Preparing and Using Hydrophobic Fluorinated Polymers for Corrosion Protection on Aluminum Substrate

PDF Version Also Available for Download.

Use of this dissertation is restricted to the UNT Community. Off-campus users must log in to read.

Description

Corrosion is one of the most expensive failures in industries that used metal components and other construction materials. In fact, corrosion is responsible for hundreds of billions-dollar loss in the US alone each year. In general, corrosion occurs when metal surfaces are exposed to water, oxygen, acids, bases, or salts. Therefore, metal substrates must be protected by using materials that act as barriers to avoid destructive corrosion attack. Aluminum is one of the most common metals used in the industry; and it is used in many places such as refining and petroleum production equipment, pipelines, and fossil fuel power plants. ... continued below

Creation Information

Yaseen, Waleed Khaleel May 2019.

Context

This dissertation is part of the collection entitled: UNT Theses and Dissertations and was provided by UNT Libraries to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 18 times, with 4 in the last month. More information about this dissertation can be viewed below.

Who

People and organizations associated with either the creation of this dissertation or its content.

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Yaseen, Waleed Khaleel

Provided By

UNT Libraries

The UNT Libraries serve the university and community by providing access to physical and online collections, fostering information literacy, supporting academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this dissertation. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

Corrosion is one of the most expensive failures in industries that used metal components and other construction materials. In fact, corrosion is responsible for hundreds of billions-dollar loss in the US alone each year. In general, corrosion occurs when metal surfaces are exposed to water, oxygen, acids, bases, or salts. Therefore, metal substrates must be protected by using materials that act as barriers to avoid destructive corrosion attack. Aluminum is one of the most common metals used in the industry; and it is used in many places such as refining and petroleum production equipment, pipelines, and fossil fuel power plants. Aluminum is known to have corrosion resistance due to the forming of an oxide layer that can be reformed rapidly if the surface gets damaged. However, in the long-term the oxide layer cannot protect the aluminum surface from corrosion because it is stable only in neutral mediums and it is soluble in acidic and basic environments. Barrier protection is one of the most effective methods that prevent aluminum surfaces from being exposed to corrosive environments. These barriers can be organic or inorganic coatings that can limit the electron transport or the cathodic and the anodic reactions between aluminum alloys and the surrounding environment. Fluorinated polymers that were used in this study exhibit excellent properties which make them good candidates for corrosion protection applications. These properties include high hydrophobicity which is responsible for repelling oxygen and water and reducing the wettability of the metal surface, strong adhesion to the metal surface allowed for covering and protection of substrates in aggressive environments, and thermal stability that allows for using these polymers in high temperature environments. Overall, the corrosion protection, which was evaluated using electrochemical techniques, and the mechanical properties were improved with these fluorinated polymeric coatings in comparison to the bare aluminum alloys which proves to be advantageous for using these polymeric coatings in many areas including marine environments, oil and gas industries, and fossil fuel power plants.

Language

Identifier

Unique identifying numbers for this dissertation in the Digital Library or other systems.

Collections

This dissertation is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this dissertation?

When

Dates and time periods associated with this dissertation.

Creation Date

  • May 2019

Added to The UNT Digital Library

  • June 10, 2019, 9:31 a.m.

Usage Statistics

When was this dissertation last used?

Yesterday: 0
Past 30 days: 4
Total Uses: 18

Interact With This Dissertation

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Yaseen, Waleed Khaleel. Preparing and Using Hydrophobic Fluorinated Polymers for Corrosion Protection on Aluminum Substrate, dissertation, May 2019; Denton, Texas. (https://digital.library.unt.edu/ark:/67531/metadc1505285/: accessed August 18, 2019), University of North Texas Libraries, Digital Library, https://digital.library.unt.edu; .