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In this thesisz a study 1is made of tne space X of all
step functions on [0,1]. This investigation includes
deternining a completion space, X¥*, for the lncomplete
space X, defining intsgration for X#*, and proving some
theorems about integration in X¥*,

The thesisz is divided into three chapters. Chaptar T
is an Intrcduction to the thesis, Chapter TI defines a
step function and the space of all step functions X,
includes procf that X is an incomplete metric space,

and conciudes by showing X has =z completion metric space, X¥,

and 13 unique. Some of the nroperties of intagrals are
snown Lo be true for integravion in X*¥, The last theorsxn

o Jhaonter TV 310#3 a4 valaticnship between the Riemann

imtzgral and tn: ntegral of a mamber of X*,
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CHAPTER I

INTRODUCTICKN

In tnis thesls a study is made of the space X of.all
step functions on [0.1]. In Chapter II step functions are
defined and the Space X is proven to be a metric space., X
is an incomplete meiric space since there is at least one
Cauchy sequence of elements of X which converges to an element
not in X. The incomplete metric space ¥ is shown to have a

completion metric space, X*,

Chapter IIT Investigates X¥, especially with respect to
integration., The integral of & member of X#* is defined and
then it is proven that this integral actually exists.and is
unigue. Scme of the properties of integrals are shown to be
true for integration in X*, The last few theorem; of

Chapter ITII investigate specific members of X*,



CHAPTER IT

£ COMPIETE METRIC SPACE

A step functicn 1s appropriately named since 1its graph
appears to be a series of steps, without the riser of the
step, or one long, continuous step. Some definitions allow
the very end of the step, a point, to be separated from the
step and thus lie above or below the step; this will not be
allowed in the definition of a step function in this thesis.
Thus a step funection is either a constant function over the
domain or it is a discontinucus function which is constant

on subintervals of the domain.

In this thesis a step function will be defined entirely
in terms of subintervals of [0,1] which are left half-closed.

There are inifinitely many step functions on [0,17: all of these
p b/ i3

o2}

will make up the space of all step functions on [0,1]. It i
impcrtent to have an intuitive idea of a step function, but
to clarify matters, a formal definition is in order.

A function S, whose domain is {0,171 is called a step
funciion 1f there is a partition P = {XO, Xl’ oo Xn} of [0,1]
such that 2 ig constant on sach left half-closed subinterval
of ?. That is %to say, for eackh k = 1, 2, +**, n there is &

real number S, such thet

1 g x < x except for £ = i
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by the symbel j S(x)dx is defined oy the followling formula:
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A metric space is a mathematical system (X,d) consisting
of a set X of elements and a real single-valued function
d(x,y) defined on all ordered pairs (x,y) of elements of X,

having the following properties:

Pl. d(x,y):z 0

P2, d(x,y) = 0 if and only if x = y,
P7. d(x,y} = d(y,x).

P4, d(x,z) S d(x,y) + d{y.,z).

If X is a metric space, and Xq3%n, XB, v+ is a sequence
of peints in X, the seqguence is a Cauchy sequence if for every
positive real number ¢, there exists a positive integer N such
that, if m and n are integers each greafer than.N, then

d(xm,xn) { e,

It Xl’XE’XB’ +** 1g & seguence oFf points 1in the metric
space X, the sequence XI”XQ’XB’ +++ is s&id to be convergent
i1f there 1s a point x In X such that, for every positive real
number ¢, there is a positive inteper N such that if n is an

integer larger than N, then d{xn,x) { e. The proint x 1s then

called a limlit of the sequence X1s Kps Xgy ttt.



A metric space (X,d) iz complete if and only 1if every
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Lauchy sequence in X converzes io a roint p ¢ X,

Define X o be the set of all step functions on {0,117,

If r,g € X define d(f,2) Jh | £(x)-g(x)|ax.
0
1
Theorem 2.1, [ |f(x) - x) [dx 2
Y0

Since [f(x) - g{x)| > 0, then ji\f(x) - g{x)]dx:? 0.

Theorem 2,2, jl|f x)ldx = 0 if and only if

fi{x) = g(x).

(a) Suppose jl - g(x)lax = 0. Since [P(x) - g(x)|D> o,
0
suppose [f(x) - g(x) | > 0 for x’ ¢ [0,1]. TLet h(x) =

| £(x

) - g(x}] 2 0. h(x) is a step function on [0,1]; let
k=1, «**, n be the partition of [0,1] so that h(x) = h

k
x < X, except for x,_ = 1, then

h(x) = h if x By definition of an integral of
n
a(x)dx = T h (x Xe 1)
\ R k-1
k=1 ,

least one value, x , sc that hk(xk - xé ) > 0 and since
~1
1
h(x) is non-negative, then £ h (x_ - ) > 0. Thus
roq Tk 1

rl
| h(x}dx > 0, a contradiction. Suppose If{x) -~ g(x)] = o.
‘0

There is at

Xy -
1§
& step function, El

0

X

By definition of a step function, since no isclated points are
allowed, f(x) = g(x).
(b) Suppose f(x) = g(x), then
f(x) - g(x) = 0 and
[£(x) - a(x)]| = 05 *hus

1
iz - g1 = o,
O
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Theorem 2.7%

N
£(x) - g(x)]ax = |a - (x|
0

I"(x - g{x)| = ig - f(X)].
Thus,

fl|f(x) - g{x)|dax = | lg(x) - f{x)|dx.
e 0

O ~ [

1 [l ol
j I£(x) - h{x)]ax < | |r(x) - g(x)|dx + | le(x) - n(x)|ax.
0 = Y0 0

By Theorems 2.1, 2.2, 2.3 and 2.4, (X,d) is a metric
space. (X,d) is not a complete metric space because the
following is an example of a Cauchy sequence of step functions
walch converges to a non-constant continuous function.

Consider f{x) = x. ZLet P be a sequence of partitions of

1

C n . ‘o .
[0.17 such that P = [ﬁ} o . ﬁ]’ for n € pvositive integers.
Tet Mf equal the least upper bound of x on each subinterval

of P. TLet this sequence of step functions be denoted by fn'

: Fal ) " ¥ k"l 1{ k
Note =_n => f and I\-_'f - .-..._n » E) = l_’l-. et > O Choose
n> i and a particular subinterval [k <y oy b
L 2€ ] paret . . [ Le a N’ ﬁ” = &, )a
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-n2 5> “hen j; lt, - £] < n(gg ) =55 <€

[a,b) is subinterval in [0,17, f  converges to f,

(X,d) is not complete because this seguence of step
functions did not converge to a step function.

A metric space X¥* is called a completion of a metric
space X if X* 1s complete and X 1s isometric to a dense
subset of X¥*,

Congider (X,d) as defined previously. Let C[X] denote
the collection of all Cauchy sequences in ¥ and let V be
the relation in C[¥1 defined by {an] v {bn} if and only if

1
lim d{e_, b_) = 0; that 1s, if lim I | a_ - b | =.0,
n' n n n

N e n— = O

Tneorem 2,5. The relation v is an equivalence relation.

(a) {a,] v a 3.

lim  |a_ - a_ | = 0.
n-ee "0

, 1
Thus {an, v {an}

). 83
(b) If fa 3 v {bn}, then {bn] \ {an,. Since

1
a_} Vv i ‘Jq.-ﬂjz.}“' - - o |
{ - {bn}, %{gﬂ Olan b, | 0, and since [an bnr rbn a |,
o |
then the lim | |la _-b {=0= 1ipg ! ~a |. , r
! TR nl n+mﬂobn cn| Thus {bn} v fa ],

{ - b oY oan 3 t
(c) If ta ) v {Dn‘ ard (b} v {c ], then (a, } v fe_J.



Since {an} v {bh] and (b} v [e ), then

1 Jl '
| .
B olen = ol 4 T ] oy o)
%aﬂcji]an - b+, ~-c |
1 il
i [ Ja -
nre J n-b, o +b -cl = iig . |an - c,
So,
Al P -
lim | Ja -b [ +Iim | [b - c | D
N—ouw 0 n n n"‘ﬂﬂuo n n =
lim |a_ - c |
Since %Qéﬂjoian - bnf + %;(Tji[bn - c&] = 0, then
02 s [ 1 e - eyl 5o
= 0
0= 1i la_ - c b
N—ex "-O n
By (a), (b) and (¢). v is an equivalence relation.

Now let X* denote the guotient set CQ[X]|v; thas is,
X¥ coneists of ecuilvalence classes [{an}] of' Cauchy sequences

{an} e C[X7.



Let e be the function defined by e([{a )1, [{b ]]) =

é&g Jilan - bn[ where [{a_ 1], [(b }] € X*,

Theorem 2,6, The functlon e 1s well-defined, that is,

if {a ] v {A } and {b J Y {B }, then lim jl[a - b | =

. T —®
1im JllA B .

nmee

Set r |2

H

lim

n-—ow

o h

- b | and
n n

R=1im | |A_ - B | and let ¢ > O.
n n

: [
Notes: JzJan - bn| § O|an - An| + JOIAn - Bnl + UOIBH - b

+ 4 o 1 - €
Now, there exists nje N so thgt if nD n,, jilan Anf < %,

<

. . . 1 ¢
there exists Ny € N so that if n > I, , then j;lbn - Bn] < %

. ) . - 3
and there exists ny ¢ N so that if n > ny, then | O}An - Bn}—R] < =z

Tf n» max (ng, N, n;) then jl]a - b | < R + ¢ and

| o
lim jlxan - bnl = r, 80
n-oe "0

r{ R + e,

But this inequality holds for every ¢ » 0; hence, r <{ R,

u"\

In the same manner it may be shown that B < r; thus, r = R,

In cther words, e does not depend upon the particular

Cauchy sequence chosen to represent any equivalence class,

Theorem 2.7, The function e is a metric on X*,

(Py) If £, g e X¥*, then e (f,g) > O; that is, if (a,} ef

and {b_J € g, then j[an - bnw 2 0. Since fan - bni:? 0, then

J[an - bn'? o.



(P,) If £, g ¢ X*, then e(f,g) = 0 if and only if f = g.

2
Assume [aﬁ} e £ and {bn} € g.

(a) If lim [la - b | = 0, then (a_} v (b}, by definition.

l'll n
(b) If {a ) v (b ), then {la - b | = 0.

(Py) If £, g e X*, then e(f,g) = e(g.f)., Assume {a )} e f

= e(g,f).

3)

and {bn} € g, then e(f,g) = linm jlan - bn[ = lim f]bn - anl

(Py) If f,g,h ¢ ¥X¥, then e(f,h) <e(f,g) + e(g,h). If

{an} e £, {by} ¢ g, {cn} e h, then e(f,h) = lim I[an - Cnl

lim uﬂan -b, +b, ~c | =

n

1im Jr[an. - bl + lim _f]bn - c,l =

e(f.g) + e(g,h).
Thus, e is a metric on X¥

New for each p € X, the sequence {p, p, p, °***} is

A A
Cauchy. Set ﬁ = [{p, p, P, "**}] and X = {p; peX}. Then

A
X < X*,

A A
Tneorem 2,8, X is isometric to X and X is dense in X*¥,

A , '

Tor every p,q £ X, e{p,a) = 1lim d{p,¢) = d(p,q) so X 1s
A

isometric to X. To show X is dense in X¥, show every point

A
in X* is the limit of a sequence in X. ILet g = [{al, 8y, ***}]
be any point in X*. Then {an} ig a Ceauchy sequence in X,

. A . . .
Hence., 1lim e(am,a) = 1lim [1im d(am, an)] = 1im d(am, a_ ) = 0.

»
A
Accordingly, {an} - a, and thus, a is the 1limit of the
A A A
sequence {31, s, erel in X. Thus X is dense in X*.
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Theocrem 2.9, Let {bl,bg, +++} be a Cauchy seguence

in X and let {31»a29 ver) be a secuence in X such that

1 :
d(an,bn) 4 = for every n € N, then

(1)
(i1)

(1)

(11)

[an} is also a Cauchy sequence in X.
{e, ) converges to p if and only if (v} converges
to p.

By the triangle inequality d{a_,a ) S d(am,bm)
+d(b ,b,) +d(b ,a ). Let ¢ O. Then there

¢t 1 €
exists n, € N such that‘H < =5 Hence, for

€
n, m) Ny d(am,an) < e/} + d(bm,bn) + % By
hypothesis {bl,be, »++] 18 a Cauchy sequence
so there is n, ¢ N such that for

n,m > ng, d(b .o ) < e/3.

Set a9y = mex(n,,n,). Then, for n, m > ny, d(a;,a )
{ e/3 + /3 + ¢/3 = ¢, Thus, {an} 1s a Cauchy
sequence.

By the Triangle inequality, d{bq,p) < d(bn,an)

+ d(an,p). Hence lim d(bn,p) g lim d(bn,an)

. . . 1
+ 11m(an,p). But the 1im d(bn’ah) g 1lim fﬁ) = 0.

Thus, if a, converges to p, then lim d(bn,p)
§ 1im (an,p) = 0, so b converges to p.
Similarly, if {bn} converges to p, then {an} converges

to p.
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Theorem 2,10. Every Cauchy sequence in (X¥,e)

converges and so (X¥,e) is a completion of X.

Let [Al,Ae, *+} be a Cauchy sequence in X*, Since

A A
X 1s dense in X* for every n ¢ N, there is a2, € X such

A 1 3 A A
that e(an,Ah) < Z. Then, by Theorem 2.9, {al’ 85, f..}
is also a Cauchy sequence and by Theorem 2,8, {Ql, 32, oo}
converges to B = [{a;,a,, ***}] € X*. Hence, by Theorem 2.9,

[AnJ also converges to B and, therefore, (X%, e) is complete,.



- CHAPTER ITIT
INTEGRATION IN X*

Do the integrals o members of X% exist?. How is an
integral of a member of X¥ to be defined? What are some’
of the properties of infegrals which hold true for integra-
tion in X¥? What are some specific elements of X%f These are

some of the gquestions that Chapter III will answer,

Definition., If A e X¥* and {an} is & Cauchy sequence
which is an element of A, then the integral of A, denoted

by the symbol I A, i1s defined by the following,

['a=1im jan.

Theorem 3.1. If A ¢ ¥X¥ and {an} € A, then lim j a

exists,
. - p
Since {an} is a Cauchy sequence, !|an - am[ converges to

zero as n and m go to infinity. Since |j a, -'I Y

m‘ converges

to zero as n, m go to infinity, the limit lim j a exists.
n

Now, to make sure the definition of the integral of
a member of X* is a valid definition, it must be proved that

all Cauchy sequences from A € X* give the same 1limit,

Theorem 3.2. All sequences from A ¢ X¥ give the same limit.

Consider {an} e A and {bn} € A where {an} and {bn} are
not the same sequence. By Thecrem 5.1, lim j 8, and lim j‘bn
exist, Since d(a ,b_ ) = O, then j [an - bnf converges to

.
zero as n goes to infinity, Now, |J 2, - f b | < | la - D
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Thus, ]I a, - J bn] converges to zero as n goes to infinity

1im j s = lim J'bq a8 n goes to infinity.

Since the integral of a member of X* exists and is
unique, then the definition 1s a wvalid one,

Definition. If A,B e X¥, {an} € A and {bn} ¢ B, then

define A + 3 by the following:

A+B=[fla, +Db]].

Theoren 3.2. A + B is well-defined, that is if

{a, ) and {x } ¢ A and if {b_} and {y J € B then [{a,+b }1=[{x +y_}1.
Let &€ > 0. Since {a_} velx }

. . . ' €
there exists n; € N so that if n)> n,, Ji la, - %1 < 5

and gince {bn] v {yn} there exists n, ¢ N so that if

ﬁ €
n > n, Ji |:)n - yn| {5 . Nowu,

IA

lim Jl |an + bn’ - lim Jl | x

+ ¥y < lim (l a. -~ X_ + b, -
newo 0 oo Y0 nl nowe ¥Q | n n b ynl

n

then by definition [{an + bn}] = [{xn + yn}].

Definition. The characteristic function of [a,b),

m

denoted C[a,b), is defined as Cla,b)(x) = 1 if x [a,b)

[ (2,)]
define C[a,b)+*A by the following: Cla,b) A = [{C[a,b)-an}].

and Cla,b)(x) = 0 2f x ¢ [a,b), If A e X* and A

i
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: D
If A ¢ X¥ and A = [{an]] then define Ja A by the following

1
formulat jb A= J; Cla,b)+A where O = a {p =<1.
a U

Theorem 3.4, If A ¢ X* then JZ A exists and i8 unique,

i 1
JZA = J;C[a,b)'ﬁ = J;{C[a,b)'an}. Choose a particular n.

1
Now consider cfa,b).a_. Let C[a,b)-a_ = b where b _ = a
0 n ? n n n n

if x e [a,b) and b, = O if x ¢ [2,b). Now, b is a step
function since a_ is a step function and b = 0 is a constant.
function. This is true for every n. Also, since {ani is

a Cauchy seguence of step functions then {bn} = {an} for

x € [a,b) is Cauchy and {bn} = 0 is Cauchy so {bn] is a
Cauchy sequence of step functions thus {bn} ¢ B where

B ¢ X¥* and thus, by Theorem 3.1, [1rfbn}]exists and is

JOL®
unique.
b e e
I$1 %. ) - * 4_. ! F . =
Theorem 3,5 If F ¢ X* then ia + b F Ja F.

Let CX = C[a,b) be the characteristic function on [a,D),

Cy = Cfob,c) be the characteristic function on [b,c) and
C, = C[e,c) be the characteristic function on [a,c) and

' 1
let {an} e F. Jz F +—JE F = 1lim jb C ra, + lim Ji Cy-an

n—e n—w

= lim Jé CX-an + Cy°an = 1im Ji (Cx + Cy)'an

n—e

- © P e
= lim JO Cz-ah = 1im Ja 8ne Thus j; B+ jg I = F.

n-—&m nmjm

Definition. Let T be a function defined and bounded

on [0,17 and assume that m,M are such that m = F(x) s M
for x ¢ [0,1]. Let p be a partition of [0,1] where

p = (0= x5, X9, **%, X = 1}. p can also be described by



Ty, Tps 0%y Iy v, 1

8,
i
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where 1. = [X. < 1.
i e where I, = [x; 4, X;] Let

length of I,. Let M, = least upper bound (l.u.b.)

of F on I, and m, = greatest lower bound (g.l.b.) of F

1 1

on I;. S; =M, -m = LlLu.b.{f(x,) - £{x )%y, %, € 140,

this is said to be the saltus of F on I,.

5

17T,

= Mi(xl—xo).+ Mo(xp=Xq) + *0* + Mn(xnﬂxn—l)

n
(x =%y q) = 2.8,(8,)
1 i=1

The Riemann (R) upper integral is defined as

Y

(R)I[O,llF = g,1.b. ZpF for every p of [0,17.

The Riemann (R) lower integral is defined as

(RIJ[O,ITF = 1.u.b.%pF for every p of [0,1]7.
If J[OngF = i[ogqu then F is said to be

Riemann (R) integrable on [0,1] and R[? is equal %o

the common value of f and f, that is the value when

j=1I-

F is Riemann integrable on [0,1] if and only if for
e > C, there exists a particular p of [0,17 so that

S -3 < ¢ which implies M_ - .
>p _p\ p P mp<€

Let p = [O=xl, Xps *tt, xn:l}.

Tneorem 3,6, If T is Riemann integrable then

RJF = jﬁ where A e X%,
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Choose €, = 1. Let a sequence of positive numbers

. = 1 =1
= 1, €, = 5 vers € oot

be defined by the following: = n

1
Let Ph be a sequence of partitions so that each P,
satisfies II with €= £_. Let a sequence of step functions
Fn be defined on subintervals of Ph by Fn = l.u.b. of F

on [x 1= *k-1 % %

a sequernce of step functions defined on subintervals of

el xk) = Mk where x., < x < X £ x . Let fn be

p, by fn = g.1l.b. ¢f F on [Xk_l, xk) = m, where
Xq < X1 < Xpe S X -

(a) f, converges to F_, that 1is lig Jan - fn) = b.
By II, J‘F J} < € So J‘Fn - fnn< € Since
lim €_ = 0, then lim J}F - £)= 0. Thus f_converges
o ! oo n n n
to F

(b) f, converges to F and Fn converges to F. Since

fn converges to Fr’ taen there exists N, € N so that if

> then [ F o« 7 < e . RBince f <
n Nos Ui J € n n) n n —

r P _
j}n <JF <JF_ and for n > f, j}F - £,

P < F_ then
Nt
< J( - £ )< e

Since 1im € _ = 0, then 1im ij - f ) = 0. Also, for n > n
n n 3

> - ’ 2

I(Fn - F} < J}Fn - fn) < € Thus limj (Fn - F)= 0. Thus

n->cc

fn cecnverges to F and FP converges to F.

(e) fr and Fn are Caucny sequences of step functions.

i

Let € > 0. Since by part b, fn converges to F, there
exists n3 € N so that if n > n3 this implies

Jlff -~ F| <€/2 and m > n implies rl]f - F| <e/2.
g n 3 g m

J |Fn - rl = flfn - F 4+ F - <] £, ~ 7l + [F - £ |

= S ,J‘ - T S
€/2 + €/2 = . 3o ffn fml <€. Thus f_ is Cauchy.
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Let € > 0. Since by part b, Fn converges to F,

there exists Ny € N so that if n > g this implies
JilF - F| < e/2 and m > n, impliesJ‘1|F - F| < eg/2.
o * o ™

ﬁFn-Fm| =I[FH—F+F-—Fm| iJ[Fn—F[ b |F-—Fm|

=J1Fn- | +Jr|Fm—F]

< g/2 + g/2 = g.

So ,ﬂFn - F | <e. Thus F_  is Cauchy.

Now, Fn and fn are Cauchy sequences of step functions

. )
and {Fn} v {fn} since ty part b, iiﬁ J(Fn - fg = 0. 3o

there is some A € X* so that {Fn} and{fn} € A. By theorem 3.2

i

JA 1s unique, and since Fn and fn converges to F, then

RJ:F = A, where A € X¥,
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