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Abstract The RDP Classifier is a widely used bioinfor-
matic program that performs taxonomic classification of
16S rRNA gene sequences. However, the accuracy of the
program is not clear when it is applied to common PCR
products of the 16S rRNA variable regions, which are
heavily used in microbiome projects. In this study, full-
length 16S rRNA gene alignments from the SILVA database
were used to simulate the PCR products of the combined
variable regions (i.e., V1–V3, V3–V5, and V6–V9). The
classification accuracies obtained from RDP Classifier were
evaluated for each of the simulated 16S rRNA regions, at
different confidence score thresholds. Although minor bias
was observed, the RDP Classifier achieved overall similar
and accurate classification results when using the combined
variable regions of the 16S rRNA gene, i.e., V1–V3, V3–
V5, and V6–V9. Additional analysis showed that V2 and
V4 were the most accurate among individual regions (i.e.,
V1 to V9).
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1 Introduction

Culture-independent 16S rRNA gene sequencing has been
widely applied to examine microbial diversity [21]. The
full-length 16S rRNA genes (about 1500 bp) can be used for
accurate taxonomic identification based on the underlying
sequence diversity among different bacterial species [2,3,
17]. However, the current high-throughput DNA sequencing
technologies can only produce 16S rRNA gene fragments,
instead of full-length genes. For example, the Roche
454 [12] and Illumina technologies [7] typically produce
sequence reads of 100–400 and 75–100 bp, respectively.
Therefore, only fragments of the 16S rRNA gene can be
obtained by using degenerate PCR primers designed to
amplify selected variable regions. The 16S rRNA gene
fragments containing the V1–V3, V3–V5, and V6–V9
regions have been extensively used in various human
microbiome projects (e.g., [4,5,9,15,24,25]). The V1–V3,

V3–V5, and V6–V9 regions correspond to the 16S rRNA
gene fragment ranging from the V1 through V3 regions,
V3 through V5 regions, and V6 through V9 regions,
respectively. The gene fragments containing individual
variable regions (e.g., V2, V3, or V4) have also been
used [6,11,22] in other metagenomic studies. One critical
concern is whether such partial 16S rRNA gene fragments
can give an accurate microbial classification. Although
such concern can be debated as a theoretical question (e.g.,
whether the phylogenetic resolution of each variable region
is different); in practice, biologists are mostly interested
in the performance of existing classification programs
for the different 16S rRNA gene regions. One of the
most extensively used bioinformatics programs for 16S
rRNA classification is RDP Classifier, which is a naı̈ve
Bayesian classifier that provides taxonomic classification
from domain to genus, as well as confidence estimates
for each classification prediction [23]. The RDP Classifier
has been widely used for rapid and accurate processing of
high-throughput 16S rRNA datasets. Moreover, by the time
this manuscript was prepared, the RDP Classifier program
had been cited in more than 400 articles since its publication
in 2007 [20]. Despite its tremendous popularity, there exist
few published reports that have evaluated its classification
accuracy using 16S rRNA gene fragments. For example,
the study done by Wang et al. [23] reported the average
classification accuracy of simulated 16S rRNA sequence
fragments, whereas Liu et al. [10] reported that partial 16S
rRNA gene sequences could achieve similar classification
accuracy as the full-length gene. However, those studies did
not specifically examine the classification accuracy of the
V1–V3, V3–V5, and V6–V9 regions that are commonly
used in various microbiome projects. In this study, we
have evaluated the performance of RDP Classifier for those
specific 16S rRNA gene fragments in the following aspects:
(i) whether their taxonomic classification accuracies are
similar, and (ii) whether they exhibit any classification bias
towards certain taxonomic groups.
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2 Materials and methods

The RDP Classifier program (version 2.2) and the SILVA
rRNA database (SSURef version 102) [16] were used for
this study. The SILVA rRNA database was chosen because
of the high quality of its sequence alignments [18,19]. The
downloaded SILVA database consists of a multiple sequence
alignment of 391,167 full-length, or near full-length, 16S
rRNA gene sequences. For each sequence in the SILVA
database, we obtained its taxonomic classification, from
the genus to the phylum level, by using the RDP Classifier
program. For subsequent analysis, we selected 274,196
sequences that exceeded the RDP Classifier confidence
threshold of 0.8 at the genus level (i.e., the default threshold
of RDP Classifier), to ensure a confident taxonomic classi-
fication. The selected sequences were then further clustered
into 1,607 genera based on their RDP classification. Next,
we randomly sampled one sequence from each genus cluster
to create a test dataset. This random sampling was repeated
ten times, thus, ten total test datasets were created for
evaluating the accuracy of the RDP Classifier. For each 16S
rRNA sequence in the test datasets, we extracted its V1–V3,
V3–V5, V6–V9, V2–V3, and V2–V4 regions as well as
the 9 individual regions (i.e., V1 through V9 individually)
based on the aligned coordinates of the reference E. coli
16S rRNA gene [1,2]. The RDP Classifier results of the
extracted gene fragments were compared to those of the
corresponding full-length gene sequences from the phylum
to genus levels, at the confidence threshold scores of 0.7,
0.8, and 0.9. Similar analysis was also done by grouping
sequences at the putative species level (data not shown).

3 Results

Our results showed that the classification accuracies of the
V1–V3, V3–V5, and V6–V9 combined variable regions
were highly similar, providing sufficiently accurate classifi-
cation using the RDP Classifier program (Figure 1(a)). For
example, at the RDP Classifier confidence threshold score
of 0.8 (i.e., the default threshold used at the RDP Classifier
web server), the V1–V3 region accurately classified 96.83%
of the phyla, 95.06% of the classes, 88.91% of the orders,
87.48% of the families, and 76.90% of the genera. Similarly,
the V3–V5 region accurately classified 98.44% of the phyla,
97.22% of the classes, 91.41% of the orders, 90.61% of the
families, and 77.15% of the genera. Also, the V6–V9 region
accurately classified 96.43% of the phyla, 94.54% of the
classes, 88.64% of the orders, 86.32% of the families, and
72.65% of the genera. Similar results were obtained either
using the RDP Classifier confidence thresholds of 0.7 and
0.9 (Figure 1(a)) or using simulated reads containing 0.5%
sequencing errors (Figure 1), indicating the robust classifi-
cation potentials of each of the above regions (Figure 1(a)).

In addition, we evaluated whether the V1–V3, V3–V5,
and V6–V9 regions exhibit any classification bias towards

Table 1: Potential classification biases of 16S rRNA
variable regions were detected for some bacteria genera.
The first column of the table shows the genera names that
exhibited the difference in classification accuracy (only the
ones with at least 10% difference in their classification accu-
racy among each other are shown here). The second column
shows the number of species clusters belonging to each of
the listed genera. The classification accuracy of V1–V3, V3–
V5 and V6–V9 are displayed in the subsequent columns.
The results are based on the RDP Classifier confidence
threshold score 0.8. Similar results can be observed using
the threshold score 0.7 and 0.9 (data not shown).

Genus Number
of species

Percentages of classification
accuracy for combined
variable regions

V1–V3 V3–V5 V6–V9
Acidovorax 14 97.1 85 85.7

Actinobacillus 21 91 97.6 77.6

Actinoplanes 41 93.9 78 96.8

Alteromonas 12 99.2 86.7 87.5

Arthrobacter 65 95.4 86.5 97.8

Caulobacter 11 100 89.1 99.1

Chlorobium 10 100 100 85

Citrobacter 11 77.3 61.8 59.1

Enterobacter 17 67.6 58.8 54.1

Erwinia 13 73.1 53.8 92.3

Erythrobacter 11 79.1 100 80.9

Haemophilus 12 85.8 92.5 67.5

Leifsonia 15 82 79.3 95.3

Lysobacter 20 98.5 100 78

Massilia 11 100 80.9 97.3

Nonomuraea 28 85.7 100 86.1

Pasteurella 12 100 96.7 70.8

Pseudoxanthomonas 16 100 100 81.3

Rhodovulum 12 100 85 100

Selenomonas 12 96.7 87.5 98.3

Serratia 15 93.3 74 78

Streptosporangium 21 93.8 100 86.2

Thiomicrospira 11 98.2 81.8 100

certain taxonomic groups. Our findings indicated that the
observed biases were minimal, however, they could play
an important role in samples with overrepresented taxa
(Table 1). For example, V1–V3 seemed to be a better
choice to classify Alteromonas than the other two regions;
on the other hand, V3–V5 and V6–V9 were the best
choices for Erythrobacter and Erwinia, respectively. It is
interesting that such biases tend to be enriched in small
subsets of higher taxonomic groups such as those that can
be observed in the family Enterobacteriaceae, the order
Enterobacteriales, the class Gammaproteobacteria, and the
phylum Proteobacteria.
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Figure 1: RDP Classifier accuracy evaluated with different 16S rRNA variable regions by using 0.5% simulated sequencing
errors. The sequences from the SILVA database were clustered into 1,607 genera; then one sequence was randomly selected
from each genus cluster in order to create test datasets. For each test dataset, we extracted its V1–V3, V3–V5, and V6–V9
combined regions, and V1 to V9 individuals regions. Then, we simulated sequencing errors by replacing a 0.5% of the
nucleotides by an “N”, from all fragments in the dataset, randomly. The taxonomic classification of the selected full-length
gene sequences were then compared to the classification of its V1–V3, V3–V5, and V6–V9 combined regions, and V1 to V9
individuals regions. The above procedure was repeated ten times by randomly sampling with replacements from each species
cluster. The x-axis displays the variable regions evaluated at each of the different taxonomic levels (i.e., genus, family, order,
class, and phylum). The y-axis shows the average percentages of classification accuracy. The accuracies were evaluated
by using the RDP Classifier confidence threshold scores of 0.7 (blue), 0.8 (red), and 0.9 (green), with the 95% confidence
interval being plotted. (a) Results for the combined variable regions V1–V3, V3–V5, and V6–V9. Overall, they provide very
similar accuracy. (b) Results for each individual variable region V1 to V9.

We were also interested in comparing the classification
accuracy among individual variable regions. Among the
individual regions, the V2 and V4 regions showed the most
accurate results at every taxonomical level. However, the
V5, V6, V7, and V8 regions also increased their accuracies
at the class and phylum levels to a point that they provided
comparable classification results to those of the V2 and
V4 regions (Figure 1(b)). At the RDP Classifier confidence
threshold of 0.8, the results showed that the V2 region
accurately classified 85.99% of the phyla, 82.52% of the
classes, 76.50% of the orders, 72.07% of the families, and

58.13% of the genera. The V4 region accurately classified
89.28% of the phyla, 86.12% of the classes, 79.45% of the
orders, 74.56% of the families, and 55.69% of the genera.

Additionally, we evaluated the V2–V3 and V2–V4
regions. The results of the V2–V3 region showed similar
accuracy as the V1–V3 region. At the RDP Classifier
confidence threshold of 0.8, the V2–V3 region accurately
classified 96.52% of the phyla, 94.68% of the classes,
88.48% of the orders, 86.24% of the families, and 74.38%
of the genera. In addition, the results showed that V2–V4
region provided slightly better accuracy at genus level
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compared to the other three combined regions (i.e., V1–
V3, V3–V5, and V6–V9). For example, at RDP Classifier
confidence threshold of 0.8, V2–V4 region accurately
classified 98.2% of the phyla, 96.92% of the classes,
91.12% of the orders, 90.73% of the families, and 81.97%
of the genera (data not shown).

4 Discussion

Limitations in budget, and sequencing platforms, often
place biologists in the dilemma of deciding which of the 16S
rRNA gene fragments they should select for sequencing. We
have encountered such situations in our own microbiome
projects, in which we have had to select from the V1–V3,
V3–V5, and V6–V9 regions for bacteria 16S rRNA gene
profiling. In our experience, the V1–V3, V3–V5, and V6–
V9 regions have typically showed different microbial com-
munity compositions from the same samples. The observed
differences are often attributed to the possibility that the
designed PCR primers lack the ability to amplify the V1–
V3, V3–V5, and V6–V9 regions of all the 16S rRNA genes
with equal efficiency [17]. However, even with V1–V3,
V3–V5, and V6–V9 perfect PCR amplification, there could
exist an intrinsic classification bias in the RDP Classifier
program towards those different 16S rRNA gene regions.

Although the V1–V3, V3–V5, and V6–V9 regions have
increasingly been used for bacterial 16S gene profiling,
no published results have evaluated their classification
potentials with the RDP Classifier program. For example,
Wang et al. [23] indirectly evaluated the accuracy of the
variable regions by using 16S rRNA gene fragments that
were 100 bp long. The gene fragments were extracted
regardless of the variable regions positions. Specifically,
they extracted a 100 bp window moving along the 16S rRNA
genes sequences at a 25 bp interval. Using this approach,
the most accurate results were obtained with the fragments
of the gene that contained the regions V2 or V4. In addition,
Liu et. al. [10] studied the accuracies of the variable regions
by comparing the accuracies of fragments extracted from
the gene sequences of several datasets. The fragments were
extracted by using primers named with the start position
from which the fragments were extracted. Using this start
position, they then moved forward, or backward, through
the gene sequences to extract fragments of 100 bp, 250 bp,
or 400 bp in length. They showed that the best sets of
primers that amplify 100 bp gene fragments were F343 (for
V3 region), F517 (for V4 region), F784 (for V5 region),
R357 (for region between V2 and V3), R534 (for V3
region), R798 (for region between V4 and V5), and R926
(for V5 region). Also, the primers that gave the best results
for amplifying 250 bp gene fragments were R357 and 8F
used together (for the region V2 and V3). Jeraldo et al. [8]
studied the phylogenetic information contained in fragments
of the 16S rRNA gene between 120 and 400 base pairs long.

Specifically, they investigated variable regions V3, V6, and
V1–V3 by extracting them from the Greengenes 16S rRNA
database. Their analysis showed that the V1–V3 region was
the best estimator of phylogeny out of those three variable
regions. Another study by Chakravorty et al. [2], evaluated
the 16S variable region accuracies of 110 pathogenic and
environmental bacteria species. Their results showed that
the variable regions V2, V3, and V6 were more accurate
than V4, V5, V7, and V8 for species classification in their
test datasets. However, none of the previous studies specif-
ically evaluated the V1–V3, V3–V5, and V6–V9 regions.

In this study, we simulated the V1–V3, V3–V5, and
V6–V9 regions for comparison in order to show their
intrinsic classification potential with the RDP Classifier,
which is perhaps the most popular 16S rRNA classification
program used in this field. Our results indicated that the V1–
V3, V3–V5, and V6–V9 regions showed similar accuracy
results (Figure 1(a)). These findings are consistent with
Liu et al. [10] study, which showed that short fragments
of 100 bp, belonging to the V1–V3 and V3–V5 region,
could provide accurate classifications. Also, Jeraldo et al.
[8] study showed that V1–V3 region was a good estimator
of phylogenetic information. In addition, Chakravorty et
al. [2] study showed that combining the V2, V3, and V6
variable regions provided accurate bacterial identification.
In addition, we only observed few potential biases towards
certain taxonomic groups by V1–V3, V3–V5, and V6–V9
region (Table 1).

Although the classification accuracy at higher tax-
onomic levels was good for several of the individual
variable regions, the accuracy at the genus level was, in
general, less accurate, depending on the specific variable
region (Figure 1(b)). Our results showed that the V2 and
V4 regions delivered the best results compared to other
individual regions. Wang et al. [23] also reported that the
fragments of the gene containing the variable regions V2
or V4 provided better taxonomic classification accuracy.
Since the V2 and V4 regions are the longest among other
individual variable regions (105 bp and 106 bp respectively,
according to the reference E. coli 16S rRNA gene), they may
potentially provide more phylogenetic signals that would
allow for a more accurate taxonomic classification. Our
results are consistent with the findings of Nossa et al. [14]
who also showed that the longer 16S sequence amplicons
could improve the accuracy of the bacterial classification.

Since the V1 variable region by itself provided very
low accuracy, we additionally compared the V2–V3 and
V1–V3 regions. Our results showed that a slight difference
in the accuracies between these two regions existed only
at the genus level. On the other hand, since the V2 and V4
regions were the most accurate among individual regions,
we compared the V2–V4 to the V1–V3, V3–V5, and
V6–V9 regions. Our results showed that V2–V4 provides
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better accuracy at genus level compared to the other three
combined regions (i.e., V1–V3, V3–V5, and V6–V9) (data
not shown).

In this study, we have chosen to extract theoretic 16S
variable regions, i.e., each region was defined based on
its position on the E. Coli 16S gene. The regions that are
amplified by actual primers used in various microbiome
studies may deviate from the simulated regions used in
this study. However, instead of trying to select a particular
set of primers (different group design their own primers
(e.g., [2,5,10]) to target the variable regions), we intend to
show the intrinsic classification accuracies of the variable
regions without having to be specific to a particular primer
choice. The length distribution of our simulated data set
(V1–V3, mean = 415 bp, standard deviation (SD) = 26;
V3–V5, mean = 437 bp, SD = 12; V6–V6, mean = 452 bp,
SD = 37) is highly similar to real data sets that we have
worked on (e.g., V1–V3, mean = 471 bp, SD = 51; V3–
V5, mean = 497 bp, SD = 60; V6–V6, mean = 477 bp,
SD = 51 [13]), indicating that our observations based on the
simulated data also apply to the real amplicons.

5 Conclusion

Overall, the RDP Classifier achieved similar and accurate
classification results when using the combined variable
regions of the 16S rRNA gene, i.e., V1–V3, V3–V5,
and V6–V9 in our simulation study. In addition, we only
observed few potential biases towards certain taxonomic
groups by V1–V3, V3–V5, and V6–V9 region.
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