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Abstract
A large amount of data on the biological and toxicological activity of gases and vapors has been
collected from the literature. Processes include sensory irritation thresholds, the Alarie mouse test,
inhalation anesthesia, etc. It is shown that a single equation using only five descriptors (properties
of the gases and vapors) plus a set of indicator variables for the given processes can correlate 643
biological and non-lethal toxicological activities of ‘non-reactive’ compounds with a standard
deviation of 0.36 log unit. The equation is scaled to sensory irritation thresholds obtained by the
procedure of Cometto-Muñiz, and Cain, and provides a general equation for the prediction of sensory
irritation thresholds in man. It is suggested that differences in biological/toxicological activity arise
primarily from transport from the gas phase to a receptor phase or area, except for odor detection
thresholds where interaction with a receptor(s) is important.

INTRODUCTION
The toxicological and biological activities of gases and vapors includes such processes as upper
respiratory tract irritation in mice (Alarie, 1966, 1973), inhalation anesthesia in mice (Davies
et al., 1974, 1976) and in rats (Won et al., 2006), convulsant activity in rats (Eger et al.,
1999), and eye irritation thresholds, nasal pungency thresholds and odor detection thresholds
in man (see reviews in Cometto-Muñiz, 2001, Cometto-Muñiz et al., 2004). Because of the
importance of these effects, there have been numerous attempts to obtain equations that
correlate these activities and which can be used to predict further values of the activity
(Abraham et al., 1990, 1998a, 1998b, 2002, 2007, 2008a; Abraham and Acree 2009; Alarie et
al., 1995 and 1996; Davies et al., 1974, 1976; Famini et al., 2002; Hau and Connell 1998, Hau
et al., 1999; Luan et al., 2006; Muller and Gref 1984; Roberts 1986; Sewell and Sear, 2004
and 2006).

In any equation that is established, predictions should only be made for volatile compounds,
VCs, that lie within the chemical space of the VCs used to construct the equation. The problem
with all the equations so far established is that the VCs used to construct the equations are too
small in number and too close in variety to provide predictions for a wide range of VCs. For
example, quantitative structure-activity relationships (QSARs) have been derived for nasal
pungency thresholds (NPTs) using 33 VCs (Hau et al., 1999) or 44 VCs (Abraham et al.,
1998b; Famini et al., 2002), all of which are rather simple molecules. The set of 33 or 44
compounds includes no ethers, no fluorocompounds, no bromocompounds, no nitriles, no
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nitrocompounds, and only one heterocyclic compound (pyridine) so that predictions are
severely limited to a few specific types of VC. It is the aim of the present work to ascertain if
it is possible to combine several different biological and non-lethal toxicological processes in
the same equation, and thus to extend the chemical space of the VCs and the area of possible
predictions. Of course, the statistics of any combined equation will not be expected to be as
good as those for the separate equations, but the hope is that any combined equation will still
be good enough to yield reasonable predictions of biological/toxicological activity of gases
and vapors. Note that we use the term ‘volatile compounds’ rather than ‘volatile organic
compounds’ because we deal with inorganic compounds as well as organic compounds.

MATERIALS AND METHODS
The methods we use are based on two linear free energy relationships, LFERs, equation [1]
and equation [2]

(1)

(2)

The dependent variable, Y, is some property of a series of solutes in a given fixed process. For
example Y might be log (1/NPT) for a series of VCs. The five independent variables, or
descriptors, are properties of the VCs as follows (Abraham, 1993; Abraham et al., 2004). E is
the VC excess molar refraction and reflects the ability of the solute to undergo general
dispersion interactions, S is the VC dipolarity (plus some polarizability), A is the VC hydrogen
bond acidity, B is the VC hydrogen bond basicity, L is the solubility of the gaseous VC in
hexadecane at 25°C, expressed as the gas to hexadecane partition coefficient, and V is the
McGowan characteristic volume. L and V can be regarded as measures of the size of the VC.
The regression coefficients, c, e, s, a, b, l, and v are obtained by multiple linear regression
analysis.

Equations on the lines of equation [1] have previously been obtained for eye irritation
thresholds (Abraham et al., 1998a), nasal irritation (pungency) thresholds (Abraham et al.,
1998b), odor detection thresholds (Abraham et al., 2002), upper respiratory irritation in mice
(Abraham et al., 1990), inhalation anesthesia (Abraham et al., 2008a) and convulsant activity
(Abraham and Acree, 2009). In the case of convulsant activity, four compounds were more
potent than predicted (Eger et al., 1999) from solubility in olive oil
(perfluorodimethylcyclobutane, 1,1,1,2,2,3,3,4,5,6,6,6-dodecafluorohexane, bis(2,2,2-
trifluoroethyl)ether, and perfluorotoluene). In addition, scores in the Draize rabbit eye test for
pure liquids can be converted into scores for the corresponding vapors by the liquid saturated
vapor pressure (Abraham et al., 1998a, 1998c). We have included a few VCs for which Draize
scores have subsequently been recorded (Takahashi et al., 2008). Concentrations for aqueous
tadpole narcosis (Bowen et al., 2006) have been converted into gaseous concentrations by use
of the gas to water partition coefficient (Abraham and Acree, 2007); values of log(1/C), where
C is the gaseous narcotic concentration, were used as the function of activity. Only data for the
species Rana temporaria were used. We could have included data for other tadpole species,
but that would have meant another indicator variable for each species, and a more complicated
general equation than was necessary.

The data used in the above studies, together with more recent data on upper respiratory irritation
in mice (Alarie et al., 1995 and 1996; Nielsen et al., 2007), as log (RD50) can all be collected

Abraham et al. Page 2

Toxicol In Vitro. Author manuscript; available in PMC 2011 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



together. RD50 is the vapor concentration of a VC in ppm that reduces the rate of breathing of
a mouse by 50%. For nasal pungency thresholds, eye irritation thresholds and odor detection
thresholds we use log(1/NPT), log(1/EIT) and log(1/ODT), in units of ppm, so that the larger
the numerical value, the more potent is the VC. In the case of inhalation anesthesia in mice
(Davies et al., 1974, 1976) further studies at the same organization were later carried out
(Bagnall et al., 1977, 1978, 1979a, 1979b, 1979c). However, we have not been able to include
these results at all; possibly a different protocol was used in the later studies. We use the original
units, rather than converting them all into some common unit, in order to make it easier to
check the original data, and in order to make predictions without the necessity of converting
units. In any case, all the units used are molar quantities as required (Dearden et al., 2009).
The units of RD50, NPT, EIT and ODT are ppm (vol/vol) so that by Avogadro’s hypothesis,
these all correspond to mol/volume. The units of inhalation anesthesia and convulsions are
partial pressure, but since PV = RT it follows that log P is proportional to −log V, and, again
by Avogadro’s hypothesis, this is (the logarithm of) a molar quantity. The end point for
inhalation anesthesia in mice (Davies et al., 1974, 1976) was given as vol/vol, so again is a
molar quantity. Hence all the data we have used are molar quantities.

We were able to collect 720 numerical values for the biological activity of VCs, see
Supplementary material. Of course, this is not 720 compounds, because many compounds have
more than one entry.

In order that the activity of compounds in two processes can be put on the same scale, it is
necessary that there be a constant difference between the activity of corresponding compounds
in the two processes. Then this constant difference can be modeled by incorporation of an
indicator variable in a general equation. We use equation (1) because that has been the basis
for analyses of several measures of biological/toxicological activity, and we choose eye
irritation as a ‘standard’, because it is one of the few processes that refer directly to effects on
humans, and because we are particularly interested in sensory irritation – the combination of
eye irritation and nasal pungency. Then for any other process, an indicator variable is added
to equation (1). If several other processes are included, an indicator variable is needed for each
process.

RESULTS
All the data we use is given in the Supplementary Table, together with the VC descriptors used
in the calculations. These descriptors have all been obtained from experimental data, as
explained before (Abraham et al., 2004). We first show how the present method leads to an
equation that includes VCs that cover a very large chemical space. The chemical space of a set
of VCs can be represented by the descriptors in equation (1) – the larger the numerical variation
in the descriptors the larger is the chemical space. If the five descriptors were plotted as points
in five-dimensional space, the volume enclosed by the points would be an exact measure of
the chemical space. In order to visualize the chemical space, we use principal components
analysis, PCA, transform the five columns of descriptor data into five principal components
or PCs. The scores for the first two principal components typically contain about 80% of the
total information. Then a plot of PC2 against PC1 for a given process will give an indication
of the chemical space of the VCs used in that process.

In Fig. 1 is given a plot of PC2 against PC1 for eye irritation thresholds (Abraham et al.,
1998a), and for inhalation anesthesia (Davies et al., 1974,1976). The chemical space covered
by the two sets of VCs is completely different, and so if it were possible to combine the data,
the resulting equation would cover a much wider chemical space than either set separately, and
would be much more general.
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For the analysis of the 720 data points listed in the Supplementary material, all were first
included in the regression, and outliers then removed. Our criterion for an outlier was that it
deviated by more than 2.8 standard deviations of the regression equation. This criterion was
not chosen arbitrarily, but was selected so that we did not remove any VCs in the mouse assay
test listed as operating through a physical mechanism (Alarie et al., 1995 and 1996; Nielsen
et al., 2007); these workers classed VCs into those operating through a physical mechanism
and those operating through a chemical mechanism. There were 53 outliers out of 147 VCs in
the mouse assay test. These included VCs such as the isocyanates with a very reactive carbonyl
group, and α,β-unsaturated compounds known to react with nucleophiles through Michael-
type addition reactions (Yarbrough and Schultz 2007; Schultz et al., 2007).

As regards odor detection thresholds, ODTs, the terms ‘physical’ or ‘chemical’ are not very
useful. In an analysis of ODTs, it was found (Abraham et al., 2007) that a compound such as
octan-1-ol was an outlier, although it cannot be regarded as acting through a ‘chemical’
mechanism. It was suggested that the terms ‘selective’ and ‘specific’ were more appropriate.
A selective process is one in which small structural changes in the VC evoke predictable and
rather small changes in biological activity, and a specific process is one in which small
structural changes in the VC may evoke less predictable and often large changes in biological
activity (Abraham et al., 2007). The factors that lead to a specific process have not fully been
elucidated, although it has been found that a particular maximum unfolded length of about 12
Å leads to enhanced potency (Abraham et al., 2002). Of the 64 compounds for which we had
ODT values, 20 were outliers. It is known that statistically reasonable equations for log (1/
ODT) can only be set up if quite a large number of VCs are omitted (Abraham et al., 2007)
and so it is no surprise that there are outliers in the ODT set.

The only other outliers were pentane, urea, nicotine and strychnine in the calculated inhalation
anesthesia of tadpoles (Abraham and Acree, 2007); urea and nicotine were outliers in the
regression equation for aqueous anesthesia of tadpoles (Bowen et al., 2006). A summary of
the number of VCs in the various processes is in Table 1, and full details are in the
Supplementary Table.

Application of equation [1] plus the indicator variables shown in Table 1 to the 720 data points
led to equation [3], after deletion of the 77 outliers.

(3)

Here, N is the number of data points, SD is the regression standard deviation, r is the correlation
coefficient, q and PRESS are the leave-one-out statistics, F is the F-statistic and PSD is the
‘predictive standard deviation’ (Hawkins, 2004; Abraham et al., 2009) PDS is defined similarly
to SD; the latter is given by SD = √[SSE/(N -1 − v)] where SSE is the sum of squares of errors
and v is the number of independent variables, and PSD = √ [PRESS/(N -1 −v)]. PSD is a very
useful statistic and can be taken as a measure of the predictive capability of the equation. It
can be seen that the coefficient of the NPT indicator variable is very small (−0.036) so that
NPT and EIT values are almost exactly matched and the NPT indicator variable can be
removed. The e-coefficient (0.056) is not statistically significant and if this is removed as well,
equation [4] results. The r2 statistic of 0.992 indicates that over 99% of the variance in the data
is accounted for. This will include random experimental and biological error, but not, of course,
systematic error.
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(4)

The F-statistic is often used as a criterion for removing descriptors; the larger the F-statistic
the more efficient is the equation. A more powerful method is through the Akaike information
criterion, AIC, (Cavanaugh, 1997) which takes into account the number of descriptors, p, the
number of data points, N, and the regression residual sum of squares, RSS, also known as SSE,
the error sum of squares,

(5)

The smaller the value of AIC, the more efficient or economic is the model. Note that equation
[5] can only be applied to a set of equations with the same number of data points. We give in
Table 2 details of the application of the AIC criterion to equation [3] as we remove successively
the least important descriptor. There is little improvement in efficiency if the descriptors
Inpt and E are removed, but removal of the next least important descriptor, Ird50, leads to a
very considerable increase in AIC. The AIC criterion marks equation [4] as the most efficient
(as does the F-statistic). Very little can be deduced from the values of r2 or SD.

The statistics of equation [4] are practically identical to those of equation [3] and so can be
used for the prediction of sensory irritation thresholds (SIT) in humans. In this case, all the
other indicator variables can be set to zero to leave equation [6] as the most soundly-based
equation for the prediction of sensory irritation thresholds in humans, as log(1/SIT), with an
estimated predictive error of 0.36 log units.

(6)

We also investigated the use of equation [2] in the analysis of activity. Although equation [1]
is usually better than equation [2] for the correlation and prediction of processes involving
transfer of gases to a condensed phase, equation [2] has an advantage that the descriptor V can
be calculated from structure. Thus in cases where the L descriptor cannot be obtained, equations
[7] and [8] can be used to predict sensory irritation thresholds with little loss in predictive
capability (PSD = 0.40 log units). In equation [7] isostearyl alcohol was an additional outlier
in the EIT from Draize scores data set.

(7)
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(8)

DISCUSSION
When data for the various end points shown in Table 1 are fitted to equation [1], equations are
obtained with different intercepts (c) and different coefficients (e-l). How all the data can be
expressed in one equation is shown in Fig. 2, that is based on the simple equation [9].

(9)

Two sets of data points are shown in Fig. 2, those for equation B having a different slope and
very different intercept to those for equation A. An indicator variable adjusts the points for
equation B so that both sets of points have the same intercept. Then it is possible to derive an
equation for the combined set of points with an ‘average’ slope. The SD value for the combined
equation will not be as good as the separate SD values, but provided that the separate equations
have slopes that are not too far apart, the combined equation may be judged to be reasonable,
and, of course, will cover a much larger range of values.

The coefficients of the indicator variables in equation [3] yield information as to the sensitivity
of the various processes, for the specific cases where the same units are used, and where the
form of the dependent variable is the same. From Table 2 it can be seen that a number of
processes conform to this, and can then be ranked for sensitivity. The indicator variable for
nasal pungency irritation is very nearly zero, and so, on the given experimental protocol, the
sensitivity towards irritants is the same for eye irritation and nasal pungency. The mouse assay
is a little more sensitive than sensory irritation, Ird50 = 0.44 log units, and the olfactory system
for odor detection thresholds is very much more sensitive than sensory irritation or the mouse
assay, Iodt = 2.77 log units.

Our preferred equations for sensory irritation thresholds, equation [4] and equation [6], are
statistically very good, they cover a very wide range of VCs, and have a predictive ability of
about 0.36 log units in log (1/SIT). This is good enough for the prediction of SIT values for a
host of atmospheric pollutants. Although equation [4] covers a very large range of VCs, great
care must still be taken over compounds that might act through a specific mechanism, because
there is no reason why compounds that act by a specific mechanism in one test to one species
should act in the same way in another test to another species. Amines and isocyanates were
classed as acting via a chemical mechanism in the mouse assay, (Alarie et al., 1995 and
1996; Nielsen et al., 2007) and they might act in a similar way in an eye irritation threshold
test, but this does not necessarily follow from the mouse assay results. In addition, we have
recently shown that on ascending a homologous series of VCs, for example n-alkyl acetates or
n-alcohols, the sensory irritation, i.e., chemesthetic, activity of the VC does not continually
increase, but a point is reached at which the activity begins to decrease (Cometto-Muñiz et
al., 2005a, 2005b, 2006 and 2007, Cain et al., 2006) This ‘cut-off’ is possibly due to an effect
of VC size (perhaps the length of a VC) that inhibits interaction with human chemesthetic
receptors (Cometto-Muñiz et al., 2007, Cometto-Muñiz and Abraham, 2008). Hence care must
be taken over the use of equation [4] for the prediction of sensory irritation thresholds of large
VCs. Furthermore we note that the absolute value of sensory irritation thresholds specifically
refer to a given experimental protocol (Cometto-Muñiz et al., 2000 and 2002).

Finally, we comment on the implications of the general equation [4] for the mechanism of non-
lethal toxic and biological action of VCs. It has been suggested (Abraham et al., 1994) that the
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activity of gaseous VCs takes place through a two-stage mechanism: (1) a VC is transferred
from the gas phase to a receptor phase or area, and (2) the VC then interacts with a receptor.
The observation that VC activities of non-reactive compounds in a wide variety of biological
systems can be well correlated by the same equation indicates that the main step in the two-
stage mechanism is transfer from the gas phase to receptor phases or areas. The receptors
themselves discriminate only marginally between the different VCs. The coefficients e-l in
equation [4] are certainly comparable with coefficients in equation [1] for transfer from the
gas phase to phases such as wet pentanol (Abraham et al., 2008b), wet butyl acetate (Sprunger
et al., 2008), and, possibly quite significantly, the peptide model N-methylformamide
(Abraham et al., 2009). The coefficients are not far from transfers from the gas phase to the
biological phases brain and muscle (although some way from fat), as shown in Table 3
(Abraham and Ibrahim, 2006; Abraham et al., 2006a and 2006b). Naturally, there will be
differences in the final biological phase (the receptor phase or area) and so at a more detailed
level than our general equation represents, various equations on the lines of equation [1] are
necessary to correlate the different processes.

In the case of odor detection thresholds, the large number of outliers to equation [4] suggests
that interaction with a receptor, stage two, now plays a significant part, and that the receptor
(s) does discriminate between VCs (see, for example, Malnic, 2007).

The supplementary table contains a full list of all the compounds studied, the corresponding
biological and toxicological data and the descriptors used in the regression equations.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

VC volatile compound

QSAR quantitative structure-activity relationship

NPT nasal pungency threshold

EIT eye irritation thresholds

ODT odor detection threshold

RD50 upper respiratory tract irritation in mice

ppm parts per million

atm atmospheres
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Fig. 1.
Plot of PC2 against PC1 for eye irritation ○ and inhalation anesthesia (Davies) •.
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Fig. 2.
Plots of equations of the form Y = mX + c; • equation A; ○ equation B; vertical arrow → shows
the effect of an indicator variable. Dashed lines are for the separate equations, full line for the
combined equation.
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