Background

Classification: Structural Materials
- Metal
- Polymer
- Ceramic
- **Strong & tough**
- High-temperature strength
- High wear resistance
- **Light & cheap**
- Chemically inactive
- Easy to fabricate
- **Limitations on max operating temperature**
- Used at temperatures below 300°C only
- **Still hindered from several applications because of its limitations towards machining into desirable components**
- Examples: Alumina (Al₂O₃), ZrO₂, B₄C, SiC, Si₃N₄

Defence and space exploration
- Machining and fabrication of high-temperature materials
- Insulating tiles for space shuttle, ceramic coatings, engine components, and windshields of glass in airplanes

Machining and fabrication
- Excellent hardness & heat resistance properties ideal for drilling, shaping, grinding, and forming metal workpieces

Reference: Google images

Motivation

Conventional machining techniques (grinding)
- Unacceptable tool wear & insufficient accuracy
- Mechanical or thermal damage
- Lower material removal rate or machining time
- Higher operating costs

Potential solution: Laser Machining
- Innovative and potential tool for bulk material removal and shaping of structural ceramics
- Non-contact process - eliminates tool wear
- Efficient, reliable, cost effective solution to fabricate complex structures at large scales

Need: Obtaining desired surface finish at much higher material removal rate

Solution: Better understanding of various physical phenomena (heat transfer & fluid flow) and its influence on the evolution of surface finish during laser machining of ceramics

Objective

Current research aims at presenting the state of the art in the field of **laser machining** of alumina and emphasizes on **experimental and computational approaches** in understanding physical nature of the complex phenomena.

Laser-Material Interaction

Schematic of laser-material interaction

- Plasma
- Heat conduction
- Surface melting
- Surface vaporization
- Plume formation
- Recoil pressure
- Liquid pile-up
- Rapid solidification

All explained physical phenomena happened
- within the small interval of time
- very difficult to observed physically
- Solution — **finite element method**

Numerical Study

A COMSOL® multiphysics based two-step numerical model **coupled with heat transfer and fluid flow** was developed

Step-1: Heat transfer model

(a) Heat flux boundary condition

(b) Melt depth

(c) Crater depth

Step-2: Fluid flow model coupled with heat transfer model

(a) prediction of solid, liquid & vapor interface by Level-set method
(b) prediction of crater and melt pool dimensions
(c) flow of molten material due to various boundary conditions
(d) prediction of surface profile after solidification

Governing Equations

- Laser power density in **Gaussian distribution**
 \[
 P_\text{g} = A \exp\left(-\frac{(x - \text{loc})^2}{2\sigma^2}\right)
 \]
 \[
 \text{Recall pressure} (P) \text{ at the evaporating surface depends on the incident laser energy density and is given by the following equation}
 \]
 \[
 P_r = \left(\frac{P_g}{\kappa} \right) \left(\frac{1}{\sqrt{1 + 2.2 \left(\frac{L}{T_v} \right)}} \right)
 \]
 \[
 \text{Navier-Stokes equations} \text{ was used to model the movement of the liquid under the action of the recoil pressure}
 \]

Experimental Study

Path to multidimensional model

Ongoing efforts include the **extension** of one-dimensional numerical model into two- and three-dimensional with inclusion of effects of multiple laser pulses on the surface morphology during laser machining of alumina

Acknowledgement

Funding: National Science Foundation (CMMI-0800694)