Spectral, Electrochemical, and Solar Cell Studies of Peripheral Modified Carboxy Zinc Porphyrins

PDF Version Also Available for Download.

Description

Six peripherally meso-modified Zn (II) porphyrin sensitizer dyes are designed and their J-V performance in dye sensitized solar cell (DSSC) evaluated. Electron-donating groups including phenothiazine, carbazole and pyrene are used to modify the porphyrin macrocycle at the meso-carbon position(s). To compare the effect of donor substitution on the performance of the cells in terms of short circuit current (Jsc), light harvesting efficiency (LHE) and power conversion efficiency (η), two sets of sensitizers with different degrees of substitution are synthesized. One set of dyes (mono-substituted) have one electron donor at trans-position to the acceptor, while the second set (tri-substituted) dyes have ... continued below

Creation Information

Alsaleh, Ajyal Zaki May 2019.

Context

This thesis is part of the collection entitled: UNT Theses and Dissertations and was provided by UNT Libraries to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 62 times, with 14 in the last month. More information about this thesis can be viewed below.

Who

People and organizations associated with either the creation of this thesis or its content.

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Alsaleh, Ajyal Zaki

Provided By

UNT Libraries

The UNT Libraries serve the university and community by providing access to physical and online collections, fostering information literacy, supporting academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this thesis. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

Six peripherally meso-modified Zn (II) porphyrin sensitizer dyes are designed and their J-V performance in dye sensitized solar cell (DSSC) evaluated. Electron-donating groups including phenothiazine, carbazole and pyrene are used to modify the porphyrin macrocycle at the meso-carbon position(s). To compare the effect of donor substitution on the performance of the cells in terms of short circuit current (Jsc), light harvesting efficiency (LHE) and power conversion efficiency (η), two sets of sensitizers with different degrees of substitution are synthesized. One set of dyes (mono-substituted) have one electron donor at trans-position to the acceptor, while the second set (tri-substituted) dyes have three of the same type electron donor groups at 5, 10 and 15 meso-carbon positions making all the six dyes push-pull type sensitizers incorporating 4'-carboxyphenyl as an electron-acceptor/anchor group. Different spectroscopic and electrochemical methods are used to study the photophysical and electrochemical properties of the dyes, while the photovoltaic performance of their cells under 1.5 A.M is studied using solar simulator. Meso-substitution of Zinc (II) porphyrin with these small donor molecules is shown to improve the light harvesting character of the Zinc (II) porphyrin macrocycle in the UV-Vis absorption while at same time improving its fluorescence quantum yield, excited-state life time and electron donating potential. All these factors combined make these meso-modified dyes better sensitizers with suitable Δ0 Δ0, and much improved power conversion efficiencies (PCE) compared to unsubstituted Zn (II) porphyrin. In particular, as a result of the peripheral modification, a doubling in efficiency in the mono- substituted series (RA-200-Zn; η=^M 4.2%, Jsc= -13.13 mA cm-2, Voc=0.54 ) and tripling in the tri-substituted series ( tri-phenothiazine Zn (II) Porphyrin; η= 7.3%, Jsc= -18.15 mA cm-2, Voc= 0.55 ) compared to unsubstituted Zn (II) porphyrin (η= 2.11%, Jsc= -5.7 mA cm-2, Voc= 0.53 V) has been accomplished.

Language

Identifier

Unique identifying numbers for this thesis in the Digital Library or other systems.

Collections

This thesis is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this thesis?

When

Dates and time periods associated with this thesis.

Creation Date

  • May 2019

Added to The UNT Digital Library

  • June 10, 2019, 9:31 a.m.

Usage Statistics

When was this thesis last used?

Yesterday: 0
Past 30 days: 14
Total Uses: 62

Interact With This Thesis

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Alsaleh, Ajyal Zaki. Spectral, Electrochemical, and Solar Cell Studies of Peripheral Modified Carboxy Zinc Porphyrins, thesis, May 2019; Denton, Texas. (https://digital.library.unt.edu/ark:/67531/metadc1505284/: accessed August 18, 2019), University of North Texas Libraries, Digital Library, https://digital.library.unt.edu; .