
Accessing WARC files via SQL
Sebastian Nagel

Motivation

WARC files aren’t easy to navigate and the CDX index isn’t optimal to
access WARC files by other criteria than URL or domain name.

Since spring 2018 Common Crawl provides a “columnar” index in
“Parquet” format which can be queried and analyzed using SQL. It
enables both users and web archive curators

to gain insights into the archives and aggregate statistics and
metrics within minutes
pick captures by any provided metadata (e.g., content language,
MIME type) to process the data “vertically” at scale

The columnar index has soon become the mostly used data format.
At present, it contains over 100 billion rows covering all monthly
crawls released since 2017 and occupies 7.5 TiB of storage.

Example 1: Languages Used on Spanish Web Sites

Which languages are used on web sites hosted under the .es top-
level domain? This question is answered by the following SQL query
and the columnar index:

SELECT COUNT(*) AS n_pages,

COUNT(DISTINCT(url_host_registered_domain)) AS n_domains,

content_languages

FROM "ccindex"

WHERE (crawl = 'CC-MAIN-2019-22' -- April and May 2019 crawls

OR crawl = 'CC-MAIN-2019-18')

AND subset = 'warc' -- only successful fetches

AND url_host_tld = 'es' -- restrict to .es top-level domain

-- skip pages with more than one language:

AND NOT content_languages LIKE '%,%'

GROUP BY content_languages

HAVING COUNT(*) >= 10000

ORDER BY COUNT(*) DESC;

As expected, the most widely
used language is Spanish. Other
frequently used languages are:
English, the minority languages
of Spain (Catalan, Galician,
Basque), neighboring languages
(French and Portuguese) and
those spoken by visitors arriving
to Spain (German, Japanese).

n_pages domains language

28966935 264430 spa

2054091 52278 eng

354378 6486 cat (Catalan)
133221 1118 glg (Galician)

61647 3298 fra (French)
40918 2318 deu (German)
31762 892 eus (Basque)
30863 119 jpn

25875 1007 por

22442 619 rus

16241 1086 ita

11553 361 zho (Chinese)

How It Works

A Spark job converts the CDX index line by line mapping CDX fields to
columns. URLs are split into components (domain name, path, etc.)
to fill additional columns for fast aggregations and filtering on URL
parts. Each of the 30 columns is defined in the table schema, e.g.,

{"name": "content_digest",

"type": "string",

"nullable": true,

"metadata": {

"description":

"SHA-1 content digest (WARC-Payload-Digest)",

"example": "CH7IV3XAD3M7A42JARKRLJ3T5PGGCGXD" }},

The schema is used to validate the values during write. The Parquet
format integrates the schema and makes the table self-describing.

Table rows are sorted same as the CDX index by SURT URL – e.g.,
com,example)/path/ – to optimize look-ups by domain name. Col-
umn values of the same domain also tend to be more homogeneous
which has a positive impact on the data compression ratio.

The table is partitioned by monthly crawl and subset (successful
fetches, 404s and redirects, robots.txt). Partitions organize the ta-
ble files into subdirectories and allow incremental table updates and
zero-cost filtering on partition columns.

About Common Crawl

Common Crawl is non-profit organization which regularly crawls a
significant sample of the web and makes the data accessible free
of charge to everyone interested in running machine-scale analy-
sis on web data.

At present, we crawl every month up to 3.0 billion web pages. The
data is hosted in the Amazon cloud as part of the AWS Open Data
program.

Contact: https://commoncrawl.org/ sebastian@commoncrawl.org

Parquet – A Columnar and Sustainable File Format

Parquet is an interchangeable but efficient column-oriented storage
and file format:

fully specified and documented, defined semantics, integrated
schema (self-describing), guaranteed backward compatibility
typed binary data representation for fast (de)serialization
primitive and logical data types: boolean, integer, floating point
number, string, date, etc.
system and language independent API
efficient to process – “read only what you need”

Data Layout – Rows and Columns

The table is split vertically into “row groups”. The column values
within one row group are hold in “column chunks”.

Parquet file

Header

Row Group 1
Column Chunk 1

Page 1

Page 2

Page …

Column Chunk …

Page 1

Page 2

Page …

Row Group 2

Row Group …

Footer

A column chunk is split into
“pages”. Pages store the column
values using a suitable encoding
(plain, dictionary, run-length/bit-
packed, delta). With dictionary en-
coding all values are hold in a sep-
arate dictionary page to speed up
look-ups and filtering.

Pages are optionally compressed
(gzip, zstd, etc.). Page-level com-
pression (same as per-record
WARC compression) allows to
read only the requested pages.

The footer holds all information needed to “navigate” a Parquet file:

the Parquet file format version
the table schema and the number of rows
metadata about row groups and column chunks

The metadata includes the location/offsets of row groups and col-
umn chunks. Additional statistics – the number of values (total, dis-
tinct, null) and min and max values – allow to skip entire row groups
if a specific column value is not contained.

Example 2: WARC Storage Occupied per MIME Type

Common Crawl tries to crawl only HTML pages without page depen-
dencies (images, CSS, JavaScript). However, a small percentage of
non-HTML content is accepted to obtain a broad sample of docu-
ment formats used on the web.

The issue with PDF documents, images and other non-HTML for-
mats is that they tend to occupy more storage in WARC archives. But
which formats at which scale?

-- average length and occupied storage of WARC records by MIME type

SELECT COUNT(*) AS pages,

round(COUNT(*)*100.0/SUM(COUNT(*)) OVER(), 3) AS perc_pages,

round(AVG(warc_record_length)/power(2,10), 0) AS avg_rec_kB,

round(SUM(warc_record_length)/power(2,40), 3) AS storage_TB,

round(SUM(warc_record_length) * 100.0

/ SUM(SUM(warc_record_length)) OVER(), 3) AS perc_storage,

content_mime_detected

FROM "ccindex"

WHERE crawl = 'CC-MAIN-2019-22' -- May 2019

AND subset = 'warc' -- only successful fetches

GROUP BY content_mime_detected

ORDER BY storage_TB DESC, n_pages DESC;

The SQL query above aggregates the WARC record length by the de-
tected MIME type and calculates average and total sum. The result
is sorted by the amount of occupied storage:

pages avg.rec. storage MIME type
% kiB TiB %

2033659795 75.890 17 32.012 65.019 text/html
605403020 22.592 15 8.290 16.837 application/xhtml+xml

19423997 0.725 388 7.014 14.246 application/pdf
4158147 0.155 257 0.997 2.024 image/jpeg

166558 0.006 885 0.137 0.279 audio/mpeg
633587 0.024 225 0.133 0.270 image/png
181213 0.007 484 0.082 0.166 application/zip

3944276 0.147 10 0.036 0.074 application/rss+xml
43070 0.002 847 0.034 0.069 video/mp4
42868 0.002 802 0.032 0.065 audio/mp4
38406 0.001 902 0.032 0.066 appl./vnd.android.package-archive

54795 0.002 499 0.025 0.052 application/epub+zip

Although the May 2019 dataset includes only 0.7% PDF files, these
account for 7 TiB or 14% of the total storage. To minimize the stor-
age usage we decided to increase the revisit frequency for storage-
intensive formats.

Processing Engines and Frameworks

The following processing engines and big data frameworks have
been successfully tested with the columnar index:

Amazon Athena, a SQL query service to analyze data in Amazon
S3. Athena builds on Presto, a distributed SQL query engine for
big data
Apache Hive, a data warehouse software project for managing
large datasets residing in distributed storage using SQL. Queries
are executed by MapReduce or Spark jobs
Apache Spark, a general-purpose cluster-computing framework.
Columnar data formats can be accessed through SQL or a
dataframe API.

Example 3: Vertical Access to WARC Captures

Users of the Common Crawl frequently demand subsets of the data
fitting their use case – all pages of a specific language, country or
domain, only shopping-related or public sector sites, etc. However,
WARC files are primarily organized by capture time and it would be
hard or even impossible to organize them in a way so that all use
cases are covered.

If the metadata in the columnar index allows to define a desired sub-
set, it can be easily extracted from the archives using the indexed
WARC filenames and record offsets to pick the WARC records via
HTTP range requests. The Python code snippet below demonstrates
how this procedure can be used to create a word frequency list from
Icelandic web pages.

"load" the columnar index (no actual load, only makes it available)

session = SparkSession.builder.getOrCreate()

df = spark.read.load('s3://commoncrawl/cc-index/table/cc-main/warc/')

df.createOrReplaceTempView('ccindex')

sqldf = spark.sql('SELECT url, warc_filename, warc_record_offset,

warc_record_length

FROM "ccindex"

WHERE crawl = "CC-MAIN-2018-43"

AND subset = "warc"

AND content_languages = "isl"')

alternatively load the result of Athena query

sqldf = session.read.format("csv").option("header", True) \

.option("inferSchema", True).load(".../path/to/csv")

warc_recs = sqldf.select("url", "warc_filename", "warc_record_offset",

"warc_record_length").rdd

simple Unicode-aware word tokenization (not suitable for CJK languages)

word_pattern = re.compile('\w+', re.UNICODE)

def fetch_process_warc_records(self, rows):

"""Fetch all WARC records defined by filenames and offsets in rows,

parse the records and the contained HTML, split the text into words

and emit pairs <word, 1>"""

s3client = boto3.client('s3')

for row in rows:

url = row['url']

warc_path = row['warc_filename']

offset = int(row['warc_record_offset'])

length = int(row['warc_record_length'])

rangereq = 'bytes={}-{}'.format(offset, (offset+length-1))

response = s3client.get_object(Bucket='commoncrawl',

Key=warc_path,

Range=rangereq)

record_stream = BytesIO(response["Body"].read())

for record in ArchiveIterator(record_stream):

page = record.content_stream().read()

text = html_to_text(page)

words = map(lambda w: w.lower(), word_pattern.findall(text))

for word in words:

yield word, 1

word_counts = warc_recs.mapPartitions(fetch_process_warc_records) \

.reduceByKey(lambda a, b: a + b)

After running the Spark job you get the most frequent words in about
one million Icelandic web pages:

22994307 og 6578254 sem 3893682 2018
19802034 í 6313945 til 3817965 2
15765245 að 5264266 við 3308209 ekki
15724978 á 4872877 1 3205015 is

8290840 er 4432790 með 3165578 af
8088372 um 4423975 fyrir 3051413 en

Links / Resources

https://github.com/commoncrawl/cc-index-table – Java project to convert
the CDX index into the Parquet table. Includes examples of SQL
queries and code to select WARC records by a SQL query and extract
the captures into a WARC file

https://commoncrawl.org/2018/03/index-to-warc-files-and-urls-in-columnar-format/

https://github.com/commoncrawl/cc-pyspark – Python code to process
Common Crawl data on Spark, optionally filtered via the columnar
index, includes the code used for the Icelandic word count

https://parquet.apache.org/ – the Apache Parquet project

IIPC Web Archiving Conference, 6–7 June 2019, Zagreb, Croatia

https://aws.amazon.com/opendata/
https://commoncrawl.org/
https://parquet.apache.org/
https://aws.amazon.com/athena/
https://prestosql.io/
https://hive.apache.org/
https://spark.apache.org/
https://github.com/commoncrawl/cc-index-table
https://commoncrawl.org/2018/03/index-to-warc-files-and-urls-in-columnar-format/
https://github.com/commoncrawl/cc-pyspark
https://parquet.apache.org/

