l i e at 

one of the corner points ( intersections). 

I t is important to note that the term "optimal solution" depends upon 

the nature of the objective function i t s e l f . I f f (x) is to be maximized, 
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the optimal solut ion is that set of values x-j and that y ields the 

highest valued contour without v io la t ing any of the constraints. I f 

f (x ) i s to be minimized, the optimal solut ion is that set of values x-j 

and Xg that y ie lds the lowest valued contour without v io la t ing any of the 

constraints. In e i ther case the optimal solution is free to l i e anywhere 

wi th in the constraint set. In addition the function f ( x ) , although 

i l l u s t r a t e d as being nonlinear, can be l inear . F ina l l y , i t is important 

to real ize that the techniques to fol low describe techniques fo r searching 

out th is optimal solut ion. 

Advanced Techniques of Optimal Search 

Indi rect Search 

Ind i rec t search has been described as an optimization technique which 

involves constructing conditions which, i f sa t i s f i ed , 
assure. . . that a given point is indeed a local or 
re la t i ve maximum. These conditions are derived r 
ana ly t i ca l l y from the function under consideration. 

This approach makes use of some derived property of the function rather than 

the funct ion i t s e l f . The most comnon tool of ind i rec t search is the 

t rad i t i ona l max-min calculus. 

A common character ist ic of ind i rec t search techniques is that they 
fi 

tend to iden t i f y optimal solutions without considering nonoptimal ones. 

For t h i s reason, these methods, when applicable, are extremely e f fec t i ve . 
Their appl icat ion to a given problem tends to reduce the i n i t i a l problem 

5 

Ronald Gue and Michael E. Thomas, Mathematical Models in Operations 
Research (London, 1968), p. 26. 

^Douglas J. Wilde and Charles S. Beight ler, Foundations of Optimization 
(Englewood C l i f f s , 1967), p. 18. 
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to one requir ing the solving of a set of equations (at least one) for the 

roots. These roots correspond to the location of optimum solutions and 

can be tested to determine the nature of the optimum point achieved. 

The techniques of ind i rec t search have been investigated by various 

author i t ies in the f ie lds of mathematics and engineering. A common 

character is t ic of these investigat ions is the manner in which ind i rec t 

search techniques are categorized: functions of one variable and functions 

of more than one var iable. These two topics are then fur ther divided in to 

unconstrained and constrained problems.^ I t i s the in tent here to u t i l i z e 

the same approach in order to better develop the t rans i t ion from one stage 

to the next. This approach i l l u s t ra tes the conceptual linkage between 

classical techniques and modern techniques. 

The topic of ind i rec t search covers a wide variety of techniques; and, 

consequently, the discussion to fol low represents a selected portion of 

ind i rec t search techniques, in par t i cu la r those techniques that are best 

sui ted to the reduction of the i n i t i a l problem to one of solving fo r a 

set o f defined roots. The topics to be discussed are the d i f f e ren t ia l 

approach, the Newton-Raphson technique, and the technique of constrained 

derivatives under both equal i ty and inequal i ty constraints. 

The d i f f e ren t ia l approach.—The d i f f e ren t i a l approach to solving 

optimization problems has been traced back to the work of Johannes Kepler 

7See Gue and Thomas, op. c i t . , pp. 15-53; Wilde and Beight ler, 
Ib i d . , pp. 18-95; Douglass J. Wilde, Optimum Seeking Methods (Englewood C l i f f s , 
1964), pp. 10-92; and James M. Dobbie, "A Survey of Search Theory," 
Operations Research, Vol. XVI (May-June, 1968), 525-537. 
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8 

in the seventeenth century. The crux of th is approach is the derivative 

concept of the d i f f e ren t ia l calculus and the fact that the derivat ive is 

defined as a l im i t i ng funct ion; i . e . , for any continuous function f ( x ) , 

the derivat ive of f ( x ) , f ' ( x ) , i s defined as 

l im f ( x + x) - f (x ) 

&x-*0 Ax ' 

provided the l i m i t ex is ts . U t i l i z i ng th is concept, the d i f f e ren t ia l approach 

to optimization theory proceeds according to whether or not the function 

under invest igat ion is defined by a single variable or n-variables. 

Single-variable analysis: The use of the calculus as a tool of 

modern optimization theory follows the same basis as that of classical 

optimization theory. I t is employed to determine points of maximal and/or 

minimal values. However, whereas classical optimization tends to l i m i t 

the function under invest igat ion to at most cubic functions, modern op t i -

mization permits the function to assume whatever degree is best suited 

fo r describing the given problem. At the same time provision is made for 

determining whether or not the function achieves a maximum or a minimum 

at a defined c r i t i c a l point . 

Consider the n ^ degree polynomial f ( x ) . I t is assumed that f (x ) is 

continuous and has a continuous f i r s t derivative in a defined in te rva l . 

The necessary condition fo r f (x ) to have an optimal value within the given 

in terva l is that the f i r s t derivative vanish at some point wi th in th is 

i n te rva l . This "optimal po in t , " however, is one of two types: a maximum 

point or a minimum point . I f two or more points sat is fy the condition 

that the f i r s t derivative be zero at that point , there may be more than 
^Wilde and Beight ler, op. c i t . , p. 16. 
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one point of maximization, minimization, or inf lec t ion . The existence of 

two or more c r i t i ca l points fo r f(x) forces consideration for points of 

re la t ive optima as well as points of absolute optima. 
JL. U 

In order to determine whether or not an n degree function, n >_2, 

has maximum points, minimum points, or inf lect ion points, i t is necessary 

to f i r s t set the f i r s t derivative equal to zero. The resulting (n - l ) s t 

degree function is then solved for i t s cr i t ica l point. Given these 

c r i t i ca l points, the following theorem is applied. 

Theorem 4.1.—Let f(x) be continuous and d i f f e r e n t i a t e through the 

f i r s t m derivat ives , f(x) an n t h degree function. Let x° be any x such 

that f ' ( x ) = 0. Then f(x) has an optimum point at x° i f and only if 

m is even, where m is the order of the f i r s t nonvanishing derivative at 

x°. The optimum value of f{x) is determined by applying the following: 

(1) i f fm (x o ) < 0, f(xQ) is a maximum point; 

(2) i f fm(xQ) > 0, f(xQ) is a minimum poin t . 9 

As an example of th is theorem, consider the following equation: 

f(x) = (x - 4) 6 . Setting f ' ( x ) = 0 yields f ' ( x ) = 6(x - 4)5 = 0, which 

has f ive roots, all of which are x = 4. Thus, x = 4 is a c r i t ica l point 

fo r f (x) = (x - 4) . Continuing the d i f ferent ia t ion process, 

f " (x) = 30(x - 4)4 = 0 at x = 4; 

f (x) = 120(x - 4)^ = 0 at x = 4; 

f ' (x) = 360(x - 4)^ = 0 at x = 4; 

f v (x) = 720(x - 4) = 0 at x = 4; 

f v ' (x) = 720. 

g 
Gue and Thomas, op. c i t . , p. 29. 
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Since the f i r s t nonvanishing derivative is of order m = 6 and is even, 

f (x) achieves an optimum value at x = 4. Since f V l (Xq) = f v l (4) = 720 > 0, 

the point x = 4 is a point at which f (x) achieves a minimum. Had m been 

odd, the point x = 4 would not have been an optimum point. I t would have 

indicated a change in the curvature of f ( x ) . ^ 

Multivariable analysis: The introduction of more than one variable 

into the defining function requires the use of the part ia l derivative. 

This concept is the same as that described in the section on classical 

optimization theory. However, unlike classical optimization, the degree 

of the multi variable function is not restr icted. I t is in the mul t i va r i able 

case that modern optimization theory offers the greatest improvement bver 

the classical use of the d i f ferent ia l calculus. 

As a means of re-establishing the base from which multivariable 

d i f ferent ia t ion stems, consider again the def in i t ion of the part ia l 

derivative. I t is assumed that f(x) = f(x-|, X2»...,x ) is continuous and 

di f ferent iable with respect to the variable being considered. Then, the 

part ia l derivative of f (x) with respect to x . , — - f ( x , , x 0 , . . . , x „ ) , is 
j 

defined as 

a l i m f ( x r x 2 , . . . ,xJ._1, Xj + 3 x j , . . . , x n ) - f ( x p . . . , x n ) 

3x. n x l ' X 2 ' - " ' V dX.-̂ Q 9)T 
J J J 

provided the l im i t exists. This procedure is accomplished by d i f ferent iat ing 

with respect to the part icular x. under consideration, treating a l l other 
J 

variables as though they were constants. 

1 Q Ib id . , pp. 30-31 
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The part ia l d i f ferent ia t ion process reduces the multivariable function 

f(x) = f ( x - | , . . . , x n ) to a problem consisting of n simultaneous equations. 

In the majority of applications, the simultaneous system is nonlinear. As 

in the case of classical optimization, this simultaneous system is solved 

for all possible solutions, each set of solutions being a c r i t i ca l point 

fo r f (x ) . 

Theorem 4.2.--Let f(x} be a continuous function with continuous f i r s t 

and second par t ia l derivatives. A necessary condition for f(x) to have 

an extreme point at x^ is for the f i r s t partial derivative of f(x) to be 

equal to zero when evaluated at x ; i . e . , 
—o 

9 
ax. [ f (x ) ] 0, (i = 1, 2 , . . . ,n) 

x 
* —O 

The vector x i s the solution set sa t isfying -r|— [ f (x ) ] = 0, (i = 1, 2 , . . . , n ) , 
0 oX̂  

Theorem 4.2 s ta tes the condition under which f(x) = f(x-j, X g , . . . ^ ) 

has an extreme point, or set of extreme points. If the function defined 

by f(x) has nonlinear part ia l derivatives, there exists the poss ib i l i ty that 

f(x) has more than one extreme point. Although the vanishing of the f i r s t 

part ial derivative is a necessary condition for f(x) to have an extreme 

point, i t i s not a suf f ic ien t condition. Sufficiency is established at a 

l a t e r point in the study and is related to the concept of the Hessian matrix. 

Definition 4.2.—Let f(x) = f(x-j, x , , , . . . ^ ) be a continuous function 

with continuous f i r s t and second partial derivatives. The matrix formed 

by the second part ial derivatives of f(x) is defined as the Hessian matrix. 
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As an example of the Hessian matrix concept, consider the following 

nonlinear, m u l t i v a r i a t e funct ion. I t is assumed that t h i s function 

defines the cost associated with the development of a hypothetical chemical 

process p lan t . 

f ( x r x2) = lOOx-j + 40,000xj"1x2
1 + 2 5 > 0 0 0 x2* 

The par t ia l derivatives are as follows: 

- [ f ( x r x 2 ) ] = 100 - 40,000 x ^ 1 ; 3X. 

g | - [ f ( x 1 5 x 2 ) ] = -40,000x^x2^ + 2 5 ' 0 0 0 » 

- 4 [ f ( X l • X 2 ) ] = 3*7 C ^ f ( x l ' X 2 ) ] ] = 8 0 ' 0 0 0 X l V ; 

3X^ 1 1 

3x-j sx2 l -^(x l ' X 2 ^ ~ 3x-j ^sx2 » x 2 ^ = 40,000xi^x2
z; 

2 - 2 . 

-2..-2 [ f ( x l > x 2 ) ] = [ f ( x l ' x 2 ) ] ] = 4 0>°°0x i x
2 

__3 

3X r
 C f ( x i ' x 2 ) ] = 4 " [ " 4 C f ( X i ' x 2 ) ] ] = 8 o ' o o o x ? 1 x 2 3 -

The Hessian matrix is formed by posit ioning these second par t ia l derivatives 

as follows: 

ax: 
2 Xj» x 2 ) ] W x r x

2 ' ] 

> X2'J 
ax, 

2 CF(x1, x 2 ) ] 
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The Hessian matrix for the given problem is then wri t ten as 

s o . o o o x j ^ 1 

405000x1~
2x22 

40,000x^x2^ 

SO^OOx^x"3 

The numerical values for the given Hessian matrix are obtained by sub-

s t i t u t i n g values f o r x-| and Xg. 

From th i s example i t is seen tha t the elements of the Hessian matrix 

are obtained by determining the various par t ia l derivatives of a given 

n-variable funct ion. In addition the general form of the Hessian matrix 

can be easi ly generated. For th i s form define yV. = — [-r—- f ( x ) ] , 
I j oXj oXj 

(i = 1, 2 , . . . , n ; j = 1, 2 , . . . , n ) , where x_ is an n-component vector. 

Let H denote the Hessian matrix. Then 

" y l l y'iz y13" ' ' *yTn" 

H = y21 y22 y 23 ' ' ' *y2n 

_ynl yn2 yn2* ' • 'ynn_ 

Definition 4.3.--The Hessian matrix H_ is said to be posi t ive de f in i t e 

i f the form defined by H_ has the property that all of i t s values are 

pos i t ive except when all of the variables are zero. 

The form defined by the Hessian matrix H_ is ( ^ H . ( 3 2 i ) - As an 

example, consider.the form 

[3x1 , 3^2] 
' 11 

'21 

12 

'22 

3X 1 

3X, 



445 

»• 9X2] ~ y l l *12 "9xl" 

, y 2 i yb OJ 1 

X
 

C
O

 
* 

where y - f (x^ , x 2 ) . The expanded form of (9.x) "'"[K 9x) is given by 

~ ( y n ^ x l ) ^21 ^ 9x2^ ' y 12 ( 3 x i ) * ypp(9X2)) 9X̂  

3X2 

= ( s x ^ C y j ' ^ a x ^ + y ^ ( 9 x 2 ) ] 

+ 3 X£ Cy ̂ ( s X i ) + y 22 (9X2)3 

y11(aX1) + y 2 l (3 x
1 ) (9x 2 ) + yi2(9Xi)(9X2) 

+ y2 2(9xZ)Z 

= Yl1(9X1)2 + [ y ^ + y^2](9Xi)(9X2) + y ^ 9Xg)2. 

The y 1|j values are constants. They were obtained by evaluating the 

respective second part ial derivatives of y = f(x-j, X2) at a given value of 

x = (Xj, x 2 ) . The unknown quan t i t i e s , or var iables , are the (9X..), (i = 1, 2 , ) 

If th i s quadratic form is posit ive fo r all 9x = 8X1 f 0 , then the 
9X2 0 

Hessian matrix is posit ive de f in i t e . 

Definition 4.4. Let (9x)\[(9xJ be the quadratic form of f i r s t par t ia l 

derivatives associated with the Hessian matrix H_. The Hessian matrix H 

is said to be negative def in i te i f the form defined by IH has the property 

that all of i t s values are negative except when all of the variables are 

zero. 

This concept can be be t te r understood by considering again the 

quadratic form defined by (9x)TH(8x) = y ^ a x ^ 2 + [y^ + y^] (9Xi) (9x £ ) 

8X 1 2 

+ y22(9x
2)_ • If th i s quadratic form is negative for all (ax) = 

then the Hessian matrix i s negative de f in i t e . 

V1 
9Xo 
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The importance of the Hessian matrix concept is readily established 

when consideration is given to the sufficiency condition for multivariable 

optimization. This condition i s contained in the following theorem.. 

Theorem 4.3.— Let f(x) = f ( x l s x 2 > . . . , x n ) be a continuous function with 

continuous f i r s t and second part ial derivatives. A suf f i c ien t condition for 

f(x) to have a relat ive optima at , that i s , where 

= 0 , (i = 1, 2 , . . . , n ) , 3 f(x) 
3Ki 

x = x 
— —o 

is tha t the Hessian matrix be posit ive def ini te for a re la t ive minimum, 

negative def ini te for a relat ive maximum. 

Further use of the Hessian matrix resul ts when consideration is given 

to the existence of valleys, ridges, and/or saddlepoints. If the quadratic 

form of the Hessian matrix is greater than or equal to zero, i t is said to 

be positive semi de f in i t e . Such a condition indicates that x^, the set 

of c r i t i ca l points for f(.x) = f (x-j, Xg-.-.jX ) , l i e s in a valley, with the 

quadratic form being equal to zero along the valley. If the quadratic 

form of the Hessian matrix is less than or equal to zero, i t is said to be 

negative semi def in i te . This condition indicates that x^, the se t of 

c r i t i ca l points for f(x) = f(x-j, X2>...,X ) , is located on a ridge, with 

the quadratic form being equal to zero along the ridge. Finally, i f the 

quadratic form of the Hessian matrix is posi t ive, negative, or zero, 

depending on the value of a_x, i t is said to be indef in i t e . This condition 

indicates that x is located at a sacIdleDoint. 
—G 
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The nature of the Hessian matrix can also be invest igated by con-

sider ing the row equivalent form of the derived Hessian matrix. Ut i l iza t ion 

of t h i s tool requires the introduction of some additional p roper t ies . 

Theorem 4.4.--A real symmetric matrix k_ of rank r i s congruent to matrix 

B = 

The in teger p i s uniquely determined by A. 

I 0 0 p 0 

0 0 0 r-p 0 

. 0 0 0 . 

11 

Definit ion 4.5.—Two matrices are congruent i f and only i f one is 

obtainable from the other by a succession of pa i rs of elementary operat ions , 

each pa i r consist ing of a column operation and the corresponding row 

12 
operat ion. In each pa i r e i t h e r operation may be performed f i r s t . 

Definit ion 4.6.--The in teger p of Theorem 4.4 i s defined as the index 

of the symmetric, real matrix A. This in teger p equals the number of 

13 
pos i t ive diagonal elements. 

At t h i s point an example is in order . Consider the following 3 by 3 

r ea l , symmetric matrix, 2 

1 

3 

1 

3 

2 

In order to determine the index of the given matrix, i t i s necessary to 

reduce the matrix to the form shown in Theorem 4 .4 . This will be accomplished 

11 

12 

Sam P e r l i s , Theory of Matrices (Reading, Mass., 1952), p. 91. 

Ibi d . , p. 89. 

13 I b i d . , p. 92. 
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by performing the rwo-column pair operations of Definition 4.5. Let ^ . ' ( k ) 
^ 3 

denote the multiplying of row i by k and adding the resul t to row j . Let 

denote the multiplying of column i by k and adding the resul t to 
' J 

s, 

col umn j . 
2 1 3 

2 

0 

0 0 

3 ,2 

2 8 

0 3 

5 1 
2 2 

1 7 
2 2 

0 o' 

5 
2 

0 

c <%(-%) 

11 
5 

- Cr ( 

5 
2 

2 

0 

i 
2 

1 
2 

^ 0 2 
i2 
o f 

0 

1 
2 

8 

0 

1 
2 

1 
2 

0 

0 

( - i ) ~~ 

- c^C 

^COa ('"T̂ Js) ' 

^C&3 Q(Wn) 

2 

0 

2 

0 

1 

0 

5 
2 

1 
2 

5 
2 

0 0 

3 ^ - 8 

0 

1 
2 

11 
5 

0 0 

1 0 

0 0 1 

c o i a ( - i ) 

The matrix 2 1 3 

1 3 2 

3 2 1 

i s equivalent to 1 0 0 

0 1 0 

0 0 1 

Comparing 1 0 0 to !P 
0 0 

0 1 0 0 -I 0 0 r-p 0 

.0 0 1_ _0 0 0 

indicates that r = 3 and 

p = 3. (There are three positive diagonal elements.) Therefore, the 

given matrix has rank equal to three and index equal to three. 

This information is used to determine the nature of the matrix. In 

. ~ x . t _ r _ I T _ . 
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Theorem 4.5.—Let A be any ri x n r ea l , symmetric matrix. Let r be the 

rank of the matrix A and p i t s index. The matrix A is positive def ini te or 

positive semidefinite according to the following: 

(1) p = r < n: A is positive semidefinite; 

14 
(2) p = 4 = n: A is positive def in i t e . 

Returning to the previous example, the matrix 2 

1 

3 

1 

3 

2 

is positive 

def in i t e . The canonical form resulted in r = p = n = 3. 

Although this theorem is res t r ic ted to positive def in i te and/or 

positive semidefinite matrices, an analogous cri terion can be derived for 

negative def ini te and/or negative semidefinite matrices. Such an extension 

i s provided by the following theorem. 

Theorem 4.6.--Let A be any n x n rea l , symmetric matrix. Let r be 

the rank of the matrix A and p i t s index. Then, the matrix A is negative 

def ini te or negative semidefinite according to the following: 

(1) p = 0 and r < n: A is negative semidefinite; 

(2) p = 0 and r = n: A is negative def in i t e . 

Theorem 4.6 indicates that a given n x n rea l , symmetric matrix i s negative 

semidefinite only when i t s index equals 0 and i t s rank i s less than the 

number of rows or columns. A given n x n r ea l , symmetric matrix is negative 

semidefinite only when i t s index equals 0 and i t s rank equals the number of 

rows or columns. 

14 Ib id . , p. 94. 
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As an example of the preceding discussion, consider the problem of 

determining the optimal value of the cost function 

f ( x r x 2 , x3) = x2 + x2 + x2 - 4x1 - 8X2 - 12X3 + 56. 

The c r i t i c a l points fo r f(x- | , x 2 , X3) are those values of x-j, x 2 , and X3 

fo r which 

ax- [ f M l = 0, ( i = 1, 2, 3). 

x 
—0 

3Xi 
f ( x 1 , x 2 j ^3) _ ~ ^ 

f ( * ! 5 x 2 ' x3^ = 2 x2 " 8 

ax. f (X-j j X2 , X^) " 2X3 — 12, 

Equating the system of par t ia l derivatives to zero, 

2 x l 

2x0 

4 = 0 , 

8 = 0 , 

2x3 - 12 = 0. 

The c r i t i c a l points fo r f (x- | , x 2 , X3) are found to be x ] = 2, x2 = 4, 

X3 = 6. The Hessian matrix 

H = 

f n f12 f13 

f21 f22 f23 

f31 f32 f33 

requires evaluation of the fol lowing second par t i a l der ivat ives: 
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9 [ ~ - f ( x , . x9 , x , ) ] = 2 
11 3X1

 Lsx]
 , v V 2' 3; 

12 = 3x7 C3~xT f ^ x l ' x 2 ' x 3 ^ = 0 5 f21 1 
f ( x i » x , ) ] = 0 = f 

13 sx-j 3X3 v 1' 2 ' 3 

9 f ( x i , x0 , x j ] = 0 5 f 
'23 3X2 3X3 'VA15 2 ' 3 

f22 = 3X̂ " ^3x^ f ^ x l ' x 2 ' x 3 ^ = 2 

31 

32 

f33 " 3X2 ^3X3
 f ^ X l ' X2' x 3 ^ " 2 ' 

Thus, 

H = 

2 0 0 

0 2 0 

0 0 2J 

2(3x1)2 + 2(3 x2)2 + 2(3x3)2 . 

3X-j 0 

3X2 
t 0 . Hence, 

3X3 0 

The form defined by H_ is positive for all 3x = 

H is positive defini te and x = (2, 4, 6) defines a minimum point. 
0 

Another approach to determining the nature of the Hessian matrix is 

that afforded by the row rank concept. The Hessian matrix defined by 

2 0 0" 

0 2 0 H = 

0 0 2 

has row rank equal to 3. The index of the Hessian matrix is also equal 

to 3. The Hessian is a 3 x 3 rea l , symmetric matrix, n = 3. Since 

p = r = n = 3, Theorem 4.5 ident i f ies the matrix 
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2 

0 

0 

0 

2 

0 

0 

0 

2 

as being posi t ive de f in i te . 

An important point to note is that the types of problems par t i cu la r l y 

suited to the d i f f e ren t i a l approach are those for which side conditions 

( res t r i c t ions) are not given. This is due to the fact that the introduct ion 

of side res t r i c t ions increases the computational d i f f i c u l t y of the problem 

being investigated. In th is regard, the primary use made of the d i f f e ren t i a l 

approach is in solving nonlinear optimization problems with no side conditions, 

Such functions generally consist of n variables and require solving of a 

1 R 
nonlinear system of f i r s t - p a r t i a l der ivat ives. 

Newton-Raphson formula.--The Newton-Raphson formula is a computational 

technique fo r solving nonlinear equations or systems of nonlinear equations. 

The formula is applicable to e i ther functions o f one variable or functions 

o f more than one var iable. 

Single-variable case: Consider the nonlinear function y = F(x). The 

function defined by F(x) may be of any degree. Suppose y = F(x) is the 

curve shown in Figure 4.7. I t is desired that y = f (x ) be solved fo r a l l 

x such that F(x) = 0. 

The solut ion to y = F(x) = 0 is that set of values of x at which the 

curve defined by y = F(x) crosses the x axis. I f a solut ion (or solutions) 

ex i s t , i t can be obtained by (1) i n i t i a t i n g an i n i t i a l so lut ion, x , 

15,,. 
Wilde and Beight ler , op. c i t . , p. 22. 
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/ / y= F<x) 

/ \ 
/ 1 

/ / j 

j / 

s/ 1 

/ / 1 

/ 1 
/ 1 
/ 1 

i 
1 / 

I / 

1 
1 
1 1 / 1 

— X 
XO 

Fig. 4.7--Newton-Raphson technique 

(2) drawing a l ine tangent to the curve at (Xq , y Q ) s (3) using the 

point where the constructed tangent crosses the x axis as an improved 

solu t ion , x-j, and (4) repeating steps ("1) - (3) until the solution i s 

s u f f i c i e n t l y accurate . 

This same r e s u l t can be achieved by d i rec t applicat ion of a compu-

ta t iona l formula which y ie lds the improved solution point . This formula 

i s given by 

x. = y - F ( x n ) 
sn+l n n 

F T v T 

This formula i s the Newton-Raphson formula fo r non-multipie roo t s . The 

va l id i ty of the formula can be readily seen when consideration is given to 

the f ac t t ha t the tangent l ine a t any point (xn> y n ) i s given by 

y - yn
 := (x - x n ) F ' ( x n ) . 
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The improved value of xn> * n + p Is the value tha t makes the y of the 

tangent l ine equal to zero. For yn = F(*n)> 

0 ' F ( xn> = ( V l ' 

" . F ( x n> " < V l " 

F(x„) 

" F ' (x n ) " xn+l ~ xn 
F ( x p) 

xn+l " xn " F 'O^T * 

Although the derivation of the Newton-Raphson formula considers 
J. L 

y = F ( x
n ) to be an n degree polynomial, the formula i s su i tab le f o r 

solving derivat ive functions fo r c r i t i c a l poin ts . This i s accomplished 

by simply defining the derivat ive function as F(xn) and applying the 

given formula. 

In applicat ion the Newton-Raphson formula i s pa r t i cu l a r ly useful when 

solut ions converge rapidly. Of pa r t i cu l a r importance i s the se lect ion of 

a su i table s t a r t i ng so lu t ion . The location of s t a r t i ng solut ions should 

be made a f t e r inspection of the given function by some su i tab le tech-

nique such as Descartes rule of s igns . This inspection process can be 

used to determine values within which solut ions l i e . 

A1 qorithm 4.1 (Newton-Raphson technique f o r univariable funct ions) 

Step 1. Select a su i table s t a r t i n g so lu t ion , x n . 

Step 2. Calculate F(x„) and F '(x ) . 
" F<xn> 

Step 3. Apply the Newton-Raphson formula xn+-j = xn - p - j x T ' 
n 

where F ' (x n ) f 0. 
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Step 4. U t i l i z i ng xn+- j , re i tera te on steps 2 and 3 un t i l Step 3 

produces no change in xn+-|. 

As a means of demonstrating the Newton-Raphson formula, consider the 

2 

problem of solving y = x - 4x + 3 fo r those values of x for which y = 0. 

Step 1. Suppose an i n i t i a l solution is xq = 3 -̂. 

Step 2. y = F(x) = x2 - 4x + 3: F{3^-) = | . 

y ' - F ' (x) = 2x - 4 : F ' ( 4 ) = 3. 

Step 3. Applying the Newton-Raphson formula, 

F(x ) 
X1 = xo " T f x T o 

-J. A 
~ " 1 2 

x = ^-7- = 3-J-

x i 12 n 2 ' 

Step 4. Reapplying the Newton-Raphson formula, 

F(x,) 
x 2 = x i "FCx^y 

= 37 _ / 25 y / , 26s 
12 M 4 4 m 1 2 J 

_ 37 25 
" 12 " 312 

xo = IS = 3,1 

2 312 ^312' 

I f the i t e ra t i on process is continued, the solut ion w i l l be found to be 

x = 3. However, since y = F(x) = x2 - 4x + 3 is a quadratic funct ion, there 

are two solut ions. The second solut ion, x = 1, can be found by reassigning 

an i n i t i a l s tar t ing solut ion and reapplying the Newton-Raphson technique 
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until the process terminates. As a matter of note, the process terminates 

when xn+-j does not improve over xn> 

The Newton-Raphson formula, although not readily suited for hand 

calculat ions, i s easily programmed for computer use. The selection of 

suitable s tar t ing solutions is of par t icular importance when the cost of 

the computer run is considered. However, the usefulness and appl icabi l i ty 

of the technique j u s t i f i e s i t s implementation as a tool of functional 

analysi s. 

Mul t ivar ia te case: Analysis of a given multivariable, nonlinear 

function for points of optima is accomplished by f i r s t obtaining the 

c r i t i ca l points defined by equating the system of f i r s t part ial derivatives 

to zero and then examining these points fo r maxima or minima. The Newton-

Raphson technique provides a method for solving the given function in a 

direct manner. This i s accomplished by a suitable modification of the 

Newton-Raphson technique for the single-variable case. 

Let y(x) = F(x^, x 2 , . . . , x n ) be the given objective function. Let 

9 V 

= y j Cii) > ( j = 2 , . . . , n ) , denote the f i r s t par t ia l derivative of 

y(x) with respect to variable x , . Let x. be the k t h t r i a l point. Let ay. 

ax. be the n part ial derivatives of the function y'. evaluated at point 
3 

x^, where 

ayj" 
a 

to m 

P 
3X ax.ax„ 
. P. k J P 

y . ip (*k' 
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The Newton-Raphson formula for solving a continuous, multi variable, 

nonlinear function i s given by 

n 

I y j ( W = 0 c y j ( * k ' + L y j p ( 4 ) ( > < p , k+i - V 

where Xp ^ is the value of Xp at i te ra t ion k + 1, and j = 1, 2 , . . . , n . 

The Newton-Raphson formula uses y ( x . ) to estimate the values of the 
JP ~~K 

f i r s t derivatives in the neighborhood of t r i a l point x^. The new point 

x^+-|, where the predicted values all vanish, is selected as a bet ter 

approximation to the solution of y(x) = 0. The i te ra t ion process is 

repeated until all y'. become acceptably small, at which time the i tera t ion 
J 

process terminates. The t r i a l point defined by x^ is the se t of values of 

(x-j, x2 j - . . 9 x n ) fo r which 3 y/ 3 *j = 0* 

The steps required in the Newton-Raphson method for multi vari able, 

nonlinear analysis can be summarized in the following manner. 

A1 qorithm 4.2 (Newton-Raphson technique for multivariable func t ions) . - -

Step 1. Set 3y/3x. = 0 for j = 1, 2 , . . . , n . The solution to th is 
J 

system of simultaneous equations consti tutes the i n i t i a l t r i a l point defined 

by ^ = (x-|, *2> • • • >x
n)^* ^ e vector x^ may consist of more than one set 

of val ues. 
2 

Step 2. Determine * ^ ( - - ) for all ( j , p = 1, 2 , . . . ,n) . 
j P P J 

Step 3. Evaluate all f i r s t and second order part ial derivatives at 

Retain these values for use in the Newton-Raphson technique. 
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Step 4. Apply the Newton-Raphson formula. 

y j ' W = 0 = y j (*k> + t , y j p ( ^ ) ( x P , k+l - v ' -

where yj-(Xj.) = { S y / 3 x j 0 " 1 ' 2 = ' 3 y / ' 3 x j " l > l k , and 

t h 

Xp denotes the p variable at i t e ra t ion k + l . 

Step 5. Repeat i t e ra t ions 3 and 4, using x^+-j for x^, until no 

improvement in the solution vector r e su l t s . When there is no fu r the r 

improvement, terminate the process. The solution vector defined by 

X|<+1 i s the solution to the given problem. 

As a means of demonstrating th i s computational technique, consider 
9 -1 -2 

the problem of minimizing the cost function y (x-|5 x^) = 1 OOOx-j + (4x10 )x j x^ 

+ (2.5x10^)x2 subject to the solution requirements 

0 < x1 < 2200 

0 < x 2 < 8. 

This type of problem is s imilar to inventory control problems where stock 

levels of certain products must not exceed a fixed value. 

Solution: Step 1. Set = 0 fo r j = 1, 2. Solve this simultaneous 
oX » 

\j 

system for the c r i t i ca l points. Define x^, the t r i a l point , as being 

equal to th is se t of c r i t i c a l points. 

|£ j - = 1000 - (4x1 o V ^ 1 = 0 

| | - = (2.5xl05) - (4xl0 9)x^x~ 2 = 0. 
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The solution set is given by x-j = 1000 and x2 = 4. Both of these points 

l i e within the range of values imposed on x-j and x2> Therefore, for k = I 

V "1000" 

1 
" X 4 k -

Step 2. Determine (p, j = 1, 2). 

- = y j = 1000 - H x l O ^ x ^ x " 1 3Y -
ax 

9y_ 
3X2

 j 2 

92y = _L_| 
3X-j 3X-j 3X-| 

.2 
8 y _ 8 1 

9X-|9X2 3X1 

.2 
3 y _ 

9x23x2 3X2 

, 9 , - 1 -2 

(y-j) = y'h = (sx io^x^x"1 

^ - 2 - 2 

,9S -1. -3 

Step 3. Evaluate al l f i r s t and second order part ia l derivatives 

1000 
at Xj = 

4 
Retain these values for la ter use, 

y\ = y-j (X-i) = 0 

y2 = y 2 ( * I> = 0 

y i ' i = y i ' i ' - x- i ' = 2 

y12 = y 1 2 I ^ = y 2 1 I ^ = 2 5 0 

y22 = y Z 2 ^ = 1 2 5 ' 0 0 ° -
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Step 4 . Apply the Newton-Raphson formula 

~ 0 " y j ^ + ^ y j V * k ) ( * p , k+l " xpk^ * 

For j = 1, 2, th is formula expands into 

* i < W y j < 2 k ) + 3 ^ ^ ' P ( ^ ) ( x P , w - V ' 

y 2 ( V i > = W + ^ p ( 4 " x p , k+l - v ' -

Since k = I and n = 2, the f inal form of the expanded Newton-Raphson 

formula i s given by 

y i ( i n ' = y i ' i k ' + ^ II " x
P i> 

+ „ - V ) . 

This form expands into 

y i c * „ ) - > ] ( * , ) + y ; n - X1> , ) + y1"2<x I)(x2 j n - x2 > j ) 

y ^ i i n ) ' + II - * i , I> + y^2(x I)Cx2 > „ - x 2 j j ) . 

Substituting for the f i r s t and second order partial derivatives and for 

x l , I a n d x 2 , I5 

= 0 + 2(x1 - 1000) + 250(x2 - 4) 

y j ^ n ) = 0 + 250(X l - 1000) + 125,000(X2 - 4 ) . 

Setting y\(xn) = V^u) = 0, 

2(x ] - 1000) + 250(x2 - 4) = 0 

250(x1 - 1000) + 125 s000(x2 - 4) = 0. 
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The solution to th i s 2 x 2 system is x-j = 1000, x2 = 4. Therefore, the 

solution vector for the second i t e ra t ion i s given by 

I I I -
" x i , n = V = 

"IOOO" 

x2, II . X 2 . 4 

Step 5. Since Xj = XJJ, no be t ter solution ex i s t s . The i te ra t ion 

process terminates. The function 

subject to 

y(x1 5 x2) = lOOOx-j + (4xl09)x^1x21 + ( 2 - 5 x l ° 5 ) x 2 

0 £ x] £ 2200 

0 < x^ <. 8 

achieves a minimum at x-j = 1000, x2 = 4. The value of the given function 

at x1 = 1000, x2 = 4 is y(1000, 4) - 3,000,000. 

From this example i t can be seen that the Newton-Raphson technique 

provides a means fo r i t e r a t ive ly solving a system of simultaneous equations, 

The technique i s par t icular ly useful when the system of simultaneous 

equations i s nonlinear. Although the i n i t i a l t r i a l point can be the set 

of (x.j, x 2 , . . . , x n ) values for which ay/3Xj = 0, ( j = 1, 2 , . . . , n ) , i t is 

not necessary. For t r i a l points located within a suitable neighborhood 

of the true solut ion, convergence is f a i r l y rapid. 

In application the Newton-Raphson technique is used to find the 

c r i t i ca l points for a given function. The c r i t i c a l points can then be 

used to evaluate the Hessian matrix associated with the given function. 

As noted previously, the value of the Hessian matrix defines the conditions 

under which a set of points defines a maximum or minimum value. Thus, 
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incorporation of the Hessian matrix concept enables a given set of solutions 

to 3y/3x. = 0 ( j = 1, 2 , . . . , n ) to be readily examined for max-min. The 

Newton-Raphson technique provides a means for locating these points. 

Constrained derivatives.—In the study of optimization theory, i t is 

necessary to consider the possible existence of side conditions which must 

be s a t i s f i e d by the optimal solution. As noted in the discussion of 

classical optimization theory, these side conditions can be e i ther equal i t ies 

or inequal i t ies . Although the underlying theory for the optimization 

process is the same as that fo r unconstrained analysis, the introduction 

of side conditions does increase the d i f f i cu l ty of the computations. 

Examples of constrained problems include the amount of stock carried 

in inventory with a limited amount of storage space available, allocation 

of advertising expenses subject to departmental budget r e s t r i c t ions , and 

minimization of costs subject to defined demand levels . Unlike the 

problems of classical optimization theory and basic modern optimization 

theory, the function to be optimized and the side conditions are free to 

assume any degree. Thus, the objective function and the side conditions 

can be l inear or nonlinear. For the techniques of modern optimization 

theory, the functional expressions are generally nonlinear. 

In Foundations of Optimization, Wilde and Beightler consider 

constrained indirect search in terms of s ta te and decision variables. 

These concepts are then incorporated into a se t of derivations defined as 
•I £ 

constrained derivatives. Since the previously noted work is the major 

1 6 I b i d . , pp. 30-37. 
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publ icat ion in the area of modern optimization theory, the discussion to 

fo l low is the resul t of a comprehensive study of the i r work. This dis-

cussion is such that the work of Wilde and Beightler is presented in a 

format conducive to pract ical appl icat ion. Terms are defined as needed, 

and a computational algorithm is presented and demonstrated for each 

discussed technique. 

Equality constraints: The use of state and decision variables is a 

technique fo r dealing with constraints that are expressed as equal i t ies . 

The purpose of th is solut ion technique is to permit 

par t i t i on ing the independent variables into decision 
variables and state var iables, then solving the 
l inear equations fo r the state d i f f e ren t ia l s as l inear 
functions of the decision d i f f e ren t i a l s . The coef f ic ients 
of these l inear expressions [are ca l led] decision 
de r i va t i ves . ' ' 

The technique u t i l i z e d in solving the resul t ing l inear system is one 

that expresses the state d i f fe ren t ia l s in terms of the decision d i f -

fe ren t ia l s . An arb i t rary assignment of numerical value to each of the 

decision d i f fe ren t ia l s uniquely determines the value of the associated 

state d i f f e r e n t i a l . 

As a means of establ ishing a common terminology, the concepts of 

state and decision variables are defined formally in the fol lowing manner. 

Def in i t ion 4.7.--The state variable in a decision problem is defined 

as the variable that is used to describe the system at any given point 

in time. 

Def in i t ion 4.8.—The decision variable in a decision problem is defined 

as the variable that is allowed to assume any value permitted by the problem. 
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The assignment of s t a t e and decision variables i s a r b i t r a r y . However, 

once the assignment i s made, and the decision d i f f e r e n t i a l s ca lcula ted , 

the s t a t e d i f f e r e n t i a l serves to keep the solution within the defined 

feas ib le region. 

In a given decision problem consist ing of N independent va r iab les , 

there wil l be M s t a t e variables and P decision var iab les , where M + P = N. 

When the M s t a t e variables are assigned, there are P = N - M decision 

var iab les . The value of P has been cal led the degree of freedom and 

indicates the number of variables that can be manipulated without regard 

to f e a s i b i l i t y . 

The notation u t i l i z ed in the s t a t e and decision variable approach to 

equal i ty constrained analysis is summarized below. These notational 

symbols are wri t ten as de f in i t ions as a means of s t ress ing t he i r importance. 

Definit ion 4 .9 . - -Le t m, n = 1, Then, = x„ denotes the 
' m n 

s t a t e variable of the problem. 

Definit ion 4 .10.- -Let p = 1, 2 , . . . ,P, where p = n - M and n = M + 1, 

M + 2 , . . . , N . Then, dp = Xp denotes the decision variable of the problem. 

The system of equations re la t ing the s t a t e and decision d i f f e r e n t i a l s 

is given by 

-a y + f ( -^_) 9 S = - T ( ^ - ) 9 d Jzr, { 2 s J m £r , vax n ' p m=l m p=l p r 

JL J2. 
F ( „ * ) » * „ - - Z ( j a ^ d p . 

m=l m p=l p F 

where k = 1, 2 , . . . , M . and f^ denotes the function re la t ing the s t a t e and 
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decision variables. The value associated with sffl and dp represents the 

change effected in both the decision variable and the state variable and 

is ident i f ied as the appropriate decision d i f fe ren t ia l . In formulating 

the system of equations which relates the state and decision d i f fe ren t ia ls , 

i t is assumed that l inear independence is maintained. 

The incorporation of the state and decision d i f ferent ia l concept into 

the analysis of a given problem is achieved via the use of the Jacobian. 

In this analysis the Jacobian of coefficients of the state variables is 

given by 

9f 

a ? 

3f^ 

¥s~̂  

3 f 2 
9SU 

3f, m 
asn 

and has a determinant defined by 

8f, 

3S„ 

9S, 
m 

U i = 
9 ( f ! ' f 2 " * ' ' f m| 

5 S2 5 • . . >S
m) 

3f l 

3S m 

9f. 

' 3S m 

3f m 
8S m 

Two other necessary Jacobians are obtained by (1) replacing f. (k = 1, 2, . . . ,M) 

by the objective function y wherever i t appears and (2) adding to |J| a 

row and column involving the objective function y and a decision variable 

dp. The result ing Jacobians are given by 
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3(f-| s ^ 2 " '" J^k-1' ^ ' 
3(s1 , s 2 , . . ~ y 

k + 1 » • . . , f m ) 

and 

Hy, f r 

9(dp, s-j, s2 , . . .,smJ 

3f m 
3d_ 

! ! L 
3S1 SŜ  * 

3 f k - l 9 f k - i 
3S-j 3S2 

££_ 
3S-| 3S2 ' 

9 fk+l 8 fk+l 
3S i 3S2 

3f 3f m m . 
3Si 3S2 

l f l 
3sm • • 

3f, k-1 
as m 

s&— 
as m 

af k-H 
as m 

af m 
as m 

k = 1. 

3y 9dp 3S-j ' % 
% 

3 f l 
9dp 

3 f l 
3S1 ' 

3 f i • • _ 
3s

m m 

; P = 1, 2 , . . . , p . 

3f2 

3dp 

3f2 

3S -J " 

3f2 

' ' 9Sm 
M 

af m 3f 

3 Sn 

m 
3S m 

§y 
66 

In addition to the Jacobians, use is made of the constrained derivative 

P = ' • 2 p - Tt>e in terpretat ion associated with • •• • & 
i«p 

is that 

defines the constrained derivative of the function y with respect to the 

6y 
decision variable d « •—?— is definpH t*hci r»h . . . 

P a e T i n e Q as the p decision der ivat ive. 

± V 
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Def in i t ion 4.11.--The constrained derivat ive of the objective function 

y with respect to decision derivat ive dp is given by 

j y a(y» / 9 ( f r f 2>- - - ' f m) 

_5dp 3(dp, S-j , . . . j 9(S-j j s^T^TTTs^) 

The value associated with 6y/6_dp represents the change in the objective 

function while holding P - 1 of the decision derivatives constant. The 

resul t is the rate of change in the object ive function that i s a t t r ibuted 

to feasible changes in the p^*1 decision variable. Any change in the p*^ 

decision variable w i l l bring about a change in the corresponding state 

va r iab le . 

One of the shortcomings of ind i rec t search techniques is that they can 

be applied only when the optimal solut ion l i es wi th in the feasible region 

and not on a boundary. As such, equal i ty constrained problems must be 

modified i f i nd i rec t techniques are to be applicable. The use of the 

decision derivat ive modifies the equal i ty constrained problem in such a 

way that the classical theory for i n t e r i o r optima applies. That i s , the 

system defined by the decision derivatives is equal to zero at a feasible 

optimum. 

Theorem 4.7 . - -Let y = F(x-j, x 2 , . . . , x ^ ) be any N-variable objective 

function subject to a set of equal i ty constraints. Let the N variables 

be par t i t ioned in such a way that there are M state variables and P = N - M 

' §y 
decision variables. Let w (p = ' • 2 >- - - ,P) denote the constrained 

- p 

derivat ive of y with respect to the decision variable dp. A necessary 

condition fo r a set of points to be a point of optima is that the system 
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defined by the P decision derivatives equal zero at that point; i . e . , i f 

x* denotes a feasible optima, 

Sy 
= 0; p = 1, 2 , . . . ,P. 

x* 

These concepts are synthesized into an operational format in 

Algorithm 4.3. Although the construction of this algorithm is based upon 

the work of Wilde and Beightler, the presentation shown here is the result 

of the i r work and not a part of i t . 

Alqorithm 4.3 (d i f ferent ia l algorithm for equality constrained 

optimization).--Step 1. Formulate the function which relates the state 

and decision variables. This is accomplished by defining ^ ( s - j , s^, 

d-j, dg j . - . j d ) to be equal to the equality constraint. 

Step 2. Determine the state and decision d i f fe rent ia ls . 

Step 3. Evaluate the Jacobian for the given problem. 

th & 
Step 4. Determine the p decision derivative . 

§y 
Step 5. Set the system defined by vg- equal to zero. Solve this 

- p 

system for the state and decision variables. Using these values, determine 

the corresponding values of the original variables. 

As a means of i l l us t ra t i ng Algorithm 4.3, consider the problem of 

minimizing 

subject to 

y = 1000x-j + (4xl09)x^1x21 + (2.5xl05)x2 

x-jx2 = 9000 

0 < y. <r ?nnn 
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In th is problem, N = 2. Therefore, there w i l l be one decision variable 

and one state var iable: M = 1 and P = N - M = 1. Since the selection 

of the state and decision variable is a rb i t ra ry , suppose the state variable 

is x2 and the decision variable is x.|; i . e . , s.j = Xg and d̂  = x-j. The 

operations leading to the optimal solut ion are summarized below. 

Solut ion: Step 1. Formulate the function which relates the state and 

decision variables. This is accomplished by defining s2»*«.»s
m> 

d-j, d 2 , . . . , d p ) to be equal to the equal i ty constraint . Therefore, 

f o r k = 1, f-| (s-jd-j) = d^s-| - 9000 = 0. 

Step 2. Determine the state and decision d i f f e ren t i a l s . 

(1) the state d i f f e r e n t i a l : 8f^/3s-| = d-j. 

(2) the decision d i f f e r e n t i a l : afj/sd-j = s-j. 

Step 3. Determine the Jacobian. For th i s problem the Jacobian is 

given by 

3(y. V 

3 (d-j , S-j) 

3d, 

3f 1 
3d 1 

3S-, 

3S 1 

Before 3y/3d-j and 3y/3s-j can be determined, i t is necessary to express 

the objective function y in terms of both d-j and s-j. This is accomplished 

by subst i tu t ing fo r x-j and x2 in the or ig ina l y . The resul t of th is 

subst i tu t ion is the nonlinear expression 
y 

Then, 

I000d1 + (4xl09)d^1s1~1 + (2.5x105)s ] 

| ^ - = 1000 - (4xl09)d~2s~1 ; 
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I f - = (2.5x105) - (4x109)ci1 '1s;2. 
dS-j t » 

3 (y» f-j) 
With these values, — n r — r r can be wr i t ten as 3 (d*| ysyy 

1000 - (4xl09)d~2s1" 9 ^ ~ 2 ~ - 1 (2.5xl05) - (4x l0 9 )d^s^ 2 

51 

Evaluation of th is determinant y ie lds 

5 ( d j a l ~ y = d-j [1000 = (4xl09)d1"2s^1] - S l [ ( 2 .5x l0 5 ) - (4xl09)d^1s1"2] 

= 1000d1 - (4x l09 )d j1s^1 - (2.5xl05)s1 + (4xl09)d1"1s^1 

= 1000d1 - (2 .5x l0 5 )s 1 . 

Step 4. Determine the decision der ivat ive. Since there is only 

i y 
one decision der ivat ive, th is requires only the determining of . 

§y a(y» f
1 » - - " f n , ) / 3 ( f

r . . . > f
m ) 

For the given problem, 

§y _ 3(y» f-() / 3f' 

6d "̂ ~ aTd^TT-j ) / 3s 

= [1000d1 - (2.5xlO )J,/d-j 

SJ 
d-. 

= 1000 - (2.5x105) S1 

'1 

Step 5. Apply Theorem 4.7 to determine the values for d̂  and s^. 

This theorem requires = 0 at optimal points fo r a l l £. Since there 
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is but one decision der ivat ive, th is stop requires only the solving of 

the resul t ing equation. 

r s i 
—-j— ~ 1000 - (2.5x10 )-r— = 0 
- d l a l 

c S -i 
1000 = (2.5x10 ) ^ -

1000d1 = (2.5X105)S-J 

- _ 1000 ^ 
1 5 1 1 2.5x10 1 

1000 d 

250,000 1 

s i = 25o d r 

Since d^s-j - 9000 = 0 can be wr i t ten as d-jS-j = 9000, 

_ 9000 

«y 
Subst i tut ing in to yg - = 0, 

d l S1 

. _ 1 /9000^ 
S1 " 250 * S-j ' 

s* = 36 

S-J = ±6. 

Since negative values are not permitted, s-j = x^ and 0 £ £ 8, the 

value of s-j w i l l be 6. For s-j = 6, d-j = 1500. The optimal point fo r the 

given problem is x-j = 1500 and = 6. Both of these values are wi th in 

the imposed l i m i t s . The value of y is 3,444,444.44, to the nearest 

hundredth. 
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Inequali ty cons t r a in t s : Tha decision derivat ive concept can be 

extended to include optimization problems in which the function to be 

optimized is r e s t r i c t e d by a set of inequal i ty r e s t r i c t i o n s . Such problems 

are characterized by one of the following types.* 

(1) minimize y(x) subject to the conditions tha t x = ( x , , x O J . . . , x ) > 0 
_ — I 2 n' — 

f o r every x. (i = 1, 2 , . . . , n ) and f k ( x ) > 0, (k = 1, 2 , . . . , K ) . 

(2) maximize y(x) subject to the conditions that x = (x-j, Xgs.-.jX ) 0 

f o r every x ^ i = 1, 2 , . . . , n ) and f k ( x ) < 0, (k = 1, 2 , . . . , K ) . 

In both types of problems the function to be optimized is permitted to be 

nonlinear. In addi t ion, the cons t ra in t functions can be e i t h e r l inea r or 

nonl inear . 

In extending the decision derivat ive concept to include inequal i ty 

cons t ra in t s , i t i s necessary to express the inequa l i t i es as e q u a l i t i e s . 

This i s accomplished by introducing an appropriate slack variable which 

measures the d i f ference between the value of the function and zero. 

In the discussion to follow, i t i s assumed that the optimization 

problem i s one which requires the minimization of a given object ive function 

subjec t to the conditions imposed by requiring xfi >_ 0 fo r a l l n variables 

and the s e t of functional r e s t r i c t i o n s . The techniques and general theory 

can be extended to maximization problems by simply redefining the conditions 

under which optimali ty i s achieved. 

The pr incip le i nd i r ec t search technique fo r general nonlinear optimi-

zation is the d i f f e r e n t i a l algorithm. This technique u t i l i z e s the con-

s t ra ined derivat ive in a manner s imi lar to that of the preceding sec t ion . 

In addi t ion, the concept of the Jacobian is expanded to include the 
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constrained derivatives of the d i f ferent ia l algorithm. Although other 

nonlinear optimization techniques ex is t , th is study of indirect search 

techniques w i l l be confined to the d i f ferent ia l algorithm. The reason 

for this is the fact that the d i f ferent ia l algorithm can be applied to 

any type of continuous, nonlinear, different!*able problem. 

The theoretical development of the d i f ferent ia l algorithm is due to 

18 

Wilde and Beightler. The technique moves toward the optimum feasible 

solution of a given problem by systematically moving from one t r i a l solution 

to another. At each t r i a l point, the surrounding neighborhood is invest i -

gated to determine whether or not another point provides an improvement 

on the current solution. Since i t is assumed that the c r i t i ca l constraints 

at any given t r i a l point can be ident i f ied, indirect search is applicable. 

The technique employed is that of the d i f ferent ia l algorithm. 

The use of the d i f ferent ia l algorithm requires that the t r i a l point 

be examined for sensi t iv i ty to changes in the state and decision variables. 

This is accomplished by determining the rate of change of the optimum 

value with respect to changes in the constraint function. With this 

approach, the constraint functions are forced to a value of zero. 

In the analysis to fol low, denotes the k^1 constraint function 

and f k denotes the numerical value of f k ( x ) . The values attr ibuted to 

each of the f^ represent M new variables and are free to assume arbitrary 

values. The vector of values associated with each f^ (k = 1, 2, . . . ,M) 

is denoted by f_. 

^ 8 Ib id . , pp. 44-95. 



474 

Definition 4.12.--Let y be the defined objective function. Let f be 

the column vector of M arbi t rary f. values. Let -r—- = -r— f u ( x ) . The 
k n

 3 x
n

 k -
§y 

constrained derivative of y with respect to » denoted i s given by 
k 

§y 3(^1 > f2 J • • •»"̂ i<—i * y > ^ î +"j»• • • i > f2® * * * '̂ nî  

6_f̂  3 (s i s s^ttttis^) j 3 (s 19 i^rrr^r 

where sm i s the s ta te variable. 

Definition 4.13.— Let sm denote the s ta te variable. Let d denote m p 

the p^'1 decision variable. The constrained derivative of the s with 
m 

respect to d , denoted , i s given by 
6sr 

FP 

<$S m = _ 3 ( f r f 2 a ' " / ^ f l 3 f 2 ' " " V 

i d p s 2 " " ' s m - l ' d p ' V l ' - j ^ " s r s 2 ' - " ' s n 7 ' 

In both defini t ions i t i s assumed that the constraint functions have 

been written in terms of both the s ta te and decision variables. The value 

6y 
associated with indicates the change in the optimum value result ing 

— . 

from a change of one unit in the value of the associated constraint function, 

Consider again the problem of minimizing 

subject to 

y = 1000x.j + (4xl09)x1"1x21 + (2.5x105)x2 

x^x2 = 9000 

0 < x i < 2000 

0 < X2 < 8. 
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This problem was found to have a minimum value at x-j = 1500 and Xg = 6, 

where x-j = d-j and Xg = s-j. In terms of the preceding discussion, the 

problem would have the form 

y = 1000d1 + (4x109)d"1s^1 + (2 .5xl0 5 )s 1 

subject to "F-j (s i , d-j) = d-jS^ - 9000 = 0. The only value fo r s.. (i = 1, 2 , . . . , M ) 

i s s-j. Therefore, according to Definit ion 4.12, 

and 

give 

| f j = -(4xl09)d1~1s1"2 + (2.5x105) 

9 ^ 

3S-j ~ d l 

+ 2.5x105] 4 d] 
- 1 d ] s 1 

_ 2.5x10 4x109 

1 "J s-, 

For d-j = 1500 and s-j = 6, 

§y _ 250,000 4,000,000,000 
6f-j " 1500 ' " 2,250,000(36) 

= 166.67 - 49.43 

6_y 
= $117.24. 

i f . 

This means tha t i f the cons t ra in t were X-|X2 = 9001 , the increase in cost 

would be $117.24. 

Optimization of a given object ive function subject to K const ra int 

funct ions i s achieved by f i r s t equating each of the K inequa l i t i e s to zero. 
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This is accomplished by subtracting the slack variable (k = 1, 2 , . . . , K ) 

from each of the K inequali t ies f k (x ) >_ 0. This transforms the optimization 

problem (assumed to be one of minimization) into the following: 

minimize y(x) 

subject to 

= 0; 

x > 0; 

f k i °-

The vector defined by _x is assumed to be contained within the feasible 

region defined by the constraint se t . 

Application of the d i f fe rent ia l algorithm requires that M of the K 

slack variables equal zero at the vector x; i . e . , for M of the K variables f^, 

f m = 0, m = 1, 2 , . . . ,M, 

f k > 0, k = M+l, M+2,...,K. 

This requirement modifies the optimization problem and expresses i t in 

the form 

minimize y(x) 

subject to 

y * ) = 0 , m = 1, 2 H, 

f
k ( x ) - f k = o, k = MH, M+2 K, 

21 i 0. 

The constraint fm(x) = 0 is said to be a t ight constraint . The constraint 

fl<(x) ~ f|< = ° ' f o r > °> 1 s s a i d t 0 b e a loose constraint . The M 

t ight constraints will be considered as independent variables. In addition, 

with each t igh t variable fffl = 0, there is an associated constraint equation, 

y * ) - v o. 



477 

As in the case of the equality constrained problem, i t is necessary 

to a rb i t r a r i ly select s ta te and decision variables. However, this 

selection i s bet ter controlled under inequality constraints than under 

equality constraints . 

The s ta te variables vary uncontrollably when the decisions 
are [changed] and may therefore increase or decrease, 
but no variable i s permitted to become negative. There-
fore , i t i s unwise to designate a variable as a s ta te 
[variable] i f i t s value at x is already zero. . .any 
variable having the value zero at x must be treated 
as a decision [variable] and never decreased. '9 

20 

In developing the d i f fe ren t ia l algorithm, i t i s assumed that M 

of the constraints have been made equal to zero by equating f (m = 1, 2 , . . . ,M) 

to zero and that M < N, N being the number of variables defined for the 

problem. Of the N variables, N - M of the variables xn have been selected 

as decision variables. The decision variables will be designated d^, 

R = 1, 2,. . . ,N-M. The M s ta te variables will be designated s , m = 1, 2 M. 

I t is assumed tha t s > 0 for all m and dD > 0 for all R. 
ill K — 

The d i f fe ren t ia l algorithm u t i l i ze s the constrained derivative of 
+*h 

sm with respect to the p decision variable d concept of Definition 4.13 
r 

and the constrained derivative of the objective function y with respect to 

the k*"*1 constraint function concept of Definition 4.12. In addition, use 

i s made of individual slack derivatives. 

Definition 4.14.--Let f^ denote the t ^ constraint written as a function 

6s sy 
of the s ta te and decision variables (t = 1, 2 , . . . ,M) . Let and 

6 f t ^-ft 

9 Ib id . , p. 48. 

20 
The general development of the d i f fe ren t ia l algorithm is credited to 

Wilde and Beightler. The discussion and algorithmic development presented 
here is an elaboration of the i r work for the purpose of understanding and 
formalization. See i b i d . , pp. 44-62. 
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denote the constrained slack derivative of with respect to and the 

constrained slack derivative of y with respect to f ^ , respectively. Then, 

-sm _ ^ f t + l ' f t + 2 " * * , f m' f1 a * ' ' , f t - 1 ^ / 8 j f r f 2 " ' " V . a n d 

-~ft sM+25' *' ' s m' s l ' s 2 ' " * 'Sm-P / ^ s l ' s2 V 

5y 3(f-|S » y» ^t+1 ' ' " '^m) / 3 ^ 1 ' ^2 

.j. 9̂  s-j j $2»• • • 9 I 9 (s15 ^ p r r y " 

§y 
The slack derivative -^-measures the rate of change of the objective 

- t 
X L 

function with respect to changes in the t constraint , with all other 

decisions and t ight constraints held constant. At all points other than 
«y 

the optimum, the value of ts— depends upon the variables which are 
- t 

designated as s ta te variables. 

Necessary conditions for a given point to be an optimum point can be 

established by considering the constrained derivative of the objective 

function with respect to both the decision variables and the slack 

variables. These conditions are given in Definition 4.15. 

Definition 4.15.--Let y be any constrained function that is to be 
£y 

minimized. Let denote the constrained derivative of y with respect to 

the set of decision variables, being ident i f ied as the decision 
§y 

derivative. Let denote the constrained derivative of y with respect 
sy 

to the set of slack variables , being ident i f ied as the slack derivative, 
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Then, a necessary condition for y to have a minimum value at a given 

solution vector x is for 

zL 
6d 

§y 
> 0 and 1 0. 

x x_ 

The condition described here is defined as the nonnegative conditions for 

a minimum. 

Definit ion 4.16.--Let y be any constrained function that is to be 

minimized. Let dR and f t denote the R th decision variable and the t t h 

constraint, respectively. Let ---r- denote the constrained derivative of y 
—• R 

th & 
with respect to the R decision variable. Let denote the constrained 

£ ' t 

* • t f*l 
derivative of y with respect to the t t igh t constraint. At a minimum 

point x, 

and 

\ 
= 0 ( R = 2 , . . . ,N-M) 

— R / 

(h) f t = 0 ( t = 1, 2 , . . . ,M) . 
t / 1 

The condition described here is defined as the complementary slackness 

condition. 

Definit ion 4.17.--Let y be any constrained function that is to be 

9dr 
minimized. Let |^— denote the part ial derivative of y with respect to the 

R 
. . . §y 

decision variable d^. Let denote the constrained derivative of y with 
— R 
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th ^ 
respect to the R decision variable. Let denote the slack derivative. 

3f ~ 
Let XT' denote the part ia l derivative of the constraint set with respect 

R 

to the decision variable dp. Let x_ be any t r i a l point. A necessary 

condition for x to be a minimum point is for 

+ ( ? ) ( ¥ ) • ( r " i , z n _ m ) 

when evaluated at 

The value defined by |^— is obtained by par t ia l ly d i f fe ren t ia t ing the 
R th 

objective function with respect to the R decision variable. This is 

accomplished while ignoring the set of constraint functions. The part ial 
9f 

derivatives required for -r~r~ are obtained by direct d i f ferent ia t ion of the 
R 

t t h constraint , where f t is written as a function of the s t a t e and decision 

3f 3f. 
variables and the derivatives of 7-7— are given by 

R 3dR 

The condition defined by Definition 4.17 can be rearranged into the 

form 

= (!f) - (17)61) • 
This form expresses the decision derivative vector in terms of the uncon-

av & 
strained gradient ^ and the correction factor ( j j rHgJ) . The correction 

factor serves to keep the constraints t i gh t . 

Suff ic ient conditions for a solution vector x to be a minimum value 

are given by the conditions of nonnegativity and complementary slackness. 

For a nonsingular, nondegenerate solution, the conditions set forth in 

§y 
6d 
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Definitions 4.15 and 4.16 are su f f i c i en t to guarantee a local minimum. 

Global minimization i s achieved by requiring the objective function y and 

the feasible region to be convex. 

The d i f fe rent ia l algorithm for solving constrained nonlinear optimi-

zation problems u t i l i zes two more tools . The tools are the loose constraint 

§ f k § f k 
derivatives r j - and -r~~. <Sdm Sr. — m — t 

Definition 4.18.--Let ^( .Sj ti) denote the loose constraint of a 

guven optimization problem, where the constraint is written as a function 

of the vector of s ta te variables £ and the vector of decision variables d_, 

Aft, 4-U 
k = M+l» M+2,...,K. Let denote the constrained derivative of the k 

— m 
4-U 5f j, 

loose constraint with respect to the m decision variable. Let -r#- denote 
^ f t 

the constrained derivative of the k t h loose constraint with respect to the 

t t h 1:19ht constraint . Then, fo r k = M+l , M+2,...,K5 and t = 1, 2 , . . . ,M, 

and, 
- f k 3 ( V f-j , - • ) 

nr / f 2 5 . . . , f ) 
m' . 

H , S "j 9 • ' ' ' 'sm^ j ( 3(S-j , S2 , s ) 5 

"' * nr 

u 

a ( f r f 
29'1 ' * ' f t - l ' f k ' f t + T " - g / 

« f t 3(s-| 3 s 2 ' ' * *'sm) / ^2 j • • . 

At th i s point a brief review of the in i t i a l optimization problem and 

of the necessary modifications is in order. The purpose of th is review is 

to bring into focus all tha t has been done in formulating the problem 

into one amenable to the d i f fe ren t ia l algorithm. 
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The problem being invest igated has the form 

minimize y(x-j, Xgs.-.jX^) 

subject to the K inequa l i t i e s 

(x) ~~ ^ (X"j» *2' • *"5 ̂ j\| ̂  k ~~ 1» 2 , . . . , K; 

T 

x ~ (X-|) x2 , . . . , xN) > 0. 

The K inequa l i t i e s have been transformed into equa l i t i e s by introducing 

the K slack variables f ^ , k = 1, 2 , . . . , K . Of these K slack var iab les , M 

have been se t equal to zero at the solution vector _x. With t h i s adjustment, 

the i n i t i a l problem takes on the form 

minimize y(x) 
subject to 

fm(x) = 0 (m = 1, 2 M) 

fk(il) ~ f k = 0 (k = M+l , . . . ,K) 

x. L 0, 

where fm(x) i s a t i gh t cons t ra in t , "^(x.) ~ ^ a l ° o s e cons t ra in t . 

Upon introduction of the s t a t e and decision var iab les , the problem is 

formulated as 

minimize y ( s 1 5 s 2 , . . . t s m , d 1 , d 2 , . . . , i ^ _ M ) 

subject to 

^ t^ s l ' s 2 " ' ' ' s m ' d l ' d 2 '" ' ' ' d N-M^ ~ ^ 

V s ! ' s 2 ' ' " ' s m ' d l ' d25 • ' ' >dN-M^ f k " 0 

f o r t = 1, 2 , . . . , M and k = M+l, M+-2,...,K. An additional requirement i s 

tha t £ and <d both be nonnegative. I t i s th i s formulation tha t i s solved 

by the technique of the d i f f e r e n t i a l algorithm. The values f o r s n , s 0 , . . . , s , 
1 2 m 

d-|, d 2 , . . . , d N _ M will be the values of the x i (i = 1, 2 , . . . , N ) to which the 
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The general approach of the d i f f e r e n t i a l algorithm requires tha t the 

§y sy 
decision and slack derivat ives (^— and ^ - s respect ively) be evaluated at 

— m — t 

any feas ib le nonsingular, nondegenerate point . This evaluation can be 

accomplished through the use of the appropriate Jacobian or system of matrix 

§y §y 
equations. The signs of both - and ^j=- can then be examined for non-

— m — t 

nega t iv i ty . If any decision or slack der ivat ive is negative, the value 

of the object ive function y can be improved by increasing the dffl or f^ 

value, whichever appl ies . If the nonnegative requirement f o r 
§y 
- r - r - a n d - r y - i s s a t i s f i e d , the complementary slackness conditions are 
o d„ or. 
— m — t 

examined. The complementary slackness conditions can be violated only i f 

jy 
(1) a decision var iable , d , and i t s corresponding derivat ive -r-r-, are 

ni - m 

both posi t ive or (2) a t i g h t cons t ra in t , f ^ , and i t s corresponding derivat ive 

§y 
— are both pos i t ive . If the complementary slackness conditions are 

^- ft 

v io la ted , the value of y can be improved, by decreasing the value of dm 

or f^.. The appropriate decrease i s determined according to the v io l a to r . 

Decreases are permissable so long as nonnegativity i s maintained. The 

algorithm terminates when both nonnegativity and complementary slackness 

are s a t i s f i e d , as t h i s determines the existence of a local minimum. I f 

the object ive function i s convex, the minimum is a global minimum. 
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The d i f f e r en t i a l algorithm with inequali ty constraints can be writ ten 

as a ser ies of sequential computations. This se r ies of computational steps 

i s the resul t of a detai led analysis of both theory and examples and i s 

presented here as a means of formalizing the computational procedure. 

Algorithm 4.4 (d i f f e r en t i a l algorithm with inequali ty cons t r a in t s ) . - -

Step 1. Begin the search at any feas ib le point = (x-j, X N^ ' 

Step 2. Determine the number of t i g h t cons t ra in ts . Denote t h i s 

number by M. With K i n i t i a l cons t ra in t s , th i s will leave K - M loose 

const ra ints . 

Step 3. Determine the s t a t e and decision variables . If any variable 

has a value equal to zero, i t must be a decision variable . If there are 

no variables with an i n i t i a l value equal to zero, the selection of s t a t e 

and decision variables is a rb i t r a ry . Reformulate the problem in terms 

of the s t a te and decision variables . 

Step 4. Obtain the decision derivative by evaluating the Jacobian 

§y 3(y, ^ ^ i ' ^2 ' ' ' ' ' *m^ 
6_d̂  3 (dp, s - j , . . . j s^) j 3 (s -j, $2 s • • • s s'm) 

at the solution point . The decision derivative can then be examined to 

§y 
guarantee that the nonnegativity condition is s a t i s f i e d 0 at Xj) and 

— R 
sy 

tha t the complementary slackness condition i s s a t i s f i e d ((TJ—)d = 0). 
— R r 

Step 5. Obtain the slack derivative by evaluating the Jacobian 

~L_ = f 2 ' " ' » f t - T f t + l ' ' *' j 9 ( f i » 

t 8 (S I , S2» . . . jS^ ) f 3 ( s - j , s 2 s . . . , s ^ ) 
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at the solution point. The slack derivative can then be examined to 

sy 
guarantee that the nonnegativity condition is sa t is f ied (TV-> 0 at xT) and 

— t 
iy 

that the complementary slackness condition is sa t i s f ied ((-rr-)f+ = 0). 
— t t 

iy iy 
Step 6. If ei ther —j— or -^r- violates the nonnegativity requirement 

or complementary slackness, adjust the appropriate decision variable or 

t ight constraint as indicated by the violator. In some cases, i t may be 

feasible to adjust both the decision variable and the tight constraint. 

Determine the direction of adjustment by evaluating (i = 1, 2 , . . . ,N) 
i 

at Xj. The adjustment will result in a new tr ia l point, x ^ . 

Step 7. Using the new t r ia l point x^j, determine any change in the 

assignment of t ight constraints resulting from the change in solutions. 

Reapply Steps 2 through 5. If an optimum solution does not resul t , 
proceed to Step 8. 

Step 8. Determine the constrained derivative of each of the k constraint 
th —^ 

functions with respect to the m decision variable, and the constrained 
— m 

derivatives of the mth s tate variable with respect to the p t h decision 

-sm 
variable This is accomplished by evaluating 

- p 

- f k _ 9 ( f k ' f r f 2 ' ' " ' fm| / ^ f l ' f 2' * ' ' 5 fm^ 

—dm ^ d m ' fV f 2 ' - ' : 7 ¥ J / 8 ^ s l ' s 2 srr) 

and 

- m =
 f 2 " " J V / 8 ^ f l ' f 2 ' " ' 'fm^ 

-dp a(s-j r s 2 , — *s
m-i * d

p
5 sm+l"*"s~n7 / ^ T s 2 , . . . , s j 
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at the t r i a l point. The values of these constrained derivatives are used 

to indicate how far along the t igh t constraint the solution is allowed to 

move. 

Step 9. Reapply the test for satisfaction of both nonnegativity and 

complementary slackness (Steps 4 and 5). I f an optimum has not yet been 

found, reapply Steps 2-9. Reiterate Steps 2-9 unt i l nonnegativity and 

complementary slackness is sat is f ied. Then, proceed to Step 10. 

Step 10. An optimal solution (a local minimum) has been found when 

-dR 
> 0; 

§y 
w ^ - 0 ; 

§y 
( i ^ ) d R = 0 ; and> 

i y 
^ ) f t = °-

I t is assumed that t = 1, 2 , . . . ,M and R = 1, 2,.. . ,N-M. 

The following numerical example, taken from Wilde and Beightler, w i l l 

serve to demonstrate the sequential processes of the d i f ferent ia l algorithm. 

The problem under investigation is one of minimizing a nonlinear function 

subject to a set of nonlinear constraints. Analogous administrative 

problems can be found in cost minimization problems, nonlinear inventory 

problems, and budget allocation problems. 

21 

21 Ib id . , pp. 59-62. 
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mini mize y = -e 

subject to 

[(XJ-L)2 + (X2-2)2] = -exp[(x- l ) 2 + ( x , - 2 ) 2 ] , 

f l ( x l 

f 2^ x l 

f 3 ( x l 

x2) = x-j - X2 0 

X2) = -e + x2 > 0 

x2) = -2(x-| -1) + x2 >_ 0 

X| > 0 

I terat ion I : Step 1. Let X -I 

> 0. 

Step 2. At _Xj, there is but one t igh t constraint, f-|(x i> Xg)• There-

fore, M = 1. Since the problem contains three i n i t i a l constraints, there 

w i l l be two loose constraints, f2 ( x i > *2) an<* ^ V x i s x2^' 

Step 3. Determine the state and decision variables. Since there are 

two independent variables, N = 2. With M = 1, there wi l l be N - M = 2 - 1 

decision variable and one state variable. Since neither x-j nor x2 have a 

value of zero in the i n i t i a l t r i a l point, the selection of the state and 

decision variables is arbi trary. Therefore, le t x-j = d-| be the decision 

variable and x2 = s-j be the state variable. 

= 1 

mini mi ze y 
[ ( d r l ) 2 + ( s r 2 ) 2 ] 

subject to 

f ] (^1» S-j) - d-j - S-j = 0 

" d l 

f 2 ( d ] > s-j) = e 1 + s1 >_ 0 

f3(d-|. s1) = -2(d-j-1 )2 + s-j _> 0 

s_ = (s,) > 0 
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S t e p 4 . Obta in t h e dec i s ion* d e r i v a t i v e by e v a l u a t i n g t h e J a c o b i a n 

§y 
j £ - a t d ] = 1 , s 1 = 1 . 

s ( y , / 3 ( f r 

- d R 3 ( d R s S1 " ' " s m ^ / ^ ~ s l ' s 2 5 * *' ' ^ n 7 

For t h e g iven p rob lem, 
# 

6 y S y 

5d-j . 

^ ( y s f - j ) / ^ ^ i ^ 

^ (d-j» S-| ) j 9"( S-| ) 

SL. 
3d-j 3S-j 

3 f j 9f i 

3d-j 3S-j 

3 S n 

C ( d r i r + ( s o - 2 ) ] ? 

S i n c e y — e and f-j = d-j - s-| , t h e r e q u i r e d p a r t i a l 

d e r i v a t i v e s a r e 

3 d 
- = - 2 ( d r l ) e 
1 1 

| f " - 2 ( s 1 - 2 ) e C < d l " 1 ) 2 + ( S T 2 > 2 ] ; 

3f 

"3cU 

1 _ = 1; and, . 

3 S i 
•2sn 
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Evaluating these par t ia l derivatives at d, = 1 and s, = 1, = 0* 
I 1 3d, ' 

- -2y; 
3S 1 ad 1 

3f, 
U and, = -2. Therefore, 

1 

§y 
6d, 

0 -2y 

1 - 2 
v ( -2) 

= 2^ 
- 2 

= -y 

r ( d , - l ) 2 + (s , -2)2 

= - [ - e 1 1 ] 

= e at d̂  = 1 and = 1. 

§y 
S 1 n c e Th7 ~ e > 0, the nonnegativity requirement for the decision derivative 

— 1 
§y 

is sa t is f ied . However, = e( l ) f 0. This violates the condition 

of complementary slackness. The value of d-j can be reduced as a means of 

improving ( further minimizing) the value of y at x-j = d-j = 1 and x2 = s1 = 1. 

§y 
Step 5. Obtain the slack derivative by evaluating the Jacobian at 

- t 
d1 = 1, S ] = 1. - r 

6y 

sfl 
s 9 ( f r f 2 , . . . , f t _ y y, f t + 1 3 . . . , f r n ) / 3 ( f r f 2 fm) 

^ 5 1 J \ • • • 3 
^29 " *5 

For the given problem there i s only one t i g h t cons t r a in t , f , . Therefore 
I 

t = 1. In addit ion there is only one s t a t e var iable (M = 1) 

/ H ± 
/ 3S1 

av ' 9 f ^ 
6 f t = «f j" = 3 S -j 
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The required part ia l derivatives are 

3V [ ( d r i r + (s, -2)^] 
! f - = -2(S l -2)e 1 1 

3 S -j " n 

I f - = -2s 
3S1 1 ' 

At d̂  = 1 and = 1, ||— = -2y and | ~ = -2. Therefore, 

& _2y C ( d r l )
2 + ( s r 2 ) 2 ] 

= - ^L = v = _e 

«y' 
At d-| — 1 and s-j = 1, = -e < 0. This violates the requirement that 

the slack derivative be nonnegative. This indicates that the value of y 

can be improved by relaxing the constraint f j (d- | , s.j); i . e . , by le t t i ng 

f 1 (d^ 9 s-j} become a loose constraint. Since this results in a system free 

of t i gh t constraints, i t is more feasible to do this than adjust d^. 

Step 6. Since the nonnegativity conditions are violated by both the 

decision derivative and the slack derivative, i t is necessary to determine 

the direction in which any adjustment is to take place. This is accomplished 

by evaluating the unconstrained derivatives a t ' k j . The unconstrained 

derivative is given by par t ia l l y d i f ferent ia t ing the objective function 

with respect to each of the N independent variables. 

( x r l ) 2 + (x?-2)2 

y = -e 
2 *_ 0 \2 

^ - l ^ - 1 5 + ( X 2 " 2 ) 

^ = - 2 C x 2 - 2 ) e t X ' - 1 ) 2 + ( V 2 > 2 , 
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At Xj = V " l" 

X 2 1 » = 0 anc* = 2e. The direct ion of change w i l l 
ax-j ax2 

be made by holding x-j constant while varying x,,. Since ^ (d-|» s-|) is to 

become a loose constraint as indicated in Step 6, i t is necessary to 

1 
examine the value of . Since s-j = x2 , th is w i l l be accomplished by 

gf 
evaluating — - for possible adjustments to the value of x0 . 

O Xrj 6 
9 f l 
3 X 2

 = " 2 x 2 * 

8 f l 
At x-| = 1, x^ = 1, — - = -2. Thus, a decrease in x2 w i l l increase 

f 1 (X1' x2^ w^)1'^e decreasing the value of y . The minimum feasible point 

on the l ine x-j = 1 (x^ was held constant) is reached at x2 = e ~ \ the point 

at which f2 (x- j , x2) = 0. 

-1 f 

Step 7. Define the second t r i a l point , X j j , by x.^ = (1» e ) . From 

a table of exponential functions, e~^ = .37. At the second point , 

y ( x n ) = y d , .37) = -14.30. 

Since y(>(.•£) = -2.72, th is second t r i a l point is an improvement over the 

f i r s t . 

Reapplication of Steps 2 through 6 is presented in summary form. 

Step 2. At x j j , f-j (X-|, x2) > 0, f 2 (x-j, x2) = 0, an d 

x2^ > Thus, ^2^X1 ® x2^ 1S t f i e constraint. Since 

f2( x i> x2^ 1 s ^he o n ^ y t i gh t constraint , M = 1. There are two 

loose constraints, f - j U j , x2) and f 3 ( x ^ , x 2 ) . 

Step 3. Let x-j = d̂  and x2 = s-j. The problem is then expressed as 

minimize y = -expCd^-1)2 + (s-j-2)2 ] 
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subject to 

f-j(d-|j S-|) — d-| - S-| > 0 

-d, 
f2(d- ( , s^) = -e + s1 = .0 

f3(d-j , s 1 ) = -2(di-1 ) 2 + s 2 >_ 0 

S1 21 0 

d] > 0. 

§y §y _i _i 
Step 4. The decision derivative is given by = -2e (e -2)y. 

«y #iy , 
At Xj j , is negative, as is ( ^pd - ] -

§y §y _i 
Step 5. The slack derivative is given by 74=- = 2(e -2)y. 

- 2 - 2 

& • • • , At x n , i s posi t ive, as is 

§y 
Step 6. Examination of the decision derivative and the slack 

§y §y 

derivative ^ r - reveals that ^ — v i o l a t e s nonnegativity. Thus, the 

objective function y can be fur ther decreased by increasing d-j. As 

d-j i s allowed to increase, f^ will be held at zero since and 

(•̂ p—)fg are both nonnegati ve. 

An immediate result i s that the second t r i a l point i s not an optimal solution, 

I t is now necessary to evaluate the required constrained derivatives 
6fr, 6s 
s r » d i i n 
— m — p 
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Sfi. 6S 
Step 8. Determine 6 d arid m 

m <5d for the loose constra ints , where 

and 

5S_ m 

—fk = ^ f k ' f1 *' 

-dm ^ d m ' S1 sm* 

3 ( f r
 f

2 > " " V 

B ( f r 

9(s1 , s 2 S . . . 5 s m ) 

3("f-jj » ^2'" # ' 5 ^ 

i d p 8 ( s i ~ s 2 d
p ' snrH ' " " 'sm^ / 3 ( S 1 ' s 2 ' , , " s m ^ 

From Step 7, the loose constraints are 

f-| (d-j, S-|) = d-j - s-j; 

f 3 ( d r S l ) = - 2 ( d r l ) 2 + s r 

Since f 2 (d^ , s-j) is the t ight constraint , f = Thus, k = 1 and 3. 

There is only one decision variable, d-j. In addition, there is only one 

s ta te variable s-|. The required decision derivatives are thus defined by 

Sfi 6f 

6d-j5 6jd-,9 
3 —S1 J and 1 

i d , -

£f-| 9(f-| > f ? ) 

9Td Sd 1 r V 

3f^ 

3SU 

6f 3 3(^3, f ? ) 

1 6d 

3d, 

3f. 

3fc 

3cL 

3fr 

3di 

!!] 
3S, 

3f, 

3-F, 

3fr 

if 2 

* 3S7 

3f^ 

3sT 

As] 
~s$7 

df r 

3d; 

'3fr 

w, 
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^ 1 = 1 -
9d-j ' ' 

3 f l 
3S-, = " 2 s r 

9 f 3 
537= - " ' V 1 * 

3f 

as-, 
3 = 1 ; 

df0 
£. = I • 

3d-j • ' 

3fp -S, 
—_ = p 1 

3S-| 

Evaluating the constrained der ivat ives, 

_p 
= 1 + 2e 2 > 0; 

— 3̂ -1 
6 d f = " e < 

- 1 - p-1 n 
= -e < 0. 5_d1 

These resul ts indicate that by moving in the direct ion tangent to 

f ^ (X i , x2) = 0 in such a way that x-j increases, the f i r s t constraint 

loosens, the t h i r d t ightens, and x2 w i l l decrease in value. 

Step 9. Since an optimal solut ion has not yet been located, i t is 

necessary to reapply the procedure out l ined in Steps 1 - 8. However, 

since f3(x-1 , x£) t ightens at x ] = 1 , x2 = e " 1 , and x ] i s to be increased, 
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a t h i r d t r i a l solut ion can be obtained and evaluated in the same manner as 

x and x n . The in terest in th is t h i r d i t e ra t i on w i l l be minimization of 

y with the f i r s t constraint loose and the second and t h i r d constraints 

t i g h t . Optimality in th is problem occurs at x-j = 1.3586, = 0.2571. In 

th is case, M = 2, indicat ing that both variables are to be treated as 

state variables. Applying 

§ y 9(f-j»• • • >f^._i s y , i -j-^i > ' ' , f ) m 3(f-|» f 2 > ' " » f
m) 

6f, 3 (s i ^ 

the two slack derivatives' are 

§y a(y f 3 ) 

¥[s 1 
s

2 » —y, 
• • • 

— ^ 1 ' S Z ' 

and 

§ y 
6f , 

3(f2» y) . 

3 (S -| s s ̂ )~ 

3 (f2> > f
3 ) 

3 ( S -J , s 2) 

8 ( f 2 9 

^(s-|, S^T 

Step 10. 

y ie lds 

Evaluation of these slack derivatives at 

sy 

x. 

5f , 
-4.29 ,, n —* 
1.69 y > ° ' a n d 6 f . 

-1.625 
1.69 y > 0. 

Since f^ = f ^ = 0 at X j j p 

6/ 

* f 2 Sf. f 3 = 0. 

1.3586 

0.2571 

Hence, the conditions of complementary slackness are sa t i s f ied . With no 

decision variables, there are no decision derivatives to tes t fo r non-

negat iv i ty . The necessary and su f f i c i en t conditions fo r an optimal solution 

are those of complementary slackness and are sa t i s f i ed . The optimal solut ion 

is that given by X j n ' m i"n 'm u m v a ^ u e ° f y i s -23.8. 
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A graphic i l l u s t r a t i o n of t h i s problem is shown in Figure 4.8. The 

graph i s obtained by constructing contours f o r the object ive function and 

by equating the cons t ra in t s to zero. With the const ra in ts equated to 

zero, one of the variables can be a r b i t r a r i l y assigned numerical values. 

The other variable i s then uniquely determined. 

Fig. 4.8—Graphic representat ion of the d i f f e r e n t i a l algorithm 

As shown in Figure 4 .8 , the i n i t i a l solution i s at 1. The second 

solution i s at 2. The optimal solution is a t 3. In moving from 1 to 2, 

the adjustment in was made to the point where = 0 was met. The 

th i rd solution adjustment moved along f g = 0 until f g = 0 was contacted. 

This point was the optimal so lu t ion . 
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From this discussion of technique and the detailed i l l us t ra t i ons , i t 

is possible to derive some specif ic characteristics of indirect search. 

The main characteristics are the following: 

(1) necessary conditions for the existence of an optimum solution 

are established in the form of equations; 

(2) i terat ive techniques are generally required to solve the problem 

being investigated; 

(3) while i terat ive techniques y ie ld numerical results, the nature 

of the side conditions at the optimum solution reveals information not 

available via any other technique; and, 

(4) the use of indirect search techniques requires a complete 

mathematical formulation of the function to be optimized. 

Pi rect Search 

Direct search has been described as an optimization technique which 

"depends upon direct comparison of the values of the function at two or 

22 

more points." Direct search is generally u t i l i zed when the objective 

function is either too complicated for indirect search techniques or is 

unknown. The techniques of direct search f a l l into two d is t inct categories 

(1) elimination techniques and (2) direct climbing. Elimination techniques 

seek to reduce the size of the region in which the optimal solution l ies 

by continually shrinking the interval of uncertainty. This interval 

can be given, or i t can be assumed. Direct climbing techniques 
22 

Theodore N. Edelbaum, "Theory of Maxima and Minima," Optimization 
Techniques with Applications to Aerospace Systems, edited bv Georoe 
LeitmanrTTNew Yo rk , ! 962), p. 16. 
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attempt to drive d i rec t ly toward the optimum solution by u t i l i z i n g 

information t h a t i s generated along the way. 

A c h a r a c t e r i s t i c of d i rec t search techniques is that they iden t i fy 

nonoptimal solut ions as well as optimal ones. The general procedure is to 

examine the neighborhood of a t r i a l point f o r improvement. Any adjustment 

in the solut ion is made in the direct ion of the grea tes t improvement. 

As in the case of ind i rec t search, d i rec t search techniques are 

generally applied under the assumption of unimodality. This assumption 

guarantees tha t a given function has but one peak (point of maximum or 

minimum). Gue and Thomas s t r e s s the f a c t t h a t , when unimodality i s 

assumed, i t i s important t ha t the assumption specify whether the function 

23 

i s unimodal at a maximum or unimodal a t a minimum. I t is permissable 

f o r a fucntion to be unimodal over the total range of the function or 

unimodal over a defined i n t e rva l . In the f i r s t case, the function is 

parabol ic ; and the optimum i s a global optimum. In the second case, the 

function may contain several points of local optima but only one global 

optimum. The importance of the unimodal assumption is explained by the 

following: 

If we are assured t ha t a given function i s unimodal, 
we can derive d i rec t methods t ha t guarantee convergence 
to [an optimal] point x* and es tab l i sh tha t the point 
x* to which we converge y ie lds the optimal so lu t ion . . . . 
If a function has more than one peak, then the point to 
which we converge will depend on the s t a r t i ng point . . . . 
The d i rec t search techniques to be presented in t h i s study will be 

r e s t r i c t e d to a se lec t group. The group of techniques wil l be presented 

23 

Gue and Thomas, op. c i t . , pp. 101-102, 

2 4 I b i d . , p. 102. 
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under the two major categories of d i rect search, d i rect el iminat ion and 

d i rect cl imbing. The individual techniques to be discussed are the 

fo l lowing: 

(1) d i rect e l iminat ion: interval e l iminat ion, sequential search, 

golden search, and contour tangents; 

(2) d i rect cl imbing: response surfaces, gradient techniques, and 

paral le l tangents. 

As noted previously, the in tent in th is study is not to develop or 

provide a broad theoret ical development. Rather, the intent is to 

explain, define, and demonstrate the technique being investigated. In 

th is way, the in tent centers on developing an i n t u i t i v e feel f o r , and 

appreciation o f , the par t icu lar technique involved. 

Direct elimination.—The use of a par t i cu la r technique for d i rect 

el iminat ion depends upon the manner in which the function is wr i t ten . 

By th is is meant that the selection of a par t icu lar technique is d i rec t l y 

related to the number of independent variables defined fo r a given problem. 

As such, the discussion to fo l low is divided into two d i s t i nc t cases: 

univariable functions and mult ivar iable functions. With the exception 

of the method of contour tangents, a l l of the techniques of d i rect e l im i -

nation to be discussed in th is study belong to the single variable case. 

Univariable functions: in terval e l iminat ion: The primary purpose 

of in terval el iminat ion is to minimize, a f te r n evaluations, the maximum 

interval wi th in which the optimum solut ion l i e s . The general procedure 

is to (1) determine the value of the independent variable fo r the next 

function evaluation, (2) compare the resu l t of the new evaluation with 
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the preceding one, (3) eliminate the interval which does not contain the 

optimum value, and (4) repeat s teps (1) through (3) until the optimum is 

achieved. This procedure has been described as minimizing the interval of 

25 

uncer ta inty . 

The interval of uncertainty is defined as tha t interval which l i e s 

between the end points of the in terval within which an optimum solution 

l i e s . In f ina l form, i t i s tha t interval which l i e s between the experiments 

on e i t h e r side of the one producing the optimum value of the ob jec t ive . 

This concept i s formally defined in Definition 4.19. 

Definit ion 4 .19.- -Let K equal the index of experiment x^, where x̂ , 

produces the optimum outcome for the defined objec t ive . Let n equal the 

number of experiments to be conducted. Let xq = 0 and xn+-j = 1 be the 

l e f t and r igh t ends, respec t ive ly , of the or iginal i n t e r v a l . For a se t 

of n experiments, the in terval of uncertainty is that interval containing 

the optimum value x* and fo r which 

x
k - i i x * i xk+i 

defines the i n t e r v a l . If &n denotes the length of the in terval of uncer-

t a i n t y , 

*n = xk+l * x k - l ' 

The manner in which interval elimination is accomplished depends upon 

the plan by which the solution search is carr ied out . The general scheme 

i s to determine in advance the number of experiments that wil l be allowed 

25 
Douglas J . Wilde, Optimum-Seeking. Methods (Englewood C l i f f s , 1964), 

pp. 15-18. 
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in locat ing the optimum i n t e r v a l . Proceeding from Xq, a run of experiments 

i s made to i n i t i a t e the search process. The point used i s labeled and 

i t s outcome is labeled y^. The interval within which to concentrate the 

next se r i e s of runs is t ha t interval f o r which a given x^ produces an 

optimum outcomes y^. For example, suppose three experiments are run and 

are labeled x-j, x£, x^; i . e . , n = 3. Suppose, f u r t h e r , t ha t the resu l t s 

correspond to those shown in Figure 4 .9 . 

Fig. 4 .9- - In terva l elimination with three experiments 

If the object ive is one of minimization and k = 2, then x-j <. x* £ x3-

The optimum value of x l i e s between the points x-j and x^. I f the object ive 

is one of maximization, and k = 3, then x2 < x* < 1. The optimum value of 

x l i e s between x^ and 1. Given th i s information, the additional experiments 

can be run within the appropriate i n t e r v a l . Reapplication of the reduction 

process will f u r t h e r reduce the interval s i ze . 
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The use of interval elimination requires that additional terminology 

be introduced. The appropriate terminology, from Wilde and Beightler, 

is presented here as a set of def in i t ions. 

Definit ion 4.20.--Let y(x) be any unimodal function of one variable 

defined over a f ixed closed interval . Let x* be the value of the independent 

variable for which y(x) achieves the maximum value y(x*) in the closed 

unit interval 0 £ x £ 1. Let x^ and x2 be any set of two points for which 

y(x) has been evaluated. • Let y(x) have no intervals of f i n i t e length for 

which y(x) is horizontal. Then, the function y(x) is said to be s t r i c t l y 

unimodal in the maximum sense i f the following conditions are sat isf ied: 

(1) X-| < x2 < x* + y(x-j) < y(x2) < y (x* ) ; 

(2) x* < X-| < x2 + y(x*) > y ^ ) > y (x 2 ) . 

Definit ion 4.21.—Let y(x) be any unimodal function of one variable 

defined over a f ixed closed interval . Let x* be any value of the inde-

pendent variable for which y(x) achieves the minimum value y (x*) in 

the closed unit interval 0 £ x £ 1. Let x-j and x2 be any set of two 

points for which y(x) has been evaluated. Let y(x) have no intervals of 

f i n i t e length for which y(x) is horizontal. Then, the function y(x) is 

said to be s t r i c t l y unimodal in the minimum sense i f the following conditions 

are sat is f ied: 

(1) x1 < x2 < x* y(x-|) > y(x2) > y (x* ) ; 

(2) x* < x1 < x2 -> y(x*) < y(x-j) < y (x 2 ) . 

OC 

Wilde and Beightler, op. c i t . , pp. 219-222. 
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Neither of these two definit ions requires that y(x) be a continuous 

function. However, both of them guarantee that for any pair of evaluations 

of y(x) the optimum value is contained in a shorter interval than before. 

The objective of the interval elimination centers on reducing the size 

of the interval within which the optimal solution l i es . In this manner, 

the process tends to converge on the point for which the function is 

optimal. These results can be writ ten in an exp l ic i t form. This is done-

as a means of summarizing the process. Let L^ be the maximum length of 

the interval being investigated. Let be the length of the interval of 

uncertainty. Let x^ be the value of x at the evaluation. Then 

Ln^xk^ = l < k < n { V x k 5 K ^ } ' 

The purpose of the search is to minimize the maximum value of Ln . This 

is accomplished by performing a search plan x£ that yields the optimum 

val ue of L„, L*: 
n n 

L* = min max U (x. , K)}. 
xk l<k<n n k 

I f the function to be optimized is assumed to be different!'able 

(and the functional expression is known), the interval elimination process 

can be achieved by considering the f i r s t derivative. The necessary 

definit ions are given below. 

Definit ion 4.22.—Let y(x) be a defined, impl ic i t function of one 

variable. Let y(x) be continuous within a given in terval . Let y ' ( x ) be 

the derivative of y (x) . Let x* be the optimal value of the independent 

variable. Let x be any t r i a l point taken within the interval for which 

y(x) is defined. The function y(x) is said to be different!*ablv unimodal 
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in the maximal sense i f the fol lowing conditions are sa t i s f ied : 

(1) i f x < x* , y ' (x) > 0 ; 

(2) i f x > x* , y1 (x) < 0. 

From these conditions can be made the fol lowing inferences: 

(1) y ' ( x ) > 0 implies x < x* ; 

(2) y ' ( x ) < 0 implies x > x*. 

Def in i t ion 4.23.--Let. y(x) be a defined, imp l i c i t function of one 

var iable. Let y(x) be continuous wi th in a given in te rva l . Let y ' ( x ) . 

be the derivative of y ( x ) . Let x* be the optimal value of the independent 

var iable. Let x be any t r i a l point taken wi th in the interval fo r which 

y{x) is defined. The function y(x) is said to be d i f fe ren t iab ly unimodal 

in the minimal sense i f the fol lowing conditions are sa t i s f ied : 

(1) i f x < x* , y ' (x) < 0; 

(2) i f x > x* j y ' ( x ) > 0. 

From these conditions can be made the fol lowing inferences: 

(1) y1 (x) < 0 implies x < x* ; 

(2) y ' ( x ) > 0 implies x > x*. 

Application of Def in i t ion 4.22 results in three points, JL ,̂ r ^ , and 

m^. The point defined by mk is the location of the best point from among 

the three. The point defined by £^ is the one ly ing immediately to the 

l e f t of m ,̂. The point defined by r k is the one ly ing immediately to the 

r i gh t o f mk- For y '(mk) > 0, mk < x* < r^ . For y '(mk) < 0, j>k < x* < n y 

The sign of the derivative thus indicates the di rect ion of x* in reference 

to mk. 



505 

An applicat ion analysis s imi la r to t ha t of Definition 4.22 can be 

made f o r Definition 4.23. Using the points r ^ , and m̂  as previously 

defined, y ' ^ ) < 0 implies < x* < r^ . For y 1 ^ ) > 0, < x* < m^. 

Sequential search: A sequential search plan i s one in which the 

r e su l t s of previous experiments are used as a means of reducing the in terval 

27 

of uncer ta inty . There are several techniques by which sequential search 

plans can be implemented: Bolzano's method, even-block search, odd-block 

search, uniblock (Fibonacci) search, adaptive search, e t c . Of these 

techniques, th i s study will be l imited to the Bolzano method and the 

technique of uni block (Fibonacci) search. 

(1) The Bolzano method. The Bolzano search technique i s re la ted to 

the Bolzano technique fo r locating the root (solut ion) of a monotonically 

decreasing function over a defined i n t e r v a l . Bolzano's root - f inding tech-

nique requires tha t the function being invest igated be evaluated in the 

center of the interval being considered. As the in terval i s reduced, 

the function i s reevaluated at the midpoint of the remaining i n t e r v a l . 

If the evaluation of the function a t the midpoint y ie lds a negative 

value, the portion of the interval to the r igh t of the midpoint is 

el iminated. If the evaluation of the function at the midpoint y ie lds a 

pos i t ive value, the portion of the interval to the l e f t of the midpoint 

i s el iminated. For maximization, the procedure i s reversed. 

The Bolzano technique fo r sequential optimal search requires tha t the 

object ive function be impl ic i t and d i f f e r e n t i a b l e . Each experiment i s 

then used to evaluate both the defined object ive function and the f i r s t 
1 1 1 b id . , p. 230. 
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derivative of the objective function. Since the peak of a different!*ably 

unimodal function i s the root of the monotonic function, the Bolzano 

technique for sequential search is a modification of the root-finding 

method. The difference betv/een the two is that the procedure for sequential 

optimal search u t i l izes the f i r s t derivative. This is accomplished by 

using the derivative in the same manner as the function in the root-finding 

method is used. The in t e re s t , however, i s the solution to the derivative 

function. When the derivative equals zero, the optimal solution has 

been located. 

The Bolzano technique for optimal search can be used to determine the 

number of experiments required to produce a given interval reduction. For 

example, Wilde and Beightler point out that for a 1 per cent reduction 

in the original length of a given interval the Bolzano technique requires 

but seven observations. With a technique similar to that of interval 
OO 

elimination, 99 observations are required. 

The cr i ter ion under d i f f e r en t i ab i l i t y will be altered from that of the 

regular Bolzano root-finding technique. Let x1 be the midpoint of the 

interval x-j £ x < x^ over which the function y(x) is continuous and 

d i f f e r e n t i a t e . The superscript denotes the number of the sequential 

observation. Let y ' (x) be the derivative of y(x). If y(x) is a minimizing 

function, y ' ( x = x"*) > 0 indicates that the portion of the interval to 

the r ight of x1 can be eliminated from consideration. If y ' ( x = x1) < 0, 

the portion of the interval to the l e f t of x1 can be eliminated from 

consideration. The second t r i a l point , x 2 , will be the midpoint of the 

2 8 Ib id . 
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interval x-| £ x £ or £ x £ ^ depending upon the sign of the f i r s t 

derivative. I f y(x) is a maximizing function, y ' ( x = x^) > 0 indicates 

that the portion of the interval to the l e f t of x̂  can be eliminated from 

consideration. I f y ' ( x = x^) < 0, the portion of the interval to the 

r ight of x̂  can be eliminated from consideration. 

? 

Consider the quadratic p ro f i t function y(x) = 1000 + 7.2x - .06x . 

Assume that y(x) is defined over the'" productivity range 0 £ x <_ 100; i . e . , 

the p ro f i t function is defined for a maximum output of 100 units. 

Determine the point of maximum pro f i t using the Bolzano technique. The 

function is assumed to be di f ferent iable. 

The Bolzano technique requires the derivative, y ' ( x ) . For the given 

function, y ' ( x ) = 7.2 - .12x. The demonstration is broken down into a 

series of i terat ions. 

Step 1. Let x1 = ^-(x^ + x^) = ^-{0 + 100) = 50. Evaluation of 

y ' ( x ) at x = 50 yields a value of 1.2 for y ' ( x = x^). Since y ' (x^) > 0 

and y(x) is to be maximized, the second t r i a l point w i l l be the midpoint 

of the interval ly ing to the r ight of x1 ; i . e . , x2 = ^-(x1 + x2 ) . 

Step 2. Let x2 = i-(x^ + x^) = ^-(50 + 100) = 75. Evaluation of y ' ( x ) 

at x = 75 yields a value of -1.8 f o r y ' ( x = x 2 ) . Since y ' ( x 2 ) < 0 and 
y(x) is to be maximized, the th i rd t r i a l point w i l l be the midpoint of the 

h interval lying to the l e f t of x2 ; i . e . , x3 = i (x^ + x 2 ) . 

Step 3. Let x3 = ^-(x^ + x2) = ^(50 + 75) = 62.5. Evaluation of 

y ' ( x ) at x = 62.5 yields a value of -0.3 for y ' ( x = x 3 ) . Since y ' ( x 3 ) < 0 

and y(x) is to be maximized, the fourth t r i a l point w i l l be the midpoint of 

the interval lying to the l e f t of x3 ; i . e . , x4 = ^(x1 + x 3 ) . 
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Step 4. Let x4 = ^(x1 + x3) = J<50 + 62.5) = 56.25. Evaluation of 

y1(x) at x = 56.25 y ie lds a value of +0.45 fo r y ' ( x = x 4 ) . Since y ' ( x 4 ) > 0 

and y(x) is to be maximized, the f i f t h t r i a l point will be the midpoint of 

4 5 1 4 3. 
the interval lying to the r igh t of x ; i . e . , x = -g{x + x ) . 

Step 5. Let X5 = | ( x 4 + X3) = j-(56.25 + 62.50) - 59.375. Evaluation 

5 
of y ' (x ) a t x = 59.375 y ie lds a value of + 0.075 fo r y ' ( x = x ) . Since 

y ' ( x 5 ) > 0 and y(x) is to be maximized, the s ix th t r i a l point will be the 

midpoint of the interval lying to the r igh t of x ; i . e . , x - ^ x + x ) . 

Step 6. Let x6 = \ ( x 5 + x3) = |{59.375 + 62.500) = 60.9375. Evaluation 

6 

of y ' (x ) at x = 60.9375 yie lds a value of -0.1125 fo r y 1 (x = x ) . Since 

y ' ( x 6 ) < 0 and y(x) i s to be maximized, the seventh t r i a l point will be 

the midpoint of the interval lying to the l e f t of x 6 ; i . e . , x7 = ^(x 5 + x ) . 

Step 7. Let x7 = l-(x5 + x6) = -(59.375 + 60.9375) = 60.15625. 

Evaluation of y ' (x ) at x = 60.15625 y ie lds a value of -0.01875 fo r 

y ' ( x = x 7 ) . Since y ' ( x 7 ) < 0 and y(x) is to be maximized, the eighth 

t r i a l point will be the midpoint of the interval lying to the l e f t of 
x 7 ; i . e . , x® = >r(x^ + x 7 ) . 

Step 8. Let x8 = |<x 5 + x7)-= 1(59.375 + 60.15625) = 59.260625. 

Evaluation of y ^ x ) at x - 59.260625 y ie lds a value of +0.088725 fo r 

y ' ( x = x 8 ) . Since y ' ( x 8 ) > 0 and y(x) i s to be maximized, the ninth 

t r i a l point will be the midpoint of the in terval lying to the r igh t of 

x 8 ; i . e . , x9 = l ( x 8
 + x 7 ) . 

Step 9. Let x9 = ^(x 8 + x7) = i-(59.260625 + 60.15625) = 59.7084375. 

Evaluation of y ' (x ) at x = 59.7084375 y ie lds a value of +0.0349875 fo r 

y ' ( x = x 9 ) . Since y ' ( x 9 ) > 0 and y(x) is to be maximized, the tenth 
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t r i a l point w i l l be the midpoint of the in terva l ly ing to the r igh t of x ; 

i . e . , x 1 0 = ^-(x9 + x 7 ) . 

Step 10. Let x 1 0 = ^ (x 9 + x7) = ^{60.15625 + 59.7084375) = 59.83234475. 

Evaluation of y ' ( x ) at x = 59.83234475 y ie lds a value of +0.02011863 for 

y ' ( x = x 1 0 ) . Since y ' ( x ^ ) > 0 and y(x) is to be maximized, the eleventh 

t r i a l point w i l l be the midpoint of the interval l y ing to the r igh t of 

L 
2 

x^°; i . e . , x1 1 = i ( x ^ + x9) 

Step 11. Let x11 = ^-(x10 + x9) = 59.83234475 + 60.15625) = 

59.994297375. Evaluation of y ' ( x ) at x = 59.994297375 y ie lds a value of 

+0.000784315 f o r y ' ( x = x ^ ) . Since y ' ( x ^ ) > 0 and y(x) is to be maximized, 

the twe l f th t r i a l point w i l l be the midpoint of the interval ly ing to the 

r igh t of x ^ ; i . e . , x^2 = ^-(x^ + x 9 ) . 

Step 12. Let x12 = l ( x U + x9) = ^-(59.994297375 + 60.15625) = 

60,0752736875. Evaluation of y ' ( x ) at x = 60.0752736875 y ie lds a value 

of -0.0090328425 f o r y ' ( x = x^ 2 ) . Since y ' ( x ^ 2 ) < 0 and y(x) i s to be 

maximized, the th i r teenth t r i a l point w i l l be the midpoint of the interval 

ly ing to the l e f t of x 1 2 ; i . e . , x1 3 = + > x 1 2 ) . 

Inspection of the convergence pattern indicates that the solut ion 

point is x = 60. Using x = 60 as the t r i a l point , y ' ( x ) evaluated at 

x = 60 y ie lds a value of zero fo r y ' ( x = 60). This indicates that the 

l ine tangent to y(x) is horizontal at x = 60, the required condition fo r 

an optimal solut ion. Therefore, the p r o f i t function is maximized at a 

sales level o f 60 uni ts . 

This example demonstrates the manner in which the Bolzano technique 

converges to a f i n i t e solut ion in a series of sequential i t e ra t ions . 
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Although tedious and lengthy when hand calculat ions are required, the 

technique is well suited fo r computer use. The i tera t ions can be reduced 

by noting the indicated point of convergence and adjusting the search 

in terval accordingly. For example, an adjustment could have been made 

at Step 7 of the i l l u s t r a t i o n to zero the solut ion on x = 60. 

(2) Uniblock (Fibonacci) search. The most e f f i c i e n t technique of 

block search is that of uniblock search. As implied by the term uniblock, 

the technique involves the selection of a single block and observing one 

measurement per block. 

Uniblock search is based upon a defined relat ionship which u t i l i zes 

29 th the concept of Fibonacci numbers. This relat ionship defines the n 

Fibonacci number in terms of the recursive re lat ion 

Fn = Fn-1 + pn-2 ' n = 2 ' 3 " " 

where F = F, = 1 and F. denotes the k ^ Fibonacci number. This re la t ion-o I k 

ship can be used to develop a series of numbers defining the n ^ Fibonacci 

number. 

F2 = F1 
+ F = 

0 
1 + 1 - > • F2 = 2 

F3 = F2 4* f I - 2 + 1 F3 
= 3 

F4 * F3 4* F2 3 + 2 - > F4 
= 5 

F5 F4 
+ F3 5 + 3 F5 = 8 

F6 F5 
+ F4 8 + 5 F6 

=13 

F7 = F6 
+ F5 13 + 8 F7 

=21 

29, Wilde, op. c i t . , pp. 24-30. 
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p8 = ^ + Fe = 21 + 13 - F8 = 34; 

F
9 = F8 + F? = 3 4 + 21 -> Fg = 55; 

Ut i l iza t ion of uniblock search requires tha t the number of experiments 

be known in advance. This number can e i t h e r be es tabl ished subject ively 

or by application of a formula. The use of the formula requires that the 

desired interval of uncertainty (I .U.) be known. This formula i s given by 

I.U. = - U + £ ( ~ ^ - ) , 

n n 

where e equals the minimum separation between two poin ts , and I.U. i d e n t i f i e s 

the proportional length of the n ^ interval of uncer ta inty. The approximate 

number of observations required can be obtained by requiring £ to equal 
th 

zero fo r the n i n t e r v a l . With th i s assumption, the number of experiments 

required i s tha t value of n such tha t I.U. i s at most equal to . The 
n 

proportion associated with I.U. is s e t as the percentage of the original 

interval tha t i s to remain a f t e r the completion of the n sequential 

30 

experiments. I t i s generally assumed tha t the original interval is 

wri t ten as having a length equal to uni ty. 

Given a s t a r t i n g point fo r a Pibonacci search, each succeeding stage 

is determined. Within each remaining interval of uncertainty will be a 

previous experiment. The search fo r a solution point i s extended from 

stage k to stage (k + 1) by locat ing experiment (k + 1) in such a way 

tha t i t i s symmetric to the experiment already located within the given 

i n t e rva l . 
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According to Wilde, the f i r s t Fibonacci experiment must be placed 

L£ units from one end of the original unit interval of uncertainty.3^ 

Because of the symmetry of the technique, the end at which the process 

s t a r t s i s immaterial. Gue and Thomas have shown tha t with n experiments 

the f i r s t should be placed at x = F^-J /F^ 3 2 This is borne out when 

consideration i s given to the f ac t that Wilde i n i t i a t e s the f i r s t 

experiment at 

I * - F n-1 | ( - l ) n £ 33 

' 2 Fn Fn ' 

However, since e is forced to zero, th i s reduces to 

F , 
u - " - 1 

2 Fn ' 

Given t h i s placement fo r the f i r s t t e s t , the second t e s t i s placed x 

(or L*) units from the unused end. The resu l t s of these two t e s t s are 

then compared and the unpromising portion of the original interval is 

eliminated. This leaves an interval containing one experiment with a known 

r e s u l t . The th i rd t e s t i s then placed symmetrically to the remaining 

experiment within the remaining in t e rva l , and the elimination process is 

repeated. This process is then repeated fo r the n required experiments.3^ 

3 11 b id . , p. 30. 

32 
Gue and Thomas, op. c i t . , p. 109. 

33 
Wilde, op. c i t . , p. 30. 

34 
As a matter of note, the location of Li can be writ ten in terms of 

the units of the interval length. This is accomplished by multiplying the 

ra t io —p by the length of the original interval L : L* = L 
n o 2 ° Fn 

As i n i t i a l l y wri t ten , L* defines the percentage distance from e i the r end 
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For example, i f n = 11, F^ =144 and F-JQ = 89. The f i r s t observation 

w i l l be placed at 

x = = .62 = m 

of the to ta l length of the in terva l from e i ther end. That i s , for an 

i n i t i a l in terva l of length 10, the f i r s t observation w i l l be placed 6.2 

units from e i ther end. The second point w i l l be placed at a distance of 

62% of the length of the remaining interval from ei ther end. This process 

is repeated un t i l the solut ion point is reached. 

Golden section search: In many instances, i t may not be possible fo r 

a researcher to know in advance the number of observations required fo r 

locat ing an optimal solut ion. In such cases, the technique of Fibonacci 

search is not applicable since i t s use requires that the number of obser-

vations be predetermined. In these s i tua t ions , there is a need for a 

search plan that converges rapidly to the optimum solut ion. The method 

of golden search provides such a search plan as i t is applicable when the 

number of experiments to be run is not known. Since the number of experi-

ments to be run is independent of the number of experiments avai lable, 

golden search represents an improvement over that of Fibonacci search. 

Let j denote the number of experiments already run. Let n denote the 

number of available experiments. Let l£ denote the n ^ interval o f k 

experiments ( i . e . , I-j denotes the second in terva l containing one experiment) 

Wilde and Beightler indicate that the experimental plan should locate 

successive experiments in such a way that 

T n- j _ T n- ( j -1 ) , T n- ( j -2 ) 35 J 1 - i 1 + ^ 

Wilde and Beight ler , od. c i t . . n. ?d? 
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By holding the ra t io of successive lengths, t , constant, 

Tn-j Tn-(j+1) 
1 _ _ 1 

t M M T " T " r n - j 11 i ] 

Ut i l i z i ng 

j n - ( j + l ) 
2 _ 1 

T ,n-( j - l ) ' 
n 

and div id ing x fay i " can be wr i t ten in the form x2 = x + 1 

2 
The posi t ive root to x = x + 1 is given by 

x = = 1.618033989. . . . 

Af ter n experiments, the remaining i " i s given by 

I? = 1 

1 ' n-1 
T 

The method of golden search u t i l i zes the values of both x and x2 to 

determine which segment of the given in terval is to receive fur ther con-

siderat ion. The in terva l that is selected for fur ther exploration w i l l 

contain a resul t from a previous experiment. The search fo r the optimum 

solut ion is continued by simply placing the next set of experiments 

symmetrically wi th in the in terva l to be explored. The process can be 

repeated as often as deemed necessary. 

The placement of the f i r s t test is based upon the ra t io that exists 

between two unequal parts of a l ine segment. This ra t io is defined as 

length of smaller part _ length of the larger part 
length of larger part length of or ig ina l l ine segmeTtt"* 

The length of the or ig ina l l i ne segment is defined by the length o f the 
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interval being considered. The manner in which the l ine segment i s divided 

i s arbitrary. The distance the f i r s t tes t i s placed from either end i s 

given by 1/x. In terms of the original units, this distance i s Lq(1 / x ) , 

where Lq equals the length of the original interval. 

Multivariable functions: The multivariable search problem i s to find, 

after a limited number of experiments, a set of operating conditions that 

optimizes a defined objective function. Of the direct elimination tech-

niques for multivariable functions, the most feasible technique is that 
Of 

of contour tangent elimination. 

Definition 4.24.—Let y ( x ] , x 2 , . . . , x n ) = y(x) be any defined multi -

variable function. Let x° be any set of points for which y(x) is defined. 

The contour of y(x) i s defined as the collection of values of x which 

y ie ld a f ixed value of y. 

For example, a cost curve can be defined in terms of two independent 

variables, x-j and x^: y(x) = y(x.j, . With y(xj fixed in value, a 

yesv-c,, 

"VCXV- c3 

Fig. 4.10—Contours for y(x-| , xQ) = c,,, k = 1, 2, 3, 4 
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b ivar ia te graph can be constructed s imi lar to tha t of Figure 4.10. The 

col lect ion of curves is defined as the contour of y[x}. 

Definition 4.25.—Let y(x) = y(x-j, X 2 , . . . 9 x n ) be any defined mult i-

variable funct ion. Let x° be any point on the contour of y (x) . The 

contour tangent to y(x) i s defined as the l ine or M - 1 dimensional 

hyperplane passing through x° tangent to y(x). The contour tangent at 

x° i s such tha t y(x) = y(x°) . 

Application of the contour tangent elimination technique requires 

tha t the given function be d i f f e r en t ! ab l e in a neighborhood of a point 

x°. The point x° defines a vector of f eas ib le values of the independent 

var iab les . The requirement of d i f f e r e n t i a b i l i t y i s necessary because use 

will be made of the gradient vector of the defined object ive funct ion. 

Defini t ion 4.26.--Let y(x-j, X2S . . . jX n) = y(x) be any different!"able 

object ive funct ion. Let be any vector of f eas ib le values of the inde-

pendent var iables . Let be the pa r t i a l der ivat ive of y(x) with respect 
ax.j 

to the i*^ var iab le . The gradient vector of y (x) s denoted vy, is defined 

as the vector of f i r s t pa r t i a l der iva t ives ; i . e . , 

^ = ( i ^ r s ! y 

The respective par t ia l der ivat ives are evaluated at x°. 

The purpose of the gradient vector vy i s to provide a means of 

determining changes in the value of the object ive function corresponding 

to small changes in the values of the solution vector. The vector of 

changes in x°, denoted by AX_, i s given by 

AX - (AX-| j AXr» J • • • 5 ) — ^^1 "" ̂ 1 5 X2~X2 ' ' " " ' X|") ^ * 
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This is accomplished by defining the change in y(_x) by the l inear re lat ion 
T 

Ay = vyAx = 0. 

The components of vy are known constants, having been evaluated at x°. 

The l inear re lat ion defining Ay has dimension N - 1 and passes through x°. 

Another requirement of the contour tangent el iminat ion technique is 

that the object ive funct ion, in addit ion to being d i f f e r e n t i a t e , be 

strongly unimodal. This concept refers to the di rect ion in which a l ine can be 

drawn from any point in the experimental region to the peak. 

Def in i t ion 4.27.--Let y(x-|, Xg j - . - jX ) = y ( x j be any defined object ive 

funct ion. Let x° be any feasible t r i a l solut ion vector. The function y(x) 

is said to be strongly unimodal i f a s t ra ight l ine drawn from x° to the 

peak is r i s ing i f y(x) is to be maximized and f a l l i n g i f y(x) is to be 

minimized. A s t ra ight l ine is r i s ing ( f a l l i ng ) i f i t has posi t ive 

(negative) slope. 

When a given function is strongly unimodal, two major results are 

real ized: (1) i f y(x) is to be maximized, the region of exploration l i es 

above the contour tangent; (2) i f y ( x j is to be minimized, the region of 

exploration l ies below the contour tangent. In th is way, substantial 

portions of the or ig inal feasible region can be systematically eliminated 

from consideration. 

The method of contour tangents thus refers to an el iminat ion tech-

nique that u t i l i zes successive local explorations of strongly unimodal 

surfaces to eliminate parts of the feasible region from fur ther consideration. 

This technique uses the contour tangent as a lower bound fo r the optimal 
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solut ion of a maximizing function and as an upper bound fo r the optimal 

solut ion of a minimizing funct ion . The following algorithm, developed 

from a study of theory and examples, summarizes the computational aspects 

of the technique. 

Algorithm 4.5 (algorithm f o r contour tangent e l iminat ion) . - -S tep 1. 

Let x° be an i n i t i a l solut ion vector contained in the f eas ib le region fo r 

a defined object ive function y ( )0 . Determine the contour tangent at 

x_ , x° being i n t e r i o r to the f ea s ib l e region. Using th i s contour tangent , 

e l iminate the appropriate portion of the feas ib le region. 

Step 2. Let x1 be an i n i t i a l solution vector contained in the reduced 

feas ib le region of y (x) . Determine the contour tangent at , x} being 

i n t e r i o r to the reduced region of f e a s i b i l i t y . Using th is second contour 

tangent , eliminate the appropriate portion of the reduced feas ib le region. 

Step 3. Repeat the process of Steps 1 - 2 through k i t e r a t i o n s . At 
t h 

the k i t e r a t i o n , the remaining region of f e a s i b i l i t y will be of whatever 

s ize is desired since the number of experiments i s t r ea ted as an independent 

value. 

At each stage of the contour tangent elimination process, i t becomes 

necessary to se lec t a new feas ib le so lu t ion . This "new" feas ib le solution 

is then used to determine the contour tangent passing through the solution 

point . Although there is no best way to se lec t the f eas ib le solution at 

each s tage , four p o s s i b i l i t i e s are worthy of consideration: the midpoint, 

the minimax point , the median (center of volume), and the mean (centroid) . 

Each of these p o s s i b i l i t i e s represents an attempt to locate the f eas ib le 

solution vector in the center of the remaining feas ib le region. 
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The va l i d i t y o f these four measures as locators of solut ion vectors 

is discussed by Wilde. 

Whenever the experimental region is convex, that i s , 
such that any s t ra ight l ine connecting two boundary 
points w i l l l i e en t i re l y 'w i th in the region, any of the 
four points [midpoint, rrtinimax point , median, or mean] 
w i l l be inside the region. Since any region bounded 
en t i re l y by hyperplanes is convex, the region of 
uncertainty w i l l tend to be convex af ter a few blocks 
of experiments have been performed. . .even when the 
region is not convex. . .the four points more often 
than not w i l l be in the i n t e r i o r of the region.37 

In the absence of any more suitable technique for select ing an i n i t i a l 

solut ion point , one of these four w i l l s u f f i c e . ^ 

Def in i t ion 4.28.— Let s^ be the minimum value of the variable x^ in 

the region of uncertainty, i = 1, 2 , . . . , N . Let t^ be the maximum value 

of the variable x.. in the region of uncertainty, i. = 1, 2 , . . . , N . Let x* 
•f" L 

be the midpoint fo r the i region of uncertainty, i = 1, 2 , . . . , N . Then, 

x i = I ^ s i + t i ^ f o r "• = 2 , . . . ,N, 

where s^ = min x^ and t^ = max x i . 

Def in i t ion 4.29.--Let _xm be the minimax point f o r a defined region of 

uncertainty. Let x be any point contained wi th in a suitable feasible region. 

Let v(x_) be the hypervolume of a defined region of uncertainty. The minimax 

point xm i s defined as that point which minimizes the maximum possible hyper-

volume in an explored region of uncertainty; i . e . , 

vCx"1) = min{v(x)} . 

37 

Wilde, op. c i t . , p. 98. 

3 8 I b i d . , pp. 99-104. 
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Definit ion 4 .30. - -Let A(x) be the cross-sect ional area of a given 

experimental region. Let be constant within t h i s region. Let x' be 
A 

any point in the experimental region of distance d^(x ' ) from x^, where 

d. ( x ' ) 
a)"[xi - x! |A i(x)dx i 

i ' - b 

a A i ^ ) d x i 

and a and b are the l imi ts of in tegra t ion . The median is defined as that 

set of val ues of x! fo r whi ch 

J"1 A i (x i )dx i h A J A.(x i )dx i 
a Xi 

and which minimizes the mean distances d^ (^ ' ) . 

Definit ion 4 .31.- -Let r . ( x ) be the root mean square distance defined by 

hr 2 
J Uj-xj) A1(x i)dx i 

^ ( X ) - S — B , 
J A / x ^ d x , 

where xI equals the i t h value in the point x.' and A..(x.) equals the cross-

sectional area around x i . Let x. be the centroid (mean) of the experimental 

region with radius r . ( x ) . Then, 

J X j A ^ J d x , 
X . _ t 

/ A , (x^dx , 
a 

The values of a and b define the e.ndpoints of the interval ( l imi ts of 

in tegra t ion) associated with x^. 
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The manner in which the chosen mid-region point i s u t i l i z ed depends 

upon i t s re la t ionship to tha previous t r i a l point . Given that a mid-

region point has been selected within a defined feas ib le region, there 

are three p o s s i b i l i t i e s : (1) the value of the object ive function at the 

new mid-region point exceeds the value of the object ive function at the 

old point of explorat ion; (2) the value of the object ive function at the 

new mid-region point equals the value of the object ive function at the 

old point of explorat ion; o r , (3) the value of the object ive function at 

the new mid-region point i s less than the value of the object ive function 

at the old point of explorat ion. If the new mid-region point , x / , is an 

improvement over the original t r i a l point , x_, a new contour tangent can 

be determined and additional experiments performed. If the new mid-region 

point xV i s not an improvement over the or iginal t r i a l point x, there are 

two a l t e rna t ives avai lable : (1) a new contour tangent can be determined, 

the in ten t of which is the fu r the r reduction of the region of uncer ta inty , 

or (2) a new contour tangent can be determined in such a way t h a t the 

contour tangent passes through the point _x' and the original t r i a l point x̂  

From a pract ical point of view, so long as x1 defines an improvement 

over x̂ , i t i s f ea s ib l e to continue the exploration of a given region of 

uncer ta inty . When x' f a i l s to improve over x, two major considerations 

must be evaluated. 

(1) Optimization explorations are rare ly conducted fo r t h e i r own 
sakes—there is usually a manager involved who has requested 
the study and, although knowing l i t t l e about search technique, 
is v i t a l l y in te res ted in the resu l t s of each experiment. A 
good way to lose such a man's confidence is to carry out a 
s e t of experiments which, giving a lower value [of the object ive 
funct ion] than at the original loca t ion , would from his view-
point be considered " f a i l u r e s . " 



522 

(2) [Optimization] studies of ten are made on plants ac tual ly in 
production where decreases in [the value of the object ive 
funct ion] represent actual f inancial loss . Although a 
company could t o l e r a t e a loss during one or two i so la ted 
experiments f o r the sake of research, i t would be expecting 
too much to ask i t to sustain continued losses [ f o r a ser ies 
of such experiments].^ 

As a means of i l l u s t r a t i n g the method of contour tangents , consider 
O 

the problem of maximizing y = 3 + 6x - 4x over the closed interval 

0 £ x £ 1 • This function can be i d e n t i f i e d with a p r o f i t function where 

the optimal solut ion i s required to f a l l in the closed interval 0 £ x £ N. 

This in terval can be scaled to the required closed interval by dividing 

through by N. The solution will then be i d e n t i f i e d as x/N. The quadrat ic 

example i s used so tha t the resu l t of each i t e r a t i o n can be graphical ly 

demonstrated. The procedure outl ined by the algorithm for contour tangents 

i s demonstrated in d e t a i l . 
Step 1. See Figure 4 .11(a) . Let x ' be the i n i t i a l t r i a l ooin t , 

0 
a r b i t r a r i l y selected as being equal to 1/2. For y = 3 + 6x - 4x2 , the 

y 

2a-1 Elmto&kcl 

Region 

> x 

Fig. 4 . 11 (a ) - -F i r s t contour tangent to y = 3 + 6x - 4x2 
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gradient vector vy is given by vy = 6 - 8x. At x1 = x = 1/2, vy = 2. 
T 

The contour tangent defined by &y = vyAX i s given by the l i n e a r re la t ion 

Ay = 2(x - 1/2) = 2x - 1. As shown in Figure 4 . 1 1 ( a ) , ' t h e reduced feas ib le 

region is bounded by the l ines x = 1/2, x = 1, and Ay = 2x - 1. Any 

value of x contained within th i s region is a potent ial "new" so lu t ion . 

Step 2. See Figure 4.11(b) . Let xj be the second t r i a l poin t , 

a r b i t r a r i l y se lected as being equal to 2/3. At x-j = 2/3, the gradient 

Redo 02^ 

t \iWn at 
Rt̂ vor* % 

> X 

Fig. 4.11 (b)--Second contour tangent to y = 3 + 6x - 4x<: 

vector vy equals 2/3. The contour tangent i s given by the l i n e a r re la t ion 

2 2 2 4 

Ay = 3"(x - j ) = j x - g. As shown in Figure 4.11(b) , the reduced feas ib le 

region i s bounded by l ines x = | , x = 1, and Ay = | x - Any value of 

x contained within th i s region is a potential "new" so lu t ion . 
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Step 3. See Figure 4.11(c). Let xJ, be the t h i r d t r i a l po in t , a r b i t r a r i l y 

selected as being equal to 3/4. At = 3/4 the gradient vector vy equals 

0. The contour tangent is given by the l inear re lat ion Ay = 0(x - 3/4) = 0. 

k 1 faffed. 

R^*or> 

k 
H 

-V X 

Fig. 4.11 (c) - -Th i rd contour tangent to y = 3 + 6x - 4x' 

As shown in Figure 4.11 (c)» the reduced feasible region is bounded by the 

l ines x = 3/4, x = 1, and Ay = 0. Any value of x contained wi th in th is 

region is a potent ial "new" solut ion. 

Step 4. See Figure 4.11(d). Let x^ be the fourth t r i a l po in t , 

a r b i t r a r i l y selected as being equal to + e, where e is any small posi t ive 

number. At x^ = ^-+ e, the gradient vector equals -e. The contour tangent 

is given by the l inear re la t ion Ay = - E (x - - e ) = -ex + e( | -+ e). As 

shown in Figure 4.11(d), the reduced feasible region is bounded by the 

3 ? 
l ines x = 2 j -+e, x = 1 > a n^ Ay = -ex + e ( j + e). However, the slope of 
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Fefc3\\>\e 
Region 

*) = -ex + e (%te) 

Fig. 4.11(d)--Fourth contour tangent to y = 3 + 6x - 4x 

the contour tangent has changed from posi t ive t o zero to negative as x 

took on values on e i t h e r side of x = 3/4. Since the c r i t e r i o n f o r a 

maximum i s tha t the slope of the tangent l ine change from posi t ive to 

negative within an e-neighborhood of the optimal value x_*, the optimal 

value of x is x* = 3/4. This r e s u l t can be readi ly ve r i f i ed by the 

c lass ica l max-min calculus . 

From t h i s example, i t i s possible to i n f e r the c r i t e r ion by which 

the optimal solut ion is i d e n t i f i e d when the contour tangent technique is 

used. This c r i t e r i on can be attached as Step 4 in the general procedure 

previously out l ined and is as fol lows: 

(1) i f the function under consideration i s to be maximized, the 

optimal solut ion is tha t se t of values of the indepenent var iables f o r 

which the gradient vector equals zero and fo r which the slope of the contour 
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tangent changes from pos i t ive to negative within an E-neighborhood of 

the optimal poin t ; 

(2) i f the function under considerat ion i s to be minimized, the 

optimal solut ion i s t h a t se t of values of the independent var iables 

f o r which the gradient vector equals zero and f o r which the slope of the 

contour tangent changes from negative to pos i t ive within an e-neighborhood 

of the optimal point . 

The use of the contour tangent el iminat ion technique i s p a r t i c u l a r l y 

well su i ted to those problems f o r which defined funct ional expressions 

do not e x i s t . In such cases the l im i t s within which the optimal solut ion 

must f a l l are e i t h e r known in advance or assumed. For example, a manager 

i s i n t e r e s t ed in a l loca t ing a f ixed budget among four departments. The 

budget function i s not known, nor are the funct ional expressions r e l a t i ng 

the budget expenditures . I t i s known, however, t h a t both the budget 

a l loca t ion funct ion and the r e s t r i c t i v e r e l a t ions may be nonl inear . In 

order to guarantee a minimum cost a l l o c a t i o n , the budget function is 

assumed to be s t r i c t l y unimodal. In solving t h i s problem by the method 

of contour tangent e l imina t ion , the function would be approximated by a 

tangent plane. The procedure previously out l ined would then be followed. 

Each t r i a l solut ion would be located within the region of f e a s i b i l i t y , with 

adjustments made as needed to improve the solut ion s e t . Since the funct ion 

i s to be minimized, vy < 0 will ind ica te tha t the values in the solut ion 

can be increased; vy > 0 will ind ica te tha t a decrease i s necessary. 

Direct climbing.--The term "d i rec t climbing" is used as a means of 

describing any d i r ec t search technique tha t uses past information tn W a f P 



527 

be t te r solution points . In th i s manner the technique climbs from one 

point to the next when the function under invest igat ion is being maximized 

and descends from one point to the next when the function under inves t igat ion 

i s being minimized. 

The use of climbing techniques in d i rec t search problems serves two 

basic purposes: 

(1) i t provides a means of locat ing improved solutions which increase 

or decrease the defined object ive as needed; 

(2) i t provides information which can be used to determine the 

location of fu ture t r i a l so lu t ions . 

In appl ica t ion , the search process i s one of determining whether or not 

to continue the climbing process or to f u r t h e r explore the region containing 

the current so lu t ion . 

Although the use of climbing techniques (e i the r ascent or descent) can 

be used fo r analyzing functions of one var iab le , the most common appl i -

cation is the solving of mult ivariable funct ions . This is a t t r i bu ted to 

the f ac t t ha t univariable functions can be reasonably approximated by the 

technique of l e a s t squares and the resu l t ing functions analyzed by some 

other technique. As a r e s u l t , the discussion of d i rec t climbing techniques 

will be r e s t r i c t e d to mult ivariable functions and will include the following 

topics : response sur faces , gradient techniques, and the technique of 

para l le l tangents. Of the avai lable mult ivariable search techniques in 

the l i t e r a t u r e , these are the most promising. From the viewpoint of 

pract ica l appl ica t ion , these techniques are the most f ea s ib l e . 
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The use of d i rec t search techniques fo r solving m u l t i v a r i a t e 

funct ions suggests t ha t a cormion terminology be es tabl ished fo r the multi -

variable search problem. For the discussion to follow, the mult ivariable 

search problem will be t h a t of Definition 4.32. 

Definition 4 .32.- -Let y be a defined c r i t e r ion which i s defined in 

terms of n independent var iables x-j, x 2 , . . . , x N , where the functional 

expression fo r y i s not known. The mult ivariable search problem is 

defined as a problem in which the optimum value of y i s sought by system-

a t i c a l l y varying the values of the N-independent var iab les . With each 

se t of values of the N-independent variables there corresponds a defined 

value fo r y. I t i s not necessary t ha t the re la t ionship defining y be 

one-to-one. 

Response surfaces : The use of the response s u r f a c e ^ represents an 

attempt to measure the outcome of a given problem without the benef i t of 

a defined functional r e l a t i o n . In th i s sense the response curve can be 

compared to the se t of r e su l t s corresponding to the experimental processes 

of chemistry, physics, or biology. Such a comparison leads to the following 

d e f i n i t i o n . 

Defini t ion 4.33.—The map of a set of outcomes of a given mult ivariable 

search problem is defined as the response surface of tha t problem. For 

problems of more than three dimensions, th i s mapping will be ca l led a 

hypersurface of dimension (n + 1) and wil l be wri t ten (x , , x o s . . . , x : v) . 
I 2 n J ' 

40 
The context of t h i s discussion was taken from the following three 

sources: Acheson J . Duncan, Quality Control and Industr ia l S t a t i s t i c s 
(Homewood, 1959), pp. 765-787; Wilde, op. c i t . , pp. ^6271JTTdi~and~~~ 
Beightler , op. c i t . , pp. 273-287. 
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The use of mult ivar iable functions begins with functions of two 

variables. I t is assumed that the response surface is continuous wi th in 

the region of f e a s i b i l i t y and has continuous der ivat ives. Additional 

assumptions include the fol lowing: (1) the unknown function is assumed to 

be unimodal wi th in the region of f e a s i b i l i t y ; (2) the response surface 

can be su f f i c i en t l y approximated by a plane; and, (3) in the region of the 

optimum, the true function can be su f f i c i en t l y approximated by a second-

degree polynomial. 

The response surface fo r two independent variables can take on several 

forms: planes, e l l i p t i c a l paraboloids, hyperbolic paraboloids, s t ra ight 

r idges, parabolic r idges, or e l l i p t i c a l ridges. Regardless of the surface, 

the response curve describes the various combinations of the two independent 

variables that y i e l d a f ixed outcome. This concept can be readi ly recognized 

as that corresponding to a set of indi f ference curves or u t i l i t y functions. 

The mapping which results is cal led a contour map s imi lar to that of a 

topographical map. The outcome value defines the elevation with closed 

contour l ines indicat ing sharp rises and separated contour l ines indicat ing 

gradual slopes. 

Analyt ical considerations re la t ive to the study of response surfaces 

defined by two independent variables center on describing the type of 

surface which results and on describing the contours. Such considerations 

require that some description be given of the possible sur faces.^ 

41 
The basis fo r th is discussion was taken from Duncan, op. c i t . , 

pp. 773-779. 
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(1) Planes. I f the response surface fo r a given problem is a plane, 

the contours will be a se t of para l le l s t r a igh t l i ne s . These l ines will be 

the project ions of the in te r sec t ions of horizontal planes with the response 

plane onto the base plane. Such contour maps are seen when a se t of contours 

i s constructed fo r f ixed levels of demand, where demand i s defined in terms 

of two independent var iab les . See Figure 4 .12(a) . If the response plane 

->• x. 

Fig. 4.12(a)--Demand contour: Y = f(x-j, Y.^) , Y f ixed 

i s defined by the l i nea r re la t ion Y = a + bx-j + CX2» the contour a t Y£ 

i s defined by the l i nea r re la t ion Y£ = a + bx-j + cxg. This contour 

function can be writ ten in the form bx-j + + (a - Y£) = 0 and defines 

a s t r a i gh t l ine with slope -c /b on the xg-axis. 

(2) Paraboloids. If the response surface for a given problem is a 

paraboloid, i t will be defined by a second-degree equation of the form 

Y = a + b ]x1 + b2x2 + b ^ x * + b - ^ x - ^ + b22x2* 
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->x. 

Fig. 4.12{b)-~Contour map: e l l i p t i c a l paraboloid, Y = f(x. j , x^), Y f ixed 

Vertial sect ions of the response surface are defined by parabolas while 

project ions of horizontal sections onto the x ^ - p l a n e are generally defined 

by e l l i p s e s or hyperbolas. See Figures 4.12(b) and 4 .12(c) . 

% 

Fig. 4.12(c)-~Contour map: hyperbolic paraboloid, Y = f(x-j, x 2 ) , Y f ixed 
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by 

The general equation f o r the contour of the paraboloid a t Y i s given 

Yc = a + b!x-| + b2x2 + b-j-jX^ + b - ^ x - ^ + b 2 2
x

2 . 

This equation can be wri t ten in the form 
o p 

b l l x l + b12 x l x2 + b22X2 + b l X l + b2X2 + ( a ~ Y
c^ 

0. 

The analysis of such funct ions can be enhanced i f the determinant 

'11 

12 

12 

22 

2 

bo 

(a - Yc) 

f 0 

and i ' 

J11 

12 

Jl 
2 

22 

b l l b 12 " 4 ^ 1 2 ^ * °-

If the preceding two conditions are s a t i s f i e d , the general equation 

can be reduced to a s impl i f ied form by s h i f t i n g the or igin for x-j and x2 to 

the center of the conic and ro ta t ing the coordinate axes unti l they coincide 

with the axes of the conic. The r e su l t of th i s operation i s the reduced 

equation 

B11X1 + B22X2 + A " Yc = °* 

The X-j and X2 now iden t i fy the new axes. This form can then be analyzed 

according to the following c r i t e r i a : 

(1) i f B-J-J < 0 and B22 < 0, + B22X2 + A -- Yc = 0 defines an e l l i p s e 

and the s ta t ionary point which occurs at the center i s a maximum; 
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(2) i f B-ji > 0 and > Os ^ l l ^ i + ^22^ + A - Yc = 0 defines an 

el l ipse and the stationary point which occurs at the center is a minimum; 

(3) i f B-|-| < 0 and < 0, + A - Yc = 0 defines a 

hyperbola with a saddle-point that is a maximum for X-j and a minimum for 

X, 
29 

(4) i f B-|i > 0 and Bg2 < 0, B^X^ + B22X2 + A - Yc = 0 defines a 

hyperbola with a saddle-point that is a maximum for X2 and a minimum for 

V 
(3) Ridges. The occurrence of a ridge is a special case of the 

paraboloid. As a paraboloid, the ridge is defined by the reduced contour 

function 

B l l 4 + B22X2 + A Yc = 0. 

I ts form is determined by the values of B-J-J, B22J and the determinants of 

the original conic function 

b l l x l + b12x lx2 + b22X2 + b l x l + b2x2 + a ~ Yc = °* 

The determinant of this quadratic form is given by 

D = 

J11 

12 

12 
2 

°Z2 

b. 

(a) I f B^ is small the surface defined by B^X^ + B22X^ + A - Yc = 0 

begins to become narrow in the direction of X ]. I f B22 is small, the surface 

defined by B^X^ + + A - Yc = 0 begins to become narrow in the direction 

of X£. The result ing experimental surface is an e l l i p t i c a l ridge. See 



534 

-> x. 

Fig. 4.13(a)—Elliptical ridge 

(b) If B-j-j = 0, the contours are s t ra ight l ines parallel to the 

X-j axis . The result is an i n f i n i t e ridge in the direction of X-j. See 

Figure 4.13(b). 

Fig. 4.12(b)--Straight ridge 
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(c) If B22 = 0> 'the contours are s t ra ight l ines parallel to the 

X2 axis . The result is an i n f i n i t e ridge in the direction of ^ e e 

Figure 4.13(c). 

->x, 

Fig. 4.13(c)--Straight ridge 

(d) If the determinant of the original conic function equals 

zero, the contours are described by a set of parabolic ridges. See 

Figure 4.13(d). 

xt 
A 

Fig. 4.13(d)--Parabolic ridges 
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The introduction of more than two independent variables into the 

problem compounds the d i f f i c u l t y of graphically representing a response 

sur face . However, the surfaces that are generated can s t i l l be described 

by one of the preceding types of sur faces . The functions under invest igat ion 

are assumed to be continuous within the region of f e a s i b i l i t y and are 

assumed to have continuous der iva t ives . In addi t ion, the function is 

assumed to be unimodal within the region of optimali ty and amenable to 

nonlinear approximations. The desired r e su l t of response surface analysis 

i s summarized by the following: 

(1) to f i n d , a f t e r a minimum number of experiments, a s e t of operating 

conditions which optimize a given objec t ive ; 

(2) to reach, in as few experiments as poss ib le , a minimum level of 

acceptable performance; and, 

(3) to generate information useful fo r locat ing fu tu re experiments 

tha t will lead to the optimum value of the defined ob jec t ive . 

The analysis of a given response surface i s generally achieved by 

f i t t i n g su i tab le surface approximations to the t r i a l region. These f i t t e d 

surfaces are then examined to determine whether or not to continue the 

climbing process or to f u r t h e r explore the immediate region. In th is 

analysis use i s made of two major concepts, l i nea r explorations and 

para l le l tangents . 

At the outse t of the analysis of a given response sur face , there i s 

no information as to where the search should begin. Thus, any s t a r t i ng 

solution will be one of explorat ion. The only information conveyed will 
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be the location of the output value on the response sur face . Wilde has 

indicated tha t th i s analysis should be i n i t i a t e d by the technique of 

l i n e a r explorat ions . These should then be used to construct a representat ive 

42 

tangent plane. 

The l i nea r explorat ion-tangent plane technique is begun by a r b i t r a r i l y 

se lec t ing an i n i t i a l solution x . The t r i a l point x i s then used to 
—o —o 

determine an i n i t i a l value of the object ive function y . Since (x ; y ) 
o —0 0 

conveys no information other than the value of the object ive at x , 
—0 

additional experiments are needed i f the object ive i s to be improved. 

Thus5 a second t r i a l poin t , x^, i s needed. This second t r i a l point can be 

obtained in a variety of ways, the most common of which is to hold al l 

values of the independent variables constant but one. This second t r i a l 

point i s then used to obtain a second value of the- ob jec t ive , y^. If 

a s t r a i g h t l ine is constructed between yQ and y-j, t h i s l ine will be 

approximately tangent to the response sur face . 

As a means of be t t e r determining the slope of th i s l ine of tangency, 

a t h i r d t r i a l point , is se lec ted and i t s corresponding value on the 

sur face , y 2 , noted. A s t r a i g h t l ine i s then constructed between y and 

y-j. This l ine will be approximately tangent to the response surface . 

The three points yQ , y-j, and y^ can then be used to construct a plane 

tangent to the response surface a t yQ . This tangent plane can then be 

used as an approximation of the response surface and examined fo r d i rec t ional 

improvement. 

42 
Wilde, op. c i t . , pp. 65-71. 
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The values of the solution vector (k = 0, l , . . . , m ) are arb i t rary . 

With each-x^ there is a corresponding which ident i f ies a point on the 

response surface. Given three such y^ values, a tangent plane can be 

constructed as an approximation of the response surface in the neighborhood 

of the i n i t i a l value y . This tangent plane is defined by the l inear 

re lat ion 

y(x-j j x 2 , . . . 5 x N ) = m + m1x1 + m2x2+...+mNxN 

where m , are constants sat is fy ing 

y0
 = mo + mlx01 

+ 
"2 *02+ ' ',+mNX0N 

yi = mo 
+ 

V n 
+ m2x12+. ••+VlN 

y2 = m0 
HP 

V21 m2x22+. "+mNx2N 

m m0 + mlxrrn + l"2xm2+"-+nVlxn,N 
th f*h 

and x ^ ident i f ies the m value of the N variable; i . e . , XQ-J equals 

t fl 

the i n i t i a l value of variable x-j, and x ^ equals the m value of the 

variable x-j. 

From th is discussion, i t is readily seen that the use of the response 

surface does not require that the mathematical expression for the objective 

function be known in advance. In addit ion, the mathematical expressions 

fo r any constraints are not required. Tr ia l solutions are set within the 

region of f eas i b i l i t y , and tangent planes are used to approximate the 

functional expression fo r the objective function. Response surfaces can 

be constructed from experimental data derived from s ta t i s t i ca l experimental 

design, from accounting records, from production records, etc. The use 
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of the response surface allows any number of variables, with the resulting 

plane being defined as a hyperplane. As a tangent plane is constructed, 

i t is explored for be t ter solution points lying within the plane. If 

bet ter solutions ex is t , they are used to construct additional tangent 

planes and the process is repeated. The primary objective of each set of 

experiments is to construct a tangent plane that leads to the optimum 

solution as rapidly as possible. As additional planes are derived, the 

contour tangent concept can be ut i l ized to reduce the region of f e a s i b i l i t y . 

This will help in locating the solutions to be used as experimental values. 

The procedure to be followed in l inear exploration-tangent plane analysis 

can be written as a series of sequential operations. The operations can be 

repeated as often as necessary and terminate when a sui table functional 

expression has been derived or an optimum ident i f ied . 

A1gorithm 4.6 (1inear exploration-tangent piane analysis) .--Step 1. 

Let x^ = (x-j, x ^ , . . . ^ ) be the in i t i a l t r i a l solution. Using x ^ estimate 

the value of the objective function. Denote this i n i t i a l value by y . 
o 

Step 2. Let x_.j = (x-j, Xgi-.-jX^) be the second t r i a l solution, 

a rb i t r a r i ly selected in the neighborhood of the i n i t i a l t r i a l solution 

x^. Using >Cj, estimate the value of the objective function. Denote this 

second estimate by y-j. 

Step 3. Let x̂ , = (x-|, Xgs.-.jX^) be the thi rd t r i a l solution, 

a rb i t r a r i ly selected in the neighborhood of the i n i t i a l t r i a l solution 

xq but d i f fe ren t from the second t r i a l solution x^. Using x 2 , estimate 

the value of the objective function. Denote this third estimate by y^. 
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Step 4. Using the values yg, y-j, y^ and the corresponding solution 

vectors , determine the equation of the plane tangent to the response surface 

which contains yQ , y 1 , and y2- This tangent plane is defined by the re la t ion 

y ( j ^2»• • • » ) - iHq + m -J x i + 2̂̂ " • • • 

where the values of the (k = 0, 1, 2 , . . . , N ) are solut ions to the l i nea r 

system 

y 0 = m0 + m lx0l + m2X02+" ,+mNx0N 

y l ~ m0 + ^ l ^ l + m2X12+""'+mNXlN 

ym = m0 + mlxml + m2xm2+ ' ' '+rr)NxmN" 

The values of y^ (k = 0, l , . . . j m ) are the values of the object ive function 
th 

at the k t r i a l so lu t ion . The values of xkM (k = 0, 1 , . . . ,m) are the 

values of the respective variables in the kth t r i a l point and are known. 

This tangent plane wil l be used as an approximation of the response surface 

in the neighborhood of yg. 

Step 5. Examine the tangent plane fo r direct ional improvement. 

This can be done by redefining x^ and r e i t e r a t i n g Steps 1 - 4. 

Gradient techniques: The use of the gradient in d i rec t search has 

been described as a "creeping" approach to op t imiza t ion . 4 3 This terminology 

has been employed because of the manner in which gradient search techniques 

seek out the optimum solution to a given problem. The manner employed 

involves s l id ing around the feas ib le region in such a way that any move 

is a continuous motion and in the direct ion tha t improves the object ive 

funct ion. If the function is to be maximized, the movement will be in 
43 

William J . Baumol, Economic Theory and Operations Analysis 
(Englewood-Cliffs, 1965), p. 142. 
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the direction of steepest ascent. If the function is to be minimized, the 

movement will be in the direction of steepest descent. Baumol has des-

cribed th is approach in the following manner. 

Suppose i t is desired to find the outputs which 
maximize p r o f i t , R = f(X1 , X£ Xn), where the Xi 

are the outputs, of the f irm's d i f ferent products. A 
gradient method sets up the d i f ferent ia l equation (in 
which t represents computing time elapsed): 

dXi 3R 
dt 3X.* 

This s ta tes that we increase the quantity X.. of 

commodity i (dX./dt > 0) in the t r i a l solution so 

long. . .as this increase in X̂  results in a r ise in 

the f i rm's p ro f i t s . . .we make th is time rate of 
increase in output, X i, proportionate (equal for an 

appropriate time unit) to i t s marginal p ro f i t ab i l i ty 
'(3R/3X-). In other words, we increase (decrease) all 

quanti t ies whose rise leads to higher (lower) p r o f i t s , 
and, in e f f e c t , give a pr ior i ty ordering to the changes 
in the di f ferent quanti t ies in proportion to the i r 
p ro f i t contribution. Moreover, we impose the condition 
that any quantity which f a l l s to zero be stopped at 
that point: 

0 i f Xk = 0 a n d f | - < 0 . 4 4 

From this description, i t is seen that gradient techniques u t i l i ze 

the property that the direction of the gradient is the one providing the 

greatest response of the objective function per unit length of the inde-

pendent variable. This direction is determined by the proportional re lat ion-

ship between the incremental change in each variable and i t s part ial derivative 

The use of gradient techniques provides a means whereby any unimodal 

function can be solved. When the defining function is convex or concave, 

44 ~~ 
Ib id . , p. 143. 
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the use of gradient search will result in the global optimum. The use of 

gradient search is fur ther enhanced by the fac t that gradient techniques 

work when experimental error is a consideration and by the fact that 

gradient techniques avoid saddle-points. 

The gradient search techniques to be discussed in th is study serve to 

represent the variety of gradient search techniques available and the i r 

application. The gradient techniques to be examined are those described 

as the d i f fe ren t ia l gradient, steepest ascent-steepest descent (u t i l iz ing 

the d i f fe ren t ia l gradient) , and deflected gradients. 

(1) The d i f fe rent ia l gradient. Gradient search via the d i f ferent ia l 

gradient technique can be applied to defined constrained or unconstrained 

functions or to response surfaces. If y = f(x-,, x 2 , . . . , x n ) is any continuous 

m u l t i v a r i a t e objective function, the gradient vy is defined by the set 

of n f i r s t part ial derivatives 
oX-j 2, n 

vy = [ 3 L _ 
y L3X1' 3X£ '3xn

 J * 

The gradient at any solution point x = (x ] , x 2 , . . . , x n ) is perpendicular to 

the contour of f(x-j, x 2 , . . . , x n ) which passes through x = (x-j, x 2 , . . . , x ) 

and points in the direction of optimal improvement. If the objective 

function is to be maximizeds vy points in the direction of steepest ascent. 

If the objective function is to be minimized, vy points in the direction 

of steepest descent. 

In the development of the d i f ferent ia l gradient, i t i s assumed that 

the problem being investigated i s defined by 
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maximize y = f(x-j , x 2 , . . . , x n ) 

subject to 

9-j(x i > ^2»• • • » ) < 0 ( i - 1, 2 , . . . , k ) 

x. _> 0 for a l l i . 

The objective function and the constraints are assumed to be continuous and 

di f ferent iable. In addition, both the objective function and the constraint 

functions are unrestricted as to degree. 

Direct application of the d i f ferent ia l gradient technique ut i l izes the 

formula 

= w - £ ^ ( i O v g ^ x ) , 

where 

f 0 i f 9i(x) £ 0, 

U OjCx) > 0. 

At each i terat ion the t r i a l point x = ( x ^ x 2 > . . . , x n ) is moved in the 

direction of greatest increase in f(x-j , x 2 > . . . , x n ) . The term defined by 

5 1 M x ) v g , ( x ) 

i= l 1 1 

serves to keep the solution inside the constraint set. The value assigned 

to K is selected in such a way that i t keeps al l x. from leaving the 

constraint set. 

Successive application of the d i f ferent ia l gradient requires that each 

new t r i a l point be determined according to 

* k + i - 4 + p v y k , 

where 

r 
p = j v y f 
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and r equals the radius of the n-dimensional hypersphere centered at x^. 

The optimal value of p can be found by a suitable elimination technique 

(such as Fibonacci search) or by substi tut ing 

Mk = p?yk 

into the objective function and evaluating 

ay ( 4 + Piyk) 
3P 

= 0.45 

p = p * 

I t has been shown that i f vy = vf(x) is continuous, then any l imit point 

of a sequence of points given by the xJc+1 = + Pvyk is a stationary 

point. This provides su f f i c i en t proof for convergence of the i t e ra t ive 

46 

process. 

An interest ing property of successive gradients is that they are 

perpendicular to each other. This property results in a series of right 

angle i tera t ions which resul t in a stairway leading to the optimal solution. 

A graphic comparison of these two uses of the d i f fe rent ia l gradient is 

shown in Figure 4.14. 

The d i f ferent ia l gradient technique is incorporated into optimization 

theory through the use of the terms steepest ascent and steepest descent. 

If the function under investigation is to be maximized, the climbing 

procedure is one of steepest ascent. If the function under investigation 

is to be minimized, the climbing procedure (in a downhill manner) is one 
45 

Wilde and Beightler, op. c i t . , pp. 288-289. 
46 

P. Wolfe, "Methods of Nonlinear Programming," Nonlinear Programming, 
edited by J . Abadie (Amsterdam, 1967), pp. 112-113. 
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•> x, 

Fig. 4.14(a)—Direct d i f fe ren t ia l gradient: ^ = vy -11 6.(>c)vg.(x) i47 

of steepest descent. Optimization via steepest ascent or steepest descent 

i s accomplished bv evaluating the gradient at a given point, searching for 

the optimum along the calculated gradient, and then repeating the process 

until the gradient has been reduced to a suitable size (vy = 0). 

x* 
A 

">Xi 

Fig. 4.14(b)--Stepwise minimization: = x^ + pvy^ 

47, 
Wolfe, "Recent Developments in Nonlinear Programming," op. c i t . , p. 8. 
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(a) Steepest ascent. I f f (x- | , X2,...,Xjy|) is any mult ivar iable 

object ive funct ion, the direct ion in which a move is to be made is given 

by the square-root of the sum of the squared values of the f i r s t par t ia l 

der ivat ives. This requirement is defined by the re lat ion 

^ ( f r ) 2 

i = l i 

As successive i terat ions are made, i t w i l l be found that direct ional 

derivatives are perpendicular to each other, as noted in Figure 4.14(b). 

This is due to the fact that the i n i t i a l gradient is the tangent to the 

contour at the second t r i a l po in t , and the new gradient is perpendicular 

to the tangent of the contour at th is second point . This property has 

resulted in gradient techniques being c lass i f ied as stepwise optimization 

techniques, with the orthogonality condition defined as 

y 3f(x k ) • 8 f (x k 4 1 ) _ Q 

1-1 3 x j 3 x i " 

8f( 
The notation — i n d i c a t e s that the par t ia l derivat ive has been evaluated 

k 

at t r i a l solut ion x . 

Gradient search via steepest ascent requires that the step size be 

selected e i ther a r b i t r a r i l y or by some defined technique. Wagner has 

shown that the optimal step size is that value of t k >_ 0 which maximizes 

f ( x k + t d k , . . . , x ^ + td jp . In th is re la t ion , dk denotes the value of the 

f i r s t par t ia l derivative with respect to x.. at the k t h t r i a l solut ion. 
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The application of steepest ascent gradient search has been described 

48 

in algorithmic form. This algorithm, taken from Wagner, is reproduced 

here in the form most applicable to a given problem. 

Algorithm 4.7 (gradient search by steepest ascent). —Step 1. Select 

an a rb i t ra ry , feasible t r i a l solution. Denote th is i n i t i a l t r i a l solution 

by x°. 

Step 2. Determine x 2 , . . . , x N ) for 1 = 1, 2 , . . . , N . Evaluate 

3f 9f k 
- — at the t r i a l solution. If t — = 0 at x for all i , terminate the algorithm 
OA- OAj 

k 
since there is no fur ther improvement. If — / 0 for all i , determine y? 

oXj * I 
[/ 

fo r i = 1, 2 , . . . , N , and go to Step 3. The value y^ equals the value of the 
th 

objective function at the k i t e ra t ion . 
Step 3. Calculate a new t r i a l point by applying 

x * 1 . xf • 
1/ 

where d.. equals the f i r s t par t ia l derivative of f(x-j, x 2 , . . . , x ^ ) with 

k k 
respect to x̂  when evaluated at t r i a l solution x and t is that value of 

t which maximizes f(xlj" + td^, x!j + tdg, ,x[j + tdjj) . 
(/ 

Step 4. The solution v e c t o r ^ i s an optimal solution i f and only if 
3 "f 

the gradient vanishes at that point; i . e . , - — = 0 for all i . Repeat 
xi 

Steps 1 - 3 as needed. 

Consider the problem of maximizing f(x-j, x2) = -(x-j - 3)2 - 4(x2 - 2) 2 . 

Let the i n i t i a l t r i a l solution be (1, 1). The given function is assumed 

to be continuous and d i f f e r e n t ! a b l e . ^ 

1 
48 

Harvey M. Wagner, Principles of Operations Research (Enqlewood C l i f f s . 
^ r ̂  ' — " 
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.0 _ , 0 0, Step 1. Let x = (x-j, x!p = (1, 1). 

Step 2. Determine for i = 1 , 2 . 
i 

% • - 2 ( x i - 3 ) -

At x° = (1, i ) , d° - f t - = 4 and d° = f t . = g. since f t - ^ 0 for all x , , 

the solution is not optimal. Go to Step 3. 

Step 3. Calculate a new t r i a l point by applying 

x f 1 = X* + tkdf. 

It Is necessary to determine the value of t for which f(xk + tdj, . . . ,xji + td!j) 

is maximized, 

f(x° + td°, x° + td°) = f ( t d j , td°); x° = x° = 0. 

For x^ = (0, 0), the function to be maximized is defined by 

f (4 t , St) = -(4t - 3)2 - 4(8t - 2)2 

f ' ( 4 t , 8t) = -2(4t - 3)(4) - 8(8t - 2)(8) 

= -8(4t - 3) - 64(8t - 2) 

= -32t + 24 - 512t + 128 

= -544t +152. 

Setting f ' ( 4 t , 8t) = 0 yields t ° = which maximizes f (4 t , 8t) . Therefore, 

X1 = x? + = 1 ' 1 2 ; 

x2 = X1 + ^ 6 ? ^ ^ = ^ >24. 
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The procedure jus t completed will be reapplied using x* = (1.12, 2.24). 

So long as the gradient is nonzero, the optimum has not been reached. So 

long as the gradient is positive, the solution values must be increased. 

If the gradient is negative, the solution values must be decreased. As 

indicated, the i terations terminate when the gradient vector vanishes. At 

this point, no further improvement can be made, regardless of step size. 

Iteration II : Step 1. Let x* = (x]> x^) = (1.12, 2.24). 

af 
Step 2. Determine -r—- for i = 1, 2. 

OAj 

i f -2(*i - 3>-

% q - -8<x2 " 2 > -
At x1 = (1.12, 2.24), dl = = 3.76 and d ] = — • = -1.92. Since f 0 

I oX*! C. 2 i 
for all x.., the solution is not optimal. Go to Step 3. 

Step 3. Calculate a new t r ia l point by applying 

x f 1 = x!f + tkd^, where k = 1. 

k 1 

I t i s necessary to determine the value of t = t for which 

f(x^ + td^, . . . ,xj^ + tdj^) is maximized, 
f(xj + td] , Y)z + td^) = f(1.12 + td] , 2.24 + td^). 

Since x} = (x-j, X2) = (1.12, 2.24), the function to be maximized is defined by 

f(1.12 + 3.76t, 2.24 - 1.92t) = -(1.12 + 3.76t - 3)2 - 4(2.24 - 1.92t - 2)2 

f ( l .12 + 3.76t, 2.24 - 1.92t) = -(-1.88 + 3.76t)2 - 4(.24 - 1.92t)2 . 
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f ' (1 .12 + 3.76t, 2.24 - 1.92t) = -2{-1.88 + 3.76t)(3.76) - 8(.24 - 1.92t)(-1.92) 

• -7.52(-l.88 + 3.76t) + 15.36(.24 - 1.92t) 

= 14.1376 - 28.2752t + 3.6864 - 29.4912t 

= 17.8240 - 57.7664t. 

Setting f ' (1 .12 + 3.76t, 2.24 - 1.92t) = 0 yields t = .31, which maximizes 

the function f(1.12 + 3.76t, 2.24 - 1.92t). Therefore, 

= x] + (.31)(3.76) = 1.12 + 1.1656 = 2.1856 = 2.29 

x2 = x2 + (-31)(-1.92) = 2.24 - 0.5952 = 1.6448 = 1.64 

The new t r i a l point can then be utilized in the same manner as x5 to 

determine a third t r i a l solution, x^. The reapplication process will 

continue until the gradient vanishes, an indication that an optimal solution 

has been achieved. 

(b) Steepest descent. Steepest descent can be described as 

steepest ascent in reverse. Whereas steepest ascent moves in the direction 

of greatest increase, steepest descent moves in the direction of greatest 

decrease. This can be interpreted as moving along the gradient in a 

negative direction. 

The process of steepest descent can be approached from either the 

continuous process of the differential gradient or the stepwise process 

discussed under steepest ascent. The discussion here will parallel that 

of steepest ascent. In this way, the technique of steepest descent will 

be seen to be basically identical to that of steepest ascent. 

Steepest descent requires a modification of the stepwise i terat ive 

formula of steepest ascent. Whereas steepest ascent iterations ut i l ize 
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x f 1 = x j + t d f , 

steepest descent i terations uti l ize 

x^+1 = x} - tdf . 

1 k k 
The value of t is determined by maximizing f (x j + t . j d . | . ,x^ + t d£). As 

k af in the case for steepest ascent* d. equals the value of evaluated at 
1 d X • 

k 

t r ia l point x . This modification indicates that the t r i a l solution is 

moved along the gradient in a negative manner. Other than requiring the 

use of the modified i terat ive formula, the technique is the same as that 

for steepest ascent. 

Algorithm 4.8 (gradient search by steepest descent).—Step 1. Select 

an arbitrary, feasible t r ia l solution. Denote this in i t i a l t r ia l solution 

by x°. 

Step 2. Determine f (x ] , x 2 , . . . , x N ) for i = 1, 2 , . . . ^ . Evaluate 

at the t r ia l solution. If - - = 0 at x*4 for all i , terminate the 

algorithm since there is no further improvement. If f 0 for all i , 
oX • 

k 

determine y i for 1 = l s 2 , . . . ,NS and go to Step 3. The value y j equals 

the value of the objective function at the i terat ion. 

Step 3. Calculate the new t r ia l point by applying 
xf+1 = x* - tkd*, 

jk where d. equals the f i r s t partial derivative of f (x^, x 2 , . . . , x N ) with 

respect to x,. when evaluated at t r ia l solution x^ and t k equals the ve 

of t which maximizes f(x ] + t d | , . . . , x N + tdN) at the k t h i terat ion. 
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Step 4. The solution vector x^ is an optimal solution i f and only i f 

9f the gradient vanishes at that point; i . e . , -r— = 0 fo r all i . Repeat 
oX.* 

Steps 1 - 3 as needed. 

The use of steepest ascent-steepest descent in optimization problems 

3f 
requires repeti t ious evaluation of the part ial derivatives defined by r—. 

oX« 

For large N, this i s expensive in terms of both time and e f f o r t . Hence, 

i t i s desirable to take as large a step as feasibly possible without 

violating any constraints . The procedure previously outlined i s such a 

technique, as i t u t i l i zes the optimal step size at each i t e ra t ion . The 

resul t i s the reduction of an N-dimensional optimization problem to a 

sequence of one-dimensional problems. 

(2) Deflected gradient technique. The deflected gradient technique 

i s an i t e ra t ive technique developed by R. Fletcher and M. J . D. Powell. 

I t has also been ident i f ied as the Fletcher-Powell technique. 

The deflected gradient technique u t i l i zes information that is generated 

at each i t e ra t ion . This information is used to construct the Hessian 

matrix of the defined objective function. If the function is quadratic, 

unimodal, and d i f f e r e n t i a t e through at leas t second derivatives, this 

Hessian matrix is constructed a f t e r N i te ra t ions . For functions more 

complex than a quadratic, the deflected gradient technique provides an 

adequate approximation to the Hessian in the neighborhood of the optimum 

s o l u t i o n . ^ 
50 

Gue and Thomas, op. c i t . , p. 117. 
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Definition 4.34.--The term deflected gradient technique is used in 

reference to optimization analysis which u t i l izes the gradient of the defined 

function as a means of improving the value of the objective function without 

moving along the gradient. 

The deflected gradient technique requires that suitable information be 

generated from the gradient at a number of points. This information is 

obtained by (1) determining the gradient a t (2) constructing 

a direct ion, ax, in which to move, and (3) moving along the direction ax 

to some new point xn + i• This procedure i s repeated at each i tera t ion 

until the gradient has been reduced to a predetermined acceptable size. 

(a) Minimization technique. The problem to be minimized is 

defined by the quadratic form 

y = yo + cTx + ^xTCx. 

The general procedure i s to move from point x^-j to the optimum point x* 

when the gradient vy(x^_-|) i s known. The move from point x^-j to x* is 

defined by 

ax* = (x* = x^-j) = -Q."1vy(2ik_1), 

where £ i s a rarely known matrix. The deflected gradient technique provides 

51 
a means of determining Q̂ . 

Let H^_i be an N x N matrix sa t is fying 

\ - Xfc_i = A)^ = - y ^ ^ v y C x ^ - , ) . 

Since the function is to be minimized, will be a positive defini te 

matrix. The value of is the value of the search parameter which 

51 
Wilde and Beightler, op. c i t . , pp. 331-336. 
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optimizes y(Ax^) along the l ine of search defined by 

i h ' h - i k - r 

If the direction of the optimum solution is known, the matrix H _̂-j should 

be selected accordingly. If the direction of the optimum solution is not 

known and no information is available which might indicate the direction, 

the N x N identi ty matrix can be used as an estimate of H^-j. 

Application of the deflected gradient technique for minimizing a given 

function generates N sequential solution points x^, X g , . . . ^ such that the 

gradient vyOO, (n - 1, 2 N), i s perpendicular to all preceding steps 
—n 

AX-| , AX ,̂ . . . jA)^. This condition is expressed by the relation 

(^y(>^))TMi = 0* 1 = 1 . 2 , . . . , n ; n = 1, 2 , . . . , N . 

The N**1 gradient vector, vy(x^), is perpendicular to N vectors Ax_. These 

N vectors have been constructed in such a way that they are l inearly 

independent. This forces vy(x^) to equal zero at an optimum. In addition, 

the sequence of i te ra t ions has generated a t the i tera t ion the 
• f*h 

Hessian matrix H^. This N positive defini te matrix is the inverse of 

the original unknown Hessian matrix Q_; i . e . , Ĥ  = . 
Practical application and the introduction of round-off error generally 

J. L. 

resul ts in a nonvanishing N gradient vector. This requires an additional 

i tera t ion to verify optimality. This additional i te ra t ion u t i l i zes the 

Hessian matrix of the N i t e ra t ion . The step for i te ra t ion (N + 1) is 

defined by 

^N+l = ^N+l " s 

Since Ĥ  = Q. ^, this relat ion can be written as 

^N+l = = "yN+l3- ^ ( X N ) 
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However, Qf^vyCx^) = (x_* - x^). Therefore, 

^N+l = ^N+l " = ~yN+l ' 

For y^+-j = 1, x^+.| = x*. Further correction for round-off error can be 

made by minimizing with respect to . 

Having br ief ly outlined the process by which a function is minimized 

by the deflected gradient technique, the construction of an application-

oriented algorithm i s in order. This algorithm will then be demonstrated 

by application to a quadratic function in three variables. Because of 

lengthy calculat ions, only one i tera t ion will be demonstrated. 

Algorithm 4.9 (minimization by deflected gradients). —Step 1. Determine 

the i n i t i a l solution, x . Determine the in i t i a l positive defini te Hessian 
O 

matrix H by defining H n I... 
~o —o ~-N 

Step 2. Determine the gradient vector vy, where vy = , . . . ,-j^~)T. 
aX*| 2 N 

Using the solution point, determine vyC*^) by evaluating vy at the 

solution point. For x^, th is will be vyfx^). 

Step 3. Determine AX-j. Utilizing the relation AX-j = _X̂  - x̂  = -y^H^vy^) 

the new t r i a l point x-j can be written as a function of the search parameter y-|. 

Step 4. Determine the value of ŷ  by minimizing y(x.-j) with respect to 

y r 

Step 5. Substitute the value of y-j from Step 4 into the relation 

defining : 

* 1 = 4 - ^ H v y t x , ) . 

Step 6. Calculate vyQ^). If vyfx-j) = 0, terminate the process. The 

solution defined by x̂  is the optimal solution. If v y ) f 0, go to Step 7. 



556 

Step 7. Replace x by x, . Replace H by H,, where H, = H + A, + B, 
—o —I r —o —| l — o — l — l 

The relat ion defining (n = 1, 2 , . . . ,N) is given by 

AX„ AX 

~ A x - 3^ 

where 

The relationship defining (n = 1, 2 , . . . ,N) is given by 

^n-l^i-^n ^n-1 

^n 4 i - l 

Increase a l l subscripts by one for each additional i terat ion and repeat 

Steps 1 - 7 unt i l the gradient at the Nt'1 i terat ion is suitably small. 

Consider the problem of mininrizing y(x.j, x2> x3) = 2x^ + x^ + 2>?y 

A suggested start ing solution is the set of values ( -1, 1, - l ) . 5 2 

Solution: Step 1. Let x = ( - 1 , 1 , - 1 ) . Let H = 
0 ~0 

1 0 0 

0 1 0 

0 0 1 

Step 2. Determine vy, where vy = ( | ^ - s J£-, f^~)T . Applying part ial 

derivatives to y ( x , , x2 , x 3 ) , = 4x, ; | * - = 2 ^ ; | * _ = A t t t i e 

i n i t i a l solution point, vy(>^) = ( -4 , 2, 6)T . 

Step 3. Determine ax-j , where ax-j = -y - jH^vy^) . 

\ 

O
 

o 
1 

~-4~ 

j?
 il 

XL
 

—
j o 

o 2 

1 o o 

\
 .-6 . 

52 I b i d . , p. 336, 
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= -y. 
-4 

2 
- 6 

4y, 

-2y-, 

6 ^ 

Util izing the relation AX, = X, - x , the new t r i a l solution can be written 
1 —| —t) 

Xn = X + A X , 
H o —I 

" 2 y l 

6y 1J 

4n1 - 1 

1 - 2yn 

6y ] - 1 

Step 4. Determine the value of y-| by minimizing y(x^) with respect 

to y-j. At ><t| , x-j = 4y-j - 1, Xg = 1 - 2]i^, and x^ = - 1. Therefore, 

y(i<-j) = 2(4y] - I ) 2 + (1 - 2y-j ) 2 + 3(6U] - I ) 2 

= 2{16y2 - 8y-j + 1) + (1 - 4y, + 4y2)2 + 3(36y2 - 12U] + 1) 

= 32y2 - 16y1 + 2 + 1 - 4y ] + 4y2 + 108y2 - 36y-, + 3 

= 144y2 - 56y-j + 6. 

Different iat ing with respect to y1 and equating the resul t to zero yields 

288y-j - 56 = 0. Solving for y-j > y-j = f§g = 0.1944. This value of y-j minimizes 

s i n c e the second derivative of y(x-,) with respect to ^ is positive 

for y-j = 0.1944. 
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Step 5. Since y-| = 0.1944, the solution point x-j = 

4y-| - 1 

1 - 2y, 

6pi - 1 

i s given by 

*1 = 

-0.2224 

0.6112 

0.1664 

, and ax-| = 

.7776 

• .3888 

1.1664 

" -0.2224" 

0.6112 
= " V 

x2 
, the gradient 

. 0.1664. _ X3. 

Step 6. Calculate vy(x^). At = 

for the f i r s t i te ra t ion is given by vy(>Cj) = [-.8896, 1.2224, 0.9984]1'". 

Since ^ (x .^ ) f 0, the optimal solution has not been found. Go to Step 7. 

•Step 7. Replace 2^ by x^. Replace by H^, where + Â  + ^ 

Calculate Â  and by applying the fol lowing relat ions: 

J 

k -
AX-j AX-| 

£ l = ) - vyCi^); 

_ hT 

—i ~ ~ rr —o 

a-i So * i 

(a) Since is required fo r both A-j and , determine £-j f i r s t . 

As a means of s impl i fy ing the calculat ions, the values of x-j, X£» and x^ 

in 2L-| have been rounded to the nearest tenth; i . e . , x j = ( -0 .2 , 0.6, 0.2). 

£] ~ l y C ^ ) 1 ~ v y C ^ ) 1 = ( - . 9 , 1.2, 1.0)T - ( -4 , 2, -6)T 

= ( - . 9 + 4, 1.2 - 2, 1.0 + 6)T 

= (3.1, - . 8 , 7)T. 
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.7776 " .8~ 
(b) Since ax-j = - .3888 = - .4 and £.j = [3.1, - .8 , 7], 

1.1664 1.2 
and £.j = [3.1, - .8 , 7], 

A, = 

.8 
- .4 

1.2 
[ •8, - . 4 , 1.2] 

[ - 8 , - .4 , 1 .2] 

' .64 -.32 .96 
-.32 .16 -.48 

,96 -.48 1.44 

11.2 

.06 -.03 .09 
-.03 .01 

O
 t 

.09 -.04 .13 

(c) Since H = 
0 

1 0 

0 1 

0 0 

rxr 
- .8 

7 

0 

0 

1 

and 5-1 

3.1 

• .8 

7 

£i -

1 0 0 

0 1 o 

0 0 1 

3.1 

- .8 

7 
[3.1, - .8 , 7] 

1 

0 

0 

[3.1, - .8 , 7] 
1 

0 

0 

3.1 

-.8 

7 
[3.1, - .8 , 7] 

[3.1, - .8 , 7] 
3.1 

- .8 

7 

0 

1 

0 

~ 3.1 ~ 

- .8 

7 

0 0 

1 0 

0 1 
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9.61 

-2.48 

21.7 

.16 
-.04 

,37 

-2.48 

.64 

-5.6 

21.7 

- 5.6 

49 

59.25 

-.04 

.01 
-.09 

.37 

•.09 

.83 

-.16 .04 -.37 

.04 -.01 .09 

-.37 .09 -.83 

Combining these resul ts as requi red, ^1 = H + A, 
—o —1 

+ Bp 

1 0 0 .06 -.03 .09 -.16 .04 -.37 

til " 0 1 0 + -.03 .01 -.04 + .04 -.01 .09 
0 0 1 _ .09 -.04 .13 _ . -.37 .09 -.83_ 

.90 

.01 
-.28 

.01 
1.00 

.05 

-.28 

.05 

.30 

Thus, the new positive def ini te Hessian matrix has been determined. This 

matrix can be u t i l i zed with x-j to determine Xg by reapplying Steps 1 - 6. 

(b) Maximization technique. The problem to be maximized is 

defined by the quadratic form 

y = yQ + £_Tx + xTPx. 

As in the minimization technique, the use of the deflected gradient defines 

the move from point x ^ to the optimal point x* in terms of the rarely 

known matrix £ and the gradient vytx^ ^ ) ; i . e . , 

Ax* = (x* - X|,_i) = -!£ ^ ( x ^ i ) . 
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Since is rarely known, this step is made by defining i t in the form 

% - 2 M = " k = 

where H^-j is a suitably chosen negative def ini te matrix. The value of 

is the value of the search parameter which optimizes y(AXjJ along the l ine 

of search defined by 

= - 4 - r 

I f the direction of the optimum solution is known, the matrix should 

be selected accordingly. I f the direction of the optimum solution is not 

known and no information is available which might indicate the direct ion, 

the negative of the N x N ident i ty matrix can be used as an estimate of H^._i. 

Reference to the description of functional minimization by deflected 

gradients reveals that the maximization procedure is basically the same. 

The differences to be noted are two: (1) the matrix H^_-j is approximated 
th 

by the N x N negative ident i ty matrix, -I_; (2) the N Hessian matrix is 

negative definite instead of positive def in i te. With these considerations 

in mind, the following algorithm can be used to maximize a given quadratic 

function by the technique of deflected gradients. 

A1 gorithm 4.10 (maximization by deflected gradients). —Step 1. Determine 

the i n i t i a l solution x D e t e r m i n e the i n i t i a l negative defini te Hessian 

matrix H by defining H = -I. . . 
—o s - v N 

Step 2. Determine the gradient vector vy, where vy = (|^—, | ^ ~ , . . . 
dX-j 2. N 

Using the solution point, determine vyC)^) by evaluating vy at the solution 

point. For x , this w i l l be vy{x ) . 
—0 — "~0 
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Step 3. Determine ax^ . Ut i l i z ing the relation = x-j - xq = 

the new t r i a l point x.-j can be written as a function of the search parameter 

V] • 

Step 4. Determine the value of y-j by maximizing y(x.-j) with respect 

to ]i*j * 

Step 5. Substitute the value of y-j from Step 4 into the relation 

defining Xq: 

xn = x - ynH vy(x ) . 
—I —O I —o— —o 

Step 6. Calculate vy(_x^). I f v y ( ^ ) = 0, terminate the process. 

The solution defined by x-j is the optimal solution. I f vy(x-j) f 0, go 

to Step 7. 

Step 7. Replace x by x-,. Replace H by H,, where H-, = H + A, + B,. 
~~o I o —1 —1 —o —1 —I 

The relat ion defining (n = 1, 2 N) is given by 

, = 
i x l a,, 

where 

- zytJSn^)-

The relat ion defining (n = 1, 2S . . . ,N) is given by 

g = ^ n - l ^ A i —n-1 
T u 

Sn ^ - l ^ n 

Increase a l l subscripts by one for each additional i terat ion and repeat 

Steps 1 - 7 unt i l the gradient at the N th i terat ion is suitably small. 

The computations necessary for maximizing a given function are identical 

to those required for minimizing a given function. As noted, the only 
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s igni f icant changes in the computational process are the use of a negative 

def in i te Hessian matrix fo r functional maximization and the use of -1^ for 

the estimate of the i n i t i a l negative def ini te matrix H^. 

Parallel tangents: The method of parallel tangents, the third general 

category of direct search techniques, i s both a climbing technique and an 

elimination technique. I t has been used to solve a variety of multivariable 

maximization-minimization problems and consists of two basic techniques: 

(1) gradient partan and (2) general partan. Whereas gradient partan uses 

the gradient to define directional moves, general partan does not. Of 
C O 

the two techniques, gradient partan i s considered the most advantageous. 

(1) General partan. The general partan procedure can be described 

in terms of both two-space and three-space. The description of two-space 

general partan will follow that given by W i l d e . T h e description of three-

space general partan will follow that given by Wilde and Beight ler . 5 5 

(a) Two-space. Let P^ be any s tar t ing solution on the contours 

of Figure 4.15. Let x* be the optimal solution. Let tt be the l ine 
— o 

tangent to the contour surface at P^. Let P^ be an arbi t rary point and 

P^ any tangent to the inner contour. Given the contour tangent TrQ, any 

l ine (ir -j) parallel to i s sui table . This parallel line is then explored 

for i t s highest point. For e l l i p t i ca l contours, th is high point will be 

in a colinear relationship with P and the optimum point P . . The search 
0 

for the optimum solution is conducted along the l ine connecting P^ and 

P q . Any one dimensional search technique will su f f i ce . 
53 

Wi 1 de, op. c i t . , p. 135. 
5 ^Ib id . , pp. 130-133. 55Wilde and Beightler, op. c i t . , pp. 323-325, 
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Fig. 4.15—Two-space general partan 

(b) Three-space. Let be any s tar t ing so lut ion in the space 

shown in Figure 4 . 1 6 . Let x* be the optimal s o l u t i o n . Let iro be the 

tanoent plane at P . Let P0 be the high point on any l i n e from P where 
f *~*"0 ^ 

Fig. 4 .16--Three-space general partan 
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the l ine i s not contained in the tanget plane irQ. Let P^ be the high 

point on any l ine from P^ parallel to the tangent plane tto, but not con-

tained in the tangent plane Construct a l ine passing through 

and P0. Let P. be the summit of the l ine passing through P and P0. 
—o —H "~t) —O 

Construct a l ine parallel to the intersection of ttq and i ^ . This l ine 

will be unique. Let P^ be i t s summit. Construct a line through P^ 

and Pg. Let Pg be the high point of the l ine passing through P^ and 

Pg. The point defined by P^ will be at the center of the system of three-
56 

dimensional e l l ipsoids and will be equal to the optimal solution. As 

in the two-dimensional case, the search along th is f inal l ine can be 

accomplished by univariate search. 

The study of parallel tangents to this point has been descriptive. 

Since the gradient partan technique is a more suitable optimization tech-

nique, the computational aspects of parallel tangents will be demonstrated 

in that discussion. 

(2) Gradient partan. As in the discussion for general partan, 

gradient partan will be described in both two-space and three-space. 

Following these descriptions, a general computational algorithm for 

gradient partan will be given. This computational algorithm will then be 

demonstrated by a numerical example. 

(a) Two-space. The functions to which gradient partan is generally 

applied are described as e l l i p t i ca l contours. (See Figure 4.17.) The 

optimum solution is located by a series of one-dimensional searches along 

the l ine of steepest ascent or steepest descent. The direction of the 

search is dictated by the gradient vector. 
Ib id . , pp. 325-326. 
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Fig. 4.17--Two-space gradient partan 

Let P be the i n i t i a l s tar t ing point and ir the contour tangent at 
—0 

P^. Application of the gradient search will produce the zig-zag course 

shown in Dassing from P to P0 to P0 to P. to F\- to P. to the optimum x*. 
—o —c. —o "4 —b —0 

This zig-zag pattern is bounded by two lines which intersect at the optimum 

solution. This property permits the search for x* to be concluded a f t e r 

three one-dimensional searches: (1) along the gradient from P^ to P^, 

(2) along the gradient from P^ t o EL3> a n^ then (3) from P^ along the 

l ine passing through P^ and P_g. 

(b) Three-space. Gradient partan in three-space f i r s t locates 

a plane containing the center of the three-dimensional e l l ipsoids . General 

partan i s then applied to locate the center in as accurate a manner as 

possible. As in the case for general partan, the optimum solution is 

located in six i t e ra t ions . (See Figure 4.18.) 
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Fig. 4.18--Three-space gradient partan 

Let be any s tar t ing solution and irn the tangent plane at P^. 

Let Pg be the high point of the l ine determined by the gradient vector 

a t P . Let ir0 be the tangent plane at P0 . Successive application of 
—O C 

the gradient vector produces the zig-zag pattern shown in moving from 

P to P0 to P0 to P„ to Pr. If a one dimensional search is conducted 
—o —£ —O -4 —o 

along the l ine passing through and P^, the search will terminate at 

the point Pg. This terminating point is the optimum solution. 

I t i s easily seen that the gradient partan technique closely follows 

that of general partan. However, unlike general partan, the lines of search 

are dictated by the gradient. This i s the basic difference between the 

two partan techniques. 
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The discussion of gradient partan is summarized by Algorithm 4.11. 

The construction of th is algorithm is an outgrowth of this study and 

summarizes the presentation of gradient partan. 

Algorithm 4.11 (gradient partan).--Step 1. Select any arbi t rary 

s tar t ing solut ion. Denote th is i n i t i a l solution by P^. 

Step 2. Determine the equation of the tangent plane at P^. The 

equation of the tangent plane at any point cMs defined by 

N 
H M x , - a.) = 0, 
i= l 1 1 1 

where m. = ( i = 1, 2 , . . . , N ) , evaluated at a_. 
1 oXj 

Step 3. Determine the high point for the gradient l ine at the current 

solut ion. This is accomplished by defining each variable x. ( i = 1, 2 , . . . ,N ) 

in terms of the common parameter p, expressing the objective function in 

terms of p, and then solving for that value of p fo r which Y(p) = 0. 

The necessary transformation is defined by 

m p̂ = x i - a i ( i = 1, 2 , . . . ,N) . 

This transformation can be wr i t ten as 

x.j — m.j p + a.. ( i - l j 2 , . . . ,N). 

Step 4. Determine P^, the next solution point. The coordinates of 

Pg are obtained by subst i tut ing the optimal value of p into 

x. = m.p + a i ( i = 1, 2 , . . . ,N). 

Step 5. Determine the gradient at I f yy(P->) = 0, the process 

terminates and is the optimal solut ion. If vy(P^) i 0, replace P̂  by 

F\> and reapply Steps 1 - 5 . Increase the subscript of P_ by one to indicate 

the new solution defined in Step 4. Repeat as needed. 
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This algorithm will be demonstrated by performing one i t e r a t i on on 

the function 

2 2 2 
y(x-j j x 2 , — ~ x2 - x 3 ' 

57 

This function i s to be minimized. 

I t e r a t i on I : Step 1. Let be any a rb i t ra ry s t a r t i ng solut ion. 

For convenience, l e t P = ( - 1 , 1 , - 1 ) . 
—o 

Step 2. Determine the equation of the tangent plane at P^. The 

equation of the tangent plane a t any point ji i s defined by 

m1(x1 - a.j) + n^(x2 - a2) + m3(x3 - a 3) = 0, 
where m. = | ^ - (i = 1, 2, 3) evaluated at a. Thus, 

I O A . . 

m = = _ 4 x . 

"l 3X1
 4X1 ' 

^ = _2x • 
2 3X2 2 ' 

m = = -2x 

3 3x3 3" 

At = ( -1 , 1 -1 ) , m-j = 4, m2 = -2, and m3 = 2. Therefore, the equation 

of the tangent plane i s 

4(x1 + 1) - 2(x2 - 1) + 2(x 3 + 1) = 0. 

Step 3. Determine the high point f o r the gradient l ine at the current 

so lu t ion . This i s accomplished by defining each variable x̂  (i = 1, 2, 3) 

in terms of the common parameter p, expressing the object ive function in 

terms of p, and then solving for the value of p f o r which = 0. The 
dp 

necessary transformation i s defined by 
m.p = x. - a. (i = 1, 2 , . . . ,N), 

57 
This problem was taken from i b i d . , pp. 327-330. The select ion 

was based upon the need of a solved problem to provide a check on the 
va l id i ty of the algorithm. 
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where m. equals ^ - e v a l u a t e d at the current so lut ion. Therefore, 
1 dX̂  

4p = x-j + 1; 

-2p = x 2 - 1 ; 

2p = x 3 + 1. 

Solving fo r x-,, x 2 , and x3> respect ively, 

x^ = 4p - 1 ; 

Xg = -2p + 1 ; 

= 2p - 1. 

(a) As a function of p, the objective function i s given by 

y ( p ) - -2(4p - I ) 2 - ( - 2 P + I ) 2 - (2p - I ) 2 -

(b) The derivat ive o f y ( P ) , ^ L , is given by 

M p 1 = _4 ( 4 p _ 1) (4) - 2(-2p + l ) { - 2 ) - 2(2p - 1 ) ( 2 ) 
dp 

= -16(4p - II) + 4( -2p + 1) - 4(2p - 1) 

= -64 p + 1 6 - 8 p + 4 - 8 p + 4 

= -80p + 24. 

Setting ^ y(p) = 0 and solv ing, p* = 0.3. 

Step 4. Determine P^. The coordinates of are obtained by sub-

s t i t u t i n g the optimal value of p in to the transformations defined by 

m..p = x.j - a. ( i = I , 2 , . . . ,N). 

For the current problem, p* = 0.3, and 

x-j = 4p - 1 = 0 . 2 ; 

x 2 = -2p + 1 = 0 . 4 ; 

x^ = 2p - 1 = - 0 . 4 . 

The second t r i a l po in t , P_2> i s given by = (0.2, 0 .4 , -0 .4) . 
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Step 5. Determine the gradient at Pg. I f vy(P^) = 0, the process 

terminates and is the optimal solut ion. I f vy(Pg) f 0, replace P^ by 

F\> and reapply Steps 1 - 5. Repeat as needed. 

vy(x 1 , x 2 , x3) = | ^ - ) 

= (-4x-| , -2Xg). 

At Pg = (0.2, 0.4, -0 .4 ) , v y C y = ( -0 .8 , -0 .8 , +0.8) f 0. The second 

i t e ra t i on w i l l f i nd P replaced by P0. 
—0 L. 

From the discussion of technique and the i l l u s t r a t i o n s , i t is possible 

to derive some speci f ic character ist ics of d i rect search. The main charac-

t e r i s t i c s are the fo l lowing: 

(1) d i rec t search techniques y i e l d numerical answers rather than 

analyt ical solut ions; 

(2) d i rect techniques are basical ly i t e ra t i ve search techniques; 

(3) d i rect search can be used to optimize functions whose structure 

i s not known but i s being explored in a step by step manner; and, 

(4) d i rec t search techniques take on the character of an equation 

search and are useful fo r f i t t i n g of surfaces. 

In addi t ion, the general nature of the problems to which direct search is 

applied can be categorized by the fol lowing: 

(1) the functions are continuous and d i f fe ren t iab le ; 

(2) nonl inear i ty is readi ly amenable to di rect search; 

(3) the functions are such that the problem can be described in 

terms of one or n variables; 
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(4) although the avai labi l i ty of the functional expression simplif ies 

the work, i t i s not a necessity since a response surface can be ut i l ized to 

approximate the objective function; and, 

(5) functional expressions for constraints are not required. 

Applications of Advanced Optimal Search 

The incorporation of indirect and direct search techniques into the 

problem solving act iv i ty provides a more f lex ible approach to problem 

formulations than previously available. If a given problem is formulated 

in such a way that the techniques of classical optimization theory are 

not applicable, the problem can be examined for possible application of 

one of the basic techniques of modern optimization theory. If the problem 

is such t ha t i t cannot be c l a : : i f i c . J as one amenable to the solution 

techniques of basic optimal search, then the problem can be examined for 

applicabil i ty of one of the techniques of advanced optimal search. This 

process typ i f i es the contribution of modern optimization theory to admin-

i s trat ive analysis. That i s , the problem i s formulated in a manner which 

best describes the real s ituation. Given this formulation, the problem is 

correlated with asuitable technique for final solution. Modern optimization 

provides techniques for solving more complex formulations than that allowed 

by classical optimization theory. 

Indirect Search 

The use of indirect search in applied analysis extends the applicability 

of the classical max-min calculus and i t s use in optimizing continuous, 

different!"able functions. However, unlike the applications shown in 

Chapter II and Chapter I II , indirect search does not restr ict the 
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mathematical formulation of the problem to a par t icu lar type. Total non-

l i nea r i t y is permitted in both the object ive function and the set o f 

constraint functions. A l l that is required is that the mathematical 

formulation be continuous, d i f f e r e n t i a t e and suited to i t e ra t i ve techniques. 

Administrative problems amenable to the techniques of ind i rect 

search include the analysis of production functions, the study of pr ic ing 

decisions, cost analysis, p r o f i t analysis, inventory analysis, and invest-

ment analysis. The spec i f ic technique which is used to solve a given 

problem is determined by the manner in which the problem is mathematically 

formulated. For example, an unconstrained, continuous and d i f f e r e n t i a t e 

nonlinear function defined in terms of n variables can be e f fec t i ve ly 

optimized by u t i l i z i n g the Hessian matrix to iden t i f y the re la t ive optima 

associated with the points at which the system of f i r s t par t ia l derivatives 

vanishes. This system can be solved by the Newton-Raphson technique fo r 

functions of n variables. I f th is function is to be optimized subject to 

a set of constraints, the concepts of the constrained derivat ive can be 

u t i l i z e d to locate the optimal solut ion. The use of the constrained 

der ivat ive incorporates the Jacobian. The solut ion to the problem is 

obtained fol lowing a series of i tera t ions which were begun by a r b i t r a r i l y 

assigning values to a set of state and decision variables. 

This example iden t i f i es several points re la t ive to the app l i cab i l i t y 

o f ind i rec t search in administrat ive analysis. F i r s t , the techniques 

require cont inui ty and d i f f e r e n t i a b i l i t y . Second, the par t icu lar technique 

employed to locate the optimum solut ion is determined by the manner in 

which the mathematical expression is wr i t ten ; i . e . , with or without 
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constraints . Third, the Hessian matrix, in the univariable case, is used 

to ident i fy the relat ive optima associated with a given point. Fourth, 

the Jacobian, in the multivariable case, is used as a means of evaluating 

the appropriate constrained derivatives at a given solution point. F i f th , 

the Newton-Raphson formulas are used as a means of solving functions 

(generally d i f fe rent ia l functions) or solving the simultaneous, homogeneous 

systems defined by the f i r s t partial derivatives. These solutions are 

then used in conjunction with some other technique, such as the Hessian 

matrix, to determine the type of optima they define. 

I t i s apparent that indirect search i s applicable to the same class 

of administrative problems as both classical optimization theory and basic 

optimal search. However, the appl icabi l i ty of indirect search to highly 

nonlinear functions permits greater f l e x i b i l i t y in the construction of the 

mathematical formulation representing the real problem. In th is sense 

the techniques of indirect search extend the applicabi l i ty of both 

classical optimization and basic optimal serach. Although the solution 

techniques have changed, the areas of application remain the same. 

The need for nonlinear representations has been noted by various 

wri ters . In a study of allocation problems, M. H. J . Webb has shown that 

under suitable circumstances the costs to be minimized are best represented 

by nonlinear functions. 

Mathematical methods of locating depots u t i l i ze simple 
functions of delivery data, e . g . , weight and distance 
from the depot, to measure the "cost"; the to ta l "cost" 
is minimized to find the depot location. 

. . .the cost of a delivery is influenced by the 
occurrence of other del iveries . . .simple functions of 
the delivery data are not always good measures of 
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variable cost . . .the minimum points of the simple 
functions rarely coincide with the point of minimum 
variable cost . 

Published road transport operating cost infor-
mation supports the general assertion that transport 
cost is nonlinear with regard to both distance and 
quantity. 

In such a nonlinear case, the use of l inear programming does not provide 

a suitable representation of r ea l i ty . However, the use of the constrained 

derivative concept of indirect search provides a means of solving the 

problem when the nonlinear nature of the problem is incorporated into 

the problem formulation. The constraints can be written as l inear or 

nonlinear equali t ies or inequal i t ies , whichever best describe the real 

s i tua t ion . 

As a means of fur ther validating the applicabil i ty of indirect search, 

specif ic examples of nonlinear administrative problem areas will be iden-

t i f i e d . Each of these problems could be solved by a suitable technique of 

indirect search. These problems are described below. 

Multi-item order quantit ies.--The typical problem involves a d i s t r i -

bution source where current inventory is maintained by ordering all items 

at one time from a single supplier. This practice enables the distr ibution 

source to take advantage of economies in shipping costs, paper work, and 
59 

quantity discounts. The objective is to minimize total cost. The total 

cost function may or may not be constrained. Typical constraints include 

storage space, demand, and minimum level order requirements. 
58 

M. H. J . Webb, "Cost Functions in the Location of Depots for 
Multiple-Delivery Journeys," Operational Research Quarterly, XIX (September, 
1968), p. 311. 

59 
Wagner, op. c i t . , p. 516. 
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Safety-stock inventory levels.--Multiperiod corporate planning models 

usually provide for inventory control based upon a given safety-stock 

level . In providing for this safety-stock, i t is possible for the safe ty-

stock level to be a function of both the forecasted sales level and the 

fract ion of capacity u t i l i za t ion implied by th is forecast . Such a problem 

can be formulated in the following manner. Let x equal the forecasted 

mean weekly sales and b the weekly capacity available for production. 

Let n equal the number of weeks' sales which depend on the capacity 

u t i l i za t ion factor x/b. The required safety stock level is equal to 

nx. Let n = d + m(x/b) be the regression function for determining n as 

a function of capacity u t i l i za t ion . The safety stock level , nx, is then 

given by the quadratic function nx = dx + (m/b)x . This safety-stock 

level may appear in the constraints as well as the function to be optimized. 

Economic production lot size.--The economic order quantity problem is 

one in which costs are to be minimized subject to such constraints as the 

amount of space available, the avai labi l i ty of men and machines, and the 

number of hours available for setup. Multiproduct, nonlinear cost functions 

can be formulated. Unlike the problems of classical optimization, the 

constraints can be nonlinear and of such a nature that interdependent 

relationships ex i s t . 

Cost-profit analysis.—Cost-profit analysis has been ident i f ied as 

an area of administrative act iv i ty that is readily suited to nonlinear 

6°Ibid. 

60 
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representat ion.^ I f the function to be optimized is unconstrained, 

continuous, and d i f f e r e n t i a t e , the d i f fe ren t ia l approach can be used to 

locate the optimal solut ion. I f the function to be optimized is continuous, 

d i f f e r e n t i a t e , and constrained, the constrained derivative can be used 

to locate the optimal solut ion. The cost or p ro f i t involved may or may 

not be dol lars. For example, i f the problem under investigation is one 

of minimizing total time on a project , the "cost" iden t i f ied in the 

objective function is time. Constraints, i f they ex is t , can be deadlines, 

dol lar expenses, etc. 

Production ac t i v i t y analysis.--Clouqh points out that in practice 

production ac t i v i t y analysis generally results in situations where "the 

objective function cr the constraints or both might be nonl inear."6 2 

Such problems can be wri t ten in the form 

optimize f ( x^ , x2 xN) 

subject to the constraints 

9j(x-] > Xg»• * •»Xĵ ) = b.j = 0, i = 1, 2 , . . . ,K, 

and 

x j > 0» j = 1. 2 , . . . ,N . 

The function to be optimized may be one of p ro f i t maximization or cost 

minimization, where the Xj ( j = 1, 2 , . . . ,N) denote the various products 

produced. The end resul t is the optimal combination for the given 

production problem. 

fil 
Baumol, op. c l t . , 2nd ed., pp. 138-141. 

62 
Donald Clough, Concepts in Management Science (Englewood C l i f f s , 

1963), p. 165. 
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Inventory control . --The Inventory problem is one in which the to ta l 

cost of inventory is to be minimized. This problem is typ ica l of cost 

minimization problems. I t can be wr i t ten as a univariable function or a 

funct ion with n var iables. Constraints, i f they ex i s t , can be l inear or 

nonl inear. (This problem, in the mul t ivar iab le , constrained case, was 

i d e n t i f i e d in Chapter I I I as one solvable by geometric programming.) The 

problem is given by the mathematical expression 

min G(n-) = K + £ [ B i n, + A . ( n , ) _ 1 ] 
1 i = l T 1 1 1 

subject to 

H j ( n i ) - M j » ( i = 1, 2 , . . . , p ; j = 1, 2 , . . . , m ) . 

In th i s formulat ion, B.. =a£.jC.., where c. = un i t cost of raw material and 

labor fo r product i , = monthly sales of product i , and a = monthly 

cost of inventory. The value of K is defined by 

P aJl-y-
K = s . I X c, + - f i ] , 

i=l ^ 

where c.., £ . , and a are as before; y . = a l l costs re la t ing to one l o t o f 

product i . The value of is determined by A.. = fc.y.. The object ive 

i s to f i nd the optimal value of n. f o r i = 1, 2 , . . . , p which minimizes the 

cost funct ion subject to the res t r i c t ions imposed by the m constraints. 

Kaufman u t i l i zes the Lagrange mu l t i p l i e r in his analysis of th is 

class of problems. He comments that "there is no known general method fo r 

the case in which there are three or more var iab les . " 6 3 Since th is statement 

was made, the technique of the constrained der ivat ive was developed. I f 

6 3Arnold Kaufman, Methods and Models of Operations Research 
Englewood C l i f f s , 1963), p. 412. 
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the function is unconstrained, the d i f f e ren t ia l approach, used in conjunction 

with the Newton-Raphson technique, can be implemented. 

From this l im i ted l i s t i n g o f areas of app l i cab i l i t y , i t is evident 

that ind i rec t search can be applied to a var iety o f administrative problems. 

Although these areas of app l i cab i l i t y tend to overlap those of both 

classical optimization and basic optimal search, ind i rec t search provides 

the techniques fo r solving problems i l l - s u i t e d to these l a t t e r techniques. 

In addi t ion, ind i rec t search provides the tools fo r working with problems 

tha t , because of improved formulations, better f i t the real problem being 

investigated. 

Ind i rect search, as such, has not been applied to problems of an 

administrative nature. A survey of the l i t e ra tu re has shown that the 

primary application of ind i rec t search has been in the physical sciences 

and mathematical tes t problems. In par t i cu la r , appl icat ion has been made 
eft 

to such problems as the minimization of costs in engineering design and 

the determination of minimal fuel requirements fo r orb i ta l t ransfer . 

An analysis of these known applications and of sample problems has produced 

a set of characterist ics common to problem suited to analysis by ind i rect 

search. 

(1) The functional expressions of both the objective function and the 

constraint set are known, and unimodality wi th in the interval of uncertainty 

is assumed; 

64 
R. Schinzinger, "Optimization in Electromagnetic System Design," 

Recent Advances in Optimization Techniques, edited by Abraham Lavi and 
ihomas P. Vogl (New York, 1966} ,~pp. 163-213. 

65 
P. Kenneth and G. E. Taylor, "Solution of Variational Problems with 

Bounded Control Variables by Means of the Generalized Newton-Raphson 
Method," Lavi and Vogl, op. c i t . , pp. 471-483. 
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(2) the objective function is nonlinear and consists of N independent 

var iables; 

(3) the constraint set i s described by a set of mixed l inear and 

nonlinear equal i t ies and/or inequa l i t ies ; 

(4) f i na l solutions are achieved by a series of i te ra t ions , the 

i te ra t ions consisting of a suitable i t e ra t i ve technique such as the 

Newton-Raphson technique. 

In correlat ing technique with appl icat ion, an important point to note 

i s that the selection of the method of solution is dictated by the manner 

in which the problem i t s e l f is wr i t ten . I f the function to be optimized 

is an unconstrained, continuous, univariable funct ion, the d i f f e ren t ia l 

technique can be used to determine the optimal point . Should the derivative 

be nonlinear, the Newton-Raphson technique can be u t i l i z e d to determine 

c r i t i c a l points. I f the function to be optimized is an unconstrained, 

continuous function in N variables, the par t ia l derivat ive can be u t i l i zed 

to describe the system of equations which determines the c r i t i c a l points. 

This system can then be solved algebraical ly or by a suitable modification 

of the Newton-Raphson technique. I f the constraints are not expressed as 

functions but simply l im i t s wi th in which the optimal solut ion set must l i e , 

the Newton-Raphson technique can be used to f i nd the optimum. The use of 

the par t ia l derivat ive approach is f a c i l i t a t e d by the u t i l i z a t i o n of the 

Hessian matrix fo r defining points of maxima or minima. 

I f the function to be optimized is a constrained, continuous nonlinear 

function with continuous l inear and/or nonlinear constraints, the constrained 

derivat ive technique should be used to determine the optimal solut ion. This 
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requires u t i l iza t ion of the Jacobian and the constrained derivatives as 

shown in the examples. The par t icular approach taken in optimizing the given 

function is dictated by the manner in which the constraints are formulated. 

Equality constraints are handled in a somewhat direct manner. Inequality 

constraints necessitate the use of slack variables and conditions of 

complementary slackness. 

This discussion restates again the manner in which indirect search 

is u t i l ized as a tool of modern optimization theory. In th is i t is 

readily seen that the decision to u t i l i ze one of the techniques of indirect 

search i s made a f t e r the problem is formulated. After the problem is 

formulated, i t can be examined to determine whether or not an indirect 

search technique is appropriate for locating the optimal solution. 

Direct Search 

The ut i l iza t ion of direct search in administrative analysis provides 

a means of optimizing an objective function even though i t s exact functional 

expression is not known. If the functional expression is known, the 

function may be discontinuous, hence nondifferentiable, or of such a form 

that the use of the calculus or any related technique is infeas ible . In 

such s i tua t ions , i t is necessary to u t i l i ze an optimization technique that 

can locate the optimal solution in a direct manner. 

Direct search has been ident i f ied as consisting of two basic categories, 

direct elimination and di rect climbing. The elimination techniques are 

designed to reduce the size of the interval within which the optimal solution 

l i e s . Direct climbing uses local measurements as a means of indicating 
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the direction in which a move should be made so that the optimal solution 

can be located. 

Application of direct search presupposes some knowledge about the 

object ive function and the values within which the optimal solution l i e s . 

I t i s also assumed that "given a s p e c i f i c set of values of the independent 

variables , one can compute the corresponding value of the objective 

funct ion." 6 6 

Direct e l iminat ion. - -Direct elimination i s u t i l i zed as a means of 

reducing the s i ze of the interval within which the optimal solution l i e s . 

When economic costs are a fac tor , the proper use of direct elimination 

can result in l ess t r i a l points , hence, l e s s cost . 

As an example of the use t h a t can be made of direct el imination, 

consider the following replacement problem.6^ A company finds that a 

piece of capital equipment, with i n i t i a l purchase price of K dol lars , has 

l inear operating costs . These operating costs are l inear with respect to 

time. If equals the annual operating cost in dollars in the i ^ 
JL. U 

year and i equals the age (in years) at the end of the i year, the 

operating cost can be written as V.. = b + c i , where b and c are known 

constants. Assuming that the salvage value of the machine equals i t s 

price on the used machine market, the resale price a f t e r n years i f given 

by 

Resale price = K(r)n , 

66Wi Ide and Beightler, op. c i t . , p. 215. 
fs 7 

The operational context of th is problem i s taken from Samuel B. 
Richmond, Operations Research for Management Decisions (New York, 1968), 
pp. 88-96. 
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where r equals the proportionate value of the i n i t i a l cost which remains 

a f t e r the yea r ' s use. For example, i f the value of the machine decreases 

by one- th i rd of i t s residual value each year , r = 2/3. The to ta l capital 

cost over n yea r s , denoted Cn, i s given by 

Cn = K - K{r)n. 

The average annual cost over n years , denoted AC, is given by the sum of 

the mean of to ta l operating cost f o r n years and the mean to ta l capital 

cost ; i . e . , 

n C 
AC = - E" V. + — n .jT-j i n 

1 n 

= - [ £1 V. + C ] . n i n J 

Subst i tu t ing fo r and Cn , 

AC = 1 [ EI (b + ci) + K - K(r ) n ] . 

n i=l 

The object ive in the replacement problem is to determine the value of 

n f o r which average annual cost over n years is minimized. This i s equivalent 

to f inding that value of n fo r which the derivat ive of the average annual 

cost function vanishes; i . e . , f ind n such that 

w (Ac> = 

For the given funct ion, 

4(AC) • cd£ $ f.u - % - £ + w f y -
i — i n n 

n 
Summing the arithmetic se r i e s defined by Z i , the derivat ive function can 

i=l 
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be wr i t ten as 

d . ( A C ) . c_4 C 1 . n l g t l i j . K_. . ^ r ) n l n r + 

n ri 

Since • l l i D l l l ] = 19 expression defining ^ (AC) reduces to 
dn 

(&r\ = _ — K x 
dn 
d ( * C ) - f - ^ - ^ ( r ) n l n r M r ) n { ^ ) . 

n n 

I t i s necessary to equate ĵpj- (AC) to zero and solve fo r n. 

The optimal solut ion to th is problem can be determined without resort ing 

to an expression of the type defined by (AC). In fac t , the optimal 

solut ion can be determined by d i rect examination of the annual average 

cost function 

AC = l i f , (b + c i ) + K - K ( r ) n ] . 

" i= i 

Since b, c, K, and r are known constants, AC can be evaluated fo r various 

values of n. These evaluations can be used to determine the direct ion in 

which future evaluations are to be made. For example, e i ther in terval 

el iminat ion or the Bolzano technique can be used to search fo r the value 

of n fo r which average annual cost is minimized. Since the piece o f equip-

ment w i l l have a known (or estimated) useful l i f e , k, the s ta r t ing solut ion 

could be the midpoint of the closed interval [0, k ] . 

There are two points to note concerning the application o f e i ther 

in terva l el iminat ion or the Bolzano technique to problems of th is type. 

F i r s t , the use of interval el iminat ion does not require the derivative of 

the object ive funct ion. Second, the use of the Bolzano technique does 

require the use of the der ivat ive. Hence, d i f f e r e n t i a b i l i t y o f the 
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object ive function enters in as a f ac to r to be considered when a solution 

technique i s being chosen. 

The method of contour tangents could be used to locate the value of 

n f o r which average annual cost i s minimized. However, t h i s requires the 

use of the der iva t ive , a use that s t r i c t in terval elimination avoids. 

As noted in the discussion of d i rec t elimination techniques, the method 

of contour tangents i s most useful when the object ive function is 

d i f f e r e n t i a t e and consists of more than one var iable . Thus, i f the 

replacement problem consisted of more than one capital a s se t , the problem 
1 . L 

would be to determine the optimal replacement time n. f o r the j machine. 
J 

The optimal replacement time i s tha t value of n. which maximizes the 

to ta l average annual cost f o r m capital asse t s ; i . e . , determine n . such 
J 

t ha t 

JO. JH i " j n . 
r (AC) = E J - [ E (b. + c . i ) + K - M r . ) J ] 
j=l J j=l n j i=l J J 3 3 3 

i s minimized. For t h i s funct ion, 

a c i K i " j "3 
— (AC) i „ r + ( r ) _1, 

j 3 

+*h 
where j denotes the j machine. 

Problems in administrative analysis which are s imi lar to th i s problem 

include the determining of the optimal time to se l l an a s se t , replacement 

of a depreciating a s se t , group replacements, and investment analys is . As 

a means of formally indicat ing the app l icab i l i ty of d i rect elimination to 

problems in administrative ana lys is , a selected se t of s p e c i f i c application 

areas i s included in t h i s study. 
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Investment analysis: The problem is to determine the optimal length 

of an investment. In th is analysis an investment should be continued so 

long as the percentage yield (the percentage marginal yie ld , i . e . , the 

percentage return per unit time change) exceeds the level of percentage 
CO 

return of some other a l ternat ive such as in te res t . The following formu-

69 

la t ion , taken from Baumol, will be used in demonstration. 

Let V equal the value of the tota l product, where V is assumed to 

be a function of the amount invested, I , and the length of time, t , for 

which the investment runs; i . e . , 

V = f ( I , t ) . 

Let P equal the anticipated p rof i t at the date of the investment and equal 

the difference between the present value of the value of the total product, 

V, and the cost of the investment, I . If r equals the current in te res t 

ra te , V will be discounted at the rate r for t periods. Hence, 

P = Ve" r t - I = [ f ( I , t ) ] e " r t - I . 

The optimal value of t is that value which maximizes P. The techniques 

of direct search can be ut i l ized by defining the tota l time period during 

which i t i s feasible for the investment to run. For the technique of 

interval elimination, the function 

P = [ f ( I , t ) ] e ~ r t - I 

will be u t i l ized in a direct manner. For the Bolzano technique or the 

CD 
Given the level of investment, a r ise in the in te res t rate must 

reduce the optimal length of a p rof i t making point-input, point-output 
solut ion. (Baumol, op. c i t . , p. 429.) 

6 9 I b i d . , p. 428. 
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method of contour tangents, the der ivat ive, given by 

f - = e " r t j f [ f ( I . t ) ] - r e - r t [ f ( I , t ) ] 

- e " r t gfCV] - r e " r t [ V ] , 

w i l l be required. 

Por t fo l io analysis: M i l le r and Starr consider the determining of the 

optimal po r t f o l i o in terms of the investor 's indif ference curves fo r 

expected return and var iance .^ The appropriate indif ference curve is 

assumed to be equivalent to the investor 's u t i l i t y function f o r por t fo l ios . 

This l inear u t i l i t y function is given by 

U = r - sV , 
P P 
J . L 

where r equals the return on the p investment, V i s tha variance 
P p 

of the p o r t f o l i o , and s is the parameter chosen by the investor as a 

quant i ta t ive measure of his aversion to r i sk . 

Let w. equal the proportion of the to ta l investment placed in 
w 

por t fo l i o j . Let I equal the to ta l investment. Let Fp equal the 

expected return on the po r t f o l i o . Let C.. be the covariance between the 
' J 

i ^ 1 and variables, 

c i j = ^ [ ( x i - * ) > ] • 

where the ^ means "expected value." 

Consider the case fo r two possible investments. Then, 

Fp = wr ] + (1 - w) r 2 ; 

70 
David W. M i l l e r and Martin K. S tar r , Executive Decisions and 

Operations Research, 2nd ed. (Englewood C l i f f s , 1 969), pp. 475-487. 
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P 

The inves to r ' s u t i l i t y funct ion , 

V = W 2 V 1 + ( 1 - W ) 2 V 2 + 2w(L - w ) C ] 2 . 

U = r - sV , 
P P 

can then be writ ten as 

U = w7-j + (1 - w)?2 - s[w2V-| + (1 - w)2V2 + 2w(l - w)C^] . 

The problem i s to determine the value of w fo r which U i s maximized. 

Application of the derivat ive y ie lds 

= F-j - r"2 - 2swV.| + 2sV2 - 2wsV2 - 2sC^2 + 4swC^2< 

Set t ing ^ = 0 and solving fo r w y ie lds 

r l " r 2 + 2 s ( V 2 " C12^ 
W " 2s(V1 + V2 - 2C12) * 

Since r-j, r 2 , Vp V2> and C-j2 are known (or can be readily determined), 

the problem resolves into that of determining the optimal value of s . By 

defining the in terval within which the value of s l i e s , interval search by 

one of the d i rec t elimination techniques can be used to determine the value 

of w which maximizes the inves to r ' s u t i l i t y funct ion. 

Inventory management: The problem to be solved is tha t of determining 

the optimal number of orders per year. This problem has been discussed by 

71 

Goetz and involves a f ixed-per iod , target- inventory plan. Goetz indicates 

tha t the f ixed-per iod, target- inventory problem is analogous to branch 

warehousing problems. The manner of solution i s d i rec t enumeration. The 

mathematical formulation of the f ixed-per iod, target- inventory problem follows. 

^ B i l l y E. Goetz, Quanti tat ive Methods: A Survey and Guide fo r 
Managers (New York, 1965), pp. 375-382. 
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Let N equal the number of orders placed per year. Let S equal the 

total expected costs of stockout. Let (bC) equal the total expected 

costs of carrying buffer stocks per year. Let Q equal the annual sales 

in dollars. Let B equal the cost per order. Let C equal the annual 

cost per dollar in inventory. The problem i s to determine N such that 

the total cost of the inventory policy, given by 

N(B + Z S ) + §£ + E(bC) , 

i s minimized. S equals the expected cost of stockout per cycle. The 

value of £ S i s given by 

where k equals the ratio between expected daily sales (or average daily 

72 

sales) fo r a given sales period and the aggregate daily sales . i s 

the expected cost of stockout for the i cycle. The value of bC i s 
given by the ratio 

buffer cost per year 

Expected daily sa les , k, equals the product of the expected units sold 

per day and the se l l ing price per unit. 

Since B , £ s , Q, C, and X(bC) are known constants the inventory policy 

i s a function of one variable, N. Given a relevant range of values for N, 

the technique of interval elimination can be used to reduce the number of 

iterations required to locate the N for which the cost of the inventory 

policy i s minimal. For multiproduct functions, the method of contour 

72 
Aggregate daily sales i s calculated by dividing annual sales by 

the number of days worked in a year. 
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tangents can be u t i l i zed to locate the optimal value of each N., where 
J 

N. is the order quantity fo r the j ^ product. 
J 

From th i s l im i ted survey of appl icat ions, i t i s to be noted that 

each one is amenable to a series of numerical i te ra t ions . This is a 

character is t ic of d i rect el iminat ion. Each i te ra t ion is used to improve 

upon the preceding resu l t . At each i t e ra t i on the resul t ing solut ion is 

u t i l i z e d to determine the most feasible portion of the remaining in terval 

that is to be explored. In th is analysis, the use of Fibonacci search or 

the method of golden section can be invaluable in minimizing the number of 

t r i a l points. 

Potential areas of app l i cab i l i t y in administrative analysis include 

economic analysis (the study of cost and p r o f i t funct ions), f inancial 

analysis (determining the optimal rate of re turn) , and market analysis 
73 

(measuring the e f fec t o f experiments on sales). In each of these areas, 

a defined objective is to be optimized. Constraints are not wr i t ten in 

functional form. Rather, the constraint is imposed by defining the 

in terva l wi th in which the optimal solut ion l i e s . This interval o f f e a s i b i l i t y 

can then be explored by one of the techniques of d i rect el iminat ion. I f 

the exact in terva l of f e a s i b i l i t y is unknown, the use of Fibonacci numbers 

or golden section search can be used to locate the interval o f opt imal i ty . 

For mul t ivar iab le , continuous funct ions, the method of contour tangents 

can be u t i l i zed . I f the functional expression fo r the objective function 

is not known, i t can be approximated by a tangent plane and then analyzed 

by the method of contour tangents. 

73 
John D. C. L i t t l e , "A Model of Adaptive Control of Promotional 

Spending," Applications of Management Science in Marketing, edited by 
David B. Montgomery and Glen L. Urban "(EngTewood C l i f f s , 1970), pp. 123-124. 
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Direct climbing.--This study has considered three primary types of 

direct climbing techniques. These three techniques were response surface 

analysis , gradient techniques, and parallel tangents. Because of the 

diversi ty in application of these three techniques, each of these will be 

considered on i t s own merit. In actual pract ice, however, i t is feasible 

tha t each of these be used in conjunction with the other as a means of 

optimizing a given problem. 

Response surface analysis: The use of the response surface provides 

a means of estimating the functional expression of the objective function 

when the precise functional relationship is not known. This is accomplished 

by f i r s t f i t t i n g suitable surface approximations to the t r i a l region." This 

f i t t e d surface, generally a tangent plane, is then used as an approximation 

of the true objective function. 

Response surface analysis has been used in the conducting of market 

experiments. In th is application, the objective is to determine how sales 

and net p rof i t s respond to changes in a variety of marketing-effort 

variables or factors . These marketing-effort variables or factors include 

such controllable variables as radio advertisements, newspaper advertisements, 

magazine advertisements, sales promotions, personal se l l ing , e tc . These 

surfaces, defined in terms of two independent variables, would be similar 

to the surface shown in Figure 4.19. 

The response surface can be generated with two or three carefully 

selected experiments. This surface can then be examined for optimality 

and the resu l t used as an estimate of the true optimal value. Sevin 
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Xt 

Fig. 4.19—Two-factor response surface: Y = f(X-j, X2) 

indicates that 

. . .the very concept of a response surface i t s e l f is 
o f the greatest value. By suggesting the form of the 
underlying marketing-effort (marketing-mix) combinations 
that are of most signif icance fo r the marketing system 
of each product, the concept of the response surface 
provides indispensable guidance in performing market 
experiments most e f f i c i e n t l y with the object of 
improving product iv i ty . 1 

The app l i cab i l i t y of response surface analysis has been shown to be 

an e f fec t ive tool fo r analyzing interact ions between natural-expense 

variables ( fo r example, te lev is ion advertising and point-of-purchase dis-

p lays) . 7 5 The information gained from the experiments required to generate 

the surface may be such that the influence of unconsidered factors is noted. 

This, in turn , could lead to the generation of a more r e a l i s t i c surface. 

74Charles H. Sevin, Marketing Productivi ty Analysis (New York, 1960), 
p. 123. 

7 5 I b i d . , pp. 126-127. 
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The use of the response surface in administrative analysis follows 

that of the use described in the market experiment application. As such, 

the concept i s applicable to such problems as production analysis, inven-

tory control, pricing decisions, investment analysis, stock decisions, cost 

and prof i t analysis, and exploratory analysis for selection of future 

projects. All of these cases represent situations which,can be described 

in terms of at least two independent variables and situations for which 

the exact function to be optimized is not necessarily known. If there is 

no historical data available, simulation can be used to generate the output 

point on the response surface. Varying the input values will produce 

different levels of output. Given these input-output values, a response 

surface can be constructed. As noted, the functional expression for this 

surface will be used as an estimate of the t rue object ive function. 

The use of the response surface to generate functional expressions for 

the objective function is especially appealing when consideration is given 

to the fact that such surfaces can be constructed when the functional 

relationships of any existing constraints are not known. All that is 

required is some knowledge of the domain of definition for the objective 

function. Given this information, values within the domain of definition 

can be used to locate points on the response surface. These points can 

then be used to derive an appropriate functional expression that can be 

used as an estimate of the true objective function. 

As a means of further i l lustrat ing the use of the response surface, 

consider a production process that maximizes i t s profit on the strength 

of two major products X1 and Xg. With each combination of X1 and X2 
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there is an associated level of p ro f i t . Given a suitable number of prof i t -

product combinations, a surface similar to that of Figure 4.20 can be 

approximated. This surface can then be explored direct ly or i t s approxi-

mating functional expression examined for the optimal combination of 

products X-j and 

Fig. 4.20: Two-factor production surface: Y = f(X-j, X2) 

Of part icular importance to the administrator is the potential offered 

by the use of response curves in determining functional expressions for 

ac t iv i t ies for which there is no precedence. For example, a series of 

simulation runs can be used to determine the output corresponding to 

di f ferent values of the input variables. These various points can then 

be used to determine the functional expression which describes the anticipated 
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ac t iv i ty . This function can then be analyzed to determine the f eas ib i l i ty 

of the ac t iv i ty . 

As noted previously, the use of the response surface provides a means 

of determining a suitable approximation of an unknown objective function. 

In addition, the functional relationships which define existing constraints 

need not be known as the response surface can be constructed within the 

l imits imposed on the variables of the problem. For example, although 

the cost function for a given act ivi ty is not known, the limits within 

which feasible solutions l i e may be known. Values within these limits can 

be used to generate the approximating surface. All that is required is 

that the output for each input be measurable. 

• I t is evident from this discussion that the concept of the response 

surface can be ut i l ized as an ef fec t ive tool of administrative analysis. 

This viewpoint is supported by Clough. In his t ex t , Concepts in Management 

Science, Clough ut i l izes the response surface concept in discussing demand 

analysis and production act ivi ty analysis. I t is pointed out that 

historical data can be used to derive an appropriate response surface. If 

such data are to be used, i t is necessary that the data be valid and of 

such a nature tha t the approximating surface describes the real problem. 

Gradient techniques: The use of gradient techniques in solving 

administrative problems presupposes the existence of a continuous, differen-

t i a t e function. The part icular gradient technique to be ut i l ized in 

solving a given problem depends upon the manner in which the problem i t s e l f 

is formulated. For example, suppose a nonlinear cost function is to be 

minimized subject to the conditions of nonnegativity and a set of defined 

^Clough, op. c i t . , pp. 128-142, 146-153. 
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nonlinear constraints . Since the function is constrained, the most appro-

pr ia te direct search technique is that of the d i f fe ren t ia l gradient. The 

search process defined by the d i f ferent ia l gradient contains a correction 

fac tor that will keep the solution points from violating the constraint s e t . 

I f a given function is unconstrained, continuous, and di f ferent !able , 

the Fletcher-Powell technique of deflected gradients is applicable. The 

general application is the optimization of multivariable quadratic functions, 

Unlike the d i f fe ren t ia l gradient technique which ident i f ies optima by the 

vanishing of the gradient, the deflected gradient technique u t i l izes the 

Hessian matrix to t e s t a given t r i a l point for optima character is t ics . 

In addition, the deflected gradient technique searches for the optimum 

solution by evaluating the neighborhood along the gradient. I t has been 

noted that 

when gradients are relat ively easy to measure, or 
when the objective function is part icularly d i f f i c u l t 
to measure, the deflected gradient procedure with 
i t s quadratic convergence seems best. ' 

Application of gradient search permits the administrator to locate 

points of optima for problems i l l - s u i t e d to indirect search techniques. 

This improvement i s evidenced by the f ac t that gradient search can be 

i n i t i a t ed from any potential solution point. The techniques of gradient 

search u t i l i ze information generated from this t r i a l solution to determine 

the direction in which the optimal search is to move. At each i terat ion 

the t r i a l solution is corrected., and a new solution point is generated. 

This process continues until the optimal solution is derived or i t s 

77 
Wilde and Beightler, op. c i t . , p. 339. 
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interval of uncertainty is reduced to such a length that d i rect el imination 

can be used to locate the f i na l solut ion. 

Although the use of gradient search has received l i t t l e at tent ion as 

a tool of administrat ive analysis, potent ia l applications do ex is t . For 

example, in the July , 1967, issue o f Management Science, Tillman and 

Liittschwager investigate the minimization of nonlinear cost functions 

subject to nonlinear restra ints and a minimum level o f acceptabi l i ty . The 

problem they investigate is given by the fol lowing: determine m., the 
J 

number of redundant units at stage j such that 

m-| 1̂2 
z = [c^m-jeini + [c2m2e"2T 

is minimized subject to 

91 = Ca11m1 + m*] + [a12m2 + a13n| + a]4] < b] 

-m, -m? 
g2 = [a21(m1 + e ) ] + [a22(m2 + e &) - a 2 3 ] >. b2 

m̂  

g3 = Ca31 m1e
 4 ] + [ a ^ e 4 ] > b3 

and sat is f ies the rest ra in t 

n l "2 
d-, < *L I AlnR., m.. . 

~~ j = l k=0 J k J k ' 

where AlnRjk equals the change in InR^ by adding the k t h redundancy at 

J. L 

stage j . The m^ iden t i f i es the k redundancy at stage j , where m^ = 1 

fo r k £ m. and m.. = 0 fo r m. < k < m l . ^ 
J JK J ~ j 

78 
F. A. Tillman and J. M. Li i t tschwager, "Integer Programming 

Formulation of Constrained Re l i ab i l i t y Problems," Management Science, X I I I 
(July, 1967), 892-894. 
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Tillman and Liittschwager indicate that problems of th is type can be 

solved by exist ing techniques i f there are but a few l inear constraints. 

However, " i t seems [ t ha t ] these [ex is t ing ] methods are inadequate fo r 

79 

solving th is [problem] which includes mult ip le nonlinear res t ra in ts . " 

This type of problem, assuming cont inui ty and d i f f e r e n t i a b i l i t y , is 

amenable to gradient search. Given the general form of the gradient vector, 

a t r i a l solut ion can be a r b i t r a r i l y selected which sat is f ies the restra ints 

and the minimum r e l i a b i l i t y requirement. From th is point a series of 

solutions can be generated which move toward the optimal solut ion. 

Another potential area of application is the determining of the 

optimal number of warehouses and t he i r optimal locat ion. This problem 

has been described as one of 
f ind ing the location of a warehouse which is optimum 
with respect to the tota l cost of transport ing known 
quanti t ies of goods from the warehouse to each of n 
destinations, given that the l a t t e r is a l inear function 
of the warehouse-to-destination distances.80 

The formulation of th is problem is as fol lows: 

n 1 p p p 
minimize c - v n r - ^ 1 = k X D.[x. - x) + (y. - y) y 

i = l 1 

where k equals the unit cost of transport ing the known quantity to 

destination i . The warehouse is located at (x , y ) , and destination i is 

81 located at (x^, y . ) . 

7Q 
I b i d . , p. 893. 

80 
Roger T. Eddison, "Warehousing, Dis t r ibut ion, and Finished Goods 

Management," Progress in Operations Research, I I , edited by David B. Hertz 
and Roger T. Eddison (New York, 1964), p. 110. 

8 1 Ib id . 
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The t rad i t i ona l approach to the problem of determining the optimal 

number of warehouses and the i r optimal location has been to solve the 

system given by 

ar J ! x, - x 
= k 21 D- Y ~ 

i = l r , „ ^ 2 , „ \2-[ ( x i - x) + (y. - y) ]2 

ar xP- y i " y 

! » " k ^ D i 3 r = ° -
1 = 1 [ (x , - x ) 2 + (y, - y ) 2 ] 2 

This solut ion is determined by resort ing to the trigonometric relat ions 

ac aC J2- . JL 
corresponaing to — = 0 and ~ = 0, D. cos e, = 0 and E I D. sine = 0, 

^ i = 1 • . i=1" i 

respect ively. I f e. is used to represent the angle formed by the l ine 

jo in ing the warehouse and the dest inat ion, the slope of th is l ine is 

defined by tan . "The strategy to be adopted fo r two warehouses. . .would 

be to pick two l i k e l y locations and move each according to a prescribed 

pattern in two dimensions. . . to use a form of steepest ascen t . " ^ 

Other areas of administrative analysis suited to gradient technique 

include economic analysis (cos t -p ro f i t analysis), market analysis (response 

surface examination), production analysis (inventory cont ro l ) , and budget 

analysis (a l locat ion of departmental budgets). As a means of enhancing th is 

presentation of applications of gradient search techniques, a l im i ted selection 

of other types of problems suited to gradient search is presented. 

8 2 I b i d . , pp. 111-112. 
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Maximization of salesman's compensation: The problem being investigated 

is one of maximizing a salesman's compensation when sales commissions are 

83 

based on gross margins rather than sales commissions. The problem is 

formulated on the basis of the fol lowing two considerations: maximum 

p ro f i t s fo r the f i rm and maximum commission fo r the individual salesman. 

In the f i r s t case, maximum pro f i t s fo r the f i rm, the mathematical 

expression is given by 

n TT = r Q-CCP, - K ) ( l - B 
1=1 1 1 1 1 

) ] . 

This function is to be maximized subject to the salesman's time constraint 

n 
c = IE t . . 

i = l 1 

In the p r o f i t function ir equals the company's gross p r o f i t in do l lars , Q. 

equals the unit quanti ty of product i sold, P.. equals the unit se l l ing 

price of product i , K. equals the unit variable non-sel l ing cost of 

product i , and B. equals the percentage commission rate paid on product i . 

In the constraint function C equals the to ta l time the salesman spends 

se l l i ng during a given time period, and t . equals the time spent se l l ing 

product i . 

In the second case, maximum commission fo r the individual salesman, 

the mathematical expression is given by 

= £ i W j B , . 
i= l 1 1 1 

83 
John U. Farley, "An Optimal Plan fo r Salesmen's Compensation," 

Applications of Management Science in Marketing, op. c i t . , pp. 380-390. 
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This function is to be maximized subject to the time constraint 

n 
c - E V 

i= l 1 

In the comnission function equals the gross margin to the company from 

product i , Q. equals the uni t quantity of product i , and equals the 

percentage commission rate. The values of C and t . are the same as in 

the company's constraint function. 

In both expressions the unit quantity sold of product i , Q.., is 

assumed to be an increasing function of the time spent se l l i ng that one 

product. That i s , 

q, • w -

The expression f^Ct^) is also assumed to be continuous and d i f f e r e n t i a t e . 

The exact functional expression fo r f ^ ( t . ) is not necessarily known. 

However, i t is assumed that f ^ ( t ^ ) can be f i t t e d with a reasonably va l id 

funct ion. 

Farley indicates that th is problem, given the assumptions indicated, 
OA 

is amenable to the use of par t ia l derivat ives. The technique he u t i l i zes 

is that of the Lagrange mu l t i p l i e r . Incorporation of such items as price 

incentives and "loss leaders" tends to make the problem too complex for 

the technique u t i l i zed by Farley. However, gradient search provides a 

means of optimizing the problem by providing an i t e ra t i ve technique for 

locat ing the optimal combination of t^ values. 

Product analysis and decision models: The use of decision models 

in product analysis has been investigated on the basis of four sub-models. 

^ I b i d . , pp. 383-384. 
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The demand model is structured to consider l i f e cycle, 
industry, competitive and product interdependency effects 
and w i l l admit non-linear and discontinuous functions. A 
cost minimization model is joined to the demand model to 
formulate a constrained p ro f i t maximization problem. . . . 
The f ina l decision is based on the businessman's cr i ter ion 
in combining5uncertainty and the rate of return on 
investment. 

In describing the demand, cost, and p ro f i t models, Urban indicates the 

feas ib i l i t y of u t i l i z i ng the response surface concept to derive a functional 

expression for each model. . These expressions can then be optimized by an 
pc 

appropriate selection of technique. Suitable techniques include the 

d i f ferent ia l gradient and the deflected gradient. 

From this selection, i t is to be noted that in every application 

the use of gradient techniques requires that the function be known or of 

such a nature that i t can be derived. I t is also required that the function 

be continuous and d i f f e r e n t i a t e . Unlike indirect search, i t is not necessary 

that a simultaneous system of part ial derivatives (multivariable case) be 

solved and the c r i t i c a l points tested for opt imal i ty. Al l that is required 

is that a t r i a l point be selected. The gradient search techniques of 

steepest ascent, steepest descent, and deflected gradients improve on this 

t r i a l solution unt i l the optimal solution is located. 

Parallel tangents: As noted in the presentation, the technique of 

gradient partan is the more e f f i c ien t of the two parallel tangent techniques 

discussed in this study. This is attr ibuted to the fact that the technique 

of paral lel tangents is both a climbing technique and an elimination 

85 
Glen L. Urban, "A New Product Analysis and Decision Model," 

Applications of Management Science in Marketing, op. c i t . , p. 410. 
8 6 I b i d . , pp. 413-415, 418-421. 
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technique. In th is capacity, gradient partan provides a means of moving 

toward an optimal solution by a series of sequential i t e ra t ions . At each 

i te ra t ion the t r i a l solution is modified in such a way that the next t r i a l 

solution is closer to the optimal solution. 

Gradient partan has been ident i f ied as being especially suited to the 

analysis of e l l i p t i c a l contours. In administrative analysis, these contours 

are generally described by such concepts as indifference curves, cost 

contours, and p ro f i t contours. Since gradient partan provides a means 

for analyzing such contour surfaces, i t s applicabil i ty in administrative 

analysis i s readily established because of the current use of such contour 

surfaces.8 '7 

As a means of fur ther supporting the applicabil i ty of gradient partan, 

some speci f ic examples of problems suited to contour surface representation 

will be presented. Although contour surface representation i s not a 

requirement for implementation of gradient partan, i t does provide a means 

of graphic representation. 

Cost minimization: The problem under investigation is that of mini-
op 

mizing the tota l cost of inventory policy. Minimization is to be accom-

plished relat ive to the economic reorder level and the economic lo t s ize. 

Both of these quantit ies are to be determined so that total cost is minimized. 

The inventory cost function to be minimized is given by 

TC = {J. (B + S) + ( j + b)VC. 

87 
This is supported by the use of such contours by Goetz, op. c i t . , 

pp. 384-392, Baumol, op. c i t . , pp. 258-261, and A. H. Boas, "Special 
Mathematical Techniques," Cost and Optimization Engineering, edited by 
F. C. Jelen (New York, 1970), pp. 288-292. 

Op 
The context of this example is taken from Goetz, i b i d . , pp. 385-391 
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In th is expression, Q equals the annual rate of use in uni ts , L equals the 

economic lo t size in uni ts , S equals the expected costs of stockout, and 

b equals average buffer stock (set at a minimum) in units . V equals the 

incremental cost per uni t , and C equals carrying costs per dollar per 

year in inventory. Batch costs, B, include clerical cos ts , setup costs, 

and loss caused by learning time. 

The reorder level is denoted by N. I t is equal to the rat io between 

the annual rate of use in uni ts , Q, and the economic lo t size in uni ts , L; 

i . e . , 

The relat ionship between L and N can be graphically represented as shown 

in Figure 4.21. This figure i s constructed by holding total cost constant, 

assigning a value to L, determining N, and plott ing the resulting points. 

The resul t of this plot of points, for d i f ferent cost f igures , is a cost 

contour representation of the optimal inventory policy problem. 

Fig. 4.21--Inventory policy cost contour 
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The search for the optimal combination of lot size and reorder level 

ut i l izes a contour tangent approximation at an init ial starting point, 

P = (L. N). This contour tangent is given by tt . Applications of the 
—0 

gradient partan technique produces the series of1 points -2 ' -3 ' ^4' ^5 * 

and Pg. The technique, as shown in the algorithm, terminates at P*, the 

optimal combination of lot size and reorder level. 

Profit maximization: The problem under* investigation is one of 

maximizing profit by achieving an optimal mix between sales promotion 
OQ 

expenditures, S e , and price, p. The profit contour is obtained by 

constructing a set of isoprofit curves. The resulting figure is shown in 

Figure 4.22. 

/ 
/ 

Fig. 4.22--Profit contour: Y = f(p, Sg) 

89 Ibid., pp. 25-26. 
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Prof i t maximization by gradient partan requires that the p rof i t function 

be known. As i s the case fo r all applications of gradient partan, i t is 

assumed tha t the function being investigated is continuous and different! 'able. 

The search is begun a t any t r i a l point P^, through which the tangent plane 

it is constructed. From this i n i t i a l solution, gradient partan moves, as 
—0 

shown in Figure 4.22, to the optimal combination of the input variables. 

For the p ro f i t function of Figure 4.22, this optimal solution i s that 

combination of price and sales promotion expenditures which maximizes 

p r o f i t . 

Analogous applications of these cos t -prof i t examples can be readily 

iden t i f i ed . For example, the p rof i t maximization example can be extended 

to one of determining the optimal combination of investments for the purpose 

of maximizing rate of return. The cost minimization problem can be 

extended to one of determining the optimal number of men and machines 

required to minimize the total time spent on a project . 

This presentation has served to indicate areas of administrative 

analysis that are amenable to the techniques of direct search. Although 

the presentation has been limited to a select group of application areas, 

the importance of th is study has not been lessened. All that remains is 

f o r these techniques to be incorporated into the collection of tools 

u t i l ized in everyday administrative work. 

With th i s thought in mind, i t is feasible to reconsider the relevance 

of direct search as a technique for administrative analysis. This can be 

accomplished by answering the question, "Why use direct search?" 

(1) With highly nonlinear, univariable functions (degree greater than 

or equal to four) , evaluation of the derivative to locate c r i t ica l points 
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90 

can be complicated. The use of such theorems as those of Sturm and Budan 

or the Newton-Raphson technique can be used to locate the point intervals 

w i th in which solutions l i e . Given th is i n te rva l , or set o f in te rva ls , 

the u t i l i z a t i o n of a suitable el imination technique can provide the necessary 

solut ion or set of solut ions. 

(2) With mul t ivar iab le, nonlinear functions of degree greater than or 

equal to three, the condition ~ ~ = 0, i = 1, 2 , . . . , N , results in a homo-

OA* 

geneous system of nonlinear functions. Solving th is system can prove to 

be more d i f f i c u l t than solving the or ig ina l function by d i rect search. In 

th is case the contour tangent can be used, as can gradient techniques or 

para l le l tangents. I t is assumed that the function is continuous for the 
x, i 

N der ivat ive. 

(3) The use of d i rect search in multi variable analysis requires only 

that the gradient be obtained and evaluated at each i t e ra t i on . This is 

generally not too complicated since the i n i t i a l solution can be a r b i t r a r i l y 

selected and addit ional solut ion points are obtained by systematic compu-

tat ions using information that is made available by the i t e ra t i ve process. 

(4) Direct search can be used to solve complex, nonlinear functions 

subject to nonlinear constraints. In th is appl icat ion, the most feasible 

technique is that of the d i f f e ren t ia l gradient. However, i t has been noted 

that greater e f f ic iency can sometimes be achieved by reducing the constrained 

problem to one that is unconstrained and then selecting some other direct 

search technique. 

As in the case of ind i rec t search, applications of d i rect search 

duplicate those of both classical optimization and basic optimal search. 
90 

Nelson Bush Conkwrignt, Introduction to the Theory of Equations 
(New York, 1957), pp. 87-96. 
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The use of these techniques makes feasible the use of nonlinear functions 

in representing rea l i ty . For multiproduct cases, mu l t i va r i a t e nonlinear 

expressions can be used with the knowledge that solution techniques are 

available for locating optimal solutions. 

The f eas ib i l i t y of the response surface has been established through 

the use of simulation or market experimentation. Through the use of this 

technique, and the incorporation of a suitable search method, new areas of 

ac t iv i ty can be explored without commiting the fu l l resources of the firm. 



CHAPTER V 

SUMMARY AND CONCLUSION 

Summary 

The purpose of th i s invest igat ion is to provide an in te rpre t ive 

study of optimization theory and i t s use as a tool of administrat ive 

analys is . In th i s respect , th is study is divided into three general 

topical areas. These topical areas are (1) c lass ical optimization 

theory, (2) basic techniques of modern optimization theory, i d e n t i f i e d 

as basic optimal search, and (3) advanced techniques of modern opt i -

mization theory, i d e n t i f i e d as advanced optimal.search. Each of these 

three topics i s f u r t he r divided into the areas of technique and appl i -

ca t ion. In addition to providing f o r the presentation of the general 

cha rac t e r i s t i c s of the problems tha t can be solved by c lass ical and/or 

modern optimization theory, th i s format provides for a comprehensive 

review of c lass ica l optimization theory, a comprehensive study of 

modern optimization theory, and the elaboration or development and 

demonstration of computational algorithms t ha t enhance the application 

of modern optimization theory to problems of an administrat ive nature. 

The techniques of c lass ica l optimization theory are i d e n t i f i e d in 

Chapter I I . The techniques include methods fo r solving algebraic 

equations and systems of l i nea r equations, the max-min calculus up to 

and including the Lagrange mul t ip l i e r , and queueing theory. As a means 

of f a c i l i t a t i n g the understanding of each of these techniques, a gen-

eral discussion of underlying theory is presented. This discussion 

609: 
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includes conditions fo r ident i fy ing points of optima and the charac-

t e r i s t i c s t h a t a problem i s required to have i f a pa r t i cu l a r solution 

technique is appl icable. The presentation in th is chapter provides 

the technical and conceptual foundation from which the techniques of 

modem optimization theory are discussed. 

Applications of c lassical optimization theory are presented in the 

l a t t e r par t of Chapter I I . The presentat ion of these applications i s 

made on the basis of the use t h a t i s made of a pa r t i cu la r mathematical 

technique. For example, administrat ive problems requiring breakeven 

analysis are c l a s s i f i e d under the heading "algebraic equations." 

Administrative problems requiring l i n e a r application are c l a s s i f i e d 

under l inea r systems. Similar ly , administrat ive problems requiring 

points of maxima or minima are discussed under the heading of "max-

min calculus" or "Lagrange mu l t i p l i e r . " This manner of presentation 

permits ready correlat ion between the solution technique and the types 

of problems to which these techniques can be applied. In addi t ion, 

the general cha rac te r i s t i c s of the problem formulations are i d e n t i f i e d . 

The emphasis in Chapter I I I i s upon the basic techniques of 

modern optimization theory. The study is l imited t o the areas of l i nea r , 

quadrat ic , geometric, and dynamic programming. This l imita t ion is based 

upon the conclusion t h a t , of the basic techniques of modern optimization 

theory, these are the ones most applicable to general administrative 

ana lys i s . In the case of l inea r programming, the existence of modified 

problem formulations such as the network problem and the t ransporta t ion 

problem i s noted. In addi t ion, i t is also noted tha t special computa-

tional techniques have been derived fo r these special cases of l inea r 

programming. 
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The presentation of these basic techniques is made in such a way 

that the classes of problems to which the techniques apply are discussed 

and the character ist ics of the problem formulations are i den t i f i ed . 

This presentation is followed by a general description of the solut ion 

technique i t s e l f . With the exception of dynamic programing, computa-

t ional algorithms are constructed from a study of published theory and 

technique development. Each algorithm is demonstrated in detai l by 

application to a representative problem. Except as noted, these 

algorithms and the demonstrations are of an or ig inal nature and are not 

available in the l i t e r a t u r e . 

In the l a t t e r part of Chapter I I I , the administrative applications 

o f these basic techniques of modern optimization theory are i den t i f i ed . 

The presentation of these applications is made on the basis of the mathe-

matical formulation of the problem i t s e l f . For example, a l inear 

objective function with l inear constraints is c lass i f ied as a l inear 

programming problem. A quadratic object ive function with l inear 

constraints is c lass i f ied as a quadratic programing problem. The 

presentation of these applications includes general areas of current 

app l i cab i l i t y as well as areas of potent ial app l i cab i l i t y . 

The emphasis in Chapter IV is upon the advanced techniques of modern 

optimization theory. Pr ior to the presentation of these techniques, 

however, the optimum-seeking problem is examined and defined. This pro-

vides a base fo r the discussion of various optimal search techniques 

and a br ie f review of the calculus. 

Chapter IV is divided into two basic topical areas, ind i rect search 

and direct search. Each of these areas is fur ther divided as a means of 
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f a c i l i t a t i n g the presentation of the material. In the case of indirect 

search, the basic techniques discussed are (1) the d i f fe ren t ia l approach, 

(2) the Newton-Raphson formula, and (3) the constrained derivative. In 

the discussion of each of these indirect search techniques, terms and 

concepts are ident i f ied by presenting them as defini t ions or theorems. 

This manner of presentation is used to f a c i l i t a t e the discussion of the 

underlying theory. This discussion is then used as a basis from which a 

computational algorithm for each technique is constructed. Each algorithm 

i s then demonstrated by application to a representative problem. These 

algorithms serve to summarize the computational aspects of the respective 

techniques and, except as noted, are not available elsewhere. 

.In the case of direct search, the basic techniques presented are 

those of (1) direct elimination and (2) direct climbing. The direct 

elimination techniques presented are interval elimination, sequential 

search, golden search, and contour tangents. I t is noted that direct 

elimination techniques are used to evaluate the problem at several 

points. If necessary, these evaluations can be used to construct a 

functional expression of the problem being investigated. The direct 

climbing techniques discussed are the response surface, gradient tech-

niques, and parallel tangents. I t is noted that direct climbing tech-

niques optimize a given function by ut i l iz ing information that is 

generated along the search route. 

As a means of f a c i l i t a t i n g the discussion and enhancing the appli-

cation of direct search, direct elimination and direct climbing are 
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subdivided into topical areas. This permits an improved presentation of 

some of the techniques that are c lass i f ied as techniques of direct search. 

For example, gradient techniques are discussed under the headings of the 

d i f fe ren t i a l gradient and the deflected gradient. Each discussion i s 

followed by a computational algorithm that has been constructed from a 

study of the l i t e r a t u r e , and each algorithm is demonstrated by applying 

i t to a representative problem. From the discussion and the computa-

tional demonstrations, character is t ics peculiar to a par t icular technique 

are iden t i f ied . 

The l a t t e r portion of Chapter IV is concerned with administrative 

applications of advanced optimal search. However, as noted, there i s a 

dearth of documented administrative application. This is at t r ibuted to 

the newness of the solution techniques and the lack of a suf f ic ien t data 

base from which empirical studies can be made. As a result of these 

l imi ta t ions , this portion of the study of modern optimization theory and 

i t s use as a tool of administrative analysis is developed by describing 

areas of administrative analysis that have problems similar to those of 

classical optimization theory and basic optimal search. This develop-

ment is such that specif ic problems are iden t i f ied , described, and 

correlated with a specif ic solution technique. For example, administra-

t ive problems amenable to indirect search are presented under indirect 

search. Administrative problems amenable to direct search are presented 

under direct search. 
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Conclusion 

An interpret ive study, this investigation provides (1) an explanation 

of the general theoretical development of the techniques of modern optimi-

zation theory, (2) computational algorithms for implementing the tech-

niques of modern optimization theory, (3) detailed demonstrations of the 

computational aspects of each technique and i t s related algorithm, and 

(4) a means of identifying the types of problems to which these techniques 

are applicable. Although the manner of presentation distinguishes between 

classical optimization theory and modern optimization theory, i t supports 

the thesis that modern optimization theory is a natural extension of 

classical optimization theory by relat ing the techniques and applications 

of modern optimization theory to those of classical optimization theory. 

As a part of the t ransi t ion that must be made from the abstract 

conceptualization of a technique to i t s application, this study documents 

in a formal manner the techniques and administrative applications of 

modern optimization theory. This documentation is evidenced by the 

following: (1) classes of administrative problems amenable to the tech-

niques of modern optimization theory are ident i f ied ; (2) general compu-

tational algorithms suitable for administrative application are developed; 

(3) speci f ic solution techniques are related to classes of problems; and 

(4) detailed computational examples are provided which demonstrate the use 

of a par t icu lar technique. In this manner, the presentation provides a 

basis fo r correlating a given problem with a sui table solution technique. 

This correlation is determined by the manner in which the problem is form-

ulated. For example, a continuous and different! 'able nonlinear p rof i t function 
J_ I- L. _ 
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by the d i f ferent ia l algorithm of indirect search. If the mathematical 

expression i s quadratic with l inear constraints , the problem is c lass i -

f ied as one of quadratic programming. I t can then be solved by one of 

the quadratic programming techniques presented in th is study. 

The ef fec t ive ut i l iza t ion of techniques becomes conmonplace only 

a f t e r su f f i c i en t data analysis. This study has shown that the techniques 

of modern optimization theory are feasible for use as tools of administrative 

optimization. A more extensive data base is now needed to provide for 

empirical studies that fur ther demonstrate the validi ty of this claim. 
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