

IUPAC-NIST Solubility Data Series. 98. Solubility of Polycyclic Aromatic Hydrocarbons in Pure and Organic Solvent Mixtures: Revised and Updated. Part 1. Binary Solvent Mixtures

William E. Acree, Jr. a)

Department of Chemistry, University of North Texas, Denton, Texas 76203, USA

(Received 13 November 2012; accepted 20 November 2012; published online 28 February 2013)

This work updates Vols. 54, 58, and 59 in the IUPAC Solubility Data Series and presents solubility data for polycyclic aromatic hydrocarbon solutes dissolved in binary organic solvent mixtures. Published solubility data for anthracene, naphthalene, phenanthrene, phenothiazine, and pyrene that appeared in the primary literature between 1995 to the end of 2011 are compiled and critically evaluated. Experimental solubility data for 360 different solute-binary solvent systems are included in the volume. Solubility data published prior to 1995 were contained in three earlier volumes (Vols. 54, 58, and 59) and are not repeated in this volume. © 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4772674]

Key words: alcohols; alkanes; alkanenitriles; alkoxyalcohols; alkyl ethanoates; anthracene; binary solvent mixtures; chloroalkanes; dialkyl ethers; naphthalene; phenanthrene; phenothia.zine; polycyclic aromatic hydrocarbons; pyrene; solubility.

	MILMIS			4.1. Critical evaluation of experimental solubility data	24
1.	Preface	3 3		 4.2. Anthracene solubility data in binary alkane + 2,2'-oxybispropane solvent mixtures 4.3. Anthracene solubility data in binary alkane + 2-methoxy-2-methylpropane solvent 	25
	solutions	3		mixtures	28
2.	published solubility data	4		4.4. Anthracene solubility data in binary alkane + 1,1'-oxybis[2-methoxyethane] solvent	
۷.	hol Solvent Mixtures	5	5.	mixtures Solubility of Anthracene in Binary Alkane +	31
	2.1. Critical evaluation of experimental solubility data	5		Alkoxyalcohol Solvent Mixtures 5.1. Critical evaluation of experimental solubility	34
	2.2. Anthracene solubility data in binary alkane + primary alcohol solvent mixtures	6		data	34
	2.3. Anthracene solubility data in binary alkane + secondary alcohol solvent mixtures	15		2-ethoxyethanol solvent mixtures 5.3. Anthracene solubility data in binary alkane +	35
	2.4. Anthracene solubility data in binary alkane + tertiary alcohol solvent mixtures	15		2-propoxyethanol solvent mixtures 5.4. Anthracene solubility data in binary alkane +	38
3.	Solubility of Anthracene in Binary Alkane + Chloroalkane Solvent Mixtures	18		2-isopropoxyethanol solvent mixtures	41
	3.1. Critical evaluation of experimental solubility			5.5. Anthracene solubility data in binary alkane + 2-butoxyethanol solvent mixtures	44
	data 3.2. Anthracene solubility data in binary alkane +	18		5.6. Anthracene solubility data in binary alkane + 3-methoxy-1-butanol solvent mixtures	47
	1-chlorooctane solvent mixtures	18	6.	Solubility of Anthracene in Binary Alcohol + Chloroalkane Solvent Mixtures	50
4.	chlorocyclohexane solvent mixtures Solubility of Anthracene in Binary Alkane + Ether	21		6.1. Critical evaluation of experimental solubility	
→.	Solvent Mixtures	24		data6.2. Anthracene solubility data in binary alcohol +	50
a)E1	ectronic mail: acree@unt.edu.			1-chlorobutane solvent mixtures 6.3. Anthracene solubility data in binary alcohol +	50
'Ele	ectronic mail: acree@unt.edu.				

53

tetrachloromethane solvent mixtures

© 2013 American Institute of Physics.

CONTENTS

7.	Solubility of Anthracene in Binary Alcohol + Ether			11.1. Critical evaluation of experimental	
	Solvent Mixtures	56		solubility data	128
	7.1. Critical evaluation of experimental solubility			11.2. Anthracene solubility data in binary alcohol	
	data	56		+ acetonitrile solvent mixtures	129
	7.2. Anthracene solubility data in binary alcohol +		12.	Solubility of Anthracene in Binary Alkoxyalco-	
	1,4-dioxane solvent mixtures	57		hol + Alkoxyalcohol Solvent Mixtures	135
	7.3. Anthracene solubility data in binary alcohol +			12.1. Critical evaluation of experimental	
	1,1'-oxybisbutane solvent mixtures	60		solubility data	135
	7.4. Anthracene solubility data in binary alcohol +			12.2. Anthracene solubility data in binary	
	2,2'-oxybispropane solvent mixtures	63		alkoxyalcohol + alkoxyalcohol solvent	
	7.5. Anthracene solubility data in binary alcohol +			mixtures	135
	2-methoxy-2-methylpropane solvent		13.	Solubility of Anthracene in Miscellaneous Bin-	
	mixtures	66		ary Solvent Mixtures	138
	7.6. Anthracene solubility data in binary alcohol +			13.1. Critical evaluation of experimental	
	1,1'-oxybis[2-methoxyethane] solvent			solubility data	138
	mixtures	69		13.2. Anthracene solubility data in binary ketone	
8.	Solubility of Anthracene in Binary Alcohol +			+ alcohol solvent mixtures	138
	Alcohol Solvent Mixtures	72		13.3. Anthracene solubility data in binary ketone	
	8.1. Critical evaluation of experimental solubility			+ alkyl ethanoate solvent mixtures	141
	data	72	14.	Solubility of Naphthalene in Binary Alkane +	
	8.2. Anthracene solubility data in binary primary			Alcohol Solvent Mixtures	141
	alcohol + primary alcohol solvent mixtures	73		14.1. Critical evaluation of experimental	
	8.3. Anthracene solubility data in binary primary			solubility data	141
	alcohol + secondary alcohol solvent mixtures	81		14.2. Naphthalene solubility data in binary alkane	
	8.4. Anthracene solubility data in binary			+ primary alcohol solvent mixtures	142
	secondary alcohol + secondary alcohol			14.3. Naphthalene solubility data in binary alkane	
	solvent mixtures	91		+ secondary alcohol solvent mixtures	144
9.	Solubility of Anthracene in Binary Alcohol +		15.	Solubility of Phenanthrene in Binary Alkane +	
	Alkoxyalcohol Solvent Mixtures	93		Alcohol Solvent Mixtures	145
	9.1. Critical evaluation of experimental solubility			15.1. Critical evaluation of experimental	
	data	93		solubility data	145
	9.2. Anthracene solubility data in binary alcohol +			15.2. Phenanthrene solubility data in binary	
	2-methoxyethanol solvent mixtures	94		alkane + primary alcohol solvent mixtures	145
	9.3. Anthracene solubility data in binary alcohol +		16.	Solubility of Phenanthrene in Binary Alcohol +	
	2-ethoxyethanol solvent mixtures	97		Alcohol Solvent Mixtures	146
	9.4. Anthracene solubility data in binary alcohol +			16.1. Critical evaluation of experimental	
	2-propoxyethanol solvent mixtures	101		solubility data	146
	9.5. Anthracene solubility data in binary alcohol +			16.2. Phenanthrene solubility data in binary	
	2-isopropoxyethanol solvent mixtures	104		primary alcohol + primary alcohol solvent	
	9.6. Anthracene solubility data in binary alcohol +			mixtures	146
	2-butoxyethanol solvent mixtures	108		16.3. Phenanthrene solubility data in binary	
	9.7. Anthracene solubility data in binary alcohol +			primary alcohol + secondary alcohol solvent	
	3-methoxy-1-butanol solvent mixtures	111		mixtures	149
10.	Solubility of Anthracene in Binary Alcohol +		17.	Solubility of Phenothiazine in Binary Alcohol +	
	Ester Solvent Mixtures	116		1,2-Alkanediol Solvent Mixtures	151
	10.1. Critical evaluation of experimental			17.1. Critical evaluation of experimental	
	solubility data	116		solubility data	151
	10.2. Anthracene solubility data in binary alcohol			17.2. Phenothiazine solubility data in binary	
	+ methyl ethanoate solvent mixtures	117		ethanol + 1,2-propanediol solvent mixtures	151
	10.3. Anthracene solubility data in binary alcohol		18.	Solubility of Pyrene in Binary Alkane + Alcohol	
	+ ethyl ethanoate solvent mixtures	120		Solvent Mixtures	151
	10.4. Anthracene solubility data in binary alcohol			18.1. Critical evaluation of experimental	
	+ propyl ethanoate solvent mixtures	123		solubility data	151
	10.5. Anthracene solubility data in binary alcohol			18.2. Pyrene solubility data in binary alkane +	
	+ butyl ethanoate solvent mixtures	126		primary alcohol solvent mixtures	152
11.	Solubility of Anthracene in Binary Alcohol +			18.3. Pyrene solubility data in binary alkane +	
	Alkanenitrile Solvent Mixtures	128		secondary alcohol solvent mixtures	160

19.	Solvent Mixtures	163	11.	Mathematical representation of anthracene solubilities in binary alkoxyalcohol (2) + alkoxyalcohol (3) solvent mixtures	135
	solubility data	163	12.	Mathematical representation of anthracene solubilities in miscellaneous binary solvent mixtures	138
	alcohol + primary alcohol solvent 19.3. Pyrene solubility data in binary primary	164	13.	Mathematical representation of naphthalene solubilities in binary alkane (2) + alcohol (3)	
	alcohol + secondary alcohol solvent 19.4. Pyrene solubility data in binary primary	171	14.	solvent mixtures	142
	alcohol + tertiary alcohol solvent 19.5. Pyrene solubility data in binary secondary	178		solubilities in binary alcohol (2) + alcohol (3) solvent mixtures	146
	alcohol + secondary alcohol solvent 19.6. Pyrene solubility data in binary secondary	181	15.	Mathematical representation of pyrene solubilities in binary alkane (2) + alcohol (3) solvent mixtures	152
20.	alcohol + tertiary alcohol solvent Solubility of Pyrene in Binary Alcohol + Alka-	182	16.	Mathematical representation of pyrene solubilities in binary alcohol (2) + alcohol (3) solvent mixtures	163
	nenitrile Solvent Mixtures	183	17.	in binary alcohol (2) + acetonitrile (3) solvent	104
	solubility data	183		mixtures	184
21.	acetonitrile solvent mixtures	184 187		1. Preface	
				1.1. Scope of this volume	
	List of Tables		V	folumes 54, 158, 2 and 59 (Ref. 3) in the IUPAC Solul	bility
			Data	a Series dealt with the solubility of polycyclic aror	matic
1.	Mathematical representation of anthracene solubilities in binary alkane (2) + alcohol (3) solvent		-	rocarbons (PAHs) and polycyclic aromatic hetero- pounds (PAHaCs) in both neat organic solvents and b	
	mixtures	6		unic solvents. The specific solutes considered inclu	-
2.	Mathematical representation of anthracene solubilities in binary alkane (2) + chloroalkane (3)	Ü	acer	naphthene, acridine, anthracene, benz[a]anthracene, buorene, benzo[ghi]perylene, benzo[a]pyrene, biph	enzo
2	solvent mixtures	18		bipyridine, buckminsterfullerene (C60), carbazole, dibarata dibara	-
3.	Mathematical representation of anthracene solubilities in binary alkane (2) + ether (3) solvent mixtures	25	zoth	e, coronene, dibenz[a,h]anthracene, dibenzofuran, di niophene, 1,2-diphenylbenzene, 1,3-diphenylbenzene nenylbenzene, fluoranthene, fluorene, indole, naphtha	, 1,4-
4.	Mathematical representation of anthracene solubilities in binary alkane (2) + alkoxyalcohol (3)	23	napl	nthalene, perylene, phenanthrene, 1,10-phenanthrene, 1,thousand phenoxanthiin, phenoxazine, pyrene, the	oline,
5.	solvent mixtures	34	thre volu	ne, thioxanthene, triphenylene, and xanthenes. The times covered the published literature up to 1995, inclu	three
	bilities in binary alcohol (2) + chloroalkane (3) solvent mixtures	50		eral articles that were in still in press at the time. his paper is the first part of a planned three-part volume	e that
6.	Mathematical representation of anthracene solubilities in binary alcohol (2) + ether (3) solvent			update the three earlier volumes on PAH and PA bilities. Part 1 is devoted to solubilities in binary so	
7.	mixtures	56		tures, and incorporates compilations based on palished in the peer-reviewed scientific literature between	
	bilities in binary alcohol (2) + alcohol (3) solvent mixtures	73	199	5 to the end of 2011. To conserve space, data from the rolumes will not be repeated here. Part 2 will deal	n the
8.	Mathematical representation of anthracene solubilities in binary alcohol (2) + alkoxyalcohol (3)	73	solu	bilities of PAHs and PAHaCs dissolved in ternary so tures, while Part 3 will focus on the organic mono-sol-	lvent
9.	solvent mixtures	93		it organic solvents).	CIIIO
7.	bilities in binary alcohol (2) + alkyl ethanoate (3)			1.2 Concentration units for manufacturalists	
10.	solvent mixtures	116		1.2. Concentration units for nonelectrolyte solutions	
10.	bilities in binary alcohol (2) + acetonitrile (3)		C	omposition of a liquid nonelectrolyte solution ca	ın be
	solvent mixtures	129		ressed in a variety of ways, as (1) the ratio of the num	

of moles of one component to the number of moles of a second component, n_1/n_2 , etc., (2) molar concentration

$$c_i = [i] = \frac{n_i}{V}$$
 SI base units: mol dm⁻³, (1)

(3) mole fraction

$$x_i = \frac{n_i}{n_1 + n_2 + \dots + n_i + \dots},$$
 (2)

or (4) volume fraction

$$\phi_i = \frac{n_i V_i}{n_1 V_1 + n_2 V_2 + \dots + n_i V_i + \dots}.$$
 (3)

Strictly speaking, the true volume of a real solution is not equal to the sum of the volumes of the individual components but is the fraction sum of partial volumes, which for a ternary solution is $V = x_1V_1 + x_2V_2 + x_3V_3$. For purposes of this study, volume fractions are defined in terms of the molar volumes of the pure unmixed components, $V_{\text{m},i}$ (molar mass of component i divided by density of component i),

$$\phi_i = \frac{n_i V_{\text{m},i}}{n_1 V_{\text{m},1} + n_2 V_{\text{m},2} + \dots + n_i V_{\text{m},i} + \dots},$$
 (4)

as this quantity serves as an input parameter in expressions for estimating solubilities in mixed solvents since it requires no *a priori* knowledge concerning volumetric behavior. Solute solubilities can be found in the chemical literature in terms of any of the aforementioned concentration variables, or a molality, m_i , which is the number of moles of solute i divided by the mass of the solvent

$$m_i = \frac{n_i}{n_{\text{solvent}} M_{\text{solvent}}}$$
 SI base units: mol kg⁻¹, (5)

where M_{solvent} is the molar mass of the solvent.

1.3. Procedures used in critical evaluation of published solubility data

Procedures used in the critical evaluation of published solubility data for crystalline nonelectrolytes dissolved in organic monosolvents and organic solvent mixtures are dependent to a large extent on the quantity and type of data to be evaluated. In those instances where independent experimental measurements exist, one can compute the mean value and standard deviation for each set of replicate values (or set of values) differ from the rest. This type of analysis will be limited primarily to the neat mono-solvents, as published data for binary and ternary solvent mixtures are relatively scarce compared to solubility data for solutes dissolved in singlesolvent systems. Given the scarcity of binary solvent and ternary solvent solubility data, researchers have tended to perform measurements on new mixtures as opposed to repeating measurements on already studied mixtures, even if measured at different temperatures.

Published solubility data may be found for a given solutesolvent system measured at several different temperatures. The temperature variation can be critically evaluated using standard thermodynamic relationships based on the ideal mole fraction solubility of a solid solute, $x_1^{\text{ideal soly}}$ in a liquid solvent⁴

$$-\ln x_1^{\text{ideal soly}} = \frac{\Delta H_1^{\text{fus}}}{RT} \left[1 - \frac{T}{T_{\text{mp}}} \right] + \frac{\Delta C_{p,1}}{R} \left(\frac{T_{\text{mp}} - T}{T} \right) + \frac{\Delta C_{p,1}}{R} \ln \left(\frac{T_{\text{mp}}}{T} \right), \tag{6}$$

where ΔH_1^{fus} is the standard molar enthalpy of fusion of the solute at its normal melting point temperature, T_{mp} , $\Delta C_{p,1}$ is the difference in the molar heat capacities of the liquid and crystalline forms of the solute (i.e., $\Delta C_{p,1} = C_{p,\text{liquid}} - C_{p,\text{solid}}$), and R is the universal gas constant. Through suitable algebraic manipulations, Eq. (6) can be rearranged to give

$$\ln x_1^{\text{ideal soly}} = \left[\frac{\Delta H_1^{\text{fus}}}{R T_{\text{mp}}} + \frac{\Delta C_{p,1}}{R} \left(1 + \ln T_{\text{mp}} \right) \right]$$
$$- \left(\frac{\Delta H_1^{\text{fus}}}{R} + \frac{\Delta C_{p,1} T_{\text{mp}}}{R} \right) \frac{1}{T} + \frac{\Delta C_{p,1}}{R} \ln T, \quad (7)$$

which has the generalized mathematical form of:

$$\ln x_1 = A + \frac{B}{T} + C \ln T. \tag{8}$$

Though derived for an ideal solution, Eq. (8) has been used successfully to describe solute solubility in many nonideal solutions. The equation is commonly referred to as the Modified Apelblat equation in the published literature.

The λh model, developed by Buchowski *et al.*, ^{5,6} is

$$\ln\left[1 + \frac{\lambda(1 - x_1)}{x_1}\right] = \lambda h\left(\frac{1}{T} - \frac{1}{T_{\text{mn}}}\right),\tag{9}$$

a second popular mathematical representation for describing how the mole fraction solubility varies with solution temperature. In Eq. (9), T and $T_{\rm mp}$ refer to the solution temperature and melting point temperature of the solute, respectively. The two model parameters, λ and h, are determined by least-squares analyses using the measured mole fraction solubilities. Experimental solubility data are considered to be internally consistent if the measured x_i values can be accurately described by either Eq. (8) and/or Eq. (9).

The solvent composition dependence upon solubility is generally evaluated using semi-theoretical solution models. During the past 50 years, more than 100 solution models have been developed for describing variation of solubility with solvent composition based on different assumptions regarding how molecules interact in solution. Predictive expressions derived from several of the proposed solution models have served as mathematical representations for isothermal solubility data in binary and ternary solvent mixtures, and for identifying experimental data points in need of redetermination. The Combined Nearly Ideal Binary Solvent (NIBS)/Redlich-Kister

equation is^{7,8}

$$\ln x_1^{\text{sat}} = x_2^{(s)} \ln (x_1^{\text{sat}})_2 + x_3^{(s)} \ln (x_1^{\text{sat}})_3 + x_2^{(s)} x_3^{(s)} \sum_{i=0}^r S_{23,i} (x_2^{(s)} - x_3^{(s)})^i,$$
 (10)

likely the most popular of the proposed mathematical representations. In the above equation, $x_i^{(s)}$ refers to the initial mole fraction solvent composition of component i calculated as if the solute were not present, and $(x_A^{\text{sat}})_i$ denotes the measured solute solubility in pure solvent i. The summation in the last term on the right-hand side of Eq. (10) includes as many curve-fit $S_{23,i}$ parameters as are needed to accurately describe the observed solubility data. Generally, no more than three parameters will be needed in a given mathematical representation. The various $S_{23,i}$ parameters are determined by regression analysis.

The popularity of the Combined NIBS/Redlich-Kister model results from the fact that the computed $S_{IJ,i}$ parameters can be used to predict solute solubility in ternary solvent systems

$$\ln x_{1}^{\text{sat}} = x_{2}^{(s)} \ln (x_{1}^{\text{sat}})_{2} + x_{3}^{(s)} \ln (x_{1}^{\text{sat}})_{3} + x_{4}^{(s)} \ln (x_{1}^{\text{sat}})_{4} + x_{2}^{(s)} x_{3}^{(s)} \sum_{j=0}^{r} S_{23,j} (x_{2}^{(s)} - x_{3}^{(s)})^{j} + x_{2}^{(s)} x_{4}^{(s)} \sum_{k=0}^{s} S_{24,k} (x_{2}^{(s)} - x_{4}^{(s)})^{k} + x_{3}^{(s)} x_{4}^{(s)} \sum_{l=0}^{t} S_{34,l} (x_{3}^{(s)} - x_{4}^{(s)})^{l}$$

$$(11)$$

and in higher order multicomponent solvent systems

$$\ln x_1^{\text{sat}} = \sum_{I}^{\text{Solvents}} \sum_{J>I}^{\text{Solvents}} \left[x_I^{(s)} x_J^{(s)} \sum_{k=0}^{n} S_{IJ,i} (x_I^{(s)} - x_J^{(s)})^k \right].$$
(12)

Equation (11) is referred to as the Combined Nearly Ideal Ternary Solvent (NITS)/Redlich-Kister model. To date, Eq. (11) has been shown to provide very accurate predictions for the solubility of anthracene and/or pyrene in 114 different ternary solvent mixtures including several alcohol + hydrocarbon + hydrocarbon, alcohol + alcohol + hydrocarbon, alkoxyalcohol + alcohol + hydrocarbon, alkoxyalcohol + alcohol + alcohol, and alkyl ether + alcohol + hydrocarbon solvent systems. ^{8–34} Predictive applicability of Eq. (11) will be illustrated in Part 2 of the planned three-part series that will update the solubilities of PAH and PAHaC in ternary organic solvent systems.

The Modified Wilson equation was used in the early to mid-1990s to mathematically describe isothermal solubility data of crystalline nonelectrolyte solutes dissolved in the binary solvent mixtures. The mathematical form of the equation is^{7,8}

$$\ln (x_1^{\text{ideal soly}}/x_1) = 1 - \frac{x_2^{(s)} \{1 - \ln [x_1^{\text{ideal soly}}/(x_1)_2]\}}{x_2^{(s)} + x_3^{(s)} \Lambda_{23}} - \frac{x_3^{(s)} \{1 - \ln [x_1^{\text{ideal soly}}/(x_1)_3]\}}{x_2^{(s)} \Lambda_{32} + x_3^{(s)}}, \quad (13)$$

which is considerably more complex, making the calculation of the two curve-fit parameters (Λ_{23} and Λ_{32}) more difficult. While Eq. (13) was found to accurately describe measured anthracene, carbazole, and pyrene solubility data in many different binary solvent mixtures, its use as a mathematical representation significantly decreased when the Combined NIBS/Redlich-Kister equation was extended to include ternary and higher order multicomponent solvent systems. As noted above, the curve-fit $S_{IJ,i}$ parameters in Eq. (10) can be used to estimate the solubility of crystalline solutes in ternary and higher order multicomponent solvent systems. Experimental isothermal solubility data are considered to be internally consistent if the measured x_i values can be accurately described by either Eq. (10) and/or Eq. (13).

2. Solubility of Anthracene in Binary Alkane + Alcohol Solvent Mixtures

2.1. Critical evaluation of experimental solubility data

Volume 58 in the IUPAC Solubility Data Series² contained solubility data for anthracene in 49 binary solvent mixtures containing hexane, heptane, octane, cyclohexane, methylcyclohexane, 2,2,4-trimethylpentane, and *tert*-butylcyclohexane (also called (1,1-dimethylethyl)cyclohexane) with 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 3-methyl-1-butanol, and 1-octanol. For the most part, the solubility data were measured at 298.2 K and seven compositions spanning the entire binary mole fraction range. To conserve space, data from the earlier volumes will not be repeated in this volume. Attention will be focused on compiling experimental values determined after Vol. 58 was published.

Acree and co-workers^{35–38} determined the solubility of anthracene in binary alkane + ethanol, alkane + 1-pentanol, alkane + 2-pentanol, alkane + 2-methyl-2-propanol, alkane + 2-methyl-2-butanol, and alkane + 2-ethyl-1-hexanol at 298.15 K. The alkane solvents included hexane, heptane, octane, cyclohexane, methylcyclohexane, 2,2,4-trimethylpentane, and *tert*-butylcyclohexane. Except for the ethanol + 2,2,4-trimethylpentane solvent system, there has only been a single experimental determination for the solubility of anthracene in each of the binary solvent systems studied. In the absence of replicate independent measurements, the experimental values were evaluated by curve-fitting the measured solubility data to Eq. (10).

The calculated $S_{23,i}$ parameters for the 20 binary alkane + primary solvent systems studied are summarized in Table 1, along with the average absolute deviation between the experimental and back-calculated mole fraction solubilities. Examination of the numerical entries in the last column of Table 1 reveals that Eq. (10) does provide a very accurate mathematical representation for how the measured mole fraction solubilities vary with binary solvent composition. Average percent deviations range from 0.2% to 2.9%, indicating that the

Table 1. Mathematical representation of anthracene solubilities in binary alkane (2) + alcohol (3) solvent mixtures

Binary solvent system	$S_{23,i}^{a}$	% Dev ^b
Hexane (2) + ethanol (3)	1.430	0.7
	-0.686	
	1.088	
Heptane (2) + ethanol (3)	1.403	0.9
	-0.670	
	1.381	
Octane (2) + ethanol (3)	1.614	0.5
	-0.897	
	1.204	
Cyclohexane (2) + ethanol (3)	1.809	0.3
	-0.388	
	0.426	
Methylcyclohexane (2) + ethanol (3)	1.898	0.4
	-0.569	
	0.478	
2,2,4-Trimethylpentane (2) + ethanol (3)	1.155°	0.4
	-0.508	
22.4 T : 1.1 (2) + .1 1 . (2)	1.425	2.0
2,2,4-Trimethylpentane (2) + ethanol (3)	1.096 ^d	2.9
	-0.261	
2.2.4 Tri	2.663	1.5
2,2,4-Trimethylpentane (2) + ethanol (3)	1.271 ^e	1.5
	-0.407	
2,2,4-Trimethylpentane (2) + ethanol (3)	1.702 1.206 ^f	0.8
2,2,4-17ffflethylpentalie (2) + ethanol (3)	-0.141	0.8
	1.321	
Octane (2) + 1-pentanol (3)	0.688	0.7
Octane (2) + 1-pentanor (3)	0.130	0.7
	-0.241	
Cyclohexane (2) + 1-pentanol (3)	0.591	0.7
ejetonemile (2) * 1 penunoi (8)	0.472	0.7
	0.010	
Methylcyclohexane (2) + 1-pentanol (3)	0.622	0.9
	0.524	
	0.058	
2,2,4-Trimethylpentane (2) + 1-pentanol (3)	0.530	0.5
	0.242	
	-0.011	
Hexane $(2) + 2$ -ethyl-1-hexanol (3)	0.527	0.8
	0.344	
	0.417	
Heptane $(2) + 2$ -ethyl-1-hexanol (3)	0.389	0.2
	0.166	
	0.131	
Octane $(2) + 2$ -ethyl-1-hexanol (3)	0.430	0.3
	0.023	
	0.356	
Cyclohexane $(2) + 2$ -ethyl-1-hexanol (3)	0.278	0.8
	0.323	
	0.810	
Methylcyclohexane (2) + 2-ethyl-1-hexanol (3)	0.327	1.1
	0.458	
	0.944	
2,2,4-Trimethylpentane (2) + 2-ethyl-1-hexanol (3)	0.394	0.3
	0.118	
	0.233	
Heptane $(2) + 2$ -methyl-2-propanol (3)	1.326	0.3
	-0.547	
	0.702	0.7
Cyclohexane (2) + 2-methyl-2-propanol (3)	1.189	0.7
	-0.118	
	0.554	

Table 1. Mathematical representation of anthracene solubilities in binary alkane (2) + alcohol (3) solvent mixtures—Continued

$S_{23,i}^{a}$	% Dev ^b
1.373	0.5
-0.165	
0.369	
1.003	0.3
-0.411	
0.379	
	1.373 -0.165 0.369 1.003 -0.411

^aCombined NIBS/Redlich-Kister curve-fit parameters are ordered as $S_{23,0}$, $S_{23,1}$, and $S_{23,2}$.

^bDev (%) = (100/N) $\Sigma \mid [x_1^{\text{exp}} - x_1^{\text{cal}}]/x_1^{\text{exp}} \mid$.

measured values fall on smooth $\ln x_1$ versus $x_2^{(s)}$ curves. None of the experimental data points was flagged as an outlier.

The solubility of anthracene in binary 2,2,4-trimethylpentane + ethanol solvent mixtures has been measured by two research groups. Grubbs et al.35 reported the solubility of anthracene in 2,2,4-trimethylpentane + ethanol mixtures at 298.2 K, while Shayanfar et al. 39 performed measurements at 298.2, 308.2, and 318.2 K. It is hard to compare the experimental values directly as the two sets of mole fraction solubilities in 2,2,4-trimethylpentane and ethanol differed by 9.5% and 8.9% relative percent, with the values determined by Shayanfar et al. being consistently larger. Differences in chemical purities and experimental methodology can lead to slight differences in values reported by independent research groups. A difference of 10% does not seem unreasonable given the differences in initial anthracene purities (99% versus 96%), and the fact that the densities of the saturated solutions were needed to convert the Shayanfar et al. molar solubility data to mole fraction solubilities. Any errors and/or uncertainties in the solution densities would affect the calculated mole fraction solubility. It is further noted that the solubility data of Shayanfar et al.39 did exhibit the larger deviations between the observed data and back-calculated values based on Eq. (10).

The experimental anthracene solubility data are ordered according to alcohol type. Solubility data for alkane + primary alcohol solvent mixtures, for alkane + secondary solvent mixtures, and for alkane + tertiary alcohol solvent mixtures are below.

2.2. Anthracene solubility data in binary alkane + primary alcohol solvent mixtures

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) Hexane; C ₆ H ₁₄ ; [110-54-3] (3) Ethanol; C ₂ H ₆ O; [64-17-5]	Original Measurements: 35L. M. Grubbs, K. Holley, S. S. Achi, R. Pointer, D. Casares, R. Hall, J. Ruiz, and W. E. Acree, Jr., Phys. Chem. Liq. 49, 379 (2011).
Variables: T/K = 298.15; Solvent Composition	Prepared by: W. E. Acree, Jr.

^cSolubility data reported by Grubbs et al. at 298.15 K.

^dSolubility data reported by Shayanfar et al. at 298.2 K.

^eSolubility data reported by Shayanfar *et al.* at 308.2 K.

^fSolubility data reported by Shayanfar et al. at 318.2 K.

Solubility of anthracene in hexane + ethanol mixtures^a

$x_2^{(s)}$	x_2	x_1
0.0000	0.0000	0.000460
0.0487	0.0487	0.000555
0.0967	0.0966	0.000641
0.2286	0.2284	0.000840
0.3049	0.3046	0.000923
0.4053	0.4049	0.001028
0.6434	0.6426	0.001220
0.7786	0.7776	0.001281
1.0000	0.9987	0.001274

 \bar{a}_{x_2} ^(s): initial mole fraction of component 2 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_2 : mole fraction of component 2 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into volumetric flasks, weighed and diluted with methanol. Molar concentrations were determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from acetone.
- (2) 99+%, Aldrich Chemical Company.
- (3) 99%, Aaper Alcohol and Chemical Company, USA.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.05 K.

 $x_2^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

ys. Chem. Liq. 49, 379 (2011).
epared by: . E. Acree, Jr.

Experimental Values

Solubility of anthracene in heptane + ethanol mixtures^a

x_2	x_1
0.0000	0.000460
0.0454	0.000561
0.0956	0.000661
0.2122	0.000869
0.2869	0.000976
0.3833	0.001105
	0.0000 0.0454 0.0956 0.2122 0.2869

0.5980	0.5972	0.001336
0.7425	0.7414	0.001484
1.0000	0.9984	0.001571

 \bar{a}_{x_2} ^(s): initial mole fraction of component 2 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_2 : mole fraction of component 2 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from acetone.
- (2) 99%, anhydrous, Aldrich Chemical Company.
- (3) 99%, Aaper Alcohol and Chemical Company, USA.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.05 K.

 $x_2^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components:	Original Measurements:
(1) Anthracene; $C_{14}H_{10}$; [120-12-7]	³⁵ L. M. Grubbs, K. Holley, S. S.
(2) Octane; C ₈ H ₁₈ ; [111-65-9]	Achi, R. Pointer, D. Casares, R.
(3) Ethanol; C ₂ H ₆ O; [64-17-5]	Hall, J. Ruiz, and W. E. Acree, Jr.,
	Phys. Chem. Liq. 49, 379 (2011).
Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in octane + ethanol mixtures^a

$x_2^{(s)}$	x_2	x_1
0.0000	0.0000	0.000460
0.0445	0.0445	0.000566
0.0843	0.0842	0.000661
0.1966	0.1964	0.000919
0.2653	0.2650	0.001032
0.3544	0.3540	0.001176
0.6015	0.6006	0.001520
0.7444	0.7431	0.001700
1.0000	0.9982	0.001838

 \overline{a}_{x_2} ^(s): initial mole fraction of component 2 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_2 : mole fraction of component 2 in the ternary solution.

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from acetone.
- (2) 99+%, Aldrich Chemical Company.
- (3) 99%, Aaper Alcohol and Chemical Company, USA.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.05 K.

 $x_2^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) Cyclohexane; C ₆ H ₁₂ ; [110-82-7] (3) Ethanol; C ₂ H ₆ O; [64-17-5]	Original Measurements: 35L. M. Grubbs, K. Holley, S. S. Achi, R. Pointer, D. Casares, R. Hall, J. Ruiz, and W. E. Acree, Jr., Phys. Chem. Liq. 49, 379 (2011).
Variables: T/K = 298 15: Solvent Composition	Prepared by:

Experimental Values

Solubility of anthracene in cyclohexane + ethanol mixtures^a

$x_2^{(s)}$	x_2	x_1
0.0000	0.0000	0.000460
0.0580	0.0580	0.000565
0.1121	0.1120	0.000668
0.2709	0.2706	0.000963
0.3426	0.3422	0.001099
0.4467	0.4461	0.001241
0.6777	0.6766	0.001530
0.8262	0.8249	0.001614
1.0000	0.9984	0.001553

 \bar{a}_{x_2} ^(s): initial mole fraction of component 2 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_2 : mole fraction of component 2 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from acetone.
- (2) 99+%, HPLC grade, Aldrich Chemical Company.
- (3) 99%, Aaper Alcohol and Chemical Company, USA.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.05 K.

 $x_2^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components:	Original Measurements:
(1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7]	³⁵ L. M. Grubbs, K. Holley, S. S.
(2) Methylcyclohexane; C ₇ H ₁₄ ;	Achi, R. Pointer, D. Casares, R.
[108-87-2]	Hall, J. Ruiz, and W. E. Acree, Jr.,
(3) Ethanol; C ₂ H ₆ O; [64-17-5]	Phys. Chem. Liq. 49, 379 (2011).
Variables:	Prepared by:
T/K = 298 15: Solvent Composition	W F Acree Ir

Experimental Values

Solubility of anthracene in methylcyclohexane + ethanol mixtures^a

$x_2^{(s)}$	x_2	x_1
0.0000	0.0000	0.000460
0.0515	0.0515	0.000562
0.1080	0.1079	0.000683
0.2366	0.2364	0.000952
0.3097	0.3094	0.001092
0.4110	0.4105	0.001257
0.6559	0.6549	0.001579
0.8007	0.7993	0.001688
1.0000	0.9984	0.001649

 \bar{a}_{x_2} ^(s): initial mole fraction of component 2 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_2 : mole fraction of component 2 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from acetone.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99%, Aaper Alcohol and Chemical Company, USA.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.05 K.

 $x_2^{(s)}$: ± 0.0001 .

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 2,2,4-Trimethylpentane; C ₈ H ₁₈ ; [540-84-1] (3) Ethanol; C ₂ H ₆ O; [64-17-5]	Original Measurements: 35 L. M. Grubbs, K. Holley, S. S. Achi, R. Pointer, D. Casares, R. Hall, J. Ruiz, and W. E. Acree, Jr., Phys. Chem. Liq. 49, 379 (2011).
Variables: $T/K = 298.15$; Solvent Composition	Prepared by: W. E. Acree, Jr.

Solubility of anthracene in 2,2,4-trimethylpentane + ethanol mixtures^a

$x_2^{(s)}$	x_2	x_1
0.0000	0.0000	0.000460
0.0437	0.0437	0.000538
0.0805	0.0805	0.000594
0.1898	0.1897	0.000737
0.2621	0.2619	0.000797
0.3329	0.3326	0.000850
0.5830	0.5824	0.000997
0.7237	0.7229	0.001078
1.0000	0.9989	0.001074

 a_{x_2} ^(s): initial mole fraction of component 2 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_2 : mole fraction of component 2 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from acetone.
- (2) 99.7%, HPLC grade, Aldrich Chemical Company.
- (3) 99%, Aaper Alcohol and Chemical Company, USA.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.05 K.

 $x_2^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components: Original Measurements: (1) Anthracene; $C_{14}H_{10}$; [120-12-7] 39 A. Shayanfar, S. H. Eghrary, F. (2) 2,2,4-Trimethylpentane; C_8H_{18} ; Sardari, W. E. Acree, Jr., and A. [540-84-1] Jouyban, J. Chem. Eng. Data 56, (3) Ethanol; C_2H_6O ; [64-17-5] 2290 (2011). Variables: Prepared by: T/K = 298.2, 308.2, 318.2; Solvent W. E. Acree, Jr. Composition W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 2,2,4-trimethylpentane + ethanol mixtures^a

T/K	$x_3^{(s)}$	x_3	x_1
298.2	0.000	0.000	0.001187
	0.239	0.239	0.001277
	0.414	0.414	0.001143
	0.548	0.547	0.001041
	0.653	0.652	0.000950
	0.739	0.738	0.000885
	0.809	0.808	0.000821
	0.868	0.867	0.000742
	0.919	0.918	0.000673
	0.962	0.961	0.000608
	1.000	0.999	0.000505
308.2	0.000	0.000	0.001515
	0.242	0.242	0.001610
	0.418	0.417	0.001466
	0.552	0.551	0.001359
	0.657	0.656	0.001244
	0.742	0.741	0.001160
	0.812	0.811	0.001059
	0.870	0.869	0.000959
	0.920	0.919	0.000862
	0.963	0.962	0.000777
	1.000	0.999	0.000665
318.2	0.000	0.000	0.001768
	0.240	0.240	0.001898
	0.415	0.414	0.001705
	0.549	0.548	0.001548
	0.654	0.653	0.001404
	0.739	0.738	0.001295
	0.810	0.809	0.001214
	0.869	0.868	0.001087
	0.919	0.918	0.000979
	0.962	0.961	0.000884
	1.000	0.999	0.000780

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Shaker bath, incubator equipped with temperature controlling system, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in sealed containers and allowed to equilibrate for three days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a hydrophobic Drapore filters (0.45 μm , Millipore, Ireland) into tared volumetric flasks, weighed and diluted with methanol. Molar concentrations determined by spectrophotometric measurements at 356 nm. The measured molar solubilities were converted to mole fraction solubilities using the measured densities of the saturated solutions

Source and Purity of Chemicals:

- (1) 96%, Fluka Chemical Company, recrystallized several times from acetone and ethyl ethanoate.
- (2) 99%, Merck Chemical Company, Germany, no further purification specified.
- (3) 99.9%, Merck Chemical Company, Germany, no further purification specified.

Estimated Error:

Temperature: ± 0.2 K.

 $x_3^{(s)}$: ± 0.001 .

Original Measurements: 36J. R. Powell, M. E. R. McHale, AS. M. Kauppila, W. E. Acree, Jr., P. H. Flanders, V. G. Varanasi, and S. W. Campbell, Fluid Phase Equilib. 134 , 185 (1997).
Prepared by: W. E. Acree, Jr.

Solubility of anthracene in hexane + 1-pentanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.001274
0.1262	0.1260	0.001351
0.2341	0.2338	0.001377
0.4343	0.4337	0.001368
0.5444	0.5437	0.001336
0.6461	0.6453	0.001284
0.8353	0.8343	0.001189
0.9095	0.9085	0.001145
1.0000	0.9989	0.001097

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Gold Label, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99%, Aldrich Chemical Company.
- (3) 99+%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 . x_1 : $\pm 1.5\%$ (relative error).

W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in heptane + 1-pentanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.001571
0.1405	0.1403	0.001622
0.2547	0.2543	0.001627
0.4681	0.4674	0.001551
0.5639	0.5631	0.001490
0.6745	0.6736	0.001402
0.8242	0.8232	0.001271
0.9160	0.9150	0.001180
1.0000	0.9989	0.001097

 ${}^{a}x_{3}$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_{1} : mole fraction solubility of the solute; x_{3} : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Gold Label, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) HPLC grade, Aldrich Chemical Company.
- (3) 99+%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components:	Original Measurements:
(1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7]	³⁷ L. E. Roy, C. E. Hernández, G. D.
(2) Octane; C ₈ H ₁₈ ; [111-65-9]	Reddy, J. T. Sanders, T. Deng, M. B.
(3) 1-Pentanol; C ₅ H ₁₂ O; [71-41-0]	Tuggle, and W. E. Acree, Jr., J.
	Chem. Eng. Data 43, 493 (1998).
Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

T/K = 298.15; Solvent Composition

Solubility of anthracene in octane + 1-pentanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.001838
0.1484	0.1481	0.001859
0.2791	0.2786	0.001816
0.5026	0.5018	0.001668
0.6018	0.6009	0.001572
0.6974	0.6964	0.001476
0.8595	0.8584	0.001256
0.9270	0.9259	0.001166
1.0000	0.9989	0.001097

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Acros Organics, USA, recrystallized three times from acetone.
- (2) 99+%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA.
- (3) 99%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) Cyclohexane; C ₆ H ₁₂ ; [110-82-7] (3) 1-Pentanol; C ₅ H ₁₂ O; [71-41-0]	Original Measurements: ³⁷ L. E. Roy, C. E. Hernández, G. D. Reddy, J. T. Sanders, T. Deng, M. B. Tuggle, and W. E. Acree, Jr., J. Chem. Eng. Data 43 , 493 (1998).
Variables: $T/K = 298.15$; Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in cyclohexane + 1-pentanol mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.001553
0.0946	0.0944	0.001643
0.2023	0.2020	0.001646
0.4103	0.4097	0.001578
0.5108	0.5100	0.001501
0.6088	0.6079	0.001427

0.7975	0.7965	0.001248
0.8991	0.9988	0.001154
1.0000	0.9989	0.001097

 ${}^{a}x_{3}$ (s): initial mole fraction of component 3 in the binary solvent mixture; x_{1} : mole fraction solubility of the solute; x_{3} : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Acros Organics, USA, recrystallized three times from acetone.
- (2) HPLC grade, Aldrich Chemical Company, Milwaukee, WI, USA.
- (3) 99%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components:	Original Measurements:
(1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) Methylcyclohexane; C ₇ H ₁₄ ;	³⁷ L. E. Roy, C. E. Hernández, G. D. Reddy, J. T. Sanders, T. Deng, M. B.
[108-97-2]	Tuggle, and W. E. Acree, Jr., J.
(3) 1-Pentanol; C ₅ H ₁₂ O; [71-41-0]	Chem. Eng. Data 43, 493 (1998).
Variables:	Prepared by:
T/K = 298.15: Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in methylcyclohexane + 1-pentanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
.0000	0.0000	0.001649
0.1269	0.1267	0.001778
0.2316	0.2312	0.001734
0.4458	0.4451	0.001615
0.5347	0.5339	0.001542
0.6304	0.6295	0.001451
0.8161	0.8151	0.001245
0.9074	0.9064	0.001157
1.0000	0.9989	0.001097

 ${}^{a}x_{3}$ (s): initial mole fraction of component 3 in the binary solvent mixture; x_{1} : mole fraction solubility of the solute; x_{3} : mole fraction of component 3 in the ternary solution.

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

(1) 99.9+%, Acros Organics, USA, recrystallized three times from acetone. (2) 99+%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA. (3) 99%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components:	Original Measurements:
(1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7]	³⁷ L. E. Roy, C. E. Hernández, G. D.
(2) 2,2,4-Trimethylpentane; C_8H_{18} ;	Reddy, J. T. Sanders, T. Deng, M. B.
[540-84-1]	Tuggle, and W. E. Acree, Jr., J.
(3) 1-Pentanol; C ₅ H ₁₂ O; [71-41-0]	Chem. Eng. Data 43, 493 (1998).
Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 2,2,4-trimethylpentane + 1-pentanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.001074
0.1428	0.1426	0.001182
0.2960	0.2956	0.001224
0.5244	0.5238	0.001235
0.6141	0.6134	0.001214
0.7171	0.7162	0.001196
0.8440	0.8430	0.001143
0.9318	0.9308	0.001115
1.0000	0.9989	0.001097

 ${}^{a}x_{3}$ (s): initial mole fraction of component 3 in the binary solvent mixture; x_{1} : mole fraction solubility of the solute; x_{3} : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Acros Organics, USA, recrystallized three times from acetone.
- (2) HPLC grade, Aldrich Chemical Company, Milwaukee, WI, USA.
- (3) 99%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components:	Original Measurements:
(1) Anthracene; $C_{14}H_{10}$; [120-12-7]	³⁷ L. E. Roy, C. E. Hernández, G. D.
(2) Hexane; C_6H_{14} ; [110-54-3]	Reddy, J. T. Sanders, T. Deng, M. B.
(3) 2-Ethyl-1-hexanol; $C_8H_{18}O$;	Tuggle, and W. E. Acree, Jr., J.
[104-76-7]	Chem. Eng. Data 43 , 493 (1998).
Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in hexane + 2-ethyl-1-hexanol mixtures^a

(s)		
$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.001274
0.0983	0.0982	0.001422
0.1794	0.1791	0.001469
0.3597	0.3592	0.001516
0.4565	0.4559	0.001525
0.5590	0.5581	0.001529
0.7647	0.7635	0.001504
0.8718	0.9705	0.001451
1.0000	0.9986	0.001397

 $\overline{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Acros Organics, USA, recrystallized three times from acetone.
- (2) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA.
- (3) 99+%, Acros Organics.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) Heptane; C ₇ H ₁₆ ; [142-82-5] (3) 2-Ethyl-1-hexanol; C ₈ H ₁₈ O; [104-76-7]	Original Measurements: ³⁷ L. E. Roy, C. E. Hernández, G. D. Reddy, J. T. Sanders, T. Deng, M. B. Tuggle, and W. E. Acree, Jr., J. Chem. Eng. Data 43 , 493 (1998).
Variables: $T/K = 298.15$; Solvent Composition	Prepared by: W. E. Acree, Jr.

Solubility of anthracene in heptane + 2-ethyl-1-hexanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.001571
0.1116	0.1114	0.001647
0.1972	0.1969	0.001669
0.3931	0.3924	0.001656
0.4806	0.4798	0.001639
0.5718	0.5709	0.001615
0.7850	0.7838	0.001517
0.8865	0.8852	0.001464
1.0000	0.9986	0.001397

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Acros Organics, USA, recrystallized three times from acetone. (2) HPLC grade, Aldrich Chemical Company, Milwaukee, WI, USA.
- (3) 99+%, Acros Organics.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: $\pm 0.1 \text{ K}$. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

 Components:
 Original Measurements:

 (1) Anthracene; C₁₄H₁₀; [120-12-7]
 37L. E. Roy, C. E. Hernández, G. D. Reddy, J. T. Sanders, T. Deng, M. B. Tuggle, and W. E. Acree, Jr., J. Chem. Eng. Data 43, 493 (1998).

Variables: Prepared by: T/K = 298.15; Solvent Composition W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in octane + 2-ethyl-1-hexanol mixtures^a

$\overline{x_3^{(s)}}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.001838
0.1190	0.1188	0.001907
0.2139	0.2135	0.001898
0.4149	0.4141	0.001835
0.5098	0.5089	0.001785
0.6148	0.6137	0.001712
0.8102	0.8089	0.001606
0.8932	0.8918	0.001527
1.0000	0.9986	0.001397

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Acros Organics, USA, recrystallized three times from acetone.
- (2) 99+%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA.
- (3) 99+%, Acros Organics.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) Cyclohexane; C ₆ H ₁₂ ; [110-82-7] (3) 2-Ethyl-1-hexanol; C ₈ H ₁₈ O;	Original Measurements: 37 L. E. Roy, C. E. Hernández, G. D. Reddy, J. T. Sanders, T. Deng, M. B. Tuggle, and W. E. Acree, Jr., J.
[104-76-7] Variables:	Chem. Eng. Data 43 , 493 (1998). Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Solubility of anthracene in cyclohexane + 2-ethyl-1-hexanol mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.001553
0.0590	0.0589	0.001658
0.1441	0.1439	0.001689
0.3159	0.3154	0.001659
0.4036	0.4029	0.001632
0.5098	0.5090	0.001596
0.7412	0.7401	0.001535
0.8616	0.8603	0.001492
1.0000	0.9986	0.001397

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Experimental Values

Solubility of anthracene in methylcyclohexane + 2-ethyl-1-hexanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.001649
0.0890	0.0888	0.001830
0.1771	0.1768	0.001819
0.3610	0.3604	0.001726
0.4509	0.4501	0.001685
0.5499	0.5490	0.001633
0.7667	0.7655	0.001563
0.8751	0.8736	0.001498
1.0000	0.9986	0.001397

 a_{x_3} ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Acros Organics, USA, recrystallized three times from acetone.
- (2) HPLC grade, Aldrich Chemical Company, Milwaukee, WI, USA.
- (3) 99+%, Acros Organics.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Acros Organics, USA, recrystallized three times from acetone.
- $(2)\ 99+\%,\ anhydrous,\ Aldrich\ Chemical\ Company,\ Milwaukee,\ WI,\ USA.$
- (3) 99+%, Acros Organics.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) Methylcyclohexane; C ₇ H ₁₄ ; [108-87-2]	Original Measurements: ³⁷ L. E. Roy, C. E. Hernández, G. D. Reddy, J. T. Sanders, T. Deng, M. B. Tuggle, and W. E. Acree, Jr., J.
(3) 2-Ethyl-1-hexanol; C ₈ H ₁₈ O; [104-76-7] Variables:	Chem. Eng. Data 43 , 493 (1998). Prepared by:
T/K = 298 15: Solvent Composition	W. F. Acree Ir

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 2,2,4-Trimethylpentane; C ₈ H ₁₈ ; [540-84-1] (3) 2-Ethyl-1-hexanol; C ₈ H ₁₈ O; [104-76-7]	Original Measurements: 37L. E. Roy, C. E. Hernández, G. D. Reddy, J. T. Sanders, T. Deng, M. B. Tuggle, and W. E. Acree, Jr., J. Chem. Eng. Data 43, 493 (1998).
Variables: T/K = 298.15; Solvent Composition	Prepared by: W. E. Acree, Jr.

Solubility of anthracene in 2,2,4-trimethylpentane + 2-ethyl-1-hexanol mixtures^a

(e)		
$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.001074
0.1144	0.1143	0.001184
0.2135	0.2132	0.001232
0.4193	0.4187	0.001325
0.5143	0.5136	0.001357
0.6103	0.6095	0.001387
0.7935	0.7924	0.001415
0.8027	0.8016	0.001419
0.8974	0.8961	0.001414
1.0000	0.9986	0.001397

 $[\]bar{a}_{x_3}^{(s)}$: initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Acros Organics, USA, recrystallized three times from acetone.
- (2) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA.
- (3) 99+%, Acros Organics.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

2.3. Anthracene solubility data in binary alkane + secondary alcohol solvent mixtures

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) Heptane; C ₇ H ₁₆ ; [142-85-5] (3) 2-Pentanol; C ₅ H ₁₂ O; [6032-29-7]	Original Measurements: ³⁶ J. R. Powell, M. E. R. McHale, AS. M. Kauppila, W. E. Acree, Jr., P. H. Flanders, V. G. Varanasi, and S. W. Campbell, Fluid Phase Equilib. 134 , 185 (1997).
Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in heptane + 2-pentanol mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.001571
0.1469	0.1467	0.001578
0.2544	0.2540	0.001547
0.4611	0.4604	0.001427
0.5702	0.5694	0.001333
0.6693	0.6685	0.001244
0.8386	0.8377	0.001030
0.9198	0.9190	0.000916
1.0000	0.9992	0.000800

 $^{a}x_{3}$ (s): initial mole fraction of component 3 in the binary solvent mixture; x_{1} : mole fraction solubility of the solute; x_{3} : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Gold Label, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) HPLC grade, Aldrich Chemical Company.
- (3) 99+%, Acros Organics, USA

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

2.4. Anthracene solubility data in binary alkane + tertiary alcohol solvent mixtures

Components:	Original Measurements:
(1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7]	³⁸ K. M. De Fina, T. T. Van, A.
(2) Heptane; C ₇ H ₁₆ ; [142-82-5]	Ibarra, E. Hamilton, J. Martinez, A.
(3) 2-Methyl-2-propanol; $C_4H_{10}O$;	Valdez, and W. E. Acree, Jr., Phys.
[64-17-5]	Chem. Liq. 39 , 249 (2001).
Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Solubility of anthracene in heptane + 2-methyl-2-propanol mixtures^a

(0)		
$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.001571
0.1354	0.1352	0.001536
0.2898	0.2894	0.001382
0.5134	0.5128	0.001137
0.5993	0.5987	0.001025
0.7060	0.7054	0.000892
0.8485	0.8479	0.000677
0.9172	0.9168	0.000570
1.0000	0.9996	0.000430

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) HPLC grade, Aldrich Chemical Company, Milwaukee, WI, USA.
- (3) 99+%, Arco Chemical Company, USA.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: $\pm 0.1 \text{ K}$. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) Cyclohexane; C ₆ H ₁₂ ; [110-82-7] (3) 2-Methyl-2-propanol; C ₄ H ₁₀ O; [64-17-5]	Original Measurements: ³⁸ K. M. De Fina, T. T. Van, A. Ibarra, E. Hamilton, J. Martinez, A Valdez, and W. E. Acree, Jr., Phys Chem. Liq. 39 , 249 (2001).	
Variables: $T/K = 298.15$; Solvent Composition	Prepared by: W. E. Acree, Jr.	

Experimental Values

Solubility of anthracene in cyclohexane + 2-methyl-2-propanol mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.001553
0.1213	0.1211	0.001553
0.2219	0.2216	0.001446
0.4242	0.4237	0.001187

0.5264	0.5258	0.001074
0.6314	0.6308	0.000933
0.8199	0.8193	0.000677
0.9072	0.9067	0.000555
1.0000	0.9996	0.000430

 ${}^{a}x_{3}{}^{(s)}$: initial mole fraction of component 3 in the binary solvent mixture; x_{1} : mole fraction solubility of the solute; x_{3} : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) HPLC grade, Aldrich Chemical Company, Milwaukee, WI, USA.
- (3) 99+%, Arco Chemical Company, USA.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components:	Original Measurements:
(1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7]	³⁸ K. M. De Fina, T. T. Van, A.
(2) Methylcyclohexane; C ₇ H ₁₄ ;	Ibarra, E. Hamilton, J. Martinez, A.
[108-87-2]	Valdez, and W. E. Acree, Jr., Phys.
(3) 2-Methyl-2-propanol; $C_4H_{10}O$;	Chem. Liq. 39, 249 (2001).
[64-17-5]	
Variables:	Prepared by:
T/K - 298 15: Solvent Composition	W F Acree Ir

Experimental Values

Solubility of anthracene in methylcyclohexane + 2-methyl-2-propanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.001649
0.1382	0.1380	0.001632
0.2612	0.2608	0.001506
0.4844	0.4838	0.001200
0.5682	0.5676	0.001086
0.6681	0.6675	0.000940
0.8386	0.8380	0.000669
0.9143	0.9138	0.000553
1.0000	0.9996	0.000430

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/ visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99%, Aldrich Chemical Company, Milwaukee, WI, USA.
- (3) 99+%, Arco Chemical Company, USA.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

Components:

[540-84-1]

[64-17-5]

 x_1 : $\pm 1.5\%$ (relative error).

(1) Anthracene; C₁₄H₁₀; [120-12-7]

(2) 2,2,4-Trimethylpentane; C₈H₁₈;

(3) 2-Methyl-2-propanol; C₄H₁₀O;

Original Measurements:
³⁸ K. M. De Fina, T. T. Van,
Ibarra, E. Hamilton, J. Martin

A. nez, A. Valdez, and W. E. Acree, Jr., Phys. Chem. Liq. 39, 249 (2001).

Variables: Prepared by: T/K = 298.15; Solvent Composition W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 2,2,4-trimethylpentane + 2-methyl-2-propanol mixtures⁶

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.001074
0.1655	0.1653	0.001049
0.3092	0.3089	0.000972
0.5406	0.5401	0.000847
0.6368	0.6363	0.000781
0.6887	0.6882	0.000747
0.8761	0.8756	0.000569
0.9321	0.9316	0.000507
1.0000	0.9996	0.000430

 ${}^{a}x_{3}{}^{(s)}$: initial mole fraction of component 3 in the binary solvent mixture; x_{1} : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/ visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) HPLC grade, Aldrich Chemical Company, Milwaukee, WI, USA.
- (3) 99+%, Arco Chemical Company, USA.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ±0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Original Measurements:
³⁶ J. R. Powell, M. E. R. McHale,
AS. M. Kauppila, W. E. Acree,
Jr., P. H. Flanders, V. G. Varanasi,
and S. W. Campbell, Fluid Phase
Equilib. 134, 185 (1997).

Variables: Prepared by: T/K = 298.15; Solvent Composition W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in heptane + 2-methyl-2-butanol mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.001571
0.1483	0.1481	0.001543
0.2563	0.2559	0.001493
0.4661	0.4655	0.001326
0.5728	0.5721	0.001237
0.6721	0.6713	0.001149
0.8491	0.8483	0.000980
0.9281	0.9273	0.000884
1.0000	0.9992	0.000790

 ${}^{a}x_{3}^{(s)}$: initial mole fraction of component 3 in the binary solvent mixture; x_{1} : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Gold Label, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) HPLC grade, Aldrich Chemical Company.
- (3) 99+%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

3. Solubility of Anthracene in Binary Alkane + Chloroalkane Solvent Mixtures

3.1. Critical evaluation of experimental solubility data

Volume 54 in the IUPAC Solubility Data Series¹ contained solubility data for anthracene in 16 binary solvent mixtures containing tetrachloromethane, 1-chlorobutane, and 1,4-dichlorobutane with hexane, heptane, octane, cyclohexane, methylcyclohexane, and 2,2,4-trimethylpentane. The experimental data were measured at 298.15 K. To conserve space, data from the earlier volume will not repeated here.

Acree and co-workers⁴⁰ have reported the solubility of anthracene in binary alkane + 1-chlorooctane and alkane + chlorocyclohexane solvent mixtures at 298.2 K. The alkane cosolvents include hexane, heptane, octane, cyclohexane, methylcyclohexane, 2,2,4-trimethylpentane, and *tert*-butylcyclohexane (also called (1,1-dimethylethyl)cyclohexane). There has only been a single experimental determination for the solubility of anthracene in each of the binary solvent systems studied. In the absence of replicate independent measurements, the experimental values were evaluated by curve-fitting the measured solubility data to Eq. (10).

The calculated $S_{23,i}$ parameters for the 14 binary alkane + chloroalkane solvent systems studied are summarized in Table 2, along with the average absolute deviation between the experimental and back-calculated mole fraction solubilities. Examination of the numerical entries in the last column of Table 2 reveals that Eq. (10) does provide a very accurate mathematical representation for how the measured mole fraction solubilities vary with binary solvent composition. Average percent deviations range from 0.3% to 0.8%, indicating that the measured values fall on smooth $\ln x_1$ versus $x_2^{(s)}$

Table 2. Mathematical representation of anthracene solubilities in binary alkane (2) + chloroalkane (3) solvent mixtures

Binary solvent system	$S_{23,i}^{a}$	% Dev ^b
Hexane $(2) + 1$ -chlorooctane (3)	1.287	0.3
	0.397	
Heptane $(2) + 1$ -chlorooctane (3)	0.918	0.8
Octane $(2) + 1$ -chlorooctane (3)	0.618	0.7
Cyclohexane (2) + 1-chlorooctane (3)	1.265	0.6
	0.657	
	0.320	
Methylcyclohexane $(2) + 1$ -chlorooctane (3)	1.034	0.7
	0.533	
	0.446	
2,2,4-Trimethylpentane (2) + 1-chlorooctane (3)	1.065	0.5
	0.083	
	0.220	
tert-Butylcyclohexane (2) + 1-chlorooctane	0.721	0.2
	0.165	
Hexane (2) + chlorocyclohexane (3)	1.098	0.6
	0.209	
	0.085	
Heptane (2) + chlorocyclohexane (3)	0.796	0.4
Octane (2) + chlorocyclohexane (3)	0.571	0.8
Cyclohexane (2) + chlorocyclohexane (3)	0.940	0.3
	0.346	
	0.119	
Methylcyclohexane (2) + chlorocyclohexane (3)	0.841	0.8
	0.327	
	0.353	
2,2,4-Trimethylpentane (2) + chlorocyclohexane (3)	0.626	0.2
	0.146	
	-0.133	
<i>tert</i> -Butylcyclohexane (2) + chlorocyclohexane (3)	0.402	0.5
	0.075	
	-0.263	

^aCombined NIBS/Redlich-Kister curve-fit parameters are ordered as $S_{23,0}$, $S_{23,1}$, and $S_{23,2}$. If only a single coefficient is listed, then $S_{23,1}$ and $S_{23,2}$ are zero. Similarly, if two coefficients are listed, then $S_{23,2}$ is zero.

^bDev (%) = (100/N) $\Sigma \mid [x_1^{\text{exp}} - x_1^{\text{cal}}]/x_1^{\text{exp}} \mid$.

curves. None of the experimental data points was flagged as an outlier.

The experimental anthracene solubility data for binary alkane + 1-chlorooctane solvent mixtures and binary alkane + chlorocyclohexane solvent mixtures are given in Secs. 3.2 and 3.3.

3.2. Anthracene solubility data in binary alkane + 1chloroctane solvent mixtures

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7]	Original Measurements: ⁴⁰ C. E. Hernández, K. S. Coym,
(2) Hexane; C ₆ H ₁₄ ; [110-54-3]	L. E. Roy, J. R. Powell, M. E. R.
(3) 1-Chlorooctane; C ₈ H ₁₇ Cl;	McHale, and W. E. Acree, Jr., J.
[111-85-3]	Chem. Eng. Data 42, 954 (1997).
Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Solubility of anthracene in hexane + 1-chlorooctane mixtures^a

$x_3^{(s)}$		
A3	<i>x</i> ₃	x_1
0.0000	0.0000	0.001274
0.0909	0.0907	0.001718
0.1663	0.1659	0.002130
0.3360	0.3349	0.003217
0.4170	0.4154	0.003773
0.5365	0.5340	0.004579
0.7350	0.7306	0.005924
0.8715	0.8655	0.006918
1.0000	0.9922	0.007780

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Acros Organics, USA, recrystallized three times from acetone.
- (2) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA.
- (3) 99%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: $\pm 0.1 \text{ K}$. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.8\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) Heptane; C ₇ H ₁₆ ; [142-82-5] (3) 1-Chlorooctane; C ₈ H ₁₇ Cl; [111-85-3]	Original Measurements: 40 C. E. Hernández, K. S. Coym, L. E. Roy, J. R. Powell, M. E. R. McHale, and W. E. Acree, Jr., J. Chem. Eng. Data 42, 954 (1997).
Variables: $T/K = 298.15$; Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in heptane + 1-chlorooctane mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.001571
0.0921	0.0918	0.001972
0.1797	0.1793	0.002419
0.3626	0.3613	0.003518
0.4635	0.4616	0.004152

0.5606	0.5579	0.004767
0.7790	0.7740	0.006315
0.8782	0.8720	0.007036
1.0000	0.9922	0.007780

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Acros Organics, USA, recrystallized three times from acetone.
- (2) HPLC grade, Aldrich Chemical Company, Milwaukee, WI, USA.
- (3) 99%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.8\%$ (relative error).

Components:	Original Measurements:
(1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7]	⁴⁰ C. E. Hernández, K. S. Coym,
(2) Octane; C ₈ H ₁₈ ; [111-65-9]	L. E. Roy, J. R. Powell, M. E. R.
(3) 1-Chlorooctane; C ₈ H ₁₇ Cl;	McHale, and W. E. Acree, Jr., J.
[111-85-3]	Chem. Eng. Data 42, 954 (1997).
Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in octane + 1-chlorooctane mixtures^a

x ₃ ^(s)	<i>x</i> ₃	x_1
0.0000	0.0000	0.001838
0.0999	0.0997	0.002238
0.1944	0.1939	0.002673
0.3811	0.3797	0.003728
0.4837	0.4816	0.004354
0.5938	0.5912	0.004974
0.7855	0.7806	0.006289
0.8862	0.8799	0.007061
1.0000	0.9922	0.007780

 $\bar{a}x_3^{(s)}$: initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

(1) 99.9+%, Acros Organics, USA, recrystallized three times from acetone. (2) 99+%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA. (3) 99%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.8\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) Cyclohexane; C ₆ H ₁₂ ; [110-82-7] (3) 1-Chlorooctane; C ₈ H ₁₇ Cl; [111-85-3]	Original Measurements: 40 C. E. Hernández, K. S. Coym, L. E. Roy, J. R. Powell, M. E. R. McHale, and W. E. Acree, Jr., J. Chem. Eng. Data 42, 954 (1997).
Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in cyclohexane + 1-chlorooctane mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.001553
0.0712	0.0711	0.002000
0.1381	0.1378	0.002427
0.3005	0.2994	0.003516
0.3771	0.3756	0.004001
0.4928	0.4905	0.004676
0.7109	0.7065	0.006161
0.8321	0.8265	0.006751
1.0000	0.9922	0.007780

 ${}^{a}x_{3}$ (s): initial mole fraction of component 3 in the binary solvent mixture; x_{1} : mole fraction solubility of the solute; x_{3} : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Acros Organics, USA, recrystallized three times from acetone.
- (2) HPLC grade, Aldrich Chemical Company, Milwaukee, WI, USA.
- (3) 99%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.8\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) Methylcyclohexane; C ₇ H ₁₄ ; [108-87-2] (3) 1-Chlorooctane; C ₈ H ₁₇ Cl; [111-85-3]	Original Measurements: 40 C. E. Hernández, K. S. Coym, L. E. Roy, J. R. Powell, M. E. R. McHale, and W. E. Acree, Jr., J. Chem. Eng. Data 42, 954 (1997).
Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in methylcyclohexane + 1-chlorooctane mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.001649
0.0814	0.0812	0.002152
0.1521	0.1517	0.002556
0.3321	0.3309	0.003642
0.4287	0.4269	0.004192
0.5373	0.5346	0.004936
0.7485	0.7438	0.006219
0.8662	0.8602	0.006973
1.0000	0.9922	0.007780

 $\bar{a}_{x_3}^{(s)}$: initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Acros Organics, USA, recrystallized three times from acetone.
- (2) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA.
- (3) 99%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 2,2,4-Trimethylpentane; C ₈ H ₁₈ ; [540-84-1] (3) 1-Chlorooctane; C ₈ H ₁₇ Cl; [111-85-3]	Original Measurements: 40 C. E. Hernández, K. S. Coym, L. E. Roy, J. R. Powell, M. E. R. McHale, and W. E. Acree, Jr., J. Chem. Eng. Data 42, 954 (1997).
Variables: <i>T</i> /K = 298.15; Solvent Composition	Prepared by: W. E. Acree, Jr.

Solubility of anthracene in 2,2,4-trimethylpentane + 1-chlorooctane mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.001074
0.1078	0.1076	0.001498
0.1980	0.1976	0.001929
0.3939	0.3927	0.003073
0.4958	0.4940	0.003728
0.5981	0.5954	0.004474
0.7796	0.7749	0.006085
0.8966	0.8903	0.007045
1.0000	0.9922	0.007780

 \bar{a}_{x_3} (s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/ visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Acros Organics, USA, recrystallized three times from acetone. (2) HPLC grade, Aldrich Chemical Company, Milwaukee, WI, USA.
- (3) 99%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.8\%$ (relative error).

Components:	Original Measurements:
(1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7]	⁴⁰ C. E. Hernández, K. S. Coym,
(2) tert-Butylcyclohexane; C ₁₀ H ₂₀ ;	L. E. Roy, J. R. Powell, M. E. R.
[3178-22-1]	McHale, and W. E. Acree, Jr., J.
(3) 1-Chlorooctane; C ₈ H ₁₇ Cl;	Chem. Eng. Data 42, 954 (1997).
[111-85-3]	
Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in tert-butylcyclohexane + 1-chlorooctane mixtures^a

x ₃ ^(s)	<i>x</i> ₃	x_1
0.0000	0.0000	0.001978
0.1053	0.1050	0.002479
0.2018	0.2012	0.002967
0.4072	0.4055	0.004138
0.4938	0.4915	0.004662
0.6093	0.6060	0.005389
0.7690	0.7640	0.006524
0.8900	0.8837	0.007081
1.0000	0.9922	0.007780

 $\overline{x_3}$ (s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/ visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Acros Organics, USA, recrystallized three times from acetone.
- (2) 99%, Aldrich Chemical Company, Milwaukee, WI, USA.
- (3) 99%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.8\%$ (relative error).

3.3. Anthracene solubility data in binary alkane + chlorocyclohexane solvent mixtures

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) Hexane; C ₆ H ₁₄ ; [110-54-3] (3) Chlorocyclohexane; C ₆ H ₁₁ Cl; [542-18-7]	Original Measurements: ⁴⁰ C. E. Hernández, K. S. Coym, L. E. Roy, J. R. Powell, M. E. R. McHale, and W. E. Acree, Jr., J. Chem. Eng. Data 42 , 954 (1997).
Variables: T/K = 298 15: Solvent Composition	Prepared by: W. E. Acree, Ir

Solubility of anthracene in hexane + chlorocyclohexane mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.001274
0.1112	0.1110	0.001735
0.2203	0.2198	0.002236
0.4256	0.4242	0.003355
0.5154	0.5134	0.003809
0.6173	0.6146	0.004402
0.8145	0.8101	0.005450
0.8078	0.8030	0.005919
1.0000	0.9936	0.006353

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Acros Organics, USA, recrystallized three times from acetone.
- (2) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA.
- (3) 99%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.8\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) Heptane; C ₇ H ₁₆ ; [142-82-5] (3) Chlorocyclohexane; C ₆ H ₁₁ Cl; [542-18-7]	Original Measurements: 40 C. E. Hernández, K. S. Coym, L. E. Roy, J. R. Powell, M. E. R. McHale, and W. E. Acree, Jr., J. Chem. Eng. Data 42, 954 (1997).
Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in heptane + chlorocyclohexane mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.001571
0.1331	0.1328	0.002072
0.2419	0.2413	0.002543
0.4466	0.4450	0.003550
0.5560	0.5537	0.004197

0.6565	0.6534	0.004688
0.8369	0.8322	0.005656
0.9205	0.9150	0.005995
1.0000	0.9936	0.006353

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Acros Organics, USA, recrystallized three times from acetone.
- (2) HPLC grade, Aldrich Chemical Company, Milwaukee, WI, USA.
- (3) 99%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.8\%$ (relative error).

Components:	Original Measurements: 40 C. E. Hernández, K. S. Coym,
(1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) Octane; C ₈ H ₁₈ ; [111-65-9]	L. E. Roy, J. R. Powell, M. E. R.
(3) Chlorocyclohexane; C ₆ H ₁₁ Cl; [542-18-7]	McHale, and W. E. Acree, Jr., J. Chem. Eng. Data 42 , 954 (1997).
Variables:	Prepared by:
T/K = 298.15 Solvent Composition	W E Acree Ir

Experimental Values

Solubility of anthracene in octane + chlorocyclohexane mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.001838
0.1498	0.1494	0.002373
0.2540	0.2533	0.002825
0.5037	0.5017	0.003889
0.5822	0.5797	0.004330
0.6759	0.6726	0.004881
0.8457	0.8409	0.005697
0.9223	0.9168	0.005993
1.0000	0.9936	0.006353

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Acros Organics, USA, recrystallized three times from acetone.
- (2) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA.
- (3) 99%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.8\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) Cyclohexane; C ₆ H ₁₂ ; [110-82-7] (3) Chlorocyclohexane; C ₆ H ₁₁ Cl; [542-18-7]	Original Measurements: 40 C. E. Hernández, K. S. Coym, L. E. Roy, J. R. Powell, M. E. R. McHale, and W. E. Acree, Jr., J. Chem. Eng. Data 42, 954 (1997).
Variables: $T/K = 298.15$; Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in cyclohexane + chlorocyclohexane mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.001553
0.1044	0.1042	0.002029
0.1966	0.1061	0.002475
0.3658	0.3646	0.003320
0.4713	0.4695	0.003803
0.5864	0.5838	0.004413
0.7843	0.7801	0.005355
0.8797	0.8746	0.005800
1.0000	0.9936	0.006353

 $[\]bar{a}_{x_3}^{(s)}$: initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Acros Organics, USA, recrystallized three times from acetone.
- (2) HPLC grade, Aldrich Chemical Company, Milwaukee, WI, USA.
- (3) 99%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.8\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) Methylcyclohexane; C ₇ H ₁₄ ; [108-87-2] (3) Chlorocyclohexane; C ₆ H ₁₁ Cl; [542-18-7]	Original Measurements: 40 C. E. Hernández, K. S. Coym, L. E. Roy, J. R. Powell, M. E. R. McHale, and W. E. Acree, Jr., J. Chem. Eng. Data 42, 954 (1997).
Variables: $T/K = 298.15$; Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in methylcyclohexane + chlorocyclohexane mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.001649
0.1083	0.1081	0.002175
0.2219	0.2213	0.002675
0.4146	0.4131	0.003582
0.5062	0.5041	0.004060
0.6302	0.6273	0.004673
0.8082	0.8038	0.005465
0.8832	0.8780	0.005915
1.0000	0.9936	0.006353

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Acros Organics, USA, recrystallized three times from acetone.
- (2) 99+%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA.
- (3) 99%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 2,2,4-Trimethylpentane; C ₈ H ₁₈ ; [548-84-1] (3) Chlorocyclohexane; C ₆ H ₁₁ Cl; [542-18-7]	Original Measurements: 40 C. E. Hernández, K. S. Coym, L. E. Roy, J. R. Powell, M. E. R. McHale, and W. E. Acree, Jr., J. Chem. Eng. Data 42 , 954 (1997).
Variables: T/K = 298.15; Solvent Composition	Prepared by: W. E. Acree, Jr.

Solubility of anthracene in 2,2,4-trimethylpentane + chlorocyclohexane mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.001074
0.1416	0.1414	0.001499
0.2708	0.2703	0.001974
0.4788	0.4774	0.002951
0.5672	0.5653	0.003422
0.6562	0.6536	0.003920
0.8554	0.8510	0.005185
0.9287	0.9234	0.005753
1.0000	0.9936	0.006353

 $[\]bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Acros Organics, USA, recrystallized three times from acetone.
- (2) HPLC grade, Aldrich Chemical Company, Milwaukee, WI, USA.
- (3) 99%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.8\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) <i>tert</i> -Butylcyclohexane; C ₁₀ H ₂₀ ; [3178-22-1] (3) Chlorocyclohexane; C ₆ H ₁₁ Cl; [542-18-7]	Original Measurements: ⁴⁰ C. E. Hernández, K. S. Coym, L. E. Roy, J. R. Powell, M. E. R. McHale, and W. E. Acree, Jr., J. Chem. Eng. Data 42 , 954 (1997).
Variables: $T/K = 298.15$; Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in *tert*-butylcyclohexane + chlorocyclohexane mixtures^a

$\overline{x_3^{(s)}}$	x_3	x_1
0.0000	0.0000	0.001978
0.1530	0.1526	0.002471
0.2741	0.2733	0.002930
0.5020	0.5000	0.003899
0.5898	0.5872	0.004373
0.6916	0.6883	0.004738
0.8522	0.8475	0.005506
0.9252	0.9198	0.005878
1.0000	0.9936	0.006353

 $\overline{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- $(1)\ 99.9 + \%,\ Acros\ Organics,\ USA,\ recrystallized\ three\ times\ from\ acetone.$
- (2) 99%, Aldrich Chemical Company, Milwaukee, WI, USA.
- (3) 99%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.8\%$ (relative error).

4. Solubility of Anthracene in Binary Alkane + Ether Solvent Mixtures

4.1. Critical evaluation of experimental solubility data

Volume 54 in the IUPAC Solubility Data Series¹ contained solubility data for anthracene in 22 binary solvent mixtures containing 1,1'-oxybisbutane, 1,4-dioxane, and tetrahydropyran with hexane, heptane, octane, hexadecane, cyclohexane, methylcyclohexane, cyclooctane, 2,2,4-trimethylpentane, and squalane. The experimental data were measured at 298.15 K. To conserve space, data from the earlier volume will not repeated here.

Acree and co-workers^{41–43} determined the solubility of anthracene in several binary solvent mixtures containing

2,2'-oxybispropane, 2-methoxy-2-methylpropane (also called methyl *tert*-butyl ether) and 1,1'-oxybis[2-methoxyethane] with hexane, heptane, octane, cyclohexane, methylcyclohexane, 2,2,4-trimethylpentane, and *tert*-butylcyclohexane (also called (1,1-dimethylethyl)cyclohexane) at 298.15 K. There has only been a single experimental determination for the solubility of anthracene in each of the binary solvent systems studied. The experimental values were evaluated by curvefitting the measured solubility data to Eq. (10).

The calculated $S_{23,i}$ parameters for the 19 binary alkane + ether systems studied are summarized in Table 3, along with the average absolute deviation between the experimental and back-calculated mole fraction solubilities. Examination of the numerical entries in the last column of Table 3 reveals that Eq. (10) does provide a very accurate mathematical representation for how the measured mole fraction solubilities vary with binary solvent composition. Average percent deviations range from 0.2% to 0.8%, indicating that the measured values fall on smooth $\ln x_1$ versus $x_2^{(s)}$ curves. None of the experimental data points was flagged as an outlier.

The experimental anthracene solubility data are given in Secs. 4.2–4.4 for binary alkane + 2,2'-oxybispropane solvent mixtures, for binary alkane + 2-methoxy-2-methylpropane solvent mixtures, and for binary alkane + 1,1'-oxybis[2-methoxyethane] solvent mixtures.

4.2. Anthracene solubility data in binary alkane + 2,2'-oxybispropane solvent mixtures

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) Hexane; C ₆ H ₁₄ ; [110-54-3] (3) 2,2'-Oxybispropane; C ₆ H ₁₄ O; [108-20-3]	Original Measurements: 41 M. Carrillo, M. Corella, K. Wolcott, K. R. Bowen, and W. E. Acree, Jr., J. Chem. Eng. Data 52 , 270 (2007).
Variables: <i>T</i> /K = 298.15; Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in hexane + 2,2'-oxybispropane mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.001274
0.1098	0.1096	0.001463
0.2022	0.2019	0.001570
0.3817	0.3810	0.001756
0.4835	0.4826	0.001877
0.5841	0.5821	0.001980
0.7732	0.7715	0.002238
0.8892	0.8870	0.002419
1.0000	0.9975	0.002515

 a_{x_3} ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

TABLE 3. Mathematical representation of anthracene solubilities in binary alkane (2) + ether (3) solvent mixtures

alkane (2) + ether (3) solvent mixtures		
Binary solvent system	$S_{23,i}^{a}$	% Dev ^b
Hexane $(2) + 2,2'$ -oxybispropane (3)	0.195	0.3
	0.177	
	0.490	
Heptane $(2) + 2,2'$ -oxybispropane (3)	0.153	0.2
Octane $(2) + 2,2'$ -oxybispropane (3)	0.216	0.3
	-0.084	
	0.258	
Cyclohexane $(2) + 2,2'$ -oxybispropane (3)	0.546	0.3
	0.303	
	0.205	
Methylcyclohexane (2) + 2,2'-oxybispropane (3)	0.494	0.4
	0.219	
	0.325	
2,2,4-Trimethylpentane (2) + $2,2'$ -oxybispropane (3)	0.113	0.4
	-0.036	
	0.177	
Hexane $(2) + 2$ -methoxy-2-methylpropane (3)	0.318	0.2
	-0.244	
Heptane $(2) + 2$ -methoxy-2-methylpropane (3)	0.149	0.5
	-0.268	
Octane $(2) + 2$ -methoxy-2-methylpropane (3)	0.116	0.2
	-0.203	
	0.098	
Cyclohexane (2) + 2-methoxy-2-methylpropane (3)	0.741	0.7
	0.174	
	-0.305	
Methylcyclohexane (2) + 2-methoxy-2-	0.638	0.2
methylpropane (3)		
2,2,4-Trimethylpentane (2) + 2-methoxy-2-	-0.072	0.5
methylpropane (3)	-0.294	
tert-Butylcyclohexane + 2-methoxy-2-	-0.126	0.4
methylpropane (3)	-0.197	
Hexane $(2) + 1,1'$ -oxybis[2-methoxyethane] (3)	2.268	0.7
	0.641	
	0.159	
Heptane $(2) + 1,1'$ -oxybis[2-methoxyethane] (3)	1.869	0.2
	0.437	
	0.233	
Octane $(2) + 1,1'$ -oxybis[2-methoxyethane] (3)	1.616	0.4
	0.256	
	0.320	
Cyclohexane (2) + 1,1'-oxybis[2-methoxyethane] (3)	2.475	0.5
	1.267	
	0.825	
Methylcyclohexane (2) + 1,1'-oxybis[2-	2.210	0.8
methoxyethane] (3)	1.068	
	0.667	
2,2,4-Trimethylpentane (2) + $1,1$ '-oxybis[2-	1.953	0.2
methoxyethane] (3)	0.440	
	0.178	

^aCombined NIBS/Redlich-Kister curve-fit parameters are ordered as $S_{23,0}$, $S_{23,1}$, and $S_{23,2}$. If only a single coefficient is listed, then $S_{23,1}$ and $S_{23,2}$ are zero. Similarly, if two coefficients are listed, then $S_{23,2}$ is zero.

^bDev (%) = (100/N) $\Sigma \mid [x_1^{\text{exp}} - x_1^{\text{cal}}]/x_1^{\text{exp}} \mid$.

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from acetone.
- (2) 99+%, Aldrich Chemical Company.
- (3) 99%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.05 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) Heptane; C ₇ H ₁₆ ; [142-82-5] (3) 2,2'-Oxybispropane; C ₆ H ₁₄ O; [108-20-3]	Original Measurements: ⁴¹ M. Carrillo, M. Corella, K. Wolcott, K. R. Bowen, and W. E. Acree, Jr., J. Chem. Eng. Data 52 , 270 (2007).
Variables: T/K = 298.15: Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in heptane + 2,2'-oxybispropane mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.001576
0.1357	0.1355	0.001711
0.2247	0.2243	0.001799
0.4129	0.4121	0.001981
0.5041	0.5031	0.002074
0.6102	0.6089	0.002180
0.7970	0.7951	0.002337
0.8930	0.8908	0.002430
1.0000	0.9975	0.002515

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from acetone.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.05 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) Octane; C ₈ H ₁₈ ; [111-65-9] (3) 2,2'-Oxybispropane; C ₆ H ₁₄ O; [108-20-3]	Original Measurements: 41 M. Carrillo, M. Corella, K. Wolcott, K. R. Bowen, and W. E. Acree, Jr., J. Chem. Eng. Data 52 , 270 (2007).
Variables: $T/K = 298.15$; Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in octane + 2,2'-oxybispropane mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.001838
0.1401	0.1398	0.001991
0.2374	0.2369	0.002064
0.4358	0.4348	0.002202
0.5378	0.5366	0.002311
0.6317	0.6302	0.002383
0.8188	0.8167	0.002504
0.8840	0.8818	0.002533
1.0000	0.9975	0.002515

 $\bar{a}_{x_3}^{(s)}$: initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from acetone.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ±0.05 K.

 $x_3^{(s)}$: ± 0.0001 .

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) Cyclohexane; C ₆ H ₁₂ ; [110-82-7] (3) 2,2'-Oxybispropane; C ₆ H ₁₄ O; [108-20-3]	Original Measurements: 41 M. Carrillo, M. Corella, K. Wolcott, K. R. Bowen, and W. E Acree, Jr., J. Chem. Eng. Data 52, 270 (2007).
Variables: T/K = 298.15; Solvent Composition	Prepared by: W. E. Acree, Jr.

Solubility of anthracene in cyclohexane + 2,2'-oxybispropane mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.001553
0.1004	0.1002	0.001768
0.1502	0.1499	0.001867
0.3444	0.3437	0.002145
0.4344	0.4334	0.002202
0.4356	0.4346	0.002213
0.5831	0.5818	0.002313
0.7577	0.7559	0.002435
0.8688	0.8666	0.002480
1.0000	0.9975	0.002515

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from acetone.
- (2) 99.9+%, HPLC grade, Aldrich Chemical Company.
- (3) 99%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: $\pm 0.05 \text{ K}$. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) Methylcyclohexane; C ₇ H ₁₄ ; [110-54-3] (3) 2,2'-Oxybispropane; C ₆ H ₁₄ O; [108-20-3]	Original Measurements: 41 M. Carrillo, M. Corella, K. Wolcott, K. R. Bowen, and W. E. Acree, Jr., J. Chem. Eng. Data 52, 270 (2007).
Variables: T/K = 298.15: Solvent Composition	Prepared by: W. E. Acree. Jr.

Experimental Values

Solubility of anthracene in methylcyclohexane + 2,2'-oxybispropane mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.001649
0.0990	0.0988	0.001860
0.1945	0.1941	0.002020
0.2898	0.2892	0.002121
0.3721	0.3713	0.002182
0.4754	0.4743	0.002296
0.7632	0.7610	0.002946
0.8924	0.8902	0.002520
1.0000	0.9975	0.002515

 a_{x_3} (s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from acetone.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.05 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components: Original Measurements: (1) Anthracene; $C_{14}H_{10}$; [120-12-7] 41 M. Carrillo, M. Corella, K. (2) 2,2,4-Trimethylpentane; C_8H_{18} ; Wolcott, K. R. Bowen, and W. E. [540-84-1] Acree, Jr., J. Chem. Eng. Data 42, (3) 2,2'-Oxybispropane; $C_6H_{14}O$; 270 (2007). [108-20-3] Prepared by: VK = 298.15; Solvent Composition W. E. Acree, Jr.

Solubility of anthracene in 2,2,4-trimethylpentane + 2,2'-oxybispropane mixtures^a

(2)		
$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.001074
0.1349	0.1347	0.001229
0.2408	0.2405	0.001356
0.4530	0.4523	0.001627
0.5410	0.5401	0.001752
0.6343	0.6331	0.001897
0.8184	0.8166	0.002219
0.9086	0.9064	0.002380
1.0000	0.9975	0.002515

 a_{x_3} (s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Experimental Values

Solubility of anthracene in hexane + 2-methoxy-2-methylpropane mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.00127
0.1216	0.1214	0.00144
0.2175	0.2172	0.00159
0.4207	0.4199	0.00197
0.5240	0.5229	0.00218
0.6328	0.6313	0.00242
0.7979	0.7958	0.00274
0.9058	0.9031	0.00294
1.0000	0.9969	0.00305

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from acetone.
- (2) 99.7%, HPLC grade, Aldrich Chemical Company.
- (3) 99%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.05 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Gold Label, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99+%, Aldrich Chemical Company.
- (3) 99.9+%, Arco Chemical Company, USA.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.3\%$ (relative error).

4.3. Anthracene solubility data in binary alkane + 2methoxy-2-methylpropane solvent mixtures

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) Hexane; C ₆ H ₁₄ ; [110-54-3] (3) 2-Methoxy-2-methylpropane; C ₅ H ₁₂ O; [1634-04-4]	Original Measurements: 42 M. E. R. McHale, AS. M. Kauppila, and W. E. Acree, Jr., J. Chem. Eng. Data 41, 1203 (1996).
Variables: <i>T/K</i> = 298.15; Solvent Composition	Prepared by: W. E. Acree, Jr.

Components:	Original Measurements:
(1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) Heptane; C ₇ H ₁₆ ; [142-82-5]	⁴² M. E. R. McHale, AS. M. Kauppila, and W. E. Acree, Jr., J.
(3) 2-Methoxy-2-methylpropane; C ₅ H ₁₂ O; [1634-04-4]	Chem. Eng. Data 41 , 1203 (1996).
Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Solubility of anthracene in heptane + 2-methoxy-2-methylpropane mixtures^a

(e)		
$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.00157
0.1425	0.1423	0.00171
0.2263	0.2259	0.00184
0.4551	0.4541	0.00219
0.5581	0.5568	0.00237
0.6492	0.6475	0.00255
0.8292	0.8268	0.00284
0.9098	0.9071	0.00297
1.0000	0.9969	0.00305

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Gold Label, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) HPLC grade, Aldrich Chemical Company.
- (3) 99.9+%, Arco Chemical Company, USA.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 . x_1 : $\pm 1.3\%$ (relative error).

Components:

(1) Anthracene; C₁₄H₁₀; [120-12-7]

(2) Octane; C₈H₁₈; [111-65-9]

(3) 2-Methoxy-2-methylpropane; C₅H₁₂O; [1634-04-4]

Original Measurements:

4²M. E. R. McHale, A.-S. M. Kauppila, and W. E. Acree, Jr., J. Chem. Eng. Data **41**, 1203 (1996).

Variables: Prepared by: T/K = 298.15; Solvent Composition W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in octane + 2-methoxy-2-methylpropane mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.00184
0.1376	0.1373	0.00198
0.2592	0.2587	0.00211
0.4711	0.4700	0.00239

0.5759	0.5744	0.00255
0.6774	0.6756	0.00272
0.8451	0.8426	0.00292
0.9173	0.9145	0.00301
1.0000	0.9969	0.00305

 ${}^{a}x_{3}$ (s): initial mole fraction of component 3 in the binary solvent mixture; x_{1} : mole fraction solubility of the solute; x_{3} : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Gold Label, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99.9+%, Arco Chemical Company, USA.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.3\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) Cyclohexane; C ₆ H ₁₂ ; [110-82-7]	Original Measurements: 42M. E. R. McHale, AS. M. Kauppila, and W. E. Acree, Jr., J.
(3) 2-Methoxy-2-methylpropane; $C_5H_{12}O$; [1634-04-4]	Chem. Eng. Data 41 , 1203 (1996).
Variables: T/K = 298.15: Solvent Composition	Prepared by:

Experimental Values

Solubility of anthracene in cyclohexane + 2-methoxy-2-methylpropane mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.00155
0.0935	0.0933	0.00174
0.1765	0.1762	0.00195
0.3737	0.3728	0.00242
0.4779	0.4767	0.00258
0.5822	0.5806	0.00268
0.7800	0.7777	0.00289
0.9079	0.9052	0.00295
1.0000	0.9969	0.00305

 ${}^{a}x_{3}$ (s): initial mole fraction of component 3 in the binary solvent mixture; x_{1} : mole fraction solubility of the solute; x_{3} : mole fraction of component 3 in the ternary solution.

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Gold Label, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) HPLC grade, Aldrich Chemical Company.
- (3) 99.9+%, Arco Chemical Company, USA.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

Variables:

 x_1 : $\pm 1.3\%$ (relative error).

Components:	Original Measurements:
(1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7]	⁴² M. E. R. McHale, AS. M.
(2) Methylcyclohexane; C ₇ H ₁₄ ;	Kauppila, and W. E. Acree, Jr., J.
[108-87-2]	Chem. Eng. Data 41, 1203 (1996).
(3) 2-Methoxy-2-methylpropane;	
C ₅ H ₁₂ O; [1634-04-4]	

T/K = 298.15; Solvent Composition W. E. Acree, Jr.

Experimental Values

Prepared by:

Solubility of anthracene in methylcyclohexane + 2-methoxy-2-methylpropane mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.00165
0.1120	0.1118	0.00189
0.2070	0.2066	0.00208
0.4072	0.4062	0.00245
0.5135	0.5121	0.00265
0.5953	0.5937	0.00277
0.7875	0.7852	0.00298
0.9008	0.8981	0.00303
1.0000	0.9969	0.00305

 $^{a}x_{3}^{(s)}$: initial mole fraction of component 3 in the binary solvent mixture; x_{1} : mole fraction solubility of the solute; x_{3} : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Gold Label, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99.9+%, Arco Chemical Company, USA.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.3\%$ (relative error).

Anthracene; C₁₄H₁₀; [120-12-7] 2,2,4-Trimethylpentane; C₈H₁₈;

(3) 2-Methoxy-2-methylpropane;

C₅H₁₂O; [1634-04-4]

Original Measurements:

⁴²M. E. R. McHale, A.-S. M. Kauppila, and W. E. Acree, Jr., J. Chem. Eng. Data **41**, 1203 (1996).

Chem. Eng. Data 41, 120

Variables: Prepared by: T/K = 298.15; Solvent Composition W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 2,2,4-trimethylpentane + 2-methoxy-2-methylpropane mixtures^a

$\overline{x_3^{(s)}}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.00107
0.1411	0.1409	0.00120
0.2681	0.2677	0.00138
0.4838	0.4830	0.00175
0.5787	0.5776	0.00194
0.6793	0.6778	0.00217
0.8453	0.8431	0.00264
0.9408	0.9381	0.00291
1.0000	0.9969	0.00305

 a_{x_3} (s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Gold Label, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) HPLC grade, Aldrich Chemical Company.
- (3) 99.9+%, Arco Chemical Company, USA.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 . x_1 : $\pm 1.3\%$ (relative error).

Components:
(1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7]
(2) tert-Butylcyclohexane; C ₁₀ H ₂₀ ;
[2179 22 1]

[3178-22-1] (3) 2-Methoxy-2-methylpropane;

C₅H₁₂O; [1634-04-4]

Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Original Measurements: ⁴²M. E. R. McHale, A.-S. M. Kauppila, and W. E. Acree, Jr., J. Chem. Eng. Data 41, 1203 (1996).

Solubility of anthracene in tert-butylcyclohexane + 2-methoxy-2-methylpropane mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.00198
0.1560	0.1557	0.00219
0.2707	0.2643	0.00237
0.4880	0.4867	0.00272
0.5887	0.5870	0.00285
0.6928	0.6907	0.00297
0.8487	0.8461	0.00301
0.9207	0.9179	0.00304
1.0000	0.9969	0.00305

 a_{x_3} (s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/ visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Gold Label, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99%, Aldrich Chemical Company.
- (3) 99.9+%, Arco Chemical Company, USA.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.3\%$ (relative error).

4.4. Anthracene solubility data in binary alkane + 1,1'-oxybis[2-methoxyethane] solvent mixtures

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) Hexane; C ₆ H ₁₄ ; [110-54-3] (3) 1,1'-Oxybis[2-methoxyethane]; C ₆ H ₁₄ O ₃ ; [111-96-6]	Original Measurements: 43 K. S. Coym, L. E. Roy, C. E. Hernández, and W. E. Acree, Jr., Chem. Eng. Commun. 162 , 215 (1997).
Variables: $T/K = 298.15$; Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in hexane + 1,1'-oxybis[2-methoxyethane] mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.00127
0.1091	0.1089	0.00212
0.1841	0.1836	0.00289
0.3538	0.3521	0.00493
0.4792	0.4761	0.00639
0.5568	0.5527	0.00734
0.7909	0.7831	0.00991
0.8892	0.8796	0.01076
1.0000	0.9886	0.01139

 a_{x_3} (s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/ visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Acros Organics, USA, was recrystallized three times from acetone.
- (2) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA.
- (3) 99.5%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ±0.05 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

J. Phys. Chem. Ref. Data, Vol. 42, No. 1, 2013

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) Heptane; C ₇ H ₁₆ ; [142-82-5] (3) 1,1'-Oxybis[2-methoxyethane]; C ₆ H ₁₄ O ₃ ; [111-96-6]	Original Measurements: 43 K. S. Coym, L. E. Roy, C. E. Hernández, and W. E. Acree, Jr., Chem. Eng. Commun. 162, 215 (1997).
Variables: T/K = 298.15; Solvent Composition	Prepared by: W. E. Acree, Jr.

Solubility of anthracene in heptane + 1,1'-oxybis[2-methoxyethane] mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.00157
0.1128	0.1125	0.00248
0.2099	0.2092	0.00334
0.4080	0.4057	0.00566
0.4810	0.4779	0.00648
0.6097	0.6048	0.00806
0.8073	0.7991	0.01012
0.8872	0.8777	0.01075
1.0000	0.9886	0.01139

 $\bar{a}_{x_3}^{(s)}$: initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Acros Organics, USA, was recrystallized three times from acetone.
- (2) HPLC grade, Aldrich Chemical Company, Milwaukee, WI, USA.
- (3) 99.5%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.05 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components:	Original Measurements:
(1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7]	⁴³ K. S. Coym, L. E. Roy, C. E.
(2) Octane; C ₈ H ₁₈ ; [111-65-9]	Hernández, and W. E. Acree, Jr.,
(3) 1,1'-Oxybis[2-methoxyethane];	Chem. Eng. Commun. 162, 215
$C_6H_{14}O_3$; [111-96-6]	(1997).
Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in octane + 1,1'-oxybis[2-methoxyethane] mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.00184
0.1244	0.1240	0.00286
0.2342	0.2252	0.00384
0.4310	0.4284	0.00608
0.5319	0.5280	0.00728
0.6076	0.6027	0.00800
0.8240	0.8164	0.01041
0.9018	0.8919	0.01099
1.0000	0.9886	0.01139

 $\bar{a}x_3$ (s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Acros Organics, USA, was recrystallized three times from acetone.
- (2) 99+%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA.
- (3) 99.5%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.05 K.

 $x_3^{(s)}$: ± 0.0001 .

Components:	Original Measurements:
(1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7]	⁴³ K. S. Coym, L. E. Roy, C. E.
(2) Cyclohexane; C ₆ H ₁₂ ; [110-82-7]	Hernández, and W. E. Acree, Jr.,
(3) 1,1'-Oxybis[2-methoxyethane];	Chem. Eng. Commun. 162, 215
C ₆ H ₁₄ O ₃ ; [111-96-6]	(1997).
Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Solubility of anthracene in cyclohexane + 1,1'-oxybis[2-methoxyethane] mixtures^a

$\overline{x_3^{(s)}}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.00155
0.0790	0.0788	0.00246
0.1688	0.1682	0.00360
0.3439	0.3418	0.00598
0.4251	0.4221	0.00698
0.5395	0.5351	0.00820
0.7485	0.7408	0.01027
0.8734	0.8638	0.01097
1.0000	0.9886	0.01139

 $[\]bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Experimental Values

Solubility of anthracene in methylcyclohexane + 1,1'-oxybis[2-methoxyethane] mixtures^a

(a)			
$x_3^{(s)}$	x_3	x_1	
0.0000	0.0000	0.00165	
0.1096	0.1093	0.00287	
0.1942	0.1934	0.00388	
0.3784	0.3761	0.00610	
0.4726	0.4592	0.00726	
0.5848	0.5798	0.00847	
0.7786	0.7706	0.01027	
0.8821	0.8725	0.01086	
1.0000	0.9886	0.01139	

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Acros Organics, USA, was recrystallized three times from acetone.
- (2) HPLC grade, Aldrich Chemical Company, Milwaukee, WI, USA.
- (3) 99.5%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.05 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Acros Organics, USA, was recrystallized three times from acetone.
- (2) 99+%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA.
- (3) 99.5%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.05 K.

 $x_3^{(s)}$: ± 0.0001 .

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) Methylcyclohexane; C ₇ H ₁₄ ; [108-87-2] (3) 1,1'-Oxybis[2-methoxyethane]; C ₆ H ₁₄ O ₃ ; [111-96-6]	Original Measurements: 43 K. S. Coym, L. E. Roy, C. E. Hernández, and W. E. Acree, Jr., Chem. Eng. Commun. 162 , 215 (1997).
Variables: $T/K = 298.15$; Solvent Composition	Prepared by: W. E. Acree, Jr.

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 2,2,4-Trimethylpentane; C ₈ H ₁₈ ; [540-84-1] (3) 1,1'-Oxybis[2-methoxyethane]; C ₆ H ₁₄ O ₃ ; [111-96-6]	Original Measurements: 43 K. S. Coym, L. E. Roy, C. E. Hernández, and W. E. Acree, Jr., Chem. Eng. Commun. 162 , 215 (1997).
Variables: T/K = 298.15; Solvent Composition	Prepared by: W. E. Acree. Jr.

Solubility of anthracene in 2,2,4-trimethylpentane + 1,1'-oxybis[2-methoxy-ethane] mixtures^a

$\overline{x_3^{(s)}}$	x_3	x_1
0.0000	0.0000	0.00107
0.1162	0.1160	0.00180
0.2181	0.2175	0.00264
0.4370	0.4348	0.00492
0.5321	0.5289	0.00609
0.6354	0.6307	0.00736
0.7899	0.7826	0.00930
0.9025	0.8930	0.01051
1.0000	0.9886	0.01139

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Acros Organics, USA, was recrystallized three times from acetone.
- (2) HPLC grade, Aldrich Chemical Company, Milwaukee, WI, USA. (3) 99.5%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.05 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

5. Solubility of Anthracene in Binary Alkane + Alkoxyalcohol Solvent Mixtures

5.1. Critical evaluation of experimental solubility data

Acree and co-workers^{44–48} determined the solubility of anthracene in several binary alkane + 2-ethoxyethanol, alkane + 2-propoxyethanol, alkane + 2-butoxyethanol, and alkane + 3-methoxy-1-butanol solvent mixtures at 298.15 K. The alkane cosolvents include hexane, heptane, octane, cyclohexane, methylcyclohexane, 2,2,4-trimethylpentane, and *tert*-butylcyclohexane (also called (1,1-dimethylethyl)cyclohexane). There has only been a single experimental determination for the solubility of anthracene

in each of the binary solvent systems studied. The experimental values were evaluated by curve-fitting the measured solubility data to Eq. (10).

The calculated $S_{23,i}$ parameters for the 34 binary alkane + alkoxyalcohol solvent systems studied are summarized in Table 4, along with the average absolute deviation between the experimental and back-calculated mole fraction solubilities. Examination of the numerical entries in the last column of Table 4 reveals that Eq. (10) does provide a very accurate

Table 4. Mathematical representation of anthracene solubilities in binary alkane (2) + alkoxyalcohol (3) solvent mixtures

Binary solvent system	$S_{23,i}^{a}$	% Dev ^b
Hexane (2) + 2-ethoxyethanol (3)	1.434	0.6
	0.126	
	0.526	
Heptane $(2) + 2$ -ethoxyethanol (3)	1.220	0.2
	-0.168	
	0.594	
Octane $(2) + 2$ -ethoxyethanol (3)	1.158	0.3
	-0.205	
	0.571	
Cyclohexane $(2) + 2$ -ethoxyethanol (3)	1.606	0.5
	0.354	
	0.374	
Methylcyclohexane (2) + 2-ethoxyethanol (3)	1.410	0.6
	0.289	
	0.613	
2,2,4-Trimethylpentane (2) + 2-ethoxyethanol (3)	1.101	0.3
	-0.134	
	0.475	
Hexane $(2) + 2$ -propoxyethanol (3)	1.319	0.2
	0.442	
	0.361	
Heptane $(2) + 2$ -propoxyethanol (3)	0.977	0.2
	0.290	
	0.219	
Octane $(2) + 2$ -propoxyethanol (3)	0.994	0.2
	0.091	
	0.209	
Cyclohexane (2) + 2-propoxyethanol (3)	1.260	0.5
	0.756	
	0.518	
Methylcyclohexane (2) + 2-propoxyethanol (3)	1.214	0.8
	0.634	
	0.531	
2,2,4-Trimethylpentane (2) + 2-propoxyethanol (3)	0.978	0.2
	0.234	
	0.343	
<i>tert</i> -Butylcyclohexane (2) + 2-propoxyethanol (3)	1.041	0.7
	0.246	
	0.274	
Hexane (2) + 2-isopropoxyethanol (3)	1.282	0.3
	0.462	
	0.336	
Heptane $(2) + 2$ -isopropoxyethanol (3)	1.018	0.4
	0.322	
	0.103	
Octane (2) + 2-isopropoxyethanol (3)	0.930	0.6
	0.291	
	0.084	
Cyclohexane (2) + 2-isopropoxyethanol (3)	1.297	0.5
	0.755	
	0.216	

Table 4. Mathematical representation of anthracene solubilities in binary alkane (2) + alkoxyalcohol (3) solvent mixtures—Continued

Binary solvent system	$S_{23,i}^{a}$	% Dev ^b
Methylcyclohexane (2) + 2-isopropoxyethanol (3)	1.185	1.1
=(e)	0.650	
	0.460	
2,2,4-Trimethylpentane (2) + 2-isopropoxyethanol (3)	0.912	0.2
	0.364	
	0.113	
<i>tert</i> -Butylcyclohexane (2) + 2-isopropoxyethanol (3)	1.016	0.6
	0.350	
	0.153	
Hexane $(2) + 2$ -butoxyethanol (3)	1.217	0.3
•	0.679	
	0.224	
Heptane $(2) + 2$ -butoxyethanol (3)	0.928	0.5
	0.488	
	0.123	
Octane $(2) + 2$ -butoxyethanol (3)	0.832	0.3
, , , , , , , , , , , , , , , , , , ,	0.366	
	0.105	
Cyclohexane (2) + 2-butoxyethanol (3)	1.081	0.4
	0.863	
	0.565	
Methylcyclohexane (2) + 2-butoxyethanol (3)	0.992	0.7
	0.868	
	0.489	
2,2,4-Trimethylpentane (2) + 2-butoxyethanol (3)	0.883	0.8
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.548	
	0.108	
tert-Butylcyclohexane (2) + 2-Butoxyethanol (3)	0.883	0.6
	0.427	
	0.275	
Hexane $(2) + 3$ -methoxy-1-butanol (3)	1.489	0.7
•	0.344	
	0.189	
Heptane $(2) + 3$ -methoxy-1-butanol (3)	1.196	0.8
	0.217	
	0.476	
Octane (2) + 3-methoxy-1-butanol (3)	1.088	0.4
•	-0.032	
	0.516	
Cyclohexane (2) + 3-methoxy-1-butanol (3)	1.480	0.6
	0.670	
	0.465	
Methylcyclohexane (2) + 3-methoxy-1-butanol (3)	1.459	1.0
	0.377	
	0.692	
2,2,4-Trimethylpentane (2) + 3-methoxy-1-butanol (3)	1.108	0.5
()	0.265	
	0.487	
<i>tert</i> -Butylcyclohexane (2) + 3-methoxy-1-butanol (3)	1.199	0.3
	0.084	
	0.353	

^aCombined NIBS/Redlich-Kister curve-fit parameters are ordered as $S_{23,0}$, $S_{23,1}$, and $S_{23,2}$.

mathematical representation for how the measured mole fraction solubilities vary with binary solvent composition. Average percent deviations range from 0.2% to 1.1%, indicating that the measured values fall on smooth $\ln x_1$ versus $x_2^{(s)}$ curves. None of the experimental data points was flagged as an outlier.

The experimental solubility data for binary alkane + 2-ethoxyethanol solvent mixtures, for binary alkane + 2-propoxyethanol solvent mixtures, for binary alkane + 2-isopropoxyethanol solvent mixtures, for binary alkane + 2-butoxyethanol solvent mixtures, and for binary alkane + 3-methoxy-1-butanol solvent mixtures are given in Secs. 5.2–5.6.

5.2. Anthracene solubility data in binary alkane + 2ethoxyethanol solvent mixtures

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) Hexane; C ₆ H ₁₄ ; [110-54-3] (3) 2-Ethoxyethanol; C ₄ H ₁₀ O ₂ ; [110-80-5]	Original Measurements: 44 C. E. Hernández, L. E. Roy, T. Deng, M. B. Tuggle, and W. E. Acree, Jr., Phys. Chem. Liq. 37, 677 (1999).
Variables: T/K = 298.15; Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in hexane + 2-ethoxyethanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.001274
0.1278	0.1276	0.001740
0.2647	0.2641	0.002157
0.4837	0.4824	0.002698
0.5851	0.5834	0.002947
0.6786	0.6765	0.003106
0.8386	0.8360	0.003158
0.9340	0.9311	0.003074
1.0000	0.9971	0.002921

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- $(1)\ 99.9 + \%,\ Acros\ Organics,\ USA,\ recrystallized\ three\ times\ from\ acetone.$
- (2) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA.
- (3) 99%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: $\pm 0.1 \text{ K}$. $x_3^{(s)}$: ± 0.0001 .

^bDev (%) = (100/N) $\Sigma \mid [x_1^{\text{exp}} - x_1^{\text{cal}}]/x_1^{\text{exp}} \mid$.

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) Heptane; C ₇ H ₁₆ ; [142-82-5] (3) 2-Ethoxyethanol; C ₄ H ₁₀ O ₂ ; [110-80-5]	Original Measurements: 44 C. E. Hernández, L. E. Roy, T. Deng, M. B. Tuggle, and W. E. Acree, Jr., Phys. Chem. Liq. 37, 677 (1999).
Variables: $T/K = 298.15$; Solvent Composition	Prepared by: W. E. Acree, Jr.

Solubility of anthracene in heptane + 2-ethoxyethanol mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.001571
0.1583	0.1580	0.002085
0.2787	0.2780	0.002402
0.5044	0.5029	0.002920
0.6029	0.6010	0.003109
0.6998	0.6975	0.003229
0.8573	0.8545	0.003276
0.9265	0.9236	0.003152
1.0000	0.9971	0.002921

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Acros Organics, USA, recrystallized three times from acetone.
- (2) HPLC grade, Aldrich Chemical Company, Milwaukee, WI, USA.
- (3) 99%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components:	Original Measurements:
(1) Anthracene; $C_{14}H_{10}$; [120-12-7]	⁴⁴ C. E. Hernández, L. E. Roy,
(2) Octane; C ₈ H ₁₈ ; [111-65-9]	T. Deng, M. B. Tuggle, and W. E.
(3) 2-Ethoxyethanol; $C_4H_{10}O_2$;	Acree, Jr., Phys. Chem. Liq. 37, 677
[110-80-5]	(1999).
Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in octane + 2-ethoxyethanol mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.001838
0.1779	0.1775	0.002397
0.2987	0.2979	0.002703
0.5246	0.5229	0.003146
0.6224	0.6204	0.003278
0.7186	0.7162	0.003376
0.8679	0.8650	0.003293
0.9315	0.9285	0.003173
1.0000	0.9971	0.002921

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Acros Organics, USA, recrystallized three times from acetone.
- (2) 99+%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA.
- (3) 99%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) Cyclohexane; C ₆ H ₁₂ ; [110-82-7] (3) 2-Ethoxyethanol; C ₄ H ₁₀ O ₂ ; [110-80-5]	Original Measurements: 44C. E. Hernández, L. E. Roy, T. Deng, M. B. Tuggle, and W. E. Acree, Jr., Phys. Chem. Liq. 37, 677 (1999).
Variables: $T/K = 298.15$; Solvent Composition	Prepared by: W. E. Acree, Jr.

Solubility of anthracene in cyclohexane + 2-ethoxyethanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.001553
0.1151	0.1149	0.002076
0.2195	0.2190	0.002461
0.4346	0.4333	0.003051
0.5300	0.5283	0.003238
0.6247	0.6226	0.003321
0.8151	0.8124	0.003287
0.9033	0.9005	0.003142
1.0000	0.9971	0.002921

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Acros Organics, USA, recrystallized three times from acetone.
- (2) HPLC grade, Aldrich Chemical Company, Milwaukee, WI, USA.
- (3) 99%, Aldrich Chemical Company.

T/K = 298.15; Solvent Composition

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: $\pm 0.1 \text{ K}$. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Variables:	Prepared by:
[110-80-5]	
(3) 2-Ethoxyethanol; $C_4H_{10}O_2$;	(1999).
[108-87-2]	Acree, Jr., Phys. Chem. Liq. 37, 67
(2) Methylcyclohexane; C ₇ H ₁₄ ;	T. Deng, M. B. Tuggle, and W. E.
(1) Anthracene; $C_{14}H_{10}$; [120-12-7]	⁴⁴ C. E. Hernández, L. E. Roy,
Components:	Original Measurements:

Experimental Values

W. E. Acree, Jr.

Solubility of anthracene in methylcyclohexane + 2-ethoxyethanol mixtures^a

<i>x</i> ₃ ^(s)	x_3	x_1
0.0000	0.0000	0.001649
0.1224	0.1221	0.002196
0.2531	0.2524	0.002604
0.4700	0.4686	0.003059

0.5773	0.5754	0.003224
0.6745	0.6723	0.003313
0.8452	0.8424	0.003266
0.9181	0.9152	0.003134
1.0000	0.9971	0.002921

 $^{a}x_{3}$ (s): initial mole fraction of component 3 in the binary solvent mixture; x_{1} : mole fraction solubility of the solute; x_{3} : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Acros Organics, USA, recrystallized three times from acetone.
- (2) 99+%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA.
- (3) 99%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 2,2,4-Trimethylpentane; C ₈ H ₁₈ ; [540-84-1] (3) 2-Ethoxyethanol; C ₄ H ₁₀ O ₂ ; [110-80-5]	Original Measurements: 44 C. E. Hernández, L. E. Roy, T. Deng, M. B. Tuggle, and W. E. Acree, Jr., Phys. Chem. Liq. 37, 677 (1999).
Variables: T/K = 298 15: Solvent Composition	Prepared by: W. E. Acree, Ir

Experimental Values

Solubility of anthracene in 2,2,4-trimethylpentane + 2-ethoxyethanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.001074
0.1778	0.1775	0.001528
0.3156	0.3150	0.001885
0.5317	0.5304	0.002420
0.6207	0.6191	0.002609
0.7288	0.7260	0.003859
0.8670	0.8644	0.003020
0.9376	0.9348	0.003013
1.0000	0.9971	0.002921

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Acros Organics, USA, recrystallized three times from acetone. (2) HPLC grade, Aldrich Chemical Company, Milwaukee, WI, USA.
- (3) 99%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

5.3. Anthracene solubility data in binary alkane + 2propoxyethanol solvent mixtures

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) Hexane; C ₆ H ₁₄ ; [110-54-3] (3) 2-Propoxyethanol; C ₅ H ₁₂ O ₂ ; [2807-30-9]	Original Measurements: 45 C. E. Hernández, L. E. Roy, G. D. Reddy, G. L. Martinez, A. Jackson, G. Brown, and W. E. Acree, Jr., Chem. Eng. Commun. 169, 137 (1998).
Variables: $T/K = 298.15$; Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in hexane + 2-propoxyethanol mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.001274
0.1249	0.1247	0.001759
0.2326	0.2321	0.002146
0.4317	0.4305	0.002711
0.5320	0.5304	0.002953
0.6522	0.6502	0.003132
0.8262	0.8234	0.003357
0.9002	0.8972	0.003380
1.0000	0.9967	0.003343

 a_{X_3} (s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Acros Organics, USA, recrystallized three times from acetone.
- (2) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA.
- (3) 99%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.05 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components:	Original Measurements:
(1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7]	⁴⁵ C. E. Hernández, L. E. Roy,
(2) Heptane; C ₇ H ₁₆ ; [142-82-5]	G. D. Reddy, G. L. Martinez,
(3) 2-Propoxyethanol; C ₅ H ₁₂ O ₂ ;	A. Jackson, G. Brown, and W. E.
[2807-30-9]	Acree, Jr., Chem. Eng. Commun.
	169 , 137 (1998).

Variables: Prepared by: T/K = 298.15; Solvent Composition W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in heptane + 2-propoxyethanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.001571
0.0978	0.0976	0.001908
0.2328	0.2323	0.002308
0.4686	0.4673	0.002874
0.5579	0.5562	0.003031
0.6638	0.6617	0.003165
0.8444	0.8416	0.003346
0.9301	0.9270	0.003357
1.0000	0.9967	0.003343

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Acros Organics, USA, recrystallized three times from acetone.
- (2) HPLC grade, Aldrich Chemical Company, Milwaukee, WI, USA.
- (3) 99%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.05 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) Octane; C ₈ H ₁₈ ; [111-65-9] (3) 2-Propoxyethanol; C ₅ H ₁₂ O ₂ ; [2807-30-9]	Original Measurements: 45 C. E. Hernández, L. E. Roy, G. D. Reddy, G. L. Martinez, A. Jackson, G. Brown, and W. E. Acree, Jr., Chem. Eng. Commun. 169, 137 (1998).
Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in octane + 2-propoxyethanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.001838
0.1508	0.1504	0.002338
0.2637	0.2630	0.002646
0.4798	0.4783	0.003140
0.5839	0.5820	0.003302
0.6912	0.6888	0.003448
0.8465	0.8435	0.003493
0.9284	0.9252	0.003435
1.0000	0.9967	0.003343

 $\bar{a}_{x_3}^{(s)}$: initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- $(1)\ 99.9 + \%,\ Acros\ Organics,\ USA,\ recrystallized\ three\ times\ from\ acetone.$
- (2) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA.
- (3) 99%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.05 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Variables:	Prepared by:
	(1998).
[2807-30-9]	Chem. Eng. Commun. 169, 137
(3) 2-Propoxyethanol; $C_5H_{12}O_2$;	G. Brown, and W. E. Acree, Jr.,
(2) Cyclohexane; C_6H_{12} ; [110-82-7]	Reddy, G. L. Martinez, A. Jackson,
(1) Anthracene; $C_{14}H_{10}$; [120-12-7]	⁴⁵ C. E. Hernández, L. E. Roy, G. D.
Components:	Original Measurements:

Experimental Values

W. E. Acree, Jr.

Solubility of anthracene in cyclohexane + 2-propoxyethanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.001553
0.0890	0.0888	0.002003
0.1777	0.1773	0.002341
0.3903	0.3891	0.002949
0.4892	0.4876	0.003127
0.5941	0.5922	0.003238
0.8009	0.7982	0.003368
0.8854	0.8824	0.003377
1.0000	0.9967	0.003343

 a_{x_3} (s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

T/K = 298.15; Solvent Composition

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- $(1)\ 99.9 + \%,\ Acros\ Organics,\ USA,\ recrystallized\ three\ times\ from\ acetone.$
- (2) HPLC grade, Aldrich Chemical Company, Milwaukee, WI, USA.
- (3) 99%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.05 K. $x_3^{(s)}$: ± 0.0001 . x_1 : $\pm 1.5\%$ (relative error).

Components:	Original Measurements:
(1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7]	⁴⁵ C. E. Hernández, L. E. Roy, G. D.
(2) Methylcyclohexane; C ₇ H ₁₄ ;	Reddy, G. L. Martinez, A. Jackson,
[108-87-2]	G. Brown, and W. E. Acree, Jr.,
(3) 2-Propoxyethanol; C ₅ H ₁₂ O ₂ ;	Chem. Eng. Commun. 169, 137
[2807-30-9]	(1998).
Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Solubility of anthracene in methylcyclohexane + 2-propoxyethanol mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.001649
0.1025	0.1023	0.002154
0.2075	0.2070	0.002520
0.4274	0.4261	0.003039
0.5240	0.5223	0.003233
0.6156	0.6135	0.003355
0.8149	0.8121	0.003416
0.9246	0.9214	0.003409
1.0000	0.9967	0.003343

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Acros Organics, USA, recrystallized three times from acetone.
- (2) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA.
- (3) 99%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.05 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 2,2,4-Trimethylpentane; C ₈ H ₁₈ ; [540-84-1] (3) 2-Propoxyethanol; C ₅ H ₁₂ O ₂ ; [2807-30-9]	Original Measurements: 45 C. E. Hernández, L. E. Roy, G. D. Reddy, G. L. Martinez, A. Jackson, G. Brown, and W. E. Acree, Jr., Chem. Eng. Commun. 169, 137 (1998).
Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 2,2,4-trimethylpentane + 2-propoxyethanol mixtures^a

<i>x</i> ₃ ^(s)	<i>x</i> ₃	x_1
0.0000	0.0000	0.001074
0.1322	0.1320	0.001458
0.2477	0.2473	0.001764
0.4922	0.4910	0.002402

0.5876	0.5861	0.002631
0.6856	0.6836	0.002872
0.8605	0.8577	0.003217
0.9286	0.9255	0.003297
1.0000	0.9967	0.003343

 ${}^{a}x_{3}$ (s): initial mole fraction of component 3 in the binary solvent mixture; x_{1} : mole fraction solubility of the solute; x_{3} : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Acros Organics, USA, recrystallized three times from acetone.
- (2) HPLC grade, Aldrich Chemical Company, Milwaukee, WI, USA.
- (3) 99%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.05 K.

 $x_3^{(s)}$: ±0.0001.

 x_1 : $\pm 1.5\%$ (relative error).

Components:	Original Measurements:
(1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7]	⁴⁵ C. E. Hernández, L. E. Roy, G. D.
(2) tert-Butylcyclohexane; C ₁₀ H ₂₀ ;	Reddy, G. L. Martinez, A. Jackson,
[3178-22-1]	G. Brown, and W. E. Acree, Jr.,
(3) 2-Propoxyethanol; C ₅ H ₁₂ O ₂ ;	Chem. Eng. Commun. 169, 137
[2807-30-9]	(1998).
Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in *tert*-butylcyclohexane + 2-propoxyethanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.001978
0.1468	0.1465	0.002245
0.2793	0.2785	0.002880
0.4952	0.4936	0.003307
0.6002	0.5981	0.003457
0.6974	0.6949	0.003549
0.8544	0.8514	0.003524
0.9230	0.9198	0.003442
1.0000	0.9967	0.003343

 a_{x_3} (s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Acros Organics, USA, recrystallized three times from acetone.
- (2) 99%, Aldrich Chemical Company, Milwaukee, WI, USA.
- (3) 99%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.05 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

5.4. Anthracene solubility data in binary alkane + 2isopropoxyethanol solvent mixtures

	0.11.137
Components:	Original Measurements:
(1) Anthracene; $C_{14}H_{10}$; [120-12-7]	⁴⁶ C. E. Hernández, L. E. Roy, G. D.
(2) Hexane; C ₆ H ₁₄ ; [110-54-3]	Reddy, G. L. Martinez, A. Jackson,
(3) 2-Isopropoxyethanol; C ₅ H ₁₂ O ₂ ;	G. Brown, T. L. Borders, J. T.
[109-59-1]	Sanders, and W. E. Acree, Jr., Phys.
	Chem. Liq. 36, 257 (1998).
Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in hexane + 2-isopropoxyethanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.001274
0.1110	0.1108	0.001686
0.2247	0.2242	0.002073
0.4685	0.4672	0.002687
0.5285	0.5270	0.002778
0.6392	0.6373	0.002950
0.8258	0.8232	0.003133
0.9068	0.9040	0.003125
1.0000	0.9969	0.003093

 $[\]bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Acros Organics, USA, recrystallized three times from acetone.
- (2) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA.
- (3) 99%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components:	Original Measurements:
(1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7]	⁴⁶ C. E. Hernández, L. E. Roy, G. D.

(1) Anthracene; C₁₄H₁₀; [120-12-7] (2) Heptane; C₇H₁₆; [142-82-5] (3) 2-Isopropoxyethanol; C₅H₁₂O₂; [109-59-1]

Reddy, G. L. Martinez, A. Jackson, G. Brown, T. L. Borders, J. T. Sanders, and W. E. Acree, Jr., Phys. Chem. Liq. **36**, 257 (1998).

Variables: T/K = 298.15; Solvent Composition

Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in heptane + 2-isopropoxyethanol mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.001571
0.1228	0.1226	0.001973
0.2487	0.2481	0.002319
0.4603	0.4590	0.002760
0.5592	0.5576	0.002924
0.6717	0.6696	0.003058
0.8367	0.8341	0.003120
0.9228	0.9199	0.003106
1.0000	0.9969	0.003093

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Variables:

T/K = 298.15; Solvent Composition

Source and Purity of Chemicals:

- (1) 99.9+%, Acros Organics, USA, recrystallized three times from acetone. (2) HPLC grade, Aldrich Chemical Company, Milwaukee, WI, USA.
- (3) 99%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) Octane; C ₈ H ₁₈ ; [111-65-9] (3) 2-Isopropoxyethanol; C ₅ H ₁₂ O ₂ ; [109-59-1]	Original Measurements: 46 C. E. Hernández, L. E. Roy, G. D. Reddy, G. L. Martinez, A. Jackson, G. Brown, T. L. Borders, J. T. Sanders, and W. E. Acree, Jr., Phys. Chem. Liq. 36 , 257 (1998).
Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in octane + 2-isopropoxyethanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.001838
0.1600	0.1596	0.002351
0.2834	0.2827	0.002616
0.4881	0.4866	0.002972
0.5878	0.5860	0.003103
0.7075	0.7052	0.003186
0.8531	0.8504	0.003155
0.9277	0.9248	0.003125
1.0000	0.9969	0.003093

 $\bar{a}_{x_3}^{(s)}$: initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Acros Organics, USA, recrystallized three times from acetone. (2) 99+%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA.
- (3) 99%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: $\pm 0.1 \text{ K.}$ $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components:	Original Measurements:
(1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7]	⁴⁶ C. E. Hernández, L. E. Roy, G. D.
(2) Cyclohexane; C ₆ H ₁₂ ; [110-82-7]	Reddy, G. L. Martinez, A. Jackson,
(3) 2-Isopropoxyethanol; C ₅ H ₁₂ O ₂ ;	G. Brown, T. L. Borders, J. T.
[109-59-1]	Sanders, and W. E. Acree, Jr., Phys.
	Chem. Liq. 36, 257 (1998).

Experimental Values

Prepared by:

W. E. Acree, Jr.

Solubility of anthracene in cyclohexane + 2-isopropoxyethanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.001553
0.1006	0.1004	0.002009
0.1992	0.1987	0.002367
0.3871	0.3860	0.002854
0.4818	0.4803	0.003032
0.5895	0.5877	0.003121
0.7854	0.7829	0.003120
0.8929	0.8901	0.003110
1.0000	0.9969	0.003093

 a_{x_3} (s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- $(1)\ 99.9 + \%,\ Acros\ Organics,\ USA,\ recrystallized\ three\ times\ from\ acetone.$
- (2) HPLC grade, Aldrich Chemical Company, Milwaukee, WI, USA.
- (3) 99%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 . x_1 : $\pm 1.5\%$ (relative error).

Components:	Original Measurements:
(1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7]	⁴⁶ C. E. Hernández, L. E. Roy, G. D.
(2) Methylcyclohexane; C ₇ H ₁₄ ;	Reddy, G. L. Martinez, A. Jackson,
[108-87-2]	G. Brown, T. L. Borders, J. T.
(3) 2-Isopropoxyethanol; C ₅ H ₁₂ O ₂ ;	Sanders, and W. E. Acree, Jr., Phys.
[109-59-1]	Chem. Liq. 36, 257 (1998).
Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Solubility of anthracene in methylcyclohexane + 2-isopropoxyethanol mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.001649
0.1065	0.1063	0.002147
0.2203	0.2198	0.002484
0.4270	0.4258	0.002919
0.5244	0.5228	0.003084
0.6247	0.6228	0.003168
0.8137	0.8111	0.003209
0.9021	0.8993	0.003147
1.0000	0.9969	0.003093

 $[\]bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Acros Organics, USA, recrystallized three times from acetone.
- (2) 99+%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA. (3) 99%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: $\pm 0.1 \text{ K.}$ $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7]	Original Measurements: ⁴⁶ C. E. Hernández, L. E. Roy, G. D.
(2) 2,2,4-Trimethylpentane; C ₈ H ₁₈ ; [540-84-1]	Reddy, G. L. Martinez, A. Jackson, G. Brown, T. L. Borders, J. T.
(3) 2-Isopropoxyethanol; $C_5H_{12}O_2$; [109-59-1]	Sanders, and W. E. Acree, Jr., Phys. Chem. Liq. 36 , 257 (1998).
Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 2,2,4-trimethylpentane + 2-isopropoxyethanol mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.001074
0.1399	0.1397	0.001447
0.2729	0.2724	0.001776
0.4915	0.4904	0.002272

0.5779	0.5765	0.002436
0.6710	0.6692	0.002613
0.8537	0.8512	0.002906
0.9285	0.9257	0.002996
1.0000	0.9969	0.003093

 ${}^{a}x_{3}{}^{(s)}$: initial mole fraction of component 3 in the binary solvent mixture; x_{1} : mole fraction solubility of the solute; x_{3} : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Acros Organics, USA, recrystallized three times from acetone.
- (2) HPLC grade, Aldrich Chemical Company, Milwaukee, WI, USA.
- (3) 99%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components:	Original Measurements:
(1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7]	⁴⁶ C. E. Hernández, L. E. Roy, G. D.
(2) tert-Butylcyclohexane; C ₁₀ H ₂₀ ;	Reddy, G. L. Martinez, A. Jackson,
[3178-22-1]	G. Brown, T. L. Borders, J. T.
(3) 2-Isopropoxyethanol; C ₅ H ₁₂ O ₂ ;	Sanders, and W. E. Acree, Jr., Phys.
[109-59-1]	Chem. Liq. 36, 257 (1998).
Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in *tert*-butylcyclohexane + 2-isopropoxyethanol mixtures^a

$x_3^{(s)}$	<i>X</i> ₃	<i>x</i> ₁
0.0000	0.0000	0.001978
0.1477	0.1473	0.002502
0.2738	0.2730	0.002803
0.5032	0.5016	0.003184
0.6050	0.6030	0.003240
0.6959	0.6936	0.003307
0.8604	0.8576	0.003233
0.9305	0.9277	0.003152
1.0000	0.9969	0.003093

 $\bar{a}x_3$ (s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Acros Organics, USA, recrystallized three times from acetone.
- (2) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA.
- (3) 99%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

5.5. Anthracene solubility data in binary alkane + 2butoxyethanol solvent mixtures

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) Hexane; C ₆ H ₁₄ ; [110-54-3] (3) 2-Butoxyethanol; C ₆ H ₁₄ O ₂ ; [111-76-2]	Original Measurements: 47 C. E. Hernández, L. E. Roy, G. D. Reddy, G. L. Martinez, A. Parker, A. Jackson, G. Brown, and W. E. Acree, Jr., J. Chem. Eng. Data 42, 1249 (1997).
Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in hexane + 2-butoxyethanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.001274
0.1152	0.1150	0.001748
0.2026	0.2022	0.002092
0.3970	0.3959	0.002726
0.4984	0.4969	0.002952
0.6013	0.5994	0.003188
0.7970	0.7942	0.003526
0.8974	0.8941	0.003642
1.0000	0.9962	0.003785

 $[\]overline{a}_{X_3}$ (s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Acros Organics, USA, recrystallized three times from acetone.
- (2) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA.
- (3) 99+%, Acros Organics, USA.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

	0.11.134
Components:	Original Measurements:
(1) Anthracene; $C_{14}H_{10}$; [120-12-7]	⁴⁷ C. E. Hernández, L. E. Roy, G. D.
(2) Heptane; C ₇ H ₁₆ ; [142-82-5]	Reddy, G. L. Martinez, A. Parker, A.
(3) 2-Butoxyethanol; $C_6H_{14}O_2$;	Jackson, G. Brown, and W. E.
[111-76-2]	Acree, Jr., J. Chem. Eng. Data 42,
	1249 (1997).
Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in heptane + 2-butoxyethanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.001571
0.1162	0.1160	0.002013
0.2221	0.2216	0.002340
0.4265	0.4253	0.002916
0.5177	0.5161	0.003127
0.6334	0.6313	0.003302
0.8369	0.8339	0.003608
0.9286	0.9252	0.003690
1.0000	0.9962	0.003785

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Acros Organics, USA, recrystallized three times from acetone.
- (2) HPLC grade, Aldrich Chemical Company, Milwaukee, WI, USA.
- (3) 99+%, Acros Organics, USA.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) Octane; C ₈ H ₁₈ ; [111-65-9] (3) 2-Butoxyethanol; C ₆ H ₁₄ O ₂ ; [111-76-2]	Original Measurements: 47 C. E. Hernández, L. E. Roy, G. D. Reddy, G. L. Martinez, A. Parker, A. Jackson, G. Brown, and W. E. Acree, Jr., J. Chem. Eng. Data 42, 1249 (1997).
Variables: $T/K = 298.15$; Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in octane + 2-butoxyethanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.001838
0.1061	0.1059	0.002225
0.2312	0.2306	0.002604
0.4565	0.4550	0.003187
0.5513	0.5495	0.003333
0.6293	0.6271	0.003435
0.8453	0.8422	0.003683
0.9243	0.9208	0.003733
1.0000	0.9962	0.003785

 $\bar{a}_{x_3}^{(s)}$: initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Acros Organics, USA, recrystallized three times from acetone. (2) 99+%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA.
- (3) 99+%, Acros Organics, USA.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Variables:	Prepared by:
	1249 (1997).
[111-76-2]	Acree, Jr., J. Chem. Eng. Data 42,
(3) 2-Butoxyethanol; $C_6H_{14}O_2$;	Jackson, G. Brown, and W. E.
(2) Cyclohexane; C_6H_{12} ; [110-82-7]	Reddy, G. L. Martinez, A. Parker, A.
(1) Anthracene; $C_{14}H_{10}$; [120-12-7]	⁴⁷ C. E. Hernández, L. E. Roy, G. D
Components:	Original Measurements:

Experimental Values

W. E. Acree, Jr.

Solubility of anthracene in cyclohexane + 2-butoxyethanol mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.001553
0.0917	0.0915	0.002026
0.1736	0.1732	0.002356
0.3516	0.3506	0.002897
0.4437	0.4423	0.003092
0.5532	0.5514	0.003282
0.7600	0.7573	0.003532
0.8636	0.8605	0.003655
1.0000	0.9962	0.003785

 \overline{a}_{x_3} (s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

T/K = 298.15; Solvent Composition

 $Constant-temperature\ bath,\ calorimetric\ thermometer,\ and\ an\ ultraviolet/\ visible\ spectrophotometer.$

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- $(1)\ 99.9 + \%,\ Acros\ Organics,\ USA,\ recrystallized\ three\ times\ from\ acetone.$
- (2) HPLC grade, Aldrich Chemical Company, Milwaukee, WI, USA.
- (3) 99+%, Acros Organics, USA.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: $\pm 0.1 \text{ K}$. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) Methylcyclohexane; C ₇ H ₁₄ ; [108-87-2]	Original Measurements: 47 C. E. Hernández, L. E. Roy, G. D. Reddy, G. L. Martinez, A. Parker, A. Jackson, G. Brown, and W. E.
(3) 2-Butoxyethanol; $C_6H_{14}O_2$; [111-76-2]	Acree, Jr., J. Chem. Eng. Data 42 , 1249 (1997).
Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Solubility of anthracene in methylcyclohexane + 2-butoxyethanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.001649
0.1210	0.1207	0.002254
0.2126	0.2120	0.002560
0.4039	0.4027	0.003035
0.5074	0.5058	0.003248
0.6058	0.6038	0.003342
0.8149	0.8120	0.003576
0.9037	0.9004	0.003679
1.0000	0.9962	0.003785
0 (0)		

 a_{x_3} (s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/ visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Acros Organics, USA, recrystallized three times from acetone.
- (2) 99+%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA. (3) 99+%, Acros Organics, USA.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 2,2,4-Trimethylpentane; C ₈ H ₁₈ ; [540-84-1] (3) 2-Butoxyethanol; C ₆ H ₁₄ O ₂ ; [111-76-2]	Original Measurements: 47 C. E. Hernández, L. E. Roy, G. D. Reddy, G. L. Martinez, A. Parker, A. Jackson, G. Brown, and W. E. Acree, Jr., J. Chem. Eng. Data 42, 1249 (1997).
Variables: T/K = 298.15; Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 2,2,4-trimethylpentane + 2-butoxyethanol mixtures⁶

$x_3^{(s)}$	Х3	<i>x</i> ₁
		λ1
0.0000	0.0000	0.001074
0.0977	0.0976	0.001389
0.2275	0.2271	0.001747
0.4395	0.4385	0.002348
0.5470	0.4555	0.002659

0.6370	0.6352	0.002864
0.8417	0.8389	0.003376
0.9188	0.9155	0.003551
1.0000	0.9962	0.003785

 $\overline{x_3}$ initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/ visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Acros Organics, USA, recrystallized three times from acetone.
- (2) HPLC grade, Aldrich Chemical Company, Milwaukee, WI, USA.
- (3) 99+%, Acros Organics, USA.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ±0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7]	Original Measurements: ⁴⁷ C. E. Hernández, L. E. Roy, G. D.
(2) <i>tert</i> -butylcyclohexane; C ₁₀ H ₂₀ ; [3178-22-1]	Reddy, G. L. Martinez, A. Parker, A.
[31/6-22-1] (3) 2-Butoxyethanol; $C_6H_{14}O_2$;	Jackson, G. Brown, and W. E. Acree, Jr., J. Chem. Eng. Data 42,
[111-76-2]	1249 (1997).
Variables:	Prepared by:
T/K - 208 15: Solvent Composition	W E Acree Ir

Experimental Values

Solubility of anthracene in tert-butylcyclohexane + 2-butoxyethanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.001978
0.1313	0.1310	0.002522
0.2591	0.2583	0.002896
0.4588	0.4573	0.003317
0.5696	0.5676	0.003512
0.6725	0.6700	0.003662
0.8348	0.8317	0.003770
0.9273	0.9238	0.003780
1.0000	0.9962	0.003785

 ${}^{a}x_{3}$ initial mole fraction of component 3 in the binary solvent mixture; x_{1} : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Acros Organics, USA, recrystallized three times from acetone.
- (2) 99%, Aldrich Chemical Company, Milwaukee, WI, USA.
- (3) 99+%, Acros Organics, USA.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

5.6. Anthracene solubility data in binary alkane + 3methoxy-1-butanol solvent mixtures

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) Hexane; C ₆ H ₁₄ ; [110-54-3] (3) 3-Methoxy-1-butanol; C ₅ H ₁₂ O ₂ ; [2517-43-3]	Original Measurements: 48 C. E. Hernández, L. E. Roy, G. D. Reddy, T. L. Borders, J. T. Sanders, and W. E. Acree, Jr., Phys. Chem. Liq. 37, 31 (1998).
Variables: T/K = 298.15; Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in hexane + 3-methoxy-1-butanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.001274
0.1175	0.1173	0.001696
0.2440	0.2435	0.002079
0.4481	0.4469	0.002576
0.5596	0.5580	0.002785
0.6554	0.6535	0.002893
0.8271	0.8247	0.002889
0.9141	0.9115	0.002803
1.0000	0.9973	0.002702

 $[\]overline{a}x_3^{(s)}$: initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Acros Organics, USA, recrystallized three times from acetone.
- (2) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA.
- (3) 99%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) Heptane; C ₇ H ₁₆ ; [142-82-5]	Original Measurements: 48 C. E. Hernández, L. E. Roy, G. D. Reddy, T. L. Borders, J. T. Sanders,
(2) Reptane, C_1H_{16} , $[142-62-5]$ (3) 3-Methoxy-1-butanol; $C_5H_{12}O_2$; $[2517-43-3]$	and W. E. Acree, Jr., Phys. Chem. Liq. 37 , 31 (1998).
Variables: T/K = 298 15: Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in heptane + 3-methoxy-1-butanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.001571
0.1216	0.1214	0.002009
0.2596	0.2590	0.002337
0.4640	0.4627	0.002705
0.5653	0.5637	0.002878
0.6659	0.6639	0.002964
0.8421	0.8396	0.002933
0.9125	0.9099	0.002863
1.0000	0.9973	0.002702

 $\bar{a}_{x_3}^{(s)}$: initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

 $Constant\text{-}temperature\ bath,\ calorimetric\ thermometer,\ and\ an\ ultraviolet/\ visible\ spectrophotometer.$

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Acros Organics, USA, recrystallized three times from acetone. (2) HPLC grade, Aldrich Chemical Company, Milwaukee, WI, USA.
- (3) 99%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) Octane; C ₈ H ₁₈ ; [111-65-9] (3) 3-Methoxy-1-butanol; C ₅ H ₁₂ O ₂ ; [2517-43-3]	Original Measurements: 48 C. E. Hernández, L. E. Roy, G. D. Reddy, T. L. Borders, J. T. Sanders, and W. E. Acree, Jr., Phys. Chem. Liq. 37, 31 (1998).
Variables: $T/K = 298.15$; Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in octane + 3-methoxy-1-butanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.001838
0.1406	0.1403	0.002288
0.2681	0.2674	0.002542
0.4926	0.4912	0.002921
0.5954	0.5936	0.003045
0.6860	0.6839	0.003079
0.8435	0.8409	0.003040
0.9102	0.9075	0.002936
0.9287	0.9260	0.002905
1.0000	0.9973	0.002702

 $\bar{a}_{x_3}^{(s)}$: initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- $(1)\ 99.9 + \%,\ Acros\ Organics,\ USA,\ recrystallized\ three\ times\ from\ acetone.$
- (2) 99+%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA.
- (3) 99%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: $\pm 0.1 \text{ K}$. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) Cyclohexane; C ₆ H ₁₂ ; [110-82-7] (3) 3-Methoxy-1-butanol; C ₅ H ₁₂ O ₂ ; [2517-43-3]	Original Measurements: 48 C. E. Hernández, L. E. Roy, G. D. Reddy, T. L. Borders, J. T. Sanders, and W. E. Acree, Jr., Phys. Chem. Liq. 37, 31 (1998).
Variables: $T/K = 298.15$; Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in cyclohexane + 3-methoxy-1-butanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.001533
0.0919	0.0917	0.001991
0.2033	0.2028	0.002407
0.3865	0.3854	0.002817
0.4914	0.4899	0.002978
0.5915	0.5897	0.003021
0.7926	0.7902	0.002969
0.8827	0.8802	0.002870
1.0000	0.9973	0.002702

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Acros Organics, USA, recrystallized three times from acetone.
- (2) HPLC grade, Aldrich Chemical Company, Milwaukee, WI, USA.
- (3) 99%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: $\pm 0.1 \text{ K}$. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) Methylcyclohexane; C ₇ H ₁₄ ; [108-87-2] (3) 3-Methoxy-1-butanol; C ₅ H ₁₂ O ₂ ; [2517-43-3]	Original Measurements: 48 C. E. Hernández, L. E. Roy, G. D. Reddy, T. L. Borders, J. T. Sanders, and W. E. Acree, Jr., Phys. Chem. Liq. 37, 31 (1998).
Variables: $T/K = 298.15$; Solvent Composition	Prepared by: W. E. Acree, Jr.

Solubility of anthracene in methylcyclohexane + 3-methoxy-1-butanol mixtures^a

$\overline{x_3^{(s)}}$	x_3	x_1
0.0000	0.0000	0.001649
0.1251	0.1248	0.002234
0.2244	0.2238	0.002522
0.4239	0.4227	0.002911
0.5353	0.5336	0.003104
0.6258	0.6238	0.003156
0.8104	0.8079	0.003112
0.9039	0.9012	0.002950
1.0000	0.9973	0.002702

 a_{x_3} (s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- $(1)\ 99.9 + \%,\ Acros\ Organics,\ USA,\ recrystallized\ three\ times\ from\ acetone.$
- (2) 99+%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA. (3) 99%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: $\pm 0.1 \text{ K}$. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 2,2,4-Trimethylpentane; C ₈ H ₁₈ ; [540-84-1] (3) 3-Methoxy-1-butanol; C ₅ H ₁₂ O ₂ ; [2517-43-3]	Original Measurements: 48 C. E. Hernández, L. E. Roy, G. D. Reddy, T. L. Borders, J. T. Sanders, and W. E. Acree, Jr., Phys. Chem. Liq. 37, 31 (1998).
Variables: $T/K = 298.15$: Solvent Composition	Prepared by: W. E. Acree. Jr.

Experimental Values

Solubility of anthracene in 2,2,4-trimethylpentane + 3-methoxy-1-butanol mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.001074
0.1346	0.1344	0.001465
0.2734	0.2729	0.001780
0.4997	0.4986	0.002238

0.5062	0.5040	0.002414
0.5963	0.5949	0.002414
0.6901	0.6883	0.002578
0.8541	0.8518	0.002741
0.9268	0.9243	0.002739
1.0000	0.9973	0.002702

 $^{^{}a}x_{3}$ (s): initial mole fraction of component 3 in the binary solvent mixture; x_{1} : mole fraction solubility of the solute; x_{3} : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Acros Organics, USA, recrystallized three times from acetone.
- (2) HPLC grade, Aldrich Chemical Company, Milwaukee, WI, USA.
- (3) 99%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) <i>tert</i> -Butylcyclohexane; C ₁₀ H ₂₀ ; [3178-22-1] (3) 3-Methoxy-1-butanol; C ₅ H ₁₂ O ₂ ; [2517-43-3]	Original Measurements: 48C. E. Hernández, L. E. Roy, G. D. Reddy, T. L. Borders, J. T. Sanders, and W. E. Acree, Jr., Phys. Chem. Liq. 37, 31 (1998).
Variables: T/K = 298.15; Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in *tert*-butylcyclohexane + 3-methoxy-1-butanol mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.001978
0.1745	0.1741	0.002564
0.2876	0.2868	0.002808
0.5072	0.5056	0.003116
0.6071	0.6052	0.003179
0.7027	0.7005	0.003200
0.8581	0.8555	0.003039
0.9262	0.9235	0.002899
1.0000	0.9973	0.002702

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

(1) 99.9+%, Acros Organics, USA, recrystallized three times from acetone. (2) 99%, Aldrich Chemical Company, Milwaukee, WI, USA.

(3) 99%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

6. Solubility of Anthracene in Binary Alcohol + Chloroalkane Solvent Mixtures

6.1. Critical evaluation of experimental solubility data

Acree and co-workers^{49,50} determined the solubility of anthracene in several binary solvent mixtures containing tetrachloromethane and 1-chlorobutane with 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, and 3-methyl-1-butanol at 298.15 K. There has only been a single experimental determination for the solubility of anthracene in each of the binary solvent systems studied. The experimental values were evaluated by curve-fitting the measured solubility data to Eq. (10).

The calculated $S_{23,i}$ parameters for the 12 binary alcohol + chloroalkane solvent systems studied are summarized in Table 5, along with the average absolute deviation between the experimental and back-calculated mole fraction solubilities. Examination of the numerical entries in the last column of Table 5 reveals that Eq. (10) does provide a very accurate mathematical representation for how the measured mole fraction solubilities vary with binary solvent composition. Average percent deviations range from 0.1% to 0.7%, indicating that the measured values fall on smooth ln x_1 versus $x_2^{(s)}$ curves. None of the experimental data points was flagged as an outlier.

The experimental anthracene solubility data for binary alcohol + 1-chlorobutane and alcohol + tetrachloromethane solvent mixtures are given in Secs. 6.2 and 6.3.

Table 5. Mathematical representation of anthracene solubilities in binary alcohol (2) + chloroalkane (3) solvent mixtures

Binary solvent system	$S_{23,i}^{a}$	% Dev ^b
1-Propanol (2) + 1-chlorobutane (3)	1.915	0.7
	0.055	
	0.438	
2-Propanol (2) + 1-chlorobutane (3)	2.244	0.3
	0.698	
	0.189	
1-Butanol (2) + 1 -chlorobutane (3)	1.354	0.2
	-0.186	
	0.210	
2-Butanol (2) + 1-chlorobutane (3)	1.819	0.4
	0.570	
2-Methyl-1-propanol (2) + 1-chlorobutane (3)	1.881	0.4
	0.218	
	0.281	
3-Methyl-1-butanol (2) + 1-chlorobutane (3)	1.229	0.4
	-0.228	
	0.199	
1-Propanol (2) + tetrachloromethane (3)	1.322	0.5
	-0.551	
	-0.202	
2-Propanol (2) + tetrachloromethane (3)	1.909	0.5
	-0.413	
	-0.285	
1-Butanol (2) + tetrachloromethane (3)	0.724	0.5
	-0.780	
	-0.064	
2-Butanol (2) + tetrachloromethane (3)	1.372	0.1
	-0.251	
	0.136	
2-Methyl-1-propanol (2) + tetrachloromethane (3)	1.329	0.5
	-0.539	
	-0.037	
3-Methyl-1-butanol (2) + tetrachloromethane (3)	0.773	0.4
	-0.636	
	-0.082	

^aCombined NIBS/Redlich-Kister curve-fit parameters are ordered as $S_{23,0}$, $S_{23,1}$, and $S_{23,2}$. If only two coefficients are listed, then $S_{23,2}$ is zero.

^bDev (%) = $(100/N) \Sigma \mid [x_1^{\text{exp}} - x_1^{\text{cal}}]/x_1^{\text{exp}} \mid$.

6.2. Anthracene solubility data in binary alcohol + 1chlorobutane solvent mixtures

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 1-Propanol; C ₃ H ₈ O; [71-23-8] (3) 1-Chlorobutane; C ₄ H ₉ Cl; [109-69-3]	Original Measurements: 49 K. M. De Fina, T. Chee, A. Delacruz, A. Frizzelle, K. Theeuwes, and W. E. Acree, Jr., Phys. Chem. Liq. 39 , 499 (2001).
Variables: $T/K = 298.15$; Solvent Composition	Prepared by: W. E. Acree, Jr.

Solubility of anthracene in 1-propanol + 1-chlorobutane mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.000591
0.0731	0.0730	0.000813
0.1555	0.1553	0.001126
0.3173	0.3167	0.001902
0.4139	0.4129	0.002451
0.5158	0.5142	0.003093
0.7338	0.7304	0.004631
0.8610	0.8563	0.005514
1.0000	0.9941	0.005863

 a_{x_3} (s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/ visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99.5+%, HPLC grade, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

[109-69-3]	Phys. Chem. Liq. 39 , 499 (2001).
 (2) 2-Propanol; C₃H₈O; [57-63-0] (3) 1-Chlorobutane; C₄H₉Cl; 	Delacruz, A. Frizzelle, K. Theeuwes, and W. E. Acree, Jr.,
Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 2 Proposel; C. H. O; [57, 62, 0]	Original Measurements: 49 K. M. De Fina, T. Chee, A.

Experimental Values

Solubility of anthracene in 2-propanol + 1-chlorobutane mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.000411
0.0805	0.0805	0.000635
0.1549	0.1548	0.000890
0.3197	0.3192	0.001667

0.4269	0.4259	0.002262
0.5299	0.5284	0.002909
0.7374	0.7342	0.004291
0.8571	0.8528	0.005011
1.0000	0.9941	0.005863

 ${}^{a}x_{3}$ (s): initial mole fraction of component 3 in the binary solvent mixture; x_{1} : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/ visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99.5+%, HPLC grade, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ±0.0001.

 x_1 : $\pm 1.5\%$ (relative error).

Components:	Original Measurements:
(1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7]	⁴⁹ K. M. De Fina, T. Chee, A.
(2) 1-Butanol; C ₄ H ₁₀ O; [71-36-3]	Delacruz, A. Frizzelle, K.
(3) 1-Chlorobutane; C ₄ H ₉ Cl;	Theeuwes, and W. E. Acree, Jr.,
[109-69-3]	Phys. Chem. Liq. 39, 499 (2001).
Variables:	Prepared by:

T/K = 298.15; Solvent Composition W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 1-butanol + 1-chlorobutane mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.000801
0.0942	0.0941	0.001085
0.1903	0.1900	0.001429
0.3633	0.3625	0.002234
0.4660	0.4647	0.002830
0.5578	0.5559	0.003428
0.7581	0.7545	0.004781
0.8696	0.8649	0.005421
1.0000	0.9941	0.005863

 a_{x_3} initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99.8%, HPLC grade, Aldrich Chemical Company.
- (3) 99.5+%, HPLC grade, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.8\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 2-Butanol; C ₄ H ₁₀ O; [78-92-2]	Original Measurements: ⁴⁹ K. M. De Fina, T. Chee, A. Delacruz, A. Frizzelle, K.
(3) 1-Chlorobutane; C ₄ H ₉ Cl; [109-69-3]	Theeuwes, and W. E. Acree, Jr., Phys. Chem. Liq. 39 , 499 (2001).
Variables: $T/K = 298.15$: Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 2-butanol + 1-chlorobutane mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.000585
0.1013	0.1012	0.000908
0.1830	0.1828	0.001243
0.3546	0.3539	0.002090
0.4685	0.4672	0.002709
0.5766	0.5747	0.003347
0.7704	0.7669	0.004525
0.8708	0.8664	0.005103
1.0000	0.9941	0.005863

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99.5+%, HPLC grade, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 2-Methyl-1-propanol; C ₄ H ₁₀ O; [78-83-1] (3) 1-Chlorobutane; C ₄ H ₉ Cl; [109-69-3]	Original Measurements: ⁴⁹ K. M. De Fina, T. Chee, A. Delacruz, A. Frizzelle, K. Theeuwes, and W. E. Acree, Jr., Phys. Chem. Liq. 39 , 499 (2001).
Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 2-methyl-1-propanol + 1-chlorobutane mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.000470
0.0938	0.0937	0.000720
0.1779	0.1777	0.001008
0.3648	0.3641	0.001855
0.4822	0.4810	0.002570
0.5632	0.5615	0.003066
0.7648	0.7614	0.004474
0.8815	0.8768	0.005308
1.0000	0.9941	0.005863

 $^{a}x_{3}$ (s): initial mole fraction of component 3 in the binary solvent mixture; x_{1} : mole fraction solubility of the solute; x_{3} : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99.8%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

T/K = 298.15; Solvent Composition

[109-69-3] Variables:	Prepared by:
[123-51-3] (3) 1-Chlorobutane; C ₄ H ₉ Cl;	Theeuwes, and W. E. Acree, Jr., Phys. Chem. Liq. 39 , 499 (2001).
(2) 3-Methyl-1-butanol; $C_5H_{12}O$;	Delacruz, A. Frizzelle, K.
Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7]	Original Measurements: 49K. M. De Fina, T. Chee, A.

Experimental Values

W. E. Acree, Jr.

Solubility of anthracene in 3-methyl-1-butanol + 1-chlorobutane mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.000727
0.1061	0.1060	0.001013
0.2037	0.2034	0.001345
0.4165	0.4155	0.002317
0.5132	0.5117	0.002901
0.6148	0.6126	0.003583
0.8018	0.7979	0.004847
0.8844	0.8796	0.005417
1.0000	0.9941	0.005863

 a_{x_3} ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99.8%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

6.3. Anthracene solubility data in binary alcohol + tetrachloromethane solvent mixtures

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 1-Propanol; C ₃ H ₈ O; [71-23-8] (3) Tetrachloromethane; CCl ₄ ; [75-05-8]	Original Measurements: ⁵⁰ P. G. Taylor, A. M. Tran, A. K. Charlton, D. R. Daniels, and W. E. Acree, Jr., J. Chem. Eng. Data 48 , 1603 (2003).
Variables: T/K = 298 15: Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 1-propanol + tetrachloromethane mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.000591
0.0962	0.0961	0.000770
0.1768	0.1766	0.000965
0.3363	0.3358	0.001499
0.4363	0.4354	0.001975
0.5579	0.5564	0.002651
0.7650	0.7621	0.003756
0.8485	0.8450	0.004163
1.0000	0.9954	0.004622

 \overline{a}_{x_3} (s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized three times from acetone.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99.5%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: $\pm 0.1 \text{ K}$. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.0\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 2-Propanol; C ₃ H ₈ O; [57-63-0] (3) Tetrachloromethane; CCl ₄ ; [75-05-8]	Original Measurements: ⁵⁰ P. G. Taylor, A. M. Tran, A. K. Charlton, D. R. Daniels, and W. E Acree, Jr., J. Chem. Eng. Data 48, 1603 (2003).
Variables: $T/K = 298.15$; Solvent Composition	Prepared by: W. E. Acree, Jr.

Solubility of anthracene in 2-propanol + tetrachloromethane mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.000411
0.0947	0.0946	0.000581
0.1836	0.1835	0.000809
0.3447	0.3442	0.001406
0.4340	0.4332	0.001871
0.5843	0.5827	0.002703
0.7524	0.7496	0.003696
0.8736	0.8699	0.004284
1.0000	0.9954	0.004622

 $\bar{a}_{x_3}^{(s)}$: initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized three times from acetone.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99.5%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.0\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7]	Original Measurements: 50 P. G. Taylor, A. M. Tran, A. K.
(2) 1-Butanol; C ₄ H ₁₀ O; [71-36-3] (3) Tetrachloromethane; CCl ₄ ; [75-05-8]	Charlton, D. R. Daniels, and W. E. Acree, Jr., J. Chem. Eng. Data 48, 1603 (2003).
Variables: $T/K = 298.15$: Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 1-butanol + tetrachloromethane mixtures^a

x ₃ ^(s)	<i>x</i> ₃	x_1
0.0000	0.0000	0.000801
0.0983	0.0982	0.000953
0.1950	0.1948	0.001178
0.3955	0.3948	0.001833
0.4886	0.4875	0.002236
0.5864	0.5848	0.002768
0.7894	0.7864	0.003844
0.8969	0.8930	0.004364
1.0000	0.9954	0.004622

 a_{x_3} ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized three times from acetone.
- (2) 99.8%, HPLC grade, Aldrich Chemical Company.
- (3) 99.5%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.0\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 2-Butanol; C ₄ H ₁₀ O; [78-92-2] (3) Tetrachloromethane; CCl ₄ ; [75-05-8]	Original Measurements: ⁵⁰ P. G. Taylor, A. M. Tran, A. K. Charlton, D. R. Daniels, and W. E. Acree, Jr., J. Chem. Eng. Data 48 , 1603 (2003).
Variables: T/K = 298 15: Solvent Composition	Prepared by: W. E. Acree, Ir

Solubility of anthracene in 2-butanol + tetrachloromethane mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	<i>x</i> ₁
0.0000	0.0000	0.000585
0.1231	0.1230	0.000863
0.2070	0.2068	0.001109
0.3943	0.3936	0.001815
0.4872	0.4861	0.002252
0.5925	0.5908	0.002802
0.7912	0.7881	0.003882
0.8834	0.8796	0.004306
1.0000	0.9954	0.004622

 $[\]bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized three times from acetone.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99.5%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.0\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 2-Methyl-1-propanol; C ₄ H ₁₀ O; [78-83-1] (3) Tetrachloromethane; CCl ₄ ; [75-05-8]	Original Measurements: ⁵⁰ P. G. Taylor, A. M. Tran, A. K. Charlton, D. R. Daniels, and W. E. Acree, Jr., J. Chem. Eng. Data 48 , 1603 (2003).
Variables: $T/K = 298.15$; Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 2-methyl-1-propanol + tetrachloromethane mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.000470
0.1281	0.1280	0.000696
0.2088	0.2086	0.000897
0.3831	0.3825	0.001489

0.4950	0.4940	0.002049
0.6027	0.6011	0.002627
0.7893	0.7864	0.003718
0.8936	0.8898	0.004283
1.0000	0.9954	0.004622

 ${}^{a}x_{3}{}^{(s)}$: initial mole fraction of component 3 in the binary solvent mixture; x_{1} : mole fraction solubility of the solute; x_{3} : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized three times from acetone.
- (2) 99.5%, anhydrous, Aldrich Chemical Company.
- (3) 99.5%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.0\%$ (relative error).

Components:	Original Measurements:
(1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7]	⁵⁰ P. G. Taylor, A. M. Tran, A. K.
(2) 3-Methyl-1-butanol; $C_5H_{12}O$;	Charlton, D. R. Daniels, and W. E.
[123-51-3]	Acree, Jr., J. Chem. Eng. Data 48,
(3) Tetrachloromethane; CCl ₄ ;	1603 (2003).
[75-05-8]	
Variables:	Prepared by:
T/K = 298.15: Solvent Composition	W. E. Acree, Ir.

Experimental Values

Solubility of anthracene in 3-methyl-1-butanol + tetrachloromethane mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.000727
0.1181	0.1180	0.000926
0.2261	0.2258	0.001187
0.4333	0.4325	0.001927
0.5339	0.5326	0.002390
0.6336	0.6317	0.002922
0.8162	0.8130	0.003864
0.9003	0.8964	0.004312
1.0000	0.9954	0.004622

 a_{x_3} (s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized three times from acetone.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99.5%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: $\pm 0.1 \text{ K}$ $x_3^{(s)}$: ± 0.0001

 x_1 : $\pm 1.0\%$ (relative error).

7. Solubility of Anthracene in Binary Alcohol + Ether Solvent Mixtures

7.1. Critical evaluation of experimental solubility data

Acree and co-workers^{51–55} have measured the solubility of anthracene in binary alcohol + 1,4-dioxane, alcohol + 1,1'-oxybisbutane, alcohol + 2-methoxy-2-methylpropane (also called methyl *tert*-butyl ether), and 1,1'-oxybis[2-methoxyethane] solvent mixtures at 298.2 K. The alcohol solvents included 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 3-methyl-1-butanol, 2-methyl-1-pentanol, 4-methyl-2-pentanol, and 1-octanol. There has only been a single experimental determination for the solubility of anthracene in each of the binary solvent systems studied. The experimental values were evaluated by curve-fitting the measured solubility data to Eq. (10).

The calculated $S_{23,i}$ parameters for the 35 binary alcohol + ether solvent systems studied are summarized in Table 6, along with the average absolute deviation between the experimental and back-calculated mole fraction solubilities. Examination of the numerical entries in the last column of Table 6 reveals that Eq. (10) does provide a very accurate mathematical representation for how the measured mole fraction solubilities vary with binary solvent composition. Average percent deviations range from 0.2% to 2.3%, indicating that the measured values fall on smooth $\ln x_1$ versus $x_2^{(s)}$ curves. None of the experimental data points was flagged as an outlier.

The experimental anthracene solubility data for binary alcohol + 1,4-dioxane, alcohol + 1,1'-oxybisbutane, alcohol + 2,2'-oxybispropane, alcohol + 2-methoxy-2-methylpropane, and alcohol + 1,1'-oxybis[2-methoxyethane] solvent mixtures are given in Secs. 7.2–7.6.

Table 6. Mathematical representation of anthracene solubilities in binary alcohol (2) + ether (3) solvent mixtures

alcohol (2) + ether (3) solvent mixtures	- 0	- h
Binary solvent system	$S_{23,i}^{a}$	% Dev ^b
1-Propanol $(2) + 1,4$ -dioxane (3)	2.308	0.8
	1.305	
2 Program 1 (2) + 1 4 Homer (2)	0.112	0.0
2-Propanol (2) $+$ 1,4-dioxane (3)	2.559	0.8
	1.745	
1-Butanol $(2) + 1,4$ -dioxane (3)	0.748 1.792	0.7
1-Butanoi (2) + 1,4-dioxane (3)	1.140	0.7
	-0.330	
2-Butanol (2) + 1,4-dioxane (3)	2.178	0.9
(_)	1.504	
	0.709	
2-Methyl-1-propanol (2) + 1,4-dioxane (3)	2.326	0.5
	1.232	
	0.210	
3-Methyl-1-butanol (2) + 1,4-dioxane (3)	1.773	0.3
	0.627	
	0.366	
1-Octanol (2) + 1,4-dioxane (3)	0.968	0.5
	0.034	
1-Propanol $(2) + 1,1'$ -oxybisbutane (3)	0.174	1.1
1-Propanol (2) $+$ 1,1 -oxybisbutane (3)	2.167 0.931	1.1
	0.891	
2-Propanol (2) $+$ 1,1'-oxybisbutane (3)	2.588	0.8
2 110punor (2) × 1,1 0xyoisoutune (3)	1.235	0.0
	0.866	
1-Butanol $(2) + 1,1'$ -oxybisbutane (3)	1.736	0.9
•	0.488	
	0.574	
2-Butanol (2) $+$ 1,1'-oxybisbutane (3)	2.109	0.3
	0.849	
	0.726	
2-Methyl-1-propanol (2) $+$ 1,1'-oxybisbutane (3)	2.231	0.6
	0.932	
3-Methyl-1-butanol $(2) + 1,1'$ -oxybisbutane (3)	0.929	0.2
5-Methyl-1-butanol (2) \pm 1,1 -oxybisbutane (5)	1.694 0.464	0.3
	0.338	
1-Octanol (2) + 1 , 1 '-oxybisbutane (3)	0.712	0.6
1 Setation (2) 11,1 Oxypisotataile (5)	-0.143	0.0
	0.169	
1-Propanol (2) $+ 2,2'$ -oxybispropane (3)	1.950	0.6
	0.665	
	0.907	
2-Propanol (2) $+$ 2,2'-oxybispropane (3)	2.200	1.1
	0.853	
	1.097	
1-Butanol (2) $+ 2,2'$ -oxybispropane (3)	1.624	0.8
	0.484	
2-Butanol (2) $+$ 2,2'-oxybispropane (3)	0.829 1.855	0.5
2-Butanoi (2) $+$ 2,2 -oxyoispropane (3)	0.501	0.5
	0.689	
2-Methyl-1-propanol (2) + 2,2'-oxybispropane (3)	2.034	0.4
2 incluir i propunor (2) × 2,2 engenspropuno (e)	-0.592	···
	0.636	
3-Methyl-1-butanol (2) + 2,2'-oxybispropane (3)	1.565	0.4
-	0.377	
	0.640	
1-Propanol (2) + 2-methoxy-2-methylpropane (3)	1.688	0.2
	0.283	
	0.272	

Table 6. Mathematical representation of anthracene solubilities in binary alcohol (2) + ether (3) solvent mixtures—Continued

Binary solvent system	$S_{23,i}^{a}$	% Dev ^b
2-Propanol (2) + 2-methoxy-2-methylpropane (3)	1.976	0.5
	0.514	
	0.651	
1-Butanol (2) + 2-methoxy-2-methylpropane (3)	1.305	0.2
	0.190	
	0.282	
2-Butanol (2) + 2-methoxy-2-methylpropane (3)	1.580	0.3
	0.272	
	0.294	
2-Methyl-1-propanol (2) + 2 -methoxy- 2 -	1.652	0.4
methylpropane (3)	0.428	
	0.353	
1-Pentanol (2) + 2-methoxy-2-methylpropane (3)	1.003	0.2
	-0.033	
	0.244	
3-Methyl-1-butanol (2) + 2-methoxy-2-	1.196	0.3
methylpropane (3)	0.204	
	0.256	
1-Octanol (2) + 2-methoxy-2-methylpropane (3)	0.841	0.4
	0.092	
	0.449	
1-Propanol (2) + $1,1'$ -oxybis[2-methoxyethane] (3)	2.704	1.1
	1.905	
	1.609	
2-Propanol (2) + $1,1'$ -oxybis[2-methoxyethane] (3)	3.099	2.3
	2.363	
	2.555	
1-Butanol (2) + $1,1'$ -oxybis[2-methoxyethane] (3)	2.182	1.4
	1.531	
	1.185	
2-Butanol (2) + 1,1'-oxybis[2-methoxyethane] (3)	2.740	1.1
	1.826	
	1.221	
2-Methyl-1-pentanol (2) + 1,1'-oxybis[2-	1.958	0.5
methoxyethane] (3)	1.012	
	0.504	
4-Methyl-2-pentanol (2) + 1,1'-oxybis[2-	2.125	0.5
methoxyethane] (3)	1.182	
	0.556	
1-Octanol (2) + $1,1'$ -oxybis[2-methoxyethane] (3)	1.232	0.8
	0.466	
	0.407	

^aCombined NIBS/Redlich-Kister curve-fit parameters are ordered as $S_{23,0}$, $S_{23,1}$, and $S_{23,2}$.

7.2. Anthracene solubility data in binary alcohol + 1,4-dioxane solvent mixtures

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 1-Propanol; C ₃ H ₈ O; [71-23-8] (3) 1,4-Dioxane; C ₄ H ₄ O ₂ ; [123-91-1]	Original Measurements: ⁵¹ J. R. Powell, B. J. Miller, and W. E. Acree, Jr., J. Chem. Eng. Data 40 , 1124 (1995).
Variables: T/K = 298.15; Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 1-propanol + 1,4-dioxane mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	<i>x</i> ₁
		λ1
0.0000	0.0000	0.000591
0.0939	0.0938	0.001016
0.1829	0.1826	0.001525
0.3631	0.3621	0.002778
0.3717	0.3703	0.003687
0.5753	0.5727	0.004482
0.7832	0.7783	0.006214
0.8978	0.8914	0.007182
1.0000	0.9917	0.008329

 $\bar{a}x_3^{(s)}$: initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99.8%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: $\pm 0.1 \text{ K}$. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.8\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 2-Propanol; C ₃ H ₈ O; [67-63-0] (3) 1,4-Dioxane; C ₄ H ₄ O ₂ ; [123-91-1]	Original Measurements: 51 J. R. Powell, B. J. Miller, and W. E. Acree, Jr., J. Chem. Eng. Data 40, 1124 (1995).
Variables: T/K = 298.15: Solvent Composition	Prepared by:

^bDev (%) = (100/N) $\Sigma \mid [x_1^{\text{exp}} - x_1^{\text{cal}}]/x_1^{\text{exp}} \mid$.

Solubility of anthracene in 2-propanol + 1,4-dioxane mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.000411
0.1009	0.1008	0.000836
0.1879	0.1877	0.001308
0.3756	0.3746	0.002559
0.4768	0.4752	0.003349
0.5313	0.5293	0.003811
0.7806	0.7760	0.005852
0.8863	0.8801	0.006990
1.0000	0.9917	0.008329

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99.8%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.8\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 1-Butanol; C ₄ H ₁₀ O; [71-36-3] (3) 1,4-Dioxane; C ₄ H ₄ O ₂ ; [123-91-1]	Original Measurements: 51 J. R. Powell, B. J. Miller, and W. E. Acree, Jr., J. Chem. Eng. Data 40, 1124 (1995).
Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 1-butanol + 1,4-dioxane mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.000801
0.1160	0.1158	0.001358
0.2039	0.2035	0.001888

0.4189	0.4175	0.003408
0.5175	0.5154	0.004154
0.6260	0.6229	0.004947
0.8022	0.7972	0.006205
0.9022	0.8959	0.006983
1.0000	0.9917	0.008329

 $\bar{a}x_3$ (s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99.8%, HPLC grade, Aldrich Chemical Company.
- (3) 99.8%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.8\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 2-Butanol; C ₄ H ₁₀ O; [78-92-2] (3) 1,4-Dioxane; C ₄ H ₄ O ₂ ; [123-91-1]	Original Measurements: 51 J. R. Powell, B. J. Miller, and W. E. Acree, Jr., J. Chem. Eng. Data 40, 1124 (1995).
Variables: $T/K = 298.15$; Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 2-butanol + 1,4-dioxane mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.000585
0.1116	0.1115	0.001153
0.2209	0.2205	0.001815
0.4277	0.4263	0.003287
0.5135	0.5115	0.003948
0.6189	0.6160	0.004764
0.8101	0.8050	0.006284
0.9012	0.8946	0.007304
1.0000	0.9917	0.008329

 ${}^{a}x_{3}$ (s): initial mole fraction of component 3 in the binary solvent mixture; x_{1} : mole fraction solubility of the solute; x_{3} : mole fraction of component 3 in the ternary solution.

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99.8%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.8\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 2-Methyl-1-propanol; C ₄ H ₁₀ O; [78-83-1] (3) 1,4-Dioxane; C ₄ H ₄ O ₂ ; [123-91-1]	Original Measurements: 51 J. R. Powell, B. J. Miller, and W. E. Acree, Jr., J. Chem. Eng. Data 40, 1124 (1995).
Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 2-methyl-1-propanol + 1,4-dioxane mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.000470
0.1125	0.1124	0.000915
0.2170	0.2167	0.001478
0.4216	0.4204	0.002896
0.5209	0.5190	0.003704
0.6243	0.6214	0.004583
0.8166	0.8114	0.006328
0.9250	0.9182	0.007392
1.0000	0.9917	0.008329

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99.8%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.8\%$ (relative error).

Components:	Original Measurements:
(1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7]	⁵¹ J. R. Powell, B. J. Miller, and
(2) 3-Methyl-1-butanol; C ₅ H ₁₂ O;	W. E. Acree, Jr., J. Chem. Eng.
[123-51-3]	Data 40, 1124 (1995).
(3) 1,4-Dioxane; C ₄ H ₄ O ₂ ; [123-91-1]	
Variables:	Prepared by:
T/K = 298.15 Solvent Composition	W F Acree Ir

Experimental Values

Solubility of anthracene in 3-methyl-1-butanol + 1,4-dioxane mixtures^a

$x_3^{(s)}$	x_3	x_1	
0.0000	0.0000	0.000727	
0.1272	0.1270	0.001300	
0.2448	0.2443	0.001977	
0.4633	0.4616	0.003574	
0.5625	0.5601	0.004350	
0.6549	0.6515	0.005131	
0.8172	0.8117	0.006694	
0.9072	0.9004	0.007547	
1.0000	0.9917	0.008329	
0 (6)			

 $\bar{a}_{x_3}^{(s)}$: initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Aldrich Chemical Company, Milwaukee, WI, USA, used as received
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99.8%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.8\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 1-Octanol; C ₈ H ₁₈ O; [111-87-5] (3) 1,4-Dioxane; C ₄ H ₄ O ₂ ; [123-91-1]	Original Measurements: 51 J. R. Powell, B. J. Miller, and W. E. Acree, Jr., J. Chem. Eng. Data 40, 1124 (1995).
Variables: T/K = 298.15; Solvent Composition	Prepared by: W. E. Acree, Jr.

Solubility of anthracene in 1-octanol + 1,4-dioxane mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.002160
0.1825	0.1819	0.003215
0.3107	0.3094	0.004060
0.5599	0.5566	0.005816
0.6485	0.6443	0.006519
0.7328	0.7276	0.007063
0.8775	0.8705	0.007998
0.9429	0.9352	0.008177
1.0000	0.9917	0.008329

 $^{{}^{}a}x_{3}^{(s)}$: initial mole fraction of component 3 in the binary solvent mixture; x_{1} : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/ visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99.8%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.8\%$ (relative error).

7.3. Anthracene solubility data in binary alcohol + 1,1'-oxybisbutane solvent mixtures

Components:

(1) Anthracene; C₁₄H₁₀; [120-12-7]

(2) 1-Propanol; C₃H₈O; [71-23-8]

 $(3)\ 1,1'\text{-}Oxybisbutane;\ C_8H_{18}O;$ [142-96-1]

Original Measurements:

⁵²J. R. Powell and W. E. Acree, Jr.,

J. Chem. Eng. Data 40, 914 (1995).

Variables: Prepared by: T/K = 298.15; Solvent Composition W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 1-propanol + 1,1'-oxybisbutane mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.000591
0.0532	0.0532	0.000787
0.0984	0.0983	0.000961
0.2230	0.2227	0.001463
0.3074	0.3069	0.001784
0.3948	0.3939	0.002175
0.6368	0.6349	0.003018
0.8042	0.8015	0.003409
.0000	0.9964	0.003615

 a_{x_3} (s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/ visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99+%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ±0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.3\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 2-Propanol; C ₃ H ₈ O; [67-63-0] (3) 1,1'-Oxybisbutane; C ₈ H ₁₈ O; [142-96-1]	Original Measurements: ⁵² J. R. Powell and W. E. Acree, Jr., J. Chem. Eng. Data 40 , 914 (1995).
Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Solubility of anthracene in 2-propanol + 1,1'-oxybisbutane mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.000411
0.0517	0.0517	0.000570
0.1101	0.1100	0.000750
0.2268	0.2265	0.001226
0.3126	0.3121	0.001609
0.4412	0.4403	0.001989
0.6286	0.6268	0.002827
0.7938	0.7912	0.003267
1.0000	0.9964	0.003615

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99+%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: $\pm 0.1 \text{ K}$. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.3\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 1-Butanol; C ₄ H ₁₀ O; [71-36-3] (3) 1,1'-Oxybisbutane; C ₈ H ₁₈ O; [142-96-1]	Original Measurements: 52 J. R. Powell and W. E. Acree, Jr., J. Chem. Eng. Data 40, 914 (1995).
Variables: T/K = 298.15; Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 1-butanol + 1,1'-oxybisbutane mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.000801
0.0564	0.0563	0.001004
0.1215	0.1213	0.001246
0.2719	0.3714	0.001822
0.3541	0.3534	0.002085

0.4627	0.4615	0.002513
0.6851	0.6829	0.003259
0.8369	0.8339	0.003526
1.0000	0.9964	0.003615

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99.8%, HPLC grade, Aldrich Chemical Company.
- (3) 99+%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.3\%$ (relative error).

T/K = 298.15; Solvent Composition

Variables:	Prepared by:
(1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 2-Butanol; C ₄ H ₁₀ O; [78-92-2] (3) 1,1'-Oxybisbutane; C ₈ H ₁₈ O; [142-96-1]	⁵² J. R. Powell and W. E. Acree, Jr., J. Chem. Eng. Data 40 , 914 (1995).
Components:	Original Measurements:

Experimental Values

W. E. Acree, Jr.

Solubility of anthracene in 2-butanol + 1,1'-oxybisbutane mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.000585
0.0642	0.0641	0.000807
0.1203	0.1202	0.001019
0.2536	0.2532	0.001544
0.3457	0.3450	0.001901
0.3916	0.3908	0.002085
0.6777	0.6756	0.003067
0.7413	0.7389	0.003211
1.0000	0.9964	0.003615

 ${}^{a}x_{3}{}^{(s)}$: initial mole fraction of component 3 in the binary solvent mixture; x_{1} : mole fraction solubility of the solute; x_{3} : mole fraction of component 3 in the ternary solution.

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/ visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99+%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

Variables:

 x_1 : $\pm 1.3\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 2-Methyl-1-propanol; C ₄ H ₁₀ O; [78-83-1] (3) 1,1'-Oxybisbutane; C ₈ H ₁₈ O;	Original Measurements: 52 J. R. Powell and W. E. Acree, Jr., J. Chem. Eng. Data 40, 914 (1995).
[142-96-1]	

T/K = 298.15; Solvent Composition

Solubility of anthracene in 2-methyl-1-propanol + 1,1'-oxybisbutane mixtures⁶

Experimental Values

Prepared by: W. E. Acree, Jr.

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.000470
0.0627	0.0627	0.000668
0.1127	0.1126	0.000837
0.2427	0.2424	0.001323
0.3429	0.3423	0.001693
0.4450	0.4441	0.002093
0.6767	0.6747	0.002936
0.8164	0.8137	0.003345
1.0000	0.9964	0.003615

 ${}^{a}x_{3}^{(s)}$: initial mole fraction of component 3 in the binary solvent mixture; x_{1} : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/ visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99+%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.3\%$ (relative error).

Components:

Original Measurements: ⁵²J. R. Powell and W. E. Acree, Jr.,

(1) Anthracene; C₁₄H₁₀; [120-12-7]

J. Chem. Eng. Data 40, 914 (1995).

(2) 3-Methyl-1-butanol; C₅H₁₂O; [71-23-8]

(3) 1,1'-Oxybisbutane; C₈H₁₈O;

[142-96-1]

Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 3-methyl-1-butanol + 1,1'-oxybisbutane mixtures^a

$x_3^{(s)}$		
X3	<i>X</i> ₃	x_1
0.0000	0.0000	0.000727
0.0753	0.0752	0.000964
0.1270	0.1269	0.001142
0.2884	0.2879	0.001737
0.3892	0.3884	0.002076
0.4656	0.4645	0.002350
0.6713	0.6693	0.003026
0.7950	0.7923	0.003343
1.0000	0.9964	0.003615

 ${}^{a}x_{3}$ (s): initial mole fraction of component 3 in the binary solvent mixture; x_{1} : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/ visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99+%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.3\%$ (relative error).

eared by:
١

Experimental Values

Solubility of anthracene in 1-octanol + 1,1'-oxybisbutane mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.002160
0.0964	0.0962	0.002415
0.1982	0.1977	0.002665
0.3832	0.3820	0.003114
0.4861	0.4845	0.003299
0.5892	0.5872	0.003459
0.7847	0.7817	0.003792
0.8897	0.8864	0.003722
1.0000	0.9964	0.003615

 $\bar{a}_{x_3}^{(s)}$: initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99+%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.3\%$ (relative error).

7.4. Anthracene solubility data in binary alcohol + 2,2'-oxybispropane solvent mixtures

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 1-Propanol; C ₃ H ₈ O; [71-23-8] (3) 2,2'-Oxybispropane; C ₆ H ₁₄ O; [108-20-3]	Original Measurements: ⁵³ M. Corrella, K. Wolcott, M. Carrillo, and W. E. Acree, Jr., J. Chem. Eng. Data 52 , 929 (2007).
Variables: $T/K = 298.15$; Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 1-propanol + 2,2'-oxybispropane mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.000591
0.0649	0.0648	0.000793
0.1171	0.1170	0.000949
0.2663	0.2659	0.001388
0.3333	0.3328	0.001638
0.4519	0.4501	0.001900
0.6433	0.6418	0.002302
0.8166	0.8146	0.002549
1.0000	0.9975	0.002515

 \overline{a}_{x_3} (s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from acetone.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.05 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 2-Propanol; C ₃ H ₈ O; [67-63-0] (3) 2,2'-Oxybispropane; C ₆ H ₁₄ O; [108-20-3]	Original Measurements: 53 M. Corrella, K. Wolcott, M. Carrillo, and W. E. Acree, Jr., J. Chem. Eng. Data 52 , 929 (2007).
Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Solubility of anthracene in 2-propanol + 2,2'-oxybispropane mixtures^a

<i>x</i> ₃ ^(s)	x_3	x_1
0.0000	0.0000	0.000411
0.0551	0.0551	0.000559
0.1147	0.1146	0.000713
0.2631	0.2628	0.001139
0.3560	0.3555	0.001387
0.4948	0.4939	0.001777
0.6336	0.6323	0.002115
0.8201	0.8181	0.002454
1.0000	0.9975	0.002515

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from acetone.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.05 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 1-Butanol; C ₄ H ₁₀ O; [71-36-3] (3) 2,2'-Oxybispropane; C ₆ H ₁₄ O; [108-20-3]	Original Measurements: 53 M. Corrella, K. Wolcott, M. Carrillo, and W. E. Acree, Jr., J. Chem. Eng. Data 52 , 929 (2007).
Variables:	Prepared by:
T/K - 208 15: Solvent Composition	W F Acree Ir

Experimental Values

Solubility of anthracene in 1-butanol + 2,2'-oxybispropane mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.000801
0.0797	0.0796	0.001068
0.1443	0.1441	0.001261
0.2974	0.2969	0.001677

0.3966	0.2958	0.001914
0.4952	0.4941	0.002143
0.7263	0.7245	0.002544
0.8363	0.8342	0.002605
1.0000	0.9975	0.002515

 ${}^{a}x_{3}$ (s): initial mole fraction of component 3 in the binary solvent mixture; x_{1} : mole fraction solubility of the solute; x_{3} : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from acetone.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.05 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7]	Original Measurements: 53M. Corrella, K. Wolcott, M.
(2) 2-Butanol; C ₄ H ₁₀ O; [78-92-2] (3) 2,2'-Oxybispropane; C ₆ H ₁₄ O; [108-20-3]	Carrillo, and W. E. Acree, Jr., J. Chem. Eng. Data 52 , 929 (2007).
Variables: $T/K = 298.15$; Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 2-butanol + 2,2'-oxybispropane mixtures^a

$\overline{x_3}^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.000585
0.0812	0.0811	0.000811
0.1584	0.1582	0.001027
0.3032	0.3027	0.001535
0.3953	0.3946	0.001661
0.5090	0.5080	0.001963
0.7448	0.7430	0.002449
0.8438	0.8417	0.002539
1.0000	0.9975	0.002515

 ${}^{a}x_{3}$ (s): initial mole fraction of component 3 in the binary solvent mixture; x_{1} : mole fraction solubility of the solute; x_{3} : mole fraction of component 3 in the ternary solution.

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from acetone.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.05 K.

 $x_3^{(s)}$: ± 0.0001 .

Variables:

 x_1 : $\pm 1.5\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 2-Methyl-1-propanol; C ₄ H ₁₀ O;	Original Measurements: 53M. Corrella, K. Wolcott, M. Carrillo, and W. E. Acree, Jr., J.
[78-83-1] (3) 2,2'-Oxybispropane; C ₆ H ₁₄ O; [108-20-3]	Chem. Eng. Data 52 , 929 (2007).

Prepared by:

W. E. Acree, Jr.

T/K = 298.15; Solvent Composition

Experimental Values

Solubility of anthracene in 2-methyl-1-propanol + 2,2'-oxybis propane $\mbox{\ mixtures}^a$

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.000470
0.0696	0.0696	0.000644
0.1434	0.1433	0.000836
0.3193	0.3189	0.001323
0.3941	0.3935	0.001538
0.5031	0.5021	0.001834
0.7176	0.7160	0.002299
0.8561	0.8540	0.002505
1.0000	0.9975	0.002515

 a_{x_3} (s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from acetone.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.05 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 3-Methyl-1-butanol; C ₅ H ₁₂ O; [123-51-3] (3) 2,2'-Oxybispropane; C ₆ H ₁₄ O; [108-20-3]	Original Measurements: 53M. Corrella, K. Wolcott, M. Carrillo, and W. E. Acree, Jr., J. Chem. Eng. Data 52 , 929 (2007).
Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 3-methyl-1-butanol + 2,2'-oxybispropane mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.000727
0.0955	0.0954	0.001001
0.1765	0.1763	0.001251
0.3343	0.3338	0.001629
0.4307	0.4299	0.001842
0.5258	0.5247	0.002066
0.7552	0.7533	0.002478
0.8738	0.8716	0.002571
1.0000	0.9975	0.002515

 a_{x_3} (s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from acetone.
- (2) 99%, anhydrous, Aldrich Chemical Company.
- (3) 99%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.05 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

7.5. Anthracene solubility data in binary alcohol + 2methoxy-2-methylpropane solvent mixtures

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 1-Propanol; C ₃ H ₈ O; [71-23-8] (3) 2-Methoxy-2-methylpropane; C ₅ H ₁₂ O; [1634-04-4]	Original Measurements: 54 J. R. Powell, M. E. R. McHale, AS. M. Kauppila, and W. E. Acree, Jr., J. Chem. Thermodyn. 28, 1215 (1996).
Variables: T/K = 298.15; Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 1-propanol + 2-methoxy-2-methylpropane mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.000591
0.0653	0.0653	0.000750
0.1335	0.1334	0.000931
0.2757	0.2753	0.001348
0.3818	0.3812	0.001684
0.4847	0.4837	0.001992
0.7110	0.7091	0.002659
0.8378	0.8354	0.002908
1.0000	0.9969	0.003050

 $[\]bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Gold Label, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99%, anhydrous, Aldrich Chemical Company.
- (3) 99.9+%, Arco Chemical Company, USA.

Components 2 and 3 were stored over anhydrous sodium sulfate and molecular sieves, and distilled shortly before use.

Estimated Error:

Temperature: ± 0.05 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.8\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 2-Propanol; C ₃ H ₈ O; [67-63-0] (3) 2-Methoxy-2-methylpropane; C ₅ H ₁₂ O; [1634-04-4]	Original Measurements: 54 J. R. Powell, M. E. R. McHale, AS. M. Kauppila, and W. E. Acree, Jr., J. Chem. Thermodyn. 28, 1215 (1996).
Variables: $T/K = 298.15$: Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 2-propanol + 2-methoxy-2-methylpropane mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.000411
0.0714	0.0714	0.000574
0.1398	0.1397	0.000755
0.2795	0.2792	0.001156
0.3931	0.3925	0.001487
0.4865	0.4856	0.001777
0.7224	0.7205	0.002571
0.8513	0.8488	0.002885
1.0000	0.9969	0.003050

 \bar{a}_{x_3} (s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Gold Label, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99%, anhydrous, Aldrich Chemical Company.
- (3) 99.9+%, Arco Chemical Company, USA.

Components 2 and 3 were stored over anhydrous sodium sulfate and molecular sieves, and distilled shortly before use.

Estimated Error:

Temperature: ± 0.05 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.8\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 1-Butanol; C ₄ H ₁₀ O; [71-36-3] (3) 2-Methoxy-2-methylpropane; C ₅ H ₁₂ O; [1634-04-4]	Original Measurements: 54 J. R. Powell, M. E. R. McHale AS. M. Kauppila, and W. E. Acree, Jr., J. Chem. Thermodyn. 28, 1215 (1996).
Variables: $T/K = 298.15$; Solvent Composition	Prepared by: W. E. Acree, Jr.

Solubility of anthracene in 1-butanol + 2-methoxy-2-methylpropane mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.000801
0.0817	0.0816	0.001013
0.1574	0.1572	0.001216
0.3364	0.3358	0.001710
0.4375	0.4366	0.001992
0.5403	0.5391	0.002282
0.7522	0.7501	0.002790
0.8598	0.8573	0.002957
1.0000	0.9969	0.003050

 $^{a}x_{3}$ (s): initial mole fraction of component 3 in the binary solvent mixture; x_{1} : mole fraction solubility of the solute; x_{3} : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Gold Label, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) HPLC grade, Aldrich Chemical Company.
- (3) 99.9+%, Arco Chemical Company, USA.

Components 2 and 3 were stored over anhydrous sodium sulfate and molecular sieves, and distilled shortly before use.

Estimated Error:

Temperature: ± 0.05 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.8\%$ (relative error).

Components:	Original Measurements:
(1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7]	⁵⁴ J. R. Powell, M. E. R. McHale,
(2) 2-Butanol; C ₄ H ₁₀ O; [78-92-2]	AS. M. Kauppila, and W. E.
(3) 2-Methoxy-2-methylpropane;	Acree, Jr., J. Chem. Thermodyn.
C ₅ H ₁₂ O; [1634-04-4]	28 , 1215 (1996).
Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 2-butanol + 2-methoxy-2-methylpropane mixtures^a

-		
$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.000585
0.0838	0.0837	0.000783
0.1593	0.1591	0.000985
0.3367	0.3362	0.001490
0.4388	0.4380	0.001793
0.5316	0.5305	0.002068
0.7485	0.7465	0.002695
0.8667	0.8642	0.002918
1.0000	0.9969	0.003050

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Gold Label, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99%, anhydrous, Aldrich Chemical Company.
- (3) 99.9+%, Arco Chemical Company, USA.

Components 2 and 3 were stored over anhydrous sodium sulfate and molecular sieves, and distilled shortly before use.

Estimated Error:

Temperature: ± 0.05 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.8\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 2-Methyl-1-propanol; C ₄ H ₁₀ O; [78-83-1] (3) 2-Methoxy-2-methylpropane; C ₅ H ₁₂ O; [1634-04-4]	Original Measurements: 54 J. R. Powell, M. E. R. McHale, AS. M. Kauppila, and W. E. Acree, Jr., J. Chem. Thermodyn. 28, 1215 (1996).
Variables: $T/K = 298.15$; Solvent Composition	Prepared by: W. E. Acree, Jr.

Solubility of anthracene in 2-methyl-1-propanol + 2-methoxy-2-methylpropane mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.000470
0.0757	0.0757	0.000636
0.1665	0.1664	0.000854
0.3386	0.3382	0.001324
0.4145	0.4139	0.001562
0.5376	0.5366	0.001928
0.7484	0.7465	0.002549
0.8554	0.8530	0.002804
1.0000	0.9969	0.003050

 $[\]bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Gold Label, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99%, anhydrous, Aldrich Chemical Company.
- (3) 99.9+%, Arco Chemical Company, USA.

Components 2 and 3 were stored over anhydrous sodium sulfate and molecular sieves, and distilled shortly before use.

Estimated Error:

 x_1 : $\pm 1.8\%$ (relative error).

Temperature: ± 0.05 K. $x_3^{(s)}$: ± 0.0001 .

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 1-Pentanol; C ₅ H ₁₂ O; [71-41-0] (3) 2-Methoxy-2-methylpropane; C ₅ H ₁₂ O; [1634-04-4]	Original Measurements: 54 J. R. Powell, M. E. R. McHale AS. M. Kauppila, and W. E. Acree, Jr., J. Chem. Thermodyn. 28, 1215 (1996).
Variables: $T/K = 298.15$; Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 1-pentanol + 2-methoxy-2-methylpropane mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.001097
0.0724	0.0723	0.001326
0.1686	0.1683	0.001518
0.3791	0.3783	0.002061

0.4028	0.4019	0.002248
0.5784	0.5770	0.002542
0.7225	0.7204	0.002921
0.8892	0.8865	0.003061
1.0000	0.9969	0.003050

 $^{{}^{}a}x_{3}{}^{(s)}$: initial mole fraction of component 3 in the binary solvent mixture; x_{1} : mole fraction solubility of the solute; x_{3} : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Gold Label, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99%, anhydrous, Aldrich Chemical Company.
- (3) 99.9+%, Arco Chemical Company, USA.

Components 2 and 3 were stored over anhydrous sodium sulfate and molecular sieves, and distilled shortly before use.

Estimated Error:

Temperature: ± 0.05 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.8\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7]	Original Measurements: 54J. R. Powell, M. E. R. McHale,
(2) 3-Methyl-1-butanol; C ₅ H ₁₂ O; [123-51-3]	AS. M. Kauppila, and W. E. Acree, Jr., J. Chem. Thermodyn.
(3) 2-Methoxy-2-methylpropane; C ₅ H ₁₂ O; [1634-04-4]	28 , 1215 (1996).
Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 3-methyl-1-butanol + 2-methoxy-2-methylpropane mixtures^a

$x_3^{(s)}$	x_3	x_1	
0.0000	0.0000	0.000727	
0.0914	0.0913	0.000942	
0.1886	0.1884	0.001185	
0.3569	0.3563	0.001613	
0.4803	0.4794	0.001954	
0.5377	0.5365	0.002219	
0.7795	0.7774	0.002725	
0.8882	0.8856	0.002919	
1.0000	0.9969	0.003050	

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/ visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Gold Label, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99%, anhydrous, Aldrich Chemical Company.
- (3) 99.9+%, Arco Chemical Company, USA.

Components 2 and 3 were stored over anhydrous sodium sulfate and molecular sieves, and distilled shortly before use.

Estimated Error:

Temperature: ± 0.05 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.8\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 1-Octanol; C ₈ H ₁₈ O; [111-87-5] (3) 2-Methoxy-2-methylpropane; C ₅ H ₁₂ O; [1634-04-4]	Original Measurements: 54 J. R. Powell, M. E. R. McHale AS. M. Kauppila, and W. E. Acree, Jr., J. Chem. Thermodyn. 28, 1215 (1996).
Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 1-octanol + 2-methoxy-2-methylpropane mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.002160
0.1364	0.1360	0.002586
0.2405	0.2398	0.002840
0.4577	0.4563	0.003107
0.5516	0.5498	0.003193
0.6647	0.6625	0.003310
0.8384	0.8356	0.003305
0.9187	0.9158	0.003210
1.0000	0.9969	0.003050

 a_{x_3} (s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/ visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Gold Label, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99%, anhydrous, Aldrich Chemical Company.
- (3) 99.9+%, Arco Chemical Company, USA.

Components 2 and 3 were stored over anhydrous sodium sulfate and molecular sieves, and distilled shortly before use.

Estimated Error:

Temperature: ± 0.05 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.8\%$ (relative error).

7.6. Anthracene solubility data in binary alcohol + 1,1'-oxybis[2-methoxyethane] solvent mixtures

Components: Original Measurements: (1) Anthracene; C₁₄H₁₀; [120-12-7] ⁵⁵J. R. Powell, K. S. Coym, and (2) 1-Propanol; C₃H₈O; [71-23-8] W. E. Acree, Jr., J. Chem. Eng. Data (3) 1,1'-Oxybis[2-methoxyethane]; **42**, 395 (1997). C₆H₁₄O₃; [111-96-6]

Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 1-propanol + 1,1'-oxybis[2-methoxyethane] mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.000591
0.0557	0.0556	0.000944
0.1183	0.1181	0.001417
0.2497	0.2401	0.002575
0.3374	0.3362	0.003505
0.4300	0.4281	0.004439
0.6676	0.6628	0.00718
0.8129	0.9910	0.00897
1.0000	0.9886	0.01139

 ${}^{a}x_{3}$: initial mole fraction of component 3 in the binary solvent mixture; x_{1} : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/ visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Acros Organics, USA, recrystallized several times from acetone.
- (2) 99+%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA.
- (3) 99.5%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.8\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 2-Propanol; C ₃ H ₈ O; [67-63-0] (3) 1,1'-Oxybis[2-methoxyethane]; C ₆ H ₁₄ O ₃ ; [111-96-6]	Original Measurements: 55 J. R. Powell, K. S. Coym, and W. E. Acree, Jr., J. Chem. Eng. Data 42, 395 (1997).
Variables: T/K = 298.15: Solvent Composition	Prepared by: W. F. Acree, Jr.

Experimental Values

Solubility of anthracene in 2-propanol + 1,1'-oxybis[2-methoxyethane] mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.000411
0.0603	0.0603	0.000764
0.1186	0.1185	0.001158
0.2606	0.2600	0.002423
0.3508	0.3497	0.003253
0.4473	0.4454	0.004323
0.6810	0.6762	0.00712
0.8122	0.8049	0.00895
1.0000	0.9886	0.01139

 $\overline{x_3}$: initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/ visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

(1) 99.9+%, Acros Organics, USA, recrystallized several times from acetone. (2) 99+%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA.

(3) 99.5%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.8\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 1-Butanol; C ₄ H ₁₀ O; [71-36-3] (3) 1,1'-Oxybis[2-methoxyethane]; C ₆ H ₁₄ O ₃ ; [111-96-6]	Original Measurements: 55 J. R. Powell, K. S. Coym, and W. E. Acree, Jr., J. Chem. Eng. Data 42 , 395 (1997).
Variables: $T/K = 298.15$; Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 1-butanol + 1,1'-oxybis[2-methoxyethane] mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.000801
0.0722	0.0721	0.001302
0.1402	0.1399	0.001848
0.2984	0.2974	0.003304
0.3937	0.3920	0.004301
0.5218	0.5191	0.00524
0.7254	0.7196	0.00794
0.8440	0.8361	0.00934
1.0000	0.9886	0.01139

 a_{x_3} (s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/ visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

(1) 99.9+%, Acros Organics, USA, recrystallized several times from acetone. (2) 99.8%, HPLC grade, Aldrich Chemical Company, Milwaukee, WI, USA. (3) 99.5%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.8\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 2-Butanol; C ₄ H ₁₀ O; [78-92-2] (3) 1,1'-Oxybis[2-methoxyethane]; C ₆ H ₁₄ O ₃ ; [111-96-6]	Original Measurements: 55 J. R. Powell, K. S. Coym, and W. E. Acree, Jr., J. Chem. Eng. Data 42 , 395 (1997).
Variables: $T/K = 298.15$: Solvent Composition	Prepared by: W. E. Acree, Jr.

Solubility of anthracene in 2-butanol + 1,1'-oxybis[2-methoxyethane] mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.000585
0.0659	0.0658	0.000983
0.1294	0.1292	0.001478
0.2930	0.2021	0.002940
0.3785	0.3770	0.003843
0.4973	0.4947	0.00518
0.7261	0.7204	0.00788
0.8480	0.8400	0.00939
1.0000	0.9886	0.01139

 a_{x_3} (s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/ visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Acros Organics, USA, recrystallized several times from acetone. (2) 99+%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA.
- (3) 99.5%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.8\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 2-Methyl-1-pentanol; C ₆ H ₁₄ ; [105-30-6] (3) 1,1'-Oxybis[2-methoxyethane]; C ₆ H ₁₄ O ₃ ; [111-96-6]	Original Measurements: 55 J. R. Powell, K. S. Coym, and W. E. Acree, Jr., J. Chem. Eng. Data 42, 395 (1997).
Variables: T/K = 298.15; Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 2-methyl-1-pentanol + 1,1'-oxybis[2-methoxyethane] mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.000966
0.0944	0.0942	0.001592
0.1793	0.1789	0.002278
0.3576	0.3562	0.003925

0.4536	0.4514	0.004901
0.5709	0.5674	0.00617
0.7659	0.7593	0.00859
0.8783	0.8697	0.00983
1.0000	0.9886	0.01139

 ${}^{a}x_{3}$ (s): initial mole fraction of component 3 in the binary solvent mixture; x_{1} : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/ visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Acros Organics, USA, recrystallized several times from acetone.
- (2) 99%, Aldrich Chemical Company, Milwaukee, WI, USA.
- (3) 99.5%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.8\%$ (relative error).

Components

(1) Anthracene; $C_{14}H_{10}$; [120-12-7] (2) 4-Methyl-2-pentanol; $C_6H_{14}O$; [108-11-2]

(3) 1,1'-Oxybis[2-methoxyethane];

C₆H₁₄O₃; [111-96-6]

Variables:

Original Measurements:

⁵⁵J. R. Powell, K. S. Coym, and W. E. Acree, Jr., J. Chem. Eng. Data 42, 395 (1997).

Prepared by: T/K = 298.15; Solvent Composition W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 4-methyl-2-pentanol + 1,1'-oxybis[2-methoxyethane] mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.000779
0.0960	0.0959	0.001363
0.1758	0.1755	0.001954
0.3693	0.3679	0.003697
0.4736	0.4713	0.004801
0.5747	0.5713	0.00590
0.7690	0.7626	0.00828
0.8825	0.8739	0.00972
1.0000	0.9886	0.01139

 ${}^{a}x_{3}^{(s)}$: initial mole fraction of component 3 in the binary solvent mixture; x_{1} : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

(1) 99.9+%, Acros Organics, USA, recrystallized several times from acetone. (2) 99+%, Acros Organics.

(3) 99.5%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA. Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.8\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 1-Octanol; C ₈ H ₁₈ O; [111-87-5] (3) 1,1'-Oxybis[2-methoxyethane]; C ₆ H ₁₄ O ₃ ; [111-96-6]	Original Measurements: 55J. R. Powell, K. S. Coym, and W. E. Acree, Jr., J. Chem. Eng. Data 42, 395 (1997).
Variables: $T/K = 298.15$; Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 1-octanol + 1,1'-oxybis[2-methoxyethane] mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.002160
0.1198	0.1194	0.003209
0.2208	0.2207	0.004063
0.4248	0.4222	0.00606
0.5226	0.5189	0.00703
0.6205	0.6155	0.00798
0.8001	0.7924	0.00959
0.8967	0.8871	0.01069
1.0000	0.9886	0.01139

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- $(1)\ 99.9+\%,\ Acros\ Organics,\ USA,\ recrystallized\ several\ times\ from\ acetone.$
- (2) 99+%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA.
- (3) 99.5%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: $\pm 0.1 \text{ K.}$ $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.8\%$ (relative error).

8. Solubility of Anthracene in Binary Alcohol + Alcohol Solvent Mixtures

8.1. Critical evaluation of experimental solubility data

Volume 58 in the IUPAC Solubility Data Series² contained solubility data for anthracene in binary 1-butanol + 1-propanol, 2-butanol + 1-propanol, 2-propanol + 1-propanol, 1-octanol + 1-propanol, 1-butanol + 2-propanol, 2-butanol + 2-propanol, and 1-octanol + 2-butanol solvent mixtures at 298.15 K. To conserve space, data from the earlier volume will not be repeated in this volume. Attention will be focused on compiling experimental values determined after Vol. 58 was published.

Acree and co-workers^{56–60} reported the solubility of anthracene in several binary alcohol + alcohol solvent systems at 298.15 K. The solvents included nine primary alcohols (1-propanol, 1-butanol, 2-methyl-1-propanol, 1-pentanol, 2-methyl-1-butanol, 3-methyl-1-butanol, 2-methyl-1-pentanol, 1-octanol, and 2-ethyl-1-hexanol) and four secondary alcohols (2-propanol, 2-butanol, 2-pentanol, 4-methyl-2-pentanol). There has only been a single experimental determination for the solubility of anthracene in each of the binary solvent systems studied. The experimental values were evaluated by curve-fitting the measured solubility data to Eq. (10).

The calculated $S_{23,i}$ parameters for the 37 binary alcohol + alcohol solvent systems studied are summarized in Table 7, along with the average absolute deviation between the experimental and back-calculated mole fraction solubilities. Examination of the numerical entries in the last column of Table 7 reveals that Eq. (10) does provide a very accurate mathematical representation for how the measured mole fraction solubilities vary with binary solvent composition. Average percent deviations range from 0.2% to 0.7%, indicating that the measured values fall on smooth $\ln x_1$ versus $x_2^{(s)}$ curves. None of the experimental data points was flagged as an outlier.

Solubility data are arranged according to alcohol type. The experimental anthracene solubility data for binary primary alcohol + primary alcohol, primary alcohol + secondary alcohol solvent mixtures, and secondary alcohol + secondary alcohol solvent mixtures are given in Secs. 8.2–8.4.

Table 7. Mathematical representation of anthracene solubilities in binary alcohol (2) + alcohol (3) solvent mixtures

Binary solvent system	$S_{23,i}^{a}$	% Dev
1-Propanol (2) + 2-methyl-1-butanol (3)	0.031	0.3
	0.267	
	0.174	
2-Propanol (2) + 2 -methyl- 1 -butanol (3)	0.154	0.7
	0.509 0.162	
1-Butanol (2) + 2-methyl-1-butanol (3)	0.102	0.2
2-Butanol (2) + 2-methyl-1-butanol (3)	-0.040	0.7
•	0.433	
	0.021	
2-Methyl-1-propanol (2) + 2 -methyl-1-butanol (3)	-0.024	0.4
	0.123	0.2
3-Methyl-1-butanol (2) + 2-methyl-1-butanol (3)	-0.034 0.035	0.2
2-Pentanol (2) + 2-methyl-1-butanol (3)	0.000	0.4
3-Methyl-1-butanol (2) $+$ 2-butanol (3)	0.093	0.8
• • • • • • • • • • • • • • • • • • • •	0.087	
2-Butanol (2) + 2 -methyl-1-propanol (3)	0.000	0.3
1-Octanol (2) + 2-methyl-1-propanol (3)	0.940	0.5
	-0.340	
2 Mashail 1 hastan al (2) + 1 hastan al (2)	0.341	0.4
3-Methyl-1-butanol (2) + 1-butanol (3) 3-Methyl-1-butanol (2) + 2-methyl-1-propanol (3)	0.065 0.124	0.4 0.2
3-Methyl-1-butanol (2) + 2-methyl-1-propanol (3)	-0.041	0.2
3-Methyl-1-butanol (2) + 1-octanol (3)	0.467	0.3
•	0.166	
1-Propanol (2) + 2-methyl-1-propanol (3)	0.078	0.4
	-0.019	
2-Methyl-1-proapnol (2) $+$ 2-propanol (3)	0.098	0.2
3-Methyl-1-butanol (2) + 2-propanol (3)	0.014 0.236	0.2
3-Methyl-1-butanol (2) + 2-propanol (3)	0.236	0.2
1-Propanol (2) + 2-pentanol (3)	0.000	0.3
2-Propanol $(2) + 2$ -pentanol (3)	0.216	0.4
	0.134	
1-Butanol (2) + 2 -pentanol (3)	0.000	0.3
2-Butanol (2) + 2-pentanol (3)	0.000	0.3
2-Methyl-1-propanol (2) + 2-pentanol (3)	0.059	0.4
1-Pentanol (2) + 2-pentanol (3) 3-Methyl-1-butanol (2) + 2-pentanol (3)	0.000 0.034	0.5 0.3
1-Octanol (1) $+$ 2-pentanol (3)	0.497	0.3
	-0.089	
	0.179	
1-Propanol (2) + 4-methyl-2-pentanol (3)	-0.045	0.7
	0.119	
2-Propanol (2) + 4 -methyl- 2 -pentanol (3)	0.106	0.4
	0.123 0.095	
1-Butanol (2) + 4-methyl-2-pentanol (3)	-0.093	0.2
T Buttanor (2) T monty 2 pontanor (3)	-0.077	0.2
2-Butanol (2) + 4 -methyl- 2 -pentanol (3)	0.060	0.2
2-Methyl-1-propanol (2) + 4-methyl-2-pentanol (3)	0.064	0.2
1-Pentanol (2) + 4 -methyl- 2 -pentanol (3)	-0.103	0.4
	0.056	
2 Mathril 1 hytonal (2) + 4 mathril 2 mantanal (2)	0.141	0.2
3-Methyl-1-butanol (2) + 4-methyl-2-pentanol (3) 1-Octanol (1) + 4-methyl-2-pentanol (3)	0.042 0.379	0.3
Tocamor (1) Thiothy 2 politation (3)	0.028	0.5
	0.566	
1-Propanol (2) + 1 -pentanol (3)	0.216	0.2
	0.089	
	-0.104	
2-Propanol (2) + 1-pentanol (3)	0.445	0.3
	0.111	
	0.033	

Table 7. Mathematical representation of anthracene solubilities in binary alcohol (2) + alcohol (3) solvent mixtures—Continued

Binary solvent system	$S_{23,i}^{a}$	% Dev ^b
1-Butanol (2) + 1-pentanol (3)	0.055	0.2
_	0.033	
	-0.016	
2-Butanol (2) + 1-pentanol (3)	0.106	0.3
_	-0.054	
	-0.035	
2-Methyl-1-propanol (2) + 1-pentanol (3)	0.267	0.3
	0.044	
	0.078	

^aCombined NIBS/Redlich-Kister curve-fit parameters are ordered as $S_{23,0}$, $S_{23,1}$, and $S_{23,2}$. If only a single coefficient is listed, then $S_{23,1}$ and $S_{23,2}$ are zero. Similarly, if two coefficients are listed, then $S_{23,2}$ is zero. ^bDev (%) = $(100/N) \Sigma \mid [x_1^{\text{exp}} - x_1^{\text{cal}}]/x_1^{\text{exp}} \mid$.

8.2. Anthracene solubility data in binary primary alcohol + primary alcohol solvent mixtures

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 1-Propanol; C ₃ H ₈ O; [71-23-8] (3) 2-Methyl-1-propanol; C ₄ H ₁₀ O; [78-83-1]	Original Measurements: ⁵⁶ A. I. Zvaigzne and W. E. Acree, Jr., J. Chem. Eng. Data 40 , 917 (1995).
Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 1-propanol + 2-methyl-1-propanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.000591
0.0933	0.0932	0.000584
0.1757	0.1756	0.000572
0.3481	0.3479	0.000552
0.4479	0.4477	0.000540
0.5554	0.5551	0.000529
0.7554	0.7550	0.000504
0.8733	0.8729	0.000491
1.0000	0.9995	0.000470

 a_{x_3} (s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99+%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.0\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 1-Propanol; C ₃ H ₈ O; [71-23-8] (3) 2-Methyl-1-butanol; C ₅ H ₁₂ O; [137-32-6]	Original Measurements: ⁵⁷ C. I. Monárrez, P. G. Taylor, A. M. Tran, and W. E. Acree, Jr., J. Chem. Eng. Data 48 , 1341 (2003).
Variables:	Prepared by:

Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 1-propanol + 2-methyl-1-butanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.000591
0.0901	0.0900	0.000623
0.1537	0.1536	0.000646
0.3090	0.3088	0.000666
0.4030	0.4027	0.000669
0.5214	0.5210	0.000689
0.7294	0.7289	0.000715
0.8209	0.8203	0.000742
1.0000	0.9992	0.000786

 $[\]bar{a}_{x_3}^{(s)}$: initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was recrystallized three times from acetone.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99+%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: $\pm 0.1 \text{ K}$. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.0\%$ (relative error).

Components:	Original Measurements:
(1) Anthracene; $C_{14}H_{10}$; [120-12-7]	⁵⁷ C. I. Monárrez, P. G. Taylor, A. M.
(2) 1-Butanol; C ₄ H ₁₀ O; [71-36-3]	Tran, and W. E. Acree, Jr., J. Chem.
(3) 2-Methyl-1-butanol; C ₅ H ₁₂ O;	Eng. Data 48, 1341 (2003).
[137-32-6]	
Variables:	Prepared by:
T/K = 298.15: Solvent Composition	W. E. Acree, Ir.

Experimental Values

Solubility of anthracene in 1-butanol + 2-methyl-1-butanol mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.000801
0.0885	0.0884	0.000801
0.1869	0.1867	0.000803
0.3816	0.3813	0.000795
0.4621	0.4621	0.000795
0.5861	0.5856	0.000793
0.7789	0.7782	0.000791
0.8742	0.8735	0.000789
1.0000	0.9992	0.000786

 $\bar{a}x_3$ (s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was recrystallized three times from acetone.
- (2) 99.8+%, HPLC grade, Aldrich Chemical Company.
- (3) 99+%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: $\pm 0.1 \text{ K.}$ $x_3^{(s)}$: ± 0.0001 .

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 2-Methyl-1-propanol; C ₄ H ₁₀ O; [78-83-1] (3) 2-Methyl-1-butanol; C ₅ H ₁₂ O; [137-32-6]	Original Measurements: ⁵⁷ C. I. Monárrez, P. G. Taylor, A. M. Tran, and W. E. Acree, Jr., J. Chem. Eng. Data 48 , 1341 (2003).
Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Solubility of anthracene in 2-methyl-1-propanol + 2-methyl-1-butanol mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.000470
0.1074	0.1073	0.000512
0.1916	0.1915	0.000541
0.3689	0.3687	0.000574
0.4513	0.4510	0.000593
0.5616	0.5613	0.000617
0.7692	0.7687	0.000673
0.8860	0.8854	0.000714
1.0000	0.9992	0.000786

 $[\]bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was recrystallized three times from acetone.
- (2) 99.5%, anhydrous, Aldrich Chemical Company.
- (3) 99+%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 . x_1 : $\pm 1.0\%$ (relative error).

Experimental Values

Solubility of anthracene in 1-propanol + 1-pentanol mixtures^a

$x_3^{(s)}$	Х3	x_1
0.0000	0.0000	0.000591
0.0752	0.0752	0.000627
0.1490	0.1489	0.000668
0.3170	0.3168	0.000756
0.4120	0.4117	0.000806
0.5165	0.5161	0.000859
0.7217	0.7210	0.000950
0.8590	0.8581	0.001020
1.0000	0.9989	0.001097

 $\bar{a}_{x_3}^{(s)}$: initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9%, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99+%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 1-Butanol; C ₄ H ₁₀ O; [71-36-3] (3) 1-Pentanol; C ₅ H ₁₂ O; [71-41-0]	Original Measurements: 58 J. R. Powell, M. E. R. McHale, AS. M. Kauppila, W. E. Acree, Jr., and S. W. Campbell, J. Solution Chem. 25, 1001 (1996).
Variables: $T/K = 298.15$; Solvent Composition	Prepared by: W. E. Acree, Jr.

Solubility of anthracene in 1-butanol + 1-pentanol mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.000801
0.0944	0.0943	0.000833
0.1791	0.1789	0.000854
0.3634	0.3631	0.000914
0.4608	0.4604	0.000932
0.5455	0.5450	0.000969
0.7716	0.7709	0.001027
0.8926	0.8917	0.001061
1.0000	0.9989	0.001097

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9%, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99.8%, HPLC grade, Aldrich Chemical Company.
- (3) 99+%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: $\pm 0.1 \text{ K}$. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.3\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7]	Original Measurements: 58 J. R. Powell, M. E. R. McHale.
(2) 2-Methyl-1-propanol; C ₄ H ₁₀ O;	AS. M. Kauppila, W. E. Acree,
[78-83-1] (3) 1-Pentanol; C ₅ H ₁₂ O; [71-41-0]	Jr., and S. W. Campbell, J. Solution Chem. 25 , 1001 (1996).
Variables:	Prepared by:
T/K = 208 15: Solvent Composition	W E Acres Ir

Experimental Values

Solubility of anthracene in 2-methyl-1-propanol + 1-pentanol mixtures^a

$x_3^{(s)}$	<i>X</i> ₃	x_1
0.0000 0.0929	0.0000 0.0929	0.000470 0.000525
0.1818	0.1817	0.000576
0.3594	0.3592	0.000678

0.4476	0.4473	0.000735
0.5685	0.5680	0.000814
0.7699	0.7692	0.000946
0.8800	0.8791	0.001019
1.0000	0.9989	0.001097

 ${}^{a}x_{3}{}^{(s)}$: initial mole fraction of component 3 in the binary solvent mixture; x_{1} : mole fraction solubility of the solute; x_{3} : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9%, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99+%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.3\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7]	Original Measurements: ⁵⁸ J. R. Powell, M. E. R. McHale,
(2) 3-Methyl-1-butanol; $C_5H_{12}O$;	AS. M. Kauppila, W. E. Acree,
[123-51-3]	Jr., and S. W. Campbell, J.
(3) 1-Pentanol; C ₅ H ₁₂ O; [71-41-0]	Solution Chem. 25, 1001 (1996).
Variables:	Prepared by:
T/K = 298.15 Solvent Composition	W.E. Acree, Ir

Experimental Values

Solubility of anthracene in 3-methyl-1-butanol + 1-pentanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.000727
0.1127	0.1126	0.000775
0.1969	0.1967	0.000799
0.3941	0.3938	0.000863
0.4977	0.4973	0.000894
0.7067	0.7060	0.000969
0.7944	0.7936	0.001020
0.8938	0.8929	0.001054
1.0000	0.9989	0.001097

 ${}^{a}x_{3}$ (s): initial mole fraction of component 3 in the binary solvent mixture; x_{1} : mole fraction solubility of the solute; x_{3} : mole fraction of component 3 in the ternary solution.

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9%, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99+%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.3\%$ (relative error).

Components: (1) Anthracene; $C_{14}H_{10}$; [120-12-7] (2) 1-Octanol; $C_8H_{18}O$; [111-87-5] (3) 1-Pentanol; $C_5H_{12}O$; [71-41-0]	Original Measurements: ⁵⁸ J. R. Powell, M. E. R. McHale, AS. M. Kauppila, W. E. Acree, Jr., and S. W. Campbell, J. Solution Chem. 25 , 1001 (1996).
Variables: $T/K = 298.15$; Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 1-octanol + 1-pentanol mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.002160
0.1466	0.1463	0.002026
0.2735	0.2730	0.001893
0.4864	0.4856	0.001648
0.5878	0.5869	0.001550
0.6852	0.6842	0.001440
0.8469	0.8458	0.001257
0.9244	0.9233	0.001179
1.0000	0.9989	0.001097

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9%, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99+%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.3\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 3-Methyl-1-butanol; C ₅ H ₁₂ O; [123-51-3] (3) 2-Methyl-1-butanol; C ₅ H ₁₂ O; [137-32-6]	Original Measurements: ⁵⁷ C. I. Monárrez, P. G. Taylor, A. M. Tran, and W. E. Acree, Jr., J. Chem. Eng. Data 48 , 1341 (2003).
Variables: T/K = 298.15; Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 3-methyl-1-butanol + 2-methyl-1-butanol mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.000727
0.1215	0.1212	0.000733
0.2037	0.2035	0.000739
0.3955	0.3952	0.000743
0.5037	0.5033	0.000748
0.6169	0.6164	0.000756
0.7935	0.7929	0.000766
0.8880	0.8873	0.000775
1.0000	0.9992	0.000786

 $^{a}x_{3}$ (s): initial mole fraction of component 3 in the binary solvent mixture; x_{1} : mole fraction solubility of the solute; x_{3} : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

 $Constant\text{-}temperature\ bath,\ calorimetric\ thermometer,\ and\ an\ ultraviolet/\ visible\ spectrophotometer.$

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was recrystallized three times from acetone.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99+%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.0\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 1-Octanol; C ₈ H ₁₈ O; [111-87-5] (3) 2-Methyl-1-propanol; C ₄ H ₁₀ O; [78-83-1]	Original Measurements: ⁵⁶ A. I. Zvaigzne and W. E. Acree, Jr., J. Chem. Eng. Data 40 , 917 (1995).
Variables: $T/K = 298.15$; Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 1-octanol + 2-methyl-1-propanol mixtures^a

x ₃ (s)	Y	r.
A3	<i>x</i> ₃	x_1
0.0000	0.0000	0.002160
0.1766	0.1763	0.001872
0.3099	0.3094	0.001617
0.5312	0.5306	0.001219
0.6295	0.6288	0.001056
0.7215	0.7204	0.000901
0.8697	0.8691	0.000670
0.9351	0.9346	0.000568
1.0000	0.9995	0.000470

 ${}^ax_3^{(s)}$: initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99+%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.0\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 3-Methyl-1-butanol; C ₅ H ₁₂ O; [123-51-3] (3) 1-Octanol; C ₈ H ₁₈ O; [111-87-5]	Original Measurements: ⁵⁶ A. I. Zvaigzne and W. E. Acree, Jr., J. Chem. Eng. Data 40 , 917 (1995).
Variables: T/K = 298.15; Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 3-methyl-1-butanol + 1-octanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.000727
0.0810	0.0809	0.000830
0.1578	0.1577	0.000933
0.3162	0.3158	0.001155
0.4024	0.4019	0.001269
0.5109	0.5102	0.001425
0.7229	0.7217	0.001718
0.8415	0.8399	0.001910
1.0000	0.9978	0.002160

 a_{x_3} (s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99+%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: $\pm 0.1 \text{ K.}$ $x_3^{(s)}$: ± 0.0001 .

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 3-Methyl-1-butanol; C ₅ H ₁₂ O; [123-51-3] (3) 2-Methyl-1-propanol; C ₄ H ₁₀ O; [78-83-1]	Original Measurements: ⁵⁶ A. I. Zvaigzne and W. E. Acree, Jr., J. Chem. Eng. Data 40 , 917 (1995).
Variables: $T/K = 298.15$; Solvent Composition	Prepared by: W. E. Acree, Jr.

Solubility of anthracene in 3-methyl-1-butanol + 2-methyl-1-propanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.000727
0.1375	0.1374	0.000692
0.2373	0.2371	0.000668
0.4385	0.4382	0.000618
0.5407	0.5404	0.000592
0.6456	0.6452	0.000567
0.8175	0.8171	0.000523
0.8981	0.8977	0.000497
1.0000	0.9995	0.000470

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99+%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.0\%$ (relative error).

T/K = 298.15; Solvent Composition

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 3-Methyl-1-butanol; C ₅ H ₁₂ O; [123-51-3] (3) 1-Butanol; C ₄ H ₁₀ O; [71-36-3]	Original Measurements: 56 A. I. Zvaigzne and W. E. Acree, Jr., J. Chem. Eng. Data 40, 917 (1995).
Variables:	Prepared by:

Experimental Values

W. E. Acree, Jr.

Solubility of anthracene in 3-methyl-1-butanol + 1-butanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.000727
0.1294	0.1293	0.000745
0.2385	0.2383	0.000751
0.4402	0.4399	0.000768
0.5442	0.5438	0.000775

0.6471	0.6466	0.000781
0.8112	0.8106	0.000793
0.9031	0.9024	0.000801
1.0000	0.9992	0.000801

 $^{a}x_{3}$ (s): initial mole fraction of component 3 in the binary solvent mixture; x_{1} : mole fraction solubility of the solute; x_{3} : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99.8+%, HPLC grade, Aldrich Chemical Company.
- (3) 99+%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.0\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 1-Propanol; C ₃ H ₈ O; [67-63-0] (3) 2-Methyl-1-pentanol; C ₆ H ₁₄ O;	Original Measurements: 59 J. R. Powell, K. A. Fletcher, K. S. Coym, W. E. Acree, V. G. Varanasi, and S. W. Campbell, Int. J.
[105-30-6]	Thermophys. 18 , 1495 (1997).
Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 1-propanol + 2-methyl-1-pentanol mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.000591
0.0737	0.0737	0.000626
0.1347	0.1346	0.000654
0.2837	0.2835	0.000713
0.3727	0.3724	0.000748
0.4557	0.4553	0.000771
0.7050	0.7044	0.000851
0.8395	0.8387	0.000897
1.0000	0.9990	0.000966

 ${}^{a}x_{3}{}^{(s)}$: initial mole fraction of component 3 in the binary solvent mixture; x_{1} : mole fraction solubility of the solute; x_{3} : mole fraction of component 3 in the ternary solution.

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Acros Organics, USA, was recrystallized several times from acetone.
- (2) 99+%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA. (3) 99%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 1-Butanol; C ₄ H ₁₀ O; [71-36-3] (3) 2-Methyl-1-pentanol; C ₆ H ₁₄ O; [105-30-6]	Original Measurements: 59 J. R. Powell, K. A. Fletcher, K. S Coym, W. E. Acree, V. G. Varanasi and S. W. Campbell, Int. J. Thermophys. 18 , 1495 (1997).
Variables: $T/K = 298.15$: Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 1-butanol + 2-methyl-1-pentanol mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.000801
0.0865	0.0865	0.000813
0.1692	0.1691	0.000824
0.3256	0.3253	0.000848
0.4476	0.4472	0.000866
0.5278	0.5273	0.000879
0.7486	0.7479	0.000916
0.8606	0.8598	0.000939
1.0000	0.9990	0.000966

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Acros Organics, USA, was recrystallized several times from acetone.
- (2) 99.8%, HPLC grade, Aldrich Chemical Company, Milwaukee, WI, USA. (3) 99%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 1-Methyl-1-propanol; C ₄ H ₁₀ O; [78-83-1] (3) 2-Methyl-1-pentanol; C ₆ H ₁₄ O; [105-30-6]	Original Measurements: 59J. R. Powell, K. A. Fletcher, K. S. Coym, W. E. Acree, V. G. Varanasi, and S. W. Campbell, Int. J. Thermophys. 18 , 1495 (1997).
Variables: T/K - 298 15: Solvent Composition	Prepared by:

Experimental Values

Solubility of anthracene in 2-methyl-1-propanol + 2-methyl-1-pentanol mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.000470
0.0865	0.0865	0.000516
0.1575	0.1574	0.000549
0.3292	0.3290	0.000631
0.4334	0.4331	0.000678
0.5354	0.5350	0.000724
0.7468	0.7462	0.000827
0.8653	0.8645	0.000893
1.0000	0.9990	0.000966

 $^{a}x_{3}$ (s): initial mole fraction of component 3 in the binary solvent mixture; x_{1} : mole fraction solubility of the solute; x_{3} : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

 $Constant\text{-}temperature\ bath,\ calorimetric\ thermometer,\ and\ an\ ultraviolet/\ visible\ spectrophotometer.$

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Acros Organics, USA, was recrystallized several times from acetone.
- (2) 99+%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA.
- (3) 99%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Coym, W. E. Acree, V. G. Varanasi, and S. W. Campbell, Int. J. Thermophys. 18 , 1495 (1997).	
Thermophys. 18 , 1495 (1997). Prepared by:	

Experimental Values

Solubility of anthracene in 1-octanol + 2-methyl-1-pentanol mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.002160
0.1359	0.1356	0.001953
0.2390	0.2386	0.001844
0.4525	0.4518	0.001571
0.5583	0.5575	0.001448
0.6387	0.6378	0.001354
0.8279	0.8270	0.001122
0.9165	0.9155	0.001047
1.0000	0.9990	0.000966

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Acros Organics, USA, was recrystallized several times from acetone.
- (2) 99+%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA. (3) 99%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

8.3. Anthracene solubility data in binary primary alcohol + secondary alcohol solvent mixtures

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7]	Original Measurements: 57 C. I. Monárrez, P. G. Taylor, A. M.
(2) 2-Propanol; C ₃ H ₈ O; [67-63-0] (3) 2-Methyl-1-butanol; C ₅ H ₁₂ O; [137-32-6]	Tran, and W. E. Acree, Jr., J. Chem. Eng. Data 48 , 1341 (2003).
Variables: $T/K = 298.15$; Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 2-propanol + 2-methyl-1-butanol mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.000411
0.0931	0.0931	0.000467
0.1659	0.1658	0.000491
0.3264	0.3262	0.000545
0.4298	0.4296	0.000576
0.5216	0.5213	0.000601
0.7443	0.7438	0.000662
0.8572	0.8566	0.000701
1.0000	0.9992	0.000786

 \overline{a}_{x_3} (s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was recrystallized three times from acetone.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99+%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 2-Butanol; C ₄ H ₁₀ O; [78-92-2] (3) 2-Methyl-1-butanol; C ₅ H ₁₂ O; [137-32-6]	Original Measurements: 57 C. I. Monárrez, P. G. Taylor, A. M. Tran, and W. E. Acree, Jr., J. Chem. Eng. Data 48, 1341 (2003).
Variables: $T/K = 298.15$; Solvent Composition	Prepared by: W. E. Acree, Jr.

Solubility of anthracene in 2-butanol + 2-methyl-1-butanol mixtures^a

x ₃ ^(s)	<i>x</i> ₃	x_1
0.0000	0.0000	0.000585
0.0862	0.0861	0.000618
0.1784	0.1783	0.000637
0.3684	0.3682	0.000659
0.4613	0.4610	0.000667
0.5584	0.5580	0.000683
0.7708	0.7703	0.000709
0.8895	0.8889	0.000730
1.0000	0.9992	0.000786

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was recrystallized three times from acetone.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99+%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: $\pm 0.1 \text{ K}$. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.0\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 2-Pentanol; C ₅ H ₁₂ O; [6032-29-7] (3) 2-Methyl-1-butanol; C ₅ H ₁₂ O; [137-32-6]	Original Measurements: ⁵⁷ C. I. Monárrez, P. G. Taylor, A. M Tran, and W. E. Acree, Jr., J. Chem Eng. Data 48 , 1341 (2003).
Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 2-pentanol + 2-methyl-1-butanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.000800
0.1032	0.1031	0.000808
0.2144	0.2142	0.000800
0.4011	0.4008	0.000795
0.5105	0.5100	0.000795
0.6114	0.6109	0.000792
0.7899	0.7893	0.000790
0.9010	0.9003	0.000789
1.0000	0.9992	0.000786

 $\bar{a}x_3$ (s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was recrystallized three times from acetone.
- (2) 99+%, Acros Organics, USA.
- (3) 99+%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 2-Butanol; C ₄ H ₁₀ O; [78-92-2] (3) 2-Methyl-1-propanol; C ₄ H ₁₀ O; [78-83-1]	Original Measurements: ⁵⁶ A. I. Zvaigzne and W. E. Acree, Jr., J. Chem. Eng. Data 40 , 917 (1995).
Variables: $T/K = 298.15$; Solvent Composition	Prepared by: W. E. Acree, Jr.

Solubility of anthracene in 2-butanol + 2-methyl-1-propanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.000800
0.1118	0.1117	0.000573
0.2077	0.2076	0.000558
0.3966	0.3964	0.000534
0.4964	0.4961	0.000524
0.6002	0.5999	0.000513
0.7892	0.7888	0.000494
0.8840	0.8836	0.000484
1.0000	0.9995	0.000470

 $[\]bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99+%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.0\%$ (relative error).

T/K = 298.15; Solvent Composition

Variables:	Prepared by:
(3) 2-Propanol; C ₃ H ₈ O; [67-63-0]	
[78-83-1]	(1995).
(2) 2-Methyl-1-propanol; $C_4H_{10}O$;	Jr., J. Chem. Eng. Data 40, 917
(1) Anthracene; $C_{14}H_{10}$; [120-12-7]	⁵⁶ A. I. Zvaigzne and W. E. Acree
Components:	Original Measurements:

Experimental Values

W. E. Acree, Jr.

Solubility of anthracene in 2-methyl-1-propanol + 2-propanol mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.000470
0.1341	0.1340	0.000468
0.2400	0.2399	0.000463
0.4458	0.4456	0.000454
0.5484	0.5482	0.000448

0.6500	0.6497	0.000439
0.8204	0.8201	0.000425
0.8973	0.8969	0.000421
1.0000	0.9996	0.000411

 $^{a}x_{3}^{(s)}$: initial mole fraction of component 3 in the binary solvent mixture; x_{1} : mole fraction solubility of the solute; x_{3} : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99+%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.0\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 3-Methyl-1-butanol; C ₅ H ₁₂ O; [123-51-3] (3) 2-Propanol; C ₃ H ₈ O; [67-63-0]	Original Measurements: ⁵⁶ A. I. Zvaigzne and W. E. Acree, Jr., J. Chem. Eng. Data 40 , 917 (1995).
Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 3-methyl-1-butanol + 2-propanol mixtures^a

$x_3^{(s)}$	<i>X</i> ₃	<i>x</i> ₁
		-
0.0000	0.0000	0.000727
0.1561	0.1560	0.000689
0.2741	0.2739	0.000651
0.4809	0.4806	0.000586
0.5887	0.5884	0.000551
0.6833	0.6829	0.000519
0.8398	0.8394	0.000463
0.9209	0.9205	0.000436
1.0000	0.9996	0.000411

 ${}^{a}x_{3}{}^{(s)}$: initial mole fraction of component 3 in the binary solvent mixture; x_{1} : mole fraction solubility of the solute; x_{3} : mole fraction of component 3 in the ternary solution.

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99+%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.0\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 3-Methyl-1-butanol; C ₅ H ₁₂ O; [123-51-3] (3) 2-Butanol; C ₄ H ₁₀ O; [78-92-2]	Original Measurements: ⁵⁶ A. I. Zvaigzne and W. E. Acree, Jr., J. Chem. Eng. Data 40 , 917 (1995).
Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 3-methyl-1-butanol + 2-butanol mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.000727
0.1335	0.1334	0.000725
0.2423	0.2421	0.000703
0.4392	0.4389	0.000672
0.5401	0.5397	0.000655
0.6485	0.6481	0.000635
0.8191	0.8186	0.000620
0.9090	0.9085	0.000597
1.0000	0.9994	0.000585

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99+%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ±0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.0\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 1-Propanol; C ₃ H ₈ O; [71-23-8] (3) 2-Pentanol; C ₅ H ₁₂ O; [6032-29-7]	Original Measurements: 60 J. R. Powell, M. E. R. McHale, AS. M. Kauppila, and W. E. Acree, Jr., J. Chem. Eng. Data 41, 728 (1996).
Variables: $T/K = 298.15$; Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 1-propanol + 2-pentanol mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.000591
0.0754	0.0754	0.000605
0.1340	0.1339	0.000617
0.3093	0.3091	0.000650
0.4323	0.4320	0.000679
0.5184	0.5180	0.000693
0.7333	0.7328	0.000737
0.8555	0.8548	0.000763
1.0000	0.9992	0.000800

 $\bar{a}x_3^{(s)}$: initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99+%, Acros Organics, USA.

Components 2 and 3 were stored over anhydrous sodium sulfate and molecular sieves, and distilled shortly before use.

Estimated Error:

Temperature: ±0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 1-Butanol; C ₄ H ₁₀ O; [71-36-3] (3) 2-Pentanol; C ₅ H ₁₂ O; [6032-29-7]	Original Measurements: 60 J. R. Powell, M. E. R. McHale, AS. M. Kauppila, and W. E. Acree, Jr., J. Chem. Eng. Data 41, 728 (1996).
Variables: $T/K = 298.15$; Solvent Composition	Prepared by: W. E. Acree, Jr.

Solubility of anthracene in 1-butanol + 2-pentanol mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.000801
0.0983	0.0982	0.000797
0.1779	0.1778	0.000803
0.3629	0.3626	0.000804
0.4531	0.4527	0.000800
0.5664	0.5659	0.000798
0.7670	0.7664	0.000802
0.8801	0.8794	0.000796
1.0000	0.9992	0.000800

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99.8+%, HPLC grade, Aldrich Chemical Company.
- (3) 99+%, Acros Organics, USA.

Components 2 and 3 were stored over anhydrous sodium sulfate and molecular sieves, and distilled shortly before use.

Estimated Error:

Temperature: $\pm 0.1 \text{ K}$. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.3\%$ (relative error).

(1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7]	⁶⁰ J. R. Powell, M. E. R. McHale,
(2) 2-Methyl-1-propanol; C ₄ H ₁₀ O;	AS. M. Kauppila, and W. E.
[78-83-1]	Acree, Jr., J. Chem. Eng. Data 41,
(3) 2-Pentanol; C ₅ H ₁₂ O; [6032-29-7]	728 (1996).
Variables: $T/K = 298.15$: Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 2-methyl-1-propanol + 2-pentanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.000470
0.0929	0.0929	0.000497
0.1774	0.1773	0.000525
0.3584	0.3582	0.000575
0.4603	0.4600	0.000607
0.5678	0.5674	0.000645
0.7592	0.7587	0.000706
0.8556	0.8550	0.000745
1.0000	0.9992	0.000800

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99+%, Acros Organics, USA.

Components 2 and 3 were stored over anhydrous sodium sulfate and molecular sieves, and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 1-Pentanol; C ₅ H ₁₂ O; [71-41-0] (3) 2-Pentanol; C ₅ H ₁₂ O; [6032-29-7]	Original Measurements: Oliminal Measurements: Oliminal Measurements: Oliminal Measurements: AS. M. Kauppila, and W. E. Acree, Jr., J. Chem. Eng. Data 41, 728 (1996).
Variables: T/K = 298 15: Solvent Composition	Prepared by: W. F. Acree, Ir

Experimental Values

Solubility of anthracene in 1-pentanol + 2-pentanol mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.001097
0.1438	0.1438	0.001048
0.2514	0.2511	0.001003
0.4638	0.4634	0.000950
0.5418	0.5413	0.000932
0.6137	0.6131	0.000912
0.7819	0.7812	0.000857
0.8761	0.8754	0.000828
1.0000	0.9992	0.000800

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99%, Aldrich Chemical Company.
- (3) 99+%, Acros Organics, USA.

Components 2 and 3 were stored over anhydrous sodium sulfate and molecular sieves, and distilled shortly before use.

Estimated Error:

Temperature: $\pm 0.1 \text{ K}$. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.3\%$ (relative error).

(3) 2-Pentanol; C ₅ H ₁₂ O; [6032-29-7] Variables:	728 (1996). Prepared by:
(2) 3-Methyl-1-butanol; C ₅ H ₁₂ O; [123-51-3]	AS. M. Kauppila, and W. E. Acree, Jr., J. Chem. Eng. Data 41
Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7]	Original Measurements: 60 J. R. Powell, M. E. R. McHale

Experimental Values

Solubility of anthracene in 3-methyl-1-butanol + 2-pentanol mixtures^a

(s)		
$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.000727
0.1465	0.1464	0.000746
0.2478	0.2476	0.000751
0.4688	0.4684	0.000764
0.5703	0.5699	0.000772

0.6382	0.6377	0.000779
0.7709	0.7703	0.000787
0.9005	0.8998	0.000796
1.0000	0.9992	0.000800

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99+%, Acros Organics, USA.

Components 2 and 3 were stored over anhydrous sodium sulfate and molecular sieves, and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.3\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 1-Octanol; C ₈ H ₁₈ O; [111-87-5] (3) 2-Pentanol; C ₅ H ₁₂ O; [6032-29-7]	Original Measurements: On J. R. Powell, M. E. R. McHale, AS. M. Kauppila, and W. E. Acree, Jr., J. Chem. Eng. Data 41, 728 (1996).
Variables: $T/K = 298.15$; Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 1-octanol + 2-pentanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.002160
0.1481	0.1478	0.001989
0.2618	0.2613	0.001841
0.4964	0.4957	0.001485
0.6001	0.5993	0.001348
0.7177	0.7168	0.001191
0.8523	0.8514	0.001007
0.9345	0.9337	0.000891
1.0000	0.9992	0.000800

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99+%, Acros Organics, USA.

Components 2 and 3 were stored over anhydrous sodium sulfate and molecular sieves, and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.3\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7]	Original Measurements: ⁶⁰ J. R. Powell, M. E. R. McHale,
(2) 1-Propanol; C ₃ H ₈ O; [71-23-8]	AS. M. Kauppila, and W. E.
(3) 4-Methyl-2-pentanol; C ₆ H ₁₄ O;	Acree, Jr., J. Chem. Eng. Data 41,
[108-11-2]	728 (1996).
Variables:	Prepared by:
T/K = 298.15 Solvent Composition	W. F. Acree Ir

Experimental Values

Solubility of anthracene in 1-propanol + 4-methyl-2-pentanol mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.000591
0.0621	0.0621	0.000606
0.1344	0.1343	0.000617
0.2855	0.2853	0.000635
0.3712	0.3710	0.000645
0.4714	0.4711	0.000660
0.6903	0.6898	0.000699
0.8427	0.8421	0.000740
1.0000	0.9992	0.000779

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99+%, Acros Organics, USA.

Components 2 and 3 were stored over anhydrous sodium sulfate and molecular sieves, and distilled shortly before use.

Estimated Error:

Temperature: ±0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.3\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 1-Butanol; C ₄ H ₁₀ O; [71-36-3] (3) 4-Methyl-2-pentanol; C ₆ H ₁₄ O; [108-11-2]	Original Measurements: 60 J. R. Powell, M. E. R. McHale, AS. M. Kauppila, and W. E. Acree, Jr., J. Chem. Eng. Data 41, 728 (1996).
Variables: $T/K = 298.15$: Solvent Composition	Prepared by: W. E. Acree. Jr.

Experimental Values

Solubility of anthracene in 1-butanol + 4-methyl-2-pentanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.000801
0.0894	0.0893	0.000787
0.1639	0.1638	0.000781
0.3256	0.3253	0.000777
0.4213	0.4210	0.000775
0.5283	0.5279	0.000771
0.7448	0.7442	0.000773
0.8511	0.8504	0.000778
1.0000	0.9992	0.000779

 $\bar{a}_{x_3}^{(s)}$: initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99.8%, HPLC grade, Aldrich Chemical Company.
- (3) 99+%, Acros Organics, USA.

Components 2 and 3 were stored over anhydrous sodium sulfate and molecular sieves, and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 2-Methyl-1-propanol; C ₄ H ₁₀ O; [78-83-1] (3) 4-Methyl-2-pentanol; C ₆ H ₁₄ O; [108-11-2]	Original Measurements: 60 J. R. Powell, M. E. R. McHale, AS. M. Kauppila, and W. E. Acree, Jr., J. Chem. Eng. Data 41, 728 (1996).
Variables: T/K = 298.15; Solvent Composition	Prepared by: W. E. Acree, Jr.

Solubility of anthracene in 2-methyl-1-propanol + 4-methyl-2-pentanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.000470
0.0782	0.0782	0.000492
0.1532	0.1531	0.000513
0.3293	0.3291	0.000563
0.4411	0.4408	0.000596
0.5312	0.5309	0.000624
0.7464	0.7459	0.000694
0.8586	0.8580	0.000728
1.0000	0.9992	0.000779

 $[\]bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99+%, Acros Organics, USA.

Components 2 and 3 were stored over anhydrous sodium sulfate and molecular sieves, and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.3\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 1-Pentanol; C ₅ H ₁₂ O; [71-41-0] (3) 4-Methyl-2-pentanol; C ₆ H ₁₄ O;	Original Measurements: 60 J. R. Powell, M. E. R. McHale, AS. M. Kauppila, and W. E. Acree, Jr., J. Chem. Eng. Data 41,
[108-11-2]	728 (1996).
Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 1-pentanol + 4-methyl-2-pentanol mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.001097
0.0988	0.0987	0.001059
0.1781	0.1779	0.001024
0.3605	0.3601	0.000955
0.4934	0.4930	0.000901
0.5579	0.5574	0.000876
0.7586	0.7580	0.000833
0.8682	0.8675	0.000809
1.0000	0.9992	0.000779

 a_{x_3} ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99%, Aldrich Chemical Company.
- (3) 99+%, Acros Organics, USA.

Components 2 and 3 were stored over anhydrous sodium sulfate and molecular sieves, and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 3-Methyl-1-butanol; C ₅ H ₁₂ O; [123-51-3] (3) 4-Methyl-2-pentanol; C ₆ H ₁₄ O; [108-11-2]	Original Measurements: On J. R. Powell, M. E. R. McHale, AS. M. Kauppila, and W. E. Acree, Jr., J. Chem. Eng. Data 41, 728 (1996).
Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Solubility of anthracene in 3-methyl-1-butanol + 4-methyl-2-pentanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.000727
0.0918	0.0917	0.000737
0.1797	0.1796	0.000742
0.3346	0.3343	0.000749
0.5108	0.5104	0.000758
0.6268	0.6263	0.000765
0.7599	0.7593	0.000770
0.8811	0.8804	0.000775
1.0000	0.9992	0.000779

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99+%, Acros Organics, USA.

Components 2 and 3 were stored over anhydrous sodium sulfate and molecular sieves, and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.3\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 1-Octanol; C ₈ H ₁₈ O; [111-87-5] (3) 4-Methyl-2-pentanol; C ₆ H ₁₄ O; [108-11-2]	Original Measurements: 60 J. R. Powell, M. E. R. McHale AS. M. Kauppila, and W. E. Acree, Jr., J. Chem. Eng. Data 41 728 (1996).
Variables: T/K = 298.15; Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of anthraene in 1-octanol + 4-methyl-2-pentanol mixtures^a

<i>x</i> ₃ ^(s)	<i>x</i> ₃	x_1
0.0000	0.0000	0.002160
0.1288	0.1285	0.002057
0.2448	0.2443	0.001865
0.4543	0.4536	0.001490

0.5803	0.5795	0.001317
0.6361	0.6353	0.001246
0.8159	0.8151	0.001021
0.9045	0.9037	0.000916
1.0000	0.9992	0.000779

 \overline{a}_{x_3} (s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99+%, Acros Organics, USA.

Components 2 and 3 were stored over anhydrous sodium sulfate and molecular sieves, and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.3\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 2-Propanol; C ₃ H ₈ O; [67-63-0] (3) 1-Pentanol; C ₅ H ₁₂ O; [71-41-0]	Original Measurements: 58 J. R. Powell, M. E. R. McHale, AS. M. Kauppila, W. E. Acree, Jr., and S. W. Campbell, J. Solution Chem. 25, 1001 (1996).
Variables: T/K = 298.15; Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 2-propanol + 1-pentanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.000411
0.0731	0.0731	0.000457
0.1383	0.1382	0.000503
0.3104	0.3102	0.000621
0.4099	0.4096	0.000687
0.5074	0.5070	0.000755
0.7341	0.7334	0.000914
0.8623	0.8614	0.001003
1.0000	0.9989	0.001097

 $\overline{a}_{x_3}^{(s)}$: initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9%, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99+%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.3\%$ (relative error).

Components: (1) Anthracene; $C_{14}H_{10}$; [120-12-7] (2) 2-Butanol; $C_4H_{10}O$; [78-92-2] (3) 1-Pentanol; $C_5H_{12}O$; [71-41-0]	Original Measurements: 58 J. R. Powell, M. E. R. McHale, AS. M. Kauppila, W. E. Acree, Jr., and S. W. Campbell, J. Solution Chem. 25, 1001 (1996).
Variables: $T/K = 298.15$; Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 2-butanol + 1-pentanol mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.000585
0.0966	0.0965	0.000620
0.1766	0.1765	0.000661
0.3597	0.3594	0.000751
0.4778	0.4774	0.000812
0.5507	0.5502	0.000845
0.7705	0.7698	0.000973
0.8708	0.8699	0.001026
1.0000	0.9989	0.001097

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9%, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99+%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.3\%$ (relative error).

Components:	Original Measurements:
(1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7]	⁵⁹ J. R. Powell, K. A. Fletcher, K. S.
(2) 2-Propanol; C ₃ H ₈ O; [67-63-0]	Coym, W. E. Acree, V. G. Varanasi,
(3) 2-Methyl-1-pentanol; $C_6H_{14}O$;	and S. W. Campbell, Int. J.
[105-30-6]	Thermophys. 18, 1495 (1997).
Variables:	Prepared by:
T/K - 298 15: Solvent Composition	W F Acree Ir

Experimental Values

Solubility of anthracene in 2-propanol + 2-methyl-1-pentanol mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.000411
0.0668	0.0668	0.000453
0.1363	0.1362	0.000495
0.2887	0.2885	0.000586
0.3788	0.3786	0.000634
0.4842	0.4839	0.000691
0.7035	0.7029	0.000811
0.8473	0.8466	0.000876
1.0000	0.9990	0.000966

 $\bar{a}_{x_3}^{(s)}$: initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Acros Organics, USA, was recrystallized several times from acetone.
- (2) 99+%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA. (3) 99%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 2-Butanol; C ₄ H ₁₀ O; [78-92-2] (3) 2-Methyl-1-pentanol; C ₆ H ₁₄ O; [105-30-6]	Original Measurements: 59 J. R. Powell, K. A. Fletcher, K. S. Coym, W. E. Acree, V. G. Varanasi, and S. W. Campbell, Int. J. Thermophys. 18, 1495 (1997).
Variables: $T/K = 298.15$; Solvent Composition	Prepared by: W. E. Acree, Jr.

Solubility of anthracene in 2-butanol + 2-methyl-1-pentanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.000585
0.0844	0.0843	0.000614
0.1590	0.1589	0.000643
0.3299	0.3297	0.000706
0.4255	0.4252	0.000743
0.5327	0.5323	0.000786
0.7529	0.7522	0.000872
0.8739	0.8731	0.000914
1.0000	0.9990	0.000966

 $[\]bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Acros Organics, USA, was recrystallized several times from acetone.
- (2) 99+%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA.
- (3) 99%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 . x_1 : $\pm 1.5\%$ (relative error).

8.4. Anthracene solubility data in binary secondary alcohol + secondary alcohol solvent mixtures

Components:	Original Measurements:
(1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7]	⁶⁰ J. R. Powell, M. E. R. McHale,
(2) 2-Propanol; C ₃ H ₈ O; [67-63-0]	AS. M. Kauppila, and W. E.
(3) 2-Pentanol; C ₅ H ₁₂ O; [6032-29-7]	Acree, Jr., J. Chem. Eng. Data 41,
	728 (1996).

Variables: Prepared by: T/K = 298.15; Solvent Composition W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 2-propanol + 2-pentanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.000411
0.0812	0.0812	0.000445
0.1532	0.1531	0.000476
0.3184	0.3182	0.000538
0.4117	0.4115	0.000586
0.5097	0.5094	0.000610
0.7304	0.7299	0.000692
0.8564	0.8558	0.000739
1.0000	0.9992	0.000800

 $\overline{a}x_3$ (s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99+%, Acros Organics, USA.

Components 2 and 3 were stored over anhydrous sodium sulfate and molecular sieves, and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 . x_1 : $\pm 1.3\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 2-Butanol; C ₄ H ₁₀ O; [78-92-2] (3) 2-Pentanol; C ₅ H ₁₂ O; [6032-29-7]	Original Measurements: 60 J. R. Powell, M. E. R. McHale, AS. M. Kauppila, and W. E. Acree, Jr., J. Chem. Eng. Data 41,	
Variables: $T/K = 298.15$; Solvent Composition	728 (1996). Prepared by: W. E. Acree, Jr.	

Solubility of anthracene in 2-butanol + 2-pentanol mixtures^a

$x_3^{(s)}$	x_3	<i>x</i> ₁
		·
0.0000	0.0000	0.000585
0.0983	0.0982	0.000601
0.1738	0.1737	0.000618
0.3568	0.3566	0.000650
0.4481	0.4478	0.000677
0.5592	0.5589	0.000699
0.7635	0.7629	0.000741
0.8817	0.8810	0.000769
1.0000	0.9992	0.000800

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99+%, Acros Organics, USA.

Components 2 and 3 were stored over anhydrous sodium sulfate and molecular sieves, and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.3\%$ (relative error).

(3) 4-Methyl-2-pentanol; C ₆ H ₁₄ O; [108-11-2] Variables:	Acree, Jr., J. Chem. Eng. Data 41, 728 (1996). Prepared by:
(3) 4-Methyl-2-pentanol; C ₆ H ₁₄ O; [108-11-2]	Acree, Jr., J. Chem. Eng. Data 41 728 (1996).
Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 2-Propanol; C ₃ H ₈ O; [67-63-0]	Original Measurements: 60 J. R. Powell, M. E. R. McHale, AS. M. Kauppila, and W. E.

Experimental Values

Solubility of anthracene in 2-propanol + 4-methyl-2-pentanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.000411
0.0727	0.0727	0.000440
0.1381	0.1380	0.000460
0.2927	0.2926	0.000512

0.3827	0.3825	0.000542
0.4856	0.4853	0.000578
0.7048	0.7043	0.000659
0.8458	0.8452	0.000710
1.0000	0.9992	0.000779

 \overline{a}_{x_3} (s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99+%, Acros Organics, USA.

Components 2 and 3 were stored over anhydrous sodium sulfate and molecular sieves, and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.3\%$ (relative error).

Components:	Original Measurements:
(1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7]	⁶⁰ J. R. Powell, M. E. R. McHale,
(2) 2-Butanol; C ₄ H ₁₀ O; [78-92-2]	AS. M. Kauppila, and W. E.
(3) 4-Methyl-2-pentanol; $C_6H_{14}O$;	Acree, Jr., J. Chem. Eng. Data 41,
[108-11-2]	728 (1996).
Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 2-butanol + 4-methyl-2-pentanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.000585
0.0776	0.0776	0.000601
0.1529	0.1528	0.000616
0.3215	0.3213	0.000649
0.4234	0.4232	0.000669
0.5267	0.5263	0.000689
0.7373	0.7368	0.000733
0.8539	0.8533	0.000755
1.0000	0.9992	0.000779

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99+%, Acros Organics, USA.

Components 2 and 3 were stored over anhydrous sodium sulfate and molecular sieves, and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.3\%$ (relative error).

9. Solubility of Anthracene in Binary Alcohol + Alkoxyalcohol Solvent Mixtures

9.1. Critical evaluation of experimental solubility data

Acree and co-workers⁶¹⁻⁶⁶ reported the solubility of anthracene in several binary alcohol + 2-methoxyethanol, alcohol + 2-ethoxyethanol, alcohol + 2-propoxyethanol, alcohol + 2-butoxyethanol, and alcohol + 3-methoxy-1-butanol solvent mixtures at 298.15 K. The alcohol solvents included seven primary alcohols (1-propanol, 1-butanol, 2-methyl-1-propanol, 1-pentanol, 3-methyl-1-butanol, 1-octanol, and 2-ethyl-1-hexanol) and four secondary alcohols (2-propanol, 2-butanol, 2-pentanol, 4-methyl-2-pentanol). There has only been a single experimental determination for the solubility of anthracene in each of the binary solvent systems studied. The experimental values were evaluated by curve-fitting the measured solubility data to Eq. (10).

The calculated $S_{23,i}$ parameters for the 32 binary alcohol + alkoxyalcohol solvent systems studied are summarized in Table 8, along with the average absolute deviation between the experimental and back-calculated mole fraction solubilities. Examination of the numerical entries in the last column of Table 8 reveals that Eq. (10) does provide a very accurate mathematical representation for how the measured mole fraction solubilities vary with binary solvent composition. Average percent deviations range from 0.1% to 0.8%, indicating that the measured values fall on smooth $\ln x_1$ versus $x_2^{(s)}$ curves. None of the experimental data points was flagged as an outlier.

The experimental anthracene solubility data for binary alcohol + 2-methoxyethanol alcohol + 2-ethoxyethanol,

Table 8. Mathematical representation of anthracene solubilities in binary alcohol (2) + alkoyvalcohol (3) solvent mixtures

Binary solvent system	$S_{23,i}^{a}$	% Dev ^b
1-Propanol (2) + 2-methoxyethanol (3)	0.900	0.4
0.D. 1/0) + 0	0.343	^ -
2-Propanol (2) + 2-methoxyethanol (3)	1.218 0.584	0.6
	0.384	
1-Butanol (2) + 2-methoxyethanol (3)	0.855	0.2
•	0.220	
2-Butanol (2) + 2 -methoxyethanol (3)	1.148	0.7
2 Mathad 1	0.401	0.5
2-Methyl-1-propanol (2) + 2-methoxyethanol (3)	1.115 0.313	0.5
3-Methyl-1-butanol (2) + 2-methoxyethanol (3)	0.872	0.2
	0.092	
1-Octanol (2) + 2-methoxyethanol (3)	1.114	0.8
1.0. 1.0. 1.0.	-0.417	0.1
1-Propanol (2) + 2-propoxyethanol (3)	0.952 0.294	0.1
	0.294	
2-Propanol (2) + 2-propoxyethanol (3)	1.419	0.1
	0.477	
	0.201	
1-Butanol (2) + 2 -propoxyethanol (3)	0.715	0.3
	0.154 0.166	
2-Butanol (2) + 2-propoxyethanol (3)	1.098	0.2
· / I I / · · · /	0.364	
	0.125	
1-Pentanol (2) + 2 -propoxyethanol (3)	0.478	0.2
	0.157 0.205	
3-Methyl-1-butanol (2) + 2-propoxyethanol (3)	0.203	0.3
	0.152	
	0.246	
1-Octanol (2) + 2-propoxyethanol (3)	0.296	0.6
	-0.020 0.952	
1-Propanol (2) + 2-butoxyethanol (3)	1.222	0.3
1110punot (2) × 2 outony cuminot (c)	0.572	0.0
	0.255	
2-Propanol (2) + 2 -butoxyethanol (3)	1.550	0.6
	0.790	
1-Butanol (2) + 2-butoxyethanol (3)	0.726 0.800	0.5
1 Butanot (2) * 2 outon) cumanot (c)	0.319	0.0
	0.185	
2-Butanol (2) + 2 -butoxyethanol (3)	1.155	0.3
	0.609	
2-Methyl-1-propanol (2) + 2-butoxyethanol (3)	0.267 1.292	0.2
2-weinyi-i-propanor (2) + 2-outoxyemanor (3)	0.606	0.2
	0.316	
1-Pentanol (2) + 2-butoxyethanol (3)	0.561	0.1
	0.233	0.2
3-Methyl-1-butanol (2) + 2-butoxyethanol (3)	0.742 0.346	0.3
	0.340	
1-Octanol (2) + 2-butoxyethanol (3)	0.231	0.1
•	0.075	
	0.065	
1-Propanol (2) + 3 -methoxy- 1 -butanol (3)	0.973	0.2
0 P 1 (0) + 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.344 1.405	0.8
2 -Propanol (2) ± 3 -methoxy-1-butanol (3)		0.0
2-Propanol (2) + 3-methoxy-1-butanol (3)	0.669	

Table 8. Mathematical representation of anthracene solubilities in binary alcohol (2) + alkoxyalcohol (3) solvent mixtures—Continued

Binary solvent system	$S_{23,i}^{a}$	% Dev ^b
1-Butanol (2) + 3-methoxy-1-butanol (3)	0.667	0.3
•	0.284	
2-Butanol (2) + 3 -methoxy- 1 -butanol (3)	0.929	0.4
	0.444	
1-Pentanol (2) + 3 -methoxy- 1 -butanol (3)	0.600	0.5
	0.222	
	0.118	
2-Pentanol (2) + 3-methoxy-1-butanol (3)	0.818	0.2
	0.161	
	0.079	
3-Methyl-1-butanol (2) + 3-methoxy-1-butanol (3)	0.766	0.6
	0.253	
4-Methyl-2-pentanol (2) + 3-methoxy-1-butanol (3)	0.644	0.4
1-Octanol (2) + 3-methoxy-1-butanol (3)	0.475	0.4
2-Ethyl-1-hexanol (2) + 3 -methoxy-1-butanol (3)	0.423	0.2
	-0.167	
	-0.069	

^aCombined NIBS/Redlich-Kister curve-fit parameters are ordered as $S_{23,0}$, $S_{23,1}$, and $S_{23,2}$. If only a single coefficient is listed, then $S_{23,1}$ and $S_{23,2}$ are zero. Similarly, if two coefficients are listed, then $S_{23,2}$ is zero.

alcohol + 2-propoxyethanol, alcohol + 2-isopropoxyethanol, alcohol + 2-butoxyethanol, and alcohol + 3-methoxy-1-butanol solvent mixtures are given in Secs. 9.2–9.7.

9.2. Anthracene solubility data in binary alcohol + 2methoxyethanol solvent mixtures

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 1-Propanol; C ₃ H ₈ O; [71-23-8] (3) 2-Methoxyethanol; C ₃ H ₈ O ₂ ; [109-86-4]	Original Measurements: 61 M. E. R. McHale, J. R. Powell, AS. M. Kauppila, and W. E. Acree, Jr., J. Chem. Eng. Data 41, 105 (1996).
Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 1-propanol + 2-methoxyethanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.000591
0.0985	0.0984	0.000746
0.1861	0.1859	0.000894
0.3889	0.3884	0.001243
0.4840	0.4833	0.001398
0.5889	0.5880	0.001571
0.7854	0.7839	0.001894
0.8953	0.8935	0.002035
1.0000	0.9978	0.002211

 $[\]overline{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99.5+%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.3\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7]	Original Measurements: 61 M. E. R. McHale, J. R. Powell,
(2) 2-Propanol; C ₃ H ₈ O; [67-63-0]	AS. M. Kauppila, and W. E.
(3) 2-Methoxyethanol; C ₃ H ₈ O ₂ ;	Acree, Jr., J. Chem. Eng. Data 41,
[109-86-4]	105 (1996).
Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 2-propanol + 2-methoxyethanol mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.000411
0.1037	0.1036	0.000580
0.2019	0.2017	0.000753
0.3955	0.3951	0.001090
0.4859	0.4853	0.001264
0.6006	0.5997	0.001482
0.7591	0.7577	0.001780
0.8893	0.8875	0.001996
1.0000	0.9978	0.002211

 $\bar{a}x_3$ (s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

^bDev (%) = $(100/N) \Sigma | [x_1^{\text{exp}} - x_1^{\text{cal}}]/x_1^{\text{exp}} |$.

Source and Purity of Chemicals:

- (1) 99.9+%, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99.5+%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 . x_1 : $\pm 1.3\%$ (relative error).

Components:	Original Measurements:
(1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 1-Butanol; C ₄ H ₁₀ O; [71-36-3]	⁶¹ M. E. R. McHale, J. R. Powell, AS. M. Kauppila, and W. E.
(3) 2-Methoxyethanol; C ₃ H ₈ O ₂ ;	As. W. Kauppha, and W. E. Acree, Jr., J. Chem. Eng. Data 41,
[109-86-4]	105 (1996).
Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 1-butanol + 2-methoxyethanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.000801
0.1173	0.1172	0.001006
0.2273	0.2270	0.001192
0.4382	0.4375	0.001552
0.5362	0.5352	0.001698
0.6222	0.6211	0.001817
0.8196	0.8179	0.002052
0.9074	0.9055	0.002129
1.0000	0.9978	0.002211

 $\bar{a}_{x_3}^{(s)}$: initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99+%, HPLC grade, Aldrich Chemical Company.
- (3) 99.5+%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.3\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 2-Butanol; C ₄ H ₁₀ O; [78-92-2] (3) 2-Methoxyethanol; C ₃ H ₈ O ₂ ;	Original Measurements: 61 M. E. R. McHale, J. R. Powell, AS. M. Kauppila, and W. E. Acree, Jr., J. Chem. Eng. Data 41,
[109-86-4] Variables:	105 (1996). Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 2-butanol + 2-methoxyethanol mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.000585
0.1204	0.1203	0.000801
0.2189	0.2187	0.000978
0.4246	0.4240	0.001397
0.5376	0.5367	0.001590
0.6403	0.6392	0.001758
0.8182	0.8166	0.001969
0.9086	0.9067	0.002092
1.0000	0.9978	0.002211

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99.5+%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 . x_1 : $\pm 1.3\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 2-Methyl-1-propanol; C ₄ H ₁₀ O; [78-83-1] (3) 2-Methoxyethanol; C ₃ H ₈ O ₂ ; [109-86-4]	Original Measurements: ⁶¹ M. E. R. McHale, J. R. Powell, AS. M. Kauppila, and W. E. Acree, Jr., J. Chem. Eng. Data 41, 105 (1996).
Variables: $T/K = 298.15$; Solvent Composition	Prepared by: W. E. Acree, Jr.

Solubility of anthracene in 2-methyl-1-propanol + 2-methoxyethanol mixtures⁶

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.000470
0.1205	0.1204	0.000657
0.2244	0.2242	0.000828
0.4402	0.4397	0.001222
0.5355	0.5347	0.001410
0.6459	0.6448	0.001627
0.8173	0.8158	0.001906
0.9128	0.9109	0.002071
1.0000	0.9978	0.002211

 a_{x_3} (s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/ visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Aldrich Chemical Company, Milwaukee, WI, USA, used as
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99.5+%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.3\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 1-Pentanol; C ₅ H ₁₂ O; [71-41-0] (3) 2-Methoxyethanol; C ₃ H ₈ O ₂ ; [109-86-4]	Original Measurements: 62 M. E. R. McHale, J. R. Powell, AS. M. Kauppila, W. E. Acree, Jr., and P. L. Huyskens, J. Solution Chem. 25, 1089 (1996).
Variables: T/K = 298.15; Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 1-pentanol + 2-methoxyethanol mixtures^a

$x_3^{(s)}$	ν.	*
λ3	<i>x</i> ₃	x_1
0.0000	0.0000	0.001097
0.1305	0.1303	0.001346
0.2569	0.2565	0.001544
0.4776	0.4767	0.001875
0.5784	0.5772	0.002029

0.6716	0.6702	0.002131
0.8481	0.8463	0.002179
0.9137	0.9117	0.002194
1.0000	0.9978	0.002211

 ${}^{a}x_{3}$ (s): initial mole fraction of component 3 in the binary solvent mixture; x_{1} : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/ visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99.5+%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 3-Methyl-1-butanol; C ₅ H ₁₂ O; [123-51-3] (3) 2-Methoxyethanol; C ₃ H ₈ O ₂ ; [109-86-4]	Original Measurements: ⁶¹ M. E. R. McHale, J. R. Powell, AS. M. Kauppila, and W. E. Acree, Jr., J. Chem. Eng. Data 41, 105 (1996).
Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 3-methyl-1-butanol + 2-methoxyethanol mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.000727
0.1382	0.1381	0.000949
0.2633	0.2630	0.001159
0.4744	0.4737	0.001537
0.5845	0.5835	0.001720
0.6789	0.6776	0.001855
0.8462	0.8444	0.002075
0.9151	0.9131	0.002137
1.0000	0.9978	0.002211

 $\overline{a_{x_3}}$ initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99.5+%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.3\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 1-Octanol; C ₈ H ₁₈ O; [111-87-5] (3) 2-Methoxyethanol; C ₃ H ₈ O ₂ ; [109-86-4]	Original Measurements: ⁶¹ M. E. R. McHale, J. R. Powell, AS. M. Kauppila, and W. E. Acree, Jr., J. Chem. Eng. Data 41 , 105 (1996).
Variables: $T/K = 298.15$; Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 1-octanol + 2-methoxyethanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.002160
0.1760	0.1756	0.002476
0.3382	0.3373	0.002711
0.5699	0.5683	0.002892
0.6651	0.6632	0.002849
0.7498	0.7477	0.002782
0.8853	0.8830	0.002562
0.9444	0.9421	0.002401
1.0000	0.9978	0.002211

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99.5+%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.3\%$ (relative error).

9.3. Anthracene solubility data in binary alcohol + 2ethoxyethanol solvent mixtures

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 1-Propanol; C ₃ H ₈ O; [71-23-8] (3) 2-Ethoxyethanol; C ₄ H ₁₀ O ₇ ;	Original Measurements: 62 M. E. R. McHale, J. R. Powell, AS. M. Kauppila, W. E. Acree, Jr., and P. L. Huyskens, J. Solution
[110-80-5]	Chem. 25 , 1089 (1996).
Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 1-propanol + 2-ethoxyethanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.000591
0.0759	0.0758	0.000730
0.1665	0.1663	0.000910
0.3100	0.3096	0.001217
0.4383	0.4376	0.001517
0.5398	0.5388	0.001776
0.7523	0.7506	0.002325
0.8762	0.8739	0.002675
1.0000	0.9971	0.002921

 $\overline{a}x_3$ (s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

 $Constant\text{-}temperature\ bath,\ calorimetric\ thermometer,\ and\ an\ ultraviolet/\ visible\ spectrophotometer.$

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Aldrich Chemical Company, Milwaukee, WI, USA, used as received
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99+%, Acros Organics, USA.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 2-Propanol; C ₃ H ₈ O; [67-63-0] (3) 2-Ethoxyethanol; C ₄ H ₁₀ O ₂ ; [110-80-5]	Original Measurements: 62 M. E. R. McHale, J. R. Powell, AS. M. Kauppila, W. E. Acree, Jr., and P. L. Huyskens, J. Solution Chem. 25, 1089 (1996).
Variables: T/K = 298.15; Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 2-propanol + 2-ethoxyethanol mixtures^a

<i>x</i> ₃ ^(s)	<i>x</i> ₃	x_1
0.0000	0.0000	0.000411
0.0887	0.0887	0.000557
0.1707	0.1706	0.000718
0.3354	0.3350	0.001078
0.4666	0.4659	0.001401
0.5441	0.5432	0.001621
0.7602	0.7585	0.002243
0.8625	0.8603	0.002555
1.0000	0.9971	0.002921

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99+%, Acros Organics, USA.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 1-Butanol; C ₄ H ₁₀ O; [71-36-3] (3) 2-Ethoxyethanol; C ₄ H ₁₀ O ₂ ; [110-80-5]	Original Measurements: ⁶² M. E. R. McHale, J. R. Powell, AS. M. Kauppila, W. E. Acree, Jr., and P. L. Huyskens, J. Solution Chem. 25 , 1089 (1996).
Variables: $T/K = 298.15$; Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 1-butanol + 2-ethoxyethanol mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.000801
0.1028	0.1027	0.000988
0.1888	0.1886	0.001159
0.3848	0.3842	0.001563
0.4888	0.4879	0.001761
0.5921	0.5909	0.002043
0.7784	0.7765	0.002496
0.8914	0.8889	0.002785
1.0000	0.9971	0.002921

 \overline{a}_{x_3} (s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99+%, HPLC grade, Aldrich Chemical Company.
- (3) 99+%, Acros Organics, USA.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 2-Butanol; C ₄ H ₁₀ O; [78-92-2]	Original Measurements: ⁶² M. E. R. McHale, J. R. Powell, AS. M. Kauppila, W. E. Acree,
(3) 2-Ethoxyethanol; C ₄ H ₁₀ O ₂ ; [110-80-5]	Jr., and P. L. Huyskens, J. Solution Chem. 25 , 1089 (1996).
Variables: $T/K = 298.15$: Solvent Composition	Prepared by: W. E. Acree, Jr.

Solubility of anthracene in 2-butanol + 2-ethoxyethanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.000585
0.0995	0.0994	0.000773
0.1923	0.1921	0.000962
0.3716	0.3711	0.001375
0.4891	0.4884	0.001517
0.5959	0.5949	0.001670
0.7937	0.7921	0.001953
0.8993	0.8971	0.002467
1.0000	0.9971	0.002921

 a_{x_3} (s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/ visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99+%, Acros Organics, USA.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ±0.0001.

 x_1 : $\pm 1.5\%$ (relative error).

T/K = 298.15; Solvent Composition

Variables:	Prepared by:
[110-80-5]	
(3) 2-Ethoxyethanol; $C_4H_{10}O_2$;	Chem. 25, 1089 (1996).
[78-83-1]	Jr., and P. L. Huyskens, J. Solution
(2) 2-Methyl-1-propanol; $C_4H_{10}O$;	AS. M. Kauppila, W. E. Acree,
(1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7]	⁶² M. E. R. McHale, J. R. Powell,
Components:	Original Measurements:

Experimental Values

Solubility of anthracene in 2-methyl-1-propanol + 2-ethoxyethanol mixtures^a

W. E. Acree, Jr.

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.000470
0.1023	0.1022	0.000646
0.1964	0.1962	0.000823

0.3875	0.3870	0.001250
0.4872	0.4865	0.001498
0.5876	0.5866	0.001768
0.7877	0.7858	0.002367
0.9029	0.9004	0.002745
1.0000	0.9971	0.002921

 a_{x_3} initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/ visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99+%, Acros Organics, USA.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7]	Original Measurements: 62M. E. R. McHale, J. R. Powell	
(2) 1-Pentanol; C ₅ H ₁₂ O; [71-41-0]	AS. M. Kauppila, W. E. Acree,	
(3) 2-Ethoxyethanol; $C_4H_{10}O_2$;	Jr., and P. L. Huyskens, J. Solution	
[110-80-5]	Chem. 25, 1089 (1996).	
Variables:	Prepared by:	
T/K = 298.15: Solvent Composition	W. E. Acree, Jr.	

Experimental Values

Solubility of anthracene in 1-pentanol + 2-ethoxyethanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.001097
0.1171	0.1169	0.001301
0.2231	0.2228	0.001515
0.4225	0.4217	0.001897
0.5271	0.5260	0.002097
0.6347	0.6332	0.002297
0.8113	0.8091	0.002656
0.9042	0.9016	0.002839
1.0000	0.9971	0.002921

 ${}^{a}x_{3}^{(s)}$: initial mole fraction of component 3 in the binary solvent mixture; x_{1} : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99%, Aldrich Chemical Company.
- (3) 99+%, Acros Organics, USA.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: $\pm 0.1~\text{K}.$

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components:	Original Measurements:
(1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7]	⁶² M. E. R. McHale, J. R. Powell,
(2) 3-Methyl-1-butanol; $C_5H_{12}O$;	AS. M. Kauppila, W. E. Acree,
[123-51-3]	Jr., and P. L. Huyskens, J. Solution
(3) 2-Ethoxyethanol; C ₄ H ₁₀ O ₂ ;	Chem. 25, 1089 (1996).
[110-80-5]	

Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr

Experimental Values

Solubility of anthracene in 3-methyl-1-butanol + 2-ethoxyethanol mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.000727
0.1182	0.1181	0.000932
0.2204	0.2201	0.001136
0.4138	0.4131	0.001584
0.5310	0.5300	0.001853
0.6269	0.6256	0.002086
0.8172	0.8151	0.002562
0.9023	0.8998	0.002751
1.0000	0.9971	0.002921

 a_{x_3} (s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99+%, Acros Organics, USA.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: $\pm 0.1 \text{ K}$. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7]	Original Measurements: ⁶² M. E. R. McHale, J. R. Powell,
(2) 1-Octanol; C ₈ H ₁₈ O; [111-87-5] (3) 2-Ethoxyethanol; C ₄ H ₁₀ O ₂ ; [110-80-5]	AS. M. Kauppila, W. E. Acree, Jr., and P. L. Huyskens, J. Solution Chem. 25 , 1089 (1996).
Variables: $T/K = 298.15$; Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 1-octanol + 2-ethoxyethanol mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.002160
0.1725	0.1721	0.002502
0.2809	0.2801	0.002695
0.4978	0.4964	0.002903
0.6210	0.6191	0.003015
0.7115	0.7093	0.003085
0.8642	0.8615	0.003131
0.9291	0.9262	0.003102
1.0000	0.9971	0.002921

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99+%, Acros Organics, USA.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: $\pm 0.1 \text{ K}$. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

9.4. Anthracene solubility data in binary alcohol + 2propoxyethanol solvent mixtures

Variables: T/K = 298.15; Solvent Composition	Prepared by: W. E. Acree, Jr.	
(2) 1-Propanol; C ₃ H ₈ O; [71-23-8] (3) 2-Propoxyethanol; C ₅ H ₁₂ O ₂ ; [2807-30-9]	AS. M. Kauppila, and W. E. Acree, Jr., J. Chem. Eng. Data 41 , 272 (1996).	
Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7]	Original Measurements: 63 M. E. R. McHale, J. R. Powell,	

Experimental Values

Solubility of anthracene in 1-propanol + 2-propoxyethanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.000591
0.0709	0.0708	0.000735
0.1486	0.1485	0.000900
0.3066	0.3062	0.001276
0.3965	0.3959	0.001502
0.4950	0.4941	0.001770
0.7276	0.7258	0.002482
0.8745	0.8719	0.002971
1.0000	0.9967	0.003343

 $[\]overline{a}_{x_3}$ (s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99+%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.3\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 2-Propanol; C ₃ H ₈ O; [67-63-0] (3) 2-Propoxyethanol; C ₅ H ₁₂ O ₂ ;	Original Measurements: 63 M. E. R. McHale, J. R. Powell, AS. M. Kauppila, and W. E. Acree, Jr., J. Chem. Eng. Data 41,
[2807-30-9] Variables:	272 (1996). Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 2-propanol + 2-propoxyethanol mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.000411
0.0696	0.0696	0.000541
0.1504	0.1503	0.000712
0.3099	0.3096	0.001115
0.3980	0.3975	0.001365
0.5071	0.6062	0.001696
0.7321	0.7303	0.002430
0.8729	0.8704	0.002918
1.0000	0.9967	0.003343

 a_{x_3} (s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Aldrich Chemical Company, Milwaukee, WI, USA, used as received
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99+%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: $\pm 0.1 \text{ K}$. $x_3^{(s)}$: ± 0.0001 .

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 1-Butanol; C ₄ H ₁₀ O; [71-36-3] (3) 2-Propoxyethanol; C ₅ H ₁₂ O ₂ ; [2807-30-9]	Original Measurements: 63 M. E. R. McHale, J. R. Powell AS. M. Kauppila, and W. E. Acree, Jr., J. Chem. Eng. Data 41 272 (1996).
Variables: T/K = 298.15; Solvent Composition	Prepared by: W. E. Acree, Jr.

Solubility of anthracene in 1-butanol + 2-propoxyethanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.000801
0.0829	0.0828	0.000969
0.1666	0.1664	0.001153
0.3408	0.3403	0.001549
0.4386	0.4378	0.001805
0.5458	0.5447	0.002078
0.7610	0.7590	0.002678
0.8717	0.8691	0.003012
1.0000	0.9967	0.003343

 $[\]bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) HPLC grade, Aldrich Chemical Company.
- (3) 99+%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: $\pm 0.1 \text{ K}$. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.3\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7]	Original Measurements: ⁶³ M. E. R. McHale, J. R. Powell,
(2) 2-Butanol; C ₄ H ₁₀ O; [78-92-2]	AS. M. Kauppila, and W. E.
(3) 2-Propoxyethanol; C ₅ H ₁₂ O ₂ ;	Acree, Jr., J. Chem. Eng. Data 41,
[2807-30-9]	272 (1996).
Variables:	Prepared by:
T/K = 298.15: Solvent Composition	W. E. Acree, Ir.

Experimental Values

Solubility of anthracene in 2-butanol + 2-propoxyethanol mixtures^a

$\overline{x_3}^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.000585
0.0903	0.0902	0.000775
0.1743	0.1741	0.000963
0.3419	0.3414	0.001398
0.4364	0.4357	0.001659
0.5489	0.5478	0.001990
0.7613	0.7593	0.002617
0.8726	0.8700	0.002956
1.0000	0.9967	0.003343

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99+%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 2-Methyl-1-propanol; C ₄ H ₁₀ O; [78-83-1] (3) 2-Propoxyethanol; C ₅ H ₁₂ O ₂ ; [2807-30-9]	Original Measurements: ⁶³ M. E. R. McHale, J. R. Powell, AS. M. Kauppila, and W. E. Acree, Jr., J. Chem. Eng. Data 41 , 272 (1996).
Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Solubility of anthracene in 2-methyl-1-propanol + 2-propoxyethanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.000470
0.0777	0.0777	0.000616
0.1731	0.1730	0.000813
0.3021	0.3018	0.001123
0.4566	0.4559	0.001543
0.5514	0.5504	0.001815
0.7619	0.7600	0.002516
0.8920	0.8893	0.003027
1.0000	0.9967	0.003343

 a_{x_3} (s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99+%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 1-Pentanol; C ₅ H ₁₂ O; [71-41-0] (3) 2-Propoxyethanol; C ₅ H ₁₂ O ₂ ; [2807-30-9]	Original Measurements: 63 M. E. R. McHale, J. R. Powell, AS. M. Kauppila, and W. E. Acree, Jr., J. Chem. Eng. Data 41, 272 (1996).
Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 1-pentanol + 2-propoxyethanol mixtures^a

$x_3^{(s)}$	ν.	
А3	<i>x</i> ₃	x_1
0.0000	0.0000	0.001097
0.1038	0.1037	0.001320
0.1988	0.1985	0.001511
0.3924	0.3916	0.001930
0.4867	0.4857	0.002133

0.5881	0.5867	0.002352
0.7874	0.7852	0.002849
0.8883	0.8856	0.003095
1.0000	0.9967	0.003343

 ${}^{a}x_{3}$ (s): initial mole fraction of component 3 in the binary solvent mixture; x_{1} : mole fraction solubility of the solute; x_{3} : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99%, Aldrich Chemical Company.
- (3) 99+%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.3\%$ (relative error).

Variables	Dronanad hvi
[2807-30-9]	
(3) 2-Propoxyethanol; $C_5H_{12}O_2$;	272 (1996).
[123-51-3]	Acree, Jr., J. Chem. Eng. Data 41,
(2) 3-Methyl-1-butanol; $C_5H_{12}O$;	AS. M. Kauppila, and W. E.
(1) Anthracene; $C_{14}H_{10}$; [120-12-7]	⁶³ M. E. R. McHale, J. R. Powell,
Components:	Original Measurements:

Variables: Prepared by: T/K = 298.15; Solvent Composition W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 3-methyl-1-butanol + 2-propoxyethanol mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.000727
0.1006	0.1005	0.000927
0.2008	0.2006	0.001130
0.3876	0.3870	0.001560
0.4876	0.4867	0.001828
0.5879	0.5867	0.002092
0.7922	0.7900	0.002735
0.9069	0.9041	0.003080
1.0000	0.9967	0.003343

 \overline{a}_{x_3} (s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99+%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.3\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 1-Octanol; C ₈ H ₁₈ O; [111-87-5] (3) 2-Propoxyethanol; C ₅ H ₁₂ O ₂ ; [2807-30-9]	Original Measurements: 63 M. E. R. McHale, J. R. Powell, AS. M. Kauppila, and W. E. Acree, Jr., J. Chem. Eng. Data 41, 272 (1996).
Variables: T/K = 298.15; Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 1-octanol + 2-propoxyethanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.002160
0.1317	0.1314	0.002510
0.2656	0.2649	0.002651
0.4758	0.4744	0.002885
0.5803	0.5785	0.003039
0.6722	0.6701	0.003168
0.8438	0.8409	0.003406
0.9220	0.9188	0.003487
1.0000	0.9967	0.003343

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99+%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.3\%$ (relative error).

9.5. Anthracene solubility data in binary alcohol + 2isopropoxyethanol solvent mixtures

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7]	Original Measurements: 64M. E. R. McHale, K. S. Coym,
(2) 1-Propanol; C ₃ H ₈ O; [71-23-8] (3) 2-Isopropoxyethanol; C ₅ H ₁₂ O ₂ ; [109-59-1]	L. E. Roy, C. E. Hernández, and W. E. Acree, Jr., Can. J. Chem. 75 , 1403 (1997).
Variables: T/K = 298.15: Solvent Composition	Prepared by: W. E. Acree. Jr.

Experimental Values

Solubility of anthracene in 1-propanol + 2-isopropoxyethanol mixtures^a

$\overline{x_3}^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.000591
0.0825	0.0824	0.000739
0.1426	0.1425	0.000856
0.3014	0.3010	0.001190
0.3913	0.3908	0.001401
0.5016	0.5008	0.001684
0.7069	0.7053	0.002229
0.8564	0.8542	0.002595
1.0000	0.9969	0.003093

 ${}^{a}x_{3}^{(s)}$: initial mole fraction of component 3 in the binary solvent mixture; x_{1} : mole fraction solubility of the solute; x_{3} : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Acros Organics, USA, was recrystallized several times from acetone.
- (2) 99+%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA.
- (3) 99+%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 2-Propanol; C ₃ H ₈ O; [67-63-0] (3) 2-Isopropoxyethanol; C ₅ H ₁₂ O ₂ ; [109-59-1]	Original Measurements: 64 M. E. R. McHale, K. S. Coym, L. E. Roy, C. E. Hernández, and W. E. Acree, Jr., Can. J. Chem. 75, 1403 (1997).
Variables: $T/K = 298.15$; Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 2-propanol + 2-isopropoxyethanol mixtures^a

x ₃ ^(s)	<i>x</i> ₃	x_1
0.0000	0.0000	0.000411
0.0720	0.0720	0.000542
0.1441	0.1440	0.000683
0.3008	0.3005	0.001029
0.3990	0.3985	0.001276
0.4866	0.4859	0.001504
0.7178	0.7162	0.002175
0.8512	0.8490	0.002550
1.0000	0.9969	0.003093

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Acros Organics, USA, was recrystallized several times from acetone
- (2) 99+%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA. (3) 99+%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: $\pm 0.1 \text{ K}$. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 1-Butanol; C ₄ H ₁₀ O; [71-36-3] (3) 2-Isopropoxyethanol; C ₅ H ₁₂ O ₂ ; [109-59-1]	Original Measurements: 64 M. E. R. McHale, K. S. Coym, L. E. Roy, C. E. Hernández, and W. E. Acree, Jr., Can. J. Chem. 75, 1403 (1997).
Variables: $T/K = 298.15$; Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 1-butanol + 2-isopropoxyethanol mixtures^a

$\overline{x_3}^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.000801
0.0871	0.0870	0.000985
0.1739	0.1737	0.001147
0.3397	0.3392	0.001498
0.4222	0.4215	0.001687
0.5397	0.5386	0.001964
0.7714	0.7694	0.002580
0.8913	0.8887	0.002878
1.0000	0.9969	0.003093

 $\overline{a}x_3^{(s)}$: initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Acros Organics, USA, was recrystallized several times from acetone
- (2) 99.8%, HPLC grade, Aldrich Chemical Company, Milwaukee, WI, USA. (3) 99+%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: $\pm 0.1 \text{ K}$. $x_3^{(s)}$: ± 0.0001 .

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 2-Butanol; C ₄ H ₁₀ O; [78-92-2] (3) 2-Isopropoxyethanol; C ₅ H ₁₂ O ₂ ; [109-59-1]	Original Measurements: 64 M. E. R. McHale, K. S. Coym, L. E. Roy, C. E. Hernández, and W. E. Acree, Jr., Can. J. Chem. 75, 1403 (1997).
Variables: T/K = 298.15; Solvent Composition	Prepared by: W. E. Acree, Jr.

Solubility of anthracene in 2-butanol + 2-isopropoxyethanol mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.000585
0.0903	0.0902	0.000759
0.1634	0.1633	0.000903
0.3412	0.3408	0.001313
0.4474	0.4467	0.001574
0.4873	0.4865	0.001669
0.7570	0.7551	0.002378
0.8622	0.8599	0.002655
1.0000	0.9969	0.003093

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Acros Organics, USA, was recrystallized several times from acetone.
- (2) 99+%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA. (3) 99+%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: $\pm 0.1 \text{ K}$. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 1-Pentanol; C ₅ H ₁₂ O; [71-41-0] (3) 2-Isopropoxyethanol; C ₅ H ₁₂ O ₂ ; [109-59-1]	Original Measurements: 64 M. E. R. McHale, K. S. Coym, L. E. Roy, C. E. Hernández, and W. E. Acree, Jr., Can. J. Chem. 75 1403 (1997).
Variables: $T/K = 298.15$; Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 1-pentanol + 2-isopropoxyethanol mixtures^a

<i>x</i> ₃ ^(s)	x_3	x_1
0.0000	0.0000	0.001097
0.0891	0.0890	0.001283
0.1956	0.1953	0.001458
0.3904	0.3897	0.001836
0.4832	0.4822	0.002006

0.5774	0.5761	0.002220
0.7838	0.6817	0.002655
0.8851	0.8826	0.002875
1.0000	0.9969	0.003093

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Acros Organics, USA, was recrystallized several times from acetone.
- (2) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA.
- (3) 99+%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components:	Original Measurements:
(1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7]	⁶⁴ M. E. R. McHale, K. S. Coym,
(2) 2-Pentanol; C ₅ H ₁₂ O; [6032-29-7]	L. E. Roy, C. E. Hernández, and
(3) 2-Isopropoxyethanol; C ₅ H ₁₂ O ₂ ;	W. E. Acree, Jr., Can. J. Chem. 75,
[109-59-1]	1403 (1997).
Variables:	Prepared by:
T/K = 298.15: Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 2-pentanol + 2-isopropoxyethanol mixtures^a

$x_3^{(s)}$	<i>X</i> ₃	<i>x</i> ₁
		-
0.0000	0.0000	0.000800
0.1088	0.1087	0.001033
0.1839	0.1837	0.001184
0.3794	0.3788	0.001590
0.4744	0.4735	0.001807
0.5883	0.5870	0.002056
0.7790	0.7770	0.002521
0.8806	0.8782	0.002740
1.0000	0.9969	0.003093

 $\bar{a}x_3$ (s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Acros Organics, USA, was recrystallized several times from acetone.
- (2) 99+%, Acros Organics.
- (3) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components:	Original Measurements:
(1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7]	⁶⁴ M. E. R. McHale, K. S. Coym,
(2) 3-Methyl-1-butanol; $C_5H_{12}O$;	L. E. Roy, C. E. Hernández, and
[123-51-3]	W. E. Acree, Jr., Can. J. Chem. 75,
(3) 2-Isopropoxyethanol; C ₅ H ₁₂ O ₂ ;	1403 (1997).
[109-59-1]	
Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 3-methyl-1-butanol + 2-isopropoxyethanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.000727
0.1000	0.0999	0.000911
0.1948	0.1946	0.001094
0.3847	0.3841	0.001480
0.4836	0.4828	0.001703
0.5827	0.5816	0.001953
0.7856	0.7837	0.002442
0.8927	0.8903	0.002753
1.0000	0.9969	0.003093

 a_{x_3} (s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Acros Organics, USA, was recrystallized several times from acetone.
- $(2)\ 99+\%,\ anhydrous,\ Aldrich\ Chemical\ Company,\ Milwaukee,\ WI,\ USA.$
- (3) 99+%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: $\pm 0.1~\text{K}.$

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 1-Octanol; C ₈ H ₁₈ O; [111-87-5]	Original Measurements: 64 M. E. R. McHale, K. S. Coym, L. E. Roy, C. E. Hernández, and
(3) 2-Isopropoxyethanol; C ₅ H ₁₂ O ₂ ; [109-59-1]	W. E. Acree, Jr., Can. J. Chem. 75 , 1403 (1997).
Variables: $T/K = 298.15$; Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 1-octanol + 2-isopropoxyethanol mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.002160
0.1495	0.1491	0.002391
0.2593	0.2586	0.002536
04700	0.4687	0.002762
0.5790	0.5773	0.002860
0.6758	0.6738	0.002990
0.8584	0.8557	0.003088
0.9123	0.9095	0.003111
1.0000	0.9969	0.003093

 $\bar{a}x_3$ (s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Acros Organics, USA, was recrystallized several times from acetone.
- (2) 99+%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA. (3) 99+%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 . x_1 : $\pm 1.5\%$ (relative error).

9.6. Anthracene solubility data in binary alcohol + 2butoxyethanol solvent mixtures

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7]	Original Measurements: ⁶⁵ M. E. R. McHale, AS. M.
(2) 1-Propanol; C ₃ H ₈ O; [71-23-8] (3) 2-Butoxyethanol; C ₆ H ₁₄ O ₂ ; [111-76-2]	Kauppila, J. R. Powell, and W. E Acree, Jr., J. Chem. Thermodyn. 28 , 209 (1996).
Variables: T/K = 298.15; Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 1-propanol + 2-butoxyethanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.000591
0.0617	0.0616	0.000742
0.1239	0.1238	0.000900
0.2652	0.2649	0.001311
0.3642	0.3636	0.001596
0.4704	0.4695	0.001948
0.6914	0.6896	0.002667
0.8286	0.8260	0.003151
1.0000	0.9962	0.003785

 \overline{a}_{x_3} (s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Gold Label, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99+%, Acros Organics, USA.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.05 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.3\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 2-Propanol; C ₃ H ₈ O; [67-63-0] (3) 2-Butoxyethanol; C ₆ H ₁₄ O ₂ ; [111-76-2]	Original Measurements: 65 M. E. R. McHale, AS. M. Kauppila, J. R. Powell, and W. E. Acree, Jr., J. Chem. Thermodyn. 28, 209 (1996).
Variables: $T/K = 298.15$; Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 2-propanol + 2-butoxyethanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.000411
0.0651	0.0651	0.000566
0.1286	0.1285	0.000717
0.2839	0.2836	0.001162
0.3707	0.3702	0.001434
0.4685	0.4677	0.001739
0.7016	0.6998	0.002600
0.8331	0.8305	0.003142
1.0000	0.9962	0.003785

 $\bar{a}x_3$ (s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Gold Label, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99+%, Acros Organics, USA.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.05 K. $x_3^{(s)}$: ± 0.0001 .

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 1-Butanol; C ₄ H ₁₀ O; [71-36-3] (3) 2-Butoxyethanol; C ₆ H ₁₄ O ₂ ; [111-76-2]	Original Measurements: 65 M. E. R. McHale, AS. M. Kauppila, J. R. Powell, and W. E. Acree, Jr., J. Chem. Thermodyn. 28, 209 (1996).
Variables: T/K = 298.15; Solvent Composition	Prepared by: W. E. Acree, Jr.

Solubility of anthracene in 1-butanol + 2-butoxyethanol mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.000801
0.0713	0.0712	0.000972
0.1401	0.1399	0.001136
0.3125	0.3120	0.001580
0.3993	0.3986	0.001834
0.5233	0.5221	0.002217
0.7119	0.7099	0.002873
0.8588	0.8560	0.003286
1.0000	0.9962	0.003785

 $\bar{a}_{x_3}^{(s)}$: initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Gold Label, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99.8%, HPLC grade, Aldrich Chemical Company.
- (3) 99+%, Acros Organics, USA.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.05 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.3\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 2-Butanol; C ₄ H ₁₀ O; [78-92-2]	Original Measurements: 65 M. E. R. McHale, AS. M. Kauppila, J. R. Powell, and W. E.
(3) 2-Butoxyethanol; C ₆ H ₁₄ O ₂ ; [111-76-2]	Acree, Jr., J. Chem. Thermodyn. 28 , 209 (1996).
Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 2-butanol + 2-butoxyethanol mixtures^a

$\overline{x_3^{(s)}}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.000585
0.0781	0.0780	0.000776
0.1526	0.1525	0.000963
0.3167	0.3162	0.001435
0.4148	0.4141	0.001738
0.5203	0.5192	0.002044
0.7364	0.7340	0.003263
0.8689	0.8661	0.003151
1.0000	0.9962	0.003785

 $\bar{a}x_3$ (s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Gold Label, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99+%, Acros Organics, USA.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.05 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.3\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 2-Methyl-1-propanol; C ₄ H ₁₀ O; [78-83-1] (3) 2-Butoxyethanol; C ₆ H ₁₄ O ₂ ; [111-76-2]	Original Measurements: 65 M. E. R. McHale, AS. M. Kauppila, J. R. Powell, and W. E. Acree, Jr., J. Chem. Thermodyn. 28, 209 (1996).
Variables:	Prepared by:
T/K = 298.15: Solvent Composition	W. E. Acree, Jr.

Solubility of anthracene in 2-methyl-1-propanol + 2-butoxyethanol mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.000470
0.0710	0.0710	0.000624
0.1520	0.1519	0.000820
0.3059	0.3055	0.001246
0.4072	0.4066	0.001539
0.5171	0.5161	0.001901
0.7352	0.7332	0.002695
0.8683	0.8655	0.003227
1.0000	0.9962	0.003785

 $^{^{}a}x_{3}$ (s): initial mole fraction of component 3 in the binary solvent mixture; x_{1} : mole fraction solubility of the solute; x_{3} : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Gold Label, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99+%, Acros Organics, USA.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.05 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.3\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 1-Pentanol; C ₅ H ₁₂ O; [71-41-0] (3) 2-Butoxyethanol; C ₆ H ₁₄ O ₂ ; [111-76-2]	Original Measurements: 65 M. E. R. McHale, AS. M. Kauppila, J. R. Powell, and W. E Acree, Jr., J. Chem. Thermodyn. 28, 209 (1996).
Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 1-pentanol + 2-butoxyethanol mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.001097
0.0891	0.0890	0.001302
0.1582	0.1580	0.001468
0.3558	0.3551	0.001966

0.4573	0.4563	0.002230
0.5288	0.5275	0.002420
0.7610	0.7587	0.003054
0.8791	0.8761	0.003400
1.0000	0.9962	0.003785

 $^{^{}a}x_{3}$ (s): initial mole fraction of component 3 in the binary solvent mixture; x_{1} : mole fraction solubility of the solute; x_{3} : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Gold Label, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99+%, Acros Organics, USA.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.05 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.3\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 3-Methyl-1-butanol; C ₅ H ₁₂ O; [123-51-3] (3) 2-Butoxyethanol; C ₆ H ₁₄ O ₂ ; [111-76-2]	Original Measurements: ⁶⁵ M. E. R. McHale, AS. M. Kauppila, J. R. Powell, and W. E. Acree, Jr., J. Chem. Thermodyn. 28, 209 (1996).
Variables: $T/K = 298.15$; Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 3-methyl-1-butanol + 2-butoxyethanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.000727
0.0859	0.0858	0.000918
0.2374	0.2371	0.001274
0.3557	0.3551	0.001592
0.4512	0.4504	0.001870
0.5509	0.5497	0.002141
0.7650	0.7628	0.002871
0.8719	0.8691	0.003267
1.0000	0.9962	0.003785

 ${}^{a}x_{3}$ (s): initial mole fraction of component 3 in the binary solvent mixture; x_{1} : mole fraction solubility of the solute; x_{3} : mole fraction of component 3 in the ternary solution.

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Gold Label, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99+%, Acros Organics, USA.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.05 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.3\%$ (relative error).

⁶⁵ M. E. R. McHale, AS. M. Kauppila, J. R. Powell, and W. E. Acree, Jr., J. Chem. Thermodyn. 28, 209 (1996).
Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 1-octanol + 2-butoxyethanol mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.002160
0.1249	0.1246	0.002403
0.2353	0.2347	0.002590
0.4495	0.4482	0.002950
0.5522	0.5505	0.003105
0.6430	0.6409	0.003266
0.8222	0.8193	0.003534
0.9107	0.9074	0.003661
1.0000	0.9962	0.003785

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Gold Label, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99+%, Acros Organics, USA.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.05 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.3\%$ (relative error).

9.7. Anthracene solubility data in binary alcohol + 3methoxy-1-butanol solvent mixtures

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 1-Propanol; C ₃ H ₈ O; [71-23-8] (3) 3-Methoxy-1-butanol; C ₅ H ₁₂ O ₂ ; [2517-43-3]	Original Measurements: 66 M. E. R. McHale, AS. M. Kauppila, S. A. Padilla, A. L. Trufant, N. U. De La Sancha, E. Velo, J. R. Powell, and W. E. Acree, Jr., J. Chem. Eng. Data 42, 54 (1997).
Variables: T/K = 298.15; Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 1-propanol + 3-methoxy-1-butanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.000591
0.0756	0.0755	0.000724
0.1453	0.1452	0.000859
0.3091	0.3087	0.001200
0.3996	0.3990	0.001389
0.4442	0.4435	0.001483
0.7246	0.7231	0.002092
0.8576	0.8556	0.002382
1.0000	0.9973	0.002702

 $\bar{a}x_3$ (s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9%, Acros Organics, USA, recrystallized several times from acetone.
- (2) 99+%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA.
- (3) 99+%, Acros Organics, USA.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 2-Propanol; C ₃ H ₈ O; [67-63-0] (3) 3-Methoxy-1-butanol; C ₅ H ₁₂ O ₂ ; [2517-43-3]	Original Measurements: 66 M. E. R. McHale, AS. M. Kauppila, S. A. Padilla, A. L. Trufant, N. U. De La Sancha, E. Velo, J. R. Powell, and W. E.
	Acree, Jr., J. Chem. Eng. Data 42, 54 (1997).
Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 2-propanol + 3-methoxy-1-butanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.000411
0.0792	0.0792	0.000570
0.1492	0.1491	0.000705
0.3079	0.3076	0.001053
0.3921	0.3916	0.001258
0.5119	0.5111	0.001529
0.7182	0.7167	0.002059
0.8687	0.8666	0.002408
1.0000	0.9973	0.002702

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9%, Acros Organics, USA, recrystallized several times from acetone. (2) 99+%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA.
- (3) 99+%, Acros Organics, USA.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 1-Butanol; C ₄ H ₁₀ O; [71-36-3] (3) 3-Methoxy-1-butanol; C ₅ H ₁₂ O ₂ ; [2517-43-3]	Original Measurements: 66 M. E. R. McHale, AS. M. Kauppila, S. A. Padilla, A. L. Trufant, N. U. De La Sancha, E. Velo, J. R. Powell, and W. E. Acree, Jr., J. Chem. Eng. Data 42, 54 (1997).
Variables: $T/K = 298.15$; Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 1-butanol + 3-methoxy-1-butanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.000801
0.0869	0.0868	0.000955
0.1708	0.1706	0.001113
0.3534	0.3529	0.001474
0.4257	0.4250	0.001596
0.5384	0.5374	0.001806
0.7641	0.7624	0.002220
0.8660	0.8639	0.002424
1.0000	0.9973	0.002702

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

(1) 99.9%, Acros Organics, USA, recrystallized several times from acetone. (2) 99.8%, HPLC grade, Aldrich Chemical Company, Milwaukee, WI, USA. (3) 99+%, Acros Organics, USA.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: $\pm 0.1 \text{ K}$. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 2-Butanol; C ₄ H ₁₀ O; [78-92-2] (3) 3-Methoxy-1-butanol; C ₅ H ₁₂ O ₂ ; [2517-43-3]	Original Measurements: 66 M. E. R. McHale, AS. M. Kauppila, S. A. Padilla, A. L. Trufant, N. U. De La Sancha, E. Velo, J. R. Powell, and W. E. Acree, Jr., J. Chem. Eng. Data 42, 54 (1997).
Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Solubility of anthracene in 2-butanol + 3-methoxy-1-butanol mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.000585
0.0900	0.0899	0.000748
0.1763	0.1761	0.000912
0.3518	0.3514	0.001276
0.4653	0.4646	0.001503
0.5787	0.5777	0.001745
0.7583	0.7567	0.002143
0.8621	0.8601	0.002345
1.0000	0.9973	0.002702

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9%, Acros Organics, USA, recrystallized several times from acetone. (2) 99+%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA.
- (3) 99+%, Acros Organics, USA.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.05 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.3\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 1-Pentanol; C ₅ H ₁₂ O; [71-41-0] (3) 3-Methoxy-1-butanol; C ₅ H ₁₂ O ₂ ; [2517-43-3]	Original Measurements: 66 M. E. R. McHale, AS. M. Kauppila, S. A. Padilla, A. L. Trufant, N. U. De La Sancha, E. Velo, J. R. Powell, and W. E. Acree, Jr., J. Chem. Eng. Data 42, 54 (1997).
Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 1-pentanol + 3-methoxy-1-butanol mixtures^a

<i>x</i> ₃ ^(s)	x_3	x_1
0.0000	0.0000	0.001097
0.1027	0.1026	0.001300
0.1966	0.1963	0.001484
0.4260	0.4252	0.001896
0.4935	0.4925	0.001980

0.5946	0.5933	0.002135
0.8129	0.8109	0.002471
0.8835	0.8812	0.002560
1.0000	0.9973	0.002702

 $^{a}x_{3}$ (s): initial mole fraction of component 3 in the binary solvent mixture; x_{1} : mole fraction solubility of the solute; x_{3} : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9%, Acros Organics, USA, recrystallized several times from acetone.
- (2) 99%, Aldrich Chemical Company, Milwaukee, WI, USA.
- (3) 99+%, Acros Organics, USA.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 2-Pentanol; C ₅ H ₁₂ O; [6032-29-7] (3) 3-Methoxy-1-butanol; C ₅ H ₁₂ O ₂ ;	Original Measurements: 66 M. E. R. McHale, AS. M. Kauppila, S. A. Padilla, A. L. Trufant, N. U. De La Sancha, E.
[2517-43-3]	Velo, J. R. Powell, and W. E. Acree, Jr., J. Chem. Eng. Data 42 , 54 (1997).
Variables: $T/K = 298.15$: Solvent Composition	Prepared by: W. E. Acree, Jr.

K = 298.15; Solvent Composition W. E. Acree,

Experimental Values

Solubility of anthracene in 2-pentanol + 3-methoxy-1-butanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.000800
0.1016	0.1015	0.000992
0.1998	0.1996	0.001184
0.3826	0.3820	0.001567
0.4891	0.4882	0.001778
0.5970	0.5958	0.001999
0.7902	0.7883	0.002373
0.8873	0.8851	0.002533
1.0000	0.9973	0.002702

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9%, Acros Organics, USA, recrystallized several times from acetone. (2) 99%, Across Organics, USA.
- (3) 99+%, Acros Organics, USA.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 3-Methyl-1-butanol; C ₅ H ₁₂ O; [123-51-3] (3) 3-Methoxy-1-butanol; C ₅ H ₁₂ O ₂ ; [2517-43-3]	Original Measurements: 66 M. E. R. McHale, AS. M. Kauppila, S. A. Padilla, A. L. Trufant, N. U. De La Sancha, E. Velo, J. R. Powell, and W. E. Acree, Jr., J. Chem. Eng. Data 42, 54 (1997).
Variables: $T/K = 298.15$: Solvent Composition	Prepared by: W. F. Acree. Jr.

Experimental Values

Solubility of anthracene in 3-methyl-1-butanol + 3-methoxy-1-butanol mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.000727
0.1066	0.1065	0.000920
0.1951	0.1949	0.001083
0.3847	0.3841	0.001456
0.4925	0.4917	0.001669
0.5973	0.5962	0.001890
0.7843	0.7425	0.002281
0.8828	0.8806	0.002454
1.0000	0.9973	0.002702

 ax_3 (s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9%, Acros Organics, USA, recrystallized several times from acetone.
- (2) 99+%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA.
- (3) 99+%, Acros Organics, USA.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 4-Methyl-2-pentanol; C ₆ H ₁₄ O; [108-11-2] (3) 3-Methoxy-1-butanol; C ₅ H ₁₂ O ₂ ; [2517-43-3]	Original Measurements: 66 M. E. R. McHale, AS. M. Kauppila, S. A. Padilla, A. L. Trufant, N. U. De La Sancha, E. Velo, J. R. Powell, and W. E. Acree, Jr., J. Chem. Eng. Data 42, 54 (1997).
Variables: $T/K = 298.15$; Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 4-methyl-2-pentanol + 3-methoxy-1-butanol mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.000779
0.1207	0.1206	0.000970
0.2089	0.2087	0.001124
0.4263	0.4256	0.001537
0.5282	0.5273	0.001775
0.6035	0.6023	0.001937
0.8069	0.8050	0.002335
0.9032	0.9009	0.002531
1.0000	0.9973	0.002702

 a_{x_3} (s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9%, Acros Organics, USA, recrystallized several times from acetone. (2) 99+%, Acros, USA.
- (3) 99+%, Acros Organics, USA.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.05 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.3\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 1-Octanol; C ₈ H ₁₈ O; [111-87-5] (3) 3-Methoxy-1-butanol; C ₅ H ₁₂ O ₂ ; [2517-43-3]	Original Measurements: 66 M. E. R. McHale, AS. M. Kauppila, S. A. Padilla, A. L. Trufant, N. U. De La Sancha, E. Velo, J. R. Powell, and W. E. Acree, Jr., J. Chem. Eng. Data 42 54 (1997).
Variables: $T/K = 298.15$; Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 1-octanol + 3-methoxy-1-butanol mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.002160
0.0756	0.0754	0.002400
0.1453	0.1449	0.002518
0.3091	0.3083	0.002692
0.3996	0.3986	0.002747
0.4442	0.4430	0.002786
0.7246	0.7226	0.002779
0.8576	0.8552	0.002749
1.0000	0.9973	0.002702

 a_{x_3} (s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9%, Acros Organics, USA, recrystallized several times from acetone.
- $(2)\ 99+\%,\ anhydrous,\ Aldrich\ Chemical\ Company,\ Milwaukee,\ WI,\ USA.$
- (3) 99+%, Acros Organics, USA.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 2-Ethyl-1-hexanol; C ₈ H ₁₈ O; [104-76-7] (3) 3-Methoxy-1-butanol; C ₅ H ₁₂ O ₂ ; [2517-43-3]	Original Measurements: 66 M. E. R. McHale, AS. M. Kauppila, S. A. Padilla, A. L. Trufant, N. U. De La Sancha, E. Velo, J. R. Powell, and W. E. Acree, Jr., J. Chem. Eng. Data 42, 54 (1997).
Variables: T/K = 298.15; Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 2-ethyl-1-hexanol + 3-methoxy-1-butanol mixtures^a

$x_3^{(s)}$		*
A3	x_3	x_1
0.0000	0.0000	0.001397
0.1432	0.1430	0.001586
0.2603	0.2598	0.001770
0.4770	0.4760	0.002118
0.5773	0.5760	0.002283
0.6751	0.6735	0.002414
0.8432	0.8410	0.002611
0.9231	0.9206	0.002662
1.0000	0.9973	0.002702

 $\overline{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9%, Acros Organics, USA, recrystallized several times from acetone.
- (2) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA.
- (3) 99+%, Acros Organics, USA.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Solubility of Anthracene in Binary Alcohol + Ester Solvent Mixtures

10.1. Critical evaluation of experimental solubility data

Acree and co-workers^{67–71} measured the solubility of anthracene in binary alcohol + methyl ethanoate, alcohol + ethyl ethanoate, alcohol + propyl ethanoate, and alcohol + butyl ethanoate solvent mixtures at 298.15 K. The alcohol solvents included five primary alcohols (1-propanol, 1-butanol, 2-methyl-1-propanol, 1-pentanol, 3-methyl-1-butanol) and three secondary alcohols (2-propanol, 2-butanol, 2-pentanol). There has only been a single experimental determination for the solubility of anthracene in each of the binary solvent systems studied. The experimental values were evaluated by curve-fitting the measured solubility data to Eq. (10).

The calculated $S_{23,i}$ parameters for the 25 binary alcohol + alkyl ethanoate solvent systems studied are summarized in Table 9, along with the average absolute deviation between the experimental and back-calculated mole fraction solubilities. Examination of the numerical entries in the last column of Table 9 reveals that Eq. (10) does provide a very accurate mathematical representation for how the measured mole fraction solubilities vary with binary solvent composition. Average percent deviations range from 0.2% to 1.0%, indicating that the measured values fall on smooth ln x_1 versus $x_2^{(s)}$ curves. None of the experimental data points was flagged as an outlier.

Jouyban and co-workers⁶⁸ employed a molarity form of the Combined NIBS/Redlich-Kister equation

$$\ln x_1^{\text{sat}} = x_2^{(\text{s})} \ln (c_1^{\text{sat}})_2 + x_3^{(\text{s})} \ln (c_1^{\text{sat}})_3$$
$$+ x_2^{(\text{s})} x_3^{(\text{s})} \sum_{j}^{r} S_{23,j} (x_2^{(\text{s})} - x_3^{(\text{s})})^j \qquad (14)$$

in reporting the solubility of anthracene in binary and ternary mixtures of cyclohexanone, ethyl ethanoate, and methanol at 298.2 K. Solubilities are often expressed in the pharmaceutical industry as molar concentrations (mol dm⁻³). The derived mathematical expression

$$\ln x_1^{\text{sat}} = x_2^{(s)} \ln 0.006 + x_3^{(s)} \ln 0.049 + x_2^{(s)} x_3^{(s)} [2.907 + 1.990 (x_2^{(s)} - x_3^{(s)}) + 1.591 (x_2^{(s)} - x_3^{(s)})^2]$$
(15)

was found to describe the observed anthracene solubility data for the binary methanol + ethyl ethanoate system to within an overall average relative deviation of 3.5%.

The experimental anthracene solubility data for binary alcohol + methyl ethanoate solvent mixtures, for binary alcohol + ethyl ethanoate, for binary alcohol + propyl ethanoate, and for binary alcohol + butyl ethanoate solvent mixtures are given in Secs. 10.2–10.5.

Table 9. Mathematical representation of anthracene solubilities in binary alcohol (2) + alkyl ethanoate (3) solvent mixtures

alconor (2) + arkyr ethanoate (5) sorvent mixtures		t
Binary Solvent System	$S_{23,i}^{a}$	% Dev ^b
1-Propanol (2) + methyl ethanoate (3)	1.939	0.6
	0.691	
	0.453	
2-Propanol (2) + methyl ethanoate (3)	2.177	0.7
	0.947	
15 10 11 1 1	0.418	0.0
1-Butanol (2) + methyl ethanoate (3)	1.673	0.3
	0.328	
2. D. (1/2) 4. 1. 4. (2)	0.230	0.5
2-Butanol (2) + methyl ethanoate (3)	2.106	0.5
	0.744 0.564	
2-Methyl-1-propanol (2) + methyl ethanoate (3)	2.211	0.4
2-incuryi-1-propanor (2) + metnyi emanoate (3)	0.714	0.4
	0.587	
1-Pentanol (2) + methyl ethanoate (3)	1.775	0.6
Tremaner (2) * memyr emaneute (e)	0.330	0.0
	0.120	
2-Pentanol (2) + methyl ethanoate (3)	1.916	0.4
•	0.558	
	0.375	
3-Methyl-1-butanol (2) + methyl ethanoate (3)	1.915	0.3
	0.417	
	-0.076	
1-Propanol (2) + ethyl ethanoate (3)	1.837	0.5
	0.828	
	0.572	
2-Propanol (2) + ethyl ethanoate (3)	2.085	0.9
	1.162	
	0.900	
1-Butanol (2) + ethyl ethanoate (3)	1.634	0.7
	0.686	
	0.041	0.0
2-Butanol (2) + ethyl ethanoate (3)	1.987	0.2
	0.945	
2 Madred 1 managed (2) added advanced (2)	0.341	0.5
2-Methyl-1-propanol (2) + ethyl ethanoate (3)	1.914	0.5
	0.904 0.268	
3-Methyl-1-butanol (2) + ethyl ethanoate (3)	1.599	0.6
3-Methyl-1-buttanol (2) $+$ ethyl ethanoate (3)	0.539	0.0
	0.272	
1-Propanol (2) + propyl ethanoate (3)	2.040	0.9
1110panor (2) - propyr cananoute (5)	1.110	0.,
	0.815	
2-Propanol (2) + propyl ethanoate (3)	2.274	1.0
1	1.566	
	1.132	
1-Butanol (2) + propyl ethanoate (3)	1.656	0.5
	0.706	
	0.729	
2-Butanol (2) + propyl ethanoate (3)	1.994	0.9
	1.118	
	1.026	
2-Methyl-1-propanol (2) + propyl ethanoate (3)	2.048	0.7
	1.218	
	1.187	0.6
3-Methyl-1-butanol (2) + propyl ethanoate (3)	1.544	0.6
	0.745	
1 Dromonal (2) + but-d -tht- (2)	0.705	0.5
1-Propanol (2) + butyl ethanoate (3)	2.252	0.5
	0.947	
	0.361	

Table 9. Mathematical representation of anthracene solubilities in binary alcohol (2) + alkyl ethanoate (3) solvent mixtures—Continued

Binary Solvent System	$S_{23,i}^{a}$	% Dev ^b
2-Propanol (2) + butyl ethanoate (3)	2.448	0.7
	1.428	
	1.319	
1-Butanol (2) + butyl ethanoate (3)	1.701	0.8
	0.697	
	0.615	
2-Butanol (2) + butyl ethanoate (3)	2.136	0.5
	1.254	
	0.725	
2-Methyl-1-propanol (2) + butyl ethanoate (3)	2.241	0.6
	1.169	
	0.753	
3-Methyl-1-butanol (2) + butyl ethanoate (3)	1.767	0.4
	0.753	
	0.398	

^aCombined NIBS/Redlich-Kister curve-fit parameters are ordered as $S_{23,0}$, $S_{23,1}$, and $S_{23,2}$.

10.2. Anthracene solubility data in binary alcohol + methyl ethanoate solvent mixtures

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 1-Propanol; C ₃ H ₈ O; [71-23-8] (3) Methyl ethanoate; C ₃ H ₆ O ₂ ; [79-20-9]	Original Measurements: ⁶⁷ W. E. Acree, Jr., J. Chem. Eng. Data 46 , 885 (2001).
Variables: <i>T/</i> K = 298.15; Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 1-propanol + methyl ethanoate mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.000591
0.1001	0.1000	0.000913
0.1904	0.1904	0.001230
0.3882	0.3881	0.001946
0.4908	0.4898	0.00235
0.5952	0.5936	0.00274
0.7889	0.7863	0.00328
0.8805	0.8774	0.00349
1.0000	0.9964	0.00364

 $^{{}^{}a}x_{3}{}^{(s)}$: initial mole fraction of component 3 in the binary solvent mixture; x_{1} : mole fraction solubility of the solute; x_{3} : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized three times from acetone.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99.5%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 . x_1 : $\pm 1.0\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 2-Propanol; C ₃ H ₈ O; [67-63-0] (3) Methyl ethanoate; C ₃ H ₆ O ₂ ; [79-20-9]	Original Measurements: ⁶⁷ W. E. Acree, Jr., J. Chem. Eng. Data 46 , 885 (2001).
Variables: T/K = 298.15; Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 2-propanol + methyl ethanoate mixtures^a

$x_3^{(s)}$	Х3	x_1
0.0000	0.0000	0.000411
0.1177	0.1176	0.000735
0.1959	0.1957	0.001006
0.3782	0.3776	0.001634
0.4887	0.4877	0.00206
0.5987	0.5972	0.00247
0.7864	0.7840	0.00311
0.8821	0.8792	0.00334
1.0000	0.9964	0.00364

 $\overline{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

 $Constant\text{-}temperature\ bath,\ calorimetric\ thermometer,\ and\ an\ ultraviolet/\ visible\ spectrophotometer.$

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized three times from acetone.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99.5%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: $\pm 0.1 \text{ K}$. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.0\%$ (relative error).

^bDev (%) = (100/N) $\Sigma \mid [x_1^{\text{exp}} - x_1^{\text{cal}}]/x_1^{\text{exp}} \mid$.

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 1-Butanol; C ₄ H ₁₀ O; [71-36-3] (3) Methyl ethanoate; C ₃ H ₆ O ₂ ; [79-20-9]	Original Measurements: ⁶⁷ W. E. Acree, Jr., J. Chem. Eng. Data 46 , 885 (2001).
** * * * * *	

Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Solubility of anthracene in 1-butanol + methyl ethanoate mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.000801
0.1390	0.1388	0.001260
0.2247	0.2243	0.001571
0.4285	0.4275	0.00236
0.5350	0.5336	0.00270
0.6378	0.6359	0.00303
0.8238	0.8209	0.00350
0.9075	0.9042	0.00361
1.0000	0.9964	0.00364

 $[\]bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized three times from acetone.
- (2) 99.8%, Aldrich Chemical Company.
- (3) 99.5%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.0\%$ (relative error).

T/K = 298.15; Solvent Composition

Components:

(1) Anthracene; C₁₄H₁₀; [120-12-7]
(2) 2-Butanol; C₄H₁₀O; [78-92-2]
(3) Methyl ethanoate; C₃H₆O₂; [79-20-9]

Variables:

Original Measurements:

67W. E. Acree, Jr., J. Chem. Eng. Data 46, 885 (2001).

W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 2-butanol + methyl ethanoate mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.000585
0.1246	0.1245	0.001017
0.2150	0.2147	0.001375
0.4262	0.4253	0.00217
0.5440	0.5426	0.00264
0.6377	0.6358	0.00296
0.9088	0.9056	0.00347
0.8805	0.8773	0.00359
1.0000	0.9964	0.00364

 $\bar{a}x_3$ (s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized three times from acetone.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99.5%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ±0.1 K.

 $x_3^{(s)}$: ±0.0001. x_1 : ±1.0% (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 2-Methyl-1-propanol; C ₄ H ₁₀ O;	Original Measurements: 67 W. E. Acree, Jr., J. Chem. Eng. Data 46, 885 (2001).
[78-83-1] (3) Methyl ethanoate; C ₃ H ₆ O ₂ ; [79-20-9]	, , , , , ,

Variables: Prepared by: T/K = 298.15; Solvent Composition W. E. Acree, Jr.

Solubility of anthracene in 2-methyl-1-propanol + methyl ethanoate mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.000470
0.1192	0.1191	0.000832
0.2371	0.2368	0.001249
0.4358	0.4349	0.00203
0.5342	0.5329	0.00239
0.6429	0.6411	0.00283
0.8241	0.8213	0.00341
0.9120	0.9087	0.00357
1.0000	0.9964	0.00364

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized three times from acetone.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99.5%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.0\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 1-Pentanol; C ₅ H ₁₂ O; [71-41-0] (3) Methyl ethanoate; C ₃ H ₆ O ₂ ; [79-20-9]	Original Measurements: 67W. E. Acree, Jr., J. Chem. Eng. Data 46, 885 (2001).
Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 1-pentanol + methyl ethanoate mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.001097
0.1302	0.1300	0.001630
0.2612	0.2606	0.00217
0.4757	0.4743	0.00301
0.5814	0.6794	0.00337

0.6673	0.6649	0.00357
0.8454	0.8422	0.00374
0.9195	0.9161	0.00370
1.0000	0.9964	0.00364

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized three times from acetone.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99.5%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.0\%$ (relative error).

Components:	Original Measurements:
(1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7]	⁶⁷ W. E. Acree, Jr., J. Chem.
(2) 2-Pentanol; C ₅ H ₁₂ O; [6032-27-7]	Eng. Data 46, 885 (2001).
(3) Methyl ethanoate; $C_3H_6O_2$; [79-20-9]	
Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 2-pentanol + methyl ethanoate mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.000800
0.1349	0.1347	0.001320
0.2576	0.2571	0.001821
0.4706	0.4694	0.00262
0.5936	0.5918	0.00308
0.6746	0.6724	0.00329
0.8480	0.8449	0.00361
0.9202	0.9168	0.00365
1.0000	0.9964	0.00364

 $\overline{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized three times from acetone.
- (2) 99+%, Acros Organics, USA.
- (3) 99.5%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.0\%$ (relative error).

Components:	Original Measurements:
(1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7]	⁶⁷ W. E. Acree, Jr., J. Chem.
(2) 3-Methyl-1-butanol; $C_5H_{12}O$;	Eng. Data 46, 885 (2001).
[123-51-3]	

(3) Methyl ethanoate; C₃H₆O₂; [79-20-9]

Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 3-methyl-1-butanol + methyl ethanoate mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.000727
0.1474	0.1472	0.001214
0.2682	0.2678	0.001677
0.4899	0.4886	0.00260
0.5722	0.5706	0.00287
0.6787	0.6765	0.00319
0.8531	0.8501	0.00350
0.9412	0.9378	0.00360
1.0000	0.9964	0.00364

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized three times from acetone.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99.5%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.0\%$ (relative error).

10.3. Anthracene solubility data in binary alcohol + ethyl ethanoate solvent mixtures

Components:	Original Measurements:
(1) Anthracene; $C_{14}H_{10}$; [120-12-7]	⁶⁸ A. Jouyban, J. L. Manzoori,
(2) Methanol; CH ₄ O; [67-56-1]	V. Panahi-Azar, J. Soleymani,
(3) Ethyl ethanoate; C ₄ H ₈ O ₂ ;	M. A. A. Fakhree, A. Shayanfar,
[141-78-6]	and W. E. Acree, Jr., J. Chem.
	Eng. Data 55 , 2607 (2010).
Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in methanol + ethyl ethanoate mixtures^a

$x_3^{(s)}$	c_1
0.000	0.006
0.044	0.013
0.093	0.016
0.149	0.022
0.215	0.034
0.291	0.039
0.381	0.056
0.489	0.068
0.621	0.095
0.787	0.111
1.000	0.136

 ${}^{a}x_{3}$ (s): initial mole fraction of component 3 in the binary solvent mixture; c_{1} : molar solubility of the solute.

Auxiliary Information

Method/Apparatus/Procedure:

Shaker bath, incubator equipped with temperature controlling system, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by volume. Excess solute and solvent placed in sealed containers and allowed to equilibrate for three days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a hydrophobic Drapore filters (0.45 μm , Millipore, Ireland) into tared volumetric flasks, weighed and diluted with methanol. Molar concentrations determined by spectrophotometric measurements at 356 nm. The measured molar solubilities were converted to mole fraction solubilities using the measured densities of the saturated solutions.

Source and Purity of Chemicals:

- (1) 96%, Fluka Chemical Company, recrystallized several times from acetone and ethyl ethanoate.
- (2) 99.5%, Merck Chemical Company, Germany, no further purification specified.
- (3) 99.5%, Merck Chemical Company, no further purification specified.

Estimated Error:

Temperature: ± 0.2 K.

 $x_3^{(s)}$: ± 0.005 .

 c_1 : $\pm 0.2\%$ to $\pm 5.0\%$ (relative error).

Variables: <i>T/</i> K = 298.15; Solvent Composition	Prepared by: W. E. Acree, Jr.
Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 1-Propanol; C ₃ H ₈ O; [71-23-8] (3) Ethyl ethanoate; C ₄ H ₈ O ₂ ; [141-78-6]	Original Measurements: ⁶⁹ A. Toro and W. E. Acree, Jr., Phys. Chem. Liq. 40 , 327 (2002).

Experimental Values

Solubility of anthracene in 1-propanol + ethyl ethanoate mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.000591
0.0813	0.0812	0.000874
0.1607	0.1605	0.001185
0.3340	0.3334	0.001936
0.4303	0.4293	0.002337
0.5441	0.5425	0.002886
0.7484	0.7455	0.003870
0.8557	0.8520	0.004293
1.0000	0.9952	0.004842

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99+%, Acros Organics, USA, recrystallized three times from acetone.
- (2) 99+%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA.
- (3) 99.5%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.05 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 2-Propanol; C ₃ H ₈ O; [67-63-0] (3) Ethyl ethanoate; C ₄ H ₈ O ₂ ; [141-78-6]	Original Measurements: ⁶⁹ A. Toro and W. E. Acree, Jr., Phys. Chem. Liq. 40 , 327 (2002).
Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 2-propanol + ethyl ethanoate mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.000411
0.1024	0.1023	0.000742
0.1756	0.1754	0.000994
0.3478	0.3472	0.001691
0.4462	0.4452	0.002149
0.5394	0.5380	0.002554
0.7502	0.7474	0.003669
0.8694	0.8657	0.004250
1.0000	0.9952	0.004842

 $\bar{a}x_3$ (s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99+%, Acros Organics, USA, recrystallized three times from acetone.
- (2) 99+%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA.
- (3) 99.5%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.05 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 1-Butanol; C ₄ H ₁₀ O; [71-36-3] (3) Ethyl ethanoate; C ₄ H ₈ O ₂ ; [141-78-6]	Original Measurements: ⁶⁹ A. Toro and W. E. Acree, Jr., Phys. Chem. Liq. 40 , 327 (2002).
Variables: $T/K = 298.15$; Solvent Composition	Prepared by: W. E. Acree, Jr.

Solubility of anthracene in 1-butanol + ethyl ethanoate mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.000801
0.1045	0.1044	0.001191
0.1874	0.1871	0.001537
0.3802	0.3793	0.002389
0.4713	0.4700	0.002804
0.5821	0.5802	0.003325
0.7878	0.7846	0.004097
0.8820	0.8781	0.004391
1.0000	0.9952	0.004842

 a_{x_3} (s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/ visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99+%, Acros Organics, USA, recrystallized three times from acetone.
- (2) 99.8+%, HPLC grade, Aldrich Chemical Company, Milwaukee, WI, USA.
- (3) 99.5%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.05 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 2-Butanol; C ₄ H ₁₀ O; [78-92-2] (3) Ethyl ethanoate; C ₄ H ₈ O ₂ ; [141-78-6]	Original Measurements: ⁶⁹ A. Toro and W. E. Acree, Jr., Phys. Chem. Liq. 40 , 327 (2002).
Variables: T/K = 298.15; Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 2-butanol + ethyl ethanoate mixtures^a

x ₃ ^(s)	<i>x</i> ₃	x_1
0.0000	0.0000	0.000585
0.1022	0.1021	0.000950
0.1966	0.1963	0.001362
0.3851	0.3842	0.002238

0.4869	0.4856	0.002698
0.5851	0.5833	0.003137
0.7876	0.7844	0.004013
0.8867	0.8828	0.004414
1.0000	0.9952	0.004842

 ${}^{a}x_{3}{}^{(s)}$: initial mole fraction of component 3 in the binary solvent mixture; x_{1} : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/ visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99+%, Acros Organics, USA, recrystallized three times from acetone.
- (2) 99+%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA.
- (3) 99.5%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.05 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 2-Methyl-1-propanol; C ₄ H ₁₀ O; [78-83-1] (3) Ethyl ethanoate; C ₄ H ₈ O ₂ ; [141-78-6]	Original Measurements: ⁶⁹ A. Toro and W. E. Acree, Jr., Phys. Chem. Liq. 40 , 327 (2002).
Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 2-methyl-1-propanol + ethyl ethanoate mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.000470
0.0978	0.0977	0.000757
0.1920	0.1918	0.001099
0.3787	0.3780	0.001863
0.4926	0.4914	0.002397
0.5773	0.5757	0.002801
0.7953	0.7826	0.003823
0.8959	0.8920	0.004310
1.0000	0.9952	0.004842

 a_{x_3} (s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

(1) 99+%, Acros Organics, USA, recrystallized three times from acetone. (2) 99.5%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA. (3) 99.5%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.05 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components:	Original Measurements:
(1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7]	⁶⁹ A. Toro and W. E. Acree. Jr
11 10 2	, , , , , , , , , , , , , , , , , , , ,
(2) 3-Methyl-1-butanol; $C_5H_{12}O$;	Phys. Chem. Liq. 40 , 327
[123-51-3]	(2002).
(3) Ethyl ethanoate; $C_4H_8O_2$; [141-78-6]	

Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 3-methyl-1-butanol + ethyl ethanoate mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.000727
0.1184	0.1183	0.001145
0.2225	0.2222	0.001554
0.4240	0.4230	0.002424
0.5238	0.5223	0.002913
0.6244	0.6223	0.003392
0.8130	0.8096	0.004205
0.9022	0.8981	0.004512
1.0000	0.9952	0.004842

 $\bar{a}_{x_3}^{(s)}$: initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99+%, Acros Organics, USA, recrystallized three times from acetone.
- (2) 99+%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA.
- (3) 99.5%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.05 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

10.4. Anthracene solubility data in binary alcohol + propyl ethanoate solvent mixtures

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 1-Propanol; C ₃ H ₈ O; [71-23-8] (3) Propyl ethanoate; C ₅ H ₁₀ O ₂ ; [109-60-4]	Original Measurements: ⁷⁰ L. Alcazar, A. Blanco, R. Cano, L. Fisher, M. Nau, L. Sidransky, and W. E. Acree, Jr., J. Chem. Eng. Data 53 , 201 (2008).
Variables: T/K = 298.15; Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 1-propanol + propyl ethanoate mixtures^a

x ₃ ^{(s) b}	<i>x</i> ₃	x_1
0.0000	0.0000	0.000591
0.0781	0.0780	0.000917
0.1415	0.1413	0.001211
0.3048	0.3042	0.00205
0.3895	0.3885	0.00252
0.5022	0.5006	0.00309
0.7187	0.7156	0.00438
0.8397	0.8355	0.00504
1.0000	0.9941	0.00588

 $^{a}x_{3}$ (s): initial mole fraction of component 3 in the binary solvent mixture; x_{1} : mole fraction solubility of the solute; x_{3} : mole fraction of component 3 in the ternary solution.

^bThere was a typographical error in the solvent compositions reported. The authors inadvertently gave identical values for both 1-propanol + propyl ethanoate and 1-butanol + propyl ethanoate. The values in the table above are correct.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Variables:

T/K = 298.15; Solvent Composition

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, recrystallized several times from acetone.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.05 K. $x_3^{(s)}$: ± 0.0001 . x_1 : $\pm 1.5\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7]	Original Measurements: 70L. Alcazar, A. Blanco, R. Cano,
(2) 2-Propanol; C ₃ H ₈ O; [67-63-0] (3) Propyl ethanoate; C ₅ H ₁₀ O ₂ ;	L. Fisher, M. Nau, L. Sidransky, and W. E. Acree, Jr., J. Chem.
[109-60-4]	Eng. Data 53 , 201 (2008).
Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 2-propanol + propyl ethanoate mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.000411
0.0714	0.0714	0.000672
0.1352	0.1351	0.000931
0.3510	0.3503	0.001973
0.4018	0.4009	0.00225
0.5016	0.5002	0.00280
0.7254	0.7224	0.00410
0.8374	0.8334	0.00479
1.0000	0.9941	0.00588

 $\bar{a}_{x_3}^{(s)}$: initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, recrystallized several times from acetone.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.05 K. $x_3^{(s)}$: ± 0.0001 . x_1 : $\pm 1.5\%$ (relative error).

Components:	Original Measurements:
(1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7]	⁷⁰ L. Alcazar, A. Blanco, R. Cano,
(2) 1-Butanol; C ₄ H ₁₀ O; [71-36-3]	L. Fisher, M. Nau, L. Sidransky,
(3) Propyl ethanoate; C ₅ H ₁₀ O ₂ ;	and W. E. Acree, Jr., J. Chem.
[109-60-4]	Eng. Data 53, 201 (2008).

Experimental Values

Prepared by:

W. E. Acree, Jr.

Solubility of anthracene in 1-butanol + propyl ethanoate mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.000801
0.0872	0.0871	0.001189
0.1634	0.1631	0.001548
0.3403	0.3395	0.00241
0.4416	0.4403	0.00297
0.5377	0.5358	0.00352
0.7587	0.7551	0.00478
0.8699	0.8652	0.00538
1.0000	0.9941	0.00588

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- $(1)\,99+\%, Aldrich\,Chemical\,Company, Milwaukee,\,WI, recrystallized\,several\,times\,from\,acetone.$
- (2) 99%, anhydrous, Aldrich Chemical Company.
- (3) 99%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.05 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components:	Original Measurements: 70 L. Alcazar, A. Blanco, R. Cano,
(1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 2-Butanol; C ₄ H ₁₀ O; [78-92-2]	L. Alcazar, A. Bianco, R. Cano, L. Fisher, M. Nau, L. Sidransky,
(3) Propyl ethanoate; $C_5H_{10}O_2$;	and W. E. Acree, Jr., J. Chem.
[109-60-4]	Eng. Data 53 , 201 (2008).
Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Solubility of anthracene in 2-butanol + propyl ethanoate mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.000585
0.0842	0.0841	0.000946
0.1636	0.1634	0.001311
0.3427	0.3419	0.00221
0.4310	0.4298	0.00269
0.5447	0.5429	0.00335
0.7581	0.7546	0.00464
0.8632	0.8587	0.00523
1.0000	0.9941	0.00588

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- $(1)\,99+\%, Aldrich\,Chemical\,Company, Milwaukee,\,WI,\,recrystallized\,several\,times\,from\,acetone.$
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.05 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 2-Methyl-1-propanol; C ₄ H ₁₀ O; [78-83-1] (3) Propyl ethanoate; C ₅ H ₁₀ O ₅ ;	Original Measurements: ⁷⁰ L. Alcazar, A. Blanco, R. Cano L. Fisher, M. Nau, L. Sidransky, and W. E. Acree, Jr., J. Chem. Eng. Data 53 , 201 (2008).
(3) Propyr emandate, C ₅ Pr ₁₀ O ₂ , [109-60-4] Variables:	Prepared by:
T/K = 298.15: Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 2-methyl-1-propanol + propyl ethanoate mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.000470
0.0853	0.0852	0.000791
0.1755	0.1753	0.001185
0.3477	0.3470	0.001987
0.4462	0.4451	0.00248

0.5508	0.5491	0.00309
0.7562	0.7529	0.00441
0.8650	0.8606	0.00513
1.0000	0.9941	0.00588

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, recrystallized several times from acetone.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.05 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 3-Methyl-1-butanol; C ₅ H ₁₂ O; [123-51-3] (3) Propyl ethanoate; C ₅ H ₁₀ O ₂ ;	Original Measurements: ⁷⁰ L. Alcazar, A. Blanco, R. Cano, L. Fisher, M. Nau, L. Sidransky, and W. E. Acree, Jr., J. Chem. Eng. Data 53 , 201 (2008).
[109-60-4] Variables:	Prepared by:

T/K = 298.15; Solvent Composition W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 3-methyl-1-butanol + propyl ethanoate mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.000727
0.0890	0.0889	0.001085
0.1932	0.1929	0.001552
0.3811	0.3802	0.00242
0.4848	0.4834	0.00294
0.5842	0.5821	0.00354
0.7905	0.7867	0.00478
0.8877	0.8830	0.00532
1.0000	0.9941	0.00588

 a_{x_3} (s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, recrystallized several times from acetone.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.05 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

10.5. Anthracene solubility data in binary alcohol + butyl ethanoate solvent mixtures

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 1-Propanol; C ₃ H ₈ O; [71-23-8] (3) Butyl ethanoate; C ₆ H ₁₂ O ₂ ; [123-86-4]	Original Measurements: 71 A. Toro and W. E. Acree, Jr. Phys. Chem. Liq. 39 , 773 (2001).	
Variables: $T/K = 298.15$; Solvent Composition	Prepared by: W. E. Acree, Jr.	

Experimental Values

Solubility of anthracene in 1-propanol + butyl ethanoate mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.000591
0.0674	0.0673	0.000859
0.1322	0.1320	0.001160
0.2774	0.2768	0.002034
0.3649	0.3640	0.002571
0.4605	0.4590	0.003169
0.6933	0.6900	0.004776
0.8347	0.8300	0.005667
1.0000	0.9934	0.006611

 $^{{}^{}a}x_{3}^{(s)}$: initial mole fraction of component 3 in the binary solvent mixture; x_{1} : mole fraction solubility of the solute; x_{3} : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99.7%, HPLC grade, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 2-Propanol; C ₃ H ₈ O; [67-63-0] (3) Butyl ethanoate; C ₆ H ₁₂ O ₂ ; [123-86-4]	Original Measurements: ⁷¹ A. Toro and W. E. Acree, Jr., Phys. Chem. Liq. 39 , 773 (2001).	
Variables: T/K = 298.15; Solvent Composition	Prepared by: W. E. Acree, Jr.	

Experimental Values

Solubility of anthracene in 2-propanol + butyl ethanoate mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.000411
0.0608	0.0608	0.000639
0.1249	0.1248	0.000923
0.2709	0.2704	0.001685
0.3676	0.3668	0.002252
0.4734	0.4720	0.002900
0.6928	0.6897	0.004474
0.8278	0.8233	0.005471
1.0000	0.9934	0.006611

 ${}^ax_3^{(s)}$: initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99.7%, HPLC grade, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

IUPAC-NIST SOLUBILITY DATA SERIES. 98-1

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 1-Butanol; C ₄ H ₁₀ O; [71-36-3] (3) Butyl ethanoate; C ₆ H ₁₂ O ₂ ; [123-86-4]	Original Measurements: 71 A. Toro and W. E. Acree, Jr., Phys. Chem. Liq. 39 , 773 (2001).	
Variables: T/K = 298.15; Solvent Composition	Prepared by: W. E. Acree, Jr.	

Experimental Values

Solubility of anthracene in 1-butanol + butyl ethanoate mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.000801
0.0741	0.0740	0.001131
0.1497	0.1495	0.001513
0.3023	0.3016	0.002329
0.4077	0.4065	0.002926
0.5098	0.5080	0.003618
0.7328	0.7290	0.005125
0.8464	0.8415	0.005782
1.0000	0.9934	0.006611
0 (6) 4 4 4 4 0		

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, used as received.
- (2) 99.8+%, HPLC grade, Aldrich Chemical Company.
- (3) 99.7%, HPLC grade, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: $\pm 0.1 \text{ K}$. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components:	Original Measurements:
(1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7]	⁷¹ A. Toro and W. E. Acree, Jr.
(2) 2-Butanol; C ₄ H ₁₀ O; [78-92-2]	Phys. Chem. Liq. 39, 773
(3) Butyl ethanoate; $C_6H_{12}O_2$; [123-86-4]	(2001).

Variables: Prepared by: T/K = 298.15; Solvent Composition W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 2-butanol + butyl ethanoate mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.000585
0.0750	0.0749	0.000909
0.1523	0.1521	0.001308
0.3160	0.3153	0.002239
0.4090	0.4079	0.002780
0.5120	0.5102	0.003470
0.7299	0.7264	0.004802
0.8547	0.8498	0.005675
1.0000	0.9934	0.006611

 \bar{a}_{x_3} (s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99.7%, HPLC grade, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 2-Methyl-1-propanol; C ₄ H ₁₀ O; [78-83-1] (3) Butyl ethanoate; C ₆ H ₁₂ O ₂ ; [123-86-4]	Original Measurements: ⁷¹ A. Toro and W. E. Acree, Jr., Phys. Chem. Liq. 39 , 773 (2001).
Variables: T/K = 298.15: Solvent Composition	Prepared by: W. E. Acree, Jr.

Solubility of anthracene in 2-methyl-1-propanol + butyl ethanoate mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.000470
0.0811	0.0810	0.000773
0.1451	0.1449	0.001052
0.3134	0.3128	0.001950
0.4138	0.4128	0.002535
0.5139	0.5123	0.003193
0.6937	0.6906	0.004459
0.8466	0.8419	0.005536
1.0000	0.9934	0.006611

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, used as received.
- (2) 99.5%, anhydrous, Aldrich Chemical Company.
- (3) 99.7%, HPLC grade, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components:	Original Measurements:
(1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7]	⁷¹ A. Toro and W. E. Acree, Jr.
(2) 3-Methyl-1-butanol; $C_5H_{12}O$;	Phys. Chem. Liq. 39, 773
[123-51-3]	(2001).
(3) Butyl ethanoate; C ₆ H ₁₂ O ₂ ; [123-86-4]	

Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 1-methyl-1-butanol + butyl ethanoate mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.000727
0.0878	0.0877	0.001089
0.1724	0.1721	0.001517
0.3487	0.3478	0.002481
0.4532	0.4518	0.003103
0.5276	0.5257	0.003581

0.7573	0.7534	0.005112
0.8716	0.8665	0.005831
1.0000	0.9934	0.006611

 $\bar{a}x_3$ (s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99.7%, HPLC grade, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

11. Solubility of Anthracene in Binary Alcohol + Alkanenitrile Solvent Mixtures

11.1. Critical evaluation of experimental solubility data

Acree and co-workers ^{72,73} determined the solubility of anthracene in 13 binary solvent mixtures containing acetonitrile with methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 1-pentanol, 2-methyl-1-butanol, 3-methyl-1-butanol, 2-methyl-1-pentanol, and 4-methyl-2-pentanol at 298.15 K. There has only been a single experimental determination for the solubility of anthracene in each of the binary solvent systems studied. The experimental values were evaluated by curve-fitting the measured solubility data to Eq. (10).

The calculated $S_{23,i}$ parameters for the 13 binary alcohol + acetonitrile solvent systems studied are summarized in Table 10, along with the average absolute deviation between the experimental and back-calculated mole fraction solubilities. Examination of the numerical entries in the last column of Table 10 reveals that Eq. (10) does provide a very accurate mathematical representation for how the measured mole fraction solubilities vary with binary solvent composition. Average percent deviations range from 0.4% to 1.0%, indicating that the measured values fall on smooth ln x_1 versus $x_2^{(s)}$ curves. None of the experimental data points was flagged as an outlier.

Table 10. Mathematical representation of anthracene solubilities in binary alcohol (2) + acetonitrile (3) solvent mixtures

Binary solvent system	$S_{23,i}^{a}$	% Dev ^b
Methanol (2) + acetonitrile (3)	1.170	0.5
	0.514	
	0.189	
Ethanol (2) + acetonitrile (3)	1.722	0.6
	0.753	
	0.379	
1-Propanol (2) + acetonitrile (3)	2.478	0.7
	0.042	
	1.200	
2-Propanol (2) + acetonitrile (3)	2.736	0.5
	0.827	
	0.968	
1-Butanol (2) + acetonitrile (3)	2.986	0.4
	-0.033	
	0.952	
2-Butanol (2) + acetonitrile (3)	3.323	0.5
	0.529	
	1.031	
2-Methyl-1-propanol (2) + acetonitrile (3)	3.256	0.5
	0.549	
	1.232	
1-Pentanol (2) + acetonitrile (3)	3.164	0.6
	-0.545	
	0.956	
2-Pentanol (2) + acetonitrile (3)	3.449	0.6
	-0.265	
	1.659	
3-Methyl-1-butanol (2) + acetonitrile (3)	2.963	0.4
	-0.365	
	0.952	
2-Methyl-1-butanol (2) + acetonitrile (3)	3.116	0.6
	-0.528	
	0.687	
2-Methyl-1-pentanol (2) + acetonitrile (3)	3.529	0.9
	-0.727	
	1.074	
4-Methyl-2-pentanol (2) + acetonitrile (3)	3.262	1.0
	-0.622	
	1.825	

^aCombined NIBS/Redlich-Kister curve-fit parameters are ordered as $S_{23,0}$, $S_{23,1}$, and $S_{23,2}$.

The experimental anthracene solubility data for binary alcohol + acetonitrile solvent mixtures are given in Sec. 11.2.

11.2. Anthracene solubility data in binary alcohol + acetonitrile solvent mixtures

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) Methanol; CH ₄ O; [67-56-1] (3) Acetonitrile; C ₂ H ₃ N; [75-05-8]	Original Measurements: ⁷² C. I. Monárrez, J. H. Woo, P. G. Taylor, A. M. Tran, and W. E. Acree, Jr., J. Chem. Eng. Data 48, 720 (2003).
Variables: T/K = 298.15; Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in methanol + acetonitrile mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.000243
0.0979	0.0979	0.000320
0.1674	0.1673	0.000370
0.3437	0.3435	0.000502
0.4429	0.4429	0.000565
0.5419	0.5416	0.000627
0.7414	0.7409	0.000735
0.8667	0.8660	0.000778
1.0000	0.9992	0.000830

 $\overline{a}x_3^{(s)}$: initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized three times from acetone.
- (2) 99.9+%, Aldrich Chemical Company.
- (3) 99.8%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ±0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.0\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) Ethanol; C ₂ H ₆ O; [64-17-5] (3) Acetonitrile; C ₂ H ₃ N; [75-05-8]	Original Measurements: 72 C. I. Monárrez, J. H. Woo, P. G. Taylor, A. M. Tran, and W. E. Acree, Jr., J. Chem. Eng. Data 48,
	720 (2003).
Variables: $T/K = 298.15$; Solvent Composition	Prepared by: W. E. Acree, Jr.

^bDev (%) = (100/N) $\Sigma \mid [x_1^{\text{exp}} - x_1^{\text{cal}}]/x_1^{\text{exp}} \mid$.

Solubility of anthracene in ethanol + acetonitrile mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.000460
0.1363	0.1362	0.000669
0.2231	0.2229	0.000773
0.4283	0.4279	0.000917
0.5316	0.5311	0.000962
0.6349	0.6343	0.000961
0.8175	0.8167	0.000924
0.9030	0.9022	0.000880
1.0000	0.9992	0.000830

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized three times from acetone.
- (2) absolute, Asper Alcohol and Chemical Company, USA.
- (3) 99.8%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.0\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 1-Propanol; C ₃ H ₈ O; [71-23-8] (3) Acetonitrile; C ₂ H ₃ N; [75-05-8]	Original Measurements: ⁷³ K. M. De Fina, S. Abernathy, K. Alexander, C. Olugbuyi, A. Vance, and W. E. Acree, Jr., J. Chem. Eng. Data 48 , 402 (2003).
Variables: T/K = 298.15; Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 1-propanol + acetonitrile mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.000591
0.1466	0.1465	0.000910
0.2683	0.2680	0.001128
0.4747	0.4741	0.001305

0.5662	0.5655	0.001318
0.6824	0.6815	0.001291
0.8491	0.8481	0.001168
0.9293	0.9283	0.001109
1.0000	0.9992	0.000830

 $^{a}x_{3}$ (s): initial mole fraction of component 3 in the binary solvent mixture; x_{1} : mole fraction solubility of the solute; x_{3} : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized three times from acetone.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99.8%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.0\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 2-Propanol; C ₃ H ₈ O; [67-63-0] (3) Acetonitrile; C ₂ H ₃ N; [75-05-8]	Original Measurements: ⁷³ K. M. De Fina, S. Abernathy, K. Alexander, C. Olugbuyi, A. Vance, and W. E. Acree, Jr., J. Chem. Eng. Data 48 , 402 (2003).
Variables: T/K = 298.15: Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 2-propanol + acetonitrile mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.000411
0.1799	0.1798	0.000806
0.2814	0.2811	0.000958
0.5049	0.5043	0.001163
0.5969	0.5962	0.001182
0.6600	0.6592	0.001162
0.8555	0.8546	0.001036
0.9224	0.9215	0.000956
1.0000	0.9992	0.000830

 ${}^{a}x_{3}$ (s): initial mole fraction of component 3 in the binary solvent mixture; x_{1} : mole fraction solubility of the solute; x_{3} : mole fraction of component 3 in the ternary solution.

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized three times from acetone.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99.8%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.0\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7]	Original Measurements: ⁷³ K. M. De Fina, S. Abernathy,
(2) 1-Butanol; C ₄ H ₁₀ O; [71-36-3] (3) Acetonitrile; C ₂ H ₃ N; [75-05-8]	K. Alexander, C. Olugbuyi, A. Vance, and W. E. Acree, Jr., J. Chem. Eng. Data 48 , 402 (2003).
Variables: T/K = 298 15: Solvent Composition	Prepared by:

Experimental Values

Solubility of anthracene in 1-butanol + acetonitrile mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.000801
0.1850	0.1848	0.001339
0.3224	0.3219	0.001581
0.5377	0.5368	0.001712
0.6384	0.6373	0.001677
0.7171	0.7160	0.001564
0.8729	0.8718	0.001227
0.9308	0.9298	0.001064
1.0000	0.9992	0.000830

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized three times from acetone.
- (2) 99.8+%, Aldrich Chemical Company.
- (3) 99.8%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.0\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 2-Butanol; C ₄ H ₁₀ O; [78-92-2] (3) Acetonitrile; C ₂ H ₃ N; [75-05-8]	Original Measurements: ⁷³ K. M. De Fina, S. Abernathy, K. Alexander, C. Olugbuyi, A. Vance, and W. E. Acree, Jr., J. Chem. Eng. Data 48 , 402 (2003).
Variables: $T/K = 298.15$; Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 2-butanol + acetonitrile mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.000585
0.1679	0.1677	0.001108
0.3044	0.3040	0.001409
0.5297	0.5289	0.001593
0.6076	0.6066	0.001588
0.7303	0.7292	0.001451
0.8692	0.8682	0.001174
0.9359	0.9349	0.001101
1.0000	0.9992	0.000830

 $\bar{a}_{x_3}^{(s)}$: initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized three times from acetone.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99.8%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: $\pm 0.1 \text{ K}$. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.0\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7]	Original Measurements: 73 K. M. De Fina, S. Abernathy,
(2) 2-Methyl-1-propanol; C ₄ H ₁₀ O;	K. Alexander, C. Olugbuyi, A.
[78-83-1] (3) Acetonitrile; C ₂ H ₃ N; [75-05-8]	Vance, and W. E. Acree, Jr., J. Chem. Eng. Data 48 , 402 (2003).
Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Solubility of anthracene in 2-methyl-1-propanol + acetonitrile mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.000470
0.1671	0.1669	0.000925
0.3175	0.3171	0.001223
0.5276	0.5268	0.001440
0.6351	0.6342	0.001401
0.7258	0.7248	0.001361
0.8715	0.8705	0.001145
0.9339	0.9330	0.001005
1.0000	0.9992	0.000830

 $[\]bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized three times from acetone.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99.8%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.0\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 1-Pentanol; C ₅ H ₁₂ O; [71-41-0] (3) Acetonitrile; C ₂ H ₃ N; [75-05-8]	Original Measurements: ⁷² C. I. Monárrez, J. H. Woo, P. G. Taylor, A. M. Tran, and W. E. Acree, Jr., J. Chem. Eng. Data 48 720 (2003).	
Variables: T/K = 298.15: Solvent Composition	Prepared by: W. E. Acree, Jr.	

Experimental Values

Solubility of anthracene in 1-pentanol + acetonitrile mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.001097
0.2022	0.2019	0.001723
0.3421	0.3414	0.002021
0.5734	0.5722	0.002066
0.6662	0.6649	0.001971
0.7555	0.7542	0.001750
0.8886	0.8875	0.001288
0.9443	0.9433	0.001065
1.0000	0.9992	0.000830

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized three times from acetone.
- (2) 99+%, Aldrich Chemical Company.
- (3) 99.8%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.0\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 2-Pentanol; C ₅ H ₁₂ O; [6032-29-7] (3) Acetonitrile; C ₂ H ₃ N; [75-05-8]	Original Measurements: 72C. I. Monárrez, J. H. Woo, P. G. Taylor, A. M. Tran, and W. E. Acree, Jr., J. Chem. Eng. Data 48, 720 (2003).
Variables: $T/K = 298.15$: Solvent Composition	Prepared by: W. E. Acree, Ir

Solubility of anthracene in 2-pentanol + acetonitrile mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.00800
0.1955	0.1952	0.001484
0.3448	0.3442	0.001807
0.5837	0.5826	0.001947
0.6773	0.6760	0.001867
0.7165	0.7152	0.001792
0.8879	0.8867	0.001300
0.9426	0.9416	0.001090
1.0000	0.9992	0.000830

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized three times from acetone.
- (2) 99+%, Acros Organics, USA.
- (3) 99.8%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: $\pm 0.1 \text{ K}$. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.0\%$ (relative error).

Components:	Original Measurements:
(1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 3-Methyl-1-butanol; C ₅ H ₁₂ O;	⁷³ K. M. De Fina, S. Abernathy, K. Alexander, C. Olugbuyi, A.
[123-51-3]	Vance, and W. E. Acree, Jr., J.
(3) Acetonitrile; C ₂ H ₃ N; [75-05-8]	Chem. Eng. Data 48, 402 (2003)
Variables:	Prepared by:
T/K = 298.15: Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 3-methyl-1-butanol + acetonitrile mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.000727
0.1843	0.1841	0.001186
0.3445	0.3440	0.001489
0.5738	0.5728	0.001658

0.6751	0.6740	0.001595
0.7384	0.7373	0.001526
0.8884	0.8873	0.001197
0.9482	0.9471	0.001108
1.0000	0.9992	0.000830

 \overline{a}_{x_3} (s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized three times from acetone.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99.8%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.0\%$ (relative error).

Components:	Original Measurements:
(1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7]	⁷³ K. M. De Fina, S. Abernathy,
(2) 2-Methyl-1-butanol; $C_5H_{12}O$;	K. Alexander, C. Olugbuyi, A.
[137-32-6]	Vance, and W. E. Acree, Jr., J.
(3) Acetonitrile; C ₂ H ₃ N; [75-05-8]	Chem. Eng. Data 48, 402 (2003).
Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 2-methyl-1-butanol + acetonitrile mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.000786
0.1908	0.1906	0.001277
0.3468	0.3463	0.001577
0.5779	0.5769	0.001755
0.6724	0.6712	0.001729
0.7534	0.7522	0.001597
0.8864	0.8853	0.001232
0.9434	0.9424	0.001028
1.0000	0.9992	0.000830

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized three times from acetone.
- (2) 99+%, Aldrich Chemical Company.
- (3) 99.8%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.0\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 2-Methyl-1-pentanol; C ₆ H ₁₄ O; [105-30-6] (3) Acetonitrile; C ₂ H ₃ N; [75-05-8]	Original Measurements: ⁷² C. I. Monárrez, J. H. Woo, P. G. Taylor, A. M. Tran, and W. E. Acree, Jr., J. Chem. Eng. Data 48 720 (2003).
Variables: $T/K = 298.15$; Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 2-methyl-1-pentanol + acetonitrile mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.000966
0.2110	0.2107	0.001653
0.3755	0.3747	0.002064
0.6179	0.6166	0.002109
0.7071	0.7057	0.001972
0.7780	0.7766	0.001816
0.9008	0.8996	0.001291
0.9435	0.9425	0.001095
1.0000	0.9992	0.000830

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized three times from acetone.
- (2) 99.9+%, Aldrich Chemical Company.
- (3) 99.8%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.0\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 4-Methyl-2-pentanol; C ₆ H ₁₄ O; [108-11-2]	Original Measurements: 72 C. I. Monárrez, J. H. Woo, P. G. Taylor, A. M. Tran, and W. E. Acree, Jr., J. Chem. Eng. Data 48,
(3) Acetonitrile; C ₂ H ₃ N; [75-05-8] Variables:	720 (2003). Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 4-methyl-2-pentanol + acetonitrile mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.000779
0.2136	0.2133	0.001407
0.3425	0.3419	0.001679
0.6078	0.6067	0.001881
0.6793	0.6781	0.001817
0.7897	0.7884	0.001631
0.9028	0.9017	0.001265
0.9523	0.9513	0.001059
1.0000	0.9992	0.000830

 $\bar{a}_{x_3}^{(s)}$: initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized three times from acetone.
- (2) 99.9+%, Aldrich Chemical Company.
- (3) 99.8%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.0\%$ (relative error).

Table 11. Mathematical representation of anthracene solubilities in binary alkoxyalcohol (2) + alkoxyalcohol (3) solvent mixtures

Binary solvent system	$S_{23,i}^{a}$	% Dev ^b
2-Ethoxyethanol (2) + 2-methoxyethanol (3)	0.185	0.2
	0.116	
2-Propoxyethanol (2) + 2-methoxyethanol (3)	0.361	0.3
2-Butoxyethanol (2) + 2-methoxyethanol (3)	0.515	0.4
2-Propoxyethanol (2) + 2-ethoxyethanol (3)	0.122	0.2
	-0.089	
	0.306	
2-Butoxyethanol (2) + 2-ethoxyethanol (3)	0.327	0.5
2-Butoxyethanol (2) + 2-propoxyethanol (3)	0.111	0.2

^aCombined NIBS/Redlich-Kister curve-fit parameters are ordered as $S_{23,0}$, $S_{23,1}$, and $S_{23,2}$. If only a single coefficient is listed, then $S_{23,1}$ and $S_{23,2}$ are zero. Similarly, if two coefficients are listed, then $S_{23,2}$ is zero.

12. Solubility of Anthracene in Binary Alkoxyalcohol + Alkoxyalcohol Solvent Mixtures

12.1. Critical evaluation of experimental solubility

McHale *et al.*⁷⁴ determined the solubility of anthracene in binary 2-ethoxyethanol + 2-methoxyethanol, 2-propoxyethanol + 2-methoxyethanol, 2-butoxyethanol + 2-methoxyethanol, 2-butoxyethanol + 2-ethoxyethanol + 2-ethoxyethanol and 2-butoxyethanol + 2-propoxyethanol solvent mixtures at 298.15 K. There has only been a single experimental determination for the solubility of anthracene in each of the binary solvent systems studied. The experimental values were evaluated by curve-fitting the measured solubility data to Eq. (10).

The calculated $S_{23,i}$ parameters for the six binary alkoxyalcohol + alkoxyalcohol solvent systems studied are summarized in Table 11, along with the average absolute deviation between the experimental and back-calculated mole fraction solubilities. Examination of the numerical entries in the last column of Table 11 reveals that Eq. (10) does provide a very accurate mathematical representation for how the measured mole fraction solubilities vary with binary solvent composition. Average percent deviations range from 0.2% to 0.5%, indicating that the measured values fall on smooth $\ln x_1$ versus $x_2^{(s)}$ curves. None of the experimental data points was flagged as an outlier.

The experimental anthracene solubility data for binary alkoxyalcohol + alkoxyalcohol solvent mixtures are listed in Sec. 12.2.

12.2. Anthracene solubility data in binary alkoxyalcohol + alkoxyalcohol solvent mixtures

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 2-Ethoxyethanol; C ₄ H ₁₀ O ₂ ; [110-80-5] (3) 2-Methoxyethanol; C ₃ H ₈ O ₂ ;	Original Measurements: 74 M. E. R. McHale, AS. M. Kauppila, J. R. Powell, and W. E. Acree, Jr., J. Chem. Thermodyn. 28, 589 (1996).
[109-86-4] Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 2-ethoxyethanol + 2-methoxyethanol mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.002921
0.1278	0.1274	0.002912
0.2399	0.2392	0.002855
0.4193	0.4182	0.002724
0.5530	0.5516	0.002602
0.6435	0.6419	0.002524
0.8294	0.8274	0.002360
0.9089	0.9068	0.002286
1.0000	0.9978	0.002211

 $\bar{a}x_3$ (s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Gold Label, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99%, Acros Organics, USA.
- (3) 99.5%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.05 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

^bDev (%) = (100/N) $\Sigma \mid [x_1^{\text{exp}} - x_1^{\text{cal}}]/x_1^{\text{exp}} \mid$.

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 2-Propoxyethanol; C ₅ H ₁₂ O ₂ ; [2807-30-9] (3) 2-Methoxyethanol; C ₃ H ₈ O ₂ ; [109-86-4]	Original Measurements: ⁷⁴ M. E. R. McHale, AS. M. Kauppila, J. R. Powell, and W. E. Acree, Jr., J. Chem. Thermodyn. 28 , 589 (1996).
Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Solubility of anthracene in 2-propoxyethanol + 2-methoxyethanol mixtures^a

x ₃ ^(s)	x_3	x_1
0.0000	0.0000	0.003343
0.1438	0.1433	0.003307
0.2675	0.2666	0.003217
0.4897	0.4882	0.002978
0.5937	0.5920	0.002870
0.6888	0.6869	0.002715
0.8322	0.8301	0.002487
0.9271	0.9249	0.002330
1.0000	0.9978	0.002211

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Gold Label, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99%, Aldrich Chemical Company.
- (3) 99.5%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.05 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 2-Butoxyethanol; C ₆ H ₁₄ O ₂ ; [111-76-2] (3) 2-Methoxyethanol; C ₃ H ₈ O ₂ ; [109-86-4]	Original Measurements: 74M. E. R. McHale, AS. M. Kauppila, J. R. Powell, and W. E. Acree, Jr., J. Chem. Thermodyn. 28 589 (1996).
Variables: T/K = 208 15: Solvent Composition	Prepared by:

Experimental Values

Solubility of anthracene in 2-butoxyethanol + 2-methoxyethanol mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.003785
0.1522	0.1516	0.003712
0.2993	0.2982	0.003564
0.5147	0.5130	0.003245
0.6212	0.6193	0.003060
0.7149	0.7128	0.002883
0.8576	0.8554	0.002554
0.9433	0.9411	0.002345
1.0000	0.9978	0.002211

 a_{x_3} ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Gold Label, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99%, Acros Organics, USA.
- (3) 99.5%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.05 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 2-Propoxyethanol; C ₅ H ₁₂ O ₂ ; [2807-30-9] (3) 2-Ethoxyethanol; C ₄ H ₁₀ O ₂ ; [110-80-5]	Original Measurements: 74M. E. R. McHale, AS. M. Kauppila, J. R. Powell, and W. E. Acree, Jr., J. Chem. Thermodyn. 28, 589 (1996).
Variables:	Prepared by:
T/K = 298.15 Solvent Composition	W E Acree Ir

Solubility of anthracene in 2-propoxyethanol + 2-ethoxyethanol mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.003343
0.1214	0.1210	0.003373
0.2314	0.2306	0.003328
0.4382	0.4368	0.003241
0.5204	0.5187	0.003214
0.6383	0.6366	0.003206
0.8191	0.8165	0.003118
0.9088	0.9060	0.003060
1.0000	0.9971	0.002921

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Gold Label, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99%, Aldrich Chemical Company.
- (3) 99%, Acros Organics, USA.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.05 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 2-Butoxyethanol; C ₆ H ₁₄ O ₂ ; [111-76-2] (3) 2-Ethoxyethanol; C ₄ H ₁₀ O ₂ ;	Original Measurements: 74 M. E. R. McHale, AS. M. Kauppila, J. R. Powell, and W. E. Acree, Jr., J. Chem. Thermodyn. 28, 589 (1996).
[110-80-5] Variables: T/K = 298.15: Solvent Composition	Prepared by: W. E. Acree. Jr.

Experimental Values

Solubility of anthracene in 2-butoxyethanol + 2-ethoxyethanol mixtures^a

$x_3^{(s)}$	Х3	<i>x</i> ₁
		· · · · · · · · · · · · · · · · · · ·
0.0000	0.0000	0.003785
0.1441	0.1436	0.003808
0.2516	0.2506	0.003777
0.4727	0.4710	0.003601
0.5748	0.5728	0.003518

0.6701	0.6678	0.003405
0.8387	0.8360	0.003201
0.9185	0.9157	0.003073
1.0000	0.9971	0.002921

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Gold Label, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99%, Acros Organics, USA.
- (3) 99%, Acros Organics, USA.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.05 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 2-Butoxyethanol; C ₆ H ₁₄ O ₂ ; [111-76-2] (3) 2-Propoxyethanol; C ₅ H ₁₂ O ₂ ; [2807-30-9]	Original Measurements: 74 M. E. R. McHale, AS. M. Kauppila, J. R. Powell, and W. E. Acree, Jr., J. Chem. Thermodyn. 28, 589 (1996).
Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 2-butoxyethanol + 2-propoxyethanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.003785
0.1103	0.1099	0.003778
0.2279	0.2270	0.003743
0.4345	0.4329	0.003690
0.5325	0.5306	0.003619
0.6371	0.6348	0.003572
0.8228	0.8199	0.003479
0.9163	0.9131	0.003509
1.0000	0.9967	0.003343

 a_{x_3} (s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 356 nm.

Source and Purity of Chemicals:

- (1) 99.9+%, Gold Label, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) 99%, Acros Organics, USA.
- (3) 99%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use

Estimated Error:

Temperature: ± 0.05 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

13. Solubility of Anthracene in Miscellaneous Binary Solvent Mixtures

13.1. Critical evaluation of experimental solubility data

There has only been a single experimental determination for the solubility of anthracene in each of the binary solvent systems studied. In the absence of replicate independent measurements, the experimental values were evaluated by curve-fitting the measured solubility data to the molarity version of the Combined NIBS/Redlich-Kister equation [See Eq. (14)]. The calculated $S_{23,i}$ parameters for the five binary ketone + alcohol and one ketone + alkyl ethanoate solvent systems studied are summarized in Table 12, along with the average absolute deviation between the experimental and back-calculated mole fraction solubilities. Examination of the numerical entries in the last column of Table 12 reveals that Eq. (14) does provide a very accurate mathematical representation for how the measured molar solubilities vary with binary solvent composition. Average percent deviations range from 1.5% to 6.2%, indicating that the measured values fall on smooth $\ln c_1$ versus $x_2^{(s)}$ curves. Experimental uncertainties associated with the molar solubility data ranged from 0.2% to 5.0 percent relative deviation. None of the experimental data points was flagged as an outlier.

The experimental anthracene solubility data for binary alcohol + propanone, methanol + cyclohexanone, and cyclohexanone + ethyl ethanoate solvent mixtures are given in Secs. 13.2 and 13.3.

Table 12. Mathematical representation of anthracene solubilities in miscellaneous binary solvent mixtures

Binary solvent system	$S_{23,i}^{a}$	% Dev ^b
Methanol (2) + propanone (3)	2.320	2.4
	0.989	
	0.449	
Ethanol (2) + propanone (3)	1.791	3.7
	0.114	
	0.617	
	2.677	
1-Propanol (2) + propanone (3)	2.205	1.5
	1.387	
	-0.474	
2-Propanol (2) + propanone (3)	1.314	2.6
	0.566	
	-0.310	
Cyclohexanone (2) + methanol (3)	3.601	6.2
	-2.715	
	3.790	
Cyclohexanone (2) + ethyl ethanoate (3)	0.835	2.8
	-1.041	
	1.209	

^aCombined NIBS/Redlich-Kister curve-fit parameters are ordered as $S_{23,0}$, $S_{23,1}$, $S_{23,2}$, and $S_{23,3}$. If only three coefficients are listed, then $S_{23,3}$ is zero. ^bDev (%) = $(100/N) \Sigma | [c_1^{\text{exp}} - c_1^{\text{cal}}]/c_1^{\text{exp}} |$.

13.2. Anthracene solubility data in binary ketone + alcohol solvent mixtures

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) Methanol; CH ₄ O; [67-56-1] (3) Propanone; C ₃ H ₆ O; [67-64-1]	Original Measurements: ⁷⁵ A. Jouyban, J. L. Manzoori, J. Soleymani, V. Panahi-Azar, M. A. A. Fakhree, S. Ahmadian, A. Shayanfar, and W. E. Acree, Jr., J. Chem. Eng. Data 55 , 5319 (2010).
Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in methanol + propanone mixtures^a

$x_2^{(s)}$	c_1
0.000	0.0527
0.168	0.0470
0.312	0.0427
0.437	0.0374
0.547	0.0308
0.644	0.0233
0.731	0.0196
0.809	0.0153
0.879	0.0112
0.942	0.0088
1 000	0.0063

 $[\]overline{a}x_2$ (s): initial mole fraction of component 2 in the binary solvent mixture; c_1 : molar solubility of the solute.

Method/Apparatus/Procedure:

Shaker bath, incubator equipped with temperature controlling system, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by volume. Excess solute and solvent placed in sealed containers and allowed to equilibrate for three days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a hydrophobic Drapore filters (0.45 μm , Millipore, Ireland) into tared volumetric flasks, weighed and diluted with methanol. Molar concentrations determined by spectrophotometric measurements at 356 nm. The measured molar solubilities were converted to mole fraction solubilities using the measured densities of the saturated solutions.

Source and Purity of Chemicals:

- (1) 96%, Fluka Chemical Company, recrystallized several times from acetone and ethyl ethanoate.
- (2) 99%, Scharlan Chemie, Spain, no further purification specified.
- (3) 99.5%, Scharlan Chemie, no further purification specified.

Estimated Error:

Temperature: ± 0.2 K.

 $x_2^{(s)}$: ± 0.001 .

 c_1 : $\pm 2.4\%$ (relative error).

Method/Apparatus/Procedure:

Shaker bath, incubator equipped with temperature controlling system, and an ultraviolet/visible spectrophotometer.

Auxiliary Information

Binary solvent mixtures were prepared by volume. Excess solute and solvent placed in sealed containers and allowed to equilibrate for three days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a hydrophobic Drapore filters (0.45 μm , Millipore, Ireland) into tared volumetric flasks, weighed and diluted with methanol. Molar concentrations determined by spectrophotometric measurements at 356 nm. The measured molar solubilities were converted to mole fraction solubilities using the measured densities of the saturated solutions.

Source and Purity of Chemicals:

- (1) 96%, Fluka Chemical Company, recrystallized several times from acetone and ethyl ethanoate.
- (2) 99.9%, Scharlan Chemie, Spain, no further purification specified.
- (3) 99.5%, Scharlan Chemie, no further purification specified.

Estimated Error:

Temperature: ±0.2 K.

 $x_2^{(s)}$: ± 0.001 .

 c_1 : $\pm 2.4\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) Ethanol; C ₂ H ₆ O; [64-17-4] (3) Propanone; C ₃ H ₆ O; [67-64-1]	Original Measurements: 75 A. Jouyban, J. L. Manzoori, J. Soleymani, V. Panahi-Azar, M. A. A. Fakhree, S. Ahmadian, A. Shayanfar, and W. E. Acree, Jr., J. Chem. Eng. Data 55, 5319 (2010).
Variables: $T/K = 298.15$; Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in ethanol + propanone mixtures^a

$x_2^{(s)}$	c_1
0.000	0.0527
0.123	0.0470
0.240	0.0432
0.351	0.0431
0.457	0.0372
0.558	0.0291
0.654	0.0246
0.746	0.0231
0.835	0.0166
0.919	0.0136
1.000	0.0087

 $[\]bar{a}x_2^{(s)}$: initial mole fraction of component 2 in the binary solvent mixture; c_1 : molar solubility of the solute.

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 1-Propanol; C ₃ H ₈ O; [71-23-8] (3) Propanone; C ₃ H ₆ O; [67-64-1]	Original Measurements: ⁷⁵ A. Jouyban, J. L. Manzoori, J. Soleymani, V. Panahi-Azar, M. A. A. Fakhree, S. Ahmadian, A. Shayanfar, and W. E. Acree, Jr., J. Chem. Eng. Data 55, 5319 (2010).
Variables: $T/K = 298.15$; Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in 1-propanol + propanone mixtures^a

$x_2^{(s)}$	c_1
0.000	0.0527
0.098	0.0469
0.197	0.0458
0.296	0.0444
0.396	0.0413
0.496	0.0371
0.596	0.0334
0.696	0.0239
0.797	0.0198
0.898	0.0144
1.000	0.0090

 $\bar{\mathbf{a}}_{x_2}^{(s)}$: initial mole fraction of component 2 in the binary solvent mixture; c_1 : molar solubility of the solute.

Method/Apparatus/Procedure:

Shaker bath, incubator equipped with temperature controlling system, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by volume. Excess solute and solvent placed in sealed containers and allowed to equilibrate for three days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a hydrophobic Drapore filters (0.45 μm , Millipore, Ireland) into tared volumetric flasks, weighed and diluted with methanol. Molar concentrations determined by spectrophotometric measurements at 356 nm. The measured molar solubilities were converted to mole fraction solubilities using the measured densities of the saturated solutions.

Source and Purity of Chemicals:

- (1) 96%, Fluka Chemical Company, recrystallized several times from acetone and ethyl ethanoate.
- (2) 99.5%, Merck Chemical Company, Germany, no further purification specified.
- (3) 99.5%, Scharlan Chemie, no further purification specified.

Estimated Error:

Temperature: ± 0.2 K.

 $x_2^{(s)}$: ± 0.001 .

 c_1 : $\pm 2.4\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) 2-Propanol; C ₃ H ₈ O; [67-63-0] (3) Propanone; C ₃ H ₆ O; [67-64-1]	Original Measurements: 75 A. Jouyban, J. L. Manzoori, J. Soleymani, V. Panahi-Azar, M. A. A. Fakhree, S. Ahmadian, A. Shayanfar, and W. E. Acree, Jr., J. Chem. Eng. Data 55, 5319
Variables:	(2010). Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree. Jr.

Experimental Values

Solubility of anthracene in 2-propanol + propanone mixtures^a

$x_2^{(s)}$	c_1
0.000	0.0527
0.055	0.0474
0.116	0.0444
0.184	0.0414
0.260	0.0341
0.345	0.0307
0.441	0.0269
0.551	0.0222
0.678	0.0151
0.826	0.0105
1.000	0.0056

 $^{{}^{}a}x_{2}{}^{(s)}$: initial mole fraction of component 2 in the binary solvent mixture; c_{1} : molar solubility of the solute.

Auxiliary Information

Method/Apparatus/Procedure:

Shaker bath, incubator equipped with temperature controlling system, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in sealed containers and allowed to equilibrate for three days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a hydrophobic Drapore filters (0.45 μm , Millipore, Ireland) into tared volumetric flasks, weighed and diluted with methanol. Molar concentrations determined by spectrophotometric measurements at 356 nm. The measured molar solubilities were converted to mole fraction solubilities using the measured densities of the saturated solutions.

Source and Purity of Chemicals:

- (1) 96%, Fluka Chemical Company, recrystallized several times from acetone and ethyl ethanoate.
- (2) 99.5%, Scharlan Chemie, Spain, no further purification specified.
- (3) 99.5%, Scharlan Chemie, no further purification specified.

Estimated Error:

Temperature: ±0.2 K.

 $x_2^{(s)}$: ± 0.001 .

 c_1 : $\pm 2.4\%$ (relative error).

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) Cyclohexanone, C ₆ H ₁₀ O; [108-94-1] (3) Methanol; CH ₄ O; [67-56-1]	Original Measurements: 68 A. Jouyban, J. L. Manzoori, V. Panahi-Azar, J. Soleymani, M. A. A. Fakhree, A. Shayanfar, and W. E. Acree, Jr., J. Chem. Eng. Data 55, 2607 (2010).
Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in cyclohexanone + methanol mixtures^a

$x_2^{(s)}$	c_1
0.000	0.006
0.042	0.013
0.089	0.016
0.144	0.022
0.207	0.034
0.281	0.039
0.370	0.056
0.477	0.068
0.610	0.095
0.779	0.111
1.000	0.136

 $[\]bar{a}x_2^{(s)}$: initial mole fraction of component 2 in the binary solvent mixture; c_1 : molar solubility of the solute.

Method/Apparatus/Procedure:

Shaker bath, incubator equipped with temperature controlling system, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by volume. Excess solute and solvent placed in sealed containers and allowed to equilibrate for three days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a hydrophobic Drapore filters (0.45 μm , Millipore, Ireland) into tared volumetric flasks, weighed and diluted with methanol. Molar concentrations determined by spectrophotometric measurements at 356 nm. The measured molar solubilities were converted to mole fraction solubilities using the measured densities of the saturated solutions

Source and Purity of Chemicals:

- (1) 96%, Fluka Chemical Company, recrystallized several times from acetone and ethyl ethanoate.
- (2) 99%, Merck Chemical Company, Germany, no further purification specified.
- (3) 99.5% Merck Chemical Company, no further purification specified.

Estimated Error:

Temperature: ± 0.2 K.

 $x_2^{(s)}$: ± 0.005 .

 c_1 : $\pm 0.2\%$ to $\pm 5.0\%$ (relative error).

Method/Apparatus/Procedure:

Shaker bath, incubator equipped with temperature controlling system, and an ultraviolet/visible spectrophotometer.

Auxiliary Information

Binary solvent mixtures were prepared by volume. Excess solute and solvent placed in sealed containers and allowed to equilibrate for three days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a hydrophobic Drapore filters (0.45 μm , Millipore, Ireland) into tared volumetric flasks, weighed and diluted with methanol. Molar concentrations determined by spectrophotometric measurements at 356 nm. The measured molar solubilities were converted to mole fraction solubilities using the measured densities of the saturated solutions.

Source and Purity of Chemicals:

- (1) 96%, Fluka Chemical Company, recrystallized several times from acetone and ethyl ethanoate.
- (2) 99.5%, Merck Chemical Company, Germany, no further purification specified.
- (3) 99.9%, Merck Chemical Company, Germany, no further purification specified.

Estimated Error:

Temperature: ± 0.2 K.

 $x_2^{(s)}$: ± 0.005 .

 c_1 : $\pm 0.2\%$ to $\pm 5.0\%$ (relative error).

13.3. Anthracene solubility data in binary ketone + alkyl ethanoate solvent mixtures

Components: (1) Anthracene; C ₁₄ H ₁₀ ; [120-12-7] (2) Cyclohexanone, C ₆ H ₁₀ O; [108-94-1] (3) Ethyl ethanoate; C ₄ H ₈ O ₂ ; [141-78-6]	Original Measurements: 68 A. Jouyban, J. L. Manzoori, V. Panahi-Azar, J. Soleymani, M. A. A. Fakhree, A. Shayanfar, and W. E. Acree, Jr., J. Chem. Eng. Data 55, 2607 (2010).
Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of anthracene in cyclohexanone + ethyl ethanoate mixtures^a

$x_2^{(s)}$	c_1
0.000	0.049
0.096	0.074
0.193	0.078
0.290	0.085
0.389	0.094
0.489	0.103
0.589	0.107
0.690	0.114
0.793	0.124
0.896	0.125
1.000	0.136

 $[\]bar{a}x_2^{(s)}$: initial mole fraction of component 2 in the binary solvent mixture; c_1 : molar solubility of the solute.

14. Solubility of Naphthalene in Binary Alkane + Alcohol Solvent Mixtures

14.1. Critical evaluation of experimental solubility data

Dyshin *et al.*⁷⁶ reported the solubility of naphthalene in binary heptane + ethanol solvent mixtures at 298.15 K. Solubilities were measured at only three binary mole fraction compositions and in the two neat organic solvents. Shayanfar *et al.*⁷⁷ determined the solubility of anthracene in binary solvent mixtures containing 2,2,4-trimethylpentane with methanol, ethanol, 1-propanol, 2-propanol, and 1-butanol at 298.15 K. There has only been a single experimental determination for the solubility of naphthalene in each of the binary solvent systems studied. The experimental values were evaluated by curve-fitting the measured solubility data to Eq. (14).

The calculated $S_{23,i}$ parameters for the five binary alkane + alcohol solvent systems studied are summarized in Table 13, along with the average absolute deviation between the experimental and back-calculated mole fraction solubilities. Examination of the numerical entries in the last column of Table 13 reveals that Eq. (14) does provide a very accurate mathematical representation for how the measured mole fraction solubilities vary with binary solvent composition. Average percent deviations range from 0.5% to 4.6%, indicating that the measured values fall on fairly smooth $\ln x_1$ versus $x_2^{(s)}$ curves. Larger deviations between experimental and back-calculated values were noted in the binary 2,2,4-trimethylpentane + methanol system, which exhibits considerable deviations from ideality. At room temperature, 2,2,4-trimethylpentane +

Table 13. Mathematical representation of naphthalene solubilities in binary alkane (2) + alcohol (3) solvent mixtures

Binary solvent system	$S_{23,i}^{a}$	% Dev ^b
2,2,4-Trimethylpentane (2) + methanol (3)	1.810	4.6
	0.006	
	-2.856	
	-6.442	
2,2,4-Trimethylpentane (2) + ethanol (3)	1.427	0.8
	-0.659	
	-0.210	
	0.214	
2,2,4-Trimethylpentane (2) + 1-propanol (3)	0.961	1.4
	-0.252	
	0.342	
2,2,4-Trimethylpentane (2) + 1-butanol (3)	0.827	0.5
	0.303	
	0.232	
2,2,4-Trimethylpentane (2) + 2-propanol (3)	1.002	2.5
	-0.228	
	1.257	

^aCombined NIBS/Redlich-Kister curve-fit parameters are ordered as $S_{23,0}$, $S_{23,1}$, $S_{23,2}$, and $S_{23,3}$. If only three coefficients are listed, then $S_{23,3}$ is zero. ^bDev (%) = $(100/N) \Sigma \mid [c_1^{\text{exp}} - c_1^{\text{cal}}]/c_1^{\text{exp}} \mid$.

methanol mixtures do separate into two liquid phases at methanol mole fraction concentrations between 0.3 and 0.85 mole fraction. None of the experimental data points was flagged as an outlier.

The experimental naphthalene solubility data for binary alkane + alcohol solvent mixtures are reported in Secs. 14.2 and 14.3.

14.2. Naphthalene solubility data in binary alkane + primary alcohol solvent mixtures

Components: (1) Naphthalene; C ₁₀ H ₈ ; [91-20-3]	Original Measurements: ⁷⁶ A. A. Dyshin, O. V. Eliseeva,
(2) Ethanol; C_2H_6O ; $[64-17-5]$	M. G. Kiselev, and G. A. Al'per,
(3) Heptane; C ₇ H ₁₆ ; [142-82-5]	Russ. J. Phys. Chem. A 82 , 1258 (2008).
Variables:	Prepared by:
T/K = 298.15: Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of naphthalene in ethanol + heptane mixtures $^{\rm a}$

$x_3^{(s)}$	m_1
0.0000	0.90690
0.0200	0.92210
0.0404	0.94325
0.0600	1.15012
1.0000	1.30125

 $[\]bar{a}_{X_3}^{(s)}$: initial mole fraction of component 3 in the binary solvent mixture; m_1 : molality solubility of the solute in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Very few experimental details were provided. Paper states that the solutions were prepared gravimetrically and that the solubility was studied by the isothermal saturation method. Equilibrium was established in two days.

Source and Purity of Chemicals:

- (1) Purity not specified, Riedle-de Haën.
- (2) Purity and chemical source not specified.
- (3) Chemically pure grade for chromatography, chemical source not specified.

Estimated Error:

Temperature: ± 0.01 K. $x_3^{(s)}$: ± 0.0001 (compiler). m_1 : Not specified in paper.

Components: (1) Naphthalene; C ₁₀ H ₈ ; [91-20-3] (2) 2,2,4-Trimethylpentane; C ₈ H ₁₈ ; [540-84-1] (3) Methanol; CH ₄ O; [67-64-1]	Original Measurements: ⁷⁷ A. Shayanfar, S. Soltani, F. Jabbaribar, A. A. Hamidi, W. E. Acree, Jr., and A. Jouyban, J. Chem. Eng. Data 53 , 574 (2008).
Variables: T/K = 298.15: Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of naphthalene in 2,2,4-trimethylpentane + methanol mixtures^a

$x_2^{(s)}$	c_1
0.000	0.540
0.026	0.623
0.058	0.668
0.095	0.705
0.140	0.746
0.196	0.850
0.268	0.882
0.363	0.922
0.494	0.871
0.687	0.823
1.000	0.692

 \bar{a}_{x_2} initial mole fraction of component 2 in the binary solvent mixture; c_1 : molar solubility of the solute.

Auxiliary Information

Method/Apparatus/Procedure:

Shaker bath, incubator equipped with temperature controlling system, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by volume. Excess solute and solvent placed in sealed containers and allowed to equilibrate for three days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a hydrophobic Drapore filters (0.45 μm , Millipore, Ireland) into tared volumetric flasks, weighed and diluted with methanol. Molar concentrations determined by spectrophotometric measurements at 274 nm. The measured molar solubilities were converted to mole fraction solubilities using the measured densities of the saturated solutions

Source and Purity of Chemicals:

- (1) 99%, Fluka Chemical Company, was used as received.
- (2) 99+%, Merck Chemical Company, Germany, no further purification specified.
- (3) 99.5%, Merck Chemical Company, no further purification specified.

Estimated Error:

Temperature: $\pm 0.2~\text{K}$.

 $x_2^{(s)}$: ± 0.002 .

 c_1 : $\pm 2.4\%$ (relative error).

Components: (1) Naphthalene; C ₁₀ H ₈ ; [91-20-3] (2) 2,2,4-Trimethylpentane; C ₈ H ₁₈ ; [540-84-1] (3) Ethanol; C ₂ H ₆ O; [64-17-5]	Original Measurements: ⁷⁷ A. Shayanfar, S. Soltani, F. Jabbaribar, A. A. Hamidi, W. E. Acree, Jr., and A. Jouyban, J. Chem. Eng. Data 53 , 574 (2008).
Variables: T/K = 298.15; Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of naphthalene in 2,2,4-trimethylpentane + ethanol mixtures^a

$x_2^{(s)}$	c_1
0.000	0.558
0.038	0.596
0.081	0.652
0.131	0.700
0.190	0.746
0.260	0.820
0.345	0.847
0.450	0.901
0.584	0.871
0.760	0.796
1.000	0.692

 $^{{}^{}a}x_{2}{}^{(s)}$: initial mole fraction of component 2 in the binary solvent mixture; c_{1} : molar solubility of the solute.

Auxiliary Information

Method/Apparatus/Procedure:

Shaker bath, incubator equipped with temperature controlling system, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by volume. Excess solute and solvent placed in sealed containers and allowed to equilibrate for three days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a hydrophobic Drapore filters (0.45 μm , Millipore, Ireland) into tared volumetric flasks, weighed and diluted with methanol. Molar concentrations determined by spectrophotometric measurements at 356 nm. The measured molar solubilities were converted to mole fraction solubilities using the measured densities of the saturated solutions.

Source and Purity of Chemicals:

- (1) 99%, Fluka Chemical Company, was used as received.
- (2) 99+%, Merck Chemical Company, Germany, no further purification specified.
- (3) 99.5%, Merck Chemical Company, no further purification specified.

Estimated Error:

Temperature: $\pm 0.2~\text{K}$.

 $x_2^{(s)}$: ± 0.002 .

 c_1 : $\pm 2.4\%$ (relative error).

Components:	Original Measurements:
(1) Naphthalene; C ₁₀ H ₈ ; [91-20-3]	⁷⁷ A. Shayanfar, S. Soltani,
(2) 2,2,4-Trimethylpentane; C ₈ H ₁₈ ;	F. Jabbaribar, A. A. Hamidi,
[540-84-1]	W. E. Acree, Jr., and A. Jouyban.
(3) 1-Propanol; C ₃ H ₈ O; [71-23-8]	J. Chem. Eng. Data 53, 574
	(2008).
Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of naphthalene in 2,2,4-trimethylpentane + 1-propanol mixtures^a

$x_2^{(s)}$	c_1
0.000	0.601
0.048	0.683
0.102	0.698
0.162	0.723
0.232	0.770
0.312	0.789
0.404	0.810
0.514	0.820
0.644	0.836
0.803	0.772
1.000	0.692

 ${}^{a}x_{2}{}^{(s)}$: initial mole fraction of component 2 in the binary solvent mixture; c_{1} : molar solubility of the solute.

Auxiliary Information

Method/Apparatus/Procedure:

Shaker bath, incubator equipped with temperature controlling system, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by volume. Excess solute and solvent placed in sealed containers and allowed to equilibrate for three days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a hydrophobic Drapore filters (0.45 μm , Millipore, Ireland) into tared volumetric flasks, weighed and diluted with methanol. Molar concentrations determined by spectrophotometric measurements at 356 nm. The measured molar solubilities were converted to mole fraction solubilities using the measured densities of the saturated solutions.

Source and Purity of Chemicals:

- (1) 99%, Fluka Chemical Company, was used as received.
- (2) 99+%, Merck Chemical Company, Germany, no further purification specified.
- (3) 99.5%, Merck Chemical Company, no further purification specified.

Estimated Error:

Temperature: ± 0.2 K.

 $x_2^{(s)}$: ± 0.002 .

 c_1 : $\pm 2.4\%$ (relative error).

Components: (1) Naphthalene; C ₁₀ H ₈ ; [91-20-3] (2) 2,2,4-Trimethylpentane; C ₈ H ₁₈ ; [540-84-1] (3) 1-Butanol; C ₄ H ₁₀ O; [71-36-3]	Original Measurements: ⁷⁷ A. Shayanfar, S. Soltani, F. Jabbaribar, A. A. Hamidi, W. E. Acree, Jr., and A. Jouyban J. Chem. Eng. Data 53 , 574 (2008).
Variables: T/K = 298.15; Solvent Composition	Prepared by: W. E. Acree, Jr.

Solubility of naphthalene in 2,2,4-trimethylpentane + 1-butanol mixtures^a

$x_2^{(s)}$	c_1
0.000	0.705
0.058	0.732
0.122	0.764
0.192	0.786
0.270	0.812
0.356	0.834
0.454	0.845
0.564	0.877
0.689	0.847
0.833	0.815
1.000	0.692

 $[\]bar{a}x_2^{(s)}$: initial mole fraction of component 2 in the binary solvent mixture; c_1 : molar solubility of the solute.

Auxiliary Information

Method/Apparatus/Procedure:

Shaker bath, incubator equipped with temperature controlling system, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by volume. Excess solute and solvent placed in sealed containers and allowed to equilibrate for three days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a hydrophobic Drapore filters (0.45 μm , Millipore, Ireland) into tared volumetric flasks, weighed and diluted with methanol. Molar concentrations determined by spectrophotometric measurements at 356 nm. The measured molar solubilities were converted to mole fraction solubilities using the measured densities of the saturated solutions.

Source and Purity of Chemicals:

- (1) 99%, Fluka Chemical Company, was used as received.
- (2) 99+%, Merck Chemical Company, Germany, no further purification specified.
- (3) 99.5%, Merck Chemical Company, no further purification specified.

Estimated Error:

Temperature: ± 0.2 K. $x_2^{(s)}$: ± 0.002 .

 c_1 : $\pm 2.4\%$ (relative error).

14.3. Naphthalene solubility data in binary alkane + secondary alcohol solvent mixtures

Components: (1) Naphthalene; C ₁₀ H ₈ ; [91-20-3] (2) 2,2,4-Trimethylpentane; C ₈ H ₁₈ ; [540-84-1] (3) 2-Propanol; C ₃ H ₈ O; [67-63-0]	Original Measurements: ⁷⁷ A. Shayanfar, S. Soltani, F. Jabbaribar, A. A. Hamidi, W. E. Acree, Jr., and A. Jouyban, J. Chem. Eng. Data 53 , 574
(*) .1) .3 (0.)[(2008).
Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of naphthalene in 2,2,4-trimethylpentane + 2-propanol mixtures^a

$x_2^{(s)}$	c_1
0.000	0.571
0.049	0.649
0.104	0.693
0.166	0.730
0.236	0.751
0.317	0.778
0.410	0.816
0.520	0.865
0.650	0.835
0.807	0.804
1.000	0.692

 \bar{a}_{x_2} (s): initial mole fraction of component 2 in the binary solvent mixture; c_1 : molar solubility of the solute.

Auxiliary Information

Method/Apparatus/Procedure:

Shaker bath, incubator equipped with temperature controlling system, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by volume. Excess solute and solvent placed in sealed containers and allowed to equilibrate for three days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a hydrophobic Drapore filters (0.45 μm , Millipore, Ireland) into tared volumetric flasks, weighed and diluted with methanol. Molar concentrations determined by spectrophotometric measurements at 356 nm. The measured molar solubilities were converted to mole fraction solubilities using the measured densities of the saturated solutions.

Source and Purity of Chemicals:

- (1) 99%, Fluka Chemical Company, was used as received.
- (2) 99+%, Merck Chemical Company, Germany, no further purification specified.
- (3) 99.5%, Merck Chemical Company, no further purification specified.

Estimated Error:

Temperature: ± 0.2 K. $x_2^{(s)}$: ± 0.002 .

 c_1 : $\pm 2.4\%$ (relative error).

15. Solubility of Phenanthrene in Binary Alkane + Alcohol Solvent Mixtures

15.1. Critical evaluation of experimental solubility data

Shayanfar *et al.*³⁹ determined the solubility of phenanthrene in binary 2,2,4-trimethylpentane + ethanol solvent mixtures at 298.15, 308.15, and 318.15 K. There has only been a single experimental determination for the solubility of phenanthrene in this binary solvent system. The experimental values were evaluated by curve-fitting the measured solubility data to Eq. (14). Analysis of the experimental solubility for phenanthrene in 2,2,4-trimethylpentane (2) + ethanol (3) yielded the following three mathematical representations:

$$\ln x_1^{\text{sat}} (\text{at } 298 \text{ K})$$

$$= x_2^{(s)} \ln (0.0246) + x_3^{(s)} \ln (0.0119)$$

$$+ x_2^{(s)} x_3^{(s)} [1.566 - 0.471 (x_2^{(s)} - x_3^{(s)})$$

$$+ 0.619 (x_2^{(s)} - x_3^{(s)})^2], \tag{16}$$

$$\ln x_1^{\text{sat}} (\text{at } 308 \text{ K})$$

$$= x_2^{(s)} \ln (0.0378) + x_3^{(s)} \ln (0.0159)$$

$$+ x_2^{(s)} x_3^{(s)} [1.694 - 0.980 (x_2^{(s)} - x_3^{(s)})$$

$$+ 0.367 (x_2^{(s)} - x_3^{(s)})^2], \tag{17}$$

$$\ln x_1^{\text{sat}} (\text{at 318 K})$$

$$= x_2^{(s)} \ln (0.0484) + x_3^{(s)} \ln (0.0190)$$

$$+ x_2^{(s)} x_3^{(s)} \left[1.458 - 0.487 \left(x_2^{(s)} - x_3^{(s)} \right) + 1.301 \left(x_2^{(s)} - x_3^{(s)} \right)^2 \right], \tag{18}$$

having average absolute relative deviations of 1.8%, 2.2%, and 1.6%, respectively. The reproducibility in the measured mole fraction solubilities was $\pm 2.5\%$. The deviations between the experimental and back-calculated values based on the Combined NIBS/Redlich-Kister model do not seem unreasonable given the uncertainties associated with the observed solubility data.

15.2. Phenanthrene solubility data in binary alkane + primary alcohol solvent mixtures

Components: (1) Phenanthrene; C ₁₄ H ₁₀ ; [85-01-8] (2) 2,2,4-Trimethylpentane; C ₈ H ₁₈ ; [540-84-1] (3) Ethanol; C ₂ H ₆ O; [64-17-5]	Original Measurements: ³⁹ A. Shayanfar, S. H. Eghrary, F. Sardari, W. E. Acree, Jr., and A. Jouyban, J. Chem. Eng. Data 56 , 2290 (2011).
Variables:	Prepared by:
<i>T</i> /K = 298.2, 308.2, 318.2; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of phenanthrene in 2,2,4-trimethylpentane + ethanol mixtures^a

		* *	
T/K	<i>x</i> ₃ ^(s)	<i>x</i> ₃	x_1
298.2	0.000	0.000	0.0246
	0.239	0.232	0.0272
	0.414	0.403	0.0266
	0.548	0.535	0.0239
	0.653	0.639	0.0220
	0.739	0.723	0.0213
	0.809	0.793	0.0196
	0.868	0.853	0.0171
	0.919	0.905	0.0149
	0.962	0.949	0.0134
	1.000	0.988	0.0119
308.2	0.000	0.000	0.0378
	0.242	0.233	0.0385
	0.418	0.402	0.0388
	0.552	0.533	0.0347
	0.657	0.636	0.0320
	0.742	0.720	0.0298
	0.812	0.790	0.0273
	0.870	0.850	0.0234
	0.920	0.900	0.0212
	0.963	0.946	0.0181
	1.000	0.984	0.0159
318.2	0.000	0.000	0.0484
	0.240	0.228	0.0510
	0.415	0.395	0.0473
	0.549	0.526	0.0421
	0.654	0.629	0.0384
	0.739	0.713	0.0358
	0.810	0.784	0.0322
	0.869	0.844	0.0282
	0.919	0.896	0.0254
	0.962	0.940	0.0227
	1.000	0.981	0.0190

 a_{x_3} (s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Shaker bath, incubator equipped with temperature controlling system, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in sealed containers and allowed to equilibrate for three days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a hydrophobic Drapore filters (0.45 μm , Millipore, Ireland) into tared volumetric flasks, weighed and diluted with methanol. Molar concentrations determined by spectrophotometric measurements at 345 nm. The measured molar solubilities were converted to mole fraction solubilities using the measured densities of the saturated solutions.

Source and Purity of Chemicals:

- (1) 98%, Merck Chemical Company, Germany, recrystallized several times from acetone.
- (2) 99%, Merck Chemical Company, no further purification specified.
- (3) 99.9%, Merck Chemical Company, no further purification specified.

Estimated Error:

Temperature: $\pm 0.2 \text{ K.}$ $x_3^{(s)}$: ± 0.001 .

 x_1 : $\pm 2.5\%$ (relative error).

16. Solubility of Phenanthrene in Binary Alcohol + Alcohol Solvent Mixtures

16.1. Critical evaluation of experimental solubility data

Fakhree et al. 78,79 measured the solubility of phenanthrene in binary solvent mixtures containing two alcohol solvents. The solvents included four primary alcohols (methanol, ethanol, 1-propanol, and 1-butanol) and one secondary alcohol (2propanol). There has only been a single experimental determination for the solubility of phenanthrene in each of the binary solvent systems studied. In the absence of replicate independent measurements, the experimental values were evaluated by curve-fitting the measured solubility data to Eq. (14). The calculated $S_{23,i}$ parameters for the ten binary alcohol + alcohol solvent systems studied are summarized in Table 14, along with the average absolute deviation between the experimental and back-calculated mole fraction solubilities. Examination of the numerical entries in the last column of Table 14 reveals that Eq. (14) does provide a very accurate mathematical representation for how the measured mole fraction solubilities vary with binary solvent composition. Average percent deviations range from 0.4% to 1.7%, indicating that the measured values fall on fairly smooth $\ln x_1$ versus $x_2^{(s)}$ curves. Computations showed that the molar solubility of naphthalene in the binary methanol + ethanol system at an ethanol mole fraction of $x_2^{(s)} = 0.862$ was likely high by about 5 or 6 relative percent, which is slightly larger than the reproducibility of 3.5% reported by Fakhree and co-workers.

The experimental phenanthrene solubility data for binary primary alcohol + primary alcohol and primary alcohol + secondary alcohol solvent mixtures are given in Secs. 16.2 and 16.3.

16.2. Phenanthrene solubility data in binary primary alcohol + primary alcohol solvent mixtures

Components: (1) Phenanthrene; C ₁₀ H ₈ ; [91-20-3] (2) Ethanol; C ₂ H ₆ O; [64-17-5] (3) Methanol; CH ₄ O; [67-56-1]	Original Measurements: ⁷⁸ M. A. A. Fakhree, A. Shayanfar, W. E. Acree, Jr., and A. Jouyban, J. Chem. Eng. Data 54 , 1405 (2009).
Variables: T/K = 298.15; Solvent Composition	Prepared by: W. E. Acree, Jr.

Table 14. Mathematical representation of phenanthrene solubilities in binary alcohol (2) + alcohol (3) solvent mixtures

Binary solvent system	$S_{23,i}^{a}$	% Dev ^b
Ethanol (2) + methanol (3)	0.450	1.5
	-0.192	
	-0.535	
Methanol (2) + 1-propanol (3)	1.079	1.5
	0.847	
	0.864	
Methanol $(2) + 1$ -butanol (3)	1.255	0.8
	0.604	
	0.356	
Ethanol $(2) + 1$ -propanol (3)	0.260	0.4
	-0.165	
	0.065	
Ethanol $(2) + 1$ -butanol (3)	0.339	1.1
	0.346	
	-0.244	
1-Propanol (2) + 1 -butanol (3)	-0.018	0.8
	-0.191	
	0.066	
Methanol $(2) + 2$ -propanol (3)	0.741	1.7
	0.400	
	-0.063	
Ethanol $(2) + 2$ -propanol (3)	0.238	1.5
	-0.141	
	0.106	
1-Propanol (2) + 2 -propanol (3)	0.037	0.6
	0.156	
	-0.606	
1-Butanol (2) + 2 -propanol (3)	0.116	1.5
	0.232	
	-0.263	

^aCombined NIBS/Redlich-Kister curve-fit parameters are ordered as $S_{23,0}$, $S_{23,1}$, and $S_{23,2}$.

 $\label{eq:continuous} \textbf{Experimental Values}$ Solubility of phenanthrene in ethanol + methanol mixtures a

$x_2^{(s)}$	c_1
0.000	0.133
0.071	0.138
0.148	0.147
0.229	0.152
0.316	0.165
0.409	0.170
0.510	0.178
0.618	0.177
0.735	0.180
0.862	0.192
1.000	0.187

 \bar{a}_{x_2} ^(s): initial mole fraction of component 2 in the binary solvent mixture; c_1 : molar solubility of the solute.

^bDev (%) = (100/N) $\Sigma \mid [c_1^{\text{exp}} - c_1^{\text{cal}}]/c_1^{\text{exp}} \mid$.

Method/Apparatus/Procedure:

Shaker bath, incubator equipped with temperature controlling system, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by volume. Excess solute and solvent placed in sealed containers and allowed to equilibrate for three days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a hydrophobic Drapore filters (0.45 μm , Millipore, Ireland) into tared volumetric flasks, weighed and diluted with propanone. Molar concentrations determined by spectrophotometric measurements at 345 nm. The measured molar solubilities were converted to mole fraction solubilities using the measured densities of the saturated solutions.

Source and Purity of Chemicals:

- (1) 98%, Merck Chemical Company, Germany, was used as received.
- (2) 99.9%, Merck Chemical Company, no further purification specified.
- (3) 99.5%, Merck Chemical Company, no further purification specified.

Estimated Error:

Temperature: ± 0.2 K.

 $x_2^{(s)}$: ± 0.001 .

 c_1 : $\pm 3.5\%$ (relative error).

Components: (1) Phenanthrene; C ₁₀ H ₈ ; [91-20-3] (2) Methanol; CH ₄ O; [67-56-1] (3) 1-Propanol; C ₃ H ₈ O; [71-23-8]	Original Measurements: ⁷⁹ M. A. A. Fakhree, W. E. Acree, Jr., and A. Jouyban, J. Chem. Eng. Data 55 , 531 (2010).
Variables: T/K = 298 15: Solvent Composition	Prepared by:

Experimental Values

Solubility of phenanthrene in methanol + 1-propanol mixtures^a

$x_2^{(s)}$	c_1
0.000	0.174
0.170	0.187
0.316	0.196
0.442	0.202
0.552	0.208
0.649	0.200
0.735	0.193
0.812	0.183
0.881	0.173
0.943	0.156
1.000	0.133

 $^{{}^{}a}x_{2}{}^{(s)}$: initial mole fraction of component 2 in the binary solvent mixture; c_{1} : molar solubility of the solute.

Auxiliary Information

Method/Apparatus/Procedure:

Shaker bath, incubator equipped with temperature controlling system, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by volume. Excess solute and solvent placed in sealed containers and allowed to equilibrate for three days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a hydrophobic Drapore filters (0.45 μm , Millipore, Ireland) into tared volumetric flasks, weighed and diluted with propanone. Molar concentrations determined by spectrophotometric measurements at 345 nm. The measured molar solubilities were converted to mole fraction solubilities using the measured densities of the saturated solutions.

Source and Purity of Chemicals:

- (1) 98%, Merck Chemical Company, Germany, was recrystallized several times from acetone.
- (2) 99.5%, Merck Chemical Company, no further purification specified.
- (3) 99.5%, Merck Chemical Company, no further purification specified.

Estimated Error:

Temperature: ± 0.2 K.

 $x_2^{(s)}$: ±0.001.

 c_1 : $\pm 4.2\%$ (relative error).

Components: (1) Phenanthrene; C ₁₀ H ₈ ; [91-20-3] (2) Methanol; CH ₄ O; [67-56-1] (3) 1-Butanol; C ₄ H ₁₀ O; [71-36-3]	Original Measurements: ⁷⁹ M. A. A. Fakhree, W. E. Acree, Jr., and A. Jouyban, J. Chem. Eng. Data 55 , 531 (2010).
Variables: $T/K = 298.15$; Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of phenanthrene in methanol + 1-butanol mixtures^a

$x_2^{(s)}$	c_1
0.000	0.194
0.201	0.213
0.361	0.216
0.492	0.219
0.601	0.217
0.693	0.207
0.772	0.198
0.841	0.181
0.900	0.163
0.953	0.149
1.000	0.133

 $[\]bar{\mathbf{a}}_{x_2}^{(s)}$: initial mole fraction of component 2 in the binary solvent mixture; c_1 : molar solubility of the solute.

Auxiliary Information

Method/Apparatus/Procedure:

Shaker bath, incubator equipped with temperature controlling system, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by volume. Excess solute and solvent placed in sealed containers and allowed to equilibrate for three days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a hydrophobic Drapore filters (0.45 μm , Millipore, Ireland) into tared volumetric flasks, weighed and diluted with propanone. Molar concentrations determined by spectrophotometric measurements at 345 nm. The measured molar solubilities were converted to mole fraction solubilities using the measured densities of the saturated solutions.

Source and Purity of Chemicals:

- (1) 98%, Merck Chemical Company, Germany, was recrystallized several times from acetone.
- (2) 99.5%, Merck Chemical Company, no further purification specified.
- (3) 99.5%, Merck Chemical Company, no further purification specified.

Estimated Error:

Temperature: $\pm 0.2~\text{K}$.

 $x_2^{(s)}$: ±0.001.

 c_1 : $\pm 4.2\%$ (relative error).

~	
Components:	Original Measurements:
(1) Phenanthrene; $C_{10}H_8$; [91-20-3]	⁷⁹ M. A. A. Fakhree, W. E. Acree,
(2) Ethanol; C ₂ H ₆ O; [64-17-5]	Jr., and A. Jouyban, J. Chem. Eng.
(3) 1-Propanol; C ₃ H ₈ O; [71-23-8]	Data 55 , 531 (2010).
Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of phenanthrene in ethanol + 1-propanol mixtures^a

$x_2^{(s)}$	c_1
0.000	0.174
0.125	0.184
0.243	0.187
0.354	0.188
0.461	0.190
0.562	0.190
0.658	0.189
0.749	0.187
0.837	0.186
0.920	0.183
1.000	0.182

 a_{x_2} (s): initial mole fraction of component 2 in the binary solvent mixture; c_1 : molar solubility of the solute.

Auxiliary Information

Method/Apparatus/Procedure:

Shaker bath, incubator equipped with temperature controlling system, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by volume. Excess solute and solvent placed in sealed containers and allowed to equilibrate for three days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a hydrophobic Drapore filters (0.45 μm , Millipore, Ireland) into tared volumetric flasks, weighed and diluted with propanone. Molar concentrations determined by spectrophotometric measurements at 345 nm. The measured molar solubilities were converted to mole fraction solubilities using the measured densities of the saturated solutions.

Source and Purity of Chemicals:

- (1) 98%, Merck Chemical Company, Germany, was recrystallized several times from acetone.
- (2) 99.9%, Merck Chemical Company, no further purification specified.
- (3) 99.5%, Merck Chemical Company, no further purification specified.

Estimated Error:

Temperature: ± 0.2 K.

 $x_2^{(s)}$: ± 0.001 .

 c_1 : $\pm 4.2\%$ (relative error).

Variables: T/K = 298.15; Solvent Composition	Prepared by: W. E. Acree, Jr.
Components: (1) Phenanthrene; C ₁₀ H ₈ ; [91-20-3] (2) Ethanol; C ₂ H ₆ O; [64-17-5] (3) 1-Butanol; C ₄ H ₁₀ O; [71-36-3]	Original Measurements: ⁷⁹ M. A. A. Fakhree, W. E. Acree, Jr., and A. Jouyban, J. Chem. Eng. Data 55 , 531 (2010).

Experimental Values

Solubility of phenanthrene in ethanol + 1-butanol mixtures^a

$x_2^{(s)}$	c_1
0.000	0.194
0.148	0.193
0.282	0.195
0.402	0.198
0.511	0.203
0.610	0.204
0.702	0.205
0.785	0.203
0.862	0.197
0.934	0.186
1.000	0.182

 \bar{a}_{x_2} ^(s): initial mole fraction of component 2 in the binary solvent mixture; c_1 : molar solubility of the solute.

Auxiliary Information

Method/Apparatus/Procedure:

Shaker bath, incubator equipped with temperature controlling system, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by volume. Excess solute and solvent placed in sealed containers and allowed to equilibrate for three days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a hydrophobic Drapore filters (0.45 μm , Millipore, Ireland) into tared volumetric flasks, weighed and diluted with propanone. Molar concentrations determined by spectrophotometric measurements at 345 nm. The measured molar solubilities were converted to mole fraction solubilities using the measured densities of the saturated solutions.

Source and Purity of Chemicals:

- (1) 98%, Merck Chemical Company, Germany, was recrystallized several times from acetone.
- (2) 99.9%, Merck Chemical Company, no further purification specified.
- (3) 99.5%, Merck Chemical Company, no further purification specified.

Estimated Error:

Temperature: ±0.2 K.

 $x_2^{(s)}$: ± 0.001 .

Components: (1) Phenanthrene; C ₁₀ H ₈ ; [91-20-3] (2) 1-Propanol; C ₃ H ₈ O; [71-23-8] (3) 1-Butanol; C ₄ H ₁₀ O; [71-36-3]	Original Measurements: ⁷⁹ M. A. A. Fakhree, W. E. Acree, Jr., and A. Jouyban, J. Chem. Eng. Data 55 , 531 (2010).
Variables: T/K = 298.15; Solvent Composition	Prepared by: W. E. Acree, Jr.

Solubility of phenanthrene in 1-propanol + 1-butanol mixtures^a

$x_2^{(s)}$	c_1
0.000	0.194
0.120	0.194
0.234	0.193
0.344	0.190
0.449	0.188
0.550	0.182
0.647	0.177
0.741	0.172
0.830	0.171
0.917	0.175
1.000	0.174

 $[\]bar{a}_{x_2}$ (s): initial mole fraction of component 2 in the binary solvent mixture; c_1 : molar solubility of the solute.

Experimental Values

Solubility of phenanthrene in methanol + 2-propanol mixtures^a

$x_2^{(s)}$	c_1
0.000	0.124
0.174	0.135
0.321	0.142
0.447	0.147
0.557	0.157
0.654	0.160
0.739	0.153
0.815	0.154
0.883	0.148
0.944	0.139
1.000	0.133

 $[\]overline{a}_{x_2}$ (s): initial mole fraction of component 2 in the binary solvent mixture; c_1 : molar solubility of the solute.

Auxiliary Information

Method/Apparatus/Procedure:

Shaker bath, incubator equipped with temperature controlling system, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by volume. Excess solute and solvent placed in sealed containers and allowed to equilibrate for three days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a hydrophobic Drapore filters (0.45 μm , Millipore, Ireland) into tared volumetric flasks, weighed and diluted with propanone. Molar concentrations determined by spectrophotometric measurements at 345 nm. The measured molar solubilities were converted to mole fraction solubilities using the measured densities of the saturated solutions.

Source and Purity of Chemicals:

- (1) 98%, Merck Chemical Company, Germany, was recrystallized several times from acetone.
- (2) 99.9%, Merck Chemical Company, no further purification specified.
- (3) 99.5%, Merck Chemical Company, no further purification specified.

Estimated Error:

Temperature: ± 0.2 K.

 $x_2^{(s)}$: ± 0.001 .

 c_1 : $\pm 4.2\%$ (relative error).

Auxiliary Information

Method/Apparatus/Procedure:

Shaker bath, incubator equipped with temperature controlling system, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by volume. Excess solute and solvent placed in sealed containers and allowed to equilibrate for three days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a hydrophobic Drapore filters (0.45 μm , Millipore, Ireland) into tared volumetric flasks, weighed and diluted with propanone. Molar concentrations determined by spectrophotometric measurements at 345 nm. The measured molar solubilities were converted to mole fraction solubilities using the measured densities of the saturated solutions.

Source and Purity of Chemicals:

- (1) 98%, Merck Chemical Company, Germany, was used as received.
- (2) 99.5%, Merck Chemical Company, no further purification specified.
- (3) 99.5%, Merck Chemical Company, no further purification specified.

Estimated Error:

Temperature: ± 0.2 K.

 $x_2^{(s)}$: ± 0.001 .

 c_1 : $\pm 3.5\%$ (relative error).

16.3. Phenanthrene solubility data in binary primary alcohol + secondary alcohol solvent mixtures

Components: (1) Phenanthrene; C ₁₀ H ₈ ; [91-20-3] (2) Methanol; CH ₄ O; [67-56-1] (3) 2-Propanol; C ₃ H ₈ O; [67-63-0]	Original Measurements: ⁷⁸ M. A. A. Fakhree, A. Shayanfar, W. E. Acree, Jr., and A. Jouyban, J. Chem. Eng. Data 54 , 1405 (2009).
Variables:	Prepared by:
T/K = 298.15; Solvent Composition	W. E. Acree, Jr.

Components: (1) Phenanthrene; C ₁₀ H ₈ ; [91-20-3] (2) Ethanol; C ₂ H ₆ O; [64-17-5] (3) 2-Propanol; C ₃ H ₈ O; [67-63-0]	Original Measurements: ⁷⁸ M. A. A. Fakhree, A. Shayanfar, W. E. Acree, Jr., and A. Jouyban, J. Chem. Eng. Data 54 , 1405 (2009).
Variables: $T/K = 298.15$; Solvent Composition	Prepared by: W. E. Acree, Jr.

Solubility of phenanthrene in ethanol + 2-propanol mixtures^a

$x_2^{(s)}$	c_1
0.000	0.124
0.127	0.138
0.247	0.143
0.359	0.152
0.466	0.159
0.567	0.169
0.663	0.170
0.753	0.170
0.840	0.176
0.922	0.184
1.000	0.187

 \bar{a}_{x_2} (s): initial mole fraction of component 2 in the binary solvent mixture; c_1 : molar solubility of the solute.

Auxiliary Information

Method/Apparatus/Procedure:

Shaker bath, incubator equipped with temperature controlling system, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by volume. Excess solute and solvent placed in sealed containers and allowed to equilibrate for three days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a hydrophobic Drapore filters (0.45 μm , Millipore, Ireland) into tared volumetric flasks, weighed and diluted with propanone. Molar concentrations determined by spectrophotometric measurements at 345 nm. The measured molar solubilities were converted to mole fraction solubilities using the measured densities of the saturated solutions.

Source and Purity of Chemicals:

- (1) 98%, Merck Chemical Company, Germany, was used as received.
- (2) 99.9%, Merck Chemical Company, no further purification specified.
- (3) 99.5%, Merck Chemical Company, no further purification specified.

Estimated Error:

Temperature: ± 0.2 K. $x_2^{(s)}$: ± 0.001 .

 c_1 : $\pm 3.5\%$ (relative error).

T/K = 298.15; Solvent Composition

Variables:	Prepared by:
(2) 1-Propanol; C ₃ H ₈ O; [71-23-8] (3) 2-Propanol; C ₃ H ₈ O; [67-63-0]	W. E. Acree, Jr., and A. Jouyban. J. Chem. Eng. Data 54 , 1405 (2009).
Components: (1) Phenanthrene; C ₁₀ H ₈ ; [91-20-3]	Original Measurements: 78M. A. A. Fakhree, A. Shayanfar

Experimental Values

W. E. Acree, Jr.

Solubility of phenanthrene in 1-propanol + 2-propanol mixtures^a

$x_2^{(s)}$	c_1
0.000	0.124
0.102	0.122
0.204	0.130
0.305	0.134

0.405	0.141
0.505	0.148
0.605	0.153
0.705	0.157
0.803	0.161
0.902	0.165
1.000	0.174

 \bar{a}_{x_2} ^(s): initial mole fraction of component 2 in the binary solvent mixture; c_1 : molar solubility of the solute.

Auxiliary Information

Method/Apparatus/Procedure:

Shaker bath, incubator equipped with temperature controlling system, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by volume. Excess solute and solvent placed in sealed containers and allowed to equilibrate for three days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a hydrophobic Drapore filters (0.45 μm , Millipore, Ireland) into tared volumetric flasks, weighed and diluted with propanone. Molar concentrations determined by spectrophotometric measurements at 345 nm. The measured molar solubilities were converted to mole fraction solubilities using the measured densities of the saturated solutions.

Source and Purity of Chemicals:

- (1) 98%, Merck Chemical Company, Germany, was used as received.
- (2) 99.5%, Merck Chemical Company, no further purification specified.
- (3) 99.5%, Merck Chemical Company, no further purification specified.

Estimated Error:

Temperature: ±0.2 K.

 $x_2^{(s)}$: ±0.001.

 c_1 : $\pm 3.5\%$ (relative error).

Components: (1) Phenanthrene; C ₁₀ H ₈ ; [91-20-3] (2) 1-Butanol; C ₄ H ₁₀ O; [71-36-3] (3) 2-Propanol; C ₃ H ₈ O; [67-63-0]	Original Measurements: ⁷⁸ M. A. A. Fakhree, A. Shayanfar, W. E. Acree, Jr., and A. Jouyban, J. Chem. Eng. Data 54 , 1405
Variables: $T/K = 298.15$: Solvent Composition	(2009). Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of phenanthrene in 1-butanol + 2-propanol mixtures^a

$x_2^{(s)}$	c_1
0.000	0.124
0.085	0.124
0.173	0.135
0.264	0.138
0.358	0.146
0.455	0.156
0.556	0.159
0.661	0.168
0.770	0.174
0.883	0.183
1.000	0.188

 ${}^{a}x_{2}{}^{(s)}$: initial mole fraction of component 2 in the binary solvent mixture; c_{1} : molar solubility of the solute.

Method/Apparatus/Procedure:

Shaker bath, incubator equipped with temperature controlling system, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by volume. Excess solute and solvent placed in sealed containers and allowed to equilibrate for three days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a hydrophobic Drapore filters (0.45 μm , Millipore, Ireland) into tared volumetric flasks, weighed and diluted with propanone. Molar concentrations determined by spectrophotometric measurements at 345 nm. The measured molar solubilities were converted to mole fraction solubilities using the measured densities of the saturated solutions

Source and Purity of Chemicals:

- (1) 98%, Merck Chemical Company, Germany, was used as received.
- (2) 99.5%, Merck Chemical Company, no further purification specified.
- (3) 99.5%, Merck Chemical Company, no further purification specified.

Estimated Error:

Temperature: ± 0.2 K.

 $x_2^{(s)}$: ± 0.001 .

 c_1 : $\pm 3.5\%$ (relative error).

17. Solubility of Phenothiazine in Binary Alcohol + 1,2-Alkanediol Solvent Mixtures

17.1. Critical evaluation of experimental solubility

Ahmadian *et al.*⁸⁰ determined the solubility of phenothiazine in binary ethanol +1,2-propanediol (also called propylene glycol) solvent mixtures at 298.15 K. There has only been a single experimental determination for the solubility of phenothiazine in this binary solvent system. Analysis of the experimental solubility for phenothiazine dissolved in ethanol (2) + 1,2-propanediol (3) yielded the following mathematical representation:

$$\ln x_1^{\text{sat}} (\text{at } 298 \text{ K})$$

$$= x_2^{(s)} \ln (0.008753) + x_3^{(s)} \ln (0.004226)$$

$$+ x_2^{(s)} x_3^{(s)} [0.430 - 0.502 (x_2^{(s)} - x_3^{(s)})$$

$$+ 0.603 (x_2^{(s)} - x_3^{(s)})^2]$$
(19)

having an average absolute relative deviation between observed and back-calculated phenothiazine solubility of 1.6%.

17.2. Phenothiazine solubility data in binary ethanol + 1,2-propanediol solvent mixtures

Components: (1) Phenothiazine; C ₁₂ H ₉ NS; [92-84-2] (2) Ethanol; C ₂ H ₆ O; [64-17-5] (3) 1,2-Propanediol; C ₃ H ₈ O ₂ ; [57-55-6]	Original Measurements: 80 S. Ahmadian, V. Panahi-Azar, M. A. A. Fakhree, W. E. Acree, Jr. and A. Jouyban, J. Chem. Eng. Data 56, 4352 (2011).
Variables: $T/K = 298.2$; Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of phenothiazine in ethanol + 1,2-propanediol mixtures^a

$x_3^{(s)}$	x_3	x_1
0.000	0.000	0.00875
0.184	0.183	0.00875
0.337	0.334	0.00888
0.465	0.461	0.00853
0.575	0.570	0.00838
0.670	0.665	0.00794
0.753	0.747	0.00747
0.826	0.820	0.00704
0.890	0.884	0.00642
0.948	0.943	0.00527
1.000	0.996	0.00423

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Shaker bath, incubator equipped with temperature controlling system, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by volume. Excess solute and solvent placed in sealed containers and allowed to equilibrate for three days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a hydrophobic Drapore filters (0.45 μm , Millipore, Ireland) into tared volumetric flasks, weighed and diluted with ethanol. Molar concentrations determined by spectrophotometric measurements at 317 nm. The measured molar solubilities were converted to mole fraction solubilities using the measured densities of the saturated solutions.

Source and Purity of Chemicals:

- (1) 98%, Merck Chemical Company, Germany, recrystallized several times from acetone.
- (2) 99.9%, Scharlau Chemie Company, Spain, no further purification specified. (3) 99.5%, Scharlau Chemie Company, no further purification specified.

Estimated Error:

Temperature: ± 0.2 K.

 $x_3^{(s)}$: ± 0.001 .

 x_1 : $\pm 2.7\%$ (relative error).

18. Solubility of Pyrene in Binary Alkane + Alcohol Solvent Mixtures

18.1. Critical evaluation of experimental solubility data

Volume 59 in the IUPAC Solubility Data Series³ contained solubility data for 14 binary solvent mixtures containing hexane, heptane, octane, cyclohexane, methylcyclohexane, and 2,2,4-trimethylpentane with 1-propanol and 2-propanol. For the most part, the solubility data were measured at 299.2 K and seven compositions spanning the entire binary mole fraction range. To conserve space, data from the earlier volume will not be repeated in this volume. Attention will be focused on compiling experimental values determined after Vol. 59 was published.

Acree and co-workers^{32,81–83} measured the solubility of pyrene in several binary alkane + 1-butanol, alkane + 2-butanol, alkane + 2-methyl-1-propanol, and alkane + 1-octanol solvent mixtures at 299.15 K. The alkane solvents included hexane, heptane, octane, cyclohexane, methylcyclohexane, 2,2,4-trimethylpentane, and *tert*-butylcyclohexane (also called (1,1-dimethylethyl)cyclohexane). There has only been a single experimental determination for the solubility of pyrene in each of the binary solvent systems studied. In the absence of replicate independent measurements, the experimental values were evaluated by curve-fitting the measured solubility data to Eq. (10).

The calculated $S_{23,i}$ parameters for the 25 binary alkane + alcohol solvent systems studied are summarized in Table 15, along with the average absolute deviation between the experimental and back-calculated mole fraction solubilities. Examination of the numerical entries in the last column of Table 15 reveals that Eq. (10) does provide a very accurate mathematical representation for how the measured mole fraction solubilities vary with binary solvent composition. Average percent deviations range from 0.1% to 1.4%, indicating that the measured values fall on smooth $\ln x_1$ versus $x_2^{(s)}$ curves. None of the experimental data points was flagged as an outlier.

The experimental pyrene solubility data for binary alkane + primary alcohol and binary alkane + secondary alcohol solvent mixtures are given in Secs. 18.2 and 18.3.

18.2. Pyrene solubility data in binary alkane + primary alcohol solvent mixtures

Components:	Original Measurements:
(1) Pyrene; C ₁₄ H ₁₀ ; [129-00-0]	⁸¹ T. L. Borders, M. E. McHale,
(2) Hexane; C ₆ H ₁₄ ; [110-54-3]	J. R. Powell, K. S. Coym, C. E.
(3) 1-Butanol; C ₄ H ₁₀ O; [71-36-3]	Hernández, L. E. Roy, W. E.
	Acree, Jr., D. C. Williams, and
	S. W. Campbell, Fluid Phase
	Equilib. 146 , 207 (1998).
Variables:	Prepared by:
T/K = 299.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of pyrene in hexane + 1-butanol mixtures^a

$\overline{x_3}^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.00857
0.1567	0.1552	0.00972
0.2639	0.2613	0.00969
0.4865	0.4821	0.00910
0.5882	0.5830	0.00876
0.6833	0.6776	0.00836
0.8509	0.8446	0.00735
0.9170	0.9107	0.00689
1.0000	0.9938	0.00622

 $[\]bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Table 15. Mathematical representation of pyrene solubilities in binary alkane (2) + alcohol (3) solvent mixtures

Binary solvent system	$S_{23,i}^{a}$	% Dev ^b
Hexane $(2) + 1$ -butanol (3)	0.882	0.1
	0.299	
	0.551	
Heptane $(2) + 1$ -butanol (3)	1.075	0.3
	0.189	
0 (0) 1.1 1.(0)	0.388	0.7
Octane $(2) + 1$ -butanol (3)	1.239	0.7
	-0.039	
Contabana (2) + 1 bota = 1 (2)	0.365 0.976	0.6
Cyclohexane (2) + 1-butanol (3)	0.462	0.6
	0.402	
Methylcyclohexane (2) + 1-butanol (3)	1.143	0.5
With yie yelonexane (2) + 1-butanor (3)	0.269	0.5
	0.629	
2,2,4-Trimethylpentane (2) + 1-butanol (3)	0.826	0.3
2,2,1 Timethy pentane (2) 1 Toutanor (3)	0.105	0.5
	0.875	
Hexane $(2) + 2$ -butanol (3)	1.344	0.5
Tienane (2) * 2 catalior (c)	-0.128	0.0
	0.216	
Heptane $(2) + 2$ -butanol (3)	1.583	0.5
	-0.232	
	0.392	
Octane $(2) + 2$ -butanol (3)	1.631	0.5
	-0.490	
	0.794	
Cyclohexane (2) + 2-butanol (3)	1.426	0.5
	0.064	
	0.447	
Methylcyclohexane $(2) + 2$ -butanol (3)	1.512	0.5
	-0.091	
	0.670	
2,2,4-Trimethylpentane (2) + 2-butanol (3)	1.148	0.7
	-0.274	
	0.558	
Hexane $(2) + 2$ -methyl-1-propanol (3)	1.407	0.2
	0.072	
H (0) (0) (1) (1) (1)	0.211	0.4
Heptane $(2) + 2$ -methyl-1-propanol (3)	1.604	0.4
	-0.151	
Octobe (2) + 2 mothyl 1 memoral (2)	0.545	0.6
Octane $(2) + 2$ -methyl-1-propanol (3)	1.794	0.6
	-0.387 0.419	
Cyclohexane (2) + 2-methyl-1-propanol (3)	1.316	0.6
Cyclonexane (2) + 2-metryl-1-propanor (3)	0.427	0.0
	0.427	
Methylcyclohexane (2) + 2-methyl-1-propanol	1.624	0.3
(3)	0.138	0.5
	0.616	
2,2,4-Trimethylpentane (2) + 2-methyl-1-	1.605	0.3
propanol (3)	0.207	
FF(c)	0.532	
Hexane $(2) + 1$ -octanol (3)	0.828	1.4
	0.836	
	0.855	
Heptanol $(2) + 1$ -octanol (3)	0.667	1.0
- · · · · · · · · · · · · · · · · · · ·	0.664	
	0.574	
Octane $(2) + 1$ -octanol (3)	0.591	1.0
	0.557	
	0.430	

Table 15. Mathematical representation of pyrene solubilities in binary alkane (2) + alcohol (3) solvent mixtures—Continued

Binary solvent system	$S_{23,i}^{a}$	% Dev ^b
Cyclohexane (2) + 1-octanol (3)	0.588	1.4
	0.875	
	1.011	
Methylcyclohexane (2) + 1-octanol (3)	0.463	1.3
	0.880	
	0.832	
2,2,4-Trimethylpentane (2) + 1-octanol (3)	0.704	0.8
	0.628	
	0.584	
tert-Butylcyclohexane (2) + 1-octanol (3)	0.518	0.9
	0.470	
	0.438	

^aCombined NIBS/Redlich-Kister curve-fit parameters are ordered as $S_{23,0}$, $S_{23,1}$, and $S_{23,2}$.

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 372 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from methanol.
- (2) 99+%, Aldrich Chemical Company.
- (3) 99.8%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.05 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components: (1) Pyrene; C ₁₄ H ₁₀ ; [129-00-0] (2) Heptane; C ₇ H ₁₆ ; [142-82-5] (3) 1-Butanol; C ₄ H ₁₀ O; [71-36-3]	Original Measurements: 81 T. L. Borders, M. E. McHale, J. R. Powell, K. S. Coym, C. E. Hernández, L. E. Roy, W. E. Acree, Jr., D. C. Williams, and S. W. Campbell, Fluid Phase Equilib. 146, 207 (1998)
Variables:	Prepared by:
T/K = 299.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of pyrene in heptane + 1-butanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.01102
0.1641	0.1621	0.01210
0.2924	0.2889	0.01205
0.5148	0.5093	0.01073
0.6140	0.6079	0.00990
0.7066	0.7000	0.00920
0.8570	0.8504	0.00775
0.9358	0.9293	0.00694
1.0000	0.9938	0.00622

 \bar{a}_{x_3} ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 372 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from methanol.
- (2) 99+%, HPLC grade, Aldrich Chemical Company.
- (3) 99.8%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.05 K.

 $x_3^{(s)}$: ± 0.0001 .

Components: (1) Pyrene; C ₁₄ H ₁₀ ; [129-00-0] (2) Octane; C ₈ H ₁₈ ; [111-65-9]	Original Measurements: ⁸¹ T. L. Borders, M. E. McHale, J. R. Powell, K. S. Coym, C. E. Hernández,
(3) 1-Butanol; $C_4H_{10}O$; [71-36-3]	L. E. Roy, W. E. Acree, Jr., D. C. Williams, and S. W. Campbell, Fluid Phase Equilib. 146 , 207 (1998).
Variables: $T/K = 299.15$; Solvent Composition	Prepared by: W. E. Acree, Jr.

^bDev (%) = $(100/N) \Sigma | [x_1^{\text{exp}} - x_1^{\text{cal}}]/x_1^{\text{exp}} |$.

Solubility of pyrene in octane + 1-butanol mixtures^a

$x_3^{(s)}$		
Х3	<i>x</i> ₃	x_1
0.0000	0.0000	0.01372
0.1797	0.1794	0.01462
0.3107	0.3064	0.01397
0.5445	0.5379	0.01206
0.6422	0.6351	0.01105
0.7321	0.7247	0.01007
0.8807	0.8737	0.00798
0.9396	0.9329	0.00712
1.0000	0.9938	0.00622

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 372 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from methanol.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99.8%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ±0.05 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components: (1) Pyrene; C ₁₄ H ₁₀ ; [129-00-0] (2) Cyclohexane; C ₆ H ₁₂ ; [110-82-7] (3) 1-Butanol; C ₄ H ₁₀ O; [71-36-3]	Original Measurements: 81 T. L. Borders, M. E. McHale, J. R. Powell, K. S. Coym, C. E. Hernández, L. E. Roy, W. E. Acree, Jr., D. C. Williams, and S. W. Campbell, Fluid Phase Equilib. 146, 207 (1998).
Variables:	Prepared by:
T/K = 299.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of pyrene in cyclohexane + 1-butanol mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.01100
0.1344	0.1327	0.01229
0.2319	0.2291	0.01213
0.4311	0.4263	0.01112

0.5380	0.5325	0.01030
0.6433	0.6373	0.00940
0.8226	0.8162	0.00776
0.9045	0.8981	0.00712
1.0000	0.9938	0.00622

 \overline{a}_{x_3} (s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 372 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from methanol.
- (2) 99.9+%, HPLC grade, Aldrich Chemical Company.
- (3) 99.8%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.05 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components:	Original Measurements:
(1) Pyrene; C ₁₄ H ₁₀ ; [129-00-0]	⁸¹ T. L. Borders, M. E. McHale,
(2) Methylcyclohexane; C ₇ H ₁₄ ;	J. R. Powell, K. S. Coym, C. E.
[108-87-2]	Hernández, L. E. Roy, W. E.
(3) 1-Butanol; C ₄ H ₁₀ O; [71-36-3]	Acree, Jr., D. C. Williams, and
	S. W. Campbell, Fluid Phase
	Equilib. 146, 207 (1998).
Variables:	Prepared by:
T/K = 299.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of pyrene in methylcyclohexane + 1-butanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.01292
0.1542	0.1520	0.01434
0.2634	0.2597	0.01389
0.4752	0.4694	0.01219
0.5829	0.5765	0.01106
0.6717	0.6649	0.01011
0.8451	0.8381	0.00831
0.9194	0.9127	0.00726
1.0000	0.9938	0.00622

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 372 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from methanol.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99.8%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.05 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Variables:	Prepared by:
(3) 1-Butanol; C ₄ H ₁₀ O; [71-36-3]	
[540-84-1]	(2001).
(2) 2,2,4-Trimethylpentane; C_8H_{18} ;	Jr., J. Chem. Eng. Data 46, 1464
(1) Pyrene; C ₁₄ H ₁₀ ; [129-00-0]	³² E. M. Debase and W. E. Acree
Components:	Original Measurements:

T/K = 299.15; Solvent Composition

Experimental Values

Solubility of pyrene in 2,2,4-trimethylpentane + 1-butanol mixtures^a

W. E. Acree, Jr.

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.00720
0.2001	0.1984	0.00848
0.3122	0.3095	0.00849
0.5407	0.5363	0.00817
0.6409	0.6357	0.00806
0.7307	0.7250	0.00779
0.8832	0.8769	0.00716
0.9334	0.9270	0.00687
1.0000	0.9938	0.00622

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 372 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from anhydrous methanol.
- (2) 99.8%, anhydrous, Aldrich Chemical Company.
- (3) 99.8+%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components: (1) Pyrene; C ₁₄ H ₁₀ ; [129-00-0] (2) Hexane; C ₆ H ₁₄ ; [110-54-3] (3) 2-Methyl-1-propanol; C ₄ H ₁₀ O; [78-83-1]	Original Measurements: 81 T. L. Borders, M. E. McHale, J. R. Powell, K. S. Coym, C. E. Hernández, L. E. Roy, W. E. Acree, Jr., D. C. Williams, and S. W. Campbell, Fluid Phase Equilib. 146, 207 (1998).
Variables: T/K = 299.15; Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of pyrene in hexane + 2-methyl-1-propanol mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.00857
0.1458	0.1445	0.00907
0.2706	0.2682	0.00878
0.4827	0.4790	0.00764
0.5899	0.5859	0.00682
0.6823	0.6782	0.00603
0.8488	0.8449	0.00455
0.9270	0.9234	0.00387
1.0000	0.9967	0.00326

 ${}^{a}x_{3}$ (s): initial mole fraction of component 3 in the binary solvent mixture; x_{1} : mole fraction solubility of the solute; x_{3} : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 372 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from methanol.
- (2) 99+%, Aldrich Chemical Company.
- (3) 99+%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.05 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components:	Original Massurements
•	Original Measurements: 81T. L. Borders, M. E. McHale,
(1) Pyrene; C ₁₄ H ₁₀ ; [129-00-0]	
(2) Heptane; C_7H_{16} ; [142-82-5]	J. R. Powell, K. S. Coym, C. E.
(3) 2-Methyl-1-propanol; $C_4H_{10}O$;	Hernández, L. E. Roy, W. E.
[78-83-1]	Acree, Jr., D. C. Williams, and
	S. W. Campbell, Fluid Phase
	Equilib. 146, 207 (1998).
Variables:	Prepared by:
T/K = 299.15: Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of pyrene in heptane + 2-methyl-1-propanol mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.01102
0.1679	0.1660	0.01146
0.2885	0.2854	0.01078
0.5141	0.5095	0.00886
0.6110	0.6062	0.00781
0.7071	0.7024	0.00666
0.8500	0.8457	0.00502
0.9221	0.9182	0.00418
1.0000	0.9967	0.00326

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 372 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from methanol.
- (2) 99+%, HPLC grade, Aldrich Chemical Company.
- (3) 99+%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.05 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Original Measurements: 81T. L. Borders, M. E. McHale, J. R. Powell, K. S. Coym, C. E. Hernández, L. E. Roy, W. E. Acree, Jr., D. C. Williams, and S. W. Campbell, Fluid Phase Equilib. 146, 207 (1998).
Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of pyrene in octane + 2-methyl-1-propanol mixtures^a

$x_3^{(s)}$	Х3	<i>x</i> ₁
0.0000	0.0000	0.01372
0.1796	0.1794	0.01373
0.3174	0.3135	0.01244
0.5436	0.5383	0.00984
0.6357	0.6302	0.00858
0.7122	0.7068	0.00758
0.8774	0.8730	0.00501
0.9473	0.9435	0.00397
1.0000	0.9967	0.00326

 \bar{a}_{x_3} ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 372 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from methanol.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99+%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.05 K.

 $x_3^{(s)}$: ± 0.0001 .

Components: (1) Pyrene; C ₁₄ H ₁₀ ; [129-00-0] (2) Cyclohexane; C ₆ H ₁₂ ; [110-82-7] (3) 2-Methyl-1-propanol; C ₄ H ₁₀ O;	Original Measurements: 81 T. L. Borders, M. E. McHale, J. R. Powell, K. S. Coym, C. E. Hernández, L. E. Roy, W. E.
[78-83-1]	Acree, Jr., D. C. Williams, and S. W. Campbell, Fluid Phase Equilib. 146 , 207 (1998).
Variables: $T/K = 299.15$; Solvent Composition	Prepared by: W. E. Acree, Jr.

Solubility of pyrene in cyclohexane + 2-methyl-1-propanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.01100
0.1365	0.1349	0.01149
0.2315	0.2290	0.01092
0.4339	0.4300	0.00904
0.5428	0.5385	0.00783
0.6534	0.6491	0.00660
0.8253	0.8214	0.00476
0.9057	0.9021	0.00400
1.0000	0.9967	0.00326

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 372 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from methanol.
- (2) 99.9+%, HPLC grade, Aldrich Chemical Company.
- (3) 99+%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.05 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components: (1) Pyrene; C ₁₄ H ₁₀ ; [129-00-0] (2) Methylcyclohexane; C ₇ H ₁₄ ; [108-87-2] (3) 2-Methyl-1-propanol; C ₄ H ₁₀ O; [78-83-1]	Original Measurements: 81 T. L. Borders, M. E. McHale, J. R. Powell, K. S. Coym, C. E. Hernández, L. E. Roy, W. E. Acree, Jr., D. C. Williams, and S. W. Campbell, Fluid Phase Equilib. 146, 207 (1998).
Variables: <i>T</i> /K = 299.15; Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of pyrene in methylcyclohexane + 2-methyl-1-propanol mixtures $^{\rm a}$

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.01292
0.1423	0.1404	0.01365
0.2639	0.2605	0.01272
0.4723	0.4675	0.01016

0.5618	0.5568	0.00892
0.6799	0.6750	0.00725
0.8433	0.8390	0.00513
0.9285	0.9247	0.00410
1.0000	0.9967	0.00326

 \overline{a}_{x_3} (s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 372 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from methanol.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99+%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.05 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components: (1) Pyrene; C ₁₄ H ₁₀ ; [129-00-0] (2) Hexane; C ₄ H ₁₄ ; [110-54-3]	Original Measurements: 82 A. I. Zvaigzne and W. E. Acree, Jr., J. Chem. Eng. Data 40, 1127
(2) Hexane; C_6H_{14} , [110-34-3] (3) 1-Octanol; $C_8H_{18}O$; [111-87-5]	(1995).
Variables:	Prepared by:
T/K = 299.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of pyrene in hexane + 1-octanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.00857
0.0942	0.0931	0.01131
0.1759	0.1768	0.01262
0.3561	0.3508	0.01499
0.4589	0.4515	0.01615
0.5504	0.5410	0.01705
0.7636	0.7490	0.01917
0.8707	0.8535	0.01978
1.0000	0.9792	0.02077

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 372 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from methanol.
- (2) 99%, Aldrich Chemical Company.
- (3) 99+%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

T/K = 299.15; Solvent Composition

Variables	Propored by
(3) 1-Octanol; C ₈ H ₁₈ O; [111-87-5]	(1995).
(2) Heptane; C ₇ H ₁₆ ; [142-82-5]	Jr., J. Chem. Eng. Data 40, 1127
(1) Pyrene; C ₁₄ H ₁₀ ; [129-00-0]	⁸² A. I. Zvaigzne and W. E. Acree,
Components:	Original Measurements:

Experimental Values

W. E. Acree, Jr.

Solubility of pyrene in heptane + 1-octanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.01102
0.1106	0.1091	0.01386
0.1922	0.1893	0.01492
0.3794	0.3720	0.01693
0.4800	0.4714	0.01782
0.5842	0.5733	0.01868
0.7886	0.7730	0.01979
0.8724	0.8548	0.02017
1.0000	0.9792	0.02077

 $\bar{a}_{x_3}^{(s)}$: initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 372 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from methanol.
- (2) HPLC grade, Aldrich Chemical Company.
- (3) 99+%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components: (1) Pyrene; C ₁₄ H ₁₀ ; [129-00-0] (2) Octane: C ₈ H ₁₈ ; [111-65-9]	Original Measurements: 82 A. I. Zvaigzne and W. E. Acree, Jr., J. Chem. Eng. Data 40, 1127
(3) 1-Octanol; C ₈ H ₁₈ O; [111-87-5]	(1995).
Variables:	Prepared by:
T/K = 299.15: Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of pyrene in octane + 1-octanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.01372
0.1181	0.1161	0.01659
0.2157	0.2119	0.01760
0.4040	0.3963	0.01904
0.5097	0.4997	0.01971
0.6084	0.5962	0.02013
0.7991	0.7827	0.02051
0.8975	0.8790	0.02061
1.0000	0.9792	0.02077

 a_{x_3} (s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

 $Constant\text{-}temperature bath, calorimetric thermometer, and an ultraviolet/\ visible spectrophotometer.$

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 372 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from methanol.
- (2) 99.9+%, anhydrous, Aldrich Chemical Company.
- (3) 99+%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: $\pm 0.1 \text{ K.}$ $x_3^{(s)}$: ± 0.0001 .

Components:	Original Measurements:
(1) Pyrene; C ₁₄ H ₁₀ ; [129-00-0]	⁸² A. I. Zvaigzne and W. E. Acree,
(2) Cyclohexane; C ₆ H ₁₂ ; [110-82-7]	Jr., J. Chem. Eng. Data 40 , 1127
(3) 1-Octanol; C ₈ H ₁₈ O; [111-87-5]	(1995).
Variables: T/K = 299.15; Solvent Composition	Prepared by: W. E. Acree, Jr.

Solubility of pyrene in cyclohexane + 1-octanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.01100
0.0810	0.0799	0.01364
0.1510	0.1488	0.01479
0.3125	0.3073	0.01654
0.4070	0.3999	0.01733
0.5121	0.5029	0.01788
0.7291	0.7151	0.01917
0.8399	0.8233	0.01976
1.0000	0.9792	0.02077

 $[\]bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 372 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from methanol.
- (2) HPLC grade, Aldrich Chemical Company.
- (3) 99+%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components:	Original Measurements:
(1) Pyrene; C ₁₄ H ₁₀ ; [129-00-0]	⁸² A. I. Zvaigzne and W. E. Acree
(2) Methylcyclohexane; C ₇ H ₁₄ ;	Jr., J. Chem. Eng. Data 40, 1127
[108-87-2]	(1995).
(3) 1-Octanol; C ₈ H ₁₈ O; [111-87-5]	

(5) 1 octanoi, egii[80, [111 07 5]	
Variables:	Prepared by:
T/K = 299.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of pyrene in methylcyclohexane + 1-octanol mixtures^a

$x_3^{(s)}$	x_3	x_1	
0.0000	0.0000	0.01292	
0.0905	0.0891	0.01576	
0.1698	0.1669	0.01681	
0.3534	0.3470	0.01800	
0.4523	0.4439	0.01851	
0.5581	0.5476	0.01881	
0.7524	0.7377	0.01951	
0.8627	0.8455	0.01990	
1.0000	0.9792	0.02077	

 $\bar{a}x_3$ (s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 372 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from methanol.
- (2) 99.9+%, anhydrous, Aldrich Chemical Company.
- (3) 99+%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

Components: (1) Pyrene; C ₁₄ H ₁₀ ; [129-00-0] (2) 2,2,4-Trimethylpentane; C ₈ H ₁₈ ; [540-84-1] (3) 1-Octanol; C ₈ H ₁₈ O; [111-87-5]	Original Measurements: 82 A. I. Zvaigzne and W. E. Acree. Jr., J. Chem. Eng. Data 40, 1127 (1995).
Variables: T/K - 299 15: Solvent Composition	Prepared by:

Solubility of pyrene in 2,2,4-trimethylpentane + 1-octanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.00720
0.1126	0.1116	0.00953
0.2175	0.2151	0.01102
0.4160	0.4104	0.01357
0.5153	0.5077	0.01483
0.6128	0.6030	0.01606
0.8053	0.7904	0.01846
0.8853	0.8681	0.01940
1.0000	0.9792	0.02077

 a_{x_3} (s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/ visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 372 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from methanol.
- (2) HPLC grade, Aldrich Chemical Company.
- (3) 99+%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components:
(1) Pyrene; C ₁₄ H ₁₀ ; [129-00-0]
(2) tert-Butylcyclohexane; C ₁₀ H ₂₀

[3178-22-1]

(3) 1-Octanol; C₈H₁₈O; [111-87-5]

Variables:	Prepared by:
T/K = 299.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

(1995).

Original Measurements: ⁸²A. I. Zvaigzne and W. E. Acree, Jr., J. Chem. Eng. Data 40, 1127

Solubility of pyrene in tert-butylcyclohexane + 1-octanol mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.01594
0.1171	0.1149	0.01865
0.2223	0.2180	0.01940
0.4201	0.4115	0.02050
0.5237	0.5127	0.02096
0.6298	0.6166	0.02102

0.8086	0.7917	0.02095
0.8985	0.8796	0.02098
1.0000	0.9792	0.02077

 ${}^{a}x_{3}$: initial mole fraction of component 3 in the binary solvent mixture; x_{1} : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/ visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 372 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from methanol.
- (2) 99%, Aldrich Chemical Company.
- (3) 99+%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ±0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

18.3. Pyrene solubility data in binary alkane + secondary alcohol solvent mixtures

Components: (1) Pyrene; C ₁₄ H ₁₀ ; [129-00-0]	Original Measurements: 83 C. E. Hernández, K. S. Coym,
(2) Hexane; C ₆ H ₁₄ ; [110-54-3]	L. E. Roy, J. R. Powell, and W. E.
(3) 2-Butanol; C ₄ H ₁₀ O; [78-92-2]	Acree, Jr., J. Chem. Thermodyn. 30 , 37 (1998).
Variables:	Prepared by:
T/K = 299.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of pyrene in hexane + 2-butanol mixtures^a

$\overline{x_3^{(s)}}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.00857
0.1521	0.1507	0.00926
0.2621	0.2597	0.00917
0.4836	0.4794	0.00866
0.5879	0.5832	0.00807
0.6827	0.6776	0.00741
0.8564	0.8514	0.00581
0.9242	0.9194	0.00517
1.0000	0.9956	0.00439

 a_{x_3} (s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 372 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized three times from methanol.
- (2) 99%, Aldrich Chemical Company.
- (3) 99+%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.05 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components: (1) Pyrene; C ₁₄ H ₁₀ ; [129-00-0] (2) Heptane; C ₇ H ₁₆ ; [142-82-5] (3) 2-Butanol; C ₄ H ₁₀ O; [78-92-2]	Original Measurements: 83 C. E. Hernández, K. S. Coym, L. E. Roy, J. R. Powell, and W. E. Acree, Jr., J. Chem. Thermodyn. 30, 37 (1998).
Variables: T/K = 299.15: Solvent Composition	Prepared by:

Experimental Values

Solubility of pyrene in heptane + 2-butanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.01102
0.1581	0.1562	0.01182
0.2941	0.2907	0.01155
0.5030	0.4978	0.01040
0.6129	0.6072	0.00927
0.7066	0.7007	0.00828
0.8666	0.8612	0.00618
0.9289	0.9239	0.00539
1.0000	0.9956	0.00439

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 372 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized three times from methanol.
- (2) 99%, HPLC grade, Aldrich Chemical Company.
- (3) 99+%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.05 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components: (1) Pyrene; C ₁₄ H ₁₀ ; [129-00-0] (2) Octane; C ₈ H ₁₈ ; [111-65-9] (3) 2-Butanol; C ₄ H ₁₀ O; [78-92-2]	Original Measurements: 83 C. E. Hernández, K. S. Coym, L. E. Roy, J. R. Powell, and W. E. Acree, Jr., J. Chem. Thermodyn. 30, 37 (1998).
Variables: $T/K = 299.15$; Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of pyrene in octane + 2-butanol mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.01372
0.1847	0.1821	0.01427
0.3137	0.3095	0.01333
0.5238	0.5178	0.01138
0.6383	0.6318	0.01011
0.7295	0.7229	0.00902
0.8739	0.8681	0.00658
0.9304	0.9251	0.00565
1.0000	0.9956	0.00439

 $\bar{a}_{x_3}^{(s)}$: initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 372 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized three times from methanol.
- (2) 99%, anhydrous, Aldrich Chemical Company.
- (3) 99+%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.05 K.

 $x_3^{(s)}$: ± 0.0001 .

Components: (1) Pyrene; C ₁₄ H ₁₀ ; [129-00-0] (2) Cyclohexane; C ₆ H ₁₂ ; [110-82-7] (3) 2-Butanol; C ₄ H ₁₀ O; [78-92-2]	Original Measurements: 83 C. E. Hernández, K. S. Coym, L. E. Roy, J. R. Powell, and W. E Acree, Jr., J. Chem. Thermodyn. 30, 37 (1998).
Variables:	Prepared by:
T/K = 299.15; Solvent Composition	W. E. Acree, Jr.

Solubility of pyrene in cyclohexane + 2-butanol mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.01100
0.1319	0.1303	0.01192
0.2322	0.2295	0.01166
0.4374	0.4328	0.01047
0.5375	0.5323	0.00962
0.6457	0.6402	0.00851
0.8213	0.8160	0.00649
0.9199	0.9149	0.00547
1.0000	0.9956	0.00439

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 372 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized three times from methanol.
- (2) 99.9%, HPLC grade, Aldrich Chemical Company.
- (3) 99+%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.05 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components:	Original Measurements:
(1) Pyrene; C ₁₄ H ₁₀ ; [129-00-0]	⁸³ C. E. Hernández, K. S. Coym,
(2) Methylcyclohexane; C ₇ H ₁₄ ;	L. E. Roy, J. R. Powell, and W. E.
[108-87-2]	Acree, Jr., J. Chem. Thermodyn.
(3) 2-Butanol; C ₄ H ₁₀ O; [78-92-2]	30 , 37 (1998).
Variables:	Prepared by:
T/K = 299.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of pyrene in methylcyclohexane + 2-butanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.01292
0.1522	0.1501	0.01382
0.2648	0.2613	0.01318
0.4810	0.4756	0.01128
0.5809	0.5750	0.01010
0.6842	0.6783	0.00879
0.8456	0.8400	0.00659
0.9171	0.9119	0.00563
1.0000	0.9956	0.00439

 $\bar{a}x_3$ (s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 372 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized three times from methanol.
- (2) 99%, anhydrous, Aldrich Chemical Company.
- (3) 99+%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.05 K.

 $x_3^{(s)}$: ± 0.0001 .

Components: (1) Pyrene; C ₁₄ H ₁₀ ; [129-00-0] (2) 2,2,4-Trimethylpentane; C ₈ H ₁₈ ; [540-84-1] (3) 2-Butanol; C ₄ H ₁₀ O; [78-92-2]	Original Measurements: 83 C. E. Hernández, K. S. Coym, L. E. Roy, J. R. Powell, and W. E. Acree, Jr., J. Chem. Thermodyn. 30, 37 (1998).
Variables:	Prepared by:
T/K = 299.15; Solvent Composition	W. E. Acree, Jr.

Solubility of pyrene in 2,2,4-trimethylpentane + 2-butanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.00720
0.1802	0.1788	0.00783
0.3285	0.3259	0.00791
0.5401	0.5361	0.00743
0.6430	0.6385	0.00697
0.7299	0.7251	0.00658
0.8800	0.8751	0.00553
0.9388	0.9341	0.00504
1.0000	0.9956	0.00439

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 372 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized three times from methanol.
- (2) 99.7%, HPLC grade, Aldrich Chemical Company.
- (3) 99+%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.05 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

19. Solubility of Pyrene in Binary Alcohol + Alcohol Solvent Mixtures

19.1. Critical evaluation of experimental solubility data

Acree and co-workers^{84–88} reported the solubility of pyrene in several binary alcohol+alcohol solvent systems at 299.15 K. The solvents included seven primary alcohols (1-propanol, 1-butanol, 2-methyl-1-propanol, 1-pentanol, 3-methyl-1-butanol, 1-octanol, and 2-ethyl-1-hexanol), four secondary alcohols (2-propanol, 2-butanol, 4-methyl-2-pentanol, and cyclohexanol), and one tertiary alcohol (2-methyl-2-propanol). There has only been a single experimental determination for the solubility of pyrene in each of the binary solvent systems studied. In the absence of replicate independent measurements, the experimental values

were evaluated by curve-fitting the measured solubility data to Eq. (10).

The calculated $S_{23,i}$ parameters for the 44 binary alcohol + alcohol solvent systems studied are summarized in Table 16, along with the average absolute deviation between the experimental and back-calculated mole fraction solubilities. Curvefit parameters were not required to describe the observed solubility behavior pyrene in several of the binary solvent systems (e.g., 1-butanol + 2-methyl-2-butanol, 3-methyl-1-butanol + 2-methyl-2-butanol, 2-butanol + 1-propanol, 2-methyl-1-propanol + 1-propanol). Examination of the numerical entries in the last column of Table 16 reveals that Eq. (10)

Table 16. Mathematical representation of pyrene solubilities in binary alcohol (2) + alcohol (3) solvent mixtures

Binary solvent system	$S_{23,i}^{a}$	% Dev ^b
2-Butanol (3) + 1-butanol (3)	0.007	0.3
	-0.011	
	0.326	
1-Butanol (3) + 1 -octanol (3)	0.676	0.2
	0.314	
	0.221	
2-Butanol (2) + 1-octanol (3)	0.891	0.4
	0.519	
	0.143	
2-Butanol (2) + 2 -methyl- 1 -propanol (3)	0.052	0.1
	0.092	
	0.206	
3-Methyl-1-butanol (2) + 1-butanol (3)	0.003	0.3
	0.085	
	0.171	
3-Methyl-1-butanol (2) + 2-methyl-1-propanol (3)	0.259	0.5
	0.072	
	0.206	
1-Propanol (2) + cyclohexanol (3)	0.340	0.5
	0.104	
	0.153	
2-Propanol (2) + cyclohexanol (3)	0.489	0.8
	0.139	
	0.178	
1-Butanol (2) + cyclohexanol (3)	0.176	0.3
	0.053	
2-Butanol (2) + cyclohexanol (3)	0.284	0.4
	0.100	
	0.277	
2-Methyl-1-propanol (2) + cyclohexanol (3)	0.191	0.6
	0.128	
	0.114	
1-Propanol (2) + 1 -pentanol (3)	0.309	0.4
	0.074	
	-0.205	
2-Propanol (2) + 1-pentanol (3)	0.510	0.6
	0.012	
1-Butanol (2) + 1 -pentanol (3)	0.148	0.4
	-0.042	
	0.157	
2-Butanol (2) + 1-pentanol (3)	0.144	0.5
2-Methyl-1-propanol (2) + 1-pentanol (3)	0.359	0.4
	0.077	
2-Pentanol (2) + 1-pentanol (3)	0.062	0.4
	0.000	
	0.131	

Table 16. Mathematical representation of pyrene solubilities in binary alcohol (2) + alcohol (3) solvent mixtures—Continued

Binary solvent system	$S_{23,i}^{a}$	% Dev ^b
3-Methyl-1-butanol (2) + 1-pentanol (3)	0.074	0.2
	0.024	
1-Propanol (2) + 2 -methyl- 2 -butanol (3)	-0.079	0.4
2-Propanol (2) + 2 -methyl- 2 -butanol (3)	0.131	0.3
•	0.019	
	-0.069	
1-Butanol (2) + 2 -methyl- 2 -butanol (3)	0.000	0.3
2-Methyl-1-propanol (2) + 2-methyl-2-butanol (3)	-0.026	0.5
	-0.073	
	-0.056	
1-Pentanol (2) + 2 -methyl- 2 -butanol (3)	0.115	0.4
, , , , , , , , , , , , , , , , , , ,	0.058	
	0.145	
2-Pentanol (2) + 2 -methyl- 2 -butanol (3)	-0.013	0.1
3-Methyl-1-butanol (2) + 2-methyl-2-butanol (3)	0.000	0.4
4-Methyl-2-pentanol (2) + 2-methyl-2-butanol (3)	0.062	0.2
2-Propanol (2) + 1-propanol (3)	0.036	0.5
1-Butanol (2) + 1-propanol (3)	0.127	0.4
Patanor (2) · 1 propunor (3)	0.065	0.1
2-Butanol (2) + 1-propanol (3)	0.000	0.5
2-Methyl-1-propanol (2) + 1-propanol (3)	0.000	0.8
3-Methyl-1-butanol (2) + 1-propanol (3)	0.081	0.2
3-Methyl-1-outailor (2) + 1-propanor (3)	0.061	0.2
1-Octanol (2) + 1-propanol (3)	1.153	0.3
1-Octanor (2) + 1-propanor (3)	-0.562	0.5
	0.685	
1-Butanol (2) + 2 -propanol (3)	0.003	0.5
2-Butanol (2) + 2-propanol (3)	0.213	0.3
2-Methyl-1-propanol (2) + 2-propanol (3)	0.270	0.3
3-Methyl-1-butanol $(2) + 2$ -propanol (3)	0.183	0.4
3-Methyl-1-butanol (2) + 2-propanol (3)	0.190	0.2
1 Octobel (2) + 2 meanonel (2)	1.450	1.3
1-Octanol (2) + 2 -propanol (3)	-0.882	1.5
1-Propanol (2) + 2-ethyl-1-hexanol (3)	1.076 0.500	0.5
1-F10panor (2) \pm 2-euryi-1-nexanor (3)		0.5
2 Proposal (2) + 2 athyl 1 havenal (2)	0.300 0.696	0.3
2-Propanol (2) + 2 -ethyl- 1 -hexanol (3)		0.5
	0.573	
1.0 (1/2) (2 (1.11	0.274	0.4
1-Butanol (2) + 2 -ethyl- 1 -hexanol (3)	0.048	0.4
	0.152	
	0.291	0.0
2-Butanol (2) + 2-ethyl-1-hexanol (3)	0.486	0.3
2-Methyl-1-propanol (2) + 2 -ethyl-1-hexanol (3)	0.594	0.6
	0.405	
3-Methyl-1-butanol (2) + 2-ethyl-1-hexanol (3)	0.024	0.4
	0.139	
	0.252	0.7
$\frac{1-\text{Octanol }(2) + 2-\text{ethyl-1-hexanol }(3)}{2}$	-0.094	0.3

^aCombined NIBS/Redlich-Kister curve-fit parameters are ordered as $S_{23,0}$, $S_{23,1}$, and $S_{23,2}$. If only a single coefficient is listed, then $S_{23,1}$ and $S_{23,2}$ are zero. Similarly, if two coefficients are listed, then $S_{23,2}$ is zero. ^bDev (%) = $(100/N) \Sigma | [x_1^{\text{exp}} - x_1^{\text{cal}}]/x_1^{\text{exp}} |$.

does provide a very accurate mathematical representation for how the measured mole fraction solubilities vary with binary solvent composition. Average percent deviations range from 0.1% to 1.3%, indicating that the measured values fall on smooth $\ln x_1$ versus $x_2^{(s)}$ curves. None of the experimental data points was flagged as an outlier.

Solubility data are arranged according to alcohol type. The experimental pyrene solubility data for binary primary alcohol + primary, primary alcohol + secondary alcohol primary alcohol + tertiary alcohol, secondary alcohol + secondary alcohol, secondary alcohol solvent mixtures are given in Secs. 19.2–19.6.

19.2. Anthracene solubility data in binary primary alcohol + primary alcohol solvent

Components: (1) Pyrene; C ₁₄ H ₁₀ ; [129-00-0] (2) 1-Butanol; C ₄ H ₁₀ O; [71-36-3] (3) 1-Octanol; C ₈ H ₁₈ O; [111-87-5]	Original Measurements: 84 M. E. R. McHale, A. I. Zvaigzne, J. R. Powell, AS. M. Kauppila, W. E. Acree, Jr., and S. W. Campbell, Phys. Chem. Liq. 32, 67 (1996).
Variables:	Prepared by:
T/K = 299.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of pyrene in 1-butanol + 1-octanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.00622
0.0642	0.0637	0.00720
0.1279	0.1269	0.00810
0.2677	0.2650	0.01022
0.3731	0.3687	0.01168
0.4687	0.4626	0.01303
0.7018	0.6903	0.01640
0.8546	0.8386	0.01870
1.0000	0.9792	0.02077

 \overline{a}_{X_3} (s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 372 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from anhydrous methanol.
- (2) 99.8+%, HPLC grade, Aldrich Chemical Company.
- (3) 99+%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.05 K. $x_3^{(s)}$: ± 0.0001 . x_1 : $\pm 1.5\%$ (relative error).

(3) 2-Methyl-1-propanol; C ₄ H ₁₀ O; [78-83-1] Variables:	S. W. Campbell, Phys. Chem. Liq 32, 67 (1996). Prepared by:
[123-51-3]	Kauppila, W. E. Acree, Jr., and
 (1) Pyrene; C₁₄H₁₀; [129-00-0] (2) 3-Methyl-1-butanol; C₅H₁₂O; 	⁸⁴ M. E. R. McHale, A. I. Zvaigzne, J. R. Powell, AS. M.
Components: (1) Pyrene: C. H.:: [129-00-0]	Original Measurements:

Solubility of pyrene in 3-methyl-1-butanol + 2-methyl-1-propanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.00546
0.1214	0.1207	0.00538
0.2251	0.2239	0.00514
0.4337	0.4317	0.00471
0.5369	0.5345	0.00443
0.6371	0.6345	0.00415
0.8236	0.8205	0.00371
0.9121	0.9089	0.00351
1.0000	0.9967	0.00326

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 372 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from anhydrous methanol.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99+%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.05 K. $x_3^{(s)}$: ± 0.0001 . x_1 : $\pm 1.5\%$ (relative error).

T/K = 299.15; Solvent Composition

Variables:	Prepared by:
(2) 5-Methyl-1-butanol, C ₃ H ₁₂ O, [123-51-3] (3) 1-Butanol; C ₄ H ₁₀ O; [71-36-3]	Kauppila, W. E. Acree, Jr., and S. W. Campbell, Phys. Chem. Liq 32 , 67 (1996).
Components: (1) Pyrene; C ₁₄ H ₁₀ ; [129-00-0] (2) 3-Methyl-1-butanol; C ₅ H ₁₂ O;	Original Measurements: ⁸⁴ M. E. R. McHale, A. I. Zvaigzne, J. R. Powell, AS. M.

W. E. Acree, Jr.

Experimental Values

Solubility of pyrene in 3-methyl-1-butanol + 1-butanol mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.00546
0.1164	0.1157	0.00565
0.2450	0.2436	0.00570
0.4335	0.4310	0.00581
0.5414	0.5382	0.00586
0.6364	0.6326	0.00596
0.8240	0.8190	0.00606
0.9063	0.9007	0.00618
1.0000	0.9938	0.00622

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 372 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from anhydrous methanol.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99.8+%, HPLC grade, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.05 K. $x_3^{(s)}$: ± 0.0001 .

Components: (1) Pyrene; C ₁₄ H ₁₀ ; [129-00-0] (2) 1-Propanol; C ₃ H ₈ O; [71-23-8]	Original Measurements: 85 M. E. R. McHale, AS. M. Horton, S. A. Padilla, A. L.
(3) 1-Pentanol; C ₅ H ₁₂ O; [111-87-5]	Trufant, N. U. De La Sancha, E. Vela, and W. E. Acree, Jr., J. Chem. Eng. Data 41, 1522 (1996).
Variables:	Prepared by:
T/K = 299.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of pyrene in 1-propanol + 1-pentanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	<i>x</i> ₁
0.0000	0.0000	0.00426
0.0739	0.0736	0.00457
0.1553	0.2545	0.00501
0.3232	0.3213	0.00589
0.4146	0.4120	0.00634
0.5181	0.5145	0.00688
0.7356	0.7298	0.00788
0.8568	0.8495	0.00850
1.0000	0.9907	0.00931

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 372 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from anhydrous methanol.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99+%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: $\pm 0.1 \text{ K}$. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components: (1) Pyrene; C ₁₄ H ₁₀ ; [129-00-0] (2) 1-Butanol; C ₄ H ₁₀ O; [71-36-3] (3) 1-Propanol; C ₃ H ₈ O; [71-23-8]	Original Measurements: 86 A. I. Zvaigzne, B. J. Miller, and W. E. Acree, Jr., J. Chem. Eng. Data 40, 1267 (1995).
Variables:	Prepared by:
T/K = 299.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of pyrene in 1-butanol + 1-propanol mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.00622
0.1265	0.1257	0.00606
0.2295	0.2282	0.00587
0.4508	0.4484	0.00543
0.5503	0.5475	0.00515

0.6450	0.6418	0.00496
0.8337	0.8299	0.00460
0.9162	0.9121	0.00443
1.0000	0.9957	0.00426

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 372 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from anhydrous methanol.
- (2) 99.8+%, HPLC grade, Aldrich Chemical Company.
- (3) 99+%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components: (1) Pyrene; C ₁₄ H ₁₀ ; [129-00-0] (2) 2-Methyl-1-propanol; C ₄ H ₁₀ O; [78-83-1] (3) 1-Propanol; C ₃ H ₈ O; [71-23-8]	Original Measurements: 86 A. I. Zvaigzne, B. J. Miller, and W. E. Acree, Jr., J. Chem. Eng. Data 40, 1267 (1995).	
Variables:	Prepared by:	
T/K = 299.15; Solvent Composition	W. E. Acree, Jr.	

Experimental Values

Solubility of pyrene in 2-methyl-1-propanol + 1-propanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.00326
0.1281	0.1277	0.00341
0.2296	0.2288	0.00348
0.4522	0.4505	0.00366
0.5446	0.5426	0.00375
0.6510	0.6485	0.00385
0.8251	0.8218	0.00401
0.9171	0.9133	0.00414
1.0000	0.9957	0.00426

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 372 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from anhydrous methanol.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99+%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components:	Original Measurements:
(1) Pyrene; C ₁₄ H ₁₀ ; [129-00-0]	⁸⁶ A. I. Zvaigzne, B. J. Miller, and
(2) 3-Methyl-1-butanol; $C_5H_{12}O$;	W. E. Acree, Jr., J. Chem. Eng.
[123-51-3]	Data 40, 1267 (1995).
(3) 1-Propanol; C ₃ H ₈ O; [71-23-8]	

Variables:	Prepared by:
T/K = 299.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of pyrene in 3-methyl-1-butanol + 1-propanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.00546
0.1508	0.1500	0.00535
0.2637	0.2623	0.00522
0.5110	0.5085	0.00493
0.6012	0.5983	0.00481
0.6886	0.6854	0.00469
0.8444	0.8406	0.00448
0.9269	0.9228	0.00437
1.0000	0.9957	0.00426

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 372 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from anhydrous methanol.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99+%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components: (1) Pyrene; C ₁₄ H ₁₀ ; [129-00-0] (2) 1-Octanol; C ₈ H ₁₈ O; [111-87-5] (3) 1-Propanol; C ₃ H ₈ O; [71-23-8]	Original Measurements: 86 A. I. Zvaigzne, B. J. Miller, and W. E. Acree, Jr., J. Chem. Eng. Data 40, 1267 (1995).
Variables: $T/K = 299.15$: Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of pyrene in 1-octanol + 1-propanol mixtures^a

$x_3^{(s)}$	Х3	ν.	
		<i>x</i> ₁	
0.0000	0.0000	0.02077	
0.2155	0.2117	0.01782	
0.3558	0.3505	0.01504	
0.5782	0.5716	0.01138	
0.6799	0.6733	0.00968	
0.7663	0.7600	0.00824	
0.8895	0.8840	0.00616	
0.9439	0.9390	0.00524	
1.0000	0.9957	0.00426	

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

 $Constant\text{-}temperature bath, calorimetric thermometer, and an ultraviolet/\ visible spectrophotometer.$

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 372 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from anhydrous methanol.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99+%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

Components: (1) Pyrene; C ₁₄ H ₁₀ ; [129-00-0] (2) 1-Butanol; C ₄ H ₁₀ O; [71-36-3] (3) 1-Pentanol; C ₅ H ₁₂ O; [111-87-5]	Original Measurements: 85 M. E. R. McHale, AS. M. Horton, S. A. Padilla, A. L. Trufant, N. U. De La Sancha, E. Vela, and W. E. Acree, Jr., J. Chem. Eng. Data 41, 1522 (1996).
Variables: T/K = 299.15; Solvent Composition	Prepared by: W. E. Acree, Jr.

Solubility of pyrene in 1-butanol + 1-pentanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.00622
0.0947	0.0941	0.00658
0.1709	0.1697	0.00684
0.3564	0.3537	0.00745
0.4593	0.4557	0.00781
0.5516	0.5472	0.00805
0.7672	0.7605	0.00872
0.8643	0.8564	0.00913
1.0000	0.9907	0.00931

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 372 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from anhydrous methanol.
- (2) 99.8%, HPLC grade, Aldrich Chemical Company.
- (3) 99+%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 . x_1 : $\pm 1.5\%$ (relative error).

Components:	Original Measurements:
(1) Pyrene; C ₁₄ H ₁₀ ; [129-00-0] (2) 2-Methyl-1-propanol; C ₄ H ₁₀ O;	⁸⁵ M. E. R. McHale, AS. M. Horton, S. A. Padilla, A. L.
[78-23-1]	Trufant, N. U. De La Sancha, E.
(3) 1-Pentanol; $C_5H_{12}O$; [111-87-5]	Vela, and W. E. Acree, Jr., J. Chem. Eng. Data 41 , 1522 (1996).
Variables:	Prepared by:
T/K = 299.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of pyrene in 2-methyl-1-propanol + 1-pentanol mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.00326
0.0967	0.0963	0.00375
0.1811	0.1803	0.00419
0.3614	0.3595	0.00515
0.4621	0.4594	0.00581
0.5705	0.5668	0.00644
0.7689	0.7629	0.00779
0.8820	0.8745	0.00847
1.0000	0.9907	0.00931

 $\overline{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 372 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from anhydrous methanol.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99+%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

Components: (1) Pyrene; C ₁₄ H ₁₀ ; [129-00-0]	Original Measurements: 85 M. E. R. McHale, AS. M.
(2) 3-Methyl-1-butanol; C ₅ H ₁₂ O; [123-51-3]	Horton, S. A. Padilla, A. L. Trufant, N. U. De La Sancha,
(3) 1-Pentanol; C ₅ H ₁₂ O; [111-87-5]	E. Vela, and W. E. Acree, Jr., J. Chem. Eng. Data 41 , 1522 (1996).
Variables:	Prepared by:
T/K = 299.15; Solvent Composition	W. E. Acree, Jr.

Solubility of pyrene in 3-methyl-1-butanol + 1-pentanol mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.00546
0.1136	0.1129	0.00585
0.2091	0.2078	0.00621
0.4025	0.3997	0.00690
0.5031	0.4995	0.00717
0.6019	0.5973	0.00765
0.7931	0.7864	0.00839
0.8892	0.8813	0.00884
1.0000	0.9907	0.00931

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 372 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from anhydrous methanol.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99+%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Variables:	Prepared by:
T/K = 299.15; Solvent Composition	W. E. Acree, Jr.
(1) Pyrene; C ₁₄ H ₁₀ ; [129-00-0]	⁸⁷ A. I. Zvaigzne, M. E. R.
(2) 1-Propanol; C ₃ H ₈ O; [71-23-8]	McHale, J. R. Powell, AS. M.
(3) 2-Ethyl-1-hexanol; C ₈ H ₁₈ O;	Kauppila, and W. E. Acree, Jr., J.
[104-76-7]	Chem. Eng. Data 40 , 1273 (1995).
Components:	Original Measurements:

Experimental Values

Solubility of pyrene in 1-propanol + 2-ethyl-1-hexanol mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.00426
0.0573	0.0570	0.00473
0.1103	0.1097	0.00517
0.2400	0.2385	0.00618

0.3210	0.3188	0.00684
0.4405	0.4371	0.00774
0.6606	0.6544	0.00946
0.8155	0.8067	0.01081
1.0000	0.9875	0.01250

 \overline{a}_{x_3} (s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 372 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from anhydrous methanol.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99+%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.3\%$ (relative error).

Components:	Original Measurements:
(1) Pyrene; C ₁₄ H ₁₀ ; [129-00-0]	⁸⁷ A. I. Zvaigzne, M. E. R.
(2) 1-Butanol; C ₄ H ₁₀ O; [71-36-3]	McHale, J. R. Powell, AS. M.
(3) 2-Ethyl-1-hexanol; $C_8H_{18}O$;	Kauppila, and W. E. Acree, Jr., J.
[104-76-7]	Chem. Eng. Data 40, 1273 (1995).
Variables:	Prepared by:
T/K = 299.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of pyrene in 1-butanol + 2-ethyl-1-hexanol mixtures^a

$\overline{x_3^{(s)}}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.00622
0.0656	0.0652	0.00668
0.1314	0.1305	0.00707
0.2770	0.2749	0.00776
0.3609	0.3579	0.00818
0.4703	0.4662	0.00881
0.6889	0.6819	0.01021
0.8218	0.8127	0.01111
1.0000	0.9875	0.01250

 ${}^{a}x_{3}^{(s)}$: initial mole fraction of component 3 in the binary solvent mixture; x_{1} : mole fraction solubility of the solute; x_{3} : mole fraction of component 3 in the ternary solution.

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 372 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from anhydrous methanol.
- (2) 99.8%, HPLC grade, Aldrich Chemical Company.
- (3) 99+%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.3\%$ (relative error).

T/K = 299.15; Solvent Composition

(1) Pyrene; C ₁₄ H ₁₀ ; [129-00-0] (2) 2-Methyl-1-propanol; C ₄ H ₁₀ O; [78-83-1] (3) 2-Ethyl-1-hexanol; C ₈ H ₁₈ O; [104-76-7]	⁸⁷ A. I. Zvaigzne, M. E. R. McHale, J. R. Powell, AS. M Kauppila, and W. E. Acree, Jr., Chem. Eng. Data 40 , 1273 (1995)
(3) 2-Ethyl-1-hexanol; $C_8H_{18}O$;	

Experimental Values

W. E. Acree, Jr.

Solubility of pyrene in 3-methyl-1-propanol + 2-ethyl-1-hexanol mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.00326
0.0639	0.0637	0.00376
0.1292	0.1286	0.00433
0.2622	0.2608	0.00537
0.3592	0.3570	0.00615
0.4824	0.4789	0.00722
0.7042	0.6977	0.00920
0.8052	0.8415	0.01022
1.0000	0.9875	0.01250

 $^{a}x_{3}$ (s): initial mole fraction of component 3 in the binary solvent mixture; x_{1} : mole fraction solubility of the solute; x_{3} : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 372 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from anhydrous methanol.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99+%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: $\pm 0.1 \text{ K}$. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.3\%$ (relative error).

Components: (1) Pyrene; C ₁₄ H ₁₀ ; [129-00-0] (2) 3-Methyl-1-butanol; C ₅ H ₁₂ O; [123-51-3] (3) 2-Ethyl-1-hexanol; C ₈ H ₁₈ O;	Original Measurements: 87 A. I. Zvaigzne, M. E. R. McHale, J. R. Powell, AS. M. Kauppila, and W. E. Acree, Jr., J. Chem. Eng. Data 40, 1273 (1995).
Variables: T/K = 299.15; Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of pyrene in 3-methyl-1-butanol + 2-ethyl-1-hexanol mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.00546
0.0765	0.0760	0.00597
0.1506	0.1496	0.00634
0.3152	0.3129	0.00722
0.4104	0.4072	0.00780
0.5090	0.5047	0.00841
0.7344	0.7270	0.01009
0.8285	0.8195	0.01088
1.0000	0.9875	0.01250

 \bar{a}_{x_3} ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 372 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from anhydrous methanol.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99+%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.3\%$ (relative error).

Components: (1) Pyrene; C ₁₄ H ₁₀ ; [129-00-0] (2) 1-Octanol; C ₈ H ₁₈ O; [111-87-5] (3) 2-Ethyl-1-hexanol; C ₈ H ₁₈ O; [104-76-7]	Original Measurements: 87 A. I. Zvaigzne, M. E. R. McHale, J. R. Powell, AS. M. Kauppila, and W. E. Acree, Jr., J. Chem. Eng. Data 40, 1273 (1995).
Variables:	Prepared by:
T/K = 299.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of pyrene in 1-octanol + 2-ethyl-1-hexanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.02077
0.0991	0.0972	0.01965
0.2050	0.2012	0.01850
0.4039	0.3972	0.01649
0.5023	0.4944	0.01577
0.6056	0.5966	0.01483
0.7955	0.7846	0.01365
0.8911	0.8795	0.01306
1.0000	0.9875	0.01250

 $^{{}^{}a}x_{3}$ (s): initial mole fraction of component 3 in the binary solvent mixture; x_{1} : mole fraction solubility of the solute; x_{3} : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 372 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from anhydrous methanol.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99+%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.3\%$ (relative error).

19.3. Pyrene solubility data in binary primary alcohol + secondary alcohol solvent

Components: (1) Pyrene; C ₁₄ H ₁₀ ; [129-00-0] (2) 2-Propanol; C ₃ H ₈ O; [67-63-0]	Original Measurements: 86 A. I. Zvaigzne, B. J. Miller, and W. E. Acree, Jr., J. Chem. Eng.
(3) 1-Propanol; C ₃ H ₈ O; [71-23-8]	Data 40 , 1267 (1995).
Variables:	Prepared by:
T/K = 299.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of pyrene in 2-propanol + 1-propanol mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.00290
0.1113	0.1110	0.00306
0.2138	0.2131	0.00317
0.4118	0.4104	0.00340
0.5035	0.5017	0.00355
0.6029	0.6007	0.00367
0.7979	0.7947	0.00395
0.8974	0.8937	0.00416
1.0000	0.9957	0.00426

 ${}^{a}x_{3}{}^{(s)}$: initial mole fraction of component 3 in the binary solvent mixture; x_{1} : mole fraction solubility of the solute; x_{3} : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

 $Constant\text{-}temperature\ bath,\ calorimetric\ thermometer,\ and\ an\ ultraviolet/\ visible\ spectrophotometer.$

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 372 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from anhydrous methanol.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99+%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

Variables: $T/K = 299.15$; Solvent Composition	Prepared by: W. E. Acree, Jr.
Components: (1) Pyrene; C ₁₄ H ₁₀ ; [129-00-0] (2) 2-Butanol; C ₄ H ₁₀ O; [78-92-2] (3) 1-Propanol; C ₃ H ₈ O; [71-23-8]	Original Measurements: ⁸⁶ A. I. Zvaigzne, B. J. Miller, and W. E. Acree, Jr., J. Chem. Eng. Data 40 , 1267 (1995).

Experimental Values

Solubility of pyrene in 2-butanol + 1-propanol mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.00439
0.1202	0.1197	0.00438
0.2429	0.2418	0.00433
0.4566	0.4546	0.00430
0.5510	0.5486	0.00427
0.6530	0.6502	0.00427
0.8275	0.8239	0.00428
0.9105	0.9066	0.00426
1.0000	0.9957	0.00426

 a_{x_3} (s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/ visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 372 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from anhydrous methanol.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99+%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components: (1) Pyrene; C ₁₄ H ₁₀ ; [129-00-0] (2) 1-Butanol; C ₄ H ₁₀ O; [71-36-3] (3) 2-Propanol; C ₃ H ₈ O; [67-63-0]	Original Measurements: 86 A. I. Zvaigzne, B. J. Miller, and W. E. Acree, Jr., J. Chem. Eng. Data 40, 1267 (1995).
Variables:	Prepared by:
T/K = 299.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of pyrene in 1-butanol + 2-propanol mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.00622
0.1320	0.1312	0.00581
0.2301	0.2288	0.00545
0.4486	0.4465	0.00467
0.5611	0.5587	0.00424

0.6423	0.6397	0.00398
0.8276	0.8248	0.00339
0.9133	0.9104	0.00315
1.0000	0.9971	0.00290

 $\overline{x_3}$ initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/ visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 372 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from anhydrous methanol.
- (2) 99.8+%, HPLC grade, Aldrich Chemical Company.
- (3) 99+%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components:

Original Measurements: (1) Pyrene; C₁₄H₁₀; [129-00-0] ⁸⁶A. I. Zvaigzne, B. J. Miller, and W. E. Acree, Jr., J. Chem. Eng. Data 40, 1267

(2) 2-Methyl-1-propanol; C₄H₁₀O; [78-83-1]

(3) 2-Propanol; C₃H₈O; [67-63-0]

Variables:

Prepared by: T/K = 299.15; Solvent Composition W. E. Acree, Jr.

Experimental Values

(1995).

Solubility of pyrene in 2-methyl-1-propanol + 2-propanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.00326
0.1397	0.1392	0.00330
0.2361	0.2353	0.00328
0.4363	0.4349	0.00323
0.5441	0.5424	0.00318
0.6428	0.6408	0.00312
0.8276	0.8251	0.00303
0.9084	0.9057	0.00299
1.0000	0.9971	0.00290

 $\overline{x_3}$ (s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 372 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from anhydrous methanol.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99+%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components: (1) Pyrene; C ₁₄ H ₁₀ ; [129-00-0] (2) 3-Methyl-1-butanol; C ₅ H ₁₂ O; [123-51-3] (3) 2-Propanol; C ₃ H ₈ O; [67-63-0]	Original Measurements: 86 A. I. Zvaigzne, B. J. Miller, and W. E. Acree, Jr., J. Chem. Eng. Data 40, 1267 (1995).
Variables:	Prepared by:
T/K = 299.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of pyrene in 3-methyl-1-butanol + 2-propanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.00546
0.1376	0.1369	0.00516
0.2738	0.2725	0.00479
0.4880	0.4859	0.00422
0.5862	0.5839	0.00394
0.6818	0.6793	0.00368
0.8539	0.8511	0.00323
0.9218	0.9190	0.00307
1.0000	0.9971	0.00290

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 372 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from anhydrous methanol.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99+%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components: (1) Pyrene; C ₁₄ H ₁₀ ; [129-00-0] (2) 1-Octanol; C ₈ H ₁₈ O; [111-87-5] (3) 2-Propanol; C ₃ H ₈ O; [67-63-0]	Original Measurements: 86 A. I. Zvaigzne, B. J. Miller, and W. E. Acree, Jr., J. Chem. Eng. Data 40, 1267 (1995).
Variables: $T/K = 299.15$; Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of pyrene in 1-octanol + 2-propanol mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.02077
0.2046	0.2043	0.01696
0.3515	0.3465	0.01427
0.5724	0.5666	0.01011
0.6743	0.6687	0.00828
0.7599	0.7547	0.00681
0.8875	0.8833	0.00474
0.9347	0.9311	0.00384
1.0000	0.9971	0.00290

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

 $Constant\text{-}temperature bath, calorimetric thermometer, and an ultraviolet/\ visible spectrophotometer.$

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 372 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from anhydrous methanol.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99+%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: $\pm 0.1 \text{ K.}$ $x_3^{(s)}$: ± 0.0001 .

Components: (1) Pyrene; C ₁₄ H ₁₀ ; [129-00-0] (2) 2-Butanol; C ₄ H ₁₀ O; [78-92-2] (3) 1-Butanol; C ₄ H ₁₀ O; [71-36-3]	Original Measurements: 84 M. E. R. McHale. A. I. Zvaigzne, J. R. Powell, AS. M. Kauppila, W. E. Acree, Jr., and S. W. Campbell, Phys. Chem. Liq. 32, 67 (1996).
Variables: <i>T</i> /K = 299.15; Solvent Composition	Prepared by: W. E. Acree, Jr.

Solubility of pyrene in 2-butanol + 1-butanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.00439
0.1065	0.1060	0.00465
0.1954	0.1945	0.00477
0.3926	0.3906	0.00506
0.5033	0.5006	0.00527
0.6060	0.6026	0.00546
0.7875	0.7829	0.00588
0.8789	0.8735	0.00611
1.0000	0.9938	0.00622

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 372 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from anhydrous methanol.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99.8+%, HPLC grade, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: $\pm 0.05 \text{ K}$. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components: (1) Pyrene; C ₁₄ H ₁₀ ; [129-00-0] (2) 2-Butanol; C ₄ H ₁₀ O; [78-92-2] (3) 2-Methyl-1-propanol; C ₄ H ₁₀ O; [78-83-1]	Original Measurements: 84 M. E. R. McHale. A. I. Zvaigzne, J. R. Powell, AS. M. Kauppila, W. E. Acree, Jr., and S. W. Campbell, Phys. Chem. Liq.
Variables:	32, 67 (1996). Prepared by:
T/K = 299.15: Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of pyrene in 2-butanol + 2-methyl-1-propanol mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.00439
0.1070	0.1065	0.00436
0.1997	0.1989	0.00425
0.3971	0.3955	0.00397
0.5005	0.4986	0.00384
0.6037	0.6015	0.00371
0.7974	0.7946	0.00350
0.8933	0.8903	0.00340
1.0000	0.9967	0.00326

 ${}^{a}x_{3}$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_{1} : mole fraction solubility of the solute; x_{3} : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 372 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from anhydrous methanol.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99+%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.05 K. $x_3^{(s)}$: ± 0.0001 .

Components: (1) Pyrene; C ₁₄ H ₁₀ ; [129-00-0] (2) 2-Butanol; C ₄ H ₁₀ O; [78-92-2] (3) 1-Octanol; C ₈ H ₁₈ O; [111-87-5]	Original Measurements: 84 M. E. R. McHale. A. I. Zvaigzne, J. R. Powell, AS. M. Kauppila, W. E. Acree, Jr., and S. W. Campbell, Phys. Chem. Liq. 32, 67 (1996).
Variables: T/K = 299.15; Solvent Composition	Prepared by: W. E. Acree, Jr.

Solubility of pyrene in 2-butanol + 1-octanol mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.00439
0.0595	0.0592	0.00522
0.1303	0.1295	0.00629
0.2794	0.2770	0.00853
0.3664	0.3628	0.00978
).4708	0.4654	0.01154
0.6935	0.6931	0.01506
0.8304	0.8160	0.01736
.0000	0.9792	0.02077

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 372 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from anhydrous methanol.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99+%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.05 K.

 $x_3^{(s)}$: ±0.0001.

 x_1 : $\pm 1.5\%$ (relative error).

Components: (1) Pyrene; C ₁₄ H ₁₀ ; [129-00-0]	Original Measurements: 85 M. E. R. McHale, AS. M.	
(2) 2-Propanol; C ₃ H ₈ O; [67-63-0] (3) 1-Pentanol; C ₅ H ₁₂ O; [111-87-5]	Horton, S. A. Padilla, A. L. Trufant, N. U. De La Sancha, E. Vela, and W. E. Acree, Jr., J. Chem. Eng. Data 41, 1522 (1996).	
Variables: T/K = 299.15; Solvent Composition	Prepared by: W. E. Acree, Jr.	

Experimental Values

Solubility of pyrene in 2-propanol + 1-pentanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.00290
0.0774	0.0771	0.00331
0.1578	0.1567	0.00678
0.3137	0.3122	0.00470
0.4145	0.4123	0.00535

0.5187	0.5156	0.00602
0.7251	0.7197	0.00747
0.8573	0.8502	0.00827
1.0000	0.9907	0.00931

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 372 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from anhydrous methanol.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99+%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components: (1) Pyrene; C ₁₄ H ₁₀ ; [129-00-0] (2) 2-Butanol; C ₄ H ₁₂ O; [78-92-2] (3) 1-Pentanol; C ₅ H ₁₂ O; [111-87-5]	Original Measurements: 85 M. E. R. McHale, AS. M. Horton, S. A. Padilla, A. L. Trufant, N. U. De La Sancha, E. Vela, and W. E. Acree, Jr., J. Chem. Eng. Data 41, 1522 (1996).
Variables: $T/K = 299.15$; Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of pyrene in 2-butanol + 1-pentanol mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.00439
0.0935	0.0931	0.00478
0.1784	0.1775	0.00520
0.3558	0.3537	0.00594
0.4629	0.4599	0.00646
0.5658	0.5619	0.00692
0.7675	0.7614	0.00798
0.8836	0.8759	0.00866
1.0000	0.9907	0.00931

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 372 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from anhydrous methanol.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99+%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components: (1) Pyrene; C ₁₄ H ₁₀ ; [129-00-0] (2) 2-Pentanol; C ₅ H ₁₂ O; [6032-29-7] (3) 1-Pentanol; C ₅ H ₁₂ O; [111-87-5]	Original Measurements: 85 M. E. R. McHale, AS. M. Horton, S. A. Padilla, A. L. Trufant, N. U. De La Sancha, E. Vela, and W. E. Acree, Jr., J. Chem. Eng. Data 41, 1522 (1996).
Variables:	Prepared by:
T/K = 299.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of pyrene in 2-pentanol + 1-pentanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.00640
0.1157	0.1149	0.00679
0.2066	0.2052	0.00701
0.4014	0.3984	0.00755
0.4993	0.4954	0.00789
0.6001	0.5952	0.00816
0.7985	0.7915	0.00872
0.8936	0.8855	0.00909
1.0000	0.9907	0.00931

 $^{a}x_{3}$ (s): initial mole fraction of component 3 in the binary solvent mixture; x_{1} : mole fraction solubility of the solute; x_{3} : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 372 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from anhydrous methanol.
- (2) 99+%, Acros Organics, USA.
- (3) 99+%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: $\pm 0.1 \text{ K}$. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Hale, J. R. Powell, AS. M.
ppila, and W. E. Acree, Jr., J. m. Eng. Data 40 , 1273 (1995).
pared by: E. Acree. Jr.

Experimental Values

Solubility of pyrene in 2-propanol + 2-ethyl-1-hexanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.00290
0.0573	0.0571	0.00340
0.1094	0.1090	0.00387
0.2468	0.2455	0.00510
0.3177	0.3159	0.00565
0.4282	0.4254	0.00654
0.6540	0.6484	0.00850
0.8071	0.7989	0.01013
1.0000	0.9875	0.01250

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 372 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from anhydrous methanol.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99+%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.3\%$ (relative error).

Components: (1) Pyrene; C ₁₄ H ₁₀ ; [129-00-0]	Original Measurements: 87 A. I. Zvaigzne, M. E. R.
(1) Pytelle, $C_{14}H_{10}$, [129-00-0] (2) 2-Butanol; $C_4H_{10}O$; [78-92-2] (3) 2-Ethyl-1-hexanol; $C_8H_{18}O$; [104-76-7]	McHale, J. R. Powell, AS. M. Kauppila, and W. E. Acree, Jr., J. Chem. Eng. Data 40, 1273 (1995).
Variables:	Prepared by:
T/K = 299.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of pyrene in 2-butanol + 2-ethyl-1-hexanol mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.00439
0.0651	0.0648	0.00485
0.1296	0.1289	0.00531
0.2768	0.2750	0.00651
0.3679	0.3652	0.00723
0.4632	0.4595	0.00804
0.6592	0.6528	0.00968
0.8325	0.8232	0.01118
1.0000	0.9875	0.01250

 $\bar{a}_{x_3}^{(s)}$: initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 372 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from anhydrous methanol.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99+%, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.3\%$ (relative error).

Components: (1) Pyrene; C ₁₄ H ₁₀ ; [129-00-0] (2) 1-Propanol; C ₃ H ₈ O; [71-23-8] (3) Cyclohexanol; C ₆ H ₁₂ O; [108-93-0]	Original Measurements: 85 M. E. R. McHale, AS. M. Horton, S. A. Padilla, A. L. Trufant, N. U. De La Sancha, E. Vela, and W. E. Acree, Jr., J. Chem. Eng. Data 41, 1522 (1996).
Variables:	Prepared by:
T/K = 299.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of pyrene in 1-propanol + cyclohexanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.00426
0.0781	0.0777	0.00472
0.1516	0.1508	0.00515
0.3047	0.3029	0.00596
0.4046	0.4020	0.00645
0.5200	0.5163	0.00715
0.7425	0.7363	0.00830
0.8714	0.8635	0.00905
1.0000	0.9903	0.00965

 a_{x_3} (s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

 $Constant\text{-}temperature\ bath,\ calorimetric\ thermometer,\ and\ an\ ultraviolet/\ visible\ spectrophotometer.$

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 372 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from anhydrous methanol.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99%, Aldrich Chemical Company.

Component 2 was stored over molecular sieves and distilled shortly before use; Component 3 was stored over molecular sieves and stored at 303.2 K.

Estimated Error:

Temperature: $\pm 0.1 \text{ K}$. $x_3^{(s)}$: ± 0.0001 .

Components: (1) Pyrene; C ₁₄ H ₁₀ ; [129-00-0] (2) 1-Butanol; C ₄ H ₁₀ O; [71-36-3] (3) Cyclohexanol; C ₆ H ₁₂ O; [108-93-0]	Original Measurements: 85 M. E. R. McHale, AS. M. Horton, S. A. Padilla, A. L. Trufant, N. U. De La Sancha, E. Vela, and W. E. Acree, Jr., J.
	Chem. Eng. Data 41 , 1522 (1996).
Variables:	Prepared by:
T/K = 299.15; Solvent Composition	W. E. Acree, Jr.

Solubility of pyrene in 1-butanol + cyclohexanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.00622
0.0909	0.0903	0.00660
0.1807	0.1794	0.00695
0.3601	0.3574	0.00755
0.4609	0.4572	0.00798
0.5691	0.5644	0.00831
0.7780	0.7710	0.00903
0.8828	0.8746	0.00928
1.0000	0.9903	0.00965

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Experimental Values

Solubility of pyrene in 2-methyl-1-propanol + cyclohexanol mixtures^a

$\overline{x_3}^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.00326
0.0856	0.0853	0.00370
0.1616	0.1609	0.00403
0.3421	0.3404	0.00497
0.4516	0.4491	0.00557
0.5570	0.5535	0.00631
0.7691	0.7631	0.00775
0.8821	0.8745	0.00861
1.0000	0.9903	0.00965

 $\overline{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 372 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from anhydrous methanol.
- (2) 99.8%, HPLC grade, Aldrich Chemical Company.
- (3) 99%, Aldrich Chemical Company.

Component 2 was stored over molecular sieves and distilled shortly before use; Component 3 was stored over molecular sieves and stored at $303.2~\rm{K}$.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 372 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from anhydrous methanol.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99%, Aldrich Chemical Company.

Component 2 was stored over molecular sieves and distilled shortly before use; Component 3 was stored over molecular sieves and stored at 303.2 K.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components: (1) Pyrene; C ₁₄ H ₁₀ ; [129-00-0] (2) 2-Methyl-1-propanol; C ₄ H ₁₀ O; [78-83-1] (3) Cyclohexanol; C ₆ H ₁₂ O; [108-93-0]	Original Measurements: 85 M. E. R. McHale, AS. M. Horton, S. A. Padilla, A. L. Trufant, N. U. De La Sancha, E. Vela, and W. E. Acree, Jr., J. Chem. Eng. Data 41, 1522 (1996).
Variables:	Prepared by:
T/K = 299.15; Solvent Composition	W. E. Acree, Jr.

19.4. Pyrene solubility data in binary primary alcohol + tertiary alcohol solvent

Components:	Original Measurements:
(1) Pyrene; C ₁₄ H ₁₀ ; [129-00-0]	⁸⁸ M. E. R. McHale, K. S. Coym,
(2) 1-Propanol; C ₃ H ₈ O; [71-23-8]	K. A. Fletcher, and W. E. Acree,
(3) 2-Methyl-2-butanol; C ₅ H ₁₂ O;	Jr., J. Chem. Eng. Data 42, 511
[75-84-4]	(1997).
Variables:	Prepared by:
T/K = 299.15; Solvent Composition	W. E. Acree, Jr.

Solubility of pyrene in 1-propanol + 2-methyl-2-butanol mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.00426
0.0774	0.0771	0.00435
0.1462	0.1456	0.00442
0.3084	0.3070	0.00469
0.4092	0.4072	0.00491
0.5113	0.5087	0.00507
0.7306	0.7266	0.00552
0.8507	0.8458	0.00579
1.0000	0.9938	0.00617

 a_{x_3} (s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/ visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 372 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from anhydrous methanol.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99%, Acros Organics, USA.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.3\%$ (relative error).

Components: (1) Pyrene; C ₁₄ H ₁₀ ; [129-00-0] (2) 1-Butanol; C ₄ H ₁₀ O; [71-36-3] (3) 2-Methyl-2-butanol; C ₅ H ₁₂ O; [75-84-4]	Original Measurements: 88 M. E. R. McHale, K. S. Coym, K. A. Fletcher, and W. E. Acree, Jr., J. Chem. Eng. Data 42, 511 (1997).
Variables: T/K = 299.15: Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of pyrene in 1-butanol + 2-methyl-2-butanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.00622
0.0911	0.0905	0.00618
0.1812	0.1801	0.00616
0.3587	0.3565	0.00620
0.4356	0.4329	0.00618
0.5603	0.5568	0.00620

0.7567	0.7520	0.00617
0.8725	0.8671	0.00619
1.0000	0.9938	0.00617

 ${}^{a}x_{3}$: initial mole fraction of component 3 in the binary solvent mixture; x_{1} : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/ visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 372 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from anhydrous methanol.
- (2) 99.8+%, HPLC grade, Aldrich Chemical Company.
- (3) 99%, Acros Organics, USA.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ±0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.3\%$ (relative error).

Components: (1) Pyrene; C ₁₄ H ₁₀ ; [129-00-0] (2) 2-Methyl-1-propanol; C ₄ H ₁₀ O; [78-83-1] (3) 2-Methyl-2-butanol; C ₅ H ₁₂ O; [75-84-4]	Original Measurements: ⁸⁸ M. E. R. McHale, K. S. Coym, K. A. Fletcher, and W. E. Acree, Jr., J. Chem. Eng. Data 42 , 511 (1997).
Variables:	Prepared by:
T/K = 299.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of pyrene in 2-methyl-1-propanol + 2-methyl-2-butanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.00326
0.0970	0.0967	0.00342
0.1808	0.1801	0.00363
0.3659	0.3644	0.00408
0.4755	0.4734	0.00441
0.5696	0.5670	0.00463
0.7668	0.7628	0.00528
0.8703	0.8653	0.00570
1.0000	0.9938	0.00617

 $\overline{x_3}$ initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 372 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from anhydrous methanol.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99%, Acros Organics, USA.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.3\%$ (relative error).

Components: (1) Pyrene; C ₁₄ H ₁₀ ; [129-00-0] (2) 1-Pentanol; C ₅ H ₁₂ O; [71-41-0] (3) 2-Methyl-2-butanol; C ₅ H ₁₂ O; [75-84-4]	Original Measurements: 88 M. E. R. McHale, K. S. Coym, K. A. Fletcher, and W. E. Acree, Jr., J. Chem. Eng. Data 42, 511 (1997).
Variables: $T/K = 299.15$; Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of pyrene in 1-pentanol + 2-methyl-2-butanol mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.00931
0.1101	0.1091	0.00913
0.1955	0.1938	0.00885
0.3939	0.3907	0.00818
0.4866	0.4828	0.00777
0.5989	0.5944	0.00756
0.7969	0.7914	0.00684
0.8883	0.8825	0.00656
1.0000	0.9938	0.00617

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 372 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from anhydrous methanol.
- (2) 99%, Aldrich Chemical Company.

T/K = 299.15; Solvent Composition

(3) 99%, Acros Organics, USA.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.3\%$ (relative error).

[75-84-4] Variables:	Prepared by:
(3) 2-Methyl-2-butanol; $C_5H_{12}O$;	(1997).
[123-51-3]	Jr., J. Chem. Eng. Data 42, 511
(2) 3-Methyl-1-butanol; $C_5H_{12}O$;	K. A. Fletcher, and W. E. Acree,
(1) Pyrene; C ₁₄ H ₁₀ ; [129-00-0]	⁸⁸ M. E. R. McHale, K. S. Coym,
Components:	Original Measurements:

Experimental Values

W. E. Acree, Jr.

Solubility of pyrene in 3-methyl-1-butanol + 2-methyl-2-butanol mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.00546
0.1276	0.1269	0.00558
0.2134	0.2122	0.00563
0.3988	0.3965	0.00572
0.4997	0.4768	0.00581
0.5912	0.5877	0.00587
0.7903	0.7856	0.00598
0.8931	0.8877	0.00606
1.0000	0.9938	0.00617

 $\overline{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 372 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from anhydrous methanol.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99%, Acros Organics, USA.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.3\%$ (relative error).

19.5. Pyrene solubility data in binary secondary alcohol + secondary alcohol solvent

Components: (1) Pyrene; C ₁₄ H ₁₀ ; [129-00-0] (2) 2-Butanol; C ₄ H ₁₀ O; [78-92-2] (3) 2-Propanol; C ₃ H ₈ O; [67-63-0]	Original Measurements: 86 A. I. Zvaigzne, B. J. Miller, and W. E. Acree, Jr., J. Chem. Eng. Data 40, 1267 (1995).
Variables: T/K = 299.15; Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of pyrene in 2-butanol + 2-propanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.00439
0.1198	0.1193	0.00430
0.2436	0.2426	0.00415
0.4375	0.4358	0.00390
0.5411	0.5391	0.00374
0.6412	0.6389	0.00357
0.8312	0.8285	0.00322
0.9411	0.9382	0.00303
1.0000	0.9971	0.00290

 $\overline{a}_{x_3}^{(s)}$: initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 372 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from anhydrous methanol.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99+%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 . x_1 : $\pm 1.5\%$ (relative error).

Variables:	Prepared by:
	Chem. Eng. Data 41, 1522 (1996).
	Vela, and W. E. Acree, Jr., J.
(3) Cyclohexanol; $C_6H_{12}O$; [108-93-0]	Trufant, N. U. De La Sancha, E.
(2) 2-Propanol; C ₃ H ₈ O; [67-63-0]	Horton, S. A. Padilla, A. L.
(1) Pyrene; C ₁₄ H ₁₀ ; [129-00-0]	⁸⁵ M. E. R. McHale, AS. M.
Components:	Original Measurements:

Experimental Values

W. E. Acree, Jr

Solubility of pyrene in 2-propanol + cyclohexanol mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.00290
0.0701	0.0699	0.00333
0.1412	0.1406	0.00369
0.3172	0.3157	0.00475
0.4155	0.4132	0.00544
0.4844	0.4815	0.00592
0.7325	0.7268	0.00774
0.8429	0.8358	0.00846
1.0000	0.9903	0.00965

 a_{x_3} (s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

T/K = 299.15; Solvent Composition

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 372 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from anhydrous methanol.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99%, Aldrich Chemical Company.

Component 2 was stored over molecular sieves and distilled shortly before use. Component 3 was stored over molecular sieves and stored at 303.2 K.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 . x_1 : $\pm 1.5\%$ (relative error).

Components: (1) Pyrene; C ₁₄ H ₁₀ ; [129-00-0] (2) 2-Butanol; C ₄ H ₁₀ O; [78-92-2] (3) Cyclohexanol; C ₆ H ₁₂ O; [108-93-0]	Original Measurements: 85 M. E. R. McHale, AS. M. Horton, S. A. Padilla, A. L. Trufant, N. U. De La Sancha, E. Vela, and W. E. Acree, Jr., J. Chem. Eng. Data 41, 1522 (1996).
Variables: T/K = 299 15: Solvent Composition	Prepared by: W.F. Acree Ir

Solubility of pyrene in 2-butanol + cyclohexanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.00439
0.0761	0.0757	0.00486
0.1918	0.1908	0.00545
0.3434	0.3413	0.00619
0.4546	0.4515	0.00675
0.5668	0.5626	0.00738
0.7664	0.7599	0.00853
0.8723	0.8644	0.00906
1.0000	0.9903	0.00965

 $[\]bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Experimental Values

Solubility of pyrene in 2-propanol + 2-methyl-2-butanol mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.00290
0.0845	0.0842	0.00311
0.1468	0.1463	0.00330
0.3101	0.3089	0.00375
0.4046	0.4030	0.00405
0.5082	0.5060	0.00442
0.7240	0.7203	0.00512
0.8588	0.8540	0.00560
1.0000	0.9938	0.00617

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 372 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from anhydrous methanol.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99%, Aldrich Chemical Company.

Component 2 was stored over molecular sieves and distilled shortly before use. Component 3 was stored over molecular sieves and stored at 303.2 K.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 372 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from anhydrous methanol.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99%, Acros Organics, USA.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.3\%$ (relative error).

19.6. Pyrene solubility data in binary secondary alcohol + tertiary alcohol solvent

Components: (1) Pyrene; C ₁₄ H ₁₀ ; [129-00-0] (2) 2-Propanol; C ₃ H ₈ O; [67-63-0] (3) 2-Methyl-2-butanol; C ₅ H ₁₂ O; [75-84-4]	Original Measurements: 88 M. E. R. McHale, K. S. Coym, K. A. Fletcher, and W. E. Acree, Jr., J. Chem. Eng. Data 42, 511 (1997).
Variables:	Prepared by:
T/K = 299.15; Solvent Composition	W. E. Acree, Jr.

Components: (1) Pyrene; C ₁₄ H ₁₀ ; [129-00-0] (2) 2-Pentanol; C ₅ H ₁₂ O; [6032-29-7] (3) 2-Methyl-2-butanol; C ₅ H ₁₂ O; [75-84-4]	Original Measurements: 88 M. E. R. McHale, K. S. Coym, K. A. Fletcher, and W. E. Acree, Jr., J. Chem. Eng. Data 42, 511 (1997).
Variables:	Prepared by:
T/K = 299.15; Solvent Composition	W. E. Acree, Jr.

Solubility of pyrene in 2-pentanol + 2-methyl-2-butanol mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.00640
0.0997	0.0991	0.00638
0.2066	0.2053	0.00634
0.3816	0.3792	0.00629
0.5101	0.5069	0.00626
0.6077	0.6039	0.00622
0.8021	0.7971	0.00620
0.8949	0.8893	0.00621
1.0000	0.9938	0.00617

 $\bar{a}_{x_3}^{(s)}$: initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 372 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from anhydrous methanol.
- (2) 99+%, Acros Organics, USA.
- (3) 99%, Acros Organics, USA.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.3\%$ (relative error).

T/K = 299.15; Solvent Composition

(3) 2-Methyl-2-butanol; C ₅ H ₁₂ O; [75-84-4] Variables:	(1997). Prepared by:
[108-11-2]	Jr., J. Chem. Eng. Data 42 , 511
(2) 4-Methyl-2-pentanol; $C_5H_{12}O$;	K. A. Fletcher, and W. E. Acree
(1) Pyrene; C ₁₄ H ₁₀ ; [129-00-0]	⁸⁸ M. E. R. McHale, K. S. Coym
Components:	Original Measurements:

Experimental Values

W. E. Acree, Jr.

Solubility of pyrene in 4-methyl-2-pentanol + 2-methyl-2-butanol mixtures $^{\rm a}$

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.00621
0.1324	0.1316	0.00623
0.2280	0.2266	0.00626
0.4365	0.4338	0.00628
0.5368	0.5334	0.00629

0.6416	0.6376	0.00626
0.8168	0.8117	0.00626
0.8070	0.8019	0.00621
1.0000	0.9938	0.00617

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 372 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from anhydrous methanol.
- (2) 99+%, Acros Organics, USA.
- (3) 99%, Acros Organics, USA.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.3\%$ (relative error).

20. Solubility of Pyrene in Binary Alcohol + Alkanenitrile Solvent Mixtures

20.1. Critical evaluation of experimental solubility

Monárrez *et al.*⁸⁹ measured the solubility of pyrene binary solvent mixtures containing acetonitrile with 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 2-pentanol, and 3-methyl-1-butanol at 299.15 K. There has only been a single experimental determination for the solubility of anthracene in each of the binary solvent systems studied. The experimental values were evaluated by curve-fitting the measured solubility data to Eq. (10).

The calculated $S_{23,i}$ parameters for the seven binary alcohol + acetonitrile solvent systems studied are summarized in Table 17, along with the average absolute deviation between the experimental and back-calculated mole fraction solubilities. Examination of the numerical entries in the last column of Table 17 indicates that Eq. (10) does provide a very accurate mathematical representation for how the measured mole fraction solubilities vary with binary solvent composition. Average percent deviations range from 0.8% to 1.1%, indicating that the measured values fall on smooth ln x_1 versus $x_2^{(s)}$ curves. None of the experimental data points was flagged as an outlier.

The experimental pyrene solubility data for binary alcohol + acetonitrile solvent mixtures are tabulated in Sec. 20.2.

Table 17. Mathematical representation of pyrene solubilities in binary alcohol (2) + acetonitrile (3) solvent mixtures

Binary solvent system	$S_{23,i}^{a}$	% Dev ^b
1-Propanol (2) + acetonitrile (3)	2.698	1.0
	0.860	
	0.217	
2-Propanol (2) + acetonitrile (3)	2.822	1.0
	1.273	
	0.294	
1-Butanol (2) + acetonitrile (3)	3.158	0.8
	0.062	
	0.515	
2-Butanol (2) + acetonitrile (3)	3.539	1.1
	0.908	
	-0.088	
2-Methyl-1-propanol (2) + acetonitrile (3)	3.537	1.0
	0.708	
	-0.136	
2-Pentanol (2) + acetonitrile (3)	3.822	1.0
	-0.011	
	0.476	
3-Methyl-1-butanol (2) + acetonitrile (3)	3.285	1.0
	0.079	
	0.701	

^aCombined NIBS/Redlich-Kister curve-fit parameters are ordered as $S_{23,0}$, $S_{23,1}$, and $S_{23,2}$.

20.2. Pyrene solubility data in binary alcohol + acetonitrile solvent mixtures

	0.11.134
Components: (1) Pyrene; C ₁₄ H ₁₀ ; [129-00-0]	Original Measurements: 89 C. I. Monárrez, J. H. Woo, P. G.
(2) 1-Propanol; C ₃ H ₈ O; [71-23-8] (3) Acetonitrile; C ₂ H ₃ N; [75-05-8]	Taylor, A. M. Tran, and W. E. Acree, Jr., J. Chem. Eng. Data 48 , 736 (2003).
Variables:	Prepared by:
T/K = 299.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of pyrene in 1-propanol + acetonitrile mixtures^a

x ₃ ^(s)	x_3	x_1
0.0000	0.0000	0.00426
0.1499	0.1488	0.00702
0.2732	0.2708	0.00865
0.4927	0.4878	0.00990
0.5924	0.5866	0.00984
0.6906	0.6842	0.00929
0.8323	0.8257	0.00794
0.9245	0.9181	0.00689
1.0000	0.9939	0.00614

 $[\]bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 372 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from anhydrous methanol.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99.8%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 . x_1 : $\pm 1.5\%$ (relative error).

Components:	Original Measurements:
(1) Pyrene; C ₁₄ H ₁₀ ; [129-00-0]	⁸⁹ C. I. Monárrez, J. H. Woo, P. G.
(2) 2-Propanol; C ₃ H ₈ O; [71-23-8]	Taylor, A. M. Tran, and W. E.

(2) 2-1 Topanot, C₃1₈O₇, [71-25-8] Taylor, A. M. Hair, and W. E. (3) Acetonitrile; C₂H₃N; [75-05-8] Acree, Jr., J. Chem. Eng. Data **48**, 736 (2003).

Variables: Prepared by: T/K = 299.15; Solvent Composition W. E. Acree, Jr.

Experimental Values

Solubility of pyrene in 2-propanol + acetonitrile mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.00290
0.1619	0.1610	0.00555
0.2662	0.2644	0.00686
0.4903	0.4862	0.00845
0.5636	0.5587	0.00862
0.6684	0.6629	0.00828
0.8408	0.8347	0.00725
0.9241	0.9180	0.00663
1.0000	0.9939	0.00614

 a_{x_3} (s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

^bDev (%) = (100/N) $\Sigma \mid [x_1^{\text{exp}} - x_1^{\text{cal}}]/x_1^{\text{exp}} \mid$.

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 372 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from anhydrous methanol.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99.8%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components: (1) Pyrene; C ₁₄ H ₁₀ ; [129-00-0] (2) 1-Butanol; C ₄ H ₁₀ O; [71-36-3] (3) Acetonitrile; C ₂ H ₃ N; [75-05-8]	Original Measurements: 89 C. I. Monárrez, J. H. Woo, P. G. Taylor, A. M. Tran, and W. E. Acree, Jr., J. Chem. Eng. Data 48, 736 (2003).
Variables: $T/K = 299.15$; Solvent Composition	Prepared by: W. E. Acree, Jr.

Experimental Values

Solubility of pyrene in 1-butanol + acetonitrile mixtures^a

$\overline{x_3^{(s)}}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.00622
0.1806	0.1787	0.01034
0.3037	0.3033	0.01217
0.5242	0.5171	0.01363
0.6349	0.6268	0.01280
0.7332	0.7246	0.01179
0.8770	0.8692	0.00886
0.9377	0.9307	0.00748
1.0000	0.9939	0.00614

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 372 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from anhydrous methanol.
- (2) 99.8+%, HPLC grade, Aldrich Chemical Company.
- (3) 99.8%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components: (1) Pyrene; C ₁₄ H ₁₀ ; [129-00-0] (2) 2-Butanol; C ₄ H ₁₀ O; [78-92-2] (3) Acetonitrile; C ₂ H ₃ N; [75-05-8]	Original Measurements: 89 C. I. Monárrez, J. H. Woo, P. G. Taylor, A. M. Tran, and W. E. Acree, Jr., J. Chem. Eng. Data 48, 736 (2003).
Variables:	Prepared by:
T/K = 299.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of pyrene in 2-butanol + acetonitrile mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.00439
0.1711	0.1697	0.00839
0.3252	0.3216	0.01118
0.5339	0.5274	0.01225
0.6346	0.6272	0.01163
0.7300	0.7223	0.01050
0.8762	0.8691	0.00807
0.9412	0.9347	0.00693
1.0000	0.9939	0.00614

 $\bar{a}_{x_3}^{(s)}$: initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 372 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from anhydrous methanol.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99.8%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

Components: (1) Pyrene; C ₁₄ H ₁₀ ; [129-00-0] (2) 2-Methyl-1-propanol; C ₄ H ₁₀ O; [73-83-1] (3) Acetonitrile; C ₂ H ₃ N; [75-05-8]	Original Measurements: 89 C. I. Monárrez, J. H. Woo, P. G. Taylor, A. M. Tran, and W. E. Acree, Jr., J. Chem. Eng. Data 48, 736 (2003).
Variables: T/K = 299.15; Solvent Composition	Prepared by: W. E. Acree, Jr.

Solubility of pyrene in 2-methyl-1-propanol + acetonitrile mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.00326
0.1714	0.1703	0.00642
0.3074	0.3047	0.00872
0.5382	0.5324	0.01072
0.6341	0.6274	0.01058
0.7241	0.7169	0.00992
0.8686	0.8616	0.00802
0.9331	0.9324	0.00699
1.0000	0.9939	0.00614

 $\bar{a}x_3$ ^(s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 372 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from anhydrous methanol.
- (2) 99.5%, anhydrous, Aldrich Chemical Company.
- (3) 99.8%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K. $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

Components:	Original Measurements:
(1) Pyrene; C ₁₄ H ₁₀ ; [129-00-0]	⁸⁹ C. I. Monárrez, J. H. Woo, P. G.
(2) 3-Methyl-1-butanol; $C_5H_{12}O$;	Taylor, A. M. Tran, and W. E.
[123-51-3]	Acree, Jr., J. Chem. Eng. Data 48,
(3) Acetonitrile; C ₂ H ₃ N; [75-05-8]	736 (2003).
Variables:	Prepared by:
T/K = 299.15; Solvent Composition	W. E. Acree, Jr.

Experimental Values

Solubility of pyrene in 3-methyl-1-butanol + acetonitrile mixtures^a

$x_3^{(s)}$	x_3	x_1
0.0000	0.0000	0.00546
0.1981	0.1961	0.00995
0.3709	0.3664	0.01223
0.5829	0.5753	0.01296
0.6600	0.6517	0.01255
0.7605	0.7519	0.01132
0.8929	0.8853	0.00849
0.9461	0.9392	0.00734
1.0000	0.9939	0.00614

 $\bar{a}x_3$ (s): initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 372 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from anhydrous methanol.
- (2) 99+%, anhydrous, Aldrich Chemical Company.
- (3) 99.8%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

Components: (1) Pyrene; C ₁₄ H ₁₀ ; [129-00-0] (2) 2-Pentanol; C ₅ H ₁₂ O; [6032-29-7] (3) Acetonitrile; C ₂ H ₃ N; [75-05-8]	Original Measurements: 89 C. I. Monárrez, J. H. Woo, P. G. Taylor, A. M. Tran, and W. E. Acree, Jr., J. Chem. Eng. Data 48, 736 (2003).
Variables: $T/K = 299.15$; Solvent Composition	Prepared by: W. E. Acree, Jr.

Solubility of pyrene in 2-pentanol + acetonitrile mixtures^a

$x_3^{(s)}$	<i>x</i> ₃	x_1
0.0000	0.0000	0.00640
0.2222	0.2194	0.01274
0.3733	0.3676	0.01517
0.5690	0.5600	0.01584
0.6652	0.6552	0.01495
0.7626	0.7528	0.01283
0.8900	0.8818	0.00925
0.9494	0.9423	0.00751
1.0000	0.9939	0.00614

 $[\]bar{a}_{x_3}^{(s)}$: initial mole fraction of component 3 in the binary solvent mixture; x_1 : mole fraction solubility of the solute; x_3 : mole fraction of component 3 in the ternary solution.

Auxiliary Information

Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Binary solvent mixtures were prepared by mass. Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed and diluted with methanol. Concentrations determined by spectrophotometric measurements at 372 nm.

Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, recrystallized several times from anhydrous methanol.
- (2) 99+%, Acros Organics, USA.
- (3) 99.8%, anhydrous, Aldrich Chemical Company.

Components 2 and 3 were stored over molecular sieves and distilled shortly before use.

Estimated Error:

Temperature: ± 0.1 K.

 $x_3^{(s)}$: ± 0.0001 .

 x_1 : $\pm 1.5\%$ (relative error).

21. References

- ¹Polycyclic Aromatic Hydrocarbons in Pure and Binary Solvent Mixtures, edited by W. E. Acree, Jr., IUPAC Solubility Data Series Vol. 54 (Oxford University Press, London, 1994).
- ²Polycyclic Aromatic Hydrocarbons: Binary Nonaqueous Systems, Part 1: Solutes A-E, edited by W. E. Acree, Jr., IUPAC Solubility Data Series Vol. 58 (Oxford University Press, London, 1995).
- ³Polycyclic Aromatic Hydrocarbons: Binary Nonaqueous Systems, Part 2: Solutes F-Z, edited by W. E. Acree, Jr., IUPAC Solubility Data Series Vol. 59 (Oxford University Press, London, 1995).
- ⁴J. M. Prausnitz, *Molecular Thermodynamics of Fluid-Phase Equilibria* (Prentice-Hall, Englewood Cliffs, NJ, 1969), pp. 389–391.
- ⁵H. Buchowski, A. Ksiazczak, and S. J. Pietrzyk, J. Phys. Chem. **84**, 975 (1980).
- ⁶H. Buchowski and A. Khiat, Fluid Phase Equilib. 25, 273 (1986).
 ⁷W. E. Acree, Jr. and A. I. Zvaigzne, Thermochim. Acta 178, 151 (1991).

- ⁸W. E. Acree, Jr., J. W. McCargar, A. I. Zvaigzne, and I.-L. Teng, Phys. Chem. Liq. 23, 27 (1991).
- ⁹A. Proctor, B. H. Blake-Taylor, and W. E. Acree, Jr., J. Chem. Eng. Data 53, 2910 (2008).
- ¹⁰ A. Proctor, B. A. Martine, and W. E. Acree, Jr., J. Chem. Eng. Data **53**, 2197 (2008).
- ¹¹B. H. Blake-Taylor, B. A. Martine, and W. E. Acree, Jr., J. Chem. Eng. Data 53, 970 (2008).
- ¹²A. Shayanfar, S. Soltani, F. Jabbaribar, E. Tamizi, W. E. Acree, Jr., and A. Jouyban, J. Chem. Eng. Data 53, 890 (2008).
- ¹³B. A. Martine, B. H. Blake-Taylor, and W. E. Acree, Jr., J. Chem. Eng. Data 53, 556 (2008).
- ¹⁴K. J. Pribyla, T. T. Van, C. Ezell, and W. E. Acree, Jr., J. Chem. Eng. Data 45, 968 (2000).
- ¹⁵K. J. Pribyla, M. A. Spurgin, I. Chuca, and W. E. Acree, Jr., J. Chem. Eng. Data 45, 965 (2000).
- ¹⁶ K. J. Pribyla, M. A. Spurgin, I. Chuca, and W. E. Acree, Jr., J. Chem. Eng. Data 45, 971 (2000).
- ¹⁷K. J. Pribyla, C. Ezell, T. T. Van, and W. E. Acree, Jr., J. Chem. Eng. Data 45, 974 (2000).
- ¹⁸T. Deng, S. D. Childress, K. M. De Fina, and W. E. Acree, Jr., Chem. Eng. Commun. **172**, 217 (1999).
- ¹⁹K. J. Pribyla, M. A. Spurgin, I. Chuca, and W. E. Acree, Jr., J. Chem. Eng. Data 45, 530 (2000).
- ²⁰K. J. Pribyla, I. Chuca, T. T. Van, and W. E. Acree, Jr., J. Chem. Eng. Data 45, 533 (2000).
- ²¹K. J. Pribyla, M. A. Spurgin, I. Chuca, and W. E. Acree, Jr., J. Chem. Eng. Data 44, 1265 (1999).
- ²²K. J. Pribyla and W. E. Acree, Jr., J. Chem. Eng. Data 44, 1259 (1999).
- ²³K. J. Pribyla and W. E. Acree, Jr., J. Chem. Eng. Data **44**, 1020 (1999).
- ²⁴T. Deng and W. E. Acree, Jr., J. Chem. Eng. Data **44**, 544 (1999).
- ²⁵T. Deng, C. E. Hernandez, L. E. Roy, and W. E. Acree, Jr., J. Chem. Thermodyn. 31, 205 (1999).
- ²⁶T. Deng, S. D. Childress, K. M. De Fina, C. E. Hernandez, L. E. Roy, T. L. Sharp, and W. E. Acree, Jr., J. Chem. Eng. Data 44, 357 (1999).
- ²⁷T. Deng, S. Horiuchi, L. E. Roy, and W. E. Acree, Jr., J. Chem. Eng. Data 44, 258 (1999).
- ²⁸T. Deng, S. D. Childress, K. M. De Fina, T. L. Sharp, and W. E. Acree, Jr., J. Chem. Eng. Data **43**, 1065 (1998).
- ²⁹T. Deng and W. E. Acree, Jr., J. Chem. Eng. Data **43**, 1059 (1998).
- ³⁰T. Deng and W. E. Acree, Jr., J. Chem. Eng. Data **43**, 1062 (1998).
- ³¹S. Fishback, S. Duenas, N. Kuehn, J. Pacheco, and W. E. Acree, Jr., J. Chem. Eng. Data 47, 62 (2002).
- ³²E. M. Debase and W. E. Acree, Jr., J. Chem. Eng. Data **46**, 1464 (2001).
- ³³E. M. Debase and W. E. Acree, Jr., J. Chem. Eng. Data **46**, 1297 (2001).
- ³⁴E. M. Debase and W. E. Acree, Jr., J. Chem. Eng. Data **46**, 991 (2001).
- ³⁵L. M. Grubbs, K. Holley, S. S. Achi, R. Pointer, D. Casares, R. Hall, J. Ruiz, and W. E. Acree, Jr., Phys. Chem. Liq. 49, 379 (2011).
- ³⁶J. R. Powell, M. E. R. McHale, A.-S. M. Kauppila, W. E. Acree, Jr., P. H. Flanders, V. G. Varanasi, and S. W. Campbell, Fluid Phase Equilib. 134, 185 (1997).
- ³⁷L. E. Roy, C. E. Hernández, G. D. Reddy, J. T. Sanders, T. Deng, M. B. Tuggle, and W. E. Acree, Jr., J. Chem. Eng. Data 43, 493 (1998).
- ³⁸K. M. De Fina, T. T. Van, A. Ibarra, E. Hamilton, J. Martinez, A. Valdez, and W. E. Acree, Jr., Phys. Chem. Liq. 39, 249 (2001).
- ³⁹ A. Shayanfar, S. H. Eghrary, F. Sardari, W. E. Acree, Jr., and A. Jouyban, J. Chem. Eng. Data **56**, 2290 (2011).
- ⁴⁰C. E. Hernández, K. S. Coym, L. E. Roy, J. R. Powell, M. E. R. McHale, and W. E. Acree, Jr., J. Chem. Eng. Data **42**, 954 (1997).
- ⁴¹M. Carrillo, M. Corella, K. Wolcott, K. R. Bowen, and W. E. Acree, Jr., J. Chem. Eng. Data **52**, 270 (2007).
- ⁴²M. E. R. McHale, A.-S. M. Kauppila, and W. E. Acree, Jr., J. Chem. Eng. Data 41, 1203 (1996).
- Lata 41, 1203 (1990).
 K. S. Coym, L. E. Roy, C. E. Hernández, and W. E. Acree, Jr., Chem. Eng. Commun. 162, 215 (1997).
- ⁴⁴C. E. Hernández, L. E. Roy, T. Deng, M. B. Tuggle, and W. E. Acree, Jr., Phys. Chem. Liq. **37**, 677 (1999).
- ⁴⁵C. E. Hernández, L. E. Roy, G. D. Reddy, G. L. Martinez, A. Jackson, G. Brown, and W. E. Acree, Jr., Chem. Eng. Commun. 169, 137 (1998).
- ⁴⁶C. E. Hernández, L. E. Roy, G. D. Reddy, G. L. Martinez, A. Jackson, G. Brown, T. L. Borders, J. T. Sanders, and W. E. Acree, Jr., Phys. Chem. Liq. 36, 257 (1998).

- ⁴⁷C. E. Hernández, L. E. Roy, G. D. Reddy, G. L. Martinez, A. Parker, A. Jackson, G. Brown, and W. E. Acree, Jr., J. Chem. Eng. Data 42, 1249 (1997).
- ⁴⁸C. E. Hernández, L. E. Roy, G. D. Reddy, T. L. Borders, J. T. Sanders, and W. E. Acree, Jr., Phys. Chem. Liq. **37**, 31 (1998).
- ⁴⁹K. M. De Fina, T. Chee, A. Delacruz, A. Frizzelle, K. Theeuwes, and W. E. Acree, Jr., Phys. Chem. Liq. 39, 499 (2001).
- ⁵⁰P. G. Taylor, A. M. Tran, A. K. Charlton, D. R. Daniels, and W. E. Acree, Jr., J. Chem. Eng. Data 48, 1603 (2003).
- ⁵¹J. R. Powell, B. J. Miller, and W. E. Acree, Jr., J. Chem. Eng. Data 40, 1124 (1995).
- ⁵²J. R. Powell and W. E. Acree, Jr., J. Chem. Eng. Data **40**, 914 (1995).
- ⁵³M. Corrella, K. Wolcott, M. Carrillo, and W. E. Acree, Jr., J. Chem. Eng. Data **52**, 929 (2007).
- ⁵⁴J. R. Powell, M. E. R. McHale, A.-S. M. Kauppila, and W. E. Acree, Jr., J. Chem. Thermodyn. **28**, 1215 (1996).
- ⁵⁵J. R. Powell, K. S. Coym, and W. E. Acree, Jr., J. Chem. Eng. Data 42, 395 (1997)
- ⁵⁶A. I. Zvaigzne and W. E. Acree, Jr., J. Chem. Eng. Data **40**, 917 (1995).
- ⁵⁷C. I. Monárrez, P. G. Taylor, A. M. Tran, and W. E. Acree, Jr., J. Chem. Eng. Data 48, 1341 (2003).
- ⁵⁸J. R. Powell, M. E. R. McHale, A.-S. M. Kauppila, W. E. Acree, Jr., and S. W. Campbell, J. Solution Chem. **25**, 1001 (1996).
- ⁵⁹J. R. Powell, K. A. Fletcher, K. S. Coym, W. E. Acree, V. G. Varanasi, and S. W. Campbell, Int. J. Thermophys. 18, 1495 (1997).
- ⁶⁰J. R. Powell, M. E. R. McHale, A.-S. M. Kauppila, and W. E. Acree, Jr., J. Chem. Eng. Data 41, 728 (1996).
- ⁶¹M. E. R. McHale, J. R. Powell, A.-S. M. Kauppila, and W. E. Acree, Jr., J. Chem. Eng. Data 41, 105 (1996).
- ⁶²M. E. R. McHale, J. R. Powell, A.-S. M. Kauppila, W. E. Acree, Jr., and P. L. Huyskens, J. Solution Chem. 25, 1089 (1996).
- ⁶³M. E. R. McHale, J. R. Powell, A.-S. M. Kauppila, and W. E. Acree, Jr., J. Chem. Eng. Data 41, 272 (1996).
- ⁶⁴M. E. R. McHale, K. S. Coym, L. E. Roy, C. E. Hernández, and W. E. Acree, Jr., Can. J. Chem. **75**, 1403 (1997).
- ⁶⁵M. E. R. McHale, A.-S. M. Kauppila, J. R. Powell, and W. E. Acree, Jr., J. Chem. Thermodyn. 28, 209 (1996).
- ⁶⁶M. E. R. McHale, A.-S. M. Kauppila, S. A. Padilla, A. L. Trufant, N. U. De La Sancha, E. Velo, J. R. Powell, and W. E. Acree, Jr., J. Chem. Eng. Data 42, 54 (1997).
- ⁶⁷W. E. Acree, Jr., J. Chem. Eng. Data **46**, 885 (2001).
- ⁶⁸A. Jouyban, J. L. Manzoori, V. Panahi-Azar, J. Soleymani, M. A. A. Fakhree, A. Shayanfar, and W. E. Acree, Jr., J. Chem. Eng. Data 55, 2607 (2010).

- ⁶⁹A. Toro and W. E. Acree, Jr., Phys. Chem. Liq. **40**, 327 (2002).
- ⁷⁰L. Alcazar, A. Blanco, R. Cano, L. Fisher, M. Nau, L. Sidransky, and W. E. Acree, Jr., J. Chem. Eng. Data 53, 201 (2008).
- ⁷¹A. Toro and W. E. Acree, Jr., Phys. Chem. Liq. **39**, 773 (2001).
- ⁷²C. I. Monárrez, J. H. Woo, P. G. Taylor, A. M. Tran, and W. E. Acree, Jr., J. Chem. Eng. Data 48, 720 (2003).
- ⁷³K. M. De Fina, S. Abernathy, K. Alexander, C. Olugbuyi, A. Vance, and W. E. Acree, Jr., J. Chem. Eng. Data 48, 402 (2003).
- ⁷⁴M. E. R. McHale, A.-S. M. Kauppila, J. R. Powell, and W. E. Acree, Jr., J. Chem. Thermodyn. 28, 589 (1996).
- ⁷⁵A. Jouyban, J. L. Manzoori, J. Soleymani, V. Panahi-Azar, M. A. A. Fakhree, S. Ahmadian, A. Shayanfar, and W. E. Acree, Jr., J. Chem. Eng. Data 55, 5319 (2010).
- ⁷⁶A. A. Dyshin, O. V. Eliseeva, M. G. Kiselev, and G. A. Al'per, Russ. J. Phys. Chem. A **82**, 1258 (2008).
- ⁷⁷A. Shayanfar, S. Soltani, F. Jabbaribar, A. A. Hamidi, W. E. Acree, Jr., and A. Jouyban, J. Chem. Eng. Data 53, 574 (2008).
- ⁷⁸M. A. A. Fakhree, A. Shayanfar, W. E. Acree, Jr., and A. Jouyban, J. Chem. Eng. Data **54**, 1405 (2009).
- ⁷⁹M. A. A. Fakhree, W. E. Acree, Jr., and A. Jouyban, J. Chem. Eng. Data 55, 531 (2010).
- ⁸⁰S. Ahmadian, V. Panahi-Azar, M. A. A. Fakhree, W. E. Acree, Jr., and A. Jouyban, J. Chem. Eng. Data **56**, 4352 (2011).
- ⁸¹T. L. Borders, M. E. McHale, J. R. Powell, K. S. Coym, C. E. Hernández, L. E. Roy, W. E. Acree, Jr., D. C. Williams, and S. W. Campbell, Fluid Phase Equilib. 146, 207 (1998).
- ⁸² A. I. Zvaigzne and W. E. Acree, Jr., J. Chem. Eng. Data 40, 1127 (1995).
- ⁸³C. E. Hernández, K. S. Coym, L. E. Roy, J. R. Powell, and W. E. Acree, Jr., J. Chem. Thermodyn. 30, 37 (1998).
- ⁸⁴M. E. R. McHale, A. I. Zvaigzne, J. R. Powell, A.-S. M. Kauppila, W. E. Acree, Jr., and S. W. Campbell, Phys. Chem. Liq. 32, 67 (1996).
- ⁸⁵M. E. R. McHale, A.-S. M. Horton, S. A. Padilla, A. L. Trufant, N. U. De La Sancha, E. Vela, and W. E. Acree, Jr., J. Chem. Eng. Data 41, 1522 (1996).
- ⁸⁶A. I. Zvaigzne, B. J. Miller, and W. E. Acree, Jr., J. Chem. Eng. Data 40, 1267 (1995).
- ⁸⁷ A. I. Zvaigzne, M. E. R. McHale, J. R. Powell, A.-S. M. Kauppila, and W. E. Acree, Jr., J. Chem. Eng. Data 40, 1273 (1995).
- ⁸⁸M. E. R. McHale, K. S. Coym, K. A. Fletcher, and W. E. Acree, Jr., J. Chem. Eng. Data 42, 511 (1997).
- ⁸⁹C. I. Monárrez, J. H. Woo, P. G. Taylor, A. M. Tran, and W. E. Acree, Jr., J. Chem. Eng. Data 48, 736 (2003).