APFROVED:


Massey, Linda K., Completing the Space of Step Tunctions. Master of Science (Vathematios) Aug., 1972 18 pp., bibliograpky, 2 titles.

In this thesis a study is made of the space $X$ of all step functions on [0,11. This investigation includes deternining a completion space, $X^{*}$, for the incomplete space $X$, defining integration for $X^{*}$, and proving some theorems about integration in $X^{*}$.

The thesis is divided into three chapters. Chapter I is an introduction to the thesis. Chapter TI deeines a step function and the space of all step functions $X$, incluces proof that $X$ is an incomplete metria space, and concIudes by showing $X$ has s completion metric space, $X^{*}$. Chapter TII investigates X , sisecially with respect to integration. The integrel of a member of $X^{*}$ is defined 3nd then $2 t$ is prover tiat tion integral actually exists and is unique. Sone of the properties of integra? are show tio be true for intagetion in $X^{*}$. The last theorer of Shatior tr Biow a nelationship between the Rieman intogral and the integral of a maber of $X *$.

## WABLE OM COMLENTS

Chapter Page
I. INTRODUCTION ..... 1
II. A COMPLETE METRIC SPACE ..... 2
III. INTEGRATION IN $X^{*}$ ..... 12
BIBLIOGRAPHY .....  . . . . . . . . . . . . . . . . ..... 18 .

## INRRODUCTION

In this thesis a study is made of the space $X$ of all step functions on [0.1]. In Chapter II step functions are defined and the space $X$ is proven to be a metric space. $X$ is an incomplete metric space since there is at least one Cauchy sequence of elements of $X$ which converges to an elenent not in $X$. The incomplete metric space $X$ is shown to have a completion metric space, $X^{*}$.

Chapter III investigates $X^{*}$, especially with respect to integration. The integral of e member of $X^{*}$ is defined and then it is proven that this integral actually exists and is unique. Some of the properties of integrals are shown to be true for integration in $X^{*}$. The last few theorems of Chapter III investigate specific members of $\mathrm{X}^{*}$.

## CEAPTER II

A COMPIPTE METRIC SPACE

A step functicn is appropriately named since its graph appears to be a series of steps, without the riser of the step, or one long, continuous step. Some definitions allow the very end of the step, a point, to be separated from the step and thus lie above or below the step; this will not be allowed in the definition of a step function in this thesis. Thus a step function is either a constant function over the domain or it is a discontinuous function which is constant on subintervals of the domain.

In this thesis a step function will be defined entirely in terms of subintervals of $[0,1]$ which are left half-closed. There are infinitely many step functions on [0,l; all of these will make up the space of all step functions on $[0,1]$. It is important to have an intuitive idea of a step function, but to clarify matters, a formal definition is in order.

A function $S$, whose domain is [0,11 is calied a step function if there is a partition $P=\left\{X_{0}, X_{1}, \cdots X_{n}\right\}$ of $[0,1]$ sueh tinat $S$ is constant on each left half-closed subinterval of $P$. That is to say, for eack $k=1,2, \cdots, n$ there is a real number $S_{k}$ such that

$$
S(x)=S_{k} \text { if } x_{k-1} \leq x<x_{k} \text { except for } x_{k}=1
$$

tren,

$$
S(x)=S_{k} \text { if } x_{k-1} \leq y \leq x_{k}
$$

The integral of a step function $S$ Srom 0 to 1 , denoted by the symbol $\int_{0}^{1} S(x) d x$ is defined oy the following formula:

$$
\int_{0}^{1} S(x) d x=\sum_{k=1}^{n} S_{k} \cdot\left(x_{k}-x_{k-1}\right)
$$

A metric space is a mathematical system ( $X, d$ ) consisting of a set $X$ of elements and a real single-valued function $d(x, y)$ defined on all ordered pairs ( $x, y$ ) of elements of $X$, having the following properties:

P1. $d(x, y) \geq 0$.
P2. $d(x, y)=0$ if and only if $x=y$.
P3. $d(x, y)=d(y, x)$.
P4. $d(x, z) \leq d(x, y)+d(y, z)$.
If $X$ is a metric space, and $x_{1}, x_{2}, x_{3}, \cdots$ is a sequence of points in $X$, the seguence is a Cauchy sequence if for every positive real number $\epsilon$, there exists a positive integer $N$ such that, if $m$ and $n$ are integers each greater than $N$, then $d\left(x_{m}, x_{n}\right)<\epsilon$.

If $x_{1}, x_{2}, x_{3}$. $\cdots$ is a sequence of points in the metric space $x$, the sequence $x_{1}, x_{2}, x_{3}, \cdots$ is said to be convergent if there is a point $x \not \equiv n$ such that, for every positive real number $\varepsilon$, there is a positive interex $N$ such that if $n$ is an integer larger than $N$, then $d\left(x_{n}, x\right)<\epsilon$. The point $x$ is then called a limit of the sequence $x_{1}, x_{2}, x_{3}, \cdots$.

A metric space ( $X, d$ ) is complete if and only if every Cauchy sequence in $X$ converges to a point $p \in X$.

Define $X$ to be the set of all step functions on $[0,1]$.
If $f, g \in X$ define $d(f, g)=\int_{0}^{I}|f(x)-g(x)| d x$.
Theorem 2.1. $\int_{0}^{1}|f(x)-g(x)| d x \geqslant 0$.
Since $|f(x)-g(x)| \geq 0$, then $\int_{0}^{1}|f(x)-g(x)| d x \geq 0$.

Theorem 2.2. $\int_{0}^{1}|f(x)-g(x)| d x=0$ if and only if. $f(x)=g(x)$.
(a) Suppose $\int_{0}^{1}|f(x)-g(x)| d x=0$. Since $|f(x)-g(x)| \geq 0$, suppose $|f(x)-g(x)|>0$ for $x^{*} \in[0,1]$. Let $h(x)=$ $|f(x)-g(x)| \geqslant 0 . h(x)$ is a step function on $[0,1]$; let $k=1, \cdots, n$ be the partition of $[0,1]$ so that $h(x)=h_{k}$ if $x_{k-1} \leqq x<x_{k}$ except for $x_{k}=1$, then $h(x)=h_{k}$ if $x_{k-1} \leq x \leq x_{k}$. By definition of an integral of a step function, $n(x) d x=\sum_{k=1}^{n} h_{k}\left(x_{k}-x_{k-1}\right)$. There is at least one value, ${ }^{O} x^{\prime}$, so that $h_{k}\left(x_{k}^{\prime}-x_{k-1}^{\prime}\right)>0$ and since $h(x)$ is nonnegative, then $\sum_{k=1}^{n} h_{k}\left(x_{k}-x_{k-1}\right)>0$. Thus $\int_{0}^{I} h(x) d x>0$, a contradiction. Suppose $|f(x)-g(x)|=0$. By definition of a step function, since no isolated points are allowed, $f(x)=g(x)$.
(b) Suppose $f(x)=g(x)$, then

$$
\begin{aligned}
& f(x)-g(x)=0 \text { and } \\
& |f(x)-g(x)|=0 ; \text { thus } \\
& \int_{0}^{1}|f(x)-g(x)|=0
\end{aligned}
$$

Theorem 2.3.

$$
\begin{aligned}
& { }_{0}^{I}|f(x)-g(x)| d x=\int_{0}^{1}|\varepsilon(x)-f(x)| d y \\
& |f(x)-g(x)|=|g(x)-f(x)| \\
& \text { Thus, } \\
& \int_{0}^{1}|f(x)-g(x)| d x=\int_{0}^{1}|g(x)-f(x)| d x .
\end{aligned}
$$

Theorem 2. 4.
$\int_{0}^{1}|f(x)-h(x)| d x \leq \int_{0}^{1}|f(x)-g(x)| d x+\int_{0}^{1}|g(x)-h(x)| d x$.

$$
\int_{0}^{1}|f(x)-h(x)| d x=\int_{0}^{1}|f(x)-g(x)+g(x)-h(x)| d x
$$

$$
\int_{0}^{I}|f(x) \sim g(x)+g(x)-h(x)| d x \leq \int_{0}^{1}(|f(x)-g(x)| d x+|g(x)-h(x)| d x)
$$

$$
\int_{0}^{1}(|f(x)-g(x)| d x+|g(x)-h(x)| d x)=\int_{0}^{1}|f(x)-g(x)| d x+\int_{0}^{1}|g(x)-d x| d x
$$

Thus

$$
\int_{0}^{1}|f(x)-h(x)| d x \leq \int_{0}^{l}|f(x)-g(x)| d x+\int_{0}^{1}|g(x)-h(x)| d x
$$

By Theorems 2.1, 2.2, 2.3 and 2.4, ( $X, d$ ) is a metric space. ( $X, d$ ) is not a complete metric space because the following is an example of a Cauchy sequence of step functions winch converges to a non-constant continuous function.

Consider $f(x)=x$. Let $P$ be a sequence of partitions of [0.1] such that $P=\left[\frac{0}{n}, \frac{1}{n}, \cdots \frac{n}{n}\right]$, for $n \in$ positive integers. Let $M_{f}$ equal the least upper bound of $x$ on each subinterval of $P$. Let this sequence of step functions be denoted by $f_{n}$. Note $f_{n}>f$ and $M_{f} \circ f\left(\frac{k-1}{n}, \frac{k}{n}\right)=\frac{k}{n}$. Let $\varepsilon>0$, choose $r>\frac{1}{2 \epsilon}$ and a particular subinterval $\left[\frac{k-1}{n}, \frac{k}{n}\right)=[a, b)$.

So $a_{a}^{b} f_{n}-f=\int_{a}^{i} f_{n_{1}}-f=\int_{a}^{b} f^{v}-\int_{a}^{b} f=$

$$
\int_{a}^{b} M_{f}-\int_{a}^{b} x=\int_{a}^{b} \int_{a}^{b} x=\frac{1}{n} \cdot \frac{k}{n}-\left(\frac{k^{2}}{2 n^{2}}-\frac{k^{2}-2 k+1}{2 n^{2}}\right)=\frac{1}{2 n^{2}}
$$

$$
\text { Since } \int_{a}^{b}\left|f_{n}-f\right|<\frac{1}{2 n^{2}} \text {, then } \int_{0}^{1}\left|f_{n}-f\right|<n\left(\frac{1}{2 n^{2}}\right)=\frac{1}{2 n}<\varepsilon
$$

$[a, b)$ is subinterval in $[0,1], f_{n}$ converges to $f$.
( $\mathrm{X}, \mathrm{d}$ ) is not complete because this sequence of step
functions did not converge to a step function.
A metric space $X^{*}$ is called a completion of a metric space $X$ if $X^{*}$ is complete and $X$ is isometric to a dense subset of $X *$.

Consider ( $\mathrm{X}, \mathrm{d}$ ) as defined previously. Let C[X]. denote the collection of all Cauchy sequences in $X$ and let $\nu$ be the relation in $C[X]$ defined by $\left\{a_{n}\right\} \vee\left\{b_{n}\right\}$ if and only if $\lim _{n \rightarrow \infty} d\left(a_{n}, b_{n}\right)=0$; that is, if $\lim _{n \rightarrow \infty} \int_{0}^{l}\left|a_{n}-b_{n}\right|=0$.

Theorem 2.5. The relation $v$ is an equivalence relation.
(a) $\left\{a_{n}\right\} \vee\left\{a_{n}\right\}$.

$$
\lim _{n \rightarrow \infty} ; a_{n}^{1}-a_{n} \mid=0
$$

Thus $\left\{a_{n}\right\} \vee\left\{a_{n}\right\}$
(b) If $\left\{a_{n}\right\} \nu\left\{b_{n}\right\}$, then $\left\{b_{n}\right\} \nu\left\{a_{n}\right\}$. Since
$\left\{a_{n}\right\} \vee\left\{b_{n}\right\}, \lim _{n \rightarrow \infty} \int_{0}^{1}\left|a_{n}-b_{n}\right|=0$, and since $\left.\left|a_{n}-b_{n}\right|=\mid b_{n}-a_{n}\right\}$,
then the $\lim _{n \rightarrow \infty} j_{0}^{1}\left|a_{n}-b_{n}\right|=0=\underset{n \rightarrow \infty}{\lim } \int_{0}^{1} b_{n}-a_{n} \mid$. Thus $\left\{b_{n}\right\} v\left\{a_{n}\right\}$.
(c) If $\left\{a_{n}\right\} \vee\left\{b_{n}\right\}$ ard $\left\{b_{n}\right\} v\left\{c_{n}\right\}$, then $\left\{a_{n}\right\} v\left\{c_{n}\right\}$.

$$
\begin{aligned}
& \text { Since }\left\{a_{n}\right\} v\left\{b_{n}\right\} \text { and }\left\{b_{n}\right\} v\left\{c_{n}\right\} \text {, then } \\
& \quad \lim _{n \rightarrow \infty} \int_{0}^{1}\left|a_{n}-b_{n}\right|=0 \text { and } \\
& \quad \lim _{n \rightarrow \infty} \int_{0}^{1}\left|b_{n}-c_{n}\right|=0 \\
& \left.\quad \lim _{n \rightarrow \infty} \prod_{0}^{1}\left|a_{n}-b_{n}\right|+\lim _{n \rightarrow \infty} \int_{0}^{1}\left|b_{n}-c_{n}\right|\right\rangle \\
& \quad \lim _{n \rightarrow \infty} \int_{0}^{1}\left|a_{n}-b_{n}+b_{n}-c_{n}\right| \\
& \lim _{n \rightarrow \infty} \int_{0}^{1}\left|a_{n}-b_{n}+b_{n}-c_{n}\right|=\lim _{n \rightarrow \infty} \int_{0}^{1}\left|a_{n}-c_{n}\right| .
\end{aligned}
$$

So,

$$
\lim _{n \rightarrow \infty} \int_{0}^{1}\left|a_{n}-b_{n}\right|+\lim _{n \rightarrow \infty} \int_{0}^{1}\left|b_{n}-c_{n}\right| \geqq
$$

$$
\lim _{n \rightarrow \infty}\left|a_{n}-c_{n}\right|
$$

Since $\lim _{n \rightarrow \infty} \int_{0}^{1}\left|a_{n}-b_{n}\right|+\frac{1 i m}{n \rightarrow \infty} \int_{0}^{l}\left|b_{n}-c_{n}\right|=0$, then

$$
0 \geq \frac{1 \sum m}{n} \int_{-\infty}^{I}\left|a_{n}-c_{n}\right| \text {, so }
$$

$$
0=\lim _{n \rightarrow \infty} \int_{0}^{l}\left|a_{n}-c_{n}\right|
$$

By (a), (b) and (c), $\nu$ is an equivalence relation. Now let $X^{*}$ denote the quotient set $C[X] \mid \nu$; that is, $X^{*}$ consists of equivalence classes $\left[\left\{a_{n}\right\}\right]$ of Cauchy sequences $\left\{a_{n}\right\} \in C[x]$.

Let $e$ be the function defined by $e\left(\left[\left\{a_{n}\right]\right\},\left[\left\{b_{n}\right\}\right]\right)=$ $\lim _{n \rightarrow \infty} \int_{0}^{1}\left|a_{n}-b_{n}\right|$ where $\left[\left\{a_{n}\right\}\right],\left[\left\{b_{n}\right\}\right] \in X^{*}$.

Theorem 2.6. The function $e$ is well-defined, that is, if $\left\{a_{n}\right\} \vee\left\{A_{n}\right\}$ and $\left\{b_{n}\right\} \vee\left\{B_{n}\right\}$, then $\lim _{n \rightarrow \infty} \int_{0}^{2}\left|a_{n}-b_{n}\right|=$ $\lim _{n \rightarrow \infty} \int_{0}^{1}\left|A_{n}-B_{n}\right|$.

Set $r=\lim _{n \rightarrow \infty} \int_{0}^{1}\left|a_{n}-b_{n}\right|$ and $R=\lim \int_{0}^{l}\left|A_{n}-B_{n}\right|$ and let $\epsilon>0$.
Note: $\quad \int_{0}^{1}\left|a_{n}-b_{n}\right| \leqq \int_{0}^{1}\left|a_{n}-A_{n}\right|+\int_{0}^{1}\left|A_{n}-B_{n}\right|+\int_{0}^{1}\left|B_{n}-b_{n}\right|$.
Now, there exists $n_{1} \in \mathbb{N}$ so that if $n>n_{I}, \int_{0}^{1}\left|a_{n}-A_{n}\right|<\frac{\epsilon}{3}$,
there exists $n_{2} \in \mathbb{N}$ so that if $n>n_{2}$, then $\int_{0}^{1}\left|b_{n}-B_{n}\right|<\frac{\epsilon}{3}$,
and there exists $n_{3} \in \mathbb{N}$ so that if $n>n_{3}$, then $\left|\int_{0}^{3}\right| A_{n}-B_{n}|-R|<\frac{\epsilon}{3}$.
If $n\rangle \max \left(n_{1}, n_{2}, n_{3}\right)$ then $\int_{0}^{1}\left|a_{n}-b_{n}\right|\langle R+\epsilon$ and
$\lim _{n \rightarrow \infty} \int_{0}^{1}\left|a_{n}-b_{n}\right|=r$, so

$$
r \leqq R+\epsilon .
$$

But this inequality holds for every $\epsilon>0$; hence, $r \leqq R$. In the same manner it may be shown that $R \leqq r$; thus, $r=R$.

In other words, e does not depend upon the particular Cauchy sequence chosen to represent any equivalence class.

Theorem 2.7. The function $e$ is a metric on $X^{*}$.
$\left(P_{1}\right)$ If $f, g \in X^{*}$, then $e(f, g) \geq 0$; that is, if $\left\{a_{n}\right\} \in f$ and $\left\{b_{n}\right\} \in g$, then $\int\left|a_{n}-b_{n}\right| \geq 0$. Since $\left|a_{n}-b_{n}\right| \geq 0$, then $\int\left|a_{n}-b_{n}\right| \geq 0$.
$\left(P_{2}\right)$ If $f, g \in X^{*}$, then $e(f, g)=0$ if and only if $f=g$. Assume $\left\{a_{n}\right\} \in f$ and $\left\{b_{n}\right\} \in g$.
(a) If $\lim \int\left|a_{n}-b_{n}\right|=0$, then $\left\{a_{n}\right\} v\left\{b_{n}\right\}$, by definition.
(b) If $\left\{a_{n}\right\} \vee\left\{b_{n}\right\}$, then $\int\left|a_{n}-b_{n}\right|=0$.
$\left(P_{3}\right)$ If $f, g \in X^{*}$, then $e(f, g)=\epsilon\{g, f)$. Assume $\left\{a_{n}\right\} \in f$ and $\left\{b_{n}\right\} \in g$, then $e(f, g)=\lim \int\left|a_{n}-b_{n}\right|=\lim \int\left|b_{n}-a_{n}\right|=e(g, f)$.
$\left(P_{4}\right)$ If $f, g, h \in X^{*}$, then $e(f, h) \leq e(f, g)+e(g, h)$. If $\left\{a_{n}\right\} \in f,\left\{b_{n}\right\} \in g,\left\{c_{n}\right\} \in h$, then $e(f, h)=\lim \int\left|a_{n}-c_{n}\right|=$

$$
\lim \int\left|a_{n}-b_{n}+b_{n}-c_{n}\right| \leq
$$

$$
\operatorname{Iim} \int\left|a_{n}-b_{n}\right|+\lim \int\left|b_{n}-c_{n}\right|=
$$

$$
e(f, g)+e(g, h)
$$

Thus, e is a metric on $X^{*}$
Now for each $p \in X$, the sequence $\{p, p, p, \cdots\}$ is Cauchy, $\operatorname{Set} \hat{\mathrm{p}}=[\{\mathrm{p}, \mathrm{p}, \mathrm{p}, \cdots\}]$ and $\hat{X}=\{\hat{p} ; p \in \mathrm{X}\}$. Then $\hat{X} \subset X^{*}$.

Theorem 2.8. $X$ is isometric to $\hat{X}$ and $\hat{X}$ is dense in $X^{*}$. For every $p, q \in X, e(\hat{p}, \hat{q})=\lim d(p, o)=d(p, q)$ so $X$ is isometric to $\hat{X}$. To show $\hat{X}$ is dense in $X *$, show every point in $X^{*}$ is the limit of a sequence in $\hat{X}$. Let $\alpha=\left[\left\{a_{1}, a_{2}, \cdots\right\}\right]$ be any point in $X^{*}$. Then $\left\{a_{n}\right\}$ is a Cauchy sequence in $X$. Hence, $\lim e\left(\hat{a}_{m}, \alpha\right)=\lim \left[\lim d\left(a_{m}, a_{n}\right)\right]=\lim d\left(a_{m}, a_{n}\right)=0$. Accordingly, $\left\{\hat{a}_{n}\right\} \rightarrow \alpha$, and thus, $\alpha$ is the limit of the sequence $\left\{\hat{a}_{1}, \hat{a}_{2}, \cdots\right\}$ in $\hat{X}$. Thus $\hat{X}$ is dense in $X *$.

Theorem 2.9. Let $\left\{b_{1}, b_{2}, \cdots\right\}$ be a Cauchy sequence in $X$ and let $\left\{a_{1}, a_{2}, \cdots\right\}$ be a sequence in $X$ such that $d\left(a_{n}, b_{n}\right)<\frac{1}{n}$ for every $n \in N$, then
(i) $\left\{a_{n}\right\}$ is also a Cauchy sequence in $X$.
(ii) $\left\{a_{n}\right\}$ converges to $p$ if and only if $\left\{b_{n}\right\}$ converges to p .
(i) By the triangle inequality $d\left(a_{m}, a_{n}\right) \leqq d\left(a_{m}, b_{m}\right)$ $+d\left(b_{m}, b_{n}\right)+d\left(b_{n}, a_{n}\right)$. Let $\epsilon>0$. Then there exists $n_{l} \in N$ such that $\frac{1}{n}<\frac{\epsilon}{3}$. Hence, for . $n, m\rangle n_{1}, d\left(a_{m}, a_{n}\right)\left\langle\varepsilon / \zeta+d\left(b_{m}, b_{n}\right)+\frac{\epsilon}{3}\right.$. By hypothesis $\left(b_{1}, b_{2}, \cdots\right)$ is a Cauchy sequence so there is $n_{2} \in \mathbb{N}$ such that for $n, m>n_{2}, d\left(b_{m}, b_{n}\right)\langle\epsilon / 3$.

Set $n_{0}=\max \left(n_{1}, n_{2}\right)$. Then, for $n, m>n_{0}, d\left(a_{m}, a_{n}\right)$. $\left\langle\epsilon / 3+\epsilon / 3+\epsilon / \zeta=\epsilon\right.$. Thus, $\left\{a_{n}\right\}$ is a Cauchy sequence.
(ii) By the Triangle inequality, $d\left(b_{n}, p\right)<d\left(b_{n}, a_{n}\right)$ $+d\left(a_{n}, p\right)$. Hence $\lim d\left(b_{n}, p\right) \leqq \lim d\left(b_{n}, a_{n}\right)$
$+\lim \left(a_{n}, p\right) . \quad$ But the $\lim d\left(b_{n}, a_{n}\right) \leq \lim \left(\frac{1}{n}\right)=0$.
Thus, if $a_{n}$ converges to $p$, then $\lim d\left(b_{n}, p\right)$
$\leqq \lim \left(a_{n}, p\right)=0$, so $b_{n}$ converges to $p$.
Similarly, if $\left\{b_{n}\right\}$ converges to $p$, then $\left\{a_{n}\right\}$ converges to p .

Theorem 2.10. Every Cauchy sequence in ( $X^{*}, e$ )
converges and so ( $X^{*}$, e) is a completion of $X$.
Let $\left\{A_{1}, A_{2}, \cdots\right\}$ be a Cauchy sequence in $X^{*}$. Since $\hat{X}$ is dense in $X *$ for every $n \in N$, there is $\hat{a}_{n} \in \hat{X}$ such that $e\left(\hat{a}_{n}, A_{n}\right)<\frac{1}{n}$. Then, by Theorem $2.9,\left\{\hat{a}_{1}, \hat{a}_{2}, \cdots\right\}$
is also a Cauchy sequence and by Theorem 2.8 , $\left\{\hat{a}_{1}, \hat{a}_{2}, \cdots\right\}$ converges to $B=\left[\left\{a_{1}, a_{2}, \cdots\right\}\right] \in X^{*}$. Hence, by Theorem 2.9, $\left\{A_{n}\right.$ \} also converges to $B$ and, therefore, ( $X^{*}$, e) is complete.

## CHAPTER III

## INTEGRATION IN X*

Do the integrals of members of $X^{*}$ exist? How is an integral of a member of $X^{*}$ to be defined? What are some. of the properties of integrals which hold true for integration in $X^{*}$ ? What are some specific elements of $X^{*}$ ? These are some of the questions that Chapter III will answer.

Definition: If $A \in X^{*}$ and $\left\{a_{n}\right\}$ is a Cauchy sequence which is an element of $A$, then the integral of $A$, denoted by the symbol $\int A$, is defined by the following,

$$
\int \mathrm{A}=\lim \int \mathrm{a}_{\mathrm{n}}
$$

Theorem 3.1. If $A \in X^{*}$ and $\left\{a_{n}\right\} \in A$, then lim $\int a_{n}$ exists.

Since $\left\{a_{n}\right\}$ is a Cauchy sequence, $\int_{0}\left|a_{n}-a_{m}\right|$ converges to zero as $n$ and $m$ go to infinity. Since $\left|\int a_{n}-\int a_{m}\right|$ converges to zero as $n$, $m$ go to infinity, the limit $\lim \int a_{n}$ exists.

Now, to make sure the definition of the integral of a member of $X^{*}$ is a valid definition, it must be proved that all Cauchy sequences from $A \in X^{*}$ give the same limit.

Theorem 3.2. All sequences from $A \in X^{*}$ give the same limit. Consider $\left\{a_{n}\right\} \in A$ and $\left\{b_{n}\right\} \in A$ where $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are not the same sequence. By Theorem 3.1, $\lim \int a_{n}$ and $\lim \int b_{n}$ exist. Since $d\left(a_{n}, b_{n}\right)=0$, then $\int\left|a_{n}-b_{n}\right|$ converges to zero as $n$ goes to infinity. Now, $\left|\int a_{n}-\int b_{n}\right| \leq \int\left|a_{n}-b_{n}\right|$.

Thus, $\left|\int a_{n}-\int b_{n}\right|$ converges to zero as $n$ goes to infinity $\lim \int a_{n}=\lim \int b_{n}$ as $n$ goes to infinity.

Since the integral of a member of $X^{*}$ exists and is unique, then the definition is a valid one.

Definition. If $A, B \in X^{*},\left\{a_{n}\right\} \in A$ and $\left\{b_{n}\right\} \in B$, then define $A+B$ by the following:

$$
A+B=\left[\left\{a_{n}+b_{n}\right\}\right]
$$

Theorem 3.3. $A+B$ is well-defined, that is if
$\left\{a_{n}\right\}$ and $\left\{x_{n}\right\} \in A$ and if $\left\{b_{n}\right\}$ and $\left\{y_{n}\right\} \in B$ then $\left[\left\{a_{n}+b_{n}\right\}\right]=\left[\left\{x_{n}+y_{n}\right\}\right]$.
Let $\varepsilon>0$. Since $\left\{a_{n}\right\} \cup,\left\{x_{n}\right\}$
there exists $n_{1} \in \mathbb{N}$ so that if $n>n_{1}, \int_{0}^{1}\left|a_{n}-x_{n}\right|<\frac{\epsilon}{2}$
and since $\left\{b_{n}\right\} \vee\left\{y_{n}\right\}$ there exists $n_{2} \in \mathbb{N}$ so that if
$n>n_{2} \int_{0}^{l}\left|b_{n}-y_{n}\right|<\frac{\epsilon}{2}$. Now,
$\lim _{n \rightarrow \infty} \int_{0}^{1}\left|a_{n}+b_{n}\right|-\lim _{n \rightarrow \infty} \int_{0}^{l}\left|x_{n}+y_{n}\right| \leq \lim _{n \rightarrow \infty} \int_{0}^{1}\left|a_{n}-x_{n}+b_{b}-y_{n}\right| \leq$
$\lim _{n \rightarrow \infty} \int_{0}^{1}\left|a_{n}-x_{n}\right|+\left|b_{n}-y_{n}\right|<\epsilon$. Since $d\left(a_{n}+b_{n}, x_{n}+y_{n}\right)<\epsilon$,
then by definition $\left[\left(a_{n}+b_{n}\right)\right]=\left[\left(x_{n}+y_{n}\right)\right]$.
Definition. The characteristic function of $[a, b)$,
denoted $C[a, b)$, is defined as $C[a, b)(x)=1$ if $x \in[a, b)$
and $C[a, b)(x)=0 \pm f x \neq[a, b)$. If $A \in X^{*}$ and $A=\left[\left\{a_{n}\right\}\right]$
define $C\left[a, b ; \cdot A\right.$ by the following: $C[a, b) \cdot A=\left[\left(C[a, b) \cdot a_{n}\right\}\right]$.

If $A \in X^{*}$ and $A=\left[\left\{a_{n}\right\}\right]$ then define $\int_{a}^{b} A$ by the following formula: $\int_{a}^{b} A=\int_{0}^{1} C[a, b) \cdot A$ where $0 \leq a<b \leq 1$.

Theorem 3.4. If $A \in X^{*}$ then $\int_{a}^{b} A$ exists and is unique. $\int_{a}^{b} A=\int_{0}^{1} C[a, b) \cdot A=\int_{0}^{1}\left\{C[a, b) \cdot a_{n}\right\}$. Choose a particular $n$.
Now consider $\int_{0}^{l} c[a, b) \cdot a_{n}$. Let $C[a, b) \cdot a_{n}=b_{n}$ where $b_{n}=a_{n}$
if $x \in[a, b)$ and $b_{n}=0$ if $x \notin[a, b)$. Now, $b_{n}$ is a step function since $a_{n}$ is a step function and $b_{n}=0$ is a constant. function. This is true for every $n$. Also, since $\left\{a_{n}\right\}$ is a Cauchy sequence of step functions then $\left\{b_{n}\right\}=\left\{a_{n}\right\}$ for $x \in[a, b)$ is Cauchy and $\left\{b_{n}\right\}=0$ is Cauchy so $\left\{b_{n}\right\}$ is a Cauchy sequence of step functions thus $\left\{b_{n}\right\} \in B$ where $B \in X^{*}$ and thus, by Theorem 3.1, $\int_{0}^{1}\left[\left\{b_{n}\right\}\right\}$ exists and is unique.

Theorem 3.5. If $F \in X^{*}$ then $\int_{a}^{b} F+\int_{b}^{c} F=\int_{a}^{c} F$.
Let $C_{X}=C[a, b)$ be the characteristic function on $[a, b)$, $C_{y}=C[b, c)$ be the characteristic function on $[b, c)$ and $C_{z}=C[a, c)$ be the characteristic function on $[a, c)$ and Let $\left\{a_{n}\right\} \in F \cdot \int_{a}^{b} F+\int_{b}^{c} F=\lim _{n \rightarrow \infty} \int_{0}^{1} C_{x} \cdot a_{n}+\lim _{n \rightarrow \infty} \int_{0}^{1} c_{y} \cdot a_{n}$
$=\lim _{n \rightarrow \infty} \int_{0}^{1} c_{x} \cdot a_{n}+c_{y} \cdot a_{n}=\lim _{n \rightarrow \infty} \int_{0}^{1}\left(c_{x}+c_{y}\right) \cdot a_{n}$
$=\lim _{n \rightarrow \infty} \int_{0}^{l} c_{z} \cdot a_{n}=\lim _{n \rightarrow \infty} \int_{a}^{c} a_{n}$. Thus $\int_{a}^{b} F+\int_{b}^{c} F=\int_{a}^{c} F$.
Definition. Let $\bar{P}$ be a function defined and bounded on $[0,1]$ and assume that $m, M$ are such that $m \leq F(x) \leq M$ for $x \in[0,1]$. Let $p$ be a partition of $[0,1]$ where $p=\left\{0=x_{0}, x_{1}, \cdots, x_{n}=I\right\} . p$ can also be described by
$I_{1}, I_{2}, \cdots, I_{i} \cdots, I_{n}$, where $I_{i}=\left[x_{i-1}, x_{i}\right]$. Let $\delta_{i}=$ length of $I_{i}$. Let $M_{i}=$ least upper bound (l.u.b.) of $F$ on $I_{i}$ and $m_{i}=$ greatest lower bound (g.l.b.) of $F$ on $I_{i} . S_{i}=M_{i}-m_{i}=1$ u.b. $\left\{f\left(x_{2}\right)-f\left(x_{i}\right) \mid x_{1}, x_{2} \in I_{i}\right\}$, this is said to be the saltus of $F$ on $I_{i}$.

$$
\begin{aligned}
& \sum_{p}{ }_{p}=M_{i}\left(x_{1}-x_{0}\right)+M_{2}\left(x_{2}-x_{1}\right)+\cdots+M_{n}\left(x_{n}-x_{n-1}\right) \\
& =\sum_{i=1}^{n} M_{i}\left(x_{i}-x_{i-1}\right)=\sum_{i=1}^{n} M_{i} \delta_{i} \\
& \sum_{p} F=\sum_{i=1}^{n} m_{i}\left(x_{i}-x_{i-1}\right)=\sum_{i=1}^{n} m_{i} \delta_{i} \\
& \sum_{p} F-\sum_{p} F=\sum_{i=1}^{n} S_{i}\left(x_{i}-x_{i-1}\right)=\sum_{i=1}^{n} S_{i}\left(\delta_{i}\right)
\end{aligned}
$$

I. The Riemann (R) upper integral is defined as
(R) $\bar{S}_{[0,1]}{ }^{F}=g .1 . b . \bar{\Sigma}_{p} F$ for every $p$ of $[0,1]$.

The Riemann (R) lower integral is defined as
(R) ${\underset{\underline{y}}{[0,1]^{2}}}=1 \cdot u \cdot b \cdot \sum_{p} F$ for every $p$ of $[0,1]$.

If $\vec{\int}_{[0,1]^{F}}={\underset{J}{J}[0,1]^{F} \text { then } F \text { is said to be }}$
Riemann ( $R$ ) integrable on $[0,1]$ and $R[F$ is equal to the common value of $\bar{\int}$ and $\underset{\underset{j}{j}}{ }$, that is the value when $\bar{j}=\underset{-}{[ }$
II. $F$ is Riemann integrable on $[0,1]$ if and only if for
$\epsilon>0$, there exists a particular $p$ of $[0,1]$ so that
$\bar{\Sigma}_{p}-\Sigma_{p}<\epsilon$ which implies $M_{p}-m_{p}<\epsilon$.
Let $p=\left[0=x_{1}, x_{2}, \cdots, x_{n}=1\right]$.
Theorsm 3.6. If $F$ is Riemann integrable then $R \int F=\int A$ where $A \in X^{*}$.

Choose $\varepsilon_{1}=1$. Let a sequence of positive numbers be defined by the following: $\varepsilon_{1}=1, \varepsilon_{2}=\frac{1}{2} \ldots, \varepsilon_{n}=\frac{1}{n} \ldots$ Let $p_{n}$ be a sequence of partitions so that each $p_{n}$ satisfies II with $\varepsilon=\varepsilon_{n}$. Let a sequence of step functions $F_{n}$ be defined on subintervals of $p_{n}$ by $F_{n}=$ l.u.b. of $F$ on $\left[x_{k-1}, x_{k}\right)=M_{k}$ where $x_{1} \leq x_{k-1}<x_{k} \leq x_{n}$. Let $f_{n}$ be a sequence of step functions defined on subintervals of $p_{n}$ by $f_{n}=g . l . b$. of $F$ on $\left[x_{k-1}, x_{k}\right)=m_{k}$ where $\mathrm{x}_{\mathrm{l}} \leq \mathrm{x}_{\mathrm{k}-\mathrm{l}}<\mathrm{x}_{\mathrm{k}} \leq \mathrm{x}_{\mathrm{n}}$.
(a) $f_{n}$ converges to $F_{n}$, that is $\lim _{n \rightarrow \infty} \int\left(F_{n}-f_{n}\right)=0$. By II, $\int F_{n}-\int f_{n}<\varepsilon_{n}$. So $\int F_{n}-f_{n} \stackrel{n \rightarrow \infty}{<\varepsilon_{n}}$. Since
 to $F_{n}$.
(b) $I_{n}$ converges to $F$ and $F_{n}$ converges to $F$. Since $f_{n}$ converges to $F_{n}$, then there exists $n_{2} \varepsilon N$ so that if $n>n_{2}$, then $\int\left(F_{n}-f_{n}\right)<\varepsilon_{n}$. Since $f_{n} \leq F \leq F_{n}$ then $\int f_{n} \leq \int F \leq \int F_{n}$ and for $n>n_{2} \int\left(F-f_{n}\right) \leq \int\left(F_{n}-n_{n}\right)<\varepsilon_{n}$. Since $\lim _{n \rightarrow \infty} \varepsilon_{n}=0$, then $\lim _{n \rightarrow \infty} \int\left(F-f_{n}\right)=0$. Also, for $n>n_{2}$, $\int\left(F_{n}-F\right) \leq \int\left(F_{n}-f_{n}\right)<\varepsilon_{n}$. Thus $\lim _{n \rightarrow \infty}^{n \rightarrow \infty} \int\left(F_{n}-F\right)=0$. Thus $f_{n}$ converges to $F$ and $F_{r}$ converges to $F$.
(c) $f_{n}$ and $I_{n}$ are Cauchy sequences of step, functions. Let $\varepsilon>0$. Since by part $b, f_{n}$ converges to $F$, there exists $n_{3} \varepsilon N$ so that if $n>n_{3}$ this implies $\int_{0}^{l}\left|f_{n}-F\right|<\varepsilon / 2$ and $m>n_{3}$ implies $\int_{0}^{I}\left|f_{m}-F\right|<\varepsilon / 2$. $\int\left|f_{n}-f_{m}\right|=\int\left|f_{n}-F+F-f_{m}\right| \leq \int\left|f_{n}-F\right|+\left|F-f_{m}\right|<$ $\varepsilon / 2+\varepsilon / 2=\varepsilon$. So $\int f_{n}-f_{m} \mid<\varepsilon$. Thus $f_{n}$ is Cauchy.

Let $\varepsilon>0$. Since by part $b, F_{n}$ converges to $F$, there exists $n_{0} \varepsilon N$ so that if $n>n_{0}$ this implies $\int_{0}^{1}\left|F_{n}-F\right|<\varepsilon / 2$ and $m>n_{0}$ implies $\int_{0}^{1}\left|F_{m}-F\right|<\varepsilon / 2$. $\int\left|F_{n}-F_{m}\right|=\int\left|F_{n}-F+F-F_{m}\right| \leq \int\left|F_{n}-F\right|+\left|F-F_{m}\right|$ $=\int\left|F_{n}-F\right|+j\left|F_{m}-F\right|$ $<\varepsilon / 2+\varepsilon / 2=\varepsilon$.
So $\int\left|F_{n}-F_{m}\right|<\varepsilon$. Thus $F_{n}$ is Cauchy.
Now, $F_{n}$ and $f_{n}$ are Cauchy sequences of step functions and $\left\{F_{n}\right\} v\left\{f_{n}\right\}$ since by part $b, \lim _{n \rightarrow \infty} \int_{n}\left(F_{n}-f_{n}\right\}=0$. So there is some $A \varepsilon X^{*}$ so that $\left\{F_{n}\right\}$ and $\left\{f_{n}\right\} \varepsilon A$. By theorem 3.2 $\int A$ is unique, and since $F_{n}$ and $f_{n}$ converges to $F$, then $R f=A$, where $A \varepsilon X^{*}$.

## BIBLIOGRAPHY

Apostal, Tom M., Calculus, Waltham, Massachusetts, Blaisdell Publishing Company, 1967.

Fartnett, William E., An Introduction to the Fundamental Concepts of Analysis, New York, John wiley and Sons, Inc., 1964.

