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Introduction

Physical inactivity is known to contribute to a variety of negative health outcomes including obesity and diabetes 
(Jensen et al 2014). Studies conducted with children 5 years of age show that physically inactive children tend 
to follow the same physically inactive trajectory later in life (Janz et al 2009, Kwon et al 2015). Even children 
under the age of five have been shown to be inactive and it is important to understand the relationship between 
inactivity even earlier in life, such as during toddlerhood, to be able to influence that trajectory toward lifelong 
health.

With accurate assessment of toddler physical activity, the link to future health outcomes could be more clearly 
established. With improved data collection, community intervention can then be considered and individual 
health interventions can be better justified. Subjective reports of physical activity are poor compared to objec-
tively measured data (Shephard 2003), and this has been observed when comparing survey assessments of activ-
ity from caregivers of young children to their measured activity (Noland et al 1990). Additionally, it is impractical 
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Abstract
Objective: Physical activity has been shown to impact future health outcomes in adults, but little is 
known about the long-term impact of physical activity in toddlers. Accurately measuring the specific 
types and amounts of physical activity in toddlers will help us to understand, predict, and better 
affect their future health outcomes. Although activity recognition has been extensively developed 
for adults as well as older children, toddlers move in ways that are significantly different from older 
children, indicating the need for a more tailored approach. Approach: In this study, 22 toddlers wore 
Actigraph waist-worn accelerometers which recorded their movements during guided play. The 
toddlers were videotaped and their activities were later annotated for the following eight distinct 
activity classes: lying down, being carried, riding in a stroller, sitting, standing, running/walking, 
crawling, and climbing up/down. Accelerometer data were extracted in 2 s signal windows and 
paired with the activities the toddlers were performing during that time interval. Main results: A 
variety of classifiers were tuned to a validation set. A random forest classifier was found to achieve 
the highest accuracy of 63.8% in a test set. To improve the accuracy, a hidden Markov model (HMM) 
was applied by providing the predictions of the static classifiers as observations. The HMM was able 
to improve the accuracy to 64.8% with all five classifiers increasing the accuracy an average of 1.3% 
points (95% confidence interval  =  0.7–1.9, p   <  0.01). When the three most misclassified activities 
(sitting, standing, and riding in a stroller) were collapsed together, the accuracy increased to 79.3%. 
Significance: Further refinement of the toddler activity recognition classifier will enable more 
accurate measurements of toddler activity and improve future health outcomes of toddlers.
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to have clinicians observe toddlers for extended periods of time. However, wearable devices can provide objective 
information about physical activity (Van Cauwenberghe et al 2011, Kate et al 2016). Still, estimating physical 
activities using wearable devices can be challenging for populations with different styles of mobility (de Almeida 
Mendes et al 2018, Kwon et al 2019), such that the movements of unique populations may not be identified cor-
rectly without taking their unique movements into consideration. For example, a model that trained on the phys-
ical activity patterns of non-Parkinson participants performed poorly when applied to participants with Par-
kinson's (60.3% accuracy). However, when a model was trained on the physical activity patterns of Parkinson’s 
participants specifically, the model performance dramatically improved (92.2% accuracy) (Albert et al 2012a).

Machine learning, based on data from wearable devices, provides a straightforward way to tailor activity 
recognition models to particular populations. To date, this has enabled improved activity recognition accuracy 
for a variety of smaller clinical populations including Parkinson’s patients (Albert et al 2012b), transfemoral 
amputees (Albert et al 2013, 2014), and stroke patients (O’Brien et al 2017). Toddlers require their own activity 
recognition models because they move differently from older children or adults, as they are in the developmental 
stage for upright movements such as walking, running, and jumping. In addition to tailoring activity recognition 
to the population, there are certain activities that are done only in specific populations. First, measuring activities 
for some distinct groups might be different, such as those with wheelchair use (Sok et al 2018), tremors (Albert 
and Kording 2011, Albert et al 2012a), and falls (Albert et al 2012b, Shawen et al 2017). In the case of toddlers, 
‘being carried’, ‘riding in a stroller’, ‘crawling’, and ‘climbing up/down’ are common activities that would not 
be observed in most other populations, but are important in assessing the nature of toddler activity. Therefore, it 
is critical to acquire data from toddlers directly to train the systems that will be applied specifically to them.

Another factor in developing an activity recognition model is that data collected in a lab setting or under 
instruction is often less varied than when similar activities occur in a free-living setting. Previous activity recog-
nition studies for pre-school age children have conducted structured or semi-structured activity trials in labora-
tory settings, providing specific instructions regarding the order and the length of activities to perform (Zhao 
et al 2013, Hagenbuchner et al 2015, Trost et al 2018). For example, in an activity recognition study involving 
adult participants with incomplete spinal cord injury, it was observed that accuracy dropped to 54.6% when test-
ing a classifier on at-home activities in a lab setting, but was increased to 85.6% when the classifier was trained on 
data collected in an at-home setting (Albert et al 2017). A similar trend has been observed for toddler activity level 
prediction. When an activity classification (accelerometer count cut-point) algorithm developed for toddlers 
in a lab setting was applied to data collected during free play, the area under the receiver operating characteristic 
curve (ROC-AUC) validity ranged between 0.5 and 0.7 (Van Cauwenberghe et al 2011). As such, it is critical to 
use data collected in a natural setting rather than in a lab setting when developing an activity recognition model.

In addition, given the variability in toddler movements, the static window-based classifiers can be improved 
by incorporating the prior and later context of the classification. One tool to accomplish this is the hidden Markov 
model (HMM). HMMs combine uncertain observations over time to optimally infer a sequence of states—in 
this case, activities performed. HMMs have been shown to improve activity recognition in adult populations 
(Antos et al 2014, Sok et al 2018).

With the goal to conduct accurate assessment of toddler physical activity, the aims of this study were to 
develop machine learning classifiers for eight distinct activities performed by toddlers and to examine whether 
the performance of the classifiers can be improved using a HMM. To our knowledge, no published studies to date 
have trained a HMM model using toddler activity recognition. This study is one of the first studies to use a HMM 
to try to augment the estimates made by static window-based classifiers for toddler activity recognition.

Methods

Data was collected from 22 toddlers (12 females) aged between 13 to 35 months. Toddlers were recruited among 
the users of a private indoor child playroom located in Chicago. The two inclusion criteria for recruitment were 
age (13 to 35 months) and the ability to walk independently. Two of the original 24 toddlers were excluded from 
analysis due to errors in syncing their accelerometer data and the recorded video data. Written consent was 
obtained from their parents as approved by the Institutional Review Board (IRB) of Ann & Robert H. Lurie 
Children's Hospital of Chicago.

Data collection
Participants wore tri-axial ActiGraph wGT3X-BT (ActiGraph, Pensacola, Florida, USA) accelerometers on 
an elastic waist belt that was positioned around the waist. Participants had no issue of wearing the elastic belt. 
The x, y , and z axis of the ActiGraph accelerometer generally directed leftward, upward, and forward relative 
to the child, respectively. Data from waist-worn accelerometers were extracted using the ActiLife software and 
processed using custom Python scripts. The accelerometer sensor captured three-axial acceleration at a rate of  
30 Hz. The physical activities of the toddlers were videotaped for later annotation. The annotations were originally 
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made for 20 different activities. Three authors were involved in annotation and when an annotation was unclear, 
a majority vote was used to label the activity. In this way, the recording was annotated with a resolution of one 
second. Further details on the annotation process are available in previous related work (Kwon et al 2019). From 
the original 20 activities, a number of those activities were rarely observed, only performed for short periods 
of time, or were not sufficiently distinct from a clinical point of view to warrant separate classification. For that 
reason, only a representative eight activities were used consisting of lying down, being carried, riding in a stroller, 
sitting, standing, running/walking, crawling, and climbing up/down. Table 1 indicates the variation observed in 
the amounts of each movement. The average time annotated for each participant was 13 min (range: 6–21 min). 
Figure 1 shows sample windows of the accelerometer signals for each of the eight activities.

Data feature extraction
Accelerometer signal data was segmented into 2 s time windows to generate samples to train the classifiers. Time 
domain and frequency domain features were extracted from the segmented windows. Samples taken from the 
accelerometer were only used for training if the entirety of the window fell during the same activity.

A total of 76 statistical features were extracted from each 2 s window of the 3-axis accelerometer. Table 2 lists 
the features extracted from each signal including mean, standard deviation, max, min, and other standard signal 
processing measures. Time series signals included x, y , and z axes as well as a vector magnitude signal. Frequency 
signals were also generated from each of these axes, and magnitude signals were generated using the fast Fou-
rier transform (FFT). These frequency signals are useful for quantifying the amount and frequency of periodic 

motion in the signal.

Hyperparameter tuning and testing
Subject-wise cross-validation was used to establish the efficacy of the models. In order to tune hyperparameters 
for each model, a grid search was performed using 10-fold cross-validation on the data from all-but-one subject. 
The parameter space searched for each model is shown in table 3. The hyperparameters which most often 
provided the highest accuracy on the 10-fold cross-validation are shown in bold.

HMM parameter settings
Next, a HMM was used to examine whether it can improve the accuracy of the window-based classifier done 
previously. Instead of working directly from a subset of features, the observations/emissions for the HMM 
consisted of the static window-based classifier outputs—probabilistic estimates from the classifiers when 
available. The emission probability model used was a Gaussian mixture model with eight different outputs 
for the eight different activity classes. The mean for each emission probability was the fraction of correctly 
identified windows from the static classifiers, while the variance was equal for all classes. This distribution reflects 
the uncertainty in the estimate of a given static classifier and is directly related to the confusion matrix of the 
given static classifier, such as the one shown in figure 2. The transition probability matrix for the HMM was 
constructed from the probability of transitions as observed for the collected window data (table 4). The same 
transition matrix was used for all participants.

Results

Table 5 presents the accuracies of the static window-based classifiers and HMM augmented classifiers. The 
highest accuracy of 63.8% was achieved with the random forest classifier. For all the classifiers, the percent 
improvement above the window-based classifier using the HMM was on average 1.3% points (0.7–1.9, 95% 

confidence interval [CI], p   <  0.0001).

Table 1.  The annotated toddler activities and the number of samples collected from each activity.

Activity Number of extracted 2 s windows

Run/walk 933

Crawl 85

Climb 141

Stand 410

Sit 772

Lie down 128

Carried 160

Stroller 177

Totals 2806

Physiol. Meas. 41 (2020) 025003 (9pp)
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To quantify the recognition of the random forest classifier for each of the 8 classes, we have provided the recall 
and precision values with a 95% CI for each class in table 6. To observe the nature of the types of misclassifications 
made, the confusion matrix is presented in figure 2. The confusion matrix compares the true negatives, false neg-
atives, true positives, and false positives for the labeled and predicted activities. Additionally, samples that were 
mislabeled by the classifier are presented in figure 3 for visual observation of their similarity to the classes they 
match. Notably, the most confused activities match expectations for sensor similarity as shown in the example 

Figure 1.  10 s samples of each recorded activity.

Table 2.  Features extracted from each 2 s window. Note that features were extracted for each axis directly (x, y , z), the magnitude of the 
axes, and FFT transformations of each time-domain signal.

Description Features Signal Count

Moments Mean, standard deviation, skew, kurtosis x, y , z, 
√

x2 + y2 + z2 16

Quantiles Minimum, median, maximum x, y , z, 
√

x2 + y2 + z2 12

Cross correlation Mean xy, yz, xz 3

FFT moments Mean, standard deviation FFT of x,y ,z 6

FFT quantiles Minimum, median, maximum FFT of x,y ,z 9

FFT bins 10-bin histogram FFT of x,y ,z 30

Physiol. Meas. 41 (2020) 025003 (9pp)
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Table 3.  Hyperparameter grid of searched values and (bold) values most often chosen for testing.

Classifier Hyperparameter Values (bold—most selected)

K-nearest neighbors Number of neighbors 1, 3, 5, 7, 9, 11, 13, 15

SVM Regularization parameter 1  ×  10−6, 1  ×  10−5, …, 1, …, 1  ×  103, 11  ×  104

Kernel coefficient 1  ×  10−6, 1  ×  10−5, …, 1  ×  10−1, …, 11  ×  103, 11  ×  104

Logistic regression Inverse of regularization strength 1  ×  10−5, 1  ×  10−4, …, 1  ×  10−1, …, 11  ×  103, 11  ×  104

Decision tree Min samples split 2, 4, 6, 8, 10

Min samples leaf 1, 5, 10, 15, 20

Max depth 10, 20, 30, 40, 50

Random forest Number of estimators 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200,250,300,350,400

Figure 2.  Confusion matrix for HMM augmented classifier using random forest. Rows are the annotated activity labels and 
columns are the model prediction for the class.

Table 4.  The HMM transition probability matrix used as derived from the collected data. The source activity is the row and the destination 
activity is the column with the row sum equal to 1.

R/W Crawl Climb Stand Sit Lie Carried Stroller

Run/walk 0.782 0.012 0.025 0.115 0.036 0.008 0.018 0.004

Crawl 0.153 0.647 0.012 0.047 0.106 0.012 0.023 0.000

Climb 0.113 0.014 0.688 0.064 0.099 0.014 0.007 0.000

Stand 0.239 0.010 0.017 0.659 0.049 0.005 0.012 0.010

Sit 0.061 0.014 0.009 0.017 0.869 0.009 0.006 0.014

Lie down 0.086 0.008 0.000 0.039 0.047 0.805 0.016 0.000

Carried 0.081 0.006 0.031 0.006 0.031 0.038 0.794 0.013

Stroller 0.028 0.000 0.006 0.006 0.073 0.000 0.006 0.881

Table 5.  Overall accuracy of the static window-based activity recognition classifier before and after HMM augmentation.

Random forest  

(%)

SVM  

(%)

Logistic regression  

(%)

Decision tree  

(%)

K nearest  

(%)

Static window classifier 63.8 58.6 57.0 57.3 52.6

HMM augmented classifier 64.8 60.1 59.1 57.5 54.1

Improvement 1.0 1.5 2.1 0.2 1.5

Physiol. Meas. 41 (2020) 025003 (9pp)
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Table 6.  Recall, precision, and most common misclassification for each class using the random forest classifier with the HMM 
augmentation.

Activity

Recall  

(95% CI) 

Precision  

(95% CI)

Most common misclassification 

(misclassification %)

Run/walk 80.0% (77.2–82.5) 88.2% (85.9–90.4) Carried (7.3%)

Crawl 81.2% (71.2–88.8) 68.3% (58.3–77.2) Climb (11.8%)

Climb 56.0% (47.4–64.4) 29.0% (23.7–34.8) Crawl (10.6%)

Stand 45.4% (40.5–50.3) 49.2% (44.1–54.4) Sit (32.7%)

Sit 66.6% (63.1–69.9) 66.9% (63.5–70.3) Stand (12.0%)

Lie down 61.7% (52.7–70.2) 76.0% (66.6–83.8) Climb (17.2%)

Carried 58.8% (50.7–66.5) 43.5% (36.8–50.4) Run/walk (18.8%)

Stroller 28.2% (21.8–35.5) 41.0% (32.2–50.3) Sit (44.1%)

Note: CI, confidence interval.

Figure 3.  Plots of misclassified activities. Note the similarities to the true activity labels shown in figure 1.

Physiol. Meas. 41 (2020) 025003 (9pp)
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activity plots of figure 1. For example, ‘sitting’ and ‘standing’ are often confused with ‘riding in a stroller’ which 
have very similar sensor profiles when the child is stationary. Notably, ‘being carried’ is often confused with ‘run-
ning/walking’ primarily because when using waist-worn accelerometer signals it may be difficult to distinguish 
‘being carried’ from the walking movement of a carrying adult.

Discussion

One of the challenging aspects of evaluating activity recognition systems is that the style and difficulty of tasks 
can vary widely. The eight activities chosen were representative of visually recognizable activities of toddlers 
during play, with less initial attention to the challenge presented in distinguishing these activities using wearable 
devices. For example, the accuracy for the eight assessed activities would increase from 64.8% to 79.3% if the 
three most confused passive activities were grouped together (‘standing’, ‘sitting’, and ‘riding in a stroller’). In 
short, it is important in evaluating these results to put the context of the problem into account.

Machine learning has been used to tailor activity recognition in children (Zhao et al 2013, Nam and Park 
2013, Trost et al 2014, Chowdhury et al 2017, Trost et al 2018). In a study by Trost and colleagues (Trost et al 2014), 
seven activities performed by young teenagers were classified using machine learning with an accuracy of nearly 
90% using hip or wrist-worn sensors. These seven activities, lying down, sitting, standing, walking, running, as 
well as performing basketball and dance, although were succinctly described as similar because their recorded 
processed counts in the vertical axis were similar (Trost et al 2014), it is important to note that in this study there 
were specifically instructed movements associated with each activity. For example, sitting involved handwriting 
and playing a computer game while standing was composed of three tasks that involved upper body movements: 
throw and catch, a laundry task, and sweeping the floor. Classifying standing versus sitting with fixed, instructed 
activities in a laboratory setting is a more straightforward task than classifying these activities when the children 
are stationary or in more natural contexts as with our study.

There has been less research on machine learning-based activity recognition among children under age 5 
years. Among those studies, another study by Trost (Trost et al 2018) measured the activities of preschoolers at 
age 3–6 years, collapsing 12 separate activities into five activity groups (sedentary, light activity games, moderate-
to-vigorous games, walking, and running) using wrist and hip-worn sensors. Zhao et al (2013) also studied pre-
school age children and achieved a similar accuracy to Trost (Trost et al 2018) by separating activities into five 
classes (rest, quiet play, low active play, moderately active play, and very active play). Nam and Park (2013) studied 
infants and toddlers using a waist-worn accelerometer applying a wide variety of classifiers. Hagenbuchner et al 
(2015) used a deep learning ensemble network to classify 12 distinct instructed activities in a group of 3 to 6 
year olds. Accuracies in activity recognition among preschool-aged children generally varied between 70% and 
90%, but often these accuracies were achieved using fewer activities or controlled conditions and instructions for 
exhibiting unique movement patterns.

In the activity recognition literature, it is also well documented that movements in daily living are often more 
varied and difficult to track than lab-based and instructed movements (Kerr et al 2016, Bourke et al 2016, Albert 
et al 2017, Kerr et al 2017). Kerr et al (2017) notes that ‘movement in the laboratory setting may not reflect free-
living physical activity behavior because laboratory-based movements generally occur in sequences defined by 
the investigator’. Another study by Kerr (Kerr et al 2016) points to concerns associated with lab-acquired move-
ments when working with participants who are obese or have comorbidities. Previous work in patient popula-
tions demonstrates that by training systems using data acquired from activities performed at home, where there 
is greater variability in movement styles, the accuracy of the models can be increased significantly (Albert et al 
2017). For this reason we believe it is critical to not only acquire active movement data for validation, but to also 
use those movements to train recognition systems expected to function appropriately in natural settings, as was 
one of the aims of this study.

Our final aim was to demonstrate the improvement of window-based classifiers using an HMM. Improve-
ment was demonstrated with a modest average gain in accuracy of 1.3% points. There are a number of advanced 
machine learning approaches that have been applied to improve upon traditional window-based predictive 
models, with HMMs consistently demonstrating improvements over traditional methods. Ellis et al (2016) dem-
onstrated improvements using an HMM model compared to a cut-point based method to identify one of four 
activities (sitting, standing, walking/running, and riding) during one week of free play behavior, however this 
study was conducted among a population of overweight women. Pober et al (2006) also trained a HMM model 
for activity recognition to recognize the activities (walking, walking uphill, vacuuming, working at a computer) 
of adults and found a 10% point increase in recognition accuracy compared to quadratic discriminant analysis 
(QDA). Other advanced machine learning methods led to accurate predictions. Hagenbuchner (Hagenbuchner 
et al 2015) used a deep learning model and Chowdhury (Chowdhury et al 2017) used an ensemble method to 
perform activity classification for 12 different activities of children and adults. de Almeida Mendes (de Almeida 
Mendes et al 2018) reviewed several studies about activity recognition in adults as well as children and compared 

Physiol. Meas. 41 (2020) 025003 (9pp)
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their accuracy and R2 values to study accelerometer usage in machine learning activity recognition. However, as 
stated before, to our knowledge, no published studies to date have trained a HMM model using toddler activity 
recognition. This study is one of the first studies to use a HMM to augment the estimates made by static window-
based classifiers for toddler activity recognition.

There is also a variety of signal window sizes used in activity recognition work on children. These range from 
1–10 s (Trost et al 2014) to 11–30 s or more (Van Cauwenberghe et al 2011, Trost et al 2012, 2018). Generally, if 
classification is done on isolated windows, larger windows sizes are preferred. However, smaller window sizes are 
needed for the resolution necessary to capture certain activities. We chose 2 s windows as a tradeoff between a 
window large enough to capture enough signal for window-based estimates but short enough to pick up quickly-
varying movements. Notably, identified activities can vary widely even within a single identified window. This 
can be observed in figure 1, where it can be seen that although the activity is identified as one class there are por-
tions of the window which indicate other distinct movements.

The most challenging aspect in activity recognition design is determining which activities are clinically rel-
evant and weighing that against the difficulty in reliably identifying those activities and considering how separa-
ble they are given the available movement data. For example, some activities are inherently difficult to accurately 
classify due to the limitations of the accelerometer signal which can be a source of error. For example, ‘sitting’ 
and ‘standing’ may be dramatically different types of activities when considering the context of those activities. 
However, it is difficult to distinguish the two using the accelerometer signals if no motion is present as the orien-
tations are the same. Similarly, ‘sitting’ compared to ‘riding in a stroller’ may be difficult to distinguish. How-
ever, we chose to present these difficult classes separately given the clinical relevance. Although the physiological 
activity of the child is similar, the engagement of the caregiver is significantly different which may provide useful 
information for future studies. There is an expectation that with improved recognition methods that take tempo-
ral context into account, the overall amount of each of these activities could be estimated.

Another source of error in this study may have come from errors in the annotation file extracted from acquired 
video of the toddler activity. The annotation file is used as the ground truth for labeling the toddler activity; and 
to achieve the best accuracy it is critical to have proper signal window labels. Additionally, although precautions 
were taken to sync the start times of the video annotations and accelerometer signals, any discrepancy of more 
than one second could lead to many mislabeled windows. Additionally, in future studies, the activities selected for 
annotation could more closely match the specific types of movements rather than the holistic activities we have 
described here.

Conclusion

We developed machine learning classifiers to classify eight distinct activities for toddlers and then improved the 
performance using a HMM-activity recognition model with a relatively low overall accuracy (64.8%). However, 
when the three most misclassified activities (sitting, standing, and riding in a stroller) are collapsed together the 
accuracy increases to 79.3%. Although the improvements brought by augmenting the static classifiers with an 
HMM were modest, only 1.3% on average across classifiers, we would expect this to improve with more data 
where static classifiers reach a limit of what can be observed in a single clip. As such, future studies that include 
more data are warranted. In summary, given the inherent challenges in tracking toddler movements, especially 
during free play, machine learning techniques provide a means to create and validate activity recognition 
systems. With properly validated toddler activity recognition, clinical researchers would be able to explore the 
link between toddler physical activity and future health outcomes. These findings could support the need for 
early intervention and lead to improved lifelong health outcomes.
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