

APPROVED:

Song Fu, Major Professor
Yan Huang, Committee Member
Xiaohui Yuan, Committee Member
Hui Zhao, Committee Member
Barrett Bryant, Chair of the Department of

Computer Science and Engineering
Hanchen Huang, Dean of the College of

Engineering
Victor Prybutok, Dean of the Toulouse

Graduate School

EVENT SEQUENCE IDENTIFICATION AND DEEP LEARNING CLASSIFICATION

FOR ANOMALY DETECTION AND PREDICATION ON HIGH-

PERFORMANCE COMPUTING SYSTEMS

Zongze Li

Dissertation Prepared for the Degree of

DOCTOR OF PHILOSOPHY

UNIVERSITY OF NORTH TEXAS

December 2019

Li, Zongze. Event Sequence Identification and Deep Learning Classification for

Anomaly Detection and Predication on High-Performance Computing Systems. Doctor of

Philosophy (Computer Science and Engineering), December 2019, 95 pp., 27 tables, 15

figures, 95 numbered references.

High-performance computing (HPC) systems continue growing in both scale and

complexity. These large-scale, heterogeneous systems generate tens of millions of log

messages every day. Effective log analysis for understanding system behaviors and

identifying system anomalies and failures is highly challenging. Existing log analysis

approaches use line-by-line message processing. They are not effective for discovering

subtle behavior patterns and their transitions, and thus may overlook some critical

anomalies. In this dissertation research, I propose a system log event block detection

(SLEBD) method which can extract the log messages that belong to a component or

system event into an event block (EB) accurately and automatically. At the event level,

we can discover new event patterns, the evolution of system behavior, and the interaction

among different system components. To find critical event sequences, existing sequence

mining methods are mostly based on the a priori algorithm which is compute-intensive

and runs for a long time. I develop a novel, topology-aware sequence mining (TSM)

algorithm which is efficient to generate sequence patterns from the extracted event block

lists. I also train a long short-term memory (LSTM) model to cluster sequences before

specific events. With the generated sequence pattern and trained LSTM model, we can

predict whether an event is going to occur normally or not. To accelerate such predictions,

I propose a design flow by which we can convert recurrent neural network (RNN) designs

into register-transfer level (RTL) implementations which are deployed on FPGAs. Due to

its high parallelism and low power, FPGA achieves a greater speedup and better energy

efficiency compared to CPU and GPU according to our experimental results.

Copyright 2019

by

Zongze Li

ii

ACKNOWLEDGMENTS

I want to express my sincere gratitude to my advisor, Dr. Song Fu, for his patient

and meticulous guidance in my 5-year Ph.D. study.

I also want to thank all the professors on my dissertation committee:

Dr. Yan Huang

Dr. Hui Zhao

Dr. Xiaohui Yuan

for their guidance and encouragement. Without their help, I cannot achieve that

much in my research.

I want to particularly thank Dr. Hui Zhao for allowing me to use her VC707 FPGA

board. Without that powerful platform, I cannot test and evaluate my RNN design on

FPGA.

I want to particularly thank Dr. Robin Pottathuparambil for giving me suggestions

on my reseach of implementing RNN on FPGA.

I want to apprecite my parents and my wife: Yi Li, Chunmei Sheng, Yuxuan Wu, for

their support and encourage in my five years of study. I love you all.

I also want to thank my research mentor Sean Blanchard at Los Alamos National

Laboratory (LANL) for giving me the opportunity of researching the syslog traces collected

from DOE HPC system Mutrino. He also provided me internship opportunities in the

summers of 2016 and 2017 and gave me a lot of suggestions while I was working at LANL.

I want to thank Dr. Xiaoguang Tian, who is currently an Assistant Professor at

Purdue University. Dr. Tian graduated from the UNT College of Business. He provided

me real-world marketing data and cooperated with me on research that uses deep learn-

ing techniques to cluster marketing data, and we presented our results [83] on the SWDSI

conference.

During my 5 years of research, I have the following publications: [63], [83], [64], [25],

[65], [37], [44], [43].

iii

Last but not least, I want to say thank you to all of my friends: Dr. Qiang Guan, Dr.

Ziming, Zhang, Dr. Song Huang, Shuwen Liang, Zhi Qiao, Jacob Hochstetler, Shuo Sun,

Dr. Islam Rezbaul, Zhaochen Gu, Xu Ma, Sihai Tang, Yuxin Mei.

Thank you for all your help, accompanying, and encouragement which enables me to

persist in my dissertation research.

iv

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS iii

LIST OF TABLES ix

LIST OF FIGURES xi

CHAPTER 1 INTRODUCTION 1

CHAPTER 2 RELATED WORK 5

2.1. Existing Log Analysis Tools and Existing System Log Anomaly Detection

Methods 5

2.2. Existing Sequence Mining Methods 6

2.3. Existing Methods of Implementing Deep Learning Algorithm on FPGA 8

CHAPTER 3 SYSTEM LOG EVENT BLOCK DETECTION FRAMEWORK 10

3.1. Introduction 10

3.2. System Log Preprocessing 10

3.3. Event Block Database and Event Block Extraction 11

3.3.1. Event Block Database (EBD) Generation 12

3.3.2. Event Block Extraction 19

3.4. Performance Evaluation 20

3.4.1. Experiment Settings and SLEBD Configuration 21

3.4.2. Generated EBD from Mutrino Logs 21

3.4.3. Reconsidered Line Patterns and Relationship Changed Line

Patterns 22

3.4.4. Distribution of EB Pattern Length 23

3.5. Experimental Results of Even Block Extraction on Baler and SLEBD

Line Pattern Lists 24

3.6. Summary 27

v

CHAPTER 4 TOPOLOGY-BASED SEQUENCE MINING METHOD 28

4.1. Introduction 28

4.2. Mining Event Patterns Based on Topology 29

4.2.1. Topology Position between Events in Sequences 29

4.2.2. Generate Prior Transition Matrix and Position Status Matrix From

Object Sequences 30

4.3. Generating Event Patterns – Case Study 34

4.3.1. Using Event Order in WIL to Process WIs 34

4.3.2. Processing and Adding Wrapping Events to TS. 35

4.3.3. Extracting Subsequences From TSL to Match Event Sequences 35

4.4. Event Pattern Verification 35

4.5. Performance Evaluation 36

4.5.1. Experiment Setting and Test Cases 36

4.5.2. Verification Results 37

4.5.3. Performance Results 38

4.5.4. Performance Comparison with FreeSpan/PrefixSpan Algorithm 40

4.5.5. Comparison with FP Growth 42

4.6. Summary 43

CHAPTER 5 ANOMALY DETECTION AND EVENT PREDICTION 45

5.1. Introduction 45

5.2. Anomaly Detection Using Event Blocks 47

5.2.1. Incomplete Event Block Anomaly 47

5.2.2. Anomalous EB Length 49

5.3. Clustering Sequences by Using LSTM 49

5.3.1. Collecting Event Sequences and Creating Training/Test Sets 49

5.3.2. Generating the LSTM Model 50

5.3.3. Testing Results of the LSTM Model 50

5.4. Predicting Anomalies from Streaming System Logs 52

vi

5.4.1. Extracting Critical Flow from Event Block Sequences by Using

TSM 52

5.4.2. Realtime Monitoring and Event Occurrence Prediction 53

5.4.3. Predicting Successful Execution of Events 53

5.4.4. Preliminary Experiment Results 53

5.5. Accelerating RNN on FPGA with Efficient Conversion of High-Level

Designs to RTL 54

5.6. RNN and LSTM Background 56

5.6.1. RNN 56

5.6.2. RNN Training 56

5.6.3. Long Short-Term Memory 58

5.7. Accelerating Floating-Point Computations on FPGA 59

5.7.1. Floating-Point Calculation Feature IP 60

5.7.2. FPGA Help to Accelerate Floating-Point Calculation Performance 60

5.7.3. Calculate Operations Packaging 62

5.7.4. Performance Evaluation 65

5.7.5. Address FIFO in Calculation Package 65

5.7.6. Vector Operating Device 67

5.7.7. Calculation Device Input/Output Handshaking Method 68

5.8. Designing RNN Using Scientific Computing Library Numpy 69

5.9. The Idea of Converting Python Commands into RTL Design 71

5.10. Large Scale Python-RTL Code Conversion 73

5.11. FPGA-Based RNN Experiment 76

5.11.1. Experiment Case 76

5.11.2. Our Configuration Files for RTL Generate System 77

5.11.3. Experiment Setup 77

5.11.4. Experiment Result in Accuracy and Performance 78

5.11.5. Advanced Parallelism Computing Design 81

vii

5.11.6. Generating RTL Design by Using Vivado HLS 81

5.12. Summary 82

CHAPTER 6 CONCLUSIONS AND FUTURE RESEARCH PLAN 85

6.1. Conclusions 85

6.2. Future Research Plan 85

REFERENCES 87

viii

LIST OF TABLES

Page

Table 2.1. EXAMPLE OF EVENTS 7

Table 3.1. AN EXAMPLE OF LINE PATTERNS IN A TWO-NODE SYSTEM 14

Table 3.2. FPTM GENERATED FROM LINE PATTERN LISTS 14

Table 3.3. BPTM GENERATED FROM LINE PATTERN LISTS 15

Table 3.4. OCCURRING TOGETHER PATTERN PAIR LIST (OTPL)

GENERATED FROM FPTM AND BPTM 16

Table 3.5. THRESHOLD OF OCCURRING TOGETHER (TOT) 18

Table 3.6. EXPERIMENT SETTINGS 21

Table 3.7. MUTRINO EXPERIMENT RESULTS 22

Table 3.8. EVEN BLOCK EXTRACTION ON BALER’S LINE PATTERN LIST 25

Table 3.9. EVEN BLOCK EXTRACTION ON SLEBD’S LINE PATTERN LIST 26

Table 4.1. MINING OBJECT EXAMPLE 4.1 29

Table 4.2. PRTM GENERATED FROM MINING OBJECT EXAMPLE 4.1 31

Table 4.3. POSM GENERATED FROM TABLE 4.2 32

Table 4.4. EVENT SETS OF EVENT SEQUENCES 35

Table 4.5. EXPERIMENT TEST CASE INFORMATION 37

Table 4.6. EXECUTION TIME OF TSM I 38

Table 4.7. EXECUTION TIME OF TSM II 38

Table 4.8. EXECUTION TIME FOR NEW 18 SEQUENCES AND 100 EVENTS I 39

Table 4.9. EXECUTION TIME FOR NEW 18 SEQUENCES AND 100 EVENTS II 39

Table 5.1. ONE SPECIFIC EVENT’S LSTM LEARNING SEQUENCES 52

Table 5.2. CRITICAL WORKFLOW LEARNED FROM TABLE 5.1 52

Table 5.3. THREE EVENT BLOCKS’ OCCURRING COUNT 54

Table 5.4. RESOURCE USAGE OF THE EXPONENTIAL CALCULATION

DEVICE RTL GENERATED FROM VIVADO HLS 66

Table 5.5. DEVICE DATA INPUT SOURCE LIST 75

ix

Table 5.6. REGISTER RESULT DATA RECEIVE OPERATION LIST 75

Table 5.7. EACH DEVICE’S DSP USAGE AND LATENCY IN TWO

EXPERIMENTS 79

Table 5.8. ESTIMATED AND REAL LATENCIES IN TWO EXPERIMENTS 80

x

LIST OF FIGURES

Page

Figure 3.1. Structure of the preprocessed log sets 12

Figure 3.2. Major components and workflow of SLEBD 12

Figure 3.3. Reconsidered line patterns and updated pattern relation 22

Figure 3.4. Mutrino System: Multi-line EB size Distribution 24

Figure 4.1. PrefixSpan vs. TSM: execution time comparison 41

Figure 5.1. Keras configuration code 51

Figure 5.2. Keras LSTM experiment results in Block 10 sequences 51

Figure 5.3. RNN and Feed-Forward Neural Network 55

Figure 5.4. Standard LSTM cell architecture 58

Figure 5.5. The waveform of floating-point data adder device’s data flow pipeline

example 61

Figure 5.6. Parallelism Computing RTL design 62

Figure 5.7. Packaged Sigmoid device with result address FIFO 64

Figure 5.8. Four by four-vector product device using tournament structure 68

Figure 5.9. Our RNN design’s resource usage on VC707 78

Figure 5.10. Latency and resource usage reported by Vivado HLS 82

xi

CHAPTER 1

INTRODUCTION

High-performance computing (HPC) systems continue growing in both scale and com-

plexity. For example, the Summit supercomputer at Oak Ridge National Laboratory has

2,414,592 compute cores [16]. The Trinity supercomputer at Los Alamos National Labo-

ratory has more than 19,000 heterogeneous (i.e., Intel Haswell and Intel Knights Landing)

compute nodes [36]. Titan at Oak Ridge National Laboratory has 18,688 compute nodes

equipped with AMD Opteron processors and NVIDIA Tesla GPUs [14]. These large-scale,

heterogeneous systems generate tens of millions of log messages every day. In addition to

the sheer volume, both the format and the content of these log messages vary dramatically,

depending on system architecture, hardware configuration, management software, and type

of applications. Effective log analysis for understanding system behavior and identifying

system anomalies and failures is highly challenging.

Log analysis for system behavior characterization has continuously been an impor-

tant research topic. Existing approaches use line-by-line log analysis. Although they can

discover distribution and precedence relation among log messages, they are not effective

for discovering subtle behavior patterns and their transitions, and thus may overlook some

critical anomalies. However, log messages are not isolated from each other. An event of a

component or an event of the system may produce multiple messages. Analysis at the event

level can provide a richer semantics of system behaviors and thus enables to detect more

subtle anomalies that the traditional line-by-line analysis methods cannot find.

In this dissertation research, I use the event block (EB) to represent the log messages

that belong to a component or system event. Event block-based analysis is not trivial. A

fundamental challenge is how to identify log messages that are related to the same event and

thus group them into an EB. The high concurrency in HPC systems causes messages from

different events and even from different nodes to overlap with each other. It is common to

see messages of an event are scattered into multiple pieces by messages from several other

1

events. Moreover, the overlap does not follow a fixed pattern.

Additionally, some messages may appear, disappear, or have variable contents in

different instances of an event. Without detailed execution contexts, such as information of

application workload, system processes, scheduling method, and device status, it is difficult

to identify event blocks accurately. This context information itself, however, is not easy to

obtain in large-scale production HPC systems.

Despite these challenges, the advantages of Event Block-based log analysis are in-

triguing. By converting the original, lengthy, and unstructured messages in syslogs into a

compact and structured list of EBs, the complexity of log analysis can be significantly re-

duced, and the results are more interpretable and easier to understand. By working at the

level of EBs, we can find patterns of events, the evolution of system behavior, and the in-

teraction among different system components, which is very difficult to achieve by using the

traditional message-level analysis. Variation among instances of an event is also an indicator

of possible anomalies. Thus, a larger set of anomalies can be detected.

In my research, I propose a System Log Event Block Detection framework, called

SLEBD, that can extract event blocks accurately and automatically. SLEBD explores the

probability of messages occurring together in a flexible period and leverages the law of total

probability to consolidate messages that occur together even with variations into EB patterns

from syslogs.

Then, I explore SLEBD for anomaly detection and problem diagnosis. We found

several new types of system-level anomalies in our experiments. Based on the identified

event blocks, we define an event sequence classification problem and leverage deep learning

methods, more specifically, Recurrent Neural Network (RNN), to analyze event sequences

and characterize system behavior. RNN model can help us predict if an event will successfully

happen. However, existing RNN models work on sequences with boundaries. As system logs

are generated in real-time, existing RNN models are not suitable for predicting real-time

events from system logs. To solve this problem, we use a sequence mining method to detect

sequence patterns from existing event lists and use these sequence patterns to characterize

2

HPC’s behavior from the system log. We further predict if some events are going to happen

and use the trained RNN models to determine if an event is normal or not.

Sequence mining aims to discover important patterns among a set of objects. It

can help us discover regularity among events, detect anomalies, and predict events in HPC

environments. Existing sequence mining methods are mostly based on the Apriori algorithm

[23]. Apriori-like algorithms perform multiple rounds of scanning of objects to detect all

possible pattern candidates, which is compute-intensive and runs for a long time. Moreover,

this type of algorithms generates a large number of candidate sequences which need a large

database to store and analyze. The time and space complexity of Apriori-like algorithms

makes them inefficient for processing objects with a large population and complex relation,

such as huge logs and various events in production HPC systems.

We aim to detect anomalous system and component behaviors from a large number

of events identified in HPC systems by developing a novel, topology-aware sequence mining

(named TSM) method. Our previous studies of HPC systems have revealed that certain

events commonly happen on compute nodes. Some events may appear multiple times in a

period. However, a new execution sequence does not start until an old sequence of the same

type is completed. As a result, the event sequence can be represented by a Directed Acyclic

Graph [60]. This finding inspires us to design a sequence mining algorithm that leverages

the topology [49] information. TSM identifies all possible long sequences among system and

component events after generalizing their positions from massive events in a cost-effective

manner. TSM is highly efficient as it scans events only once to collect the temporal and

spatial information of events, and it does not require a large number of comparison and

merge operations to generate sequences. In addition to the low time complexity, TSM is

space-efficient as it needs small memory and storage space to store the scanning results and

temporary data. In our experiments, we use the produced event patterns to further detect

system anomalies by leveraging recurrent neural network [33] models.

To cluster Event Block sequences, we use Python-based Deep Learning library Keras[9]

to create and train our RNN models. We find that the software-based RNN models run on

3

general-purpose CPU or GPU cannot achieve high efficiency.

Field Programmable Gate Array (FPGA) is a good platform for accelerating the

performance of massive floating-point data computations. With the unique features of both

high parallelism and low power, FPGA can achieve a significantly higher speedup and better

energy efficiency compared to CPU and GPU. However, implementing Python-based RNN

algorithms at the Register Transistor Level (RTL) is very time-consuming. The existing

approaches generate RTL by designing RNN algorithms in the C program and use High Level

Synthesis (HLS) tools [94] to convert the C program into RTL. The HLS tool generated RTL

design is not optimized and cannot achieve high efficiency and cannot fully show FPGA’s

advantage.

To address this problem, I propose a design flow which can automatically convert

Python-based RNN designs into RTL code. Our experimental results show the generated

RTL run on FPGA code is about seven times faster than the Python code run on CPU, and

their output results are the same.

The four research tasks, i.e., event extraction, event sequence identification, anomaly

detection, and deep learning-based anomaly prediction, are connected and integrated. By

grouping related system messages into event blocks, we convert unstructured system logs into

structured event block lists and obtain event semantics, which enables us to detect event-level

anomalies that have not been discovered before. In order to detect event anomalies, we need

to understand system behavior which can be characterized by event sequences. Deviations

from the normal, critical event sequences could be an anomaly. Deep learning methods,

such as long short term memory (LSTM), can efficiently classify event sequences and predict

future anomalies. However, deep convolutional neural networks involve intensive floating-

point computations, which makes them slow on CPU and even GPU (power-hungry). We

propose to explore low-power and highly-parallel FPGA to accelerate RNN computation and

thus make event-level anomaly detection and prediction faster.

4

CHAPTER 2

RELATED WORK

2.1. Existing Log Analysis Tools and Existing System Log Anomaly Detection Methods

Several methods have been proposed and developed to analyze the system log. For

example, in a study of 200,000 Splunk queries, queries are clustered into several categories,

and transformation sequences are detected to analyze connection among queries [56]. In

[45], console, netwatch, consumer and apsched logs are stored in a MySQL database and

accessed through a web interface for application profiling. A three-layer filtering method is

used to compress log data without losing important information [62]. System logs from Blue

Gene/P and five supercomputers are analyzed in [27] [82], and several important observations

about failure characteristics are reported. Time coalescence techniques are also used to

analyze supercomputer logs [29]. An apriori-like algorithm and correlation graphs quantify

correlation among log messages are used to perform event prediction [70]. Kim et al. [57]

combined the misuse detection method and anomaly detection method and developed a

hybrid intrusion detection system to detect attacks from the network. Hong et al. [47]

presented an integrated Anomaly Detection System, which consists of host- and network-

based anomaly detection systems to detect intrusions to a target system. He et al. [50]

evaluated three supervised anomaly detection methods (i.e., Logistic Regression[87], Decision

Tree[54], and SVM[88]) and three unsupervised methods (i.e., Log Clustering[95], PCA[74],

and Invariant Mining[89]) and developed a toolkit for detecting anomalies from system logs.

Du et al. [35] presented a deep neural network model using LSTM to process a system log

as natural language sequences, which can learn log patterns from normal executions, and

detect anomalies when log patterns deviate from the model trained for normal execution.

Pandeeswari et al. [73] developed a hybrid algorithm, which is a mixture of the Fuzzy

C-Means clustering algorithm and the Artificial Neural Network (FCM-ANN) to build an

anomaly detection system in the cloud.

Several tools are available for analyzing log messages. For example, Baler [34] uses

5

a list of keywords to scan log messages and counts the number of times that each keyword

appears. SLCT [85] clusters log lines based on the frequency of keyword-position occurrences.

HELO [58] splits log messages in a training file into clusters. The splitting position in a

message line is determined by those words that appear most frequently. To pre-process

system logs, Zheng et al. [46] used the occurrence probability to model the causal relation

among single-line messages. Their method, however, cannot be used to determine causally

related log messages that belong to an event with a high confidence. There are also studies

that explore system logs for anomaly detection. For example, Lou et al. [66] calculated

the occurrence probability among log lines in a time window to analyze their dependency.

Fu et al. [67] used a finite state automaton (FSA) to model execution paths of a system

and applied these FSAs to detect anomalies from log messages. Xu et al. [55] grouped

single-line patterns based on alphabetic words in line groups. They applied the principal

component analysis method to the extracted feature vectors to detect anomalies. Baseman

et al. presented a textual-numeric data ground graph [37] to analyze log messages and used

Info-map [24] to extract clusters from subgraphs of the ground graph. These approaches

focus on individual log messages and analyzing distributions or precedence relation among

log lines. By exploring event blocks, our proposed approach transforms unstructured log

messages into structured event sequences, which enables us to identify event patterns and

more subtle system and component anomalies.

2.2. Existing Sequence Mining Methods

Existing sequence mining methods are mostly Apriori-like [23]. An Apriori-like method,

such as GSP [81], AprioriAll [48] [22], and SPADE [93], uses multiple candidate generation-

and-mining scans and tests to produce all possible sequences. This process is both time-

consuming and space-inefficient. To address this issue, Han et al. proposed FreeSpan [32].

FreeSpan scans target objects to generate length-2 subsequences. It then projects length-

2 subsequences to length-3 subsequences and continues until no more sequences of longer

length can be projected from shorter subsequences, e.g.,

[A,B], [B,C], [A,C]→ [A,B,C]

6

Example 1. How existing sequence mining methods generate longer sequence pattern from

a shorter pattern

A length-N sequence is projected from N length-(N-1) subsequences, which requires

N to
∑N

i=1 i times of subsequence comparisons and merges. As an example, Table 2.1 shows

a simple set of events.

Sequence ID Sequence

Seq 1 [A,B,C,A,B,C,A,B,C]

Seq 2 [A,B,C,A,B,C,A,B,C]

Table 2.1. EXAMPLE OF EVENTS

FreeSpan can produce 325 length-1 to length-9 subsequences. Most of the sequences

are subsequences of other sequences. However, there is only one useful length-3 sequence,

i.e., [A, B, C] in this example. In our experiments on an HPC system, one event sequence

contains more than 80 events. In the worst case, FreeSpan needs to generate 3,160 length-2

subsequences and 82,160 length-3 subsequences for a length-80 sequence.

To reduce the large number of subsequences generated by FreeSpan, Han et al. de-

veloped an improved algorithm, called PrefixSpan [84], which treats some subsequences as

prefixes and only projects subsequences of longer length based on the prefix subsequences.

The PrefixSpan algorithm has been used in many areas, for example, analysis of supermarket

records [31].

A critical problem with Apriori clustering is that objects clustered into one class must

have the same number of occurrences. In the HPC system, however, events do not happen

for the same number of times. One event could be followed by repeated events and vice versa.

Thus, Apriori-like algorithms are not suitable for event analysis in HPC environments.

Han et al. developed a frequent pattern mining method called FP growth [76]. It

mines frequent patterns by generating an FP-tree and avoids using the Apriori algorithm,

7

which can reduce the execution time. However, the frequent patterns discovered by the FP

growth do not include sequential information, which makes it unsuitable for finding the event

execution sequence patterns in our research.

The preceding issues require us to develop a new sequence mining method which can

discover execution sequences from various events on HPC systems. In this paper, we propose

a topology-aware sequence mining (TSM) algorithm to address the following major problems

in the existing sequence mining methods.

1. They generate a huge number of temporary, short subsequences – high space

complexity.

2. They perform many comparison operations and merging short subsequences into

longer sequences – high time complexity.

3. They produce many misleading subsequences which are not useful for behavior

analysis and anomaly detection for HPC systems.

2.3. Existing Methods of Implementing Deep Learning Algorithm on FPGA

Implementing RNN/LSTM on FPGA is a good research topic in recent years. For

example, Guan et al.[51] designed an LSTM forward propagation section feature in C code

and used the High-Level Synthesis (HLS)[94] tool to convert their design into RTL. Chang et

al.[30] and Ferreira et al. [53] have designed the LSTM forward propagation section in RTL

and implement them on Xilinx Zynq platforms, these are a good breakthrough, but they

can only partially accelerate prediction performance because their main program is running

as SOC software on Zynq chip. The above three research’s LSTM model is trained on the

desktop computer but not on FPGA. Li et al. [86] designed an RNN model in SystemC[12],

which includes both Forward propagation and Backward propagation sections, and they also

use the HLS tool to convert their design into RTL. Their design can do model learning

on-chip. Both four works are describing their values as fixed-point data, which can save

calculation time but could lose accuracy.

Using HLS tools to help us generate our RTL design code is not our propose. As we

can find, using HLS tools cannot achieve fully optimized performance. We will discuss this

8

finding in Chapter 5.

Use off-chip trained RNN/LSTM model and partially accelerate predict section is

not our research’s purpose. We wish to do both forward and backward propagation sections

on-chip. And our research will use floating-point type data, not fixed-point to maintain

accuracy.

9

CHAPTER 3

SYSTEM LOG EVENT BLOCK DETECTION FRAMEWORK

3.1. Introduction

Existing HPC system log analyze tools analyze logs in a line-by-line fashion. However,

as we find, an event of a component or the system may produce multiple messages. Analysis

at the event level can provide a richer semantics of system behaviors and thus enables to

detect more subtle anomalies.

In our research, we first model original system logs into single line pattern lists. Then

we leverage an extended form of the Bayes’ theorem[75], which is called the Law of Total

Probability [72] to calculate the probability of each line patterns happening together with

other patterns and group the happening together patterns into Event Block pattern. Such

method can tolerate noises in pattern learning files.

SLEBD extracts Event Blocks from original log files to generate Event Block lists.

This feature can handle real time streaming system log messages. If one log message which is

supposed to be included an Event Block pattern but is treated individually, SLEBD reports

an anomaly.

3.2. System Log Preprocessing

The format of system logs varies as system architecture, operation system, runtime,

management tools, and applications can be different. For example, Mutrino, which is a Cray

XC40 system at Sandia National Laboratories, has its syslogs in the following format:

2015-02-13T13:16:11.865060-06:00 c0-0c0s0n1 trying chooser simple

Example 2. Syslog format on the Mutrino supercomputer (SNL)

where “2015-02-13T13:16:11.865060-06:00” is a timestamp, “c0-0c0s0n1” is a node

ID, and “trying chooser simple” is the message body.

We aim to design our event block analysis framework to be generic, being capable

of processing and analyzing system logs in different formats. Our tool requires limited user

10

involvement. Users only provide message syntax information, indicating the structure of log

messages. Then, SLEBD parses messages and extracts message elements by using the syntax

information.

Log Preprocessing: System logs collected from production HPC systems are com-

plex. Messages from all compute nodes and service nodes are mixed, which makes it difficult

to identify event blocks accurately.

The log preprocessing process filters and separates those mixed messages. We separate

streaming messages or messages from large mixed logs into multiple files based on node IDs,

that is one file for each node. These node-wise log files are first analyzed individually to

extract line patterns and event blocks on each node and then combined to identify event

blocks across multiple or all nodes. Additionally, the preprocessing process formats messages

and removes incomplete messages, which facilitates the learning of line patterns for event

block extraction.

Event blocks contain multiple lines of messages. However, they may only appear once

in a period on a single node. They cannot be captured if only one node’s log file is analyzed.

To solve this problem, we define an inspection time window and produce a directory to store

log messages from all nodes in a window. Figure 3.1 shows the structure of the preprocessed

log sets.

3.3. Event Block Database and Event Block Extraction

Using the preprocessed log files as input, our System Log Event Block Detection

(SLEBD) framework performs 1) event block database (EBD) generation, 2) event block

extraction, and 3) anomaly detection. SLEBD uses a Line Pattern Hash Table (LPHT) and

the EBD to conduct event block extraction. Figure 3.2 shows the major components and

workflow of SLEBD.

11

Figure 3.1. Structure of the preprocessed log sets

Figure 3.2. Major components and workflow of SLEBD

3.3.1. Event Block Database (EBD) Generation

Single line patterns

Syslog listens for messages on /dev/log. Multiple threads or devices may generate log

messages of an event. They have certain line patterns in syslog but may contain variations.

The following are two examples of messages taken from Mutrino’s syslog.

2015-02-13T13:19:42.494097-06:00 c0-0c2s1n1 ACPI: PCI Root Bridge [PCI0]

12

(domain 0000 [bus 00-fe])

2015-02-13T13:16:45.462890-06:00 c0-0c0s0n1 ACPI: PCI Root Bridge [UNC0]

(domain 0000 [bus ff])

Example 3. Two Mutrino syslog message examples

Even though the preceding messages are produced from two different nodes, they are

generated by the same process and thus have similar message structure.

SLEBD processes messages in syslogs and generates a line pattern for each message.

Each line pattern has a unique identifier in the form of “[LinePattern $num]”. Alphabetic

words to create one line pattern in the message and their corresponding positions. Numbers

are treated as variables, and not included in line patterns. The line pattern of the preceding

messages is as follows. Although the two messages are different, their line patterns are the

same. Their line patterns are the same:

[[0, ACPI:], [1, PCI], [2, Root], [3, Bridge], [5, (domain), [6, [bus]]

Example 4. A single line pattern

Two messages are called k% similar if at least k% of words and their positions in

their line patterns are the same. Two messages have the same pattern if they are k% similar

and k is greater than a defined threshold. Otherwise, we say their line patterns are different.

Variables in a message have numbers and may contain letters, such as username and node

ID. It is not necessary to have an exact match for two variables as they are less critical than

alphabetic words which are the skeleton of a message. For example, in the preceding log

messages, the bus channel on Node “c0-0c0s0n1” is named “ff,” while the bus channel on

Node “c0-0c2s1n1” is named “00-fe”. Both are variables, and their mismatch does not affect

the similarity of their corresponding line patterns. Variables are analyzed later for anomaly

detection.

These generated line patterns are stored in a Line Pattern Hash Table (LPHT). For

a new log message, SLEBD searches for the most similar (i.e., k-similar with high k-value)

pattern(s) from LPHT. If we found no similar pattern, we will add a new line pattern to

LPHT.

13

Line Pattern Forward/Backward Transition Matrix (FPTM/BPTM)

By using single-line patterns stored in LPHT, we convert the original, unstructured

log messages into a line pattern list. SLEBD produces a line pattern list for each node in a

system. These line pattern lists for different nodes are then co-analyzed to determine how

often every pattern occurs and what adjacent line patterns happen before (called backward

patterns) and after (called forward patterns) the line pattern in question. We will generate

A Forward Probability Transition Matrix (FPTM), and a Backward Probability Transition

Matrix (BPTM). For example, assume the line pattern lists of a two-node system are as

follows.

Node ID Line pattern list

Node 1 A, D, E, F

Node 2 A, E, F

Table 3.1. AN EXAMPLE OF LINE PATTERNS IN A TWO-NODE SYSTEM

A D E F Finish

A 0.5 0.5

D 1

E 1

F 1

Table 3.2. FPTM GENERATED FROM LINE PATTERN LISTS

Table 3.1’s corresponding FPTM and BPTM are presented in Table 3.2 and 3.3.

In the example of Table 3.1, we can see LinePattern A occurred twice and have

two forward patterns, LinePattern D & E. Thus, in the FPTM, PF (A → B) = 50% and

14

A D E F Start

A 1

D 1

E 0.5 0.5

F 1

Table 3.3. BPTM GENERATED FROM LINE PATTERN LISTS

PF (A → D) are equal to 50%. And LinePattern D have only one backward pattern,

LinePattern A. In the BPTM, PB (A → D) = 1. From this view, we can find that BPTM

is not a transpose of FPTM.

Event Block Generation and Consolidation

Based on the Bayes’ theorem [75], the occurrence probability of an event depends

on that of events that are related to this event. The two matrices, FPTM and BPTM,

described in the preceding section, contain information of forwarding and backward line

patterns, respectively. We apply the Bayes’ theorem by using the two matrices to find the

most relevant line patterns in the forward and backward ranges of a line pattern to identify

an event block.

To this end, we leverage an extended form of the Bayes’ theorem, which is called the

Law of Total Probability [72], expressed as:

(3.1) P (E|A) =
n∑

i=1

P (E|A ∩Bi) ∗ P (Bi|A)

We use it to calculate the probability of a line pattern E happening in the forward

range of a line pattern A. We use “PF(A → E)” to denote this forward probability and

“PB(A→ E)” to denote the backward probability. Thus, we have

15

(3.2) PF (A→ E) =
n∑

i=1

PF (A→ Bi) ∗ PF (Bi → E)

where Bi represents line patterns that immediately follow the line pattern A. We use

the FPTM matrix to find those line patterns.

If both PF(A → E) and PB(A ← E) are greater than a Threshold of Occurring

Together (TOT), we say line patterns A and E occur together with high confidence. The

threshold TOT can be set to its initial value provided by system administrators or dynami-

cally updates its value based on the occurrence frequency of the line pattern A.

Those line pattern pairs that are identified to occur together are stored in an Occur-

ring Together pattern Pair List (OTPL). In OTPL, each line pattern p has two lists, one of

which contains the line patterns that happen before (i.e., backward) p. The other list stores

those line patterns that appear after (i.e., forward) p. Table 3.4 shows an OTPL generated

based on FPTM and BPTM.

Pattern ID Backward Pattern List Forward Pattern List

A {} E

D {} {}

E A F

F E {}

Table 3.4. OCCURRING TOGETHER PATTERN PAIR LIST (OTPL)

GENERATED FROM FPTM AND BPTM

Event block consolidation: SLEBD starts with those line patterns whose back-

ward pattern lists are empty but forward pattern lists are not empty in OTPL in the EB

consolidation process. A first-in-first-out (FIFO) list and one Temporary EB pattern List

(TEBL) are used. First, SLEBD puts a line pattern to the end of the FIFO list. Then,

16

1. SLEBD selects the first line pattern Ptop in the FIFO list and stores it in TEBL.

2. If the forward pattern list of Ptop is not empty, puts those line patterns which are

in the forward pattern list of Ptop but not in the FIFO list yet, to the end of the list.

3. Adds Ptop to TEBL if Ptop does not exist in it.

This process continues until the FIFO list becomes empty.

When the EB consolidation process stops, SLEBD considers the line patterns in

TEBL as one event block and assigns an EB ID in the form of “[Block $num]” to the new

EB pattern.

All EB patterns are stored in the Event Block Database (EBD). The line pattern

whose backward list is empty but forward list is not empty, e.g., A in the example is marked

as the start line pattern. The line pattern whose forward list is empty but backward list is

not empty, e.g., F is marked as the end line pattern. SLEBD updates the information of

those line patterns in the Line Pattern Hash Table (LPHT) to indicate to which EB patterns

they belong.

The Threshold of Occurring Together (TOT) and Confidence Interval

We use the Threshold of Occurring Together (TOT) in Section 3.3.1. SLEBD can

dynamically update TOT at runtime.

The reason that TOT is used is that when consolidating EBs, SLEBD should tolerate

noise when building EBD from syslogs. In SLEBD, two-line patterns do not have to occur

together all the time to decide they are one pair of occurring-together patterns. More often

a line pattern appears the higher accuracy in which the occurring-together patterns can be

identified. This feature mitigates the influence of noise or incomplete information in the

learning process. As a result, if a line pattern occurs less frequently, its TOT is lower. The

TOT increases as a line pattern occur more often, and the conditions for identifying its

occurring-together patterns are more accurately identified.

To realize this design, we use a confidence interval generated by the square root of the

occurrence count to update TOT dynamically. The less frequently that SLEBD sees a line

pattern, the wider the confidence interval for TOT. Table 3.5 provides some sample values

17

of TOT for different occurrence counts.

Occurrence count Square root Occurrence count confidence interval TOT

50 7 43− 57 86%

100 10 90− 110 90%

200 14 186− 214 93%

Table 3.5. THRESHOLD OF OCCURRING TOGETHER (TOT)

This confidence interval enables SLEBD to identify line patterns that should not be

considered as occurring together. For example, if LinePattern 2’s occurrence count does not

satisfy LinePattern 1’s confidence interval, SLEBD does not calculate the occurring-together

probability of LinePattern 1 and LinePattern 2. As the occurrence count and occurrence

count confidence interval corresponding feature can avoid computing unrelated line patterns’

relationship, it also helps reduce computation workload.

The value of TOT should not be manually assigned very small, as this may cause

unrelated line patterns to be considered as occurring-together.

Enhancing EBD from using multiple time windows of system logs: The

number of log messages affects the accuracy of event block identification. The longer period

a log covers, the higher the probability that more event blocks and their complete patterns

can be included. In our study, we found the following problems in the logs.

1. Some unrelated line patterns always occur together in a short period.

2. A log contains incomplete, mingled, or noise messages.

3. New types of messages appear due to hardware upgrades, runtime updates, instal-

lation of new monitoring tools, change of configuration, etc.

SLEBD selects log files of a period to generate the EBD. However, even a carefully

selected log set may still suffer from the preceding problems. To address this issue, SLEBD

keeps updating EBD as more messages are processed and analyzed. After system log files

18

in a new time window are analyzed, add the line patterns which fulfill these conditions into

the Reconsidered Pattern List (RPL):

1. LP 1 have one previous occurring-together LP 2 which occurrence count cannot

fit in LP 1’s recent confidence interval.

2. LP 2’s previous occurrence count cannot fit in LP 1’s previous confidence interval,

but now they can be fit. SLEBD reconsiders LP 1’s relationship with LP 2.

3. New detected line patterns.

SLEBD uses the latest FPTM/BPTM to calculate the occurring-together probability

of the line patterns in RPL. If one line pattern’s relationship with other patterns changes,

SLEBD updates its forwardbackward pattern lists in OTPL.

After the line patterns in RPL are re-analyzed, SLEBD performs EBD consolidation

using the updated OTPL. As a result,

1. Correctly split previously consolidated unrelated line patterns.

2. Consolidate previously separated but related line patterns.

3. Add newly found line patterns to LPHT, and add updated EB patterns to EBD.

Cutoff for reconsideration: SLEBD terminates the reconsidering update process

according to certain configurations, which is called the reconsideration cutoff. Such cutoff

conditions can be:

1. The relation of line patterns is stable for a specified period, for example, 30 days;

2. A-line pattern’s occurrence count reaches a certain number, for example, 500 times.

3.3.2. Event Block Extraction

SLEBD uses EBD to extract event blocks from system logs. The EB extraction

process uses the line pattern list as input. It explores LPHT and EBD. For each line pattern,

it searches for a possible match pattern in LPHT. Then SLEBD identifies Event Blocks from

the line pattern list by matching with the patterns stored in EBD.

SLEBD uses a stack of line patterns to record the number of log lines that are received

and processed for each node. If a line pattern is the start line of an EB pattern, then the

block ID and log line number are pushed into the stack. If the line pattern is the end of a

19

block pattern, then the block ID stored on the top of the stack is popped out and compared

with the line pattern’s block ID. If they match, write the block ID and the log line numbers

from the start to the end to an extracted EB list.

The reason for using a stack to identify event blocks is that EBs can be nested, that

is one EB happens inside another EB. If such nesting is detected, keep the outer block, and

remove the inner block from the output EB list.

When finding that the end line pattern does not match with the block at the top

of the stack, or processed all line patterns have but some start line patterns remain in the

stack, SLEBD detects an anomaly.

3.4. Performance Evaluation

We have implemented a prototype software of SLEBD and conducted experiments

using Mutrino’s system logs. The Mutrino system [61], situated at Sandia National Lab-

oratories, is a Cray XC40 system with 118 nodes. It is a test environment of the Trinity

production supercomputer [36], the 7th most powerful supercomputer in the world. The

dataset that we use contains all syslogs collected from 2/11/2015 to 6/13/2016 on Mutrino

data[3].

We use console logs in our experiments. In total, there are 553 console logs in the

dataset. Because each console log is composed of mixed messages from all 118 nodes, we

select the first 300 days as our test set and assign two days as the size of the inspection

time window. After log preprocessing, SLEBD has generated 150 directories, and each one

contains 118 node-wise log files.

We conduct our experiments in two steps:

1. Performing EBD generation on the part of the preprocessed logs;

2. Performing EB extraction on the rest of the logs using the generated EBD. After

extract an EB list, SLEBD detects anomalies where system behavior is different from the

normal.

20

3.4.1. Experiment Settings and SLEBD Configuration

Table 3.6 lists the configuration of the servers where we run SLEBD.

CPU model Intel Xeon X3460 2.8GHz

Core count 8

OS Linux CentOS 7.3.1611

Memory 32GB

Table 3.6. EXPERIMENT SETTINGS

In our experiment, a “valid line” refers to a log message which has at least one

alphabetic word. Thus, create a line pattern for a valid line.

Two-line patterns are considered to be similar if their similarity ratio is above the

threshold. In our experiment we set the threshold k as 67%, which means that if two line

patterns, for example, each has three words, have at least two words and their positions

in the patterns the same, then we can consider these two line patterns have the same line

pattern.

We describe the forward block detection range in Section 3.3.1. In our experiment,

we set this range to 4. We will explain the reason for this setting in Section 3.4.4.

In our experiments, when SLEBD analyzes one-period directory, all line patterns

whose transition probabilities in FPTM and BPTM have a dramatic change compared with

previous records are added to the Reconsidered Pattern List (RPL).

3.4.2. Generated EBD from Mutrino Logs

We present the experimental results from the Mutrino logs in Table 3.7

From Table 3.7, we can see that SLEBD detects in total 2,884 types of line patterns

from the Mutrino log set. 608 of them are included in the EB patterns. 409 of them occur

only once in all test files, and they are not consolidated into EB patterns. 949 of them

appear less than five times.

21

Number of log messages 2, 817, 016

Number of invalid lines (removed by preprocessing) 67, 478

Number of line patterns 2, 884

Number of line patterns included in event blocks 608

Number of event block patterns 189

Number of line patterns occurring only once 409

Number of line patterns occurring less than five times 949

Table 3.7. MUTRINO EXPERIMENT RESULTS

SLEBD detects 189 EB patterns in total, converted 2,817,016 lines of the original

logs into 1,690,391 events, including both event blocks and single-line messages.

3.4.3. Reconsidered Line Patterns and Relationship Changed Line Patterns

Figure 3.3. Reconsidered line patterns and updated pattern relation

Figure 3.3 shows the number of patterns which are reconsidered, and the relation is

updated. We use all logs of the first 110 days in the experiment. The blue bars present the

size of RPL, that is the number of line patterns that need to be reconsidered. The orange

22

bars inside blue bars show the number of line patterns whose relationship with other patterns

are updated.

From Figure 3.3, we can see:

1. For the first ten days, SLEBD produces 1103 line patterns and 526 patterns’

relation. As the EBD is not established, SLEBD considers all newly detected line patterns.

2. Bars 2 to 6 show the size of RPL is around 500. The number of relationship

updates becomes less. The reason is that the relation between line patterns becomes more

stable.

3. For Bars 7 and 8, the number of reconsidered patterns and relationship updates

suddenly increases. We check the original system logs and find that from Day 78 to Day 82,

the system had a software update, which made the system produced many new line patterns

which had not been seen before. SLEBD effectively reconsiders line patterns and updates

relationship focusing on newly detected line patterns.

This result shows SLEBD is adaptive and it only reconsiders a subset of line patterns.

For example, on Date 51 (i.e., the first day of Bar 6) SLEBD detects 1500 types of line

patterns. As the RPL is generated, SLEBD only reconsiders 463 line patterns, which saves a

considerable amount of computation. Meanwhile, we can see only 14 line patterns updated

for Bar 6. If we carefully select a cutoff threshold, we can reduce the number of reconsidered

patterns.

3.4.4. Distribution of EB Pattern Length

Figure 3.4 shows the distribution of the size of the multi-line EBs extracted from

Mutrino syslogs. From the figure, we can see 75% of the EBs have a length of 4 or less.

However, some EBs have more than 60 line patterns. The largest EB contains 269 line

patterns.

After consulting with the system administrator, we find the largest event block that

has 269 line patterns corresponds to a system boot sequence which is important for detecting

possible system failures and shutdown.

23

Figure 3.4. Mutrino System: Multi-line EB size Distribution

In our experiments, the forward block detecting range is set to 4. From Figure 3.4,

we can see most EBs have a length less than 5. Means the 4-line forward range is enough

for most line patterns to find other occurring-together line patterns.

3.5. Experimental Results of Even Block Extraction on Baler and SLEBD Line Pattern Lists

I mentioned another syslog message cluster tool Baler [34] in the related work section.

Baler is part of Sandia National Laboratories’ OVIS project [5]. It is designed to work on

HPC’s syslog port. Before collecting syslog messages, users need to create a process and

designate Baler to listen to the syslog port. Baler also provides ‘syslog2baler.pl’ program to

cluster messages from an existing log file. Baler is used to cluster single line syslog messages

and has been deployed on several production HPC systems.

To process log messages, Baler creates a database to store message patterns. This

database stores all message line patterns produced during log processing. Additionally, Baler

uses a dictionary to identify alphabetic words. A pre-built dictionary is included in the OVIS

package. Users can also add new words to the dictionary so that Baler will recognize those

words in log messages. The default dictionary has 294,678 words. Baler’s dictionary is case

sensitive. Thus, each word is stored in three forms, i.e., upper-case, lower-case and the first

letter capitalized ones

In this section, we present the experimental results from event block extraction using

24

the line pattern lists generated by Baler and SLEBD on the Mutrino system logs. The

objectives of this set of experiments are to evaluate the effectiveness of SLEBD for event

block extraction and its sensitivity to different input line pattern lists. We also want to

understand how the event block extraction function of SLEBD can enhance Baler for log

mining and system behavior analysis.

Our experiments use the 22-day log files collected on Mutrino. The test set contains

a total of 613,700 lines of log messages.

Number of single− line patterns 4, 980

Number of single− line patterns which happen only once 1, 643

Number of extracted event block patterns 226

Total number of events 302, 983

Log compression rate 2.02

Number of detected anomalies 1, 027

Processing time 3 hr 12 mins

Table 3.8. EVEN BLOCK EXTRACTION ON BALER’S LINE PATTERN

LIST

Table 3.8 and Table 3.9 show the results from event block extraction on the line

pattern lists produced by Baler and SLEBD. From the two tables, we can see that

1. SLEBD generates a less number of single-line patterns than Baler, which is 1,424

vs. 4,980.

2. SLEBD identifies a less number of line patterns that occur only once than Baler,

which is 188 vs. 1,643. Those line patterns do not contribute to event block extraction as

they cannot be grouped with other line patterns into event blocks.

3. By using the line pattern list produced by SLEBD, a less number of event blocks

is extracted compared with that using the line pattern list by Baler, which is 141 vs. 226.

25

Number of single− line patterns 1, 424

Number of single− line patterns which happen only once 188

Number of extracted event block patterns 141

Total number of events 206, 694

Log compression rate 2.97

Number of detected anomalies 297

Processing time 26 mins

Table 3.9. EVEN BLOCK EXTRACTION ON SLEBD’S LINE PATTERN LIST

4. The log compression rate by using the SLEBD line pattern list is higher than that

using the Baler line pattern list that is 2.97 vs. 2.02. The log compression rate is calculated

as the ratio of the total number of raw log messages to the total number of events extracted.

5. With the line pattern list by SLEBD, the overall processing time is shorter, which

is 26 mins using the SLEBD line pattern list and 84 mins using Baler pattern list.

In addition to the preceding results, we observe that 56 event blocks extracted from

Baler’s line pattern list and SLEBD’s line pattern list the same, which accounts for 24.8%

and 39.7% of the event blocks identified by Baler and SLEBD respectively.

As Baler generates more single-line patterns than SLEBD, more combinations of line

patterns are considered in event block extraction. Some event blocks identified by SLEBD

are split into multiple smaller event blocks in Baler’s output. That is why more event blocks

are produced by using Baler’s line pattern list.

By using the event blocks identified by Baler and SLEBD line pattern lists, we detect

more anomalies from the former than the latter. After a further study of those anomalies,

we find that 197 anomalies from both sets are the same. More interestingly, one type of

anomaly in Baler’s results appears 450 times, which is not detected in SLEBD’s results. That

is because more event blocks are found from Baler’s line pattern list and some anomalies

26

associated with one type of event block in SLEBD become associated with multiple types

of event blocks in Baler’s results, which leads to more anomalies for Baler. Thus, a large

number of line patterns and event blocks detected from Baler makes anomaly detection more

complicated and less effective.

Experimental results on the Mutrino system logs show that we can utilize Baler to

preprocess mixed system logs, and Baler causes extra overhead from message grouping and

makes event extraction more complicated.

3.6. Summary

SLEBD has the following attractive features.

1. It converts millions of unstructured log messages into concise and structured event

block lists, which facilitates system monitoring and behavior analysis.

2. It generates an event block database (EBD) from the original system logs. System

administrators can use EBD to process message streams in real-time.

3. It updates EBD by continuously analyzing multiple time-periods of log files. Thus,

EBD evolves as the monitored system changes.

4. It analyzes system and component events to identify anomalies and enable fault

diagnosis.

The generated event blocks capture the major behavior of an HPC system and facil-

itate anomaly detection. By transforming the original mixed messages into clear event lists,

system administrators can save their time and efforts to focus on analyzing high-level event

distribution and relation with richer semantic information.

To further improve SLEBD, we are currently developing a machine learning based

approach to study system behaviors using EB lists. We plan to make the EBD generation

process more efficient and automatic. We also consider using FPGAs and ASICs to accelerate

log analysis and event block extraction. We also plan to integrate SLEBD with our previous

works and tools for performance anomaly detection [39] [40], failure prediction [90], power

management [41] [42], and soft error analysis [38] to build a system monitoring and analytics

framework, where resilience, performance, and power are managed in an integral way.

27

CHAPTER 4

TOPOLOGY-BASED SEQUENCE MINING METHOD

4.1. Introduction

Sequence mining is a method of discovering frequent sequential patterns from a set

of objects. SLEBD can group log messages that happen together into event blocks by using

probability theories. In this way, the sequence between all happening together single line

messages which belong to the same atomic operation is captured. This feature provides

us an opportunity to perform sequence mining to analyze the System Event List and find

connections between different types of System Events.

As an HPC system may have hundreds (and even more) of types of System Events and

could generate tens of thousands of System Events every day, the number of the target objects

can be huge. The occurrence time of each type of System Event in one System Event List

can be highly different. The traditional Apriori-like methods cannot meet our request. Even

the most recently developed and most efficient PrefixSpan [84] algorithm requires a large

number of compare and merge operations. Besides this, PrefixSpan generates all happened

subsequences and marks how many times these subsequences occurred. The number of all

the subsequences generated from even one very simple System Event List could be larger

than the System Event List itself. If we want to use F/P algorithms to find HPC system

event execution sequences, we need to generate all subsequences and do additional work to

filter useless results. That is unnecessary for us and will make the result analysis difficult.

As our study on HPC system found, most HPC system operations always have mul-

tiple steps, and these operation steps are following a principle. So, in a short time window,

such sequences will become Directed Acyclic Graphs [60]. This finding inspired us to design

a Topology [49] based Sequence Mining algorithm (TSM). It can detect all possible longest

sequences from sequence Mining Object in just seconds. Our algorithm only needs to scan

the sequence Mining Object once to collect temporary data and do not need a large amount

of compare and merge operation to grow a sequence. And our algorithm only requires a very

28

small space to store our result and temporary data.

4.2. Mining Event Patterns Based on Topology

4.2.1. Topology Position between Events in Sequences

As we find, there are five types of position status between items in sequences:

1. Prior: Item A always occurs prior to Item B.

2. After: Item A always occurs after Item B.

3. Wrapping: Item A always occurs both prior to and after Item B. It looks like

Item A wrap Item B.

4. Wrapped: Item A always occur between two Item B. It looks like Item B wraps

Item A.

5. Tangling: sometimes Event A occurs prior to Event B, and sometimes Event A

occurs after Event B.

By analyzing the target object, we find sometimes Item A occurs prior to Item B, but

sometimes Item A occurs after Item B. We cannot make our decision of Item A’s position

status with Item B. At this time, we can only say Item A is tangling with Item B. As Item A

and Item B are tangling, they cannot exist in the same sequence pattern.

For example:

Sequence ID Sequence

Seq 1 [A,B,C,D,E,C]

Seq 2 [B,A,C,D,E,C]

Seq 3 [B,A,D,E]

Seq 4 [B,C,D,E,C]

Table 4.1. MINING OBJECT EXAMPLE 4.1

From these sequences, we can find the following position status:

29

1. Items A & B are prior to items C, D & E.

2. Items C, D & E are after items A & B.

3. Item C is wrapping items D & E.

4. Item C wraps Items D & E.

5. Item A and item B are tangling.

4.2.2. Generate Prior Transition Matrix and Position Status Matrix From Object Sequences

TSM scans sequences once and produces a Prior Transition Matrix (PRTM). Then it

uses PRTM to generate a position status matrix.

Prior Transition Matrix (PRTM)

An entry in PRTM, for example, PRTM[A][C], indicates the relationship of Event A

with Event C. It has three elements: Prior Count (PC), Ready Switch (RS), and Occurs

in Same sequence Count (OSC). Note PRTM[A][C] is not the same as PRTM[C][A]. TSM

creates a PRTM based on a list of events of interest provided by users and initializes all

events’ PC and OSC value to 0 and RS to “Not ready.”

When scanning a sequence, TSM performs the following operations for each event,

denoted by event n.

1. Set PRTM[n][k][RS] to ”Ready”. Here ”k” refers to another event, event k.

2. Look up another event k in PRTM. If PRTM[k][n][RS] is ”Ready”, then add ”1”

to PRTM[k][n][PC] and change PRTM[k][n][RS] to ”Not ready”;

3. Use a counter to count how many times event n appears in the sequence.

After scanning the sequence, TSM updates events’ OSC in PRTM with events’ occur-

rence counts. For example, if Event A occurs once in Sequence 1 and Event C occurs twice

in Sequence 1, then after scanning sequence 1, TSM adds 1 to PRTM[A][C][OSC] and adds

2 to PRTM[C][A][OSC].

Generating the position status matrix(POSM) from PRTM

Let’s look at the PRTM that we have generated from object Example 4.1:

Each entry in the PRTM contains [PC, OSC]. To analyze the position relation of two

events (say event n and event k) position, we need to define a support count. A support

30

A B C D E

A [1, 3] [2, 2] [3, 3] [3, 3]

B [2, 3] [3, 3] [4, 4] [4, 4]

C [0, 4] [0, 6] [3, 6] [3, 6]

D [0, 3] [0, 4] [3, 3] [4, 4]

E [0, 3] [0, 4] [3, 3] [0, 4]

Table 4.2. PRTM GENERATED FROM MINING OBJECT EXAMPLE 4.1

count is assigned by the lower OSC of PRTM[n][k] and PRTM[k][n] and is used as a threshold

to tolerate noise. Then we use PRTM[n][k][PC] and PRTM[k][n][PC] to compare the support

counts to understand their positions.

1. If PRTM[i][j][PC] is greater or equal to support count but PRTM[j][i][PC] less than

the support count, it means item i is prior to item j and item j is after item j.

2. If both PRTM[i][j][PC] and PRTM[j][i][PC] are all greater or equal to the support

count, it means item i and item j are both prior to each other. Now which item’s OSC is

bigger, which one is wrapping the other one.

3. If both PRTM[i][j][PC] and PRTM[j][i][PC] are all greater or equal to the support

count and PRTM[i][j][OSC] and PRTM[j][i][OSC] are equal, then the item whose PC is bigger

is prior to the other one. That is because the support count ratio threshold is set too low.

We will discuss this situation later.

4. If both item i and item j ’s PCs cannot reach the support count, it means they are

tangling.

Now consider the example in Table 4.2. For event A and event B, their support count

is 3. However, PRTM[A][B][PC] = 1 and PRTM[B][A][PC] = 2, i.e., both of them are less

than the support count. So event A and event B are tangling. For event A and event C, their

support count is 2 (PRTM[A][C][OSC]), PRTM[A][C][PC] = 2, however, PRTM[C][A][PC] =

0. Then event A is prior to event C and event C is after event A. For event C and event D,

31

their support count is 3 (PRTM[D][C][OSC]), and PRTM[C][D][PC] = PRTM[D][C][PC] = 3.

Thus, wrapping is the position relation between event C and event D. As PRTM[C][D][OSC]

= 6, which is greater than PRTM[D][C][OSC], event C wraps event D (or event D is wrapped

by event C).

Users can assign two thresholds to tolerate noise:

1. Minimal occurrence count threshold for identifying rare events. If PRTM[n][k][OSC]

is less than the minimal occurrence count threshold, it means the occurrence count of event n

and event k in the same sequence is very small.

2. A support count ratio threshold. For instance, assume the support count of event n

and event k is 100 and the threshold as 90%. If we observe event n is prior to event k for 90

times, then we say event n is always prior to event k.

By applying the preceding rules, we build a position status matrix (POSM), as shown

in Table 4.3.

Prior After Wrapping Wrapped Tangle

A C,D,E B

B C,D,E A

C A,B D,E

D E A,B C

E A,B,D C

Table 4.3. POSM GENERATED FROM TABLE 4.2

Growing sequence patterns from position status matrix by using Topology

Based on the position relation among events, we can build event patterns. Our

topology-aware event pattern building process works as follows.

1. We use a Waiting Item List (WIL) to store all user-interested items. Use a

Temporary Sequence List (TSL) to store all temporary sequence patterns.

32

2. In each round, we randomly select one Waiting Item (WI) from WIL and remove

this WI from WIL.

3. If TSL is empty, append length-1 sequence [WI] into TSL. Then make all this

WI’s Tangling Items (WITI) from this WI’s tangle list as length-1 sequence [WITI]. Append

sequence [WITI] into TSL.

4. If TSL is not empty, we compare WI with all Temporary Sequences (TS) in TSL.

a) If WI is already in the TS or WI tangles with some event in the TS, then continue.

b) If WI can be inserted into the TS based on POSM, we add a new sequence [TS-WI]

to TSL and add the WI’s Tangling Events (WITI) to the TS. If any WITI is successfully

added to the TS, we add a new sequence [TS-WITI] to the TSL.

c) WI cannot be added to any TS in TSL, add length-1 sequence [WI], and all length-1

sequences [WITI] to TSL.

5. Repeat Steps 2 to 4 until WIL is empty.

6. If any TS in TSL has events with Wrapping/Wrapped position, we add one more

wrapping event to the TS. The insertion position is after all events which have “Wrapping”

or “After” position with it.

The TSL that is generated from POSM contains all of the long event patterns which

events of interest are included.

The topology-aware sequence mining algorithm scans events only once and does not

generate a large number of temporary subsequences. Unlike FreeSpan or PrefixSpan, TSM

uses tangling tags to determine if two events can be placed in the same sequence or not

before generating any Temporary Sequence (TS). If a Waiting Event (WI) can be added to a

Temporary Sequence, all Waiting Tangling Events (WITI) cannot be added to the sequence

generated from TS and WI ([TS-WI]). We also note all WITIs may be added to TS. That

is why we try to add WITI to TS and generate another sequence [TS-WITI]. In this way,

TSM can reduce a large number of subsequence comparison and merging operations.

TSM performs some matrix search and comparison operations. It needs to search

WI’s position status with events in the TS from Position Status Matrix (POSM) to find the

33

insertion position in the TS. When a new TS is added to TSL, TSM needs to compare this

TS with existing TSes in TSL to see if this TS already exists. Such search and comparison

operations do not happen very often, and they are not computing-intensive.

4.3. Generating Event Patterns – Case Study

In this section, we use an example to illustrate how TSM builds event patterns, which

is described in Section 4.2.1. In the example shown in Table 4.1, there are five events: A, B,

C, D, and E. The Wait Event List (WIL) includes these five events.

4.3.1. Using Event Order in WIL to Process WIs

Step 1: processing event A.

As TSL is {}, TSM adds pattern [A] and A’s tangle event [B] to TSL. Thus, TSL =

{[A], [B]}

Step 2: processing event B.

TSM tries to add B to each TS in TSL. As B tangles with A and pattern [B] already

exists. TSM does not change TSL. Still TSL = {[A], [B]}

Step 3: processing event C.

TSM tries to add C to [A] and [B]. As C is after both A and B, C can be appended

to [A] and [B] as [A, C] and [B, C]. TS [A] and [B] are then removed from TSL. So, TSL =

{[A, C], [B, C]}

Step 4: processing event D.

D is after A and B, and D is wrapped by C. TSM discovers two new patterns [A, C,

D], [B, C, D]. Then [A, C] and [B, C] are removed from TSL. Now TSL = {[A, C, D], [B,

C, D]}

Step 5: processing event E.

E is after A, B, and D, and wrapped by C. TSM appends E to each TS in TSL. So,

TSL = {[A, C, D, E], [B, C, D, E]}

34

4.3.2. Processing and Adding Wrapping Events to TS.

As patterns [A, C, D, E] and [B, C, D, E] have event C and its wrapping events D

and E in them. TSM adds event C to the two patterns. The insertion position is after D

and E. Thus, TSL becomes:

{[A, C, D, E, C], [B, C, D, E, C]}

4.3.3. Extracting Subsequences From TSL to Match Event Sequences

As we discuss in Section 4.2.2, the topology-aware event sequence building method,

TSL contains all long event patterns. However, some patterns may not include events of

interest. Thus, those patterns may not be able to match with event sequences.

In the preceding example, the set of events that appear in event sequences are differ-

ent, as shown in Table 4.4.

Sequence id EventSequence EventSet

Seq 1 [A,B,C,D,E,C] A,B,C,D,E

Seq 2 [B,A,C,D,E,C] A,B,C,D,E

Seq 3 [B,A,D,E] A,B,D,E

Seq 4 [B,C,D,E,C] B,C,D,E

Table 4.4. EVENT SETS OF EVENT SEQUENCES

From Table 4.4, we can see two event patterns in TSL cannot match with Sequence 3.

On the other hand, we can use Sequence 3’s event set {A, B, D, E} to extract two subse-

quences, that is [A, D, E] and [B, D, E]. Thus, the event pattern list becomes:

{[A, C, D, E, C], [B, C, D, E, C], [A, D, E], [B, D, E]}

4.4. Event Pattern Verification

TSM can significantly improve the efficiency of event pattern mining and reduce

computation overhead. All events are important. TSM randomly selects one WI from WIL

35

to process each time, which makes some WIs processed early while other WIs are processed

late.

To make sure the event patterns that TSM produces are correct. We verify the

following three requirements.

1. All event patterns are fully generated. In other words, no more events can be

added to any event patterns.

2. Event patterns are independent of the order in which WIs are processed.

3. Event patterns should not conflict with the sequences that are learned. If one

sequence does not contain all events that an event pattern possesses, then a subsequence of

the event pattern must be capable of matching the sequence.

Correspondingly, we develop three functions to verify the preceding requirements.

1. Try to add all events from WIL to all TS in TSL. If any WI from WIL can be

added to any TS, then the TS is not fully generated.

2. Manually assign different orders for processing WIs and apply these orders to build

TSL. Then compare every two TSLs. If one TSL has some event patterns that the other

TSL does not have, then event patterns are affected by the processing order.

3. Use event patterns in TSL to map event sequences. Scan an event pattern and

subsequences extracted from it and record how many times one event pattern and its subse-

quence can be matched from the first event to the last one.

Each event pattern has one event which has a minimal occurrence count in sequences

than other events in this pattern. If this event pattern’s successful occurrence count is no

less than the minimal event’s occurrence count, we conclude this event pattern is correct.

4.5. Performance Evaluation

4.5.1. Experiment Setting and Test Cases

We have implemented a prototype software of TSM and conducted experiments using

Mutrino’s system logs. The Mutrino system [61], sited at Sandia National Laboratories, is

a Cray XC40 system with 118 nodes. It is a test environment of the Trinity production

36

supercomputer, the 6th most powerful supercomputer in the world. The dataset that we use

contains all syslogs collected from 2/11/2015 to 6/13/2016 on Mutrino.

We apply our recently developed System Log Event Block Detection (SLEBD) tool

[63] to extract event blocks from groups of log messages, and convert the raw log messages

to event blocklists. We randomly select 18 nodes’ event lists for the same period (two days).

Among the 18 event list files, the shortest one contains 545 events, and the longest one has

970 events. Table 4.5 lists the number of events and events of interest in our test cases.

Number of system events 13156

Number of interested common event types 132

Number of interested event from test case 8981

Shortestfilesize 545

Longestfilesize 970

Table 4.5. EXPERIMENT TEST CASE INFORMATION

We run experiments on compute servers, each of which is equipped with Intel Xeon

X3460 (8 cores, 2.8GHz) and 32 GB DRAM, and runs CentOS 7.3.1611.

4.5.2. Verification Results

We run TSM on the 18 event lists and analyze 8981 events of interest. TSM builds

364 event patterns. The longest pattern contains 84 events, and the shortest pattern includes

75 events.

We test the three requirements, as described in Section 4.4, to verify the correctness

of our experimental results. We find that no event of interest can be added to any of the

364 event patterns, all of the 364 patterns match with our 18 event lists, and their matching

counts are equal to or greater than the minimal-occurrence event’s occurrence count. The

event pattern that has the smallest matching count succeeds 33 times. We run TSM 10

37

times, and a random event processing order is used each time. The ten runs produce the

same (364) event patterns.

4.5.3. Performance Results

Factors, such as event list size and the number of events of interest, may influence the

performance of TSM, specifically, the building speed of event patterns. We conduct a set of

experiments to evaluate the influence. We randomly select 100 events of interests out of the

132 common events. For comparison, we also two event list sets, one of which contains eight

lists randomly selected from the 18 lists, and other set contain the remaining lists.

All TSL event patterns generated from the experiments are tested, and they all pass

the verification test as described in Section 4.4. Table 4.6 & 4.7 shows the time that TSM

uses to create PRTM, POSM and build event patterns.

Seq. size Event of interest Event count Seq. analysis and PRTM gen time(s)

18 132 8981 1.11

18 100 7031 0.68

5 132 2127 0.34

10 132 4961 0.66

Table 4.6. EXECUTION TIME OF TSM I

POSM gen time(s) TSL build time(s) TSL size

0.165 2.28 364

0.08 0.29 33

0.16 1.85 378

0.16 1.67 296

Table 4.7. EXECUTION TIME OF TSM II

38

For ease of our discussion, we use “F i I j” to denote the set of an experiment with

a number of i event sequences and several j events of interest. For example, F 18 I 132

processes 18 event sequences and 132 events.

From Table 4.6 & 4.7, we find the POSM generation time of F 18 I 132, F 5 I 132,

and F 10 I 132 is around 0.16 second. F 18 I 100 processes only 100 events of interest, but

its POSM generation time is 0.08 second. Additionally, the TSL build time in the three

experiments (F 18 I 132, F 5 I 132 and, F 10 I 132) are close to 2 seconds, and their sizes

of TSL are close. The TSL build time of F 18 I 100 only takes 0.29 second. These findings

show TSM’s execution time is influenced more by the number of events of interest than the

sequence length.

We also notice that F 18 I 100 only produces 33 event patterns. After further analysis,

we find that there are 57 events among the 100 event types whose tangling lists are empty.

Among the 132 event types, 67 events have empty tangling list. To further understand

the relationship between event patterns and events’ tangling lists, we conduct the following

experiment.

Seq. size Event of interest Event count Seq. analysis and PRTM gen time(s)

18 100 7543 1.13

Table 4.8. EXECUTION TIME FOR NEW 18 SEQUENCES AND 100

EVENTS I

POSM gen time(s) TSL build time(s) TSL size

0.160 0.92 364

Table 4.9. EXECUTION TIME FOR NEW 18 SEQUENCES AND 100

EVENTS II

After TSM generates POSM from the 132 events, we create a new event list which

39

has 65 (i.e., 132 - 67) events whose tangling lists are not empty. We randomly select 35

events whose tangling lists are empty to create a 100-event list and build event patterns.

Table 4.8 & 4.9 presents the results. In the table, we find the sequence analysis time, PRTM

generation time, and POSM generation time are the same as those for F 18 I 132. That is

because TSM uses the same event set to create POSM. Then the 100-event list is selected

from POSM. We also find the size of TSL built from the 100-event list is the same as that

in F 18 I 132. Each event pattern in F 18 I 100’s TSL matches with a corresponding longer

event pattern in F 18 I 132’s TSL and the former pattern is a subsequence of the latter

pattern.

If TSM generates event patterns among events with an empty tangling list, only one

pattern is produced. We call it common sequence. The difference between F 18 I 132 and

F 18 I 100 is that F 18 I 132’s common sequences are generated by 67 events with an empty

tangling list, while F 18 I 100’s common sequences are generated by 35 events. F 18 I 100’s

common sequences are subsequences of that of F 18 I 132. If TSM builds event patterns

among the 65 events with non-empty tangling lists, 364 subsequences are generated, which

is the case for F 18 I 132 and F 18 I 100. The TSLs generated from F 18 I 132, and the

F 18 I 100 contain event patterns merged from the 364 subsequences and the common se-

quences. That explains why an event pattern from F 18 I 100 matches with a corresponding

longer pattern from F 18 I 132. Thus the reason that only 33 event patterns are built-in

F 18 I 100 is that the randomly selected 43 events with non-empty tangling lists can only

generate 33 subsequences patterns.

We also note that even though F 18 I 132 and F 18 I 100 have the same set of events

with non-empty tangling lists, the time for building their TSLs varies much. That is because

the size of an event set influences the TSL build time. Adding events with an empty tangling

list still takes time.

4.5.4. Performance Comparison with FreeSpan/PrefixSpan Algorithm

We download two PrefixSpan programs in Python from Github [6] [4]. We also imple-

ment TSM in Python. We run the three programs under F 18 I 132. The two downloaded

40

programs crash before completion.

To get some useful results from the programs, we extract smaller test cases to evaluate

the performance of PrefixSpan and TSM. We randomly select three-event sequences from

the 18 sequences and extract 5, 10, 15, and 20-25 events from the beginning to create new

test sets. Figure 4.1 shows the execution time of the three programs, i.e., two downloaded

PrefixSpan programs and our TSM implementation.

Figure 4.1. PrefixSpan vs. TSM: execution time comparison

From Figure 4.1, we can see PrefixSpan1 takes 200 seconds when the size of the test

set is 21, and PrefixSpan2 takes 181 seconds for 25 events. In contrast, TSM’s execution

time is always less than 0.01 seconds. The figure shows the size of the event set increases, the

execution time of PrefixSpan increases sharply, making PrefixSpan unsuitable for processing

the overwhelming number of events on production HPC systems.

PrefixSpan1 and PrefixSpan2 extract 751,615 length-1 to length-21 subsequences.

41

Then we use a subsequence filtering program to remove subsequences that are too short or

do not include untangling events of interest. Two long event patterns are produced, one

of which is length-12, and another is length-13. TSM generates the same event patterns.

Therefore, TSM is functionally correct but much more efficient than PrefixSpan.

As the two downloaded PrefixSpan programs crash even for a small event set, we

implement PrefixSpan in Python by ourselves. We run our PrefixSpan code for F 18 I 132,

and it takes 1.34 seconds to generate all length-2 subsequences and 245 seconds to gener-

ate all length-3 subsequences. We ran the program for 15 minutes hoping to get length-4

subsequences. However, the results did not show up, and so we terminated the execution.

4.5.5. Comparison with FP Growth

FP growth method [76] mines frequent pattern by using a tree structure which can

avoid using the apriori method and reduce execution time.

We conduct an experiment to study the FP growth method. We use a Python-based

FP growth library [1] and two test cases from event lists produced by SLEBD.

The first test case has three log files collected from three nodes, and each file has 50

events. We use the FP growth method to mine frequent patterns in this case by assigning

the frequent threshold as 3. The execution time is 3.5 seconds, and it mines 15,365 frequent

patterns in total.

The second test case also has three files, and each file contains 100 events. This time

FP growth crashed.

The experimental results show FP growth is more efficient than the Apriori algorithm.

However, we find FP growth has the following issues.

1. FP growth does not care about the ordering between learned items, which means

the frequent patterns learned by FP growth do not have sequential/order information.

2. FP growth scans the mining object sequences first and creates an FP-tree. Each

frequent item from the mined object appears in at least one node in the FP-tree. FP growth

generates nodes in the FP-tree according to the occurring count of each item with one

frequent prefix in the same mined object sequence. That means if the number of frequent

42

items and the number of mined objects is large, there could be a large number of branches

in the FP-tree.

3. Each time FP growth generates a frequent pattern, it searches from the FP-tree’s

root node. If the number of frequent items is large, the depth of FP-tree is also deep, which

makes the search time longer.

We cannot use FP growth in our research because the HPC system events are executed

in approximate order. The sequence mining method used on the SLEBD converted event lists

is to find such execution orders or sequences. FP growth could not produce sequential/order

information.

4.6. Summary

As we find, the system events appear in approximate orders. Some events may repeat

several times in a period, which makes sequence mining non-trivial.

The main difference between TSM and the apriori-based method is TSM’s execution

time depends on the number of system events, while the execution time of Apriori-based

methods depends on the length of possible event sequences. The repeating events in the

event lists make the Apriori-based algorithms’ execution time become longer.

TSM uses topology information to grow longer sequence patterns where events of

interest are included. TSM is computation and storage efficient and suitable for detecting

sequence patterns with long chains from subsequences, which are generated by multiple steps

of sequence mining. TSM scans events only once, which assures that its performance is not

affected by the number of events. TSM can generate all sequence patterns much more quickly

than other existing methods.

TSM achieves a better performance than FreeSpan and PrefixSpan. However, if users

expect to count the total number of times that all subsequences occur, TSM may not be

highly efficient. On the other hand, if the goal is to perform sequence mining on system events

to discover the relationship among events and the execution sequences of a system, TSM is

a good choice. With the generated sequence patterns discovered, detecting anomalies in the

43

execution sequences become effective. Furthermore, event prediction and system behavior

analysis becomes feasible.

44

CHAPTER 5

ANOMALY DETECTION AND EVENT PREDICTION

5.1. Introduction

SLEBD models and characterizes millions of messages from system logs by using

only a limited number of event blocks. System operators can concentrate on analyzing the

distribution and dynamics of EBs, which facilitates their understanding of system behavior

and identifying anomalous behaviors. By analyzing the event block sequences, we can detect

several kinds of anomaly events which have a relationship with one type of event pattern.

Recurrent Neural Network (RNN) [33] is an artificial neural network. The output

of an RNN depends not only on the current input but also on the previous outputs. This

feature makes RNN applicable to a variety of applications, such as speech recognition [79]

[80], handwriting recognition [21] [69], and text recognition [68] [26]. Recurrent Neural

Network (RNN) is capable of learning and predicting sequential data.

Long Short Term Memory (LSTM) [52] is an RNN in which some important input

data, even far away from the current input, can affect the output. When analyzing long

sequence such as long articles, RNN’s performance on connecting previous information to

the present task is not as good as that of LSTM. Because there are gaps between the relevant

information and the locations where it is needed in log articles, RNN may not be able to

learn the connections between the important information. In contrast, data that is close to

the current input but is less important may not affect the output.

When we study LSTM, we explore a case study on using LSTM to cluster commercial

records of customer reviews [83]. Each review is a sentence which has around 8 to 1000 words,

and in the original records, there are 11 clusters. We selected the most seven frequent occurs

clusters and select the top 4000 frequent words as interesting words and divide the whole

commercial review set into two sets, learning set and testing set. And we generated an LSTM

model from the learning set. Then use this LSTM model to predict the cluster of each review

in the testing set. Their prediction accuracy is always more than 88%. From this experiment,

45

we’ve found LSTM can cluster long sequences by analyzing items in a designated range from

these sequences and able to predict a future event belongs to which event.

This LSTM case inspires us. From SLEBD experiment we can find, all the anomalies

which SLEBD has detected are related to one specific Event Block. This feature provides

us an opportunity to cluster event sequences before all such kind of Event Block/anomaly’s

occur position.

In our experiment of learning and testing LSTM models, we encounter a problem.

All the sequences we have collected are constituted by system events before success or failed

event which position in one Event Block list is already detected. However, HPC system

events are real timely generating like a stream. Even though SLEBD can collect single line

event log and extract Event Block lists from streaming system logs, it cannot predict if one

system event is going to happen in the future. So even we can learn LSTM model for one

specific system event, we are still unable to predict if this system event is going to happen

in the future, and we also don’t know which system event sequence we should use to map

with this system event’s LSTM model.

To solve this problem, we create a testing flow combining SLEBD Event Block pat-

terns, TSM sequence mining results, and LSTM models. This testing flow can help us to

predict one specific event’s occurrence in the future and use the LSTM model to predict its

execution success. In this chapter, we will discuss our method.

I use Python deep learning library Keras[9] to create our LSTM model from HPC sys-

tem event sequences. As I have found, deep learning algorithms such as RNN require a large

number of floating-point computations and require extensive computing resources. Currently,

software-based RNN models created by Keras or Tensorflow [15] running on general-purpose

processors like CPU or GPU cannot achieve high efficiency. In my experiments, one simple

model training which training set have only 779 sequences will cost more than 2 minutes to

complete.

The RNN algorithm is complicated, involving multiple types of floating-point compu-

tations. With its wide application, especially in real-time and embedded environments, it is

46

imperative to accelerate its execution while limiting energy consumption. There have been

many studies that apply GPUs to accelerate deep learning computation [91] [77]. However,

the high energy consumption makes them not cost-effective.

Different from CPU and GPU, Field Programmable Gate Array (FPGA) provides

a low-power computing environment with massive reconfigurable logics. One FPGA may

contain hundreds of thousands of Look Up Table (LUT) logic slices, thousands of Flip-flop

units, hundreds of DSP units, and multiple megabytes of on-chip Block RAM (BRAM).

LUTs can be configured to implement any combinational logic functions and logic-and-

arithmetic operations. DSP units on an FPGA are suitable for floating-point computation.

Moreover, multiple tasks can be executed on an FPGA, and they receive input data via the

dataflow pipeline[7] [71]. These distinct features make FPGA well suitable for accelerating

deep learning applications.

5.2. Anomaly Detection Using Event Blocks

Here we present the benefit of using event blocks for anomaly detection.

5.2.1. Incomplete Event Block Anomaly

Every line pattern that is included in an EB pattern has a tag to identify it belongs to

which EB pattern. When extracting the EB list, if SLEBD detects any line pattern happens

individually instead of in an EB, this EB is not completely generated. Then SLEBD considers

this case as an anomaly.

The cause of such type of anomaly can be that procedure is not executed completely,

or there exist errors in the generation of log messages, or some other system or kernel level

error happens.

We analyze the anomalies detected by SLEBD from the Mutrino logs. Here is an

example.

Block 10 is consisted of two line patterns: LinePattern 255 and LinePattern 256:

[LP 255]: hub 1-0:1.0: USB hub found

[LP 256]: hub 1-0:1.0: 2 ports detected

47

Example 5. Block 10 Example

In the 300-day Mutrino logs, SLEBD finds Block 10 appears 3,665 times and detects

39 times of anomalies are related with Block 10. A typical anomaly is as follows.

[LP 735]: /scsi/) failed: hub 1-0:1.0: USB hub found

[LP 736]: Not a directory

[LP 256]: hub 1-0:1.0: 2 ports detected

Example 6. Sequence [LP 735, LP 736, LP 256] Example

This sequence occurs 5 times. LinePattern 256 supposed to belong to Block 10 but

appears individually. SLEBD reports an anomaly. By searching the event extraction record,

we have detected that LinePattern 735 occurs 6 times and LinePattern 736 occurs 5 times.

Thus, part of LinePattern 735 is not generated completely. LinePattern 735 contains part

of LinePattern 255. We then check the related line patterns, and find LinePattern 502 is as

follows.

[LP 502]: udevd-work[5561]: rename(/dev/scsi/.tmp-b8:128, /dev/scsi/) failed:

Not a directory

Example 7. LinePattern 502 Example

LinePattern 502 occurs 587 times and it always happens close to Block 10. Here is

the symptom of the anomaly.

1. LinePattern 736 contains part of LinePattern 502 (Not a directory)

2. LinePattern 735 contains part of LinePattern 502 (”/scsi/) failed:”) and LinePat-

tern 255 (”hub 1-0:1.0: USB hub found”)

Compared to LinePattern 502 and Block 10, LinePattern 735 and LinePattern 736

occur less often and their appearance is erroneous. SLEBD detects the anomaly.

This type of mixed-message anomaly happens on many nodes in the 300-day system

log that we test. Eighteen event block patterns have the mixed-message anomaly, and

SLEBD detects 197 such anomalies. One possible explanation of these anomalies is that

messages coming from different components on a node causes a race condition for syslog to

record them correctly.

48

Additionally, SLEBD detects system behavior that is different from the normal. For

example:

[LP 558]: waiting for MySQL to accept connections

[LP 559]: Checking SDB version

[LP 560]: SDB version up-to-date (4.10.14)

[LP 561]: Initializing SDB Table

Example 8. Block 95 Example

[LP 558]: waiting for MySQL to accept connections

[LP 1155]: Not initializing SDB on backup sdbnode (65)

Example 9. Sequence [LP 558, LP 1155] Example

In this case, messages in Block 95 do not have the mixed- message anomaly. Block 95

occurs 61 times, and the sequence [LP 558, LP 1155] appears five times. SLEBD detects that

LinePattern 558 appears individually instead of being part of Block 95. Block 95 indicates

SDB was successfully initialized. However, the sequence [LP 558, LP 1155] indicates the

SDB initialization failed.

5.2.2. Anomalous EB Length

SLEBD also uses the length of event blocks to identify anomaly detection. For exam-

ple, Block 72 contains two messages. In the dataset that we test, Block 72 occurs 167 times,

and it contains two messages in 166 times. In one case, however, one time one Block 72

has 852 messages, i.e., from Line #1514 to Line #2365. This situation is an anomaly as

the length of this event far exceeds the average length. Certain error happened during that

event causing more messages to be included in the anomalous event block.

5.3. Clustering Sequences by Using LSTM

5.3.1. Collecting Event Sequences and Creating Training/Test Sets

As we have introduced in Chapter 3, after SLEBD extracts Event Block patterns and

stores these patterns in the Event Block Database (EBD), it can extract Event Block lists

from original system logs. When SLEBD is extracting Event Block lists, it also generates a

49

list indicating all anomalies occurring in all Event Block lists and indicate this Event Block

pattern related to which anomaly event.

First, we need to assign an Event Block — for example, Block 10 to be our research

object. Then we will find all Block 10’s success positions and anomalies which are related

to Block 10’s occurrence positions from Event Block lists and anomalies list. We extract

all Event Blocks in a designated range before these positions. In our experiment, the prior

range is 500. These event sequences are grouped into two clusters: successful and failed.

The two clusters are not equally sized. For example, Block 10’s successful cluster has

939 sequences but failed cluster has only 39 sequences. To solve this bias, we produce a

dataset by using the SMOTE[28] method to balance the two sets and divide the produced

dataset into a training set (which contains 2/3 of the event block sequences) and a test set

(which contains the rest 1/3 of event block sequences).

In our experiment on Block 10, the training set have 624 successful sequences and 31

failed sequences. We repeat failed sequences for five times in training set. The training set

has 779 sequences.

5.3.2. Generating the LSTM Model

We use python deep learning library Keras[9] to create our LSTM model. The fol-

lowing is our configuration code:

Some event sequences are shorter than 500; we need to pad them into sequences which

have length 500.

We run our code on the learning set and store the trained LSTM model into a .h5[2]

file.

5.3.3. Testing Results of the LSTM Model

We test the LSTM model stored in the .h5 file with our testing set to test how accurate

the LSTM model is. In our experiment on Block 10, the testing set have 312 successful events

and eight failed events. The testing result is like this:

50

Figure 5.1. Keras configuration code

Figure 5.2. Keras LSTM experiment results in Block 10 sequences

Seven out of eight failed sequences have been successfully predicted. And 303 out of

312 success events have been successfully predicted. Our total accuracy has achieved 96.88%.

We also conduct the clustering and testing experiment on Block 181 and Block 130,

both of which experiments can reach more than 97% accuracy.

51

5.4. Predicting Anomalies from Streaming System Logs

5.4.1. Extracting Critical Flow from Event Block Sequences by Using TSM

In Section 5.3.1 we describe how to collect system event sequences in a range before

one specific system event’s succeed or failed position from Event Block lists. We extract

some sequences to create an LSTM model learning set. As our study on HPC system has

found, most HPC system operations always have multiple steps, and these operation steps

are following a principle. That means even the sequences in learning set are not the same;

there are still some critical events which are occurring followed by a step-by-step sequence.

For example:

LSTM Learning set sequences :

Sequence 1 M 0,M 1,M 2.M 100.M 200.M 300.M 400.M 498

Sequence 2 M 1,M 99,M 100.M 200.M 300,M 301.M 400,M 401.M 498

......

Sequence n M 0,M 1,M 100.M 199,M 200.M 300.M 400,M 450.M 498

Table 5.1. ONE SPECIFIC EVENT’S LSTM LEARNING SEQUENCES

Table 5.1 is an example of one specific event’s LSTM learning set sequences. The

sequences are not the same. But we can still use TSM to learn a commonly occurring

sequence pattern:

Critical workflow M 1,M 100,M 200,M 300,M 400,M 498

Table 5.2. CRITICAL WORKFLOW LEARNED FROM TABLE 5.1

We call such a step-by-step sequence which have these critical events as this specific

52

system event’s “critical workflow.”

To extract critical workflow by implementing TSM on the LSTM learning sequence

set, we should get the first summary which events are occurring commonly in all or most

of the sequences. And we can make TSM grow sequence patterns on these common events.

With very simple post-cleaning, we can easily find a critical workflow from these TSM-grown

sequence patterns.

5.4.2. Realtime Monitoring and Event Occurrence Prediction

One specific system event will have at least one critical workflow; we will load these

critical workflows to memory. When SLEBD is analyzing streaming system log lines, we

run a system event supervisor. If one specific system event’s critical workflow’s combination

fully occurred, we can predict such a specific system event is going to occur in the future,

no matter success or fail.

5.4.3. Predicting Successful Execution of Events

When we can predict one specific system event is going to occur in the future, we can

collect the event sequence, which mapping the first event to the last event of this specific

event’s critical workflow. Then we can use this specific event’s LSTM model to test this

event sequence and predict if this specific event is going to be successfully executed before

it occurs.

5.4.4. Preliminary Experiment Results

As we only learned LSTM for 3 Event Blocks: Block 10, Block 181, and Block 130

from their 300 days of system logs. We were just done simple testing on these three LSTM

models to verify if our idea works. The logs from day 301 to 310 are our testing objects. We

use the EB patterns which learned from the first 300 days to extract EB lists from these ten

days of syslog files, then do our research on the 3 Event Block we mentioned above.

In this period of 10 days, the three Event Blocks’ occurring count is like this:

As the log messages are already included in the system log files, we can very easily

extract Event Block lists from this period’s log files and summarize each Event Block’s

53

Block name Success Fail

Block 10 16 1

Block 181 10 0

Block 130 8 0

Table 5.3. THREE EVENT BLOCKS’ OCCURRING COUNT

occurring count. We use a script to simulate generating these log messages real-time and use

these three Event Blocks’ critical workflow to predict if these three Event Blocks are going to

happen shortly. If our test flow predicts one Event Block is going to happen, our program will

use that Event Block’s corresponding LSTM model on the event sequence, which mapped by

the critical workflow to predict if that Event Block will successfully execute. Our experiment

result shows the prediction accuracy on both success and failure events are all 100%.

5.5. Accelerating RNN on FPGA with Efficient Conversion of High-Level Designs to RTL

After completed the research of detecting anomaly events from HPC system log, I

thought about using FPGA to accelerate the RNN algorithms calculation performance. As I

have found, manually implementing Python-based RNN algorithms into Register Transistor

Level (RTL) design is very time costing. Even a hardware engineer has designed an RTL code

for one specified RNN algorithm, his manually implemented design is not easy to change,

and he may need to rewrite a new RTL design if his original RNN algorithm has very slightly

changed.

Meanwhile, FPGA programming is different from CPU and GPU program. Writing

Register Transistor Level (RTL) codes requires a knowledge of how the sequential logic circuit

works and be familiar with the resources on the FPGA platform. So, RTL programming

for implementing RNN algorithms is very time consuming and error-prone. To make things

worse, even a slight change in an RNN algorithm may lead to rewriting a large portion of

the RTL design. High-level programming languages, on the other hand, have been widely

used to write machine learning (including deep learning) applications. For example, deep

54

learning libraries in Python, e.g., Tensorflow [15], PyTorch [11], Keras [9], and Numpy[19],

make application development highly efficient.

In this step of research, we present a design flow by which high-level RNN imple-

mentations can be converted to RTL designs efficiently and automatically. We leverage a

popular RNN development approach in which an RNN gate is declared as a Numpy array

type for a two-dimensional floating-point matrix. A major benefit of this approach is that

it can overload some common operators and enable developers to conduct efficient matrix

and vector operations instead of handling single elements. We follow a similar development

paradigm and propose a new design flow in which developers can design and verify their

RNN implementations in Python and convert their implementations to RTL designs auto-

matically. Changes can be made to high-level programs, and RTL designs are regenerated

quickly. The produced RTL design describes an RNN algorithm in-circuit logic without the

need of assistance from SOC run on ARM cores or Python program run on CPU. Most

importantly, the RTL design can realize the dataflow pipeline and parallel computing at low

power.

The experiment shows the automatically generated RTL deployed on FPGA can

achieve seven times faster than Python code running on CPU, and their calculation result is

perfectly matched. Which proved using a script to automatically generate RTL based RNN

design can help to speed up RNN calculation performance.

Figure 5.3. RNN and Feed-Forward Neural Network

55

5.6. RNN and LSTM Background

5.6.1. RNN

Recurrent Neural Networks (RNNs) were the first Neural Networks which designed

to deal with sequential data. Unlike the Feed-Forward Neural Networks [78], RNN passes

the previous outputs of hidden layers back to the current input. Figure 5.3 illustrates the

structure of RNN and Feed-Forward Neural Networks.

For an input sequence X = (x1, ..., xt), the hidden layer H= (h1, ..., ht) outputs a

vector sequence Y = (y1, ..., yt) which can be calculated as:

(5.1)
ht = δ(wxhxt + whhht−1 + bh)

yt = whyht + by

Where wxh is the weight matrix connecting the input layer and the hidden layer,

why is the weight matrix connecting the hidden layer and the output layer. whh is the

recurrent matrix connecting the hidden states in two consecutive time steps’ hidden states,

e.g. ht−1and ht. bh and by are the biases vector of the hidden and output layers. δ is the

hidden layer activation function, e.g., Sigmoid or Tanh.

5.6.2. RNN Training

RNN training procedure has three main sections:

1. Forward propagation;

2. Backward propagation through time (BPTT);

3. Weight matrix update.

To train an RNN model, we need to provide a golden result sequence that contains

the result that the RNN model is expected to predict.

Forward propagation

The forward propagation step generates an output sequence Y = (y1, ... , yt) using

the input sequence X = (x1, ... , xt). The main idea of forwarding propagation is introduced

in Section 5.6.1.

56

Backward propagation through time

In Forward propagation, the prediction result may deviate from the expected result.

After the sequence is processed, it is helpful to go back through the neural network to find the

partial derivative of error between the predicted result and the expected one. The partial

derivative is then removed from its corresponding weight matrix to reduce deviation for

processing future sequences.

At time step t, the derivate dt of the predicted result yt from the expect result ot can

be calculated as:

(5.2) dt = ot − yt

The error derivative δ at time step t is:

(5.3) δt = dt ∗ yt ∗ (1− yt)

where yt ∗ (1− yt) is the partial derivative f ′(x)
f(x)

of Sigmoid.

Starting from the last time step and backward to the first time step, at each time

step we calculate the error derivative δ and update the weight matrix and bias as:

(5.4)

whh+ = δt ∗ ht−1

wxh+ = δt ∗ xt

b+ = δt

Weight matrix update

After the backward propagation step is completed, the weight matrix is updated

following a learning rate as:

(5.5) whh+ = whh ∗ learning rate

57

5.6.3. Long Short-Term Memory

As a recurrent neural network architecture, we study Long Short-Term Memory

(LSTM) and accelerate an LSTM model on FPGA. In this section, we briefly describe how

LSTM performs forward propagation.

RNN can learn from inputs before the current time. Traditional RNN has one input

gate and one output gate. Thus, it cannot learn from inputs that are far back in time. Long

short-term memory (LSTM) has two more RNN gates called cell gate and forget gate. The

four RNN gates together form an LSTM cell. Figure 5.4 shows the structure of an LSTM

cell.

Figure 5.4. Standard LSTM cell architecture

At time t, these gates produce outputs as follows :

58

(5.6)

it = δ(wxixt + whiht−1 + bi)

ft = δ(wxfxt + whfht−1 + bf)

ot = δ(wxoxt + whoht−1 + bo)

at = tanh(wxaxt + whaht−1 + ba)

ct = ft ∗ ct−1 + it ∗ at

ht = ot ∗ ct

yt = softmax(whyht + hy)

Where ft, it, ot, at, ct, ht and yt represent the output vectors of forget gate, input gate,

output gate, current input state, cell state, hidden state, and output value at time step t,

respectively. Operations “+” and “*” represent element-wise addition and multiplication or

Hadamard product of two vectors.

Note that the preceding logic gates perform floating-point matrix or vector operations.

Both RNN and LSTM involve the following floating-point computations.

Addition, subtraction, and multiplication functions of floating-point scalars.

Floating-point matrix multiplication.

Activation functions, including Sigmoid; Tanh; partial derivative of sigmoid and more.

The deep learning libraries in Python allow application developers to use and or design

RNN and LSTM models in Python. A single line of code in Python, for example, multiplying

two matrices could lead to hundreds of floating-point computations. How to implement and

accelerate deep learning models and applications efficiently on FPGA, which is equipped

with reconfigurable logics such as lookup tables instead of general-purpose processor cores

is challenging

5.7. Accelerating Floating-Point Computations on FPGA

As floating-point operations are fundamental to deep learning applications, we first

investigate how to accelerate floating-point computations on FPGAs.

59

5.7.1. Floating-Point Calculation Feature IP

Modern FPGAs are usually equipped with Intellectual Property (IP) cores [18] for

integer and floating-point calculation. Those IP cores can be configured to perform various

operations, including addition, subtraction, multiplication, division, comparison, and expo-

nential function. We can declare the calculation device using the IP cores in the register-

transfer level (RTL) design, and we can configure their latency.

Both calculation devices declared from the same IP will have the same type of data

I/O handshaking protocol. For example, when inputting one data into the calculation device,

the part of the input is the master part. The part of receiving, or our calculation device,

is the slave part. When the master part sees the slave part raise its INPUT READY signal

means it is ready to receive new incoming data. The master part will write the input data

to the slave part’s data input port register and raise the slave part’s INPUT VALID signal.

If both the INPUT READY and INPUT VALID signals are all high, both the master and

slave parts can think the design has successfully transferred one input data and the slave

part can begin its calculation.

In a sequential logic circuit, all write data or signal values are using a blocking as-

signment to assign a value to the registers. The Blocking assignment will store a data value

in flip-flop first and release to designated registers in the next edge of the rising or downing

of the clock signal. And one data or signal assigning operation must be placed in only one

process and triggered by one same group of control signals listed in this process. That means

no matter we need to calculate how much data, a calculation device can only receive one

input data in one clock cycle.

5.7.2. FPGA Help to Accelerate Floating-Point Calculation Performance

The calculation commands are executing sequentially in the high-level designs. That

means before the program receives the current command’s output data, it will not execute

the next command or move forward to the next loop body and input the next data, even

though the current command has no data dependency with the next command. However, we

can eliminate this situation can by using FPGA. As we have found, when we input one data

60

Figure 5.5. The waveform of floating-point data adder device’s data flow

pipeline example

into the calculation device, the device will not lower its INPUT READY signal immediately

in the next clock cycle. That means the calculation device is capable of receiving multiple

input data, even previous input data’s calculation results are not output. Such characteristic

inspired us to make FPGA accelerate floating-point calculation in two ways:

Data flow pipelining

As we mentioned, in an RTL design input master part can keep inputting data to the

slave device in every clock cycle if the slave device does not lower its INPUT READY signal.

And at the device’s result outputting side, the device will become the master part, and our

RTL design will become the slave part. As we have found, the calculation device’s capacity

is limited. A device can keep receiving data in a continuous limited number of cycles, but if

the slave does not receive the output data, the device will keep holding the current output

data, keep its OUTPUT VALID signal high, and reject to receive new input data (lower

its INPUT READY signal). In other words, if we make our design always ready to receive

output data from the device, we can keep input data in every cycle and receive output data

in every cycle shortly, looks like data is flowing as pipelining

We can estimate the performance of the data flow pipeline like this: imagine a floating-

point adder device’s calculation latency is 12 cycles. That means if the device receives data

at the N-th clock cycle, we can expect to receive the calculation result at the (N+12)-th

cycle. If we have 16 pairs of floating-point numbers need to add. And we make our design

61

fully pipelined, inputting and receiving results from the device, theoretically, we can receive

16 adding results in just 28 clock cycles. Figure 5.5 is showing the waveform of such a data

flow pipeline example.

Parallelism Computing

In the software level, calculate operations are executed sequentially, even though two

operations have no data dependency. However, in the sequential logic circuit, every device

has its driver process, and all such processes are triggered every clock cycle. That means we

can make operations that have no data dependency execute at the same time on FPGA. One

RTL design can accommodate numbers of the same type of calculation device. For example,

we can create an RTL design that has four input ports and two output ports and its feature

is doing multiple for each pair of input data. At the device input side, the input data master

can input two pairs of data at the same time. And at the device output side, the output

data slave can receive two output data at the same time. Figure 5.6 is showing such RTL

design.

Figure 5.6. Parallelism Computing RTL design

5.7.3. Calculate Operations Packaging

As we introduced at Section 5.6, RNN usually doing floating-point calculations on

vectors, not only one element. For example, we need to use the activation function Sigmoid

to act on a 2-D matrix. The Sigmoid function can be described as:

62

(5.7)
1

1 + e−x

Imagine the size of this 2-D matrix is N*M, means we need to input N*M of floating-

point numbers xij into the exponential device to calculate N*M times of exij . Then go to the

next step. We package all those operations related to Sigmoid into one calculation device to

make such a procedure running in the dataflow pipeline .

To calculate the Sigmoid result from one input data x, we need three steps of calcu-

lation:

1. Calculate x’s exponential result e−x;

2. Add e−x result with 1.0;

3. Divide (1.0 + e−x) with 1.0.

That means we need three floating-point calculation devices: exponential device, add

device, and divide device.

According to IEEE 754 standard [20], a single-precision 32-bit floating-point number

has one sign bit, 8 bits to represent the exponent number and 23 bits to represent the

significand precision. That means for an input number x; we can get its negative value -x

by flip its 32-nd bit and don’t need to multiply it with -1.0.

We use combinatorial logic to implement the Sigmoid device. Input data x will be

first input to the exponential device, exponential device’s data output port will be connected

to add device’s input port directly, exponential device’s OUTPUT VALID signal will be

connected to add device’s INPUT VALID signal and add device’s INPUT READY signal

will be connected to exponential device’s OUTPUT READY signal. And the connection

between add device to divide device is in the same way. This feature will guarantee the

previous device’s output result can be received by the next step device immediately.

The adding device and the dividing device have two input ports. We also need to

input 1.0 to the other input port. We declared a 32-bit register to store parameter 1.0’s

binary format 0x3f800000 and connect this register to add and divide devices’ other input

63

port. The output side of the dividing device will become the whole Sigmoid device’s output

side. Figure 5.7 is showing the structure of the packaged Sigmoid device.

Figure 5.7. Packaged Sigmoid device with result address FIFO

We can use the similar way to design combined operations such as Sigmoid function’s

partial derivative:

(5.8) x ∗ (1− x)

or tanh:

(5.9)
ex − e−x

ex + e−x

or a multiply-add combined operation to handle weight matrix update by learning

rate operation which showing in function (5.5).

Sometimes we need an internal FIFO data register to store input data. For example,

in the Sigmoid function’s partial derivative function(5.8), the whole device has only one input

port to receive input data x. We must input x into a subtract device first to calculate (1 - x),

and we need to wait for the subtract device’s calculation latency to its output. To guarantee

data flow pipeline and input x with its corresponding (1 - x) result into multiplication device,

we need to store x into FIFO at the same time inputting x into subtracting device.

64

5.7.4. Performance Evaluation

As we mentioned, Xilinx IP based floating-point calculation devices’ latency can be

configurated. For example, the floating-point add device requires 2 of DSP48E1 slices[59],

and the default latency is 12 cycles. The exponential device requires 1 of DSP48E1 slice in

Medium Usage mode, and the default latency is 21 cycles. The dividing device must use

LUT logic to implement, and default latency is 29 cycles. So we can accurately evaluate each

device will cost how many resources on the FPGA chip and its total latency. For example,

our Sigmoid device requires 3 DSP48E1 slices, and its default total latency is 62.

We also test the performance of the RTL implementation, which is generated from

Vivado HLS[17]. Vivado HLS tool do not support calling the exponential function from the

C math library or allow the user to designate using Vivado exponential IP. So, the above

works are all using a piecewise linear approximation of nonlinear function (PLAN) approach

to do the exponential calculation. For example, Taylor’s Formula:

(5.10) ex ≈ 1 +
n∑

i=1

xi

i!

As we find, to achieve exponential calculation’s accuracy, the upper limit n in Taylor’s

formula must be at least 30. We tried to implement exponential calculation function in the

C program and generate RTL design by using Vivado HLS, the resource usage of the RTL

design is like this:

From Table 5.4, we can find the exponential device’s RTL, which is generated by

Vivado HLS requires more resources and has a longer latency than the exponential device

which is implemented using the floating-point IP core in our sigmoid design (DSP: 1 vs. 5;

Latency: 21 vs. 755).

5.7.5. Address FIFO in Calculation Package

If we make our RTL design drive the calculation devices running in full data flow

pipeline mode, our design will receive output data in every cycle. The RTL design must

make sure to write the output data into the correct register address. Our solution is to

65

Resource Number

DSP48E1 slice 5

FF units 1402

LUT logic 2473

Latency 755

Table 5.4. RESOURCE USAGE OF THE EXPONENTIAL CALCULA-

TION DEVICE RTL GENERATED FROM VIVADO HLS

add an address FIFO into each calculation device. The FIFO’s WRITE signal is combined

with the device’s INPUT VALID signal, and the FIFO’s READ signal is combined with the

device’s OUTPUT READY signal. We make our RTL design write each input data’s result

destination register address to the address FIFO in the same time when inputting data and

when a device has output result, the result’s corresponding register address will be pop out

from the FIFO.

FIFO’s internal memory is limited. If the RTL design keeps writing the address into it

could make the FIFO written full, which could make the device unable to receive new input

data. Because we can evaluate the devices’ performance, we can easily solve this problem

by extending FIFO’s internal memory length a little larger than the device’s anticipated

latency. For example, if one device’s latency is ten cycles, means a result will be output ten

cycles after its corresponding input data been accepted by the device, and its corresponding

address will be pop from FIFO too. If we make the address FIFO’s internal memory larger

than 10, e.g., 16, will make the FIFO impossible to be written fully. This solution can

achieve a balance between resource and performance because too large FIFO memory will

waste FPGA’s on-chip BRAM.

66

5.7.6. Vector Operating Device

In our research, we package operations in packages which include address FIFO. Such

packages have different features, but their input and output part data ports and control

signals are similar. The only difference is they could have one data input port (e.g., Sigmoid,

Tanh), two data inputs (multiply, add, subtract) and three data inputs (multiply-add).

One special kind of device is the vector operating device, which is used for matrix-

vector product or finding the maximum value in one vector. These vector operations are

implemented by using the tournament structure[92]. We use the matrix-vector product as

an example. We have two input matrix A[n][k] and B[k][m] and want to multiply them into

another matrix C[n][m]. According to Linear Algebra, each element C[i][j] in matrix C can

be calculated by this:

(5.11) C[i][j] =
k∑

u=1

A[i][u] ∗B[u][j]

We can create a vector product device that has the tournament structure. For exam-

ple, in the first layer, we have 16 of the multiplication device which can input 16 elements

from matrix A[i][:] and input 16 elements from matrix B[:][j]. Their corresponding output

address is line = i and column = j. In the next layers are all add devices, and we have four

layers of such add devices (23 to 20). The 5th layer of this device only has one add device,

and its output is the whole device’s output. Figure 5.8 is showing the vector product device’s

tournament structure.

The example we provided requires 62 (2 * 31) of DSP48E1 slides and its default

latency is 57 (9 + 12 * 4) as the multiplication device’s default latency is nine and add

device’s default latency is 12. If resource allows, such device can be extended bigger, e.g.,

one layer of multiplication device and five layers of add device which can input 32 pairs of

data at the same time.

If the vector’s size is smaller than the vector operating device, we can input 0 to the

rest input ports. If the vector’s size is bigger than the vector operating device, for example,

67

Figure 5.8. Four by four-vector product device using tournament structure

the vector operation device can handle 32 pairs of input, but the vector size is 100, we can

also get the final matrix multiply results in 4 rounds (100/32 + 1).

5.7.7. Calculation Device Input/Output Handshaking Method

As we introduced in Section 5.7.2 data flow pipelining example, the calculation devices

declared from Xilinx IP cores have VALID-READY handshaking protocol on both the input

and output part. Such handshaking protocol can guarantee correct data transferring between

the master part and the slave part.

Calculation device declared from Xilinx IP cores can receive input data continu-

ously, but their capacity is limited. That means the calculation device may not be able to

receive new incoming data by lower its INPUT READY signal after constantly receiving

several clock cycles of input data. When the input master part found the device lower its

INPUT READY signal, it should pause inputting operation.

As we mentioned in Section 5.7.1, we implement our RTL design in a sequential logic

circuit. Imagine this situation: the master part is going to use a blocking assignment to

write the (i)-th data from total T of data. At (n)-th cycle, the master part sees the slave

part(calculation device)’s INPUT READY signal is high, means the slave is ready to receive

data. Master will use blocking assignment to write the (i)-th data to slave’s data input

68

register and raise the slave’s INPUT VALID signal. At (n+1)-th cycle, the (i)-th data will

be assigned to slave’s INPUT DATA port, and slave’s INPUT VALID signal will be high.

At (n+1)-th cycle, we may meet two kinds of situation:

1. Slave keep its INPUT READY high, this means the slave part successfully received

the (i)-th data. The master part can input the (i+1)-th data to the slave, and the slave’s

data input register’s value will change at (n+2)-th cycle.

2. Slave lower its INPUT READY. Means at (n+1)-th cycle the slave refuse to receive

the (i)-th data. In this situation, the master must keep the (i)-th data reserved and try to

input it to slave until seeing the slave’s INPUT READY signal raise again.

We write a master part input driver to handle the above situations. When deploying

a calculation device to our RTL design, we also declare local address registers to remember

the number of input data. Pseudocode 1 is describing our master part input driver which

operating on one-dimension register. Two-dimension register operations are similar and only

need to add a line-column number judging logic.

At the device’s data output side, the calculation device becomes master, and our RTL

design becomes the slave part. Our device output driver is simple: when the device raises

its OUTPUT VALID signal, RTL design raise its OUTPUT READY signal; otherwise, keep

it low. We drive the device output side like this because we combine the address FIFO’s

READ signal with the OUTPUT READY signal, and if we raise OUTPUT READY early,

the address will be pop out early than the output data

5.8. Designing RNN Using Scientific Computing Library Numpy

Python has a powerful scientific computing library, Numpy, which is very useful in

creating large scale designs that operate on matrix or vectors by converting its mathematics

logic into Python code. For example, the first function of (5.2):

(5.12) ht = δ(wxhxt + whhht−1 + bh)

can be described by using Numpy operations like:

69

Pseudocode 1. Device master part input driver

1 always @(posedge c l k)

2 i f (s l a v e i n p u t r e a d y == 1 && l o c a l a d d r r e g != end num) begin

3 i f (s l a v e i n p u t v a l i d == 1) begin

4 i f (l o c a l a d d r r e g != end num − 1) begin

5 s l a v e i n p u t d a t a <= data [l o c a l a d d r r e g + 1] ;

6 s l a v e i n p u t v a l i d <= 1 ;

7 end

8 else s l a v e i n p u t v a l i d <= 0 ;

9 l o c a l a d d r r e g <= l o c a l a d d r r e g + 1 ;

10 end

11 else begin

12 s l a v e i n p u t d a t a <= data [l o c a l a d d r r e g] ;

13 s l a v e i n p u t v a l i d <= 1 ;

14 end

15 end

16 else s l a v e i n p u t v a l i d <= 0 ;

17 end

(5.13) h[:, t] = sigmoid(wx[:, x].T + wh.dot(h[:, t− 1]) + bh)

Where sigmoid() function is a predefined Python function, wx[hidden][data], h[hidden][sequence],

wh[hidden][hidden], b[hidden][1] are pre-declared numpy.array type two-dimension matrix.

In program level wxh xt is selecting the (x)-th vector from wxh.

Before we use Python and Numpy to create our RNN design, we need to decide some

important values:

70

1. hidden size represents how long a vector in the hidden layer will be;

2. data size represents how many kinds of data an RNN will meet;

3. sequence size represents how long a data sequence is.

These values are easy to understand. In natural language processing research, a com-

mon way of preprocessing and digitalize a context file which has thousands of lines of sen-

tences is using Natural Language Tool Kit (NLTK)[13] to create the top frequent happening

words and create a dictionary. In this dictionary, each word has a unique number represent-

ing itself. Such dictionary size is the data size. Sequence size is the length of the sequence

which RNN need to receive. We need to decide the sizes before we train the RNN model.

However, digitalized sequences’ length could change. We can use the pad sequence[10] func-

tion provided by Deep Learning Library Keras to make our RNN training sequences have

the same length.

Numpy has overloaded the add operator to support adding vectors. However, all

vectors must have the same size. In our example, the variables in sigmoid function which

adding together are the same size (hidden * 1) vectors. If their sizes have a difference, Numpy

will report an error.

5.9. The Idea of Converting Python Commands into RTL Design

After understanding of how FPGA accelerate floating-point calculating and how to

use Python and Numpy create RNN design, we can try to convert the Python-based com-

mands into pure sequential logic RTL based design which can deploy on FPGA.

In Python code (5.13) there are three types of floating-point calculations:

1. Vector add;

2. Matrix multiply;

3. Sigmoid calculation.

We can use the calculation devices we introduced in Section 5.7.3, which function is

addition, vector product and Sigmoid to handle code (5.13).

In Section 5.7.2, we introduced the concept of FPGA based Parallelism Computing

can be implemented between operations which have no data dependency to speed up the

71

calculation. As we can find from code (5.13), some operations do not have data dependency

so that we can schedule code (5.13) in three steps:

1. Use vector product device to calculate wh.dot(h[:, t-1]) as result 1.

Use add device to calculate wx[:, x].T + bh as result 2.

2. Use add device to calculate result 1 + result 2 as result 3.

3. Use the sigmoid device to calculate sigmoid(result 3) and store all result data from

the sigmoid device into the corresponding address at register h[:, t].

As we can find, the two operations in step 1 have no data dependency, and their

calculation is using different devices. So, these operations can be placed in the same step

and parallelly computed. Step 1’s total latency is decided by the operation which latency

is longer. Step 2 requires calculation results from step 1, so step 2 need to wait for step 1

finished. In each step, all device can achieve data flow fully pipelining by using a drive which

is similar to Pseudocode 1.

For temporary results like result 1, we need to store them into temporary registers.

So, besides weight matrix registers, we also need to declare some fixed length temporary

registers using on-chip BRAM. Such registers are reusable and do not need to be very

large but enough to accept the largest output data size from the calculation device, e.g.,

hidden size.

As we introduced, Numpy library can operate on vectors, but all vectors’ size must be

the same. This feature can ensure all RTL level calculation device can have definite input and

output size. So, our RTL design can know when it has to input enough input data or receive

enough output results. In our RTL design, each register has a DATA RECEIVE DONE

signal. In each step, all registers have a condition of rising such DONE signal with received

a designated number of output data from one device. In one step, if all registers which need

to operate in this step have risen their DONE signals, it can move forward to the next step.

For example, in calculation step 1, the vector product device and add device have different

latency. But if temporary registers which storing result 1 and result 2 have risen their DONE

signals, means all result 1 and result 2 have received. The RTL design can move forward to

72

calculation step 2.

5.10. Large Scale Python-RTL Code Conversion

In the above Sections 5.7, 5.8 and 5.9, we introduced the main ideas of designing

RTL level packaged floating-point calculation devices, designing RNN by using Python and

Numpy and converting Python commands into RTL designs. In this section, we will introduce

our approach of converting the whole Python-based RNN design into the RTL code.

In our research, we have created an RTL code automatic generate system. Different

from general propose HLS tools, our system is designed especially for generating RTL level

RNN designs from Python code. In our system, we created an RTL level calculation device

basic operation driver library. Such driver example is introduced in Section 5.7.7 Pseudocode

1, which can make the calculation devices achieve data flow pipeline fully. The user does not

need to worry about how the devices operate in RTL level operates but only focus on their

Python-based high-level design. To generate their RTL level RNN design, the user needs to

provide one configuration file and one design flow file.

The configuration file list all the devices and registers, including each gates’ weight

matrix and temporary registers which are needed in the RNN design. All the registers should

be two-dimension registers with definite line and column sizes. Some important parameters,

such as sequence size, hidden size, and data size also listed here. We can evaluate the num-

ber and type of devices and registers in Python designing section. The overall strategy of

declaring devices and registers is the more calculate operations the user wants to execute

parallel, the more same type devices and temporary registers they need to declare.

With the configuration file, our system will generate the calculation devices and

registers declaration codes in the RTL design file. Device declaration code also includes data

I/O ports and control signal registers and wires.

The design flow file is the RNN operation flow converted from the original Python

design. In Section 5.6.2, we introduced the whole RNN design have three main sections.

The user can split each section into multiple stages. The overall strategy and restraint of

splitting stages are like this. In each stage:

73

1. All calculate operations will execute in parallel;

2. One calculation device can only receive input data from one register;

3. One register can only receive output data from one device;

4. Data dependency can be supported by using temporary registers;

5. Users can resue all calculation devices and temporary registers in different stages;

6. When all registers in this stage receive designated number of output data from the

devices assigned to them, move forward to the next stage.

Our suggestion is to make one line of Python code as one stage. For example, we can

describe the function (5.2) by Python code (5.14):

(5.14)
h[:, t] = sigmoid(wx[:, x].T + wh.dot(h[:, t− 1]) + bh)

y[:, t] = why.dot(h[:, t]) + by

If we make the first line of code (5.14) as stage 0, the second line of code (14) as

stage 1, to meet our restriction of splitting stages, we need two add devices Add 0 and

Add 1 because there are two add operations in the first line of code (5.14). One vector

product device Vmp 0, one sigmoid device Sigmoid 0. We also need to declare three

temporary registers reg 0 to reg 2.

Users can write a Python-based design flow code like Pseudocode 2 to describe all

calculate operations in each stage. Our RTL generate system will analyze this design flow

file and create a list for all devices and registers of their operations in each stage. With

simple pattern recognition functions, our system can also find each device’s input data size

and each register’s data receive size. The device and register operation list are like Table 5.5

and Table 5.6

The sequential logic circuit must assign each register by only one process. Our system

will generate one data input and one data output process for each device based on the device’s

operation list. And generate one data assigning a process for each register. Our design is like

inserting an arbiter state machine in front of all calculate devices and data registers. In our

RTL design, there will be a stage number counter register. The arbiter will decide whether

74

Pseudocode 2. Device calculation flow in two stages

1 s tage = 0

2 Add 0 . opt = (i 0 = ”wx [: , x] . T” , i 1 = ”bh” , o = ” reg 0 ”)

3 Vmp 0 . opt = (i 0 = ”wh” , i 1 = ”h [: , t−1]” , o = ” reg 1 ”)

4 Add 1 . opt = (i 0 = ” reg 0 ” , i 1 = ” reg 1 ” , o = ” reg 2 ”)

5 Sigmoid 0 . opt = (i 0 = ” reg 2 ” , o = ”h [: , t] ”)

6 s tage = 1

7 Vmp 0 . opt = (i 0 = ”why” , i 1 = ”h [: , t] ” , o = ” reg 0 ”)

8 Add 0 . opt = (i 0 = ” reg 0 ” , i 1 = ”by” , o = ”y [: , t] ”)

Device Stage 0 Stage 1

Add 0 i 0 = ”wx[:, x].T”; i 1 = ”bh” i 0 = ”reg 0”; i 1 = ”by”

Add 1 i 0 = ”reg 0”; i 1 = ”reg 1”

V mp 0 i 0 = ”wh”; i 1 = ”h[:, t− 1]” i 0 = ”why”; i 1 = h[:, t]”

Sigmoid 0 i 0 = ”reg 2”

Table 5.5. DEVICE DATA INPUT SOURCE LIST

Register Stage 0 Stage 1

reg 0 Add 0 V mp 0

reg 1 V mp 0

reg 2 Add 1

h[:, t] Sigmoid 0

y[:, t] Add 0

Table 5.6. REGISTER RESULT DATA RECEIVE OPERATION LIST

75

to trigger the device to standby by the value in the stage number register and make the

device receive input data from the designated data register. Data registers’ arbiters make

registers receive the result from a device in the same way.

From Pseudocode 2 we can find line 2 to 5 belongs to the same stage, that means

the four devices are all standby when stage number equal 0. However, operation in code

line 4’s input data are all from temporary registers, so line 4’s calculation will not execute if

reg 0 REC DONE and reg 1 REC DONE signals are not all high yet.

5.11. FPGA-Based RNN Experiment

5.11.1. Experiment Case

After finishing the RTL design of all calculation devices and create the RTL level RNN

design generate a system, we tried to use a medium-size real-world RNN design to test our

idea. We download our original Python RNN design is from [8], a basic tutorial to help the

reader to have the first step understanding about how RNN works. This RNN design contains

both forward propagation, backward propagation, and matrix update sections. Comparing

with our previous large scale natural language commercial complaint data clustering LSTM

design [83] we find this tutorial code contains all basic calculation methods which RNN uses.

The only difference is this tutorial code is smaller.

This RNN design program requires two 8-bit integer numbers a and b which range

is from 0 to 127 as RNN inputs. The RNN program’s output c is the predicted a and b’s

adding result, which c’s range is from 0 to 255, and one predicts overall error which compared

with a and b’s real adding result. This RNN model treats both a, b, and c as 8-bits binary

sequences, so c’s each bit is predicted by a and b’s current bit’s and previous bits’ input

values.

In the RNN program, the designer randomly generates 10,000 pairs of input data. The

RNN program will run 10,000 rounds, and each round will have forward propagation section

to predict the output result c, then run backward propagation to get the partial derivative of

the error between predicted result with expected result and finally use backward propagation

section’s update matrix to multiple learning rate to update all gates’ weight matrix. After

76

running the Python program we can find in the beginning 5,000 rounds there may have

mispredicted results and overall error values are all greater than 1.5, but in the last 4,000

round the prediction results are almost all correct, and the overall error values are all less

than 0.5. To test our RTL design’s correctness, we recorded all the input data predicted

output data and the overall error in all rounds.

5.11.2. Our Configuration Files for RTL Generate System

In Section 5.8, we introduced three important variables in RNN design. In this RNN

design, the data size is two because each bit of binary number can have only two possible

values, 0 and 1. The sequence size is eight because the python design treats the input data

a and b and output data c as 8-bit binary sequences. The hidden size in the original design

is 16. In the original RNN design there are 3 gates, input gate [2][16], hidden gate[16][16]

and output gate[16][1], in original design there also have same size of update matrix for each

gate. The learning rate in this RNN design is 0.1.

We also declared three of 16*16 32-bits temporary registers in our configuration file.

In our design, we have declared two add devices, two multiplication devices, one sigmoid

device, one 16 by 16 vector product device, one subtract device, one derivative device, one

multiply-add device, and one floating-point number rounding device

As the forward propagation section in the original RNN design has five main com-

mands, we divide the forward propagation section into five stages. The backward propagation

section has three main commands, but as we have two additional devices, we can make two

commands which do not have data dependency execute in the same time by placing them in

the same stage. So, we divide the backward propagation into two stages. As there are three

gates and we only declared one multiply-add device, the matrix update section would have

three stages.

5.11.3. Experiment Setup

We generate our RTL level RNN design file in Verilog. As the RTL design file been

generated, we used Microblaze, a reduced instruction set computer (RISC) system to wrap

77

our RNN design. Our input data is stored on the desktop; as FPGA and desktop are in

different clock areas, we also declared two data FIFO to buffer I/O data. We synthesize the

whole design into a bitstream by using Vivado 2018.1 version and deploy the bitstream file

on Xilinx VC707 board which is using Xilinx Virtex7-485t FPGA chip to test our design’s

accuracy and performance. The clock frequency is set to 150 MHz. We run a C program

on the desktop to transfer our I/O data through UART port. Figure 5.9. is showing the

resource usage report of our whole onboard system generated by Vivado.

Figure 5.9. Our RNN design’s resource usage on VC707

5.11.4. Experiment Result in Accuracy and Performance

We want to test our RTL design’s feature by not only the trained RNN model can

make an accurate prediction, but also every single variable in both RTL and Python can

match. Only in this way we can say our RTL level RNN designing method can reflect all

the features in Python design. When we evaluate the original Python design, we record

the initial values in each gate’s matrix which is randomly generated by the Python program

and record each round’s input data, output result and overall error. When testing our RTL

design, we write the initial values in an RTL level configuration file, and when the FPGA

board raises its RESET signal, these initial values will be written to the gates’ register

matrix. Our PC desktop program keeps writing the same input data as Python program

used to FPGA board and receives output result and overall error from FPGA board, then

compare the output results and overall error values with their corresponding round’s Python

78

program result. Their value can match. That means the calculation feature of our RTL

design is correct.

The calculation performance is also very important to evaluate how FPGA can accel-

erate RNN floating-point calculation. As we mentioned in Section 5.7.4, we can reconfigure

the latency of Xilinx Floating-point calculation IP cores; we have done two experiments

using the same RTL design file with different device latency. In the first experiment, all

the floating-point calculation devices use the default latency as Vivado generated; in the

second experiment, we manually configured the devices’ latency as 1. All the floating-point

IP generated devices’ DSP slice usage, and latency is listed in Table 5.7.

DSP Default latency(exp.1) Set latency(exp.2)

Add 2 12 1

Multiply 2 9 1

Exp 1 21 1

Divide N/A 29 1

Substract 2 12 1

Table 5.7. EACH DEVICE’S DSP USAGE AND LATENCY IN TWO EX-

PERIMENTS

Our RTL generate system will estimate the overall latency in each round. We can

measure the overall latency from when our design receives one pair of input data until

finished update all the gates’ matrix. Even though operations in the same stage can achieve

parallelism computing partially, the total latency of one stage is decided by the operation,

which has the largest amount of data need to calculate. And the overall latency of one round

is adding all stages’ total latency together. To evaluate the real latency lasted on FPGA,

we add a latency summarize process in RTL design. The total latency lasted in one round

will be output with this round’s output result. The estimated latency and real latency in

our two experiments are listed in Table 5.8.

79

Estimatedlatency Reallatency

Experiment1 6, 742 7, 072

Experiment2 5, 247 5, 439

Table 5.8. ESTIMATED AND REAL LATENCIES IN TWO EXPERIMENTS

These two experiments show even use extreme low latency which experiment 2 has;

the overall latency does not have very obvious improvement. That is because we achieve

data flow pipeline in each stage fully. As we have shown in Section 5.7.2, when inputting

data into the device, the estimated overall latency is (total data num + device latency). So

if the total data number is very high, the shortened device latency cannot speed up too

much. And as we have observed by running simulation, the devices which have extremely

low latency will pause more times than making this device use default latency. This feature

proved when making a device run in data flow pipeline mode the extremely low latency is

not a good choice.

As we set our design’s clock frequency as 150 MHz, means one clock cycle lasts 6.7

nanoseconds. So, ignore the I/O time cost, by using the default device latency the overall

FPGA calculation time cost on all 10,000 rounds is only 7072 * 10000 * 6.7 = 473,824,000

ns = 0.47s.

We also run the original Python-based RNN design on our desktop which uses Intel

Core i7-8700 3.2GHz CPU, 16 Gigabytes of memory, and Ubuntu 18.04 OS. Its execution

time is 3.7 seconds. That means even using default latency; our RTL design can still achieve

7.87 times of speed-up. And according to Vivado’s report, our design’s on-chip power is only

1.343W. Our desktop’s power supply output is 450W. This experiment shows comparing to

CPU, FPGA is an ideal platform to accelerate RNN calculate performance by consuming

very low energy.

80

5.11.5. Advanced Parallelism Computing Design

In our first step design, we only declared one multiply-add device to support matrix

update section and split it into three stages. However, as the three operations in matrix

update section have no data dependency, we tried to declare three multiply-add devices

to support these three operations parallelly compute in the same stage. With very simple

modification on configuration file and design flow file can make this new design.

In our new design, the new one round latency is 6,970 cycles, which used 83,885

LUT logic slices, 135,109 FF units, and 91 DSP48E1 slices. This result has proved by

changing our configuration files, we can declare more calculation devices and can achieve

better performance. However, we need to use more on-chip resources.

5.11.6. Generating RTL Design by Using Vivado HLS

In addition to comparing the performance with the original Python program, we also

compare the performance of our implementation with that of the RTL code generated by

Vivado HLS. We translate the original Python program into a C program. The translated

C program’s execution results perfectly match with the Python program. Then we use

Vivado HLS to generate RTL design from the C program. Figure 5.10 is the latency and

resource usage reported from Vivado HLS.

From Figure 5.10 we find the Vivado HLS generated RTL uses fewer DSP slices, FF,

and LUT than my RTL design, but its latency is 47.6 times longer than my design. This is

because the Vivado HLS generated RTL performs operations in serial, and it does not need

a lot of resources to support high parallel computing and dataflow pipeline. It also cannot

achieve parallel computing and dataflow pipeline. That is why the Vivado HLS generated

RTL requires fewer resources than my design. However, the Vivado HLS generated RTL has

a large latency. If we set FPGA’s clock to 150MHZ, the Vivado HLS generated RTL runs

for 337185 * 10000 * 6.7 = 22,591,395,000 ns = 22.5 seconds, which is 6.1 times longer than

the original Python program.

81

Figure 5.10. Latency and resource usage reported by Vivado HLS

5.12. Summary

In this chapter, we introduced four things:

1. Our method of detecting HPC system anomaly events from the event block lists

we have converted from the original system log files by using SLEBD.

2. Our method of collecting all the events from one specific type of event, smooth

the bias between the sequences before success and fail events, and use the LSTM model to

cluster the event sequences.

3. Our method of using TSM to detect each type of event’s critical workflow, then

use this workflow to predict such type of event’s occurrence and use its LSTM model to

predict it’s occurring success or failure.

4. Our method of implementing Python level RNN designs to RTL level designs. We

82

packaged RNN needed floating-point calculation operations into devices with destination

address FIFO and created an RTL level design code generating system. Users can design

and train their RNN model to verify its feasibility and calculation accuracy, then use our RTL

generating system to generate pure RTL level codes by inputting simple configuration files.

The user can declare as many calculation devices as they want within the range of FPGA

can afford. And the user can achieve parallelism computing besides operations which have

no data dependency like LSTM function (9) into the same calculation stage. Our system

generates RTL level codes without any help from the HLS tool. Our automatic generated

RTL designs can be synthesis into the bitstream and deploy on FPGA chips without using

SOC running on the ARM processor. The experiment shows the RTL level RNN design can

significantly increase the RNN training performance.

In our above experiments, we had a good result. We detected several types of event-

level failure, we proved that the LSTM sequence clustering method could successfully cluster

the system event sequences extracted by SLEBD, and we proved the critical workflow which

detected by using TSM can help us to predict future event’s occurrence.

However, we still faced some difficulty:

1. We can only find a very small number of events which can be used to do our Deep

Learning experiment from the SLEBD event list. That is because the dataset we are using is

not very big and some specific events only occurred very little times (including success and

fail), not enough to create LSTM model.

2. Setting the most effective and accurate LSTM model which can work on most

Event Block’s sequences are challenging. For example, for one specific event A, the event

sequences occurred before it will be different from the event sequences occurred before the

other event B. So, the LSTM model trained on event A’s event sequences will not work on

event B.

3. Training an LSTM model by using Keras is very time-consuming. That is why we

try to research to use FPGA to accelerate RNN performance.

4. As we have mentioned, the distribution between success and fail event are biased.

83

So, the ratio of how much-failed sequence been emphasized by using SMOTE in the learning

set can achieve the most accuracy also needs us to do research.

5. Our basic RTL level design and RTL generate system are completed. However,

to generate RTL level designs, we still need the user to assign what calculation device and

temporary registers they will use in the configuration file and convert their Python level

RNN design in the design flow file. We plan to create a Python code compiler to compile

and evaluate the device and register usage directly from Python design in the future.

6. The RNN design we are using in our experiment is small. We have provided

implementing RNN on FPGA and train the RNN model on-ship in three main sections by

using our way is feasible, and our experiment’s accuracy and performance make us satisfied.

However, by seeing the FPGA resource usage report, we found we still have space to extend

our design bigger. We plan to implement a larger RNN/LSTM design on FPGA in the

future.

84

CHAPTER 6

CONCLUSIONS AND FUTURE RESEARCH PLAN

6.1. Conclusions

In my dissertation research, I have completed the following milestones.

1. I have developed an HPC syslog Event Block pattern grouping and anomaly detect

tool, called SLEBD, which can group syslog messages and convert the original unstructured

syslog messages into structured event lists. Such event lists can facilitate anomaly detection.

2. By using the event blocks extracted by SLEBD, we design a topology-aware se-

quence mining (TSM) method to discover sequence patterns among events to characterize

the execution sequences of a system. The sequence patterns produced by TSM help us

perform event sequence-level anomaly detection and event prediction.

3. SLEBD can detect event-level anomalies, that is anomalies which are related

to a type of Event Block. This feature allows us to group event sequences that appear

before such type of Event Block or the occurrence of an anomaly. We have also explored

recursive neural networks to develop an LSTM model to cluster such event sequences. Our

experimental results show the LSTM model can effectively predict anomalous events.

4. Running deep learning algorithms on CPU and GPU are time-consuming and

power-hungry. To address this issue, I have developed a design flow which can automatically

generate synthesis-able RTL level designs from Python deep learning programs. I have im-

plemented this design on a VC707 FPGA board. Experimental results show the RTL design

efficiently explores dataflow pipelining and parallel computing and significantly reduces the

execution time, energy consumption, and development efforts.

6.2. Future Research Plan

Built on top of the frameworks, tools, and methods that I have developed, my research

will be extended in the following directions.

1. Our experiments on LSTM only test if LSTM can help us cluster event sequences.

We need to do more experiment to find the optimal configuration(s) of LSTM models or

85

SMOTE’s fold ratio to achieve the best accuracy.

2. We have detected some types of event-level anomalies. However, we do not know

why those anomalies happen in production systems. I plan to use LSTM models to find

the root causes. The root causes will allow us to predict future anomalies and even design

countermeasures to prevent them.

3. We use TSM to discover critical execution workflows which help us predict oc-

currences of event blocks is in the future. Moving further, I plan to use an event block’s

LSTM model to predict if an event will successfully occur or not. More experiments will be

conducted.

4. The current test cases of RNN on FPGA is still small and not suitable for real-

world deployment and applications. I plan to develop a larger-scale RNN design, convert

this design to RTL-level implement, and test it on FPGA.

5. Transferring a large amount of data between a computer and an FPGA board

is not trivial. I am researching on how to use the PCIe IP cores from Vivado to transfer

data to and from FPGA through the VC707 PCIe port. If succeed, we will be able to test

larger-scale RNN designs on large, real-world data sets.

86

REFERENCES

[1] https://pypi.org/project/pyfpgrowth/.

[2] http://docs.h5py.org/en/stable/.

[3] http://portal.nersc.gov/project/m888/resilience/.

[4] https://github.com/chuanconggao/prefixspanpy/blob/master/prefixspan.py.

[5] https://github.com/ovis-hpc/ovis.

[6] https://github.com/rangeonnicolas/prefixspan/blob/master/prefixspan.py.

[7] https://harnesscloud.github.io/2015-07-15-feltham/maxeler/codecarpentry-

maxelerdataflow1.pdf.

[8] https://iamtrask.github.io/2015/11/15/anyone-can-code-lstm/.

[9] https://keras.io/.

[10] https://keras.io/preprocessing/sequence/.

[11] https://pytorch.org/.

[12] https://www.accellera.org/downloads/standards/systemc.

[13] https://www.nltk.org/.

[14] https://www.olcf.ornl.gov/computing-resources/titan-cray-xk7/.

[15] https://www.tensorflow.org/.

[16] https://www.top500.org/lists/2019/06/.

[17] https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html.

[18] https://www.xilinx.com/support/documentation/ip documentation/floating point/v7 0/pg060-

floating-point.pdf.

[19] http://www.numpy.org/.

[20] Whitehead N; Fit-Florea A, Precision & performance: Floating point and ieee 754 com-

pliance for nvidia gpus, 2011.

[21] E. Grosicki; H. El Abed, Icdar 2009 handwriting recognition competition, July 2009, pp.

1398–1402.

87

[22] R. Agrawal and R. Srikant, Fast algorithms for mining association rules, 1994, In Proc.

1994 Int.Conf VeryLarge Data Based (VLDB).

[23] Rakesh Agrawal and Ramakrishnan Srikant, Fast algorithms for mining association

rules, 1994, Proceedings of the 20th International Conference on Very Large Data Bases

(VLDB).

[24] M. Rosvall; C. T. Bergstrom, Maps of random walks on complex networks reveal com-

munity structure, 2008, National Academy of Sciences, Volume 105 Issue 4, pp. 1118.

[25] Zongze Li; Song Fu; Sean Blanchard, Converting unstructured system logs into struc-

tured event list for anomaly detection, 2018, The 13th IEEE International Conference

on Availability Reliability and Security (ARES).

[26] A. Ul-Hasan; S. B. Ahmed; F. Rashid; F. Shafait; T. M. Breuel, Offline printed urdu

nastaleeq script recognition with bidirectional lstm networks, Aug 2013, Proc. 12th Int.

Conf. Document Anal. Recognit. (ICDAR), pp. 1061-1065.

[27] Ziming Zheng; Li Yu; Wei Tang; Zhiling Lan; R. Gupta; N. Desai; S. Coghlan; D. buet-

tner, Co-analysis of ras log and job log on blue gene/p, 2011, Proc. of IEEE International

Parallel and Distributed Processing Symposium (IPDPS).

[28] Jeatrakul P; Wong K.W; Fung C.C, Classification of imbalanced data by combining the

complementary neural network and smote algorithm, 2010, Neural Information Process-

ing. Models and Applications. ICONIP.

[29] Catello Di Martino; Marcello Cinque; Domenico Cotroneo, Assessing time coalescence

techniques for the analysis of supercomputer logs, 2012, Proc. of IEEE/IFIP DSN.

[30] Andre Xian Ming Chang; Berin Martini; Eugenio Culurciello, Recurrent neural networks

hardware implementation on fpga, 2015, arXiv preprint arXiv:1511.05552,.

[31] George A; Binu D, An approach to products placement in supermarkets using prefixspan

algorithm, 2013, Journal of King Saud University-Computer and Information Sciences.

[32] J. Han; J. Pei; B. Mortazavi-Asl; Q. Chen; U. Dayal; and M.-C. Hsu, Freespan: Fre-

quent pattern-projected sequential pattern mining, 2000, In Proc. Int. Conf. Knowledge

Discovery and Data Mining (KDD).

88

[33] Mikolov T; Kombrink S; Burget L; et al, Extensions of recurrent neural network language

model, 2011, Acoustics Speech and Signal Processing (ICASSP); IEEE International

Conference on. IEEE.

[34] Taerat N; Brandt J; Gentile A; et al, Baler: deterministic, lossless log message clustering

tool., 2011, Computer Science Research Development 26: 285.

[35] Min Du; Fei fei Li; Guineng Zheng; VivekSrikumar, Deeplog: Anomaly detection and

diagnosis from system logs through deep learning, 2017, CCS ’17 Proceedings of the 2017

ACM SIGSAC Conference on Computer and Communications Security Pages 1285-1298.

[36] K Pedretti S Olivier G Shipman W Shu K Ferreira, Exploring mpi application perfor-

mance under power capping on the cray xc40 platform, 2015, Proc. of EuroMPI.

[37] E Baseman; S Blanchard; Z Li; S Fu, Eelational synthesis of text and numeric data

for anomaly detection on computing system logs, 2016, Proc. of IEEE International

Conference on Machine Learning and Applications (ICMLA).

[38] Q. Guan; N. Debardeleben; S. Blanchard; S. Fu, F-sefi A fine-grained soft error fault

injection tool for profiling application vulnerability, 2014, Procȯf IEEE IntlṖarallel &

Distributed Processing Symposium (IPDPS).

[39] Q. Guan; S. Fu, A data mining framework for autonomic anomaly identification in

networked computer systems, 2010, Proc. of IEEE IPCCC.

[40] Qiang Guan; Song Fu, Adaptive anomaly identification by exploring metric subspace in

cloud computing infrastructures, 2013, Proc. of IEEE SRDS.

[41] Z. Zhang; Q. Guan; S. Fu, An adaptive power management framework for autonomic

resource configuration in cloud computing infrastructures, 2012, Proc. of IEEE IPCCC.

[42] Z. Zhang; S. Fu, Characterizing power and energy usage in cloud computing systems,

2011, IEEE CloudCom.

[43] Zongze Li; Song Fu, Accelerating rnn on fpga with efficient conversion of high-level

designs to rtl, 2019, In the proceedings of IEEE BigData 2019.

[44] , Accelerating rnn on fpga with efficient conversion of high-level designs to rtl,

89

2020, Submitted to the 34th IEEE International Parallel and Distributed Processing

Symposium (IPDPS).

[45] Raghul Gunasekaran; Sarp Oral; David Dillow; Byung Park; Galen Shipman; Al Geist,

Real-time system log monitoring/analytics framework, 2011, Proc. of Annual Cray User

Group Conference (CUG).

[46] Ziming Zheng; Zhiling Lan; Byung H. Park; Al Geist, System log pre- processing to

improve failure prediction, 2009, Proc. of IEEE International Conference on Dependable

Systems and Networks (DSN).

[47] J. Hong; C. Liu; M. Govindarasu, Integrated anomaly detection for cyber security of the

substations, July 2014, IEEE Transactions on Smart Grid; vol. 5; no. 4, pp. 1643-1653;

doi: 10.1109/TSG.2013.2294473.

[48] Hu M; Zheng G; Wang H, Improvement and research on aprioriall algorithm of sequen-

tial patterns mining, 2013, In Proceedings of International Conference on Information

Management, Innovation Management and Industrial Engineering.

[49] Michiel Hazewinkel, Topology general, 2011, Encyclopedia of Mathematics; Kluwer Aca-

demic Publishers.

[50] S. He; J. Zhu; P. He and M. R. Lyu, Experience report: System log analysis for anom-

aly detection, 2016, 2016 IEEE 27th International Symposium on Software Reliability

Engineering (ISSRE), Ottawa, ON, pp. 207-218.

[51] Guan Y; Yuan Z; Sun G; Cong J, Fpga-based accelerator for long short-term mem-

ory recurrent neural networks, 2017, 22nd Asia and South Pacific Design Automation

Conference (ASP-DAC), pp. 629–634 (2017). doi: 10.1109/ASPDAC.2017.7858394.

[52] Hochreiter S; Schmidhuber J, Long short-term memory, 1997, Neural Comput. 9,

1735”,780.

[53] J. Fonseca J. C. Ferreira, An fpga implementation of a long short-term memory neural

network, 2016, ReConFigurable Computing and FPGAs (ReConFig) 2016 International

Conference on, IEEE, pp. 1-8,.

[54] M. Chen; A. X. Zheng; J. Lloyd; M. I. Jordan; and E. Brewer., Failure diagnosis

90

using decision trees, 2004, In ICAC’04: Proc. of the 1st International Conference on

Autonomic Computing, pages 36–43. IEEE.

[55] Wei Xu; Ling Huang; Armando Fox; David Patterson; Michael Jordan, Mining con-

sole logs for large-scale system problem detection, 2009, Proc. of ACM Symposium on

Operating Systems Principles (SOSP).

[56] S. Alspaugh; Archana Ganapathi; Marti A; Hearst Randy Katz, Analyzing log analysis:

An empirical study of user log mining, 2014, Proc. of USENIX Large Installation System

Administration Conference (LISA).

[57] Gisung Kim; Seungmin Lee; Sehun Kim, A novel hybrid intrusion detection method

integrating anomaly detection with misuse detection, March 2014, Expert Systems with

Applications Volume 41, Issue 4, Part 2, Pages 1690-1700.

[58] Ana Gainaru; Franck Cappello; Stefan Trausan-Matu; Bill Kramer, Event log mining

tool for large scale hpc systems, 2011, Proc. of Euro-Par.

[59] Hui Yan Cheah ; Suhaib A. Fahmy ; Douglas L. Maskell ; Chidamber Kulkarni, A

lean fpga soft processor built using a dsp block, February 22-24, 2012, Monterey, Cali-

fornia, USA, Proceedings of the ACM/SIGDA international symposium on Field Pro-

grammable Gate Arrays.

[60] Wang L, Directed acyclic graph, 2013, Encyclopedia of Systems Biology: 574-574.

[61] Sandia National Labs, http://hpc.sandia.gov/aces/.

[62] Li Yu; Ziming Zheng; Zhiling Lan, Filtering log data: Finding the needles in the

haystack, 2012, Proc. of IEEE/IFIP International Conference on Dependable Systems

and Networks (DSN).

[63] Zongze Li; M Davidson; S Fu; S Blanchard; M Lang, Event block identification and anal-

ysis for effective anomaly detection to build reliable hpc systems, 2018, 20th IEEE Inter-

national Conference on High-Performance Computing and Communications (HPCC).

[64] Zongze Li; Matthew Davidson; Song Fu; Sean Blanchard; Michael Lang, Event block

analysis for effective anomaly detection on production hpc systems, 2017, Poster ac-

91

cepted by ACM Symposium on High-Performance Parallel and Distributed Computing

(HPDC).

[65] Zongze Li; Song Fu; Sean Blanchard; Michael Lang, Topology-aware event sequence

mining for understanding hpc system behavior and detecting anomalies, 2019, Accepted

by the 21st IEEE International Conference on High-Performance Computing and Com-

munications (HPCC).

[66] JianGuang Lou; Qiang Fu; Yi Wang; Jiang Li, Mining dependency in distributed systems

through unstructured logs analysis, 2010, ACM SIGOPS Operating Systems Review;

Volume 44 Issue 1.

[67] Qiang Fu; JianGuang Lou; Yi Wang; Jiang Li, Execution anomaly detection in dis-

tributed systems through unstructured log analysis, 2009, Proc. of International confer-

ence on Data Mining (ICDM).

[68] Qinru Qiu; Qing Wu; Martin Bishop; Robinson E Pino; Richard W Linderman, A paral-

lel neuromorphic text recognition system and its implementation on a heterogeneous high

performance computing cluster, 2013, Computers, IEEE Transactions on, 62(5):886–899.

[69] Ronaldo Messina; Jérme Louradour, Segmentation-free handwritten chinese text recog-

nition with lstm-rnn, 2015, 3th International Conference on Document Analysis and

Recognition (ICDAR).

[70] Xiaoyu Fu; Rui Ren; Jianfeng Zhan; Wei Zhou; Zhen Jia; Gang Lu, Logmaster: Mining

event correlations in logs of large-scale cluster systems, 2012, Proc. of IEEE Symposium

on Reliable Distributed Systems (SRDS).

[71] Ab Rahman; A.AH; Prihozhy A; Mattavelli M, J image video proc. (2011) 2011: 19,

2019, https://doi.org/10.1186/1687-5281-2011-19.

[72] David Niju, Law of total probability, 2008.

[73] G Pandeeswari N; Kumar, Anomaly detection system in cloud environment us-

ing fuzzy clustering based ann, 2016, Mobile Netw Appl (2016) 21: 494.

https://doi.org/10.1007/s11036-015-0644-x.

[74] W. Xu; L. Huang; A. Fox; D. Patterson and M.I. Jordon, Detecting large-scale system

92

problems by mining console logs, 2009, In SOSP’09: Proc. of the ACM Symposium on

Operating Systems Principles.

[75] Zdzislaw Pawlak, Rough sets decision algorithm and bayes’s theorem, 2002, European

Journal of Operational Research 136(1):181-189.

[76] J Han; J pei; Y Yin, Mining frequent patterns without candidate generation, 2000, Pro-

ceeding SIGMOD ’00 Proceedings of the 2000 ACM SIGMOD international conference

on Management of data Pages 1-12.

[77] B Zheng; A Tiwari; N Vijaykumar; G Pekhimenko, Ecornn: Efficient computing of lstm

rnn training on gpus, 2018, The 51st Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO 2018).

[78] D. Svozil; V. Kvasnicka; J. Pospichal, Introduction to multi-layer feed-forward neural

networks, 1997, Chemometrics Intell Lab Systems, 39 (1997), pp. 43-62.

[79] Alan Graves; Abdel rahman Mohamed; and Georey Hinton, Speech recognition with deep

recurrent neural networks, 2013, In Acoustics, Speech and Signal Processing (ICASSP),

2013 IEEE International Conference on, pages 6645–6649. IEEE,.

[80] Hasim Sak; Andrew Senior; and Francoise Beaufays, Long short term memory recurrent

neural network architectures for large scale acoustic modeling, 2014, In Proceedings of

the Annual Conference of International Speech Communication Association (INTER-

SPEECH).

[81] R. Srikant and R. Agrawal, Mining quantitative association rules in large relational table,

1996, In Proc. of ACM International Conference on Management of Data (SIGMOD).

[82] Adam Oliner; Jon Stearley, What supercomputers say: A study of five system logs, 2007,

Proc. of IEEE/IFIP DSN.

[83] Zongze Li; Xiaoguang Tian, An exploratory study of long short-term memory on con-

sumer complaints to financial services, 2019, Presentation by the 50th Southwest Deci-

sion Sciences Institute (SWDSI).

[84] Pei J; Han J; Mortazavi-Asl; B Pinto; H Chen; Q Dayal U and Hsu M.-C, Prefixspan:

93

Mining sequential patterns efficiently by prefix-projected pattern growth, 2001, In Proc.

of International Conference on Data Engineering (ICDE).

[85] R Vaarandi, Data clustering algorithm for mining patterns from event logs, 2003, Proc.

of IEEE Workshop on IP Operations and Management.

[86] Sicheng Li; Chunpeng Wu; Hai Li; Boxun Li; Yu Wang; and Qinru Qiu, Fpga acceler-

ation of recurrent neural network based language model, 2015, In Field-Programmable

Custom Computing Machines (FCCM), 2015 IEEE 23rd Annual International Sympo-

sium on, pages 111–118. IEEE.

[87] P. Bodik; M. Goldszmidt; A. Fox; D. B. Woodard and H. Andersen., Fingerprinting the

datacenter: automated classication of performance crises, 2010, In EuroSys’10: Proc. of

the 5th European conference on Computer systems, pages 111–124. ACM.

[88] Y. Liang; Y. Zhang; H. Xiong and R. Sahoo, Failure prediction in ibm bluegene/l event

logs, 2007, In ICDM’07: Proc. of the 7th International Conference on Data Mining.

[89] J. Lou; Q. Fu; S. Yang; Y Xu and J. Li., Mining invariants from console logs for system

problem detection, 2010, In ATC’10: Proc. of the USENIX Annual Technical Conference.

[90] S. Fu; C.Z. Xu, Exploring event correlation for failure prediction in coalitions of clusters,

2007, IEEE conference on Supercomputing (SC).

[91] B Li; E Zhou; B Huang; J Duan; Y Wang; N Xu; J Zhang; H Yang, Large scale recurrent

neural network on gpu, 2014, 2014 International Joint Conference on Neural Networks

(IJCNN).

[92] P.A. Scarf; M.M. Yusof, A numerical study of tournament structure and seeding policy

for the soccer world cup finals, 2011, Statistica Neerlandica, 65 (2011), pp. 43-57.

[93] Mohammed J. Zaki, Spade: An efficient algorithm for mining frequent sequences, 2011,

Machine Learning, v.42 n.1-2, p.31-60.

[94] J Cong; B Liu; S Neuendorffer; J Noguera; K Vissers; Z Zhang, High-level synthesis for

fpgas: From prototyping to deployment, 2011, IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems. pp. 473-491.

[95] Q. Lin; H. Zhang; J.G. Lou; Y. Zhang and X. Chen, Log clustering based problem iden-

94

tication for online service systems., 2016, In ICSE’16: Proc. of the 38th International

Conference on Software Engineering.

95

	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER 1. INTRODUCTION
	CHAPTER 2. RELATED WORK
	2.1. Existing Log Analysis Tools and Existing System Log Anomaly Detection Methods
	2.2. Existing Sequence Mining Methods
	2.3. Existing Methods of Implementing Deep Learning Algorithm on FPGA

	CHAPTER 3. SYSTEM LOG EVENT BLOCK DETECTION FRAMEWORK
	3.1. Introduction
	3.2. System Log Preprocessing
	3.3. Event Block Database and Event Block Extraction
	3.3.1. Event Block Database (EBD) Generation
	3.3.2. Event Block Extraction

	3.4. Performance Evaluation
	3.4.1. Experiment Settings and SLEBD Configuration
	3.4.2. Generated EBD from Mutrino Logs
	3.4.3. Reconsidered Line Patterns and Relationship Changed Line Patterns
	3.4.4. Distribution of EB Pattern Length

	3.5. Experimental Results of Even Block Extraction on Baler and SLEBD Line Pattern Lists
	3.6. Summary

	CHAPTER 4. TOPOLOGY-BASED SEQUENCE MINING METHOD
	4.1. Introduction
	4.2. Mining Event Patterns Based on Topology
	4.2.1. Topology Position between Events in Sequences
	4.2.2. Generate Prior Transition Matrix and Position Status Matrix From Object Sequences

	4.3. Generating Event Patterns – Case Study
	4.3.1. Using Event Order in WIL to Process WIs
	4.3.2. Processing and Adding Wrapping Events to TS.
	4.3.3. Extracting Subsequences From TSL to Match Event Sequences

	4.4. Event Pattern Verification
	4.5. Performance Evaluation
	4.5.1. Experiment Setting and Test Cases
	4.5.2. Verification Results
	4.5.3. Performance Results
	4.5.4. Performance Comparison with FreeSpan/PrefixSpan Algorithm
	4.5.5. Comparison with FP Growth

	4.6. Summary

	CHAPTER 5. ANOMALY DETECTION AND EVENT PREDICTION
	5.1. Introduction
	5.2. Anomaly Detection Using Event Blocks
	5.2.1. Incomplete Event Block Anomaly
	5.2.2. Anomalous EB Length

	5.3. Clustering Sequences by Using LSTM
	5.3.1. Collecting Event Sequences and Creating Training/Test Sets
	5.3.2. Generating the LSTM Model
	5.3.3. Testing Results of the LSTM Model

	5.4. Predicting Anomalies from Streaming System Logs
	5.4.1. Extracting Critical Flow from Event Block Sequences by Using TSM
	5.4.2. Realtime Monitoring and Event Occurrence Prediction
	5.4.3. Predicting Successful Execution of Events
	5.4.4. Preliminary Experiment Results

	5.5. Accelerating RNN on FPGA with Efficient Conversion of High-Level Designs to RTL
	5.6. RNN and LSTM Background
	5.6.1. RNN
	5.6.2. RNN Training
	5.6.3. Long Short-Term Memory

	5.7. Accelerating Floating-Point Computations on FPGA
	5.7.1. Floating-Point Calculation Feature IP
	5.7.2. FPGA Help to Accelerate Floating-Point Calculation Performance
	5.7.3. Calculate Operations Packaging
	5.7.4. Performance Evaluation
	5.7.5. Address FIFO in Calculation Package
	5.7.6. Vector Operating Device
	5.7.7. Calculation Device Input/Output Handshaking Method

	5.8. Designing RNN Using Scientific Computing Library Numpy
	5.9. The Idea of Converting Python Commands into RTL Design
	5.10. Large Scale Python-RTL Code Conversion
	5.11. FPGA-Based RNN Experiment
	5.11.1. Experiment Case
	5.11.2. Our Configuration Files for RTL Generate System
	5.11.3. Experiment Setup
	5.11.4. Experiment Result in Accuracy and Performance
	5.11.5. Advanced Parallelism Computing Design
	5.11.6. Generating RTL Design by Using Vivado_HLS

	5.12. Summary

	CHAPTER 6. CONCLUSIONS AND FUTURE RESEARCH PLAN
	6.1. Conclusions
	6.2. Future Research Plan

	REFERENCES

