This article highlights a connection between Diophantine approximation and the lower Assouad dimension by using information about the latter to show that the Hausdorff dimension of the set of badly approximable points that lie in certain non-conformal fractals, known as self-affine sponges, is bounded below by the dynamical dimension of these fractals. The results, which are the first to advance beyond the conformal setting, encompass both the case of Sierpiński sponges/carpets (also known as Bedford–McMullen sponges/carpets) and the case of Barański carpets.
The College of Science provides students with the high-demand skills and knowledge to succeed as researchers and professionals. The College includes four departments: Biology, Chemistry, Math, and Physics, and is also home to a number of interdisciplinary programs, centers, institutes, intercollegiate programs, labs, and services.
This article highlights a connection between Diophantine approximation and the lower Assouad dimension by using information about the latter to show that the Hausdorff dimension of the set of badly approximable points that lie in certain non-conformal fractals, known as self-affine sponges, is bounded below by the dynamical dimension of these fractals. The results, which are the first to advance beyond the conformal setting, encompass both the case of Sierpiński sponges/carpets (also known as Bedford–McMullen sponges/carpets) and the case of Barański carpets.
Physical Description
20 p.
Notes
Abstract: We highlight a connection between Diophantine approximation and the lower Assouad dimension by using information about the latter to show that the Hausdorff dimension of the set of badly approximable points that lie in certain non-conformal fractals, known as self-affine sponges, is bounded below by the dynamical dimension of these fractals. For self-affine sponges with equal Hausdorff and dynamical dimensions, the set of badly approximable points has full Hausdorff dimension in the sponge. Our results, which are the first to advance beyond the conformal setting, encompass both the case of Sierpiński sponges/carpets (also known as Bedford–McMullen sponges/carpets) and the case of Barański carpets. We use the fact that the lower Assouad dimension of a hyperplane diffuse set constitutes a lower bound for the Hausdorff dimension of the set of badly approximable points in that set.
Publication Title:
Ergodic Theory and Dynamic Systems
Volume:
39
Issue:
3
Collections
This article is part of the following collection of related materials.
UNT Scholarly Works
Materials from the UNT community's research, creative, and scholarly activities and UNT's Open Access Repository. Access to some items in this collection may be restricted.
Das, Tushar; Fishman, Lior; Simmons, David & Urbański, Mariusz.Badly approximable points on self-affine sponges and the lower Assouad dimension,
article,
June 20, 2017;
(https://digital.library.unt.edu/ark:/67531/metadc1616621/:
accessed March 26, 2023),
University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu;
crediting UNT College of Science.