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In this thesis a study is made of the space X of all 

step functions on [0,1]. This investigation includes 

determining a completion space, X*, for the incomplete 

space X, defining integration for X*, and proving some 

theorems about integration in X*. 

The thesis is divided into three chapters. Chapter I 

is an introduction to the thesis. Chapter II defines a 

step function and the space of all step functions X, 

includes proof that X is an incomplete metric space,, 

and concludes by showing X has a completion metric space, X*. 

Chapter III investigates X*, especially with respect to 

integration. The integral of a member of X* is defined 

and then it is proven that this integral actually exists 

and is unique. Some of the properties of integrals are 

shown to be true for integration in X*. The last theorem 

of Chapter II •' V.iows a relationship between the Riemami 

integral and the Integral of a member of X*. 
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CHAPTER I 

INTRODUCTION 

In this thesis a study is made of the space X of all 

step functions on [0.1]. In Chapter II step functions are 

defined and the space X is proven to be a metric space. X 

is an incomplete metric space since there is at least one 

Cauchy sequence of elements of X which converges to an element 

not in X. The incomplete metric space X is shown to have a 

completion metric space, X*. 

Chapter III investigates X*, especially with respect to 

integration. The integral of a member of X* is defined and 

then it is proven that this integral actually exists and is 

unique. Some of the properties of integrals are shown to be 

true for integration in X*. The last few theorems of 

Chapter III investigate specific members of X*. 



CHAPTER II 

A COMPLETE METRIC SPACE 

A step function is appropriately named since its graph 

appears to be a series of steps, without the riser of the 

step, or one long, continuous step. Some definitions allow 

the very end of the step, a point, to be separated from the 

step and thus lie above or below the step; this will not be 

allowed in the definition of a step function in this thesis. 

Thus a step function is either a constant function over the 

domain or it is a discontinuous function which is constant 

on subintervals of the domain. 

In this thesis a step function will be defined entirely 

in terms of subintervals of [0,1] which are left half-closed. 

There are infinitely many step functions on [0,1]; all of these 

will make up the space of all step functions on [0,1]. It is 

important to have an intuitive idea of a step function, but 

to clarify matters, a formal definition is in order. 

A function S, whose domain is [0,11 is called a step 

function if there is a partition P = {XQ, X^, ••• XN) of [0,1] 

such that S is constant on each left half-closed subinterval 

of P. That is to say, for each k = 1, 2, •••, n there is a 

real number S. such that 
k 

S(x) = if x^-i ( x ( except for xfc = 1 
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then, 

S(x) = Sk if Xy__1 C z < 

The integral of a step function S.from 0 to 1, denoted 

by the symbol S(x)dx is defined by the following formula: 

0 

. s( x) d x - . p A - <xic " xk-]> 

0 

A metric space is a mathematical system (X,d) consisting 

of a set X of elements and a real single-valued function 

d(x,y) defined on all ordered pairs (x,y) of elements of X, 

having the following properties : 

PI. d(x,y) > 0. 

P2. d(x,y) = 0 if and only if x = y. 

P3. d(x,y) = d(y,x). 

P;4. d(x,z) < d(x,y) + d(y,z). 

If X is a metric space, and x-^xg, x^? ••• is .a sequence 

of points in X, the sequence is a Cauchy sequence if for every 

positive real number e, there exists a positive integer N such 

that, if m and n are integers each greater than N, then 

d(xm,Xn) <
 e-

If x^.xgjx^ is a sequence of points in the metric 

space X, the sequence x^x^x,, •••is said to be. convergent 

if there is a point x In X such that, for every positive real 

number e , there is a positive integer N such that if n is an 

integer larger than N, then d(x ,x) <( e. The point x is then 

called a limit of the sequence x^, Xg, x^, •••. 
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A metric space (X,d) is complete if and only if every 

Cauchy sequence in X converges to a point p e X. 

Define X zo be tne set of all step functions on [0,1]. 

If f,g e X define d(f,g) = |f(x)-g(x)|dx. 

1 0 

Theorem 2.1. [ |f(x) - g(x)|dx> 0. 
J0 

Since |f(x) - g(x)|> 0, then Mf(x) - g(x)|dx> 0. 
0 = 

r 1 

Theorem 2.2. J |f(x) - g(x)|dx = 0 if and only if 

f(x) = g(x). 
r1 

(a) Suppose J |f(x) - g(x)[dx = 0. Since |f(x) - g(x)|>0, 

suppose |f(x) - g(x) | > 0 for x' e [0,1]. Let h(x) = 

|f(x) - g(x)| } 0. h(x) is a step function on [0,1]; let 

k = 1, •••, n be the partition of [0,1] so that h(x) = h. 

i f xk-l i x < xk except for xfc = 1, then 

h(x; = if x^_^ ^ x ^ x̂ ., By definition of an integral of 

a step function, f1 h(x)dx = S h (x - x. ). There is at 
,J0 / k=l 

least one value, x , so that - x^ ) > ° and since 

h(x) is non-negative, then Js - x k - 1 ) > 0. Thus 

J^h(x)dx > 0, a contradiction. Suppose |f(x) - g(x)| = 0. 

By deiinition of a step function, since no isolated points are 

allowed, f(x) = g(x). 
(b) Suppose f(x) = g(x), then 

f(x) - g(x) = 0 and 

If(x) - g(x)[ = 0; thus 
pl 
if(x) - g(x)I = 0. 

0 



Theorem 2. j5, 

J, r1 
J o ! f ( x ) - g ( x ) | d x = J | g (x ) - f ( x ) | d x 

| f ( x ) - g(x)| = | g (x ) - f ( x ) | . 
Thus, 
[J-. J 
J lf(x) - g ( x ) | d x = | g (x ) - f ( x ) | d x . 
0 ^0 

Theorem 2.4.. 

J j f ( x ) - h (x) | dx < J 1 | f ( x ) - g(x) | dx + f 1 | g ( x ) - h (x ) | d x . 
U " " 0 ^ 

J 1 | f ( x ) - h (x) [dx = P" 
0 J0 

0 

| f ( x ) - g (x) + g (x) - h (x) -| dx 

0 

JL 

0 

| f ( x ) - g (x) + g (x ) - h (x) | dx < f ( | f ( x ) - g (x) |dx + |g (x)-h(x) | dx ) 

( | f ( x ) - g (x) |dx + | g ( x ) - h (x ) | d x ) = f | f ( x ) - g (x ) | dx + J ^ g ^ - b x l d x 

Thus 
>1 

0 

JL J. 
(x) ~ h ( x ) [ d x < J | f ( x ) - g ( x ) | d x + | g ( x ) - h ( x ) | d x . 

0 0 

By Theorems 2.1, 2.2, 2.3 and 2.4} (X,d) is a metric 

space. (X,d) is not a complete metric space because the 

following is an example of a Cauchy sequence of step functions 

which converges to a non-constant continuous function. 

Consider f(x) = x. Let P be a sequence of partitions of 

[0,1] such that P = [2, f o r n e Positive integers. 

Let Mf equal the least upper bound of x on each subinterval 

of P. Let this sequence of step functions be denoted bv f 
</ n" 

Note f _> f and M„ of i, -\ 
n- f L n ' rxJ Let e y 0, choose 

n ^ 2e
 anc^ a particular subinterval i, —) = [a,b). 



,"b „b p,b Jo 
|f 

a 

b 

_f = n 1 1 f - f = j f -'a n ' 
f = 
a 

rb 
1 x = 
"a 

pb 
b- rb 

! X = 
"a 

1 • * - 1 
2 

f1" „ -
k2-2k+l^ 1 rb 

1 x = 
"a 

I u 1 a 

rb 
! X = 
"a n n 2̂n 2n^ 

2' 
2n • 

13 |f 
' a n 

" f| 
1 

< -i 2 2n y then 
1 ,.f 
0 n 

- f| < n ( ^ 
2n 

) = 2H < e Since 

[a,b) is subinterval in [0,1], f converges to f. 

(X,d) is not complete because this sequence of step 

functions did not converge to a step function. 

A metric spaee X* is called a completion of a metric 

space X if X* is complete and X is isometric to a dense 

subset of X*. 

Consider (X,d) as defined previously. Let C[X] .denote 

the collection of all Cauchy sequences in X and let v be 

the relation in C[X] defined by {a^} v (bn) if and only if 
f1 

lim d(a , b ) = 0; that is, if lim v n n' a - b =.0. 
n n1 n n~* 0 

Theorem 2.5. The relation v is an equivalence relation. 

(a) {an} v {an}. 

JL 
lim 1 |a - a | = 0. 
Y\ "»oo Q 1 11 

Thus fa
n)

 v 

(b) If {a } v {b }, then (b } v [a }. Since 
l 

(a } v {b }? lim |a - b | = 0, and since I a -b I = lb -a 
n n n-*<=° "Jq 1 n n1 1 n r 

A a 
I an~^n l=0= l l m i b n ~ a n I •

 T h u s (b } v (a ]. 
0 n n n->°° 0 n n n n 

then the lim 
n-*« 

(c) If {a } v {b ] and (b } v {c }, then (a } v [c }. 
ix ii j - i i n n 
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S i n c e { a n } v f b j and f b „ } v [ O , t h e n n 

l i m 
n -»«i 

l i m 
n-*=» 

J. 

0 

rl 

0 

n- n • 

a n " b n ' = 0 a n d 

[b - c I = 0 
n n 1 

l i m I a - b + l i m l b - c I > 
n-*«> «q n n n - * ^ Jq n n 1 _ 

So. 

l i m a - b + b - c I 
0 n n n n 1 

l i m - f 1 | a , I 
n-̂ oo J q

 n ~ b
n + b

n " c
n ' = l i m a 

n-*«> 0 n n 1 

a a 
I l a n - K I + |b - c I > n-*°= n n 1 n - ^ — j Q 1 n n 1 = 

l i m a - c I . 
n-*«o 1 n n 1 

S i n c e l i m ) l a - b I + l i m l i b - o 
n-»«. JQ

 1 n n 1 1 u n 

0 )> l i m 
st «• 

n 1 = O, t h e n 

0 
a - c 

n n 1 so 

0 = l i m ct 
n-*<-<> v o n n 

By ( a ) , ( b ) and ( c ) , v i s an e q u i v a l e n c e r e l a t i o n . 

Now l e t X * d e n o t e t h e q u o t i e n t s e t C [ X ] | v ; t h a t i s , 

X * c o n s i s t s o f e q u i v a l e n c e c l a s s e s [ { a n } ] o f Cauchy sequences 

f a n ) e C [ X ] . 



8 

Let e be the function defined by e([{a }}, [{b }]) = 
1 n n 

- bn| where [(bn)] e X*. lim , 
n-OB 0 

Theorem 2.6. The function e is well-defined, that is, 

b if {an} v (An) and {b^} v { ^ then lim 

rl n 

im f~ a 
V n n1 

lim 
n ~ • 0 0 

A„ - Bnl 

Set r = lim a - b and 
n-*00 0 

J. 

R = lim 
J 0 

IA - B I and let e )> 0. 1 n n1 ' 

Note: 
0 

a - b I <( n n' = 

J 
a„ - A + 
n n' 0 

\K ~ B + ' n n1 
0 
IB - b 
n n1 

Now, there exists n, e N so that if n ) n,, la — A ! <T J 1 1' Jq1 n n I N 3 ' 
'1 

there exists n 0 e N so that if n ) n O J then lb. - B I <f 4, 
2 29

 J ' n n! N 

r 1 
and there exists n-̂  e N so that if n ) n^, then | |A — B 1 —RI <T 

p 5 «Jq n n1 1 N 

nl 

If n > max (n-^ ng, n^) then j |an - bn| < R + e and 
J- o 

lim a - b 
n n1 

r, so 
n-*00 

r <( R + e. 

But this inequality holds for every e )> 0; hence, r <( R. 

In the same manner it may be shown that R <( r; thus, r = R. 

In other words, e does not depend upon the particular 

Cauchy sequence chosen to represent any equivalence class. 

Theorem 2.7. The function e is a metric on X*. 

(P1) If f, g e X*, then e (f,g) > 0; that is, if [an3 € f 

and {b } e g, then |a - b | > 0. Since |a - b I > 0, then 
w • -ti n m n n s 

an " b n £ °" 



(P2) If f, g e X*, then e(f,g) = 0 if and only if f =-g. 

Assume {a^} e f and fb } € g. 

(a) If lim Jl&n - b | = 0, then {an} v fbn), by definition. 

(b) If {an} v {bn}, then Jjan - bn! = 0.. 

(P^) If f, g e X*, then e(f,g) = e(g?f).< Assume fan) e f 

and {b^) e g, then e(f,g) = lim J|an - bn| = lim J)b^ - an[ = e(g,f), 

(P^) If f,g,h e X*, then e(f,h) <e(f,g) +e(g,h). If 

(an) e f, Cbn) eg, {cn) e h, then e(f,h) = lim J l a
n - c

n l = 

l l m Jl an " bn + bn " °i n 
* 

lim aii " b J + l l m Jlbn " cnl 

e(f,g) + e(g,h). 

Thus, e is a metric on X* 

Now for each p € X, the sequence fp, p, p, •• •) is 

Cauchy, Set p = [{p, p, p, •••}] and X = fp; peX). Then 
A 
X c X*. 

„ 0 A A 
Theorem 2.o. X is Isometric to X and X is dense in X*. 

For every p,q e X, e(p,^) = lim d(p,q) = d(p,q) so X is 
A A 

isometric to X, To show X is dense in X*, show every point 

in X* is the limit of a sequence in X. Let a = [ fa^ a2_, •••)] 

be any point in X*. Then fan) is a Cauchy sequence in X. 

Hence, lim e(am,a) = lim [lim d(am? an)} = lim d(am, an) = 0. 

Accordingly, fa} - a, and thus, a is the limit of the 
.A A A A sequence fa1, a2, •••) in X. Thus X is-dense in X*. 
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Theorem 2 , 9 . Let {b-^bg, be a Cauchy sequence 

i n X and l e t ( a ^ a g , •*•} be a sequence i n X such that 
-i 

dfa ,b ) <f — f o r every n e N, then' 

v nJ n ; N n ° 9 

( i ) ^-s a l s o a Cauchy sequence i n X. 

( i i ) converges to p i f and only i f (b n ) converges 

to p. 

( i ) By the t r i a n g l e i n e q u a l i t y d ( a m , a n ) < d(a f f l ,bm) 
+ d(b ,b^) + d(b -a ) . Let e)> 0. Then there v rrr n ; v r r r r 

e x i s t s n, € N such that — <" 4 - Hence, f o r 1 n N p ' 

n, m > n 1 ? d(a f f l ,a n ) < e / 3 + d (b m , b n ) + ^. By 

hypothes i s {b-^bg, • • • } i s a Cauchy sequence 

so there i s rig e W such that f o r 

n,m > n 2 , d ( b m , b n ) < e / 3 . 

Set n^ = ffiax(n1?ng). Then, f o r n, m )> n^, d ( a m , a n ) . 

<C e/3 + e/3 + e/3 = e . Thus, f a n ) i s a Cauchy 

sequence. 

( i i ) By the Tr iangle i n e q u a l i t y , d ( b n , p ) <( ^ ( b n , a n ) 

+ d ( a n , p ) . Hence 11m d ( b n , p ) < l im d ( b n , a n ) 

+ l i m ( a , p ) . But the l im d(b , a ) < l im ( i ) = 0. n ' v n n' «• ^ny 

Thus, i f a n converges to p, then l im d(b ,p ) 

<( l im ( a n , p ) = 0, so b^ converges to p. • 

S i m i l a r l y , i f fbn3 converges to p, then f a n ) converges 

to p. 
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Theorem 2.10. Every Cauchy sequence in (X*,e) 

converges and so (X*,e) Is a completion of X. 

Let [A-^Ag, ••} be a Cauchy sequence in X*. Since 
A A ^ 
X is dense in X* for every n e N, there is a e X such 

^ ' n 

that e(an,An) < Then,•by Theorem 2.9, {a.̂  a2, •••} 

is also a Cauchy sequence and by Theorem 2.8, {a^, ^2, •••} 

converges to B = [{a^,a2, ••*}] e X*. Hence, by Theorem 2.9, 

{A^} also converges to B and., therefore, (X*, e) is complete. 



CHAPTER III 

INTEGRATION IN X* 

Do the integrals of members of X* exist? How is an 

integral of a member of X* to be defined? What- are some ' 

of the properties of integrals which hold true for integra-

tion in X*? What are some specific elements of X*? These are 

some of the questions that Chapter III will answer. 

Definition.' If A 6 X* and fan} is a Cauchy sequence 

which is an element of A, then the integral of A, denoted 
* 

by the symbol A, is defined by the following, 

J A = lim a . 
n 

Theorem 3.1. If A € X* and {a } e A, then lim 
"n J n 

exists, 

a 
n 

a exists. 
• n 

Since fa } is a Cauchy sequence,, 11 a - a | converges to n «j n m 
rt 

zero as n and m go to infinity. Since | a 
j n 

to zero as n, m go to infinity, the limit lim 

Now, to make sure the definition of the integral of 

a member of X* is a valid definition, it must be proved that 

all Cauchy sequences from A e X* give the same limit. 

» 

Theorem 3.2. All sequences from A e X* give the same limit 

Consider {an} e A and {bn} e A where {an} and fb^} are 

not the same sequence. By Theorem 3.1, lim r a and lim f b 
•in J n 

exist. Since d(an,bn) = 0, then J l»n - b | converges to 

zero as n goes to infinity. Now, | j a. - f b | < ( ja - b |. 
* n j n *j n n 
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Thus, ! a - b | converges to zero as n goes to infinity 
«J n <J n 

lim a = lim b as n goes to infinity. 

j n ii 

Since the integral of a member of X* exists and is 

unique, then the definition is a valid one. 

Definition. If A,B € X*, [ } e A and fbn) e B, then 

define A + B by the following : 

A + B = [fan + bn}]. 
Theorem 3.3. A + B is well-defined, that is if 

{a } and {x } e A and if {b } and {y } e B then [{a +b }]=[{x +y }] n n ri n n n n n 

Let e > 0. Since {a } {x } 
n n n 

there exists nn e N so that if n ) nn, | a n - xn| K. -g 
e 

0 

and since Cb^) v (yn) there exists n 2 e N so that if 

> no - ynl < f •
 N o w* 

rJL 
| b 

2 J o n 

1 la + b 
0 n 

J. 

l l m .1 K + bnl - f Ixn + ynl
 S j! K - xn + bb - ynl 

n-*o> o n-»°° 0 

lim 
n-*00 "0 

an " xrJ + lbn - y J < S l n c e d( an + V xn + *«)< 

then by definition [{a + b } 1 = [" {x + y }1. 

L n n ' 1 n Jn 1 

Definition. The characteristic function of [a,b), 

denoted C[a,b), is defined as C[a,b)(x) = 1 if x e [a,b) 

and C[a,b)(x) = 0 if x | [a,b). If A € X* and A = [{an}] 

define C[a,b)«A by the following: C[a,b)*A= [(C[a,b)*a }]. 
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a If A e X* and A = [ { } ] then define 

formula: f 3 A = J C[a,b) »A where 0 < a < b < 1. Ja °0 
rb 

A by the following 

Theorem 5.4. If A e X* then A exists and i$ unique. a 
1 fl 
QC[ajb) 'A = JQ{ C[asb) *an) . Choose a particular n, 

Now 

. . 
consider C[a,b).a^. Let C[a,b) «an = bn where b^ = an 

if x e [a,b) and bn = 0 if x | [a,b). Now, bn is a step n 

function since a is a step function and - 0 is a constant. 
n n 

» 

function. This is true for every n. Also, since {an) is 

a Cauchy sequence of step functions then {"b ) = {an} for n" 

x e [a,b) is Cauchy and {bn) = 0 is Cauchy so (bn) is a n" 

Cauchy sequence of step functions thus [b ) e B where 

B e X* and thus, by Theorem 5.1, 

unique. 

*ir i 
o | _ { b n } j e x i s t s and is 

Theorem 5.5'. If F e X* then P F + -k F = I P. 
* ti SL J D Ja 

Let C = C[a,b) be the characteristic function on [a,b), 

Cy = C[b,c) be the' characteristic function on [b,c) and 

Cz = C[a,c) be the characteristic function on [a,c) and 

let {a^} e F. 
rb 

F + F 

t C •« 

lim 
Yl~*co 
A 

0 C »a + lim 
u x n n-® 

« C *a 
0 y n 

l l m Jo Cx "an + Cy ,an = l l m 
Yi~*co ° n̂ 03 

0 (Cx + C j -a. 

= lim 
n-»oo 0

 Cz *an lim 
n-»» fa V 

Thus a 

y 

F + 

n 

= Lp-

Definition. Let F be a function defined and bounded 

on [0,1] and assume that m,M are such that m ^F(x) < M 

for x e [0,1]. Let p be a partition of [0,1] where 

{0 = xQ, xia ••*, x 
n 

1}. p can also be described by 
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I15 l2, •••, I. • • % ' V
 w h e r e li = [xi-i> x i > L e t 

6. = length of I.. Let M. = least upper bound (l.u.b.) 
1 1 1 

of F on I± and itk = greatest lower bound (g.l.b.) of F 

on Ii.
 si = Mi ~ mi = l.u.b. {f(x2) - f(xi)|x1,x2 e .Ii}, 

this is said to be the saltus of F on 1^. 

V = Mi(xl"xo) + «2(x2-xl) + " • + V ^ n - l ' 

- Z Mi(x -x x) = Z M1B1 
1=1 1=1 

-PF ° J 1
ml ( Xi" Xi-l ) = if!1"!6! 

_ n n 
2 F - 2 F = 2 S. (x. -x. , ) = 2 S. (6. ) 
P - P 1 = 1 ^ i i-ij 1 = 1 ^ i> 

I. The Riemann (R) upper integral is defined as 

(R)J[0,1]F = S.l.b. 2pF for every p of [0,1]. 

The Riemann (R) lower integral is defined as 

(R)Jro 11P = l.u.b.S^F for every p of [0,1]. 

r 
ir 

Riemann (R) integrable on [0,1] and RJf is equal to 

the common value of J and J? that is the value when 
f* 

J 

II. F is Riemann integrable on [0,1] if and only if for 

e y 0, there exists a particular p of [0,1] so that 

y - 2 <( e which implies - rn <( e. 
P -P P P 

Let p = [0=x1, x2, •••, xn=ll. 

Theorem 3.6. If F is Riemann integrable then 

rJf = A where A e X*. 

j o , i r * * *-P 
I f J[0 i]F = J [0 1]F t h e n F -LS s a i d t o b e 
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Choose £1 - l". Let a sequence of positive numbers 

be defined by the following: £ = i £ = I , e = I 
1 2 2 n n 

Let be a sequence of partitions so that each p 
n 

satisfies II with e- Let a sequence of step functions 

F n be defined, on subintervals of pn by F n = l.u.b. of P 

o n [xk-l> xk} = Mk w h e r e xi i xk-l <
 xk < V L e t f

n
 b e 

a sequence of step functions defined on subintervals of 

^n ^ ^n = S-l-b- of P on x^) =1"^ where 

X1 - xk-l < xk - xn * 

(a) f converges to F . that is lim f(F - f ) = 0. 
n j n n 

1 1 ' J F n - Jfn < e n «rn
 wn' S o 

n->°° 
Pn " fn < V Slnoe 

£n 0 j t h e n lim J(Fn - fn) = o. Thus f^ converges n _im If 

n-

to P . 
n 

(b) f n converges to P and F converges to P. Since 

f n converges to Pn> then there exists n2 e N so that if 

n > n2> then J(Fn - f^) < Since < F < P n then 

f
n -«JFn a n d f o r n > n2 J ( P " fn ) i fan - fn>< ^n' 

Since lim en = 0, then lim J(F - f ) = o . Also', for n > nOJ 
p rr^°° p yi~>oo 11 * 2 

j(Fn - F) < J(Fn - fn) < en. T h u s l l m j ( p _ p ) = T h u s 

YI-+CQ ^ 

fn converges to P and F n converges to F. 

(c) f n and F n are Cauchy sequences of step functions. 
ft 

Let e > 0. Since by part b, f^ converges to F, there 

exists n e N so that if n > n 0 this implies 

fl 
J I f - F| <e/2 and m > n_ implies f11 f - p| <e/2 
0 -3 ^ q Hi 1 

fn ~ fiJ = JI r n "
 F + P ~ fml ~J I f n -

 pl + lp " fml < 

e/2 + e/2 = e. So J I f n - fm| <e . Thus fn is Cauchy. 
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Let e > 0. Since by part b, F n converges to F, 

there exists n^ e N so that if n > n^ this implies 

1|Pm - F| < e/2. 
0 

J F n — F { < e/2 and m > nQ implies 

F - F n m1 
p ~ F + F - F | < f | F - FI + | F - F I n m1 —J 1 n 1 1 m1 

J F - F| + f IF - F| n J 1 m 

< e/2 + e/2 = e. 

So ftF - F | < e. Thus F is Cauchy. 
J1 n m' n J 

Now, F and f are Cauchy sequences of step functions' 
p 

and {F } v {f } since by part b. lim t(F - f ) = 0 . So 
nJ nJ J * * n^oo ^ n n 

there is some A e X* so that {F } and{f } e A. By theorem 3.2 
r. n n 

JA is unique, and since F N and f converges to F, then 

R F = A, where A e X*. 
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