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ABSTRACT
The opportunities for wrought magnesium products in a wide range of structural and functional
materials for transportation, energy generation, energy storage andpropulsion are increasing due to
their light-weighting benefits, high specific strength and ease of recyclability. However, the current
uses of wrought magnesium alloys for structural applications are limited due to comparatively low
strength, high yield strength asymmetry and poor formability & superplasticity. In the present work,
we developed an ultrafine-grained magnesium alloy with an extraordinary strength and ductility
combination, exceptional high specific strength, zero yield strength asymmetry and excellent high
strain rate superplasticity.

IMPACT STATEMENT
Wehave developed friction stir processedUFGmicrostructure in a rare-earth containingmagnesium
alloy and achieved exceptional strength-ductility combination along with no yield asymmetry and
extraordinary high strain rate superplasticity.
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1. Introduction

In the view of compelling needs for economical usage
of scarce energy resources and ever-stricter control over
emissions to lower environmental impact, automotive
and aerospace industries are searching for alternative
advanced light-weight structural materials to the exist-
ing conventional materials [1,2]. Being the lightest and
energy-efficient structural material, magnesium (Mg)
alloys offer a strong potential in this regard. Mg alloys
are the right candidate materials to replace steel and
aluminum alloys in automotive and aerospace compo-
nents since its density is two-third of aluminum and one-
quarter of steel [1]. However, the application ofMg alloys
in structural field is limited due to their moderate/low
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strength, poor ductility, yield strength asymmetry and
lack of high strain rate superplasticity.

In this paper, we report a strategy to simultane-
ously improve strength, ductility and high strain rate
superplasticity (HSRS) with elimination of yield strength
asymmetry. By engineering nano-precipitates and ther-
mally stable ultrafine intermetallic compounds in an
ultrafine-grained (UFG) magnesium rare earth (Mg-RE)
alloy, we were able to achieve the highest combination
of strength-ductility and highest HSRS among all the
existing Mg alloys reported in the literature till date
[3–43]. Along with this, the tension-compression yield
asymmetry was eliminated. The objectives of the present
work were two-fold. The first objective was to develop a
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strategy to produce unique microstructure in the present
alloy in order to achieve the above-mentioned combina-
tion of properties. The second objective was to establish
the fundamental insight into the governing mechanisms
for achieving such extraordinary properties.

2. Materials andmethods

AMg-6Y-7Gd-0.5Zr (in wt.%) wrought alloy (E675) was
used for this study. The E675 alloy was subjected to a
combined process of three-pass friction stir processing
(FSP) and ageing treatment to develop UFG microstruc-
ture with hierarchical (fine and coarse) precipitates. First
two FSP passes were carried out with high heat input
for solutionization and grain refinement. The third FSP
pass was carried out with low heat input for texture ran-
domization and further microstructural refinement. The
nano-precipitates were dispersed into the UFG matrix
by proper aging treatment of 65 h at 180°C to achieve
high strength and HSRS. Hereafter, this precipitate con-
tained UFG alloy will be referred as UFG E675 alloy.

The detailed experimental procedures for characteriza-
tion of the developed UFG E675 alloy are provided in the
supplementary file.

3. Results and discussion

3.1. Microstructural characterization

The microstructure and texture of the UFG E675 alloy
were characterized by transmission electron microscopy
(TEM) and electron backscattered diffraction (EBSD)
analysis, respectively. Figure 1(A) is a bright field TEM
image of the present alloy which shows dislocation free,
well defined equiaxed ultrafine grains. The ring-type
diffraction pattern (Figure 1(B) indicates that the grain
boundaries are mostly high angle type and the distri-
bution of matrix grains are relatively random. A lot
of cuboid/spherical shaped phases with a mean diam-
eter of 75± 60 nm are also observed at grain bound-
aries and grain interior (Figure 1(C)). The corresponding
EDS patterns (Figure 1(D)) indicate that they are rich

Figure 1. (A) A bright-field TEM image, (B) a selected area diffraction pattern from a 2 μm diameter area, (C) HRTEM image showing
presence of coarse and ultrafine intermetallic compounds along the grain boundaries and grain interiors, (D) Chemical information about
intermetallic compounds obtained by EDAX analysis, (E) HRTEM image showing presence of nano-precipitates at grain interiors, (F) IPF
map, (G) Basal plane (0002) pole figure with its intensity distribution, (H) Statistical grain size distribution and (I) Misorientation angle
distribution of the presently developed UFG E675 alloy.
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Figure 2. (A) True tensile and compressive stress-strain curves of as-received andUFG E675 alloy. (B) Comparison of tensile yield strength
vs. ductility of reported high strength Mg alloys processed by various methods with the present study (EXT: Extruded, P/M: Powder
Metallurgy, ECAP: Equal Channel Angular Pressed, HRDSR: High-Ratio Differential Speed Rolled, ARB: Accumulative Roll Bonded, ROL:
Rolled, E+ R: Extruded+ Rolled, FORG: Forged, R/S: Rapidly Solidified, HPT: High-Pressure Torsion). (C) Comparison of CYS/TYS ratio of
reported Mg alloys processed various techniques with the present work.

in Y and Gd. Along with RE rich intermetallic parti-
cles, a lot of spherical and plate-shape precipitates finer
than 30 nm are homogeneously distributed throughout
the microstructure (Figure 1(E)) which are predomi-
nantly metastable β′′ and β ′ phases. The EBSD inverse
pole figure (IPF) map also shows twin-free dynamically
recrystallized equiaxed UFG (Figure 1(F)). The pres-
ence of multiple colored grains in the IPF map indicates
that the orientation distribution in the UFG E675 alloy
is nearly random. The basal plane (0002) pole figure
(Figure 1(G)) also confirms this. The FSPMg alloys often
show strong basal texture. The lower texture intensity
observed in the present UFG E675 alloy is likely to be
because of the presence of fine Mg-Gd-Y along the grain
boundaries which prevents the growth and alignment
of recrystallized grains during FSP by pinning the grain
boundaries. Black lines in Figure 1(F) show the high
angle grain boundaries (HAGBs). As per grain distribu-
tion plot (Figure 1(G)), majority of the grains are below
300 nm with a mean grain size of 210± 120 nm. Most

of the grain boundaries have high misorientation angle
(HAGB fraction is ∼ 88%) as shown in Figure 1(I).

3.2. Mechanical properties

Tensile and compressive tests were carried out on as-
received and UFG E675 alloy samples to obtain the
mechanical properties (Figure 2(A)). The yield strength
(YS), ultimate tensile strength (UTS) and elongation to
failure (ELON) of UFG E675 alloy are 521 and 538MPa
and 13%, respectively. As compared to the as-received
sample, the UFG E675 alloy showed 230% and 170%
improvement in YS and UTS, respectively. The strength
properties ofUFGE675 alloy are significantly higher than
the best commercial wrought Mg alloys (200–300MPa)
[5]. Various conventional and severe plastic deformation
(SPD) techniques were used in recent years to develop
high strength Mg alloys. Figure 2(B) shows a compari-
son of YS vs. ELON of various high strength Mg alloys
[6–15,21–26,44–50] processed by different conventional
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and SPD techniques with UFG E675 alloy. The YS-ELON
combination obtained for UFG E675 alloy (Figure 2(B))
is highest among all the Mg alloys produced by any tech-
nique. Furthermore, the YS and ELONofUFGE675 alloy
are even superior than that of T8 treated high strength
Al 2024 alloy (YS: 450MPa and ELON: 6%) [8] and
T6 treated high strength Al 7075 alloy (YS: 503MPa,
ELON: 11%) [51]. Both of these Al alloys are very pop-
ular and used for aerospace and structural applications.
On the basis of microstructural features (Figure 1), the
extraordinary strength in UFG E675 alloy is attributed
to the combined effect of significant grain refinement
(∼200 nm), precipitation strengthening (∼30 nm) by
homogeneously distribution of nano-sized spherical and
plate-shaped β′′ and β ′’ precipitates and dispersion
strengthening by fine Mg-Y-Gd rich intermetallic com-
pounds (∼100 nm). Along with high strength, ELON of
UFG E675 alloy is also higher than most of the reported
Mg alloys (Figure 2(B)). The contributing factors for
effective enhancement of elongation to failure (ELON)
are (i) texture randomization, (ii) presence of extremely
smaller grains and (iii) random grain orientation. The 1st
factor, texture randomization, is a signature for achiev-
ing enhanced formability and improved elongation to
failure. The presence of RE elements (Yttrium (Y) and
Gadolinium (Gd)) and the multi-pass FSP route played
a major role on texture randomization. The present UFG
E675 alloy contains high fraction (13 wt. %) of RE ele-
ments (Y: 6 wt. % and Gd: 7 wt. %) with high solubility
limit of both Y and Gd in Mg matrix. Due to presence
of high fraction of RE elements with high solubility limit:
(1) the stacking fault energy of Mg matrix is affected or
alters which leads to enhanced activity of < c+ a> non-
basal slip and results in texture weakening, and (2) the
Y and Gd solute atoms and Mg-Y-Gd rich intermetallic
phases segregate at grain boundaries and hence restricts
the grain boundary mobility via solute drag and Zener
pinning effects. The restricted action for the mobility
of grain boundaries allows the grains to grow in differ-
ent orientation during two-pass FSP induced dynamic
recrystallization which leads to texture randomization or
weakening. The second factor (ii) is slip induced grain
boundary sliding/accommodation due to the presence of
extremely smaller grains leading to higher ELON inUFG
E675 alloy. The third factor (iii) random grain orienta-
tion (Figure 1(F)) enabled multiple slip systems which
resulted in enhanced ELON.

The tensile yield stress (TYS) of the as-received sam-
ples (251MPa) is observed to be significantly higher
than the compressive yield stress (CYS) (170MPa). How-
ever, in UFG E675 alloy both tensile and compression
test values are similar (TYS: 521MPa, CYS: 522MPa).
Figure 2(C) shows the yield asymmetry of various Mg

alloys processed by different techniques in comparison
with UFG E675 alloy [7,16–19]. The ratio of CYS to
TYS was selected as a measure of yield asymmetry in
the present work. The yield asymmetry of Mg alloys pro-
cessed by various SPD techniques lies in the range of
0.3–0.8 (Figure 2(C)). Such an asymmetry restricts the
structural application ofMg alloys, especially for compo-
nents subjected to cyclic loading. However, in the present
UFG E675 alloy, the yield asymmetry is completely
eliminated. Generally, yield asymmetry phenomenon is
related to deformation-twinning and itsmagnitude could
be reduced via suppression of twinning activity. Twin-
ning is generally observed in coarse-grained Mg and its
alloys which acts as an additional deformation mecha-
nism to basal dislocation slip at room temperature in
order to satisfy the von-Mises criterion [15] and hence
the as-received material in the present work with an
average grain size of 25 μm shows a comparatively lower
CYS/TYS ratio. TheHall-Petch slope for twinning (ktwin)
is generally larger than that for slip (kslip) in case of UFG
Mg alloys [16] which indicates that twinning stress has
higher grain size dependence than the stress required for
activation of slip. Since, in the present work, the grain size
ofUFGE675 alloy is extremely small (∼200 nm), the dif-
ficulty in twinning and activation of non-basal slip (to
satisfy the von-Mises criterion [16]) are likely to be the
main reasons for elimination of the tensile/compression
yield asymmetry. In addition to this, the presence of
nano-precipitates and fine Mg-Y-Gd rich intermetallic
compounds in the UFG E675 alloy creates difficulty in
twin boundary migration during compression testing
which acts as a possible reason in elimination/reduction
of the tensile/compression yield asymmetry.

Figure 3 summarizes the specific strength (UTS/
Density) of conventional structural alloys together with
the present UFG E675 alloy. The specific strength of
the various metals such as Steels, Aluminium and Tita-
nium are obtained from the standard data sheets [52,53].
It is observed that the specific strength of the present
UFG E675 alloy is significantly higher than the other
conventional structural alloys.

3.3. High strain rate superplasticity

In order to study the HSRS of the present UFG E675
alloy, tensile tests were carried out at temperatures rang-
ing from375 to 475°C at a constant strain rate of 5× 10−2

s−1 and shown in Figure 4(A). The comparative study
of HSRS (5× 10−2 s−1) of different types of Mg alloys
processed by various conventional and SPD routes are
shown in Figure 4(B) [32–43]. The HSRS (5× 10−2 s−1)
of the present UFG E675 alloy exhibits ∼1300%, which
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Figure 3. Specific strength of different conventional structural magnesium alloys in comparison with present UFG E675 alloy.

Figure 4. (A) Tensile specimens pulled to failure at different temperatures with a strain rate of 5× 10−2 s−1; (B) Comparison of HSRS
properties of different reported Mg alloys processed by various routes with the present work.

is highest among all the reported Mg alloys processed by
any other technique (at 5× 10−2 s−1) (Figure 4(B)).

The possible mechanism for achieving extraordinary
HSRS of the present UFG E675 alloy is explained as: (i)
the presence of extremely small grain size (∼200 nm)
in the present UFG E675 alloy leads to HSRS via grain
boundary sliding mode, (ii) the Mg alloys should prefer-
ably deform at a temperature range of 300-500°C (≥
0.5 Tm) by multiple slip accommodation mechanisms to
achieve HSRS above 1000%. But the thermal stability of
most of the fine-grained Mg alloys (AZ91, ZA82, ZK60,
etc.) are poor in this temperature range due to the absence
of thermally stable pinning particles, resulting in lower
HSRS. However, the presence of a significant fraction of
heat-resistant (∼500°C) ultrafine pinning particles along
the grain boundaries in UFG E675 alloy retards the grain

growth [27] during superplastic deformationwhich leads
to higher HSRS. Onemore additional contributing factor
for the high thermal stability of grains at elevated super-
plastic temperatures is due to grain boundary segregation
of RE solute atoms (Gd) which is termed as solute drag
effect. As Gd has the highest tendency of solute segrega-
tion towards the grain boundaries due to its large atomic
misfit percentage with Mg matrix [54]. Another distin-
guishing factor is the presence of high fraction of low
angle grain boundaries inMg alloys processed by various
conventional and SPD routes. The existence of low angle
grain boundaries in Mg alloys often retards the HSRS
due to the inability of low angle or special boundaries
to exhibit GBS. By comparison, the present FSPed UFG
E675 alloys have a complete recrystallized microstruc-
ture with more than 88% HAGB, significantly higher
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than that obtained by other conventional and SPD pro-
cessing routes. Therefore, the present FSPed UFG E675
alloy exhibited highest HSRS among all other differently
processed Mg alloys.

4. Summary

In short, we developed a wrought Mg-RE alloy micro-
structurewith negligible tension-compression symmetry,
high specific strength, highest combination of strength-
ductility and excellent HSRS among all the existing Mg
alloys reported in the literature till today. The achieve-
ment of extraordinary structural efficiency in the present
Mg-RE alloy is obtained by using a two-step procedure,
developing UFG Mg-RE alloys with a high fraction of
high angle grain boundaries by multipass friction stir
processing and employing nano-precipitates and ther-
mally stable ultrafine intermetallic compounds to UFG
Mg-RE alloy. This processing strategy may be easily
adapted tomany other RE containedMg alloys to achieve
exceptional structural efficiency.
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