COMPLETING THE SPACE OF STEP FUNCTIONS

APPROVED:

Russell & Bilgen -Major Professor

HC. Parrish a a ca Minor Professor

F.F. Connor Chairman of the Department of Mathematics

Dean of the Graduate School

Massey, Linda K., <u>Completing the Space of Step</u> <u>Functions</u>. Master of Science (Mathematics) Aug., 1972 18 pp., bibliography, 2 titles.

In this thesis a study is made of the space X of all step functions on [0,1]. This investigation includes determining a completion space, X*, for the incomplete space X, defining integration for X*, and proving some theorems about integration in X*.

The thesis is divided into three chapters. Chapter I is an introduction to the thesis. Chapter II defines a step function and the space of all step functions X, includes proof that X is an incomplete metric space, and concludes by showing X has a completion metric space, X*. Chapter III investigates X*, especially with respect to integration. The integral of a member of X* is defined and then it is proven that this integral actually exists and is unique. Some of the properties of integrals are shown to be true for integration in X*. The last theorem of Chapter III shows a relationship between the Riemann integral and the integral of a member of X*.

COMPLETING THE SPACE OF STEP FUNCTIONS

THESIS

Presented to the Graduate Council of the North Texas State University in Partial Fulfillment of the Requirements

For the Degree of

MASTER OF SCIENCE

By

Linda K. Massey, B. S.

Denton, Texas

TABLE OF CONTENTS

Chapter	Page	9
Ť.	INTRODUCTION	L
II.	A COMPLETE METRIC SPACE	2
III.	INTEGRATION IN X*	2
BIBLIOGR	APHY	3.

.

.

.

CHAPTER I

INTRODUCTION

In this thesis a study is made of the space X of all step functions on [0.1]. In Chapter II step functions are defined and the space X is proven to be a metric space. X is an incomplete metric space since there is at least one Cauchy sequence of elements of X which converges to an element not in X. The incomplete metric space X is shown to have a completion metric space, X*.

Chapter III investigates X*, especially with respect to integration. The integral of a member of X* is defined and then it is proven that this integral actually exists and is unique. Some of the properties of integrals are shown to be true for integration in X*. The last few theorems of Chapter III investigate specific members of X*.

CHAPTER II

A COMPLETE METRIC SPACE

A step function is appropriately named since its graph appears to be a series of steps, without the riser of the step, or one long, continuous step. Some definitions allow the very end of the step, a point, to be separated from the step and thus lie above or below the step; this will not be allowed in the definition of a step function in this thesis. Thus a step function is either a constant function over the domain or it is a discontinuous function which is constant on subintervals of the domain.

In this thesis a step function will be defined entirely in terms of subintervals of [0,1] which are left half-closed. There are infinitely many step functions on [0,1]; all of these will make up the space of all step functions on [0,1]. It is important to have an intuitive idea of a step function, but to clarify matters, a formal definition is in order.

A function S, whose domain is [0,1] is called a step function if there is a partition $P = \{X_0, X_1, \dots, X_n\}$ of [0,1]such that S is constant on each left half-closed subinterval of P. That is to say, for each $k = 1, 2, \dots, n$ there is a real number S_k such that

 $S(x) = S_k$ if $x_{k-1} \leq x \leq x_k$ except for $x_k = 1$

then,

$$S(x) = S_k \text{ if } x_{k-1} \leq x \leq x_k$$

The integral of a step function S from 0 to 1, denoted by the symbol $\int_{0}^{1} S(x) dx$ is defined by the following formula:

$$\int_{0}^{1} S(x) dx = \sum_{k=1}^{n} S_{k} \cdot (x_{k} - x_{k-1}).$$

A metric space is a mathematical system (X,d) consisting of a set X of elements and a real single-valued function d(x,y) defined on all ordered pairs (x,y) of elements of X, having the following properties:

P1.
$$d(x,y) \ge 0$$
.
P2. $d(x,y) = 0$ if and only if $x = y$.
P3. $d(x,y) = d(y,x)$.
P4. $d(x,z) \le d(x,y) + d(y,z)$.

If X is a metric space, and x_1, x_2, x_3, \cdots is a sequence of points in X, the sequence is a Cauchy sequence if for every positive real number ϵ , there exists a positive integer N such that, if m and n are integers each greater than N, then $d(x_m, x_n) \leq \epsilon$.

If x_1, x_2, x_3 , \cdots is a sequence of points in the metric space X, the sequence x_1, x_2, x_3 , \cdots is said to be convergent if there is a point x in X such that, for every positive real number ϵ , there is a positive integer N such that if n is an integer larger than N, then $d(x_n, x) \leq \epsilon$. The point x is then called a limit of the sequence x_1, x_2, x_3, \cdots . A metric space (X,d) is complete if and only if every Cauchy sequence in X converges to a point p $\in X$.

Define X to be the set of all step functions on [0,1]. If f,g \in X define d(f,g) = $\int_{0}^{1} |f(x) - g(x)| dx$. <u>Theorem 2.1.</u> $\int_{0}^{1} |f(x) - g(x)| dx \ge 0$. Since $|f(x) - g(x)| \ge 0$, then $\int_{0}^{1} |f(x) - g(x)| dx \ge 0$.

 $\frac{\text{Theorem 2.2.}}{f(x) = g(x)} \int_0^1 |f(x) - g(x)| dx = 0 \text{ if and only if}$

(a) Suppose $\int_0^1 |f(x) - g(x)| dx = 0$. Since $|f(x) - g(x)| \ge 0$, suppose $|f(x) - g(x)| \ge 0$ for $x' \in [0,1]$. Let h(x) = $|f(x) - g(x)| \ge 0$. h(x) is a step function on [0,1]; let $k = 1, \dots, n$ be the partition of [0,1] so that $h(x) = h_k$

if $x_{k-1} \leq x < x_k$ except for $x_k = 1$, then $h(x) = h_k$ if $x_{k-1} \leq x \leq x_k$. By definition of an integral of a step function, f^1 $h(x)dx = \sum_{k=1}^{n} h_k(x_k - x_{k-1})$. There is at least one value, f'(x), so that $h_k(x'_k - x'_{k-1}) > 0$ and since h(x) is non-negative, then $\sum_{k=1}^{n} h_k(x_k - x_{k-1}) > 0$. Thus $\int_0^1 h(x)dx > 0$, a contradiction. Suppose |f(x) - g(x)| = 0. By definition of a step function, since no isolated points are allowed, f(x) = g(x).

(b) Suppose
$$f(x) = g(x)$$
, then
 $f(x) - g(x) = 0$ and
 $|f(x) - g(x)| = 0$; thus
 $\int_{0}^{1} |f(x) - g(x)| = 0$.

$$\frac{\text{Theorem 2.3.}}{\int_{0}^{1} |f(x) - g(x)| dx} = \int_{0}^{1} |g(x) - f(x)| dx$$

$$|f(x) - g(x)| = |g(x) - f(x)|.$$
Thus,
$$\int_{0}^{1} |f(x) - g(x)| dx = \int_{0}^{1} |g(x) - f(x)| dx.$$

$$\frac{\text{Theorem 2.4.}}{\int_{0}^{1} |f(x) - h(x)| dx} \leq \int_{0}^{1} |f(x) - g(x)| dx + \int_{0}^{1} |g(x) - h(x)| dx.$$

$$\int_{0}^{1} |f(x) - h(x)| dx = \int_{0}^{1} |f(x) - g(x)| + g(x) - h(x)| dx$$

$$\int_{0}^{1} |f(x) - g(x)| + g(x) - h(x)| dx \leq \int_{0}^{1} (|f(x) - g(x)| dx + |g(x) - h(x)| dx)$$

$$\int_{0}^{1} (|f(x) - g(x)| dx + |g(x) - h(x)| dx) = \int_{0}^{1} |f(x) - g(x)| dx + \int_{0}^{1} |g(x) - h(x)| dx$$
Thus

$$\int_{0}^{1} |f(x) - h(x)| dx \leq \int_{0}^{1} |f(x) - g(x)| dx + \int_{0}^{1} |g(x) - h(x)| dx.$$

By Theorems 2.1, 2.2, 2.3 and 2.4, (X,d) is a metric space. (X,d) is not a complete metric space because the following is an example of a Cauchy sequence of step functions which converges to a non-constant continuous function.

Consider f(x) = x. Let P be a sequence of partitions of [0,1] such that $P = \begin{bmatrix} 0 \\ n \end{pmatrix}, \frac{1}{n}, \dots, \frac{n}{n} \end{bmatrix}$, for $n \in positive integers$. Let M_f equal the least upper bound of x on each subinterval of P. Let this sequence of step functions be denoted by f_n . Note $f_n \ge f$ and M_f of $[\frac{k-1}{n}, \frac{k}{n}] = \frac{k}{n}$. Let $\epsilon > 0$, choose $n \ge -\frac{1}{2\epsilon}$ and a particular subinterval $[\frac{k-1}{n}, \frac{k}{n}] = [a,b]$.

So
$$\int_{a}^{b} |f_{n} - f| = \int_{a}^{b} f_{n} - f = \int_{a}^{b} f_{n} - \int_{a}^{b} f =$$

 $\int_{a}^{b} M_{f} - \int_{a}^{b} x = \int_{a}^{b} b - \int_{a}^{b} x = \frac{1}{n} \cdot \frac{k}{n} - \left(\frac{k^{2}}{2n^{2}} - \frac{k^{2} - 2k + 1}{2n^{2}}\right) = \frac{1}{2n^{2}}.$
Since $\int_{a}^{b} |f_{n} - f| < \frac{1}{2n^{2}}$, then $\int_{0}^{1} |f_{n} - f| < n(\frac{1}{2n^{2}}) = \frac{1}{2n} < \epsilon$

[a,b) is subinterval in [0,1], f_n converges to f.

(X,d) is not complete because this sequence of step functions did not converge to a step function.

A metric space X* is called a completion of a metric space X if X* is complete and X is isometric to a dense subset of X*.

Consider (X,d) as defined previously. Let C[X] denote the collection of all Cauchy sequences in X and let ν be the relation in C[X] defined by $\{a_n\} \vee \{b_n\}$ if and only if $\lim_{n \to \infty} d(a_n, b_n) = 0$; that is, if $\lim_{n \to \infty} \int_0^1 |a_n - b_n| = 0$.

Theorem 2.5. The relation \vee is an equivalence relation. (a) $\{a_n\} \vee \{a_n\}$. $\lim_{n \to \infty} \frac{1}{n} |a_n - a_n| = 0.$ Thus $\{a_n\} \vee \{a_n\}$ (b) If $\{a_n\} \vee \{b_n\}$, then $\{b_n\} \vee \{a_n\}$. Since $\{a_n\} \vee \{b_n\}, \lim_{n \to \infty} \int_0^1 |a_n - b_n| = 0$, and since $|a_n - b_n| = |b_n - a_n|$, then the $\lim_{n \to \infty} \int_0^1 |a_n - b_n| = 0$, and since $|a_n - b_n| = |b_n - a_n|$, (c) If $\{a_n\} \vee \{b_n\}$ and $\{b_n\} \vee \{c_n\}$, then $\{a_n\} \vee \{c_n\}$.

Since
$$(a_n) \vee (b_n)$$
 and $(b_n) \vee (c_n)$, then

$$\lim_{n \to \infty} \int_0^1 |a_n - b_n| = 0 \text{ and}$$

$$\lim_{n \to \infty} \int_0^1 |b_n - c_n| = 0$$

$$\lim_{n \to \infty} \int_0^1 |a_n - b_n| + \lim_{n \to \infty} \int_0^1 |b_n - c_n| \ge$$

$$\lim_{n \to \infty} \int_0^1 |a_n - b_n| + b_n - c_n|$$

$$\lim_{n \to \infty} \int_0^1 |a_n - b_n| + b_n - c_n| = \lim_{n \to \infty} \int_0^1 |a_n - c_n|.$$

So,

$$\lim_{n \to \infty} \int_0^1 |a_n - b_n| + \lim_{n \to \infty} \int_0^1 |b_n - c_n| \ge$$

$$\begin{split} \lim_{n \to \infty} |\mathbf{a}_n - \mathbf{c}_n|. \\ \text{Since } \lim_{n \to \infty} \int_0^1 |\mathbf{a}_n - \mathbf{b}_n| + \lim_{n \to \infty} \int_0^1 |\mathbf{b}_n - \mathbf{c}_n| &= 0, \text{ then} \\ 0 \geq \lim_{n \to \infty} \int_0^1 |\mathbf{a}_n - \mathbf{c}_n|, \text{ so} \\ 0 = \lim_{n \to \infty} \int_0^1 |\mathbf{a}_n - \mathbf{c}_n|. \end{split}$$

By (a), (b) and (c), ν is an equivalence relation.

Now let X* denote the quotient set C[X] | v; that is, X* consists of equivalence classes $[\{a_n\}]$ of Cauchy sequences $\{a_n\} \in C[X]$.

Let e be the function defined by
$$e([\{a_n\}], [\{b_n\}]) =$$

$$\lim_{n \to \infty} \int_{0}^{1} |a_n - b_n| \text{ where } [\{a_n\}], [\{b_n\}] \in X^*.$$

$$\frac{\text{Theorem 2.6.}}{(a_n] \vee \{A_n\} \text{ and } \{b_n\} \vee \{B_n\}, \text{ then } \lim_{n \to \infty} \int_{0}^{1} |a_n - b_n| =$$

$$\lim_{n \to \infty} \int_{0}^{1} |A_n - B_n|.$$
Set $\mathbf{r} = \lim_{n \to \infty} \int_{0}^{1} |a_n - b_n| \text{ and }$

$$R = \lim_{n \to \infty} \int_{0}^{1} |A_n - B_n| \text{ and } \text{let } \epsilon > 0.$$
Note:
$$\int_{0}^{1} |a_n - b_n| \leq \int_{0}^{1} |a_n - A_n| + \int_{0}^{1} |A_n - B_n| + \int_{0}^{1} |B_n - b_n|.$$
Now, there exists $n \in \mathbb{N}$ so that if $n > n$

Now, there exists $n_1 \in \mathbb{N}$ so that if $n > n_1$, $\int_0 |a_n - A_n| < \frac{\epsilon}{3}$, there exists $n_2 \in \mathbb{N}$ so that if $n > n_2$, then $\int_0^1 |b_n - B_n| < \frac{\epsilon}{3}$, and there exists $n_3 \in \mathbb{N}$ so that if $n > n_3$, then $|\int_0^1 |A_n - B_n| - \mathbb{R}| < \frac{\epsilon}{3}$.

If n > max (n_1, n_2, n_3) then $\int_0^1 |a_n - b_n| < R + \epsilon$ and $\lim_{n \to \infty} \int_0^1 |a_n - b_n| = r$, so

 $r \leq R + \epsilon$.

But this inequality holds for every $\epsilon > 0$; hence, $r \leq R$. In the same manner it may be shown that $R \leq r$; thus, r = R.

In other words, e does not depend upon the particular Cauchy sequence chosen to represent any equivalence class.

Theorem 2.7. The function e is a metric on X^* .

 $(P_1) \text{ If } f, g \in X^*, \text{ then } e (f,g) \geq 0; \text{ that is, if } \{a_n\} \in f \text{ and } \{b_n\} \in g, \text{ then } \int |a_n - b_n| \geq 0. \text{ Since } |a_n - b_n| \geq 0, \text{ then } \int |a_n - b_n| \geq 0.$

 $(P_2) \text{ If } f, g \in X^*, \text{ then } e(f,g) = 0 \text{ if and only if } f = g.$ Assume $\{a_n\} \in f \text{ and } \{b_n\} \in g.$ $(a) \text{ If } \lim \int |a_n - b_n| = 0, \text{ then } \{a_n\} \vee \{b_n\}, \text{ by definition.}$ $(b) \text{ If } \{a_n\} \vee \{b_n\}, \text{ then } \int |a_n - b_n| = 0.$ $(P_3) \text{ If } f, g \in X^*, \text{ then } e(f,g) = e(g,f). \text{ Assume } \{a_n\} \in f$ and $\{b_n\} \in g, \text{ then } e(f,g) = \lim \int |a_n - b_n| = \lim \int |b_n - a_n| = e(g,f).$ $(P_4) \text{ If } f,g,h \in X^*, \text{ then } e(f,h) \leq e(f,g) + e(g,h). \text{ If }$ $\{a_n\} \in f, \{b_n\} \in g, \{c_n\} \in h, \text{ then } e(f,h) = \lim \int |a_n - c_n| =$ $\lim \int |a_n - b_n| + b_n - c_n| \leq$ $\lim \int |a_n - b_n| + \lim \int |b_n - c_n| =$ e(f,g) + e(g,h).

Thus, e is a metric on X*

Now for each $p \in X$, the sequence $\{p, p, p, \cdots\}$ is Cauchy. Set $\hat{p} = [\{p, p, p, \cdots\}]$ and $\hat{X} = \{\stackrel{A}{p}; p \in X\}$. Then $\hat{X} \subset X^*$.

Theorem 2.8. X is isometric to \hat{X} and \hat{X} is dense in X*. For every p,q $\in X$, $e(\hat{p},\hat{q}) = \lim d(p,q) = d(p,q)$ so X is isometric to \hat{X} . To show \hat{X} is dense in X*, show every point in X* is the limit of a sequence in \hat{X} . Let $\alpha = [\{a_1, a_2, \cdots\}]$ be any point in X*. Then $\{a_n\}$ is a Cauchy sequence in X. Hence, $\lim e(\hat{a}_m, \alpha) = \lim [\lim d(a_m, a_n)] = \lim d(a_m, a_n) = 0$. Accordingly, $\{\hat{a}_n\} \to \alpha$, and thus, α is the limit of the

Accordingly, $\{a_n\} \rightarrow \alpha$, and thus, α is the limit of the sequence $\{a_1, a_2, \dots\}$ in X. Thus X is dense in X*.

<u>Theorem 2.9.</u> Let $\{b_1, b_2, \dots\}$ be a Cauchy sequence in X and let $\{a_1, a_2, \dots\}$ be a sequence in X such that $d(a_n, b_n) \leq \frac{1}{n}$ for every $n \in N$, then

- (i) $\{a_n\}$ is also a Cauchy sequence in X.
- (ii) $\{a_n\}$ converges to p if and only if $\{b_n\}$ converges to p.
 - (1) By the triangle inequality $d(a_m, a_n) \leq d(a_m, b_m)$ + $d(b_m, b_n) + d(b_n, a_n)$. Let $\epsilon > 0$. Then there exists $n_1 \in \mathbb{N}$ such that $\frac{1}{n} \leq \frac{\epsilon}{2}$. Hence, for n, $m > n_1$, $d(a_m, a_n) \leq \epsilon/3 + d(b_m, b_n) + \frac{\epsilon}{2}$. By hypothesis $\{b_1, b_2, \cdots\}$ is a Cauchy sequence so there is $n_2 \in \mathbb{N}$ such that for $n, m > n_2$, $d(b_m, b_n) \leq \epsilon/3$. Set $n_0 = \max(n_1, n_2)$. Then, for $n, m > n_0$, $d(a_m, a_n)$. $\leq \epsilon/3 + \epsilon/3 + \epsilon/3 = \epsilon$. Thus, $\{a_n\}$ is a Cauchy sequence.
- (ii) By the Triangle inequality, $d(b_n, p) \leq d(b_n, a_n) + d(a_n, p)$. Hence $\lim d(b_n, p) \leq \lim d(b_n, a_n) + \lim(a_n, p)$. But the $\lim d(b_n, a_n) \leq \lim (\frac{1}{n}) = 0$. Thus, if a_n converges to p, then $\lim d(b_n, p) \leq \lim (a_n, p) = 0$, so b_n converges to p. Similarly, if $\{b_n\}$ converges to p, then $\{a_n\}$ converges to p.

Theorem 2.10. Every Cauchy sequence in (X^*,e) converges and so (X^*,e) is a completion of X.

Let $\{A_1, A_2, \cdots\}$ be a Cauchy sequence in X*. Since \bigwedge is dense in X* for every n \in N, there is $\bigwedge_n \in \bigwedge$ such that $e(\bigwedge_n, A_n) < \frac{1}{n}$. Then, by Theorem 2.9, $\{\bigwedge_1, \bigwedge_2, \cdots\}$ is also a Cauchy sequence and by Theorem 2.8, $\{\bigwedge_1, \bigwedge_2, \cdots\}$ converges to $B = [\{a_1, a_2, \cdots\}] \in X^*$. Hence, by Theorem 2.9, $\{A_n\}$ also converges to B and, therefore, (X*, e) is complete.

CHAPTER III

INTEGRATION IN X*

Do the integrals of members of X* exist? How is an integral of a member of X* to be defined? What are some of the properties of integrals which hold true for integration in X*? What are some specific elements of X*? These are some of the questions that Chapter III will answer.

<u>Definition</u>. If $A \in X^*$ and $\{a_n\}$ is a Cauchy sequence which is an element of A, then the integral of A, denoted by the symbol $\int A$, is defined by the following,

$$\int A = \lim \int a_n.$$

<u>Theorem 3.1.</u> If $A \in X^*$ and $\{a_n\} \in A$, then $\lim_n \int a_n$ exists.

Since $\{a_n\}$ is a Cauchy sequence, $\int |a_n - a_m|$ converges to zero as n and m go to infinity. Since $|\int a_n - \int a_m|$ converges to zero as n, m go to infinity, the limit lim $\int a_n$ exists.

Now, to make sure the definition of the integral of a member of X* is a valid definition, it must be proved that all Cauchy sequences from A ϵ X* give the same limit.

<u>Theorem 3.2.</u> All sequences from A $\in X^*$ give the same limit. Consider $\{a_n\} \in A$ and $\{b_n\} \in A$ where $\{a_n\}$ and $\{b_n\}$ are not the same sequence. By Theorem 3.1, $\lim \int a_n$ and $\lim \int b_n$ exist. Since $d(a_n, b_n) = 0$, then $\int |a_n - b_n|$ converges to zero as n goes to infinity. Now, $|\int a_n - \int b_n| \leq \int |a_n - b_n|$. Thus, $|\int a_n - \int b_n|$ converges to zero as n goes to infinity lim $\int a_n = \lim \int b_n$ as n goes to infinity.

Since the integral of a member of X* exists and is unique, then the definition is a valid one.

<u>Definition</u>. If A, B $\in X^*$, $\{a_n\} \in A$ and $\{b_n\} \in B$, then define A + B by the following:

$$A + B = [\{a_n + b_n\}].$$

<u>Theorem 3.3</u>. A + B is well-defined, that is if $\{a_n\}$ and $\{x_n\} \in A$ and if $\{b_n\}$ and $\{y_n\} \in B$ then $[\{a_n+b_n\}]=[\{x_n+y_n\}]$.

Let $\varepsilon > 0$. Since $\{a_n\} \lor \{x_n\}$ there exists $n_1 \in \mathbb{N}$ so that if $n > n_1$, $\int_0^1 |a_n - x_n| < \frac{\varepsilon}{2}$

and since $\{b_n\} \lor \{y_n\}$ there exists $n_2 \in \mathbb{N}$ so that if

$$\begin{split} & n > n_2 \quad \int_0^1 |b_n - y_n| < \frac{\varepsilon}{2} \quad \text{Now,} \\ & \lim_{n \to \infty} \int_0^1 |a_n + b_n| - \lim_{n \to \infty} \int_0^1 |x_n + y_n| \le \lim_{n \to \infty} \int_0^1 |a_n - x_n + b_b - y_n| \le \\ & \lim_{n \to \infty} \int_0^1 |a_n - x_n| + |b_n - y_n| < \varepsilon. \quad \text{Since } d(a_n + b_n, x_n + y_n) < \varepsilon, \\ & \text{then by definition } [(a_n + b_n)] = [\{x_n + y_n\}]. \end{split}$$

Definition. The characteristic function of [a,b), denoted C[a,b), is defined as C[a,b)(x) = 1 if $x \in [a,b)$ and C[a,b)(x) = 0 if $x \notin [a,b)$. If $A \in X^*$ and $A = [\{a_n\}]$ define $C[a,b) \cdot A$ by the following: $C[a,b) \cdot A = [\{C[a,b) \cdot a_n\}]$. If $A \in X^*$ and $A = [\{a_n\}]$ then define $\int_a^b A$ by the following formula: $\int_a^b A = \int_0^1 C[a,b) \cdot A$ where $0 \le a < b \le 1$. <u>Theorem 3.4.</u> If $A \in X^*$ then $\int_a^b A$ exists and is unique. $\int_a^b A = \int_0^1 C[a,b) \cdot A = \int_0^1 (C[a,b) \cdot a_n]$. Choose a particular n. Now consider $\int_0^1 C[a,b] \cdot a_n$. Let $C[a,b] \cdot a_n = b_n$ where $b_n = a_n$ if $x \in [a,b)$ and $b_n = 0$ if $x \notin [a,b]$. Now, b_n is a step function since a_n is a step function and $b_n = 0$ is a constant. function. This is true for every n. Also, since $\{a_n\}$ is a Cauchy sequence of step functions then $\{b_n\} = \{a_n\}$ for $x \in [a,b]$ is Cauchy and $\{b_n\} = 0$ is Cauchy so $\{b_n\}$ is a Cauchy sequence of step functions thus $\{b_n\} \in B$ where $B \in X^*$ and thus, by Theorem 3.1, $\int_0^1 [\{b_n\}]$ exists and is unique.

<u>Theorem 3.5.</u> If $F \in X^*$ then $\int_a^b F + \int_b^c F = \int_a^c F$.

Let $C_x = C[a,b)$ be the characteristic function on [a,b), $C_y = C[b,c)$ be the characteristic function on [b,c) and $C_z = C[a,c)$ be the characteristic function on [a,c) and let $\{a_n\} \in F$. $\int_a^b F + \int_b^c F = \lim_{n \to \infty} \int_0^1 C_x \cdot a_n + \lim_{n \to \infty} \int_0^1 C_y \cdot a_n$ $= \lim_{n \to \infty} \int_0^1 C_x \cdot a_n + C_y \cdot a_n = \lim_{n \to \infty} \int_0^1 (C_x + C_y) \cdot a_n$ $= \lim_{n \to \infty} \int_0^1 C_z \cdot a_n = \lim_{n \to \infty} \int_a^c a_n$. Thus $\int_a^b F + \int_b^c F = \int_a^c F$.

<u>Definition</u>. Let F be a function defined and bounded on [0,1] and assume that m,M are such that $m \le F(x) \le M$ for $x \in [0,1]$. Let p be a partition of [0,1] where $p = \{0 = x_0, x_1, \dots, x_n = 1\}$. p can also be described by

I₁, I₂, ..., I_i ..., I_n, where I_i = [x_{i-1}, x_i]. Let δ_i = length of I_i. Let M_i = least upper bound (l.u.b.) of F on I_i and m_i = greatest lower bound (g.l.b.) of F on I_i. S_i = M_i - m_i = l.u.b.{f(x₂) - f(x_i)|x₁,x₂ \in I_i}, this is said to be the saltus of F on I_i.

$$\begin{split} \overline{\Sigma}_{p}F &= M_{i}(x_{1}-x_{0}) + M_{2}(x_{2}-x_{1}) + \cdots + M_{n}(x_{n}-x_{n-1}) \\ &= \sum_{i=1}^{n} M_{i}(x_{i}-x_{i-1}) = \sum_{i=1}^{n} M_{i}\delta_{i} \\ \underline{\Sigma}_{p}F &= \sum_{i=1}^{n} m_{i}(x_{i}-x_{i-1}) = \sum_{i=1}^{n} m_{i}\delta_{i} \\ \overline{\Sigma}_{p}F &= \sum_{p}F = \sum_{i=1}^{n} S_{i}(x_{i}-x_{i-1}) = \sum_{i=1}^{n} S_{i}(\delta_{i}) \end{split}$$

- I. The Riemann (R) upper integral is defined as $(R)\int_{[0,1]}F = g.l.b. \Sigma_pF$ for every p of [0,1]. The Riemann (R) lower integral is defined as $(R)\int_{[0,1]}F = 1.u.b.\Sigma_pF$ for every p of [0,1]. If $\overline{\int}_{[0,1]}F = \underline{\int}_{[0,1]}F$ then F is said to be Riemann (R) integrable on [0,1] and R $\int F$ is equal to the common value of $\overline{\int}$ and $\underline{\int}$, that is the value when $\overline{\int} = \underline{\int}$.
- II. F is Riemann integrable on [0,1] if and only if for $\epsilon > 0$, there exists a particular p of [0,1] so that $\overline{\Sigma}_p - \underline{\Sigma}_p < \epsilon$ which implies $M_p - m_p < \epsilon$. Let $p = [0=x_1, x_2, \cdots, x_n=1]$.

Theorem 3.6. If F is Riemann integrable then $R\int F = \int A$ where $A \in X^*$.

Choose $\varepsilon_1 = 1$. Let a sequence of positive numbers be defined by the following: $\varepsilon_1 = 1$, $\varepsilon_2 = \frac{1}{2} \dots$, $\varepsilon_n = \frac{1}{n} \dots$ Let p_n be a sequence of partitions so that each p_n satisfies II with $\varepsilon = \varepsilon_n$. Let a sequence of step functions F_n be defined on subintervals of p_n by $F_n = 1.u.b.$ of Fon $[x_{k-1}, x_k] = M_k$ where $x_1 \leq x_{k-1} < x_k \leq x_n$. Let f_n be a sequence of step functions defined on subintervals of p_n by $f_n = g.1.b.$ of F on $[x_{k-1}, x_k] = m_k$ where $x_1 \leq x_{k-1} < x_k \leq x_n$.

(a) f_n converges to F_n , that is $\lim_{n \to \infty} \int (F_n - f_n) = 0$. By II, $\int F_n - \int f_n < \varepsilon_n$. So $\int F_n - f_n < \varepsilon_n$. Since $\lim_{n \to \infty} \varepsilon_n = 0$, then $\lim_{n \to \infty} \int (F_n - f_n) = 0$. Thus f_n converges to F_n .

(b) f_n converges to F and F_n converges to F. Since f_n converges to F_n , then there exists $n_2 \in N$ so that if $n > n_2$, then $\int (F_n - f_n) < \varepsilon_n$. Since $f_n \leq F \leq F_n$ then $\int f_n \leq \int F \leq F_n$ and for $n > n_2 \int (F - f_n) \leq \int (F_n - f_n) < \varepsilon_n$. Since $\lim_{n \to \infty} \varepsilon_n = 0$, then $\lim_{n \to \infty} \int (F - f_n) = 0$. Also, for $n > n_2$, $\int (F_n - F) \leq \int (F_n - f_n) < \varepsilon_n$. Thus $\lim_{n \to \infty} \int (F_n - F) = 0$. Thus f_n converges to F and F_n converges to F.

(c) f_n and F_n are Cauchy sequences of step functions. Let $\varepsilon > 0$. Since by part b, f_n converges to F, there exists $n_3 \varepsilon N$ so that if $n > n_3$ this implies $\int_0^1 |f_n - F| < \varepsilon/2$ and $m > n_3$ implies $\int_0^1 |f_m - F| < \varepsilon/2$. $\int |f_n - f_m| = \int |f_n - F + F - f_m| \le \int |f_n - F| + |F - f_m| < \varepsilon/2 + \varepsilon/2 = \varepsilon$. So $\int |f_n - f_m| < \varepsilon$. Thus f_n is Cauchy. Let $\varepsilon > 0$. Since by part b, F_n converges to F, there exists $n_0 \varepsilon N$ so that if $n > n_0$ this implies $\int_0^1 |F_n - F| < \varepsilon/2$ and $m > n_0$ implies $\int_0^1 |F_m - F| < \varepsilon/2$. $\int |F_n - F_m| = \int |F_n - F + F - F_m| \le \int |F_n - F| + |F - F_m| = \int |F_n - F| + \int |F_m - F| \le \varepsilon/2 + \varepsilon/2 = \varepsilon$.

So $\iint F_n - F_m | < \varepsilon$. Thus F_n is Cauchy.

Now, F_n and f_n are Cauchy sequences of step functions and $\{F_n\} \lor \{f_n\}$ since by part b, $\lim_{n \to \infty} \int (F_n - f_n) = 0$. So there is some A $\in X^*$ so that $\{F_n\}$ and $\{f_n\} \in A$. By theorem 3.2 $\int A$ is unique, and since F_n and f_n converges to F, then $R \oint F = A$, where A $\in X^*$.

BIBLIOGRAPHY

Apostel, Tom M., <u>Calculus</u>, Waltham, Massachusetts, Blaisdell Publishing Company, 1967.

Hartnett, William E., <u>An Introduction to the Fundamental</u> <u>Concepts of Analysis</u>, New York, John Wiley and Sons, Inc., 1964.