Kleinian Groups in Hilbert Spaces

PDF Version Also Available for Download.

Description

The theory of discrete groups acting on finite dimensional Euclidean open balls by hyperbolic isometries was borne around the end of 19th century within the works of Fuchs, Klein and Poincaré. We develop the theory of discrete groups acting by hyperbolic isometries on the open unit ball of an infinite dimensional separable Hilbert space. We present our investigations on the geometry of limit sets at the sphere at infinity with an attempt to highlight the differences between the finite and infinite dimensional theories. We discuss the existence of fixed points of isometries and the classification of isometries. Various notions of ... continued below

Creation Information

Das, Tushar August 2012.

Context

This dissertation is part of the collection entitled: UNT Theses and Dissertations and was provided by UNT Libraries to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 222 times . More information about this dissertation can be viewed below.

Who

People and organizations associated with either the creation of this dissertation or its content.

Author

Chair

Committee Members

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Das, Tushar

Provided By

UNT Libraries

With locations on the Denton campus of the University of North Texas and one in Dallas, UNT Libraries serves the school and the community by providing access to physical and online collections; The Portal to Texas History and UNT Digital Libraries; academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this dissertation. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

The theory of discrete groups acting on finite dimensional Euclidean open balls by hyperbolic isometries was borne around the end of 19th century within the works of Fuchs, Klein and Poincaré. We develop the theory of discrete groups acting by hyperbolic isometries on the open unit ball of an infinite dimensional separable Hilbert space. We present our investigations on the geometry of limit sets at the sphere at infinity with an attempt to highlight the differences between the finite and infinite dimensional theories. We discuss the existence of fixed points of isometries and the classification of isometries. Various notions of discreteness that were equivalent in finite dimensions, no longer turn out to be in our setting. In this regard, the robust notion of strong discreteness is introduced and we study limit sets for properly discontinuous actions. We go on to prove a generalization of the Bishop-Jones formula for strongly discrete groups, equating the Hausdorff dimension of the radial limit set with the Poincaré exponent of the group. We end with a short discussion on conformal measures and their relation with Hausdorff and packing measures on the limit set.

Language

Collections

This dissertation is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this dissertation?

When

Dates and time periods associated with this dissertation.

Creation Date

  • August 2012

Added to The UNT Digital Library

  • March 4, 2013, 2:02 p.m.

Description Last Updated

  • Nov. 16, 2016, 12:06 p.m.

Usage Statistics

When was this dissertation last used?

Yesterday: 1
Past 30 days: 3
Total Uses: 222

Interact With This Dissertation

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Das, Tushar. Kleinian Groups in Hilbert Spaces, dissertation, August 2012; Denton, Texas. (digital.library.unt.edu/ark:/67531/metadc149579/: accessed November 19, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; .