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CHAPTER 1

INTRODUCTION

Let Diffkλ,λ+p be the VecR-module of differential operators of order ≤ k from F (λ)

to F (λ+ p), where F (λ) and F (λ+ p) are the tensor density modules of VecR with lowest

weights λ and λ+ p respectively. Its quotient by Diffk−lλ,λ+p is of length l and has composition

series

F (p− k), F (p− k + 1), . . . , F (p− k + l − 1).

We refer to this quotient as SQk,l
λ,p. It splits under the projective subalgebra sl2 if its compo-

sition series has distinct Casimir eigenvalues. For l ≤ 5, we will state necessary and sufficient

conditions under which two such quotients SQk,l
λ,p and SQk′,l

λ′,p′ are equivalent as VecR-modules.

Our results follow from the action of VecR with respect to the projective splitting. They

extend to pseudodifferential operators: k can be taken to be an element of C.

This problem was first considered by Lecomte and Ovsienko [9]. They treated only

the case p = 0, where equivalence requires k = k′. They found that SQk,l
λ,0 and SQk,l

λ′,0 are

generically equivalent for l ≤ 4, and equivalent only in the conjugate case λ′ = l − λ for

l ≥ 5.

When p is allowed to vary, equivalence requires p−k = p′−k′. Here the length 5 case

exhibits a new phenomenon: the equivalence class of SQk,5
λ,p depends only on two invariants

in (p, λ)-space, called Iq and Ic. After a suitable change of coordinates, the level of curves

of Iq are a pencil of conics determined by four points, and those of Ic are a pencil of cubics

determined by nine points. We also investigate a certain type of “lacunary” subquotient of

SQk,5
λ,p with composition series F (p− k), F (p− k+ 2), F (p− k+ 4). The equivalence classes

of these subquotients are determined solely by Iq.
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CHAPTER 2

TENSOR DENSITY MODULES OF THE LIE ALGEBRA VecR

2.1. Definitions

VecR is the infinite-dimensional Lie algebra of polynomial vector fields on the line.

In this section we give the basic vocabulary necessary to discuss representations of VecR,

define the projective subalgebra of VecR, a copy of sl2, and define the Casimir operator of

a representation of the projective subalgebra.

Definition. VecR :=
{
fD : f ∈ C[x]

}
.

Here D is the usual derivative, d
dx

. The algebra operation is the usual Lie bracket:

[fD, gD] = fD ◦ gD − gD ◦ fD = (fg′ − gf ′)D.

A basis of VecR consists of the elements en := xn+1D, n ≥ −1. We have

[en, em] = (m− n)em+n.

We now define the projective subalgebra a of VecR, which will prove useful for our

computations. The following lemma is clear.

Lemma 2.1. The space a := SpanC {e−1, e0, e1} is a subalgebra of VecR isomorphic to sl2.

Definition. Let π be a representation of VecR on a space V. Eigenvectors of π(e0) of

eigenvalue λ are called λ-weight vectors. If they belong to the kernel of π(e−1), then they

are called lowest weight vectors of weight λ.

Definition. Let (π, V ) be a representation of a. The Casimir operator of π is defined to

be

π(Q) := π(xD)2 + π(xD)− π(D)π(x2D).

Proposition 2.2. Let (π, V ) be a representation of VecR. The Casimir operator commutes

with the action of sl2 on V.
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Proof. A straightforward computation shows that for any k ≥ −1,

[Q, ek] = (2e0 − k − 1)kek − (k − 1)ek+1e−1 − (k + 1)e1ek−1.

Taking k = 0, 1, and −1 gives the result. �

2.2. Tensor Density Modules

The tensor density modules of VecR are deformations of the basic module C[x]. It

was conjectured by Kostrikin [8] and proven by Mathieu [11] that these modules, along with

their localizations, comprise all the irreducible representations of VecR.

Definition. For λ in C, define πλ : VecR→ EndC[x] by

πλ(fD)g = fg′ + λf ′g, that is, πλ(fD) = fD + λf ′.

To denote C[x] under the action πλ, we use the notation F (λ) := dxλC[x].

Lemma 2.3. For all λ in C,
(
πλ, F (λ)

)
is a VecR-representation with

πλ(ek)(dx
λxn) =

(
n+ λ(k + 1)

)
dxλxk+n.

Proof. Simply check that πλ preserves the Lie bracket. �

Lemma 2.4. F (λ) has weights λ, λ + 1, λ + 2, . . . , corresponding to the weight vectors dxλ,

dxλx, dxλx2, . . ., respectively. Up to a scalar, its unique lowest weight vector is dxλ.

Proof. The first sentence is clear. The second follows from πλ(e−1)dx
λf = dxλf ′. �

Lemma 2.5. The Casimir operator of F (λ) is the scalar λ2 − λ.

Proof. Apply the definition of the Casimir operator to obtain the result. �

Proposition 2.6. For all λ 6= 0, F (λ) is an irreducible representation of VecR. The only

proper non-trivial VecR-subrepresentation of F (0) is C.

Proof. If W is a non-trivial subrepresentation of F (λ) with λ 6= 0, then applying πλ(e−1)

repeatedly to a non-zero element of W yields dxλ, and applying πλ(e1) and πλ(e2) repeatedly

to dxλ yields all basis elements dxλxk. Thus W is equal to F (λ).
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It is clear that C is a subrepresentation of F (0). IfW is a non-trivial subrepresentation

of F (0) containing a non-constant element f , then f generates both 1 and x under π0(e−1),

and x generates the rest of C[x] under π0(e1). �

Lemma 2.7.
(
π−1, F (−1)

)
is equivalent to (ad,VecR) as a VecR-representation.

Proof. The reader may check that gD 7→ dx−1g is an equivalence. �

Lemma 2.8. For λ 6= µ,
(
πλ, F (λ)

)
and

(
πµ, F (µ)

)
are not VecR-equivalent.

Proof. This is immediate from the fact that F (λ) and F (µ) have different weights. �

2.3. The Tensor Density Modules Under the Projective Subalgebra

Proposition 2.9. For λ not in −1
2
N,
(
πλ, F (λ)

)
is irreducible under the action of a. For

λ in −1
2
N, the only non-trivial a-subrepresentation of

(
πλ, F (λ)

)
is the space

L(λ) := SpanC
{
dxλxk : 0 ≤ k ≤ −2λ

}
.

Proof. Recall that the kernel of πλ(e−1) is Cdxλ. Since πλ(e1)dx
λxk = (k + 2λ)dxλxk+1,

the kernel of πλ(e1) is Cdxλx−2λ for λ ∈ −1
2
N, and zero otherwise. The result follows. �

2.4. Intertwining Maps

In this section we classify the VecR- and a-intertwining maps between tensor density

modules.

Lemma 2.10. Under VecR, F (0)/C is equivalent to F (1).

Proof. The reader may check that f 7→ dxf ′ is a surjective VecR-map from F (0) to F (1)

with kernel C. The result follows. �

Proposition 2.11. If ε : F (λ)→ F (µ) is a VecR-intertwining map, then either λ = µ and

ε is a scalar, or λ = 0, µ = 1, and ε ∈ CdxD.

Proof. Assume that ε : F (λ) → F (µ) is a non-trivial VecR-intertwining map. Let k0 be

minimal such that ε(dxλxk0) 6= 0. Since ε(dxλxk0) is an element of the kernel of πµ(e−1), it

is cdxµ for some c 6= 0. Since ε preserves weights, we have µ = λ+ k0, thus µ− λ ∈ N.
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If µ = λ 6= 0, then F (λ) is irreducible by Proposition 2.6, so Schur’s lemma implies

that ε is scalar. If µ = λ = 0, then k0 is zero and ε− c annihilates 1, so we find that ε = c.

If µ 6= λ , then k0 ≥ 1, so the kernel of ε is nontrivial. Therefore by Proposition 2.6, λ = 0,

Ker ε = C, and µ = 1. In this case ε and f 7→ cdxf ′ agree on x, so an easy argument shows

that they agree everywhere. �

Proposition 2.12. If ε : F (λ)→ F (µ) is an a-intertwining map, then either λ = µ and ε

is a scalar, or λ ∈ −1
2
N, µ = 1− λ, and ε is a multiple of Cdx1−2λD1−2λ.

Proof. Assume that ε : F (λ)→ F (µ) is a non-trivial a-intertwining map. Let k0 be minimal

such that ε(dxλxk0) is not zero. Since ε(dxλxk0) is an element of the kernel of πµ(e−1), it

is cdxµ for some nonzero scalar c in C. Since ε preserves weights, we have µ = λ + k0, so

µ− λ ∈ N.

If µ = λ /∈ −1
2
N, then F (λ) is irreducible by Proposition 2.9, so Schur’s lemma implies

that ε is scalar. If µ = λ ∈ −1
2
N, then k0 is 0 and ε − c annihilates 1. In this case also we

obtain ε = c. If µ 6= λ, then k0 ≥ 1 and the kernel of ε is nontrivial. Therefore by Proposition

2.9, λ ∈ −1
2
N and Ker ε = L(λ), so k0 = −2λ+ 1, and µ = 1−λ. The reader may check that

dx1−2λD1−2λ : F (λ)→ F (1− λ) is an a-map. It follows easily that ε is a multiple thereof.

�

Corollary 2.13. For λ ∈ −1
2
N, F (λ)/L(λ) is a-equivalent to F (1− λ).

By Lemma 2.7, we have in particular the following corollary.

Corollary 2.14.
(

ad,VecR/a
)

is a-equivalent to
(
π2, F (2)

)
as a VecR representation.
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CHAPTER 3

EXTENSIONS OF THE TENSOR DENSITY MODULES

3.1. HomC
(
F (λ), F (µ)

)
Let us write Homλ,µ for the space HomC

(
F (λ), F (µ)

)
, and hλ,µ for the natural action

of VecR on it:

hλ,µ(X)T := πµ(X) ◦ T − T ◦ πλ(X).

The following well-known lemma is convenient for calculations. We leave its proof to the

reader.

Lemma 3.1. Homλ,µ = dxµ−λC[x][[D]]. In particular, hλ,µ(e−1) acts surjectively on Homλ,µ

with kernel dxµ−λC[[D]].

The following proposition is also well-known. It may be deduced from the fact that,

regarding multiplication by g as an order 0 differential operator, we have

Dj ◦ g =

j∑
i=0

(
j

i

)
g(i)Dj−i.

Proposition 3.2. Let λ and p be in C, and let f and g be in C [x]. For any j in N,

hλ,λ+p(gD)(dxpfDj) = dxp
((
gf ′ + (p− j)g′f

)
Dj − f

j∑
i=1

(
j

i

)(
λ+

j − i
i+ 1

)
g(i+1)Dj−i

)
.

3.2. 1-cohomology

Here we recall some standard facts from Lie algebra cohomology; see for example the

book by Guichardet [7]. Let us fix a representation π of a Lie algebra g on a space V , and

a subalgebra h of g.

Definition. (1) The space of h-relative n-cochains of g with values in V is

Cn(g, h, V ) := Homh

(
Λn(g/h), V

)
.
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(2) The coboundary operator ∂ : Cn(g, h, V )→ Cn+1(g, h, V ) is defined by

∂α(X0 ∧ . . . ∧Xn) :=
n∑
i=0

(−1)iπ(Xi)α
(∧
j 6=i

Xj

)
+
∑
i<j

(−1)i+jα
(

[Xi, Xj] ∧
∧
k 6=i,j

Xk

)
.

(3) The space Zn(g, h, V ) of h-relative n-cocycles is the kernel of the restriction of ∂

to Cn(g, h, V ).

(4) The space Bn(g, h, V ) of h-relative n-coboundaries is the image of the restriction

of ∂ to Cn−1(g, h, V ).

It is well-known that the square ∂2 : Cn(g, h, V ) → Cn+2(g, h, V ) of the coboundary

operator is zero, so Bn(g, h, V ) ⊂ Zn(g, h, V ). The space of h-relative n-cohomology

classes of V is

Hn(g, h, V ) := Zn(g, h, V )/Bn(g, h, V ).

If we write simply Cn(g, V ), Zn(g, V ), Bn(g, V ), or Hn(g, V ), it is understood that h = 0.

In fact, we will only consider 1-cohomology. Observe that for v in C0(g, V ) = V and

α in C1(g, V ) = HomC(g, V ), we have ∂v(X) = π(X)v and

∂α(X ∧ Y ) = π(X)α(Y )− π(Y )α(X)− α[X, Y ].

3.3. Extensions

Again, all of the statements in this section are elementary and may be found in

Guichardet [7]. Maintain g and h as in the previous section, and fix two representations

(φ1, V1) and (φ2, V2) of g. Write h for the two-sided action of g on HomC(V1, V2):

h(X)T := φ2(X) ◦ T − T ◦ φ1(X).

A representation π of g on the space V1 ⊕ V2 is called an extension of V1 by V2 if it is of

the form

π =

φ1 0

α φ2

 ,

where α : g → HomC(V1, V2). The condition that π is a representation is easily seen to be

simply the condition that α be a 1-cocycle. If α is h-relative, then π|h is the direct sum

φ1|h ⊕ φ2|h.
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Two extensions π and π′ of V1 by V2 are equivalent if the corresponding cohomology

classes [α] and [α′] are proportional: [α′] = c[α] for some non-zero scalar c. This is not the

only situation in which they are equivalent, but it is the only situation in which there is an

equivalence of the form

ε =

c1 0

γ c2

 ,

where c1 and c2 are non-zero scalars and γ is an element of HomC(V1, V2). Indeed, we have

the following lemma.

Lemma 3.3. ε =
(
c1 0
γ c2

)
is an equivalence from π =

(
φ1 0
α φ2

)
to π′ =

(
φ1 0
α′ φ2

)
if and only if

α′ = c2
c1
α− 1

c1
∂γ.

3.4. a-split extensions of F (λ) by F (λ+ p)

We now consider the case where F (λ) and F (λ + p) are tensor density modules of

VecR whose Casimir operators, λ2−λ and (λ+p)2−(λ+p), are distinct, that is, p is neither

0 nor 1− 2λ. Proofs of the following two elementary results may be found in [4].

Proposition 3.4. If p is neither 0 nor 1− 2λ, then every element of Z1(VecR,Homλ,λ+p)

is cohomologous to an element of Z1(VecR, a,Homλ,λ+p).

Definition. For every λ in C and p in 2 +N, define a 1-cochain βλp : VecR→ Homλ,λ+p by

βλp (a) = 0, and for k ≥ 2

βλp (ek) := 6
(k−2)!hλ,λ+p(e1)

k−2(dxpDp−2).

Lemma 3.5. The 1-cochains βλp are a-relative. Moreover, C1(VecR, a,Homλ,λ+p) is Cβλp for

p ∈ 2 + N, and zero otherwise.

We remark that this lemma may be proven quickly using the facts that VecR/a is

a-equivalent to F (2), as stated in Corollary 2.14, and that, up to a scalar, dxpDp−2 is the

unique lowest weight vector in Homλ,λ+p of weight 2.

The following theorem is due to Feigin and Fuchs [6]. Similar results were obtained

in different settings by Martin and Piard [10] over VecS1, by Bouarroudj and Ovsienko [2]

8



for smooth vector fields rather than polynomials, and by Boe, Nakano, and Weisner [1] in

positive characteristic.

A proof hinging on a-relativity was given in [4]. It can be shown that Λ2(VecR/a)

is a-equivalent to
⊕∞

r=0 F (2r + 5). Therefore, writing w2r+5 for the lowest weight vectors of

weight 2r + 5 in Λ2(VecR/a), we see that βλp is a cocycle if and only if ∂βλp (w2r+5) = 0 for

all r in N. Moreover, since ∂βλp (w2r+5) is itself a lowest weight vector of weight 2r + 5, it

must be a multiple of dxpDp−2r−5 if p is in 2r+ 5 +N, and zero otherwise. The multiples are

difficult to compute, but they can be deduced from results of Cohen, Manin, and Zagier [3].

Theorem 3.6. For p 6= 0 or 1− 2λ, H1(VecR,Homλ,λ+p) = H1(VecR, a,Homλ,λ+p). More-

over,

(1) H1(VecR,Homλ,λ+2) is C[βλ2 ] for λ 6= −1
2
.

(2) H1(VecR,Homλ,λ+3) is C[βλ3 ] for λ 6= −1.

(3) H1(VecR,Homλ,λ+4) is C[βλ4 ] for λ 6= −3
2
.

(4) H1(VecR,Homλ,λ+5) is C[βλ5 ] for λ = −4 or 0, and 0 otherwise.

(5) H1(VecR,Homλ,λ+6) is C[βλ6 ] for λ = 1
2
(−5±

√
19), and 0 otherwise.

(6) H1(VecR,Homλ,λ+p) is 0 in all other cases where p 6= 0 or 1− 2λ.

9



CHAPTER 4

EQUIVALENCES

4.1. Differential Operators

Recall from Lemma 3.1 that Homλ,µ = dxµ−λC[x][[D]]. The space of differential

operators from F (λ) to F (µ) is Diffλ,µ := dxµ−λC[x][D]. Clearly Diffλ,µ is a VecR-submodule

of Homλ,µ, and its order filtration

Diffkλ,µ := SpanC[x] {Ds : 0 ≤ s ≤ k}

is also VecR-invariant. The following result is fundamental.

Lemma 4.1. Diffkλ,λ+p /Diffk−1λ,λ+p is VecR-equivalent to F (p− k).

Proof. The reader may check that dxpfDk + Diffk−1λ,λ+p 7→ dxp−kf is an equivalence. �

The topic of this thesis is the set of equivalence classes of the reducible subquotients

of the collection of VecR-modules Diffkλ,λ+p as λ and p vary. As we will explain, we will also

consider subquotients of modules of pseudodifferential operators.

4.2. Subquotients

Definition. For λ, p in C and k, l in N, set

SQk,l
λ,p := Diffkλ,λ+p /Diffk−lλ,λ+p .

The subquotient SQk,l
λ,p of Diffλ,λ+p is of length l and has Jordan-Hölder composition

series

F (p− k), F (p− k + 1), . . . , F (p− k + l − 1).

In general, it does not split under VecR as the direct sum of these modules. However, as

we will now prove, it does split under the projective subalgebra a if the Casimir operators of

the composition series elements are distinct. The following lemma, which characterizes this

situation, is left to the reader.
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Lemma 4.2. The Casimir operators of the composition series of SQk,l
λ,p are not distinct if

and only if

(1) p− k ∈ −1
2
N and p− k + l − 1 ∈ 1 + 1

2
N.

Proposition 4.3. If (1) is false, then SQk,l
λ,p is a-equivalent to

⊕l
i=1 F (p− k + i− 1).

Proof. Since F (p− k), F (p− k + 1), . . . , F (p− k + l− 1) have distinct Casimir operators,

each is a-equivalent to the corresponding eigenspace of the Casimir operator of SQk,l
λ,p �

In light of the preceding discussion, SQk,l
λ,p is equivalent to a representation φ of VecR

on
⊕l

i=1 F (p−k+ i−1) which, when regarded as a block matrix with entries φmn : VecR→

Homn,m, takes the form

φ =



πp−k 0 0 0 · · · 0

πp−k+1 0 0 · · · 0

πp−k+2 0 · · · 0

πp−k+3 · · · 0

... φmn
...

...
. . . 0

· · · πp−k+l−1


.

That is, φ is lower triangular and its diagonal entries are the tensor density actions. Moreover,

it follows from the previous proposition that the lower triangular entries φmn are a-relative,

and thus by Lemma 3.5, φn+1,n = 0 and φmn is a multiple of βnm−n for p − k ≤ n < m ≤

p− k + l − 1. As in the proof of Theorem 3.6, these multiples are difficult to compute, but

may be deduced from [3]; see also [4] and [5]. The result is as follows.

Theorem 4.4. If (1) is false, then SQk,l
λ,p is equivalent to a representation φk,lλ,p of VecR on

11



⊕l
i=1 F (p− k + i− 1) of the form

πp−k 0 0 0 · · · 0

0 πp−k+1 0 0 · · · 0

φp−k+2,p−k 0 πp−k+2 0 · · · 0

φp−k+3,p−k φp−k+3,p−k+1 0 πp−k+3 · · · 0

...
...

...
...

. . . 0

φp−k+l−1,p−k φp−k+l−1,p−k+1 · · · 0 πp−k+l−1


,

where for p− k ≤ n ≤ m− 2 and m ≤ p− k + l − 1,

φmn = bmn(λ, p)βnm−n,

where bmn(λ, p) is the scalar defined in (3) and (4) of [5].

By definition, the parameter k in the representation φk,lλ,p is in N, being the maximal

order of the differential operators in the subquotient. However, by an obvious Zariski density

argument based on the formula for bmn(λ, p), the formula for φk,lλ,p defines a representation of

VecR for all λ, p, and k in C and all l in N. These representations correspond to subquotients

of pseudodifferential operator modules: φk,lλ,p is equivalent to Ψk
λ,λ+p/Ψ

k−l
λ,λ+p.

We conclude this section by reproducing the formulas for bn+2,n(λ, p), bn+3,n(λ, p),

and bn+4,n(λ, p), the only bmn(λ, p) we will need here; see (3) and (6)-(8) of [5]. It will be

convenient to establish some preliminary notation. Set

(2) c := 2λ+ p− 1, N := n+ 3
2
, c̃ := 3c2 − 2Np.

We will define bn+2,n, bn+3,n, and bn+4,n in terms of intermediate scalars Bn+2,n, Bn+3,n, and

Bn+4,n:

Bn+2,n(λ, p) := c̃+ 2p− (N − 1)2 − 3
4
,

Bn+3,n(λ, p) :=
√

3c
(
c̃− (N − 3

2
)p− 3

)
,

Bn+4,n(λ, p) :=
(
c̃+N2 − 15

4

)2 − 4
(
Np− 1

5
(N2 − 6)

)2 − 3
5

(
N2 − 9

4

)(
N2 + 9

4

)
.
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The formulas for bn+2,n, bn+3,n, and bn+4,n are

bn+2,n(λ, p) := − 1
12

(
p− n

2

)
Bn+2,n(λ, p)

n+ 1
2

,

bn+3,n(λ, p) :=
√
3

18

(
p− n

3

)
Bn+3,n(λ, p)

n(n+ 1)(n+ 2)
,

bn+4,n(λ, p) := − 5
48

(
p− n

4

)
Bn+4,n(λ, p)

n
(
n+ 1

2

)(
n+ 3

2

)(
n+ 5

2

)
(n+ 3)

.

4.3. Equivalence Classes of SQk,l
λ,p

We wish to know the conditions under which SQk,l
λ,p and SQk′,l

λ′,p′ are VecR-equivalent.

Henceforth we admit subquotients of pseudodifferential operators, so k may be in C.

Lecomte and Ovsienko [9] examined the case that p = p′ = 0, where k = k′ is

necessary for equivalence. They found that SQk,l
λ,0 and SQk,l

λ′,0 are generically equivalent for

l ≤ 4, and equivalent for l ≥ 5 only when λ′ is λ or 1− λ, the conjugate case. We will give

necessary and sufficient conditions under which SQk,l
λ,p and SQk′,l

λ′,p′ are VecR-equivalent for

l ≤ 5.

Lemma 4.5. If SQk,l
λ,p is VecR-equivalent to SQk′,l′

λ′,p′, then l = l′ and p− k = p′ − k′.

Proof. The two modules have the same composition series only if l = l′ and p − k =

p′ − k′. �

Proposition 4.6. Assume that p − k = p′ − k′ and that (1) is false. Suppose that ε is an

endomorphism of
⊕l

i=1 F (p − k + i − 1). Then it is an a-equivalence from φk,lλ,p to φk
′,l
λ′,p′ if

and only if, regarded as a block matrix with entries εmn : F (m)→ F (n), it is block diagonal

with non-zero scalars on the diagonal.

Proof. Under our assumptions, the Casimir operators of φk,lλ,p and φk
′,l
λ′,p′ are equal, and are

block diagonal with scalars on the diagonal. Since ε commutes with this operator, it is also

diagonal. To see that the diagonal entries εnn are scalars, note that εnn : F (n)→ F (n) is an

a-equivalence and apply Proposition 2.12. �
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Proposition 4.7. Assume that p−k = p′−k′ and that (1) is false. Then SQk,l
λ,p and SQk′,l

λ′,p′

are VecR-equivalent if and only if there are non-zero scalars εnn, where n = p − k, p − k +

1, . . . , p−k+ l−1, such that for all (m,n) with p−k ≤ n, m ≤ p−k+ l−1, and n+2 ≤ m,

we have

(3) εmmbmn(λ, p) = bmn(λ′, p′)εnn.

Proof. If SQk,l
λ,p and SQk′,l

λ′,p′ are VecR-equivalent, then there is an equivalence ε from φk,lλ,p

to φk
′,l
λ′,p′ . By Proposition 4.6, ε is block diagonal, and (3) is the (m,n) entry of the equation

ε ◦ φk,lλ,p = φk
′,l
λ′,p′ ◦ ε. Conversely, if (3) can be solved for the εnn, then the resulting block

diagonal matrix ε is an equivalence from φk,lλ,p to φk
′,l
λ′,p′ . �

Definition. The subquotients SQk,l
λ,p and SQk′,l

λ′,p′ are said to satisfy the same vanishing

condition if bmn(λ, p) and bmn(λ′, p′) are either both zero or both non-zero for all p−k ≤ n,

m ≤ p− k + l − 1, and n+ 2 ≤ m.

Corollary 4.8. If SQk,l
λ,p and SQk′,l

λ′,p′ are VecR-equivalent, then they satisfy the same van-

ishing condition.

Henceforth, let us write bmn, b′mn, Bmn, and B′mn for bmn(λ, p), bmn(λ′, p′), Bmn(λ, p),

and Bmn(λ′, p′) respectively. Similarly, by analogy with (2) we will write c′ for 2λ′ + p′ − 1

and c̃′ for 3(c′)2 − 2Np′.

Observe that if p−k = p′−k′ and (p′, c′) = (p,−c), then the formulas for the bij show

that SQk,l
λ,p and SQk′,l

λ′,p′ are equivalent for l ≤ 5. In fact, this is true for all l, as in this case

Ψk
λ,p and Ψk

1−p−λ,p are conjugate. This explains why the equivalence class of SQk,l
λ,p depends

only on (k, p, c̃).

The following result is proven in [9] for p = 0.

Theorem 4.9. Assume that p− k = p′ − k′, and define n := p− k.

(1) SQk,1
λ,p and SQk′,1

λ′,p′ are VecR-equivalent.

(2) For n 6= 0, SQk,2
λ,p and SQk′,2

λ′,p′ are VecR-equivalent.
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(3) For n 6= 0, −1
2
, or −1, SQk,3

λ,p and SQk′,3
λ′,p′ are VecR-equivalent if and only if they

satisfy the same vanishing condition, that is, bn+2,n and b′n+2,n are both zero or both

non-zero.

(4) For n 6= 0, −1
2
, −1, −3

2
, or -2, SQk,4

λ,p and SQk′,4
λ′,p′ are VecR-equivalent if and only if

they satisfy the same vanishing condition, that is, the elements of each of the pairs(
bn+2,n, b

′
n+2,n

)
,
(
bn+3,n+1, b

′
n+3,n+1

)
, and

(
bn+3,n, b

′
n+3,n

)
are either both zero or both

non-zero.

Proof. In all cases, the assumption on n implies that (1) is false. In Case (1), both modules

are equivalent to F (n), and in Case (2), Theorem 4.4 implies that both modules are equivalent

to F (n) ⊕ F (n + 1). In Case (3), if both bn+2,n and b′n+2,n are zero, then both modules are

equivalent to
⊕2

i=0 F (n + i). If both bn+2,n and b′n+2,n are non-zero, apply Proposition 4.7

with εnn = εn+1,n+1 = 1 and εn+2,n+2 = bn+2,n

/
b′n+2,n.

In Case (4), it is again always possible to solve (3) for ε. We will only describe the

case that none of the bmn is zero. We may take εnn = 1,

εn+2,n+2 = b′n+2,n

/
bn+2,n, εn+3,n+3 = b′n+3,n

/
bn+3,n, εn+1,n+1 = εn+3,n+3bn+3,n+1

/
b′n+3,n+1.

�

4.4. The Length Five Case

In this section we study the length five case, which exhibits a new phenomenon: the

equivalence classes have continuous invariants. As in Theorem 4.9, we assume throughout

that n := p− k = p′ − k′, and we maintain the notation (2). Define

Iq(λ, p) := Bn+4,n

/
Bn+4,n+2Bn+2,n,

Ic(λ, p) := Bn+4,nBn+3,n+1

/
Bn+4,n+1Bn+3,n,

Ir(λ, p) := Bn+3,n+1Bn+4,n+2Bn+2,n

/
Bn+4,n+1Bn+3,n.

As usual we shall abbreviate I•(λ, p) and I•(λ
′, p′) by I• and I ′•. Note that Ic = IqIr. The

following theorem is our main result.
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Theorem 4.10. Assume that k 6= 0, 1, 2, or 3, and that n 6= 0, −1
2
, −1, −3

2
, −2, −5

2
,

or −3. Then SQk,5
λ,p and SQk′,5

λ′,p′ are VecR-equivalent if and only if they satisfy the same

vanishing condition and one of the following mutually exclusive conditions hold:

(1) Two or more of Bn+4,n, Bn+4,n+2Bn+2,n, and Bn+4,n+1Bn+3,n+1Bn+3,n are 0.

(2) Bn+4,nBn+4,n+2Bn+2,n 6= 0, Bn+4,n+1Bn+3,n+1Bn+3,n = 0, and Iq = I ′q.

(3) Bn+4,nBn+4,n+1Bn+3,n+1Bn+3,n 6= 0, Bn+4,n+2Bn+2,n = 0, and Ic = I ′c.

(4) Of the six Bij’s, only Bn+4,n = 0, and Ir = I ′r.

(5) None of the Bij’s is zero, Iq = I ′q, and Ic = I ′c.

Proof. By the assumption on n, (1) is false, so Proposition 4.7 applies: SQk,5
λ,p and SQk′,5

λ′,p′

are VecR-equivalent if and only if (3) can be solved for ε.

The condition on k rules out cases in which SQk,5
λ,p is split by the image of the splitting

Ψ3
λ,p = Diff3

λ,p⊕Ψ−1λ,p. In these cases one can use Theorem 4.9 to determine whether SQk,5
λ,p

and SQk′,5
λ′,p′ are equivalent. Observe that under this condition, each of the six bij’s is zero if

and only if the corresponding Bij is zero.

Using the formulas for bij in terms of Bij, verify that

Iq = −2
5
N(N2 − 9

4
)bn+4,n

/
bn+4,n+2bn+2,n,

Ic = −64
45

N(N2 − 1)

(N2 − 1
4
)2
bn+4,nbn+3,n+1

/
bn+4,n+1bn+3,n,

Ir = − 9
32

(N2 − 1
4
)2(N2 − 9

4
)

N(N2 − 1)
bn+4,n+1bn+3,n

/
bn+4,n+2bn+3,n+1bn+2,n.

Thus if none of Bn+4,n, Bn+4,n+2, Bn+2,n is zero, then (3) gives

I ′q/Iq =
(b′n+4,n

/
bn+4,n)

(b′n+4,n+2

/
bn+4,n+2)(b′n+2,n

/
bn+2,n)

=
(εn+4,n+4/εn,n)

(εn+4,n+4/εn+2,n+2)(εn+2,n+2/εn,n)
= 1.

Similarly, if none of Bn+4,n, Bn+4,n+1, Bn+3,n+1, Bn+3,n is zero, then

I ′c/Ic =
(b′n+4,n

/
bn+4,n)(b′n+3,n+1

/
bn+3,n+1)

(b′n+4,n+1

/
bn+4,n+1)(b′n+3,n

/
bn+3,n)

=
(εn+4,n+4/εn,n)(εn+3,n+3/εn+1,n+1)

(εn+4,n+4/εn+1,n+1)(εn+3,n+3/εn,n)
= 1.

The same kind of argument shows that if none of B41, B30, B42, B31, and B20 is zero,

then I ′r/Ir = 1. It is easy to see that there are no other obstructions to equivalence beyond

the same vanishing condition. The result follows. �
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CHAPTER 5

THE GENERIC LENGTH FIVE CASE

In this section we study the equivalence class of SQk,5
λ,p in the generic case that none

of the six relevant Bij is zero. We maintain the same assumptions on n = p − k and on k

as in Theorem 4.10. By Case (5) of that theorem, Iq and Ic are complete invariants for the

equivalence class of SQk,5
λ,p, so we are reduced to studying the level curves of Iq and Ic.

5.1. The Level Curves of Iq

Consider the A-level curve Iq = A of Iq, which may be written

Bn+4,n = ABn+4,n+2Bn+2,n.

In (p, c̃)-coordinates, Bn+4,n = 0 is a conic and Bn+4,n+2Bn+2,n = 0 is two lines. The

intersection of the conic with the two lines is four points, and these four points are on all

of the level curves of Iq. Thus, the family of level curves Iq = A as A varies is the pencil of

conics through four fixed points.

The center of the quadrilateral formed by these four points turns out to be
(
1
5
N,N2+

15
4

)
in (p, c̃)-coordinates. Therefore we will study the level curves in the coordinate system

(p̂, Λ̂) in which the quadrilateral is centered at the origin:

p̂ := p− 1
5
N, Λ̂ := c̃−N2 − 15

4
.

In this new coordinate system,

Bn+2,n = Λ̂ + 2p̂+ 12
5
N + 2,

Bn+4,n+2 = Λ̂− 2p̂− 12
5
N + 2,

Bn+4,n =
(
Λ̂ + 2N2

)2 − 4
(
Np̂+ 6

5

)2 − 36
25

(
N2 − 1

)(
N2 − 9

4

)
.

Proposition 5.1. In (p̂, Λ̂)-coordinates, the level curves of Iq comprise the pencil of conics

through the following four points, which are inscribed in a circle:

P20 :=
(
4
5
N − 5

2
,−4N + 3

)
, P42 :=

(
4
5
N + 5

2
, 4N + 3

)
,
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Q20 :=
(
−4

5
N + 1

2
,−4

5
N − 3

)
, Q42 :=

(
−4

5
N − 1

2
,−4

5
N − 3

)
.

Proof. Elementary algebra shows that P20 and Q20 are the points of intersection of the

line Bn+2,n = 0 and the conic Bn+4,n = 0. Since the transformation N 7→ −N , p̂ 7→ −p̂,

Λ̂ 7→ Λ̂ leaves Bn+4,n fixed and exchanges Bn+2,n and Bn+4,n+2, we see that P42 and Q42 are

the points of intersection of Bn+4,n+2 and Bn+4,n.

As is made clear by Proposition 5.3, the inscribing circle is

(
p̂− 24

5
N
)2

+
(
Λ̂− 1

2

)2
= 32N2 + 25

2
.

�

Corollary 5.2. At N = 0, the quadrilateral P20P42Q20Q42 is a trapezoid with two sides

parallel to the p̂-axis. As N → ∞, it approaches a trapezoid with two sides parallel to the

Λ̂-axis. Its diagonals have the following slopes.

(1) P20Q20 and P42Q42 have slopes −2 and 2, respectively.

(2) P20P42 and Q20Q42 have slopes 8
5
N and −8

5
N , respectively.

(3) P20Q42 and P42Q20 have slopes -3 and 3, respectively.

Remark. Note that when N = 15
8

, P42 is equal to Q42; when N = −15
8

, P20 is equal to Q20;

when N = 5
4
, P20 is equal to Q42; and when N = −5

4
, P42 is equal to Q20. These are the only

values of N at which two of the four points are equal.

Proposition 5.3. After multiplication by (A− 1)(A−N2)Bn+4,n+2Bn+2,n, the equation of

the level curve Iq(λ, p) = A becomes

(A−N2)
(

(A− 1)Λ̂ + 2(A−N2)
)2
− 4(A− 1)

(
(A−N2)p̂+ 6

5
N(A− 1)

)2
= − 1

25
(N2 − 1)

(
5(A− 1) + 4(N2 − 1)

)(
16N2(A− 1)− 25(A−N2)

)
.

Proof. The proof is a long but straightforward algebra exercise. �

Proposition 5.4. Iq has the following types of level curves.

(1) When A = 1 or N2, the level curves are parabolas.
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(2) When (A−1)(A−N2) > 0, the level curves are hyperbolas. In particular, when A is

−9N2/(16N2− 25), −4
5

(
N2− 9

4

)
, or ∞, the level curves are degenerate hyperbolas:

the pairs of lines given in Corollary 5.2.

(3) When (A − 1)(A − N2) < 0, the level curves are ellipses. In particular, when

A = 4
5
N2 + 1

5
, the level curve is a circle.

Proof. This is immediate from Proposition 5.3. �

We now give plots of several level curves at N = 5. The points P20, P42, Q20, and Q42

are labeled in red. The final figure in this section is an overlay of the three pairs of lines, the

two parabolas, and the circle, as well as two hyperbolas and two ellipses.

Figure 5.1. When N = 5, the three pairs of lines among the level curves of

Iq occur at A =∞, −0.6, and −16.2.
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Figure 5.2. As stated in Proposition 5.4, the two parabolas occur when

A = N2 and when A = 1. When N = 5, they occur at A = 1 and 25.
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Figure 5.3. Here are three ellipses, one of which is a circle. Ellipses occur

in the level curves of Iq when (A− 1)(A−N2) < 0, and we get a circle when

A = 4
5
N2 + 1

5
. For N = 5, this is when A = 20.2.
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Figure 5.4. Here are two hyperbolas, one North-South opening and the

other East-West opening. Hyperbolas occur in the level curves of Iq when

(A− 1)(A−N2) > 0.
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Figure 5.5. Various level curves of Iq(λ, p) when N = 5
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5.2. The Level Curves of Ic

Here we briefly discuss the A-level curve Ic = A of Ic, which may be written

Bn+4,nBn+3,n+1 = ABn+4,n+1Bn+3,n.

In (p̂, Λ̂)-coordinates,

Bn+4,nBn+3,n+1 =
((

Λ̂ + 2N2
)2 − 4

(
Np̂+ 6

5

)2 − 36
25

(
N2 − 1

)(
N2 − 9

4

))
(Λ̂ + 3),

Bn+3,nBn+4,n+1 =
(
Λ̂ + 2Np̂+ 7

5
N2 + 15

4

)(
Λ̂− (N − 3

2
)p̂+ 4

5
N2 + 3

10
N + 3

4

)
×
(
Λ̂− (N + 3

2
)p̂+ 4

5
N2 − 3

10
N + 3

4

)
.

Thus Bn+4,nBn+3,n+1 = 0 is a conic multiplied by a line, and Bn+3,nBn+4,n+1 = 0 is three

lines. The intersection of Bn+4,nBn+3,n+1 = 0 with the three lines is nine points, and these

nine points are on all of the level curves of Ic. Thus the family of level curves Ic = A as

A varies is the pencil of cubics through nine fixed points. (By Chasle’s theorem, it would

suffice to take any eight of the nine.)

Theorem 5.5. Assume that k 6= 0, 1, 2, or 3, and that n 6= 0, −1
2
, −1, −3

2
, −2, −5

2
, or

−3. The generic equivalence class of SQk,5
λ,p is six pairs of conjugate subquotients.

Proof. Let us fix a subquotient SQk,5
λ,p. Assume the six bij’s are non-zero. By Theorem

4.10, a subquotient SQk′,5
λ′,p′ is equivalent to SQk,5

λ,p if and only p−k = p′−k′, SQk,5
λ,p and SQk′,5

λ′,p′

satisfy the same vanishing condition, and (λ, p) and (λ′, p′) lie on the same level curves of

both Iq and Ic. By Bézout’s theorem, the number of points of intersection of a conic and a

cubic is six. �

We will now plot various level curves of Ic(λ, p) for N = 5. The value of A increases as

the figures progress. Note that for A = 0 we obtain the line Bn+3,n+1 = 0 and the hyperbola

Bn+4,n = 0, while as A→ ±∞ we obtain the three lines Bn+4,n+1Bn+3,n = 0 in the limit.
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Figure 5.6. Ic = −4 when N = 5
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Figure 5.7. Ic = −1 when N = 5
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Figure 5.8. Ic = 0 when N = 5
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Figure 5.9. Ic = 0.5 when N = 5
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Figure 5.10. Ic = 1.06 when N = 5
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Figure 5.11. Ic = 1.1 when N = 5
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Figure 5.12. Ic = 9 when N = 5
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Figure 5.13. Ic = 15 when N = 5
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Figure 5.14. Ic = 250 when N = 5
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5.3. The Lacunary Case

We will now define certain VecR-subquotients of SQk,5
λ,p whose equivalence classes

depend generically only on the invariant Iq(λ, p). As before, let us write bmn, b′mn, Bmn, and

B′mn for bmn(λ, p), bmn(λ′, p′), Bmn(λ, p), and Bmn(λ′, p′) respectively. We assume throughout

this section that n = p′− k′ = p− k, and that it is not 0, −1
2
, −1, −3

2
, −2, −5

2
, or −3. With

this condition on n, Theorem 4.4 applies.

Proposition 5.6. The following block matrix defines a representation of VecR on the space

F (n)⊕ F (n+ 2)⊕ F (n+ 4):
πn 0 0

bn+2,nβ
n
2 πn+2 0

bn+4,nβ
n
4 bn+4,n+2β

n+2
2 πn+4

 .

This representation is a subquotient of SQk,5
λ,p, called the lacunary subquotient Lackλ,p.

Proof. As is noted in [5], for n 6= 0 there is a VecR-submodule Ψk,1̂
λ,p of Ψk

λ,p with composition

series

F (n), F (n+ 2), F (n+ 3), F (n+ 4), . . . .

This submodule contains Ψk−2
λ,p but not Ψk−1

λ,p . It exists because of the zeroes on the first

subdiagonal of the block matrix shown in Theorem 4.4. The lacunary subquotient is defined

to be

Lackλ,p := Ψk,1̂
λ,p/Ψ

k−3,1̂
λ,p .

�

Theorem 5.7. Assume k 6= 0, 1, 2, or 3, and n = p−k = p′−k′ is not 0, −1
2
, −1, −3

2
, −2,

−5
2
, or −3. Then Lackλ,p and Lack

′

λ′,p′ are VecR-equivalent if and only if Bn+4,n, Bn+4,n+2,

and Bn+2,n satisfy the same vanishing condition and one of the following mutually exclusive

conditions holds:

(1) Bn+4,nBn+4,n+2Bn+2,n = 0.

(2) Bn+4,nBn+4,n+2Bn+2,n 6= 0, and Iq = I ′q.
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Proof. Let Lackλ,p and Lack
′

λ′,p′ be two lacunary subquotients. Their composition series are

the same if and only if p− k = p′ − k′. As in Propositions 4.6 and 4.7, one proves that

ε =


εnn εn,n+2 εn,n+4

εn+2,n εn+2,n+4 εn+2,n+4

εn+4,n εn+4,n+2 εn+4,n+4


is an equivalence from Lackλ,p to Lack

′

λ′,p′ if and only if it is diagonal, invertible, and εmmbmn =

b′mnεnn. If none of Bn+4,n, Bn+4,n+2, and Bn+2,n is zero and Iq = I ′q, then the reader may

check that

ε =


1 0 0

0 b′n+2,n

/
bn+2,n 0

0 0 b′n+4,n

/
bn+4,n


satisfies these properties. �
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