STATISTICAL ANALYSIS OF THE FREQUENCY AND SEVERITY OF ACCIDENTS TO POTENTIAL HIGHWAY CARRIERS OF HIGHLY RADIOACTIVE MATERIALS

by

F. F. Lefmicuhler, M. J. Karson, and J. T. Thompson

The Johns Hopkins University
 Baltimore 18, Maryland
 Contract Number AT (30-1)1477

July 1961

Facsimile Pries 5
Microfilm Price 5

Available from the Office of Technical Services Deportment of Commerce Washington 25, D. C.

NYO-9771

Waste Disposal and Processing
statistical analysis of the frequency and severity of accidents to potential higamay carriers of highly radionctive muterials

TABLE of contents

Page

1II. ANALYSIS OF THE SEVERITY OF TRUCK ACCIDENTS TM TERMS OF THEIR VEHICLE AND CARCO DAMACES
 100

1.0 Int roduction 100
1.1 Definitions 103
2.0 Analysis of Vehicle Damage 105
2.1 Theoretical Distributions of Vehicle Costs in Accidents 105
2.2 Analysis of Vehicle Danages with tespect to Accident Types 122
2.3 Analysi of Costs with Respect to quantitative Accident Characteriscics 125
2.4 Vehicle Damage and Mechanical Energy 152
3.0 Analysis of Cargo Damages Resulting from Aceidents 160
3.1 Damages Sustained by New Automobile Carriers 169
3.2 Cargo Damagen and Vehicle Damagen 171
3.3 Cargo Damage, Vehicie Damage, and Mechanical Energy 178
3.4 Thresholds of Cargo Damages 182

PREPACE

It seems deairable to make a short atatement regarding the nature and purposes of this report. Firat, it is an assemblage of data bearing on the probabilities of aceidents to heavy highway vehteles which are potential carriers of radioactive materials, and on the severity of auch accidents, because the latter is germane to the probability of a release of activity from a contalner in tranait. Second, these data are analyzed atatiatically to reveal their aignificance.

Beyond this, no attempt is made to draw conclusiona or to point out possible specific uses, the authors preferring to present the material in a very general form. The report is, in effect, a kool.

However, one specific use should be mentioned. The report has already been employed in working out a number of decieion rulew in which the alternative coate are compared of shipping durimg intervale of low-mecident rates or by low-aceident rate routes or of pormitting such shipeents under less propitious circumstances. In the application referred to the costa to be considered are those directly connected with accidents againat those of increased container inventory, increased storage capacity, ete. The operations reaearch analyaie in which this application is made is soon to be reported (eee item 4, pageil). And in ifke manner it is believed that others interested in the highway afety movement may adapt the findings of the report to their epecific meeds. Thowe who may profit by so doing include inaurance groupa; motor vehicle adminiatratora; traffic managers of general, as well ta dangerous cargo haulerw; heavy vehtela designers; and highnay planners.

NYO-9772

Waste Disposal and Processing

STATISTICAL ANALYSIS OF THE FREQUENGY AND SEVERTTY OF ACCIDENTS TO POTENTLAL HIGHWAY CARRIERS OF HIGHLY RADIOACTIVE MATERLALS

by

F. F. Leiskuhler, M. J. Karson, and J. T. Thompson

ABSTRACT

```
    The probability of accidents to tractor semitrailers is
developed through amalysis of accident frequency data in relation
to season; geographical factors; road type, traffic and population
denaity; and type of carrier business. Maximum likelikood rates are
developed for the potential carriers of radioactivity. Impact
characteristica of aceidents are studied through the analysis of mase,
speed, and energy relationa and the effect of thewe on vehicle and
cargo damages are explored.
```


I. GENERAL INTRODUCTION

This report is one of several resulting from a study of the transportation of fission materials at The Johns Hopicins Univeraity under a research contract sponsored by the U. S. Atomic Energy Commisaion and administered by the Wuclear Safety Group of the Division of Reactor Development. These reportn, exclusive of the one in hand, are listed below both as a record for interested parties and to show the diversity of areas which mast be explored before one can hope for succeas in the culminating operations analysis which attempts to make use of idens and facts uncovered in the several areas. Publications which have already eppeared or are scheduled for early release are:

1. "An Operations Research Study of the Transportation of Highly Radioactive Materials, A Progress Report, " by J. T. Thompson and F. F. Lefmkuhler, April 1959. NYO 7832. (published)
2. **tructural Analysis and Design Considerations for Shipping Containers of Highly Radioactive Materials, " by Robert G. Sanford, May 1961 , NYO 9374 . (pubisished)
3. "A Study of the Possible Consequences and Costs of Acicidents in the Transportation of High Level Radioactive Materials,* J. M. Morgan, Jr., John W. Knapp, and J. T. Thompson. (in preparation)
4. "An Cperations Research Study of che Potential Accident Experience and Total Cost of Truck Shipments of Highly Radioactive Materials," F. F. Leimkuhler. (in preparation)

In iten 1 of the above list the model of the proposed analysis operation sas seet forth. Reduced to its simplest terms, it may be stated thus,

$$
c_{t}=c_{v}+c_{p}+c_{e}+c_{h} \text { where } c_{h}=p_{a} p_{r} c_{c}
$$

```
    C
    c
    C = cost of packaging (shielded containers)
    C e cost of escort
    Ch}=\mathrm{ cost of hezard
    Pa probability of en accident
    Pr
    cc}=\mathrm{ cost of protecting and/or rehabilitating the environment
    following possible release.
    The terms of the model are related in a complex manner so that
variation in one may have a pronounced effect upon one or perhaps all
of the others. It is by studying their relations with a set of control-
lable variables that operations research attempts to determine that
combination of variables which yields minimum expected total cost subject
to an acceptable level of risk.
As one might suppose, the data for making such an analysis were almost wholly mon-existent and, therefore, in the project's firat release (item 1), in order to show that the model was a workable one, figures were used which were in some cases fictitious. Since that time much of the needed data have been uncovered, collected and anaiyzed. Although organizations and individuals too numerous to record here were helpful in many ways, the data actually used were secured mainly from the Interstate Commerce Commission and the U. S. Bureau of Public Roads. Dr. Acheson Duncan of the Department of Induatrial Engineering of The Johns Hopkins University served as consultant in
```

in statistical avalysis of the data. To all of these the authors are deeply grateful.

Although it is expected, ultimately, that other modes of transportation will be studied, the Hopkins group has been mainly highway oriented. This is because of the greater experience and famillarity possessed by its personnel with the highway field.

The report in hand concerns itself mainly with the probability of accidents to tractor semitrailers, which are the type of vehicle contemplated for use in transporting high level radioactivity, and the probability of release of material from containers. The latter probability may be estimated in more than one way; obviously, containers may be analyzed from the structural viewpoint or tests may be conducted $1 /$ on them. Another method is by inference from the study of vehicie and cargo damage in relation to speed, mass, and energy. The latter method has been employed herein.

Sumarizing, the material in this report deals with the frequency and severity of highway accidents in which heavy vehicles and their cargos are involved. The Table of Contents is sufficiently detailed to give the reader an understanding of the relationships which are explored.

It is hoped that this report may be of interest and use not only to those responsible for decisions in the transportation ef fission or other dangerous materials, but to others as well, such as general cransportation corapanies, insurance groups, and even the designers of roads and vehicles.

If Under a contract with the U. S. Atomic Energy Commission, Franklin Institute, Philadelphia. Pa., is making a study of the possibilities of model and protorype testing of containers.

II. ANALYSIS OF THE FREQUENCY OF TRUCK ACCIDENTS AND THEIR IMPACT CHARACTERISTICS.

1.0. Introduction

Abstract

A study was made of the accident experience of large, commercial carriers engaged in interstate commerce in order to better understand the sequence of events which may lead to a serious accident in the highway transportation of radioactive materials, to discover methods of controlling both the frequency and severity of such accidents, and to estimate the potential effectiveness of such methods in reducing the accident risk. In the analysis of accident frequency, data were obcained from the Bureau of Motor Carriers of the Interstate Commerce Commission, which covered a four year period (1956-59) with a total of 111,120 accidents experienced by approximately 2500 large motor carriers of property in more than 30.5 billion vehicle miles of inter-

 city travel. A reportable accident is defined as one from which there results an injury or death, or property damage to an apparent extent of $\$ 100$ or more. These data were classified by quarter of year, regional location in the United States, and type of carrier or service rendered. Significant annual, quarterly, regional, and carrier-type differences in accident rate were found in the data; however, the annual bias could be attributed to a change in the reporting procedures which was coincident with a change in accident rate.The quarterly or seasonal variation in accident rate followed a cyclic pattern throughout the four years, rising in the Winter and falling in the Spring and Summer months. The differences in accident rates among the various ICC regions in the United States could be
associated with differences in the highway charactoristics for these regions, principally in terms of the trafiic congestion on the highways. When the carriers were analyzed according to the type of halage engaged in, a large proportion, accountiag for almost two-thirds of the - total vehicle mileage, was found to have a common accident expectancy with no significant difierences in accident rate among them. The remainIng carriers appeared to have a significantly higher accident rate. Included in the former and larger group were carriezs of explosives and other dangerous articles, the category under which shipments of radioactive materials are curcently classified. The accident experience of this group was taken to be representative of the accident frequency to be expected in the highway transportation of radioactive materials.

A further analysis of accident' frequency was made for various days of the week and hours of the day, from a recent report by the ICC in which the accident data were classified according to their time of occurrence. There was a significant difference between deytime and nightime, and between the weekday and the weekend occurrence of accidents.

In the analysis of the impact characteristics of truck accidents, data were obtained from the United States Bureau of Public Roads and the Interstate Commerce Commission. The relative frequencies of the different types of accidents were found to depend on the type of highway where the accident occurred. This is especially true of the direction of impact in motor vehicle collisions. However, the type of vehicle struck in such collisions was found to be independent of the type of highway or the direction of impact. The weight characteristics of the various types of trucks were studied and a common weight distribution was estimated. Fire
was found to occur in cll types of collision accidents about one percent of the time, but in overturn accidents fires occur with twice that frequency.

Because of the difficulty in obtaining reliable data, there is very litrle literature on the subject of accident speeds, and the best data of this type, known to be available, were acquired from the BPR. With these data it was possible to approximate the distribution of seed in various types of accidents by a compound density function, consisting of a noraval, or bell-ahapad, pattern in the upper speed range, and a rectangular pattern in the lower range. This was found to be in generai agreement with the observations obtained from various speed studies of congested and free-flowing traffic. In this way, the speed of trucks and automobiles in collisfon with trucks were studied for possible differences. In two-vehicle collisions the two speeds were found to be statistically Independent, and the net impact or collision velocity was taken to be the vector sum of the two speeds. Eatimates were made of the distribution of impact velocities for various types of colilsions, and at various points of impact on the critical vehicle.

From the standpoint of control, further study of truck aceidents under these and other conditions may justify the use of special precautionary measures spocifically designed to meet the needs of shipments of radioactive materials. In general, hovever, the above analysis makes it possible to consider chree sets of alternatives which can be employed to reduce the frequency of accidents. Shipments which are normally aade during periods of the year with a relatively high accident rate, could be deferred to other periods with lower ratew. Secondly, shipping could
be suspended during those hours of the day when highway congestion is greatest and aceidents are more frequent. Finaliy, routes can be chosen so that trucks bypass highway sections with road characteristica which are unfavorable with respect to increased accident expectancy.

In a similar manner, the severity of aceident in terms of the mass, speed and direction of impact could be influenced by che avoidance of unfaworable highway sections, by controlling the wped of the critical vehicle, or by using special vehicles and containers which are designed to withptand the impacts experienced in highway aceidenta. At the present time, a study is being made of the potential effectiveness of these measures in reducing the risk in the transportation of radioactive materials, in cerms of the total cost to a cransportation syatem. Other methods of control might be considered, but in order to measure their effectiveness, the accident experience of trucke operating under these controls will have to be obtained by direct observation or experimental simulation. In any event, it is in the best interests of those responsible for the shipment of radioactive materials to document their accident and accident-free experience in a manner which wili permit continaing analyais and inference.

2.0. Accident Frequency for Laxke Motor Carriers of Property with Reference to Typical Carriers of Radioactive Katerials

 2.1. Discussion

 2.1. Discussion}

Aceident involvement data for large motor carriers of property throughout the United States were obtained from the Bureau of Motor Carriers, Interstate Comerce Comiswion. Under the safety regulations of the Commission, all accidents mast be reported in which there reaulta an injury or death, or property damage to the apparent extent of $\mathbf{\$ 1 0 0}$ or more. In addition, the carriern furalsh estimates of cheir total intercity vehicle miles of operation, which are the basia for computing aceident rates. These data are sumarized by the I.C.C. quarterly by type of carrier and by geographle area for carriers wich annual operating revenues of $\$ 200,000$ or more.

These data wnre analyzed for significant differences in aceident Frequency by quarter, year, and geographic region of the United Stateb. The analysis of variance of quarterly aceident rates by year indicated the presence of a seasonal pattezn repasted each year. The technique of eerial correlation was used to study the periodicity of the rate over four years, which was furcher analyzed by means of a Fourier series. The aignificance of the harmonic terms was evaluated by individual degree of freedon comparisons in the analysis of earlance.

Significant geographic differencea were also found to exist among the accident rates for carriers in twelve I.C.C. motor carrier diaticta.

17 Interscate Comperce Commission, "Totor Carrier Safety Regulations," Revision of 1952. Washington, D. C. P. 48. A rule change which became effective on January i, 1960, relleved carciers from reporting "property damage on $y^{\prime \prime}$ aceidents in which the amount of damage was less than $\$ 250$.

These differences could be explained largely by grouping the diatricta Into an eastern and a western region of the United States, in which the interstate highway characteristics were also very different. It was not possible to explain satiafactorily within-region rate differences in terms of road characteristics. The I.C.C. rates were found to be comparable to those developed in a special study of similar vehicies on the New Jerwey Turnpike.

The analywis of variance of quarterly aceident rakes for carrier* classified by type of cargo or wervice ohowed that wignificant differences were present. The mean rates of the seven other carcier claswes ware compared to that of carriera of explosives. radioactive materiale, and other dangerous articles; and four were judged to have a wimilar accident rate, which differed from the overall rate by the same amount in each quarter. The linear regression of accidents on mileage for chis group of carrier by quarter was in good agreement with the data and the theory that aceidents follow the Poisson distribution, with the expected number of accidents proportional to exposure.

Maximum ilkelikood estimate were made of the accident rake for all carriers by quarter and region, using the assumption of a Poisaon accident frequency. These rates were adjusted co serve as estimates of che rate for typical carriers of radioactive materials. Because of the large number of miles in the eatimates the variances of the entimates are quite small, such that all of the entimates are theoretically accurate to wichin ± 1 accident per 10 milifon vehicle milew. The estimated accident rates for typical carriera of radioactive materialy are sumarized in Table 2.1 .

Table 2.1. Sumary of Final Estimatea of the Accident Rate per Million Vehicle Miles for Typical Carriero of Radionctive Materiale.

$\begin{aligned} & \text { Regions of } \\ & \text { U.S. } \\ & \hline \end{aligned}$	lat Puarter	2nd Quarter	3rd Quarter	4th Puarter	Annua 1
Eastern	5.271	3.774	3.920	4.174	4.273
Western	3.003	2.357	2.522	2.735	2.655
All Regions	4.344	3.208	3.360	3.610	3.625

2.2. Analysis of Accident Ratea by Year and Quarter

The aceidents, milew, and rates for 10 miliion vehicle miled (10 MVM) reported to the I.C.C. by all large motor cerriers of property In each quarter of the years 1956 through 1959, are shown in Table 2.2. In making these figures available, the I.C.C. has noted that the data are not exactly comparable since the mileage represents intercity travel In all years but the accidents reported in 1956 and 1957 occurred largely In interstate comerce only. As of January 1, 1958, both accidente and miles were required on the intercity basis.

In examining the effect of this inconaiatency, the yeara 1956-7 and 1958-9 were considered as separate periods, denoted by $1=1,2$ with two years, $1=1,2 \mathrm{in}$ each, which are crose-clasified with quarters, $k=1,2,3,4$. Assuming that the mean effecte of these factors are additive, the accident rate $r_{i j k}$ for each year-quarter can be expreased as follows :

$$
\begin{aligned}
& \text { (2.1) } \quad r_{i j k}=r_{0}+p_{i}+y_{i j}+q_{k}+e_{i j k} \\
& r_{o}=\text { overall mean rate, } \\
& P_{i}=\text { mean difference of period } i=1,2 \\
& y_{i j}=\text { mean difference of year } j=1,2 \text { in period } i, \\
& q_{k}=\text { mean difference of quarter } k=1,2,3,4, \\
& e_{i j k}=\begin{array}{l}
\text { measurement error, assumed to be approximately } \\
\\
\\
\\
\text { to all observations. }
\end{array}
\end{aligned}
$$

1/ H. O. McCoy, Motor Carriers of Property-Aceident Data, First Quarter, 1958," Interstate Commerce Commission, Washington, D. C. . January 28, 1959.

The significance of sach difference is tested in the analyais of variance of Table 2.2, where the mean sum of aquares asaociated with each factor is computed and their ratio with the rasidual mean mquare is compared with the corresponding critical value of the F dietribution. Thus, the differences between years within periods is found to be in\#ignificant; but both the period and quarter differencea are very *ignificant.

The analysis of variance for quarterly ratas indi atea the presence of significant quartexly rate variations which repeat themselves each year within 1956-7 and 1958-9. Such stationary time series can be represented mathematically as the sum of a series of cyclic texms in a Fourier series, i.e.

$$
\text { (2.2) } r(t)=a_{0}+b_{1} \cos \theta+b_{3} \cos 2 \theta+\ldots+b_{k-1} \cos \frac{k-i}{2} \theta
$$

where $r(t)$ denotes the rate at time $t-0,1,2, \ldots$ time units, and $\theta=2 \pi t / k$ for a period of length k time units.

The series repeate itselfin the time intervals 0 to k, k to $\mathbf{2 k}$, etc. The period length k, and the coefficients a and b are to be estimated.

One method of detecting periodicity in the data is to compute the product-moment correlation coefficient for the observations, r_{t}, at time t with those at t ime $t+1, t+2, \cdots$; where the serial correlation coefficient of order k is given by ${ }^{2} ;$

[^0](2.3) $R=\frac{\operatorname{cov}\left(r_{t}, r_{t}+k\right)}{\left[\operatorname{var}\left(r_{t}\right) \operatorname{var}\left(r_{t}+k\right)\right]^{1 / 2}}$

Serial correlation coefficients were calculated for the data of table 2.2. The rates are ploted in Figure 2.1 and the serial correlation coefficients R_{k} are plotted against k in Figure 2.2. The plot indicates the presence of an undamped cycle with a period length of four quarters.

Model (2.2) with a period of four quarterly time units becomes
(2.4) $r(t)=a+b_{1} \cos t \Pi / 2+b_{2} \sin t \Pi / 2+b_{3} \cos t \Pi$
which reduces to:

$$
\text { (2.5) } \begin{aligned}
& r_{1}=a+b_{1}(1)+b_{2}(0)+b_{3}(1) \\
& r_{2}=a+b_{1}(0)+b_{2}(1)+b_{3}(-1) \\
& r_{3}=a+b_{1}(-1)+b_{2}(0)+b_{3}(1) \\
& r_{4}=a+b_{1}(0)+b_{2}(-1)+b_{3}(-1) \\
& r_{i}=r_{i}+4=r_{i}+8=\ldots
\end{aligned}
$$

When this model is fitted to the observed rates by the method of least squares, the normal equations give the following estimates for the values of a and $b . \underline{I}^{\prime}$
(2.6) $a=\bar{T}$

$$
\begin{aligned}
& b_{1}=\left(\bar{x}_{2}-\bar{r}_{3}\right) / 2 \\
& b_{2}=\left(\bar{x}_{2}-\bar{x}_{4}\right) / 2 \\
& b_{3}=\left(\bar{x}_{1}-\bar{x}_{2}+\bar{x}_{3}-\bar{x}_{4}\right) / 4
\end{aligned}
$$

1/ E. T. Whitaker and G. Robinson, "The Calculus of Observations," 4th Edition, 1944, Blackie, London, p. 267.

FIG. 2.1. ACCIDENT RATES BY QUARTER FOR LARGE ICC CARRIERS FROM 1956 THROUGH 1959

> IG. 2.2. SERIAL CGRREIATION OF ACCIDENT RATES FOR PERIODS OF IENGTH K IN THREE MONTH OR QUARTERLY UNITS

Table 2.2, Aceidents, Vehicie niles, and kates by Year and Quarter

 for harse 1.C.C. notor Cartiors of property
Iat Quarter 2nd quarter 3rd Quarter Ath Quarter Annual Total

 MNM, millions of vehicile miks. **kates are given as aceidento per 10 mmh .

Analysis of Variance							
Source of Vartation			Sum of Squares	d.t.	Whan Equare	Aatio	Fo.0s
Qusrter			246.25s	3	82.732	38.12	3.86
Years	1986-7	*s. 1958-9	51.123		\$1.123	23.60	5. 12
	Witats	periods	0.762	2	0.331	0.18	4.26
		Tatal	51.s85	3	17.295	3.97	3.86
ResLdual			19.540	9	2.171		

The simplicity of these resultw, which in due to the orthogonality of equation (2.5), makes it posilible to teat the significance of the harmosic terms. i.e. whether the "b" confficients differ froe aero, by means of individual degrees of freedow in the amalyois of variance.
The testo for b_{1}, b_{2}, and b_{3} are equivalent to comparisons of mean 4ifferences between quarteres $1 \mathrm{vw}, 3,2 \mathrm{ve}, 4$, and $1,3 \mathrm{ve}, 2,4$. The analysis of variance of Table 2.2 ie extended in Table 2.3 to include test. of shamsficance for the ratio of mean equare to realdual for each of the harmonit terme. All three termat are found to be wignificant with coefficient, different frow zero.

Table 2.3. Individual Comparisons for Marmonic Conponente Source of Vartation Sus of Squares d.f. Mean Square Natio Fo.05 وuarters:

Let cosine terw, b_{1}	176.720	1	176.720	81.40	S. 12
let wine term, b_{2}	26.645	1	26.645	12.27	5.12
2nd contan cerw, b3	44.890	1	44.890	20.68	5.12
Total for Quarcere	248.25s	3	*2.732	38.12	3.86
Restdual	19.540	9	2.171		

The sensonal cycle in accident rates represented by the Fourter serien (2.2) was evaluated for the aceldent date in Table 2.2 with the escimatort of (2.6). The estimate it given by (2.7) $r_{j}=a,+4.696$ cose -1.754 ein $\theta+1.758$ coos 20
$2_{1}=34.667$ for 1956 -7
$4_{2}=37.974$ for 1958-9

Equations (2.7) are plotted in Figure 2.3, where each quarteriy rate
is interpreted as applying to the mid-point of the quarter, and o is expressed as a function of the fraction T, of the year that has elapsed since January lat, i.e.
(2.8) $0=2 \mathrm{H}(\mathrm{T}-0.125)$

The observed rates are also plotted in Figure 2.3, and the difference in the periods 1956-7 and 1958-9 is quite apparent.

FIG 2.3. OBSERVED VS. THRORETICAL ACCIDENT RATES FOR ICC CARRIERS BASED ON A FOURIER SERIES OF SEASONAL RATE VARIATIONS

2.3 Analysis of Geographic Differences in Accident Rates

The 1958-59 accident rates for large carriers located in the various I.C.c. motor carrier districts are given in Table 2.4. The districts are identified on the map in Figure 2.4. ${ }^{\text {1/ }}$ The mean differences in accident rates by district, quarter, and year were examined by means of the following analysis of variance model.
(2.9) $r_{i j k}=r_{0}+d_{i}+q_{j}+y_{k}+d q_{i j}+d y_{i k}+q y_{j k}+e_{i j k}$
$x_{0}=$ overall mean rate
$d_{i}=$ nean difference for district $i=1,2,3,4 \ldots \ldots 12$
$\mathrm{S}_{\mathrm{j}}{ }^{\mathbf{*}}$ mean difference for quarter $\mathrm{J}=1,2,3,4$
$y_{k}=$ mean difference for year $y=1,2$
$d_{i j}=$ mean interaction of district i with quarter j
$d y_{i k}=$ mean interaction of district i with year k
$\mathbf{q y}_{j k}=$ mean interaction of quarter, $\}$ with year k
$\mathbf{e}_{i j k}=\begin{aligned} & \text { measurement error, assumed approximately normal with } \\ & \text { mean zero and variance } \sigma^{2} \text { common to all observations }\end{aligned}$ In the analysis of variance for Table 2.4 , ali of the interaction terms are not signtficant at the 5% level of probable error, as is the difference between years. However, both the mean differences among districts and:quarters are significant.

In Table 2.5 the mean district rates are ranked in descending order, and compared with the probable range of mean rates when measured frem both the highest and lowest values. The 95% probable range (known as the "Studentized" range) is given by"

I/ I.C.C. districts 15 and 16 were combined into a single district, designated 14, because of the small number of vehicle miles A. J.

2/ A. J. Duncan, op. cit., p. 601

e

FIG. 2. 4. ICC MOTOR CARRIER DISTRICTS

Table 2.4. Accident Rates per 10 MVM For Various Motor Carrier Diatricts as Keported by the I.C.C.

	1956 Quarters				1959 Quarters			
Motor Carrier Districts	Ist	2nd	3rd	L, \%h	15t	2nd	3rd	$\underline{4 t h}$
1. Ne, , N, H , , Vt , ,Nass. . R , 1.	52	35	33	33	53	30	32	39
2. N. Y , Conn. ,N.J.	63	42	40	40	48	35	36	36
3. Md. , Del . , Ve . , E. Pa .	57	41	44	51	55	40	46	52
4. Onio, W, Va . H . Pa	60	42	45	52	59	til	39	43
6. W.C.,S.C.,Ga., Ala . Fla.	45	34	35	36	44	40	39	42
7. Ky, ,Tenn. .Miss.	37	26	28	30	41	31	30	23
8. 121. , Ind. ,Nich.	56	43	44	46	59	41	44	43
9. N. D. ,S.D., Nimn . Wis.	30	25	26	30	40	23	26	30
10. Neb. .Ka . To. No.	30	26	27	28	39	25	26	28
12. Tex . Ok, ,1a.	35	30	33	39	35	33	38	37
13. Nont . .Wy. .Col. .UE. . N.M.	28	28	26	28	33	19	24	31
14. Wawh. ,Or, ,Cal. ,Nev. ,Ariz.	27	19	20	22	26	20	21	22

Anelysis of Variance

Source of Vartation	Sum of Squares	- d.f.	Mean Square	Rat 10	0.05
Quarters	1907.865	3	635.455	60.79	2.89
Dietricts	6938.365	11	620.760	60.49	2.09
Yeara	0.094	1	0.094	0.01	4. 14
Interactions					
District-quarter	591.760	33	17.932	1.72	1.83
District-Year	0.000	3	0.000	0.00	2.89
Quarter-Year	210.781	11	19.162	1.84	2.09
Residual	344. 125	33	10.428		

```
(2.10) R = q(12.84) s%r = 4.78(36.365/8)1/2 = 10.18
    4 = range factor for 12 means and 84 degrees of freedom
    s}\frac{2}{r}=\mathrm{ estimated variance of the mean rates = s
    s%
    common to all districts.
The mean rate for the first six districts of Table 2.S tall within
the upper range, indicating tisat there may be no significant rate
differences among them. The same reasoning applies to the last five
districts of Table 2.S. This grouping of the distzicts correspomds
to a division of the United States into two regions, cast and west.
Although the remainimg district falls outside of the ramge of either
grosp, it is geographically contained in the vestern region.
    This grouping of the diatricts into two regions was further
examined by extending the analysis of variance in Table 2.4 to prermit
the analysis of geographic dififerences and interactions both between
the regions and within reggions. This is done in Table 2.5, where the
between-region differences and interactions appear to be significant.
The within region differences are still significant, but without apparent.
interaction. Although this treatment fails to completely explain
geographic difierences, it provides a basis for gainimg more precision
in estimating aceident rates.
    Some explamation of the differences between accident rates in
the eastera and westera portions of the United States can ber olotained
from the differences in highway characteristics for these regions.
Some characteristics for U. S. Interscate Mighway System in these two
regions are shown in Table 2.6. In general, higher accidant rates
appear to be associated vith highways having denser trafilic and closer
```

Table 2.5. Comparisons of Mean Accident Rates for Districts of Table 2.3

	District No.	Mean Rate	Highest	Lowest
Eastern	3	48.250	0.00	26.13
	4	47.625	0.63	25.50
Group or	番	46.750	1.50	34.63
	2	42.500	5.75	20.38
Region	6	39.025	8.53	17.50
	1	38.625	9.53	16.50
Mestern	12	35.000	13.25*	$12.88 *$
	7	30.375	17.83	8.25
Group or	9	28.750	19.50	6.63
	10	28.625	19.63	6.50
Hegion	13	27.125	21.13	5.00
	14	22.125	26.13	0.00

Analysia of Variance - Extension of Table 2.4

Source of Variation	Sum of Squares	d. E.	Mean Squaren	Racio	0.05
Anong Diatricte					
East vi. Heat	5505.510	1	5505.51	527.92	4.14
Withia Regions	1432.855	10	143.29	13.74	2.13
Diatrict-Quarter Interaction					
East vs. Went	277. 198	3	92.40	8.86	2.89
Mithin Regione	314.562	30	10.49	1.01	1.81
Diatriet-Year Interaction					
East va. Weat	46.760	1	46.76	4.48	4.14
Hithin Regions	264.021	10	16.40	1.57	2.13
Reaidual Error	344.125	33	10.428		

urban commanities. An attempt was made to correlate there characteristics with individual district accident rates, but the results were not conclusive.

Abstract

In a vecent study ${ }^{1 /}$ of accidents on the New Jersey Turnpike over a period of six years $(1952-57)$. large property carrying vebieles experienced 1698 accitients fof a cotal of 565.3 mitition velicie mileo of travel. This yields an aceident rate of 30.04 aceidents per 10 mVM, which is $=11$ ght ly higher than the overali rate of 28.55 reported by ail I.C.C. carriers in the westera grouping of districts; and considerably luwer than the overail rate of 44.73 for the eastern districta. Assuanag no important measurement difference, this would indicate that turnpikes effectively reduce the aceldent rate normally experienced on highways in the same area.

Tabte 2.6. Some Gharacteristics of Interstate ligghays in Difierent Regions*

2.4. Analyais of Aceident Races for Different Kinds of Carriers

Acctdent rates per 10 million vehtcle miles are ahown in Table 2.7 for eight types of I.C.C. carriers classified by the kind of cargo carried or service rendered. The stgntrlcance of rate differences among clazses was ewaluated in the analysis of variance of Table 2.7, which foltous the following ifnear expression for the rate.


```
    5o - overa\i mean rate
    ci - mean difference for carrier class i - 1, 2, ..., 8.
    4, = mean difference for qua ter 1-1, 2, 3, 4.
    Yk - mean difference for year k = 1, 2.
    cqiy = mean interaccion of caritier i with quarter J-
    cy 
    qy jk = mean Interaction of quarter j with ymar k.
    *Ljk - measurcment error, aswumed approximately normal vith
        mean zero and variamce }\mp@subsup{c}{}{2}\mathrm{ common to ali observations.
The analyais indicates that carrier differences are as highly significant
as the quarter differences which do not interact. i.e. che carriera
respond co seasonal factors uniformly. There also appears to be a
coasiatent difference in rates for the cwo years.
    Since the accident experience of carrters of radiooctive materials
is included with that of carriers of explosives and other dangerove
articies, the accident rate for chat clawn is of particular interest,
as well as its differences from the rates of other clasmes. Under the
assungtion that there is no signiflcant difference between the rate
for a certain class and that of the expiosives class, the mean rate }\overline{\textrm{F}
```

Tabia 2.7. Accident Rakes for Various Types of Interstate Carriers

Class of Carrier	1955 Quarters				1959 Quarters				Mean Rate
Service or Curgs		2nd	3 rd	42h	15t	2nd	3 rd	2 th	
(Aceidents per ten milison	miles								
1. Explosives and Dangerous Articies	60	37	37	30	37	21	39	23	35.50
2. Petroleum Producta	40	25	26	34	45	29	33	34	33.50
3. General Freight Carriers	44	33	33	36	45	32	32	34	36.13
4. Heavy Nachinery and Large Vnits	$4 b$	32	28	51	32	39	32	32	36.75
5. Motor Vehiebe Transportation	44	36	39	41	48	32	36	35	38.88
6. Other Carrters not Specified	46	37	38	44	49	39	39	45	42.13
7. Reftigerated Produzks	57	45	40	43	55	39	39	42	45.00
8. Houn sho 2d tiboda	60	54	54	54	60	51	SL	51	35.30

Analysis of Variance

Source of Variation	Sum of Squares	d.f.	Nean Square	Fuatio.	F0.05
Carriers	2742.609	7	391.801	19.23	2. 18
Yeare	92.641	1	92.641	4.55	4.02
Quarters	1400.922	3	466.974	22.92	2.78
Interaction					
Carrier-Year	283.734	7	40.533	2.00	2. 18
Carrier-Quarter	532.703	21	25.367	1.25	1.76
Year-Quarter	70.297	3	23.433	1.15	2.78
§esidual	427.328	21	20.373		

Extension of Carrier Comparison (see text)

| Classes 1 S, vs. $6-8$ | 1890.009 | 1 | 1890.009 | 92.77 | 4.02 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| tmong Ciasses $1-5$ | 121.850 | 4 | 30.613 | 1.50 | 2.54 |
| Among Classes $6-8$ | 730.750 | 2 | 365.375 | 27.93 | 3.17 |

for that class is expected to lie within the following interval 90% $1 /$
of the time.
(2. 12) $\bar{r}=\bar{r}_{e} \pm \tau_{0.05}\left(2 s_{\frac{r}{r}}^{2}\right)^{1 / 2}$
$=35.50 \pm 1.687(2 \cdot 50.145 / 8)^{1 / 2}=35.50 \pm 5.97$
Here, $F_{e}=35.50$ is the mean accident rate for the explosives class Erom Table $2.7 ; s_{r}^{2}=s_{r}^{2} / 8=50.145 / 8$ where s_{r}^{2} is the estimate of within-class variance of the rate assumed common to all classes; and $\mathrm{t}_{\mathrm{O}, 05}$ is based on the 56 degrees of freedom for the estimate $\mathbf{s}_{\mathbf{r}}^{\mathbf{2}}$. Thus, the mean rate should range from 29.5 to 41.5 , which is not the case for carrier classes 6,7 , and 8 of Table 2,7 . The resulting argument that carrier classes 1 through 5 have a conmon accident rate, which differs from that of the remaining claspes, was further examined by extending the analysis of variance of Table 2.7. The individual comparisons between the two groupings and among the classes of each group supports the argument.

The common accident rate for classes l-5 differs from the overall accident rate of all I.C.C. carriers by an amount d_{i} in each quarter 1 , which can be expressed as follows.

$$
\text { (2.13) } \begin{aligned}
d_{i} & =\bar{r}_{i}-\bar{r} \quad i=1,2,3,4 \\
& =\bar{F}_{i}^{\prime}-\left(5 \bar{r}_{i}^{\prime}+3 \vec{F}_{i}^{\prime \prime}\right) / 8=3\left(\bar{r}_{i}^{\prime}-\bar{r}_{i}^{\prime \prime}\right) 8
\end{aligned}
$$

Here, \bar{F}_{i} denotes the overali mean for quarter i as a weighted average of \bar{F}_{i}^{\prime}, the mean rate for the first 5 classes, and $F_{i}^{\prime \prime \prime}$, the mean rate for the ramaining 3 classes. Since \bar{r}_{i}^{\prime} and $\bar{r}_{i}^{\prime \prime}$ are independent, the variance of d_{i} is given by
i/A. J. Duncan, op. cit., p. 474.

$$
\text { (2.14) } \begin{aligned}
\operatorname{var}\left(d_{i}\right) & =(3 / 8)^{2} \operatorname{var}\left(\bar{r}_{i}-\vec{r}_{i}^{\prime}\right) \\
& =(3 / 8)^{2}(1 / 10+1 / 6) \operatorname{var}(r)
\end{aligned}
$$

where r is assumed to have a common variance in all classes and quarters and \bar{r}_{i} is based on 10 observations (5 classes in 2 years) and r_{i} is based on 6 observations in Table 2.7. The variance of \dot{d}_{i} is also independent of quarters. The estimated values are

$$
\begin{aligned}
(2.15) \mathrm{a}_{1} & =-3.95 & s_{d_{i}}^{2} & =(9 / 64)(4 / 15) \mathrm{s}_{r}^{2} \\
\mathrm{~J}_{2} & =-4.71 & & =(3 / 80) 50.145 \\
\mathrm{~J}_{3} & =-4.46 & & =1.8804 \\
\mathrm{a}_{4} & =-4.31 & s_{d_{i}} & =1.37
\end{aligned}
$$

Here s_{r}^{2} is the estimated within-class variance having 56 degrees of freedom. The studentized range for the four d_{i} is given by $2(4.56) s_{d_{i}}=$ 5.43 while the sctual range is relatively very small. Therefore, the four d_{i} can be considered as samples of the same d and independent of quarters, with estimates: $d=-4.21$ and $s_{d}^{2}=s_{d_{i}}^{2} 14=0.34$. Carrier classes $1-5$ have approximately 4 less accidents per 10 million vehicle miles than the mean rate of all I.C.C. carriers.

The Poisson frequency distribution is often used to describe $1 /$ the pattern of accident observations, where the number of accidents x occurring in the duration of m vehicle miles, with a rate r, has the following frequency.
(2.16) $f(x)=e^{-r m}(x m)^{x} / x: \quad x=0,1,2, \ldots$

Both the mean or expected number of accidents $E(x)$ and the variance are equal to rm , i.e. directily proportional to the mileage. When rm

I/ W. Feller, "An Introduction to Probability Theory and Its Applications," p. 147, John Wiley \& Sons, New York, 1957.

Abstract

is sufficiently large, 25 or more, $\frac{1 /}{}$ the Poisson variate is approximately normal in distribution. The proportionality property suggests the applicability of a linear regression of accidents on miles, as shown in Figures $2.5,2.6,2.7$ and 2.8 for carrier classes 1 through 5 with the data of Table 2.8 plotted separately for each quarter.

The regression model for accidents $x_{i j}$ on millions of vehicle miles $m_{i j}$ for carrier j in quarter i is given by (2.17) $x_{i j}=a_{i}+b_{i} m_{i j} \quad i=1,2,3,4 ; j=1,2,3,4,5$. Estimates of the regression values for each quarter are shown at the bottom of Table 2.8 . The agreement of the data with the linear model is very good over an extremely large range of mileage exposures, as reflected in the correlation measures $R_{x / m}^{2}$ being very close to 1 . Of particular interest are the constant terms a_{i}, since they should all equal zero under the Poisson assumption. All of the a_{i} estimates are well within the confidence limits for the hypothesis. On the other hand, the b values are significantly different from zero, fallig well outside the confidence limits for such a hypothesis. These values are the regresqion estimates for the quarterly accident rates per million vehicle miles.

The differences between the four quarterly regressions are evaluated by the analysis of covariance in Table 2.9. At first the differences in slope are tested by determining the significance of the mean sum of squares associated with eeparate slopes ss compared with a single common slope; and secondly, the significance of the separate

[^1]```
mean regression levels is evaluated. The F test ratio uses the
vithin-quarter variance as the denominator. ', Both F values are
very significant which justifies the use of separate regressions.
```

1/ G. W. Snedecor, "Statistical Methods," p. 401, 1956, The Iowa State College Press, Amers, Iuwa.


FIG. 2.5. REGRESSION OF ACCIDENTS ON VEHICLE MILES FOR FIVE CIASSES OF ICC CARRIERS IN THE FIRST QUARTERS OF 1958 AND 1959


FIG. 2.6. REGRESSION OF ACCIDENTS ON VEHICLE MILES FOR FIVE CLASSES OF ICC CARRIERS IN THE SECOND QUARTERS OF 1958 AND 1959

## -



FIG. 2.7. REGRESSION OI ACCIDENTS ON VEHICLE MILES FOR FIVE CLASSES OF ICC CARRIERS IN THE THIRD QUARTERS OF 1958 AND 1959


FIG. 2.8. REGRESSION OF ACCIDENTS ON VEHICLE MILES FOR FIVE CIASSES OF ICC CARRIERS IN THE FOURTH QUARTERS OF
$\frac{\text { Table 2.8. Accidents and Mileage (in millions) for Five I.C.C Carrier Classes }}{\text { by Quarter for } 1958 \text { and } 1959}$

| class of Carrier | $\underline{\mathrm{Y}}$. | 1st Quarter |  | 2nd Quarter |  | 3rd Quarter |  | 4th Quarter |  | Year Total |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Acc. | MVM | Acc. | MVM | Acc. | HiVM | Acc. | MVM | Acc. | MVM |
| Explosives | '8 | 31 | 5.2 | 25 | 6.8 | 27 | 7.3 | 20 | 6.7 | 103 | 26.0 |
| et al. | '9 | 21 | 5.7 | 15 | 7.3 | 29 | 7.5 | 16 | 7.1 | 81 | 27.6 |
| Fetroleum | '8 | 582 | 146.5 | 372 | 147.4 | 463 | 163.7 | 550 | 161.0 | 1967 | 618.6 |
| Products | '9 | 703 | 154.9 | 459 | 159.2 | 542 | 165.0 | 533 | 154.8 | 2237 | 633.9 |
| General | '8 | 4319 | 989.6 | 3323 | 1014.6 | 3514 | 1055.5 | 4273 | 1179.4 | 15429 | 4239.1 |
| Freight | :9 | 5075 | 1139.3 | 3916 | 1215.9 | 3835 | 1181.9 | 4185 | 1217.3 | 17005 | 4754.4 |
| Large | '8 | 98 | 20.3 | 77 | 24.1 | 90 | 31.7 | 153 | 30.0 | 418 | 106.1 |
| Units | '9 | 144 | 45.4 | 140 | 36.0 | 107 | 33.6 | 112 | 35.0 | 503 | 150.0 |
| Motor | '8 | 984 | 222.5 | 674 | 186.5 | 528 | 134.7 | 1083 | 264.5 | 3269 | 808.2 |
| Vehicles | '9 | 1423 | 294.2 | 1004 | 310.2 | 746 | 207.3 | 928 | 267.4 | 4101 | 1079.1 |
| Total |  | 13380 | 3023.6 | 5999 | 3108.0 | 9881 | 2988.0 | 11853 | 3323.2 | 45113 | 12442.7 |
| Regression Estimates |  | 1 st 8 |  | 2nd 9 | $3 \mathrm{rd} Q$ |  | 4th Q |  |  |  |  |
| Estimate a |  | -3.0865+41.55 |  | -0.9109 | 9.001+37.61 |  | 15.014 |  |  |  |  |
| Limits (a ${ }^{\text {a }}$ |  |  |  | +35.19 |  |  | $\underline{+56.07}$ |  |  |  |  |
| Estimate b |  | $\frac{+4.4308}{}$ |  | $\overline{3} .2465$ | $\overline{3} .2768$ |  |  |  |  |  |  |
| Limits (b) |  | $\pm 0.106$ |  | $\pm 0.085$ | $\pm 0.090$ |  | $\pm 0.125$ |  |  |  |  |
| $\mathbb{R}_{\mathrm{x} / \mathrm{m}}^{2}$ |  | 0.999 |  | 0.999 | 0.999 |  | 0.998 |  |  |  |  |
| $\mathrm{s}_{\mathrm{x}}^{2}$ |  | 3,245.676 |  | 2,329.436 | 2,661.168 |  | 5,699.442 |  |  |  |  |
| $s_{x / m}$ |  | 56.97 |  | 48.26 | 51.59 |  | 75.50 |  |  |  |  |

## Table 2.9. Analysis of Covariance for the Regression of <br> Accidents on Miles for the Data of Table 2.8

Source of Variation Sum of Squares d.f. Mesn Square Ratio Fo.05 Individual Quarters

| Within Quarter 1 | 25,965.419 | 8 | 3,245.676 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| " ." 2 | 18,635.489 | 8 | 2,329.436 |  |  |
| " .. | 21,289.343 | 8 | 2,661.168 |  |  |
| " $\quad 4$ | 45,595.535 | 8 | 5,699.442 |  |  |
| Total within Quazters | 111,485.777 | 32 | 3,483.931 | Residual |  |
| Differences in Slope Coefficients | 1,481,853.108 | 3 | 493,951.036 | 141.780 | 2.90 |
| Regression with Common Slope | 1,593,338.885 | 35 | 45,523,968 |  |  |
| Differences in Means Adjusted for Slope | 834,072.594 | 3 | 278,024.198 | 79.802 | 2.90 |
| Regression with Common Miean and Slope | 27,411.479 | 38 | 63,879.2 |  |  |

```
2.5. Maximum Likelihood Estimates of Accident Rates for Carriers
 of Radioactive Materials.
 In the preceding analysis the accident rate was estimated by both
 a mear accident rate and by the slope of the regression line of accidents
on miles. Although both methods provide unbiased estimates, a more
desirable estimate can be obtained from the method of maximum likelihood.
In particular, the latter estimate is normally distributed for large
samples with minimum variance. The likelihood expression for accident
observations }\mp@subsup{x}{i}{}\mathrm{ , following the Poisson distribution with a common rate
r}\mathrm{ (for the observed mileages mi, is given by
```



```
which is maximized with the estimator
```



```
For large samples, the estimator r is normally distributed with
variance
(2.19) var r = r/ 浯i
 Maximut iikelihood esimates of the accident rates for, all large
I.C.C. 'arriers are shown in Table 2.10 for each of the quarter-region
classifications, which were found to be significant in the previous
analysis. Because the data represent the accumulated experience of
all types of carriers, an adjustment must be made to get the rate for
typical carriers of radioactive materials. In the analysis of variance
for carriers, it was shown that this adjustment differential is of the
same magnitude for all quarters. It will now be necessary to assume
it to be of the same magnitude for all region-quarters, for want of
evidence to the contrary.
```

Using maxisum likelihood estimates for the data of Table 2.2, the difference between the rate estimates for the typical carriers rin and that of all carrieis $r$ in all quarters and regions is given by
(2.20) $d=x_{1}-x=x_{1} / m_{1}-x / m$

$$
=36.2566-38.2562=-1.9996
$$

Expanding the ratio $x / m$, d becomes

$$
\begin{aligned}
(2.21) d & =x_{1} / m_{1}-\left(x_{1}+x_{2}\right) /\left(m_{1}+m_{2}\right) \\
& =x_{1} / m_{1}-\left(m_{1} / m_{1}\right)\left(x_{1} / m\right)-\left(m_{2} / m_{2}\right)\left(x_{2} / m_{2}\right) \\
& =\left(1-m_{1} / m\right)\left(x_{1} / m_{1}\right)-\left(m_{2} / m_{2}\right)\left(x_{2} / m_{2}\right) \\
& =\left(m_{2} / m_{1}\right)\left(x_{1}-x_{2}\right)-p_{2}\left(x_{1}-r_{2}\right)
\end{aligned}
$$

where $p_{2}=m_{2} / m-m_{2} /\left(m_{1}+m_{2}\right)-1-p_{1}$
The variance of $A$ as estimated in $(2.20)$ is given by
(2.22) var $d=p_{2}^{2}\left(\operatorname{var} r_{1}+\operatorname{var} r_{2}\right)$

$$
\begin{aligned}
& =(0.25)^{2}(0.0291+0.1073) \\
& =0.0085
\end{aligned}
$$

In order to obtain an unbiased estimate of the accident rate for typical carriers in a paiticular region-quarter, several assumptions are required. When the estimated accident rate for all carriers in a particular region-quarter $\mathrm{r}^{* \prime}$ (denoted by the double prime) is adjusted by the factor $\&$ from a eifferent set of data, the expected value is given by

$$
\begin{aligned}
(2.23) E\left(r^{* \prime}+d\right) & =E\left(\frac{x_{1}^{* *}+y_{2}^{* *}}{m_{1}^{* *}+m_{2}^{* *}}+p_{2} E\left(r_{1}-r_{2}\right)\right. \\
& =p_{1}^{* *} E\left(r_{2}^{* *}\right)+p_{2} E\left(r_{2}^{* *}\right)+p_{2} E\left(r_{1}-r_{2}\right) \\
& =p_{1}^{* E} E\left(r_{1}^{* *}\right)+p_{2} E\left(r_{1}\right)+p_{2}^{* N E}\left(r_{2}^{* *}\right)-p_{2} E\left(r_{2}\right)
\end{aligned}
$$

In order for this to yield an unblased eatimate of $E\left(r_{i}^{*}\right)$, two assumptions are required: (a) $P_{1}{ }^{*} P_{1}$, i.e. the willeage distribution between the typical and non-typical carriers must be the same in both sets of data; and (b) $E(d)=E\left(d^{\prime \prime}\right)$ or $E\left(r_{1}-r_{2}\right)=E\left(r_{1}^{*}-r_{2}^{*}\right)$ as was indicated from the analysis of variance. Then (2.23) reduces to

$$
(2.24) E\left(r^{\prime \prime}+d\right)-\left(p_{1}+p_{2}\right) E\left(r_{1}^{\prime \prime}\right)+\left(p_{2}-p_{2}\right) E\left(r_{2}\right)
$$

$$
-E\left(x_{i}^{* *}\right)
$$

as desired, with variance
(2.25) $\operatorname{var}\left(\mathrm{r}^{\prime \prime}+\mathrm{d}\right)=\operatorname{var}\left(\mathrm{r}^{\prime \prime}\right)+\operatorname{var}(\mathrm{d})$
where $r^{\prime \prime}$ and dare independent entimates. However, with the data available, a is actually estimated froe the sum total of observations for all of the efght region-quarter clasaifications used to estimate each $\mathrm{r}^{\prime \prime}$. Therefore (2.25) tends to overestimate the variance. The adjusted estimates of the accident rates for carriers of radionctive materials are shown in Table 2.10.

Table 2.10. Maximun Likelihood Estimates of Accident Rates for Carriers of Radioactive Materiala


### 2.6. Accident Occurrence by Time of Day and Day of Week.

In its report of truck aceident data for the fourth quarter of 1959, 1.C.C. prowided a detatled elassiffication of the accidents by the time of day and the day of the week when they occurred. These are plotited in Figure 2.9 and sumarized in Table 2.11 with the 24 hours of the day divided into four six hour periods. In the same cable an analysis of variance was made to determine the significance of the observed differences. There is a highly significant difference between daytime and nightime, but no wignificant variation within these periods. There is also a very pronounced difference between weekends and the weekdays of Monday through Friday, with no apparent differences among or within these latter five days. There is a difference between Saturday and Sunday of the weekend

Unfortunately, it was not possible to obtain a corresponding classification of the vehicle milles of operation by the i.c.C. carriers. This would have made it possible to determine and compare the accident rates for hours of the day and days of the week. However, there is evidence from other sources which indicate such variations in rate do occur. In a recent study by the Bureau of Public Roads ${ }^{1 / /}$ it was found that the aceident rate for large trucks ( 6 tons or more) was considerably less at night than during the day on representative sections of main rural highways in the United States. In the data collected for that study, the nightime vehicle mileage reported for truck combinations was slight ly greater than the daytime mileage.

1/ L. L. Strauss. "The Federal Role in Highway Safety," House L. L. Strauss, The Federal Roie in Highway Safety,
Document 93. B6th Congress, Washington, D. C.. 1959.


FIG. 2.9. THE NUMBER OF ACCIDENTS REPORTED BY LARGE ICC CARRIERS IN THE FOURTH QUARTER 1959 BY DAY OF WEEK AND HOUR OF DAY

Table 2.11. Number of Accidents Reported by Time of Day and Day of Week.

| Accidents Reported by: Weekday | $\begin{aligned} & 6 \text { a.m. to } \\ & 12 \text { Noon } \\ & \hline \end{aligned}$ | $\begin{aligned} & 12 \text { Noon } \\ & \text { to } 6 \mathrm{p} . \mathrm{m} \text {. } \end{aligned}$ | 6 p.m. to 12 Midnight | 12 Midnight to 6 a.m. | Total |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Monday | 415 | 467 | 254 | 186 | 1322 |
| Tuesday | 429 | 402 | 265 | 247 | 1343 |
| Wednesday | 404 | 429 | 256 | 254 | 1343 |
| Thursday | 412 | 407 | 283 | 304 | 1406 |
| Friday | 356. | 447 | 300 | 234 | 1337 |
| Subtotal | 2016 | 2152 | 1358 | 1225 | 6751 |
| Saturday | 268 | 215 | 162 | 291 | 936 |
| Sunday | 97 | 116 | 135 | 104 | 452 . |
| Total | 2381 | 2483 | 1655 | 1620 | 8139 |


| Source of Variation | Sum of Squares | d.f. | Mean <br> Square | Variance Ratio | Critical Value |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Time of Day |  |  |  |  |  |
| Day vs. Night | 90, 175.7500 | 1 | 90,175.75 | 25.92 | 4.41 |
| Witinin Day | 743.1429 | 1 | 743.14 | 0.21 | 4.41 |
| Within Night | 87.5000 | 1 | 87.50 | 0.03 | 4.41 |
| Subtotal | 91,006.3929 | 3 | 30,335.46 | 8.72 | 3.16 |
| Day of Week |  |  |  |  |  |
| Weekday vs. Weekend | 153,785.1571 | 1 | 153,785.16 | 44.20 | 4.41 |
| Within Weekdays | 1,154.8125 | 4 | 288.70 | 0.08 | 2.93 |
| Within Weekend | 29,282.0000 | 1 | 29,282.00 | 8.42 | 4.41 |
| Subtotal | 184,221.9696 | 6 | 30,703.66 | 8.82 | 2.66 |
| Residual | 62,631.9018 | 18 | 3,479.55 |  |  |

## Assuming no change in the mileage for night and day operations

 of trucks engaged in intercity commerce, the ratio of the accident rate for these two periods is equal to the ratio of the number of accidents which occur, i.e.(2.26) $\frac{r_{1}}{r_{2}}=\frac{x_{1}}{m_{1}} \cdot \frac{m_{2}}{x_{2}}=\frac{m_{2}}{m_{1}} \frac{x_{1}}{x_{2}}$
wnere the subscripts 1 and 2 denote day and night for accident rates $r$, accidents $x$, and miles, $m$. With $m_{2} / m_{1}$ equal to one, the accident rate ratio for the data of Table 2.11 is
(2.27) $\frac{x_{2}}{x_{1}}=\frac{x_{2}}{x_{1}}=\frac{3275}{4864}=0.67$.

With a mean accident rate of 3.626 accidents per MVM and the relationship: (2.28) $2 \bar{r}=72.52=r_{1}+r_{2}$
these equations can be solved simultaneously to give the following value for $r_{1}$ and $r_{2}$ :
(2.29) $r_{1}=4.343$ acc. $110^{6}$ miles by day

$$
x_{2}=2.901 \text { acc. } / 10^{6} \text { miles at nigint }
$$

or a mean difference in accident rate of $\pm 0.721$ from the mean rate.
This dieference in accident rate is quite similar to that observed for highways in different regions of the United States. In both comparisons the same underlying road factor can be cited, i.e. reduced traffic density. This conclusioh is consistent with those found in other studies


I/ J. Versace, 'Tactor Arvalysis of Roaduay and Accident Data,* Highway Research Board Bulletin 240, Washington, D. C. . 1960.
ㄴ/J. C. H. Woo, "Correlation of Accident Kates and foadway Factors," Joint Highway Research Project, Purdue Uaiversity, 1957.

```
daily traffic was found to be the variable most highly related to
accident occurrence. In an extensive study of interatate highway
aceidents, Roff reports: "In most caves the average dally traffic
has a covilderable effect on the accident rate on tangent highway
sections. The common pattern is for the accidunt rate to increase
as the volume increases.."-
```

[^2]
### 3.0. Impact Characteristics of Truck Accidents


the distributions of weight vere estimated. The occurrence of fire was found to have a similar frequency in the various types of colifsion aceidents, with approxisately 17 of such accidents resulting in fires. However, In averturn acelslents, fires occur with twiee that frequency. Estimates of the speed of che vehicles involved in various types of aceidents vere approximated with compound distributions having both a beli-shaped high speed component and a rectangular low speed component, which occurs when the velhtele ts unable to maintain a normal highway speed pattern. The relative proportions of the two componente differ for the various acefdent types. Unfortunately, no analytic studies of aceldent speeds were found in the ifterature, but the renults of studies of velatele opeeda under varlous highway conditions appear to be in aubstantial agreement with these results.

The velocity of impact for motor vehtele collisions was taken to be the vector sum of the speeds of the colliding vehicles, e-g. the sum and difference in head-on and rear-end accidente reapectively. Eince the two speeds appear to be distributed independentiy, their joint distribution was defined an their product, and the distributions of the sum and difference in opeed vere evaluated from the compound maiginal densities. An analytic evaluation was used for the bivariate normal and bivariate rectangular components of resulting distributions. but the normal-rectangular components were evaluated numericaliy in 5 mph intervals. Rather than use the vector sume in angle aceidents, the speed of the opposing vehtele striking the critical vehtele was taken to be the impact velocity.


#### Abstract

Those callisions in which the impect is recelwed at the same point on the critical wehicie were combined into a single impact category with a pingle velacity dietribution. Thus, rear-end acefolents in which the cricical vehieie striken the rear or side of another vehicie vere combined with the front end impacts received in head-on colilisions. Entimates of both the frequency of their occurtwnce and the dixtribution of velocity in the various impact categorime are shown in Table 3.1. These entimates are based on the experience of targe trucks operating In intercity travel chroughout che tholted states. For particular types of highways the estimates may be different.


Table 3.1. Sumary of the Escimated Diotribution of Net Impact Velocicy in che Types of Tractor Semitrailer Accidente.

| Aceident : | Automobile Collisiong. |  |  |  | Truck Collisions |  |  |  | Overturns and Other Collisions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Point of Tepact: | Front | Rear | Side | Total | Front | Rear | Side | Total |  |
| Relative |  |  |  |  |  |  |  |  | 0.090 |
| Frequency : | 0.316 | 0.204 | 0.043 | 0. 563 | 0.094 | 0.052 | 0.011 | 0.157 | 4. 0.190 |
| Percentage Type | Ase | fente | Ekceed | ting th | Stes | ed Vele | cisy | in Each | Collision |

Valocity.

| 10 mph | .850 | .722 | .888 | .807 | .786 | .639 | .885 | .744 | .980 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 20 | .688 | .460 | .739 | .610 | .621 | .376 | .730 | .548 | .952 |
| 30 | .574 | .275 | .587 | .467 | .517 | .228 | .575 | .426 | .924 |
| 40 | .486 | .121 | .416 | .348 | .421 | .103 | .385 | .313 | .795 |
| 50 | .400 | .019 | .195 | .246 | .319 | .016 | .085 | .202 | .234 |
| 60 | .333 | .000 | .060 | .192 | .267 | .000 | .002 | .160 | .006 |
| 70 | .287 |  | .011 | .162 | .231 |  | .000 | .138 | .000 |
| 80 | .241 |  | .001 | .135 | .184 |  |  | .110 |  |
| 90 | .173 |  | .000 | .097 | .095 |  |  | .057 |  |
| 100 | .088 |  |  | .049 | .019 |  |  | .011 |  |
| 110 | .027 |  |  | .015 | .001 |  |  | .001 |  |

3.2. The Classification and Frequency of Collision and Non-Colileion Aceidents.
Notor vehicie acelidents are unuaily clawsifled acvording to the 1/ first event of the aceident which is included in one of three groupe: collision with another sotor velifele, colilsion with an object other than a motor velicle, and non-colifsion such an overturning and running off the rond. In Table 3.2, the number of accidents in each group is given for data from two sources. The I.C.C. data represent all aceidents for large carriers of property for the fourth quarter of $2 /$ 1959. The B. F. It. data represent the accident involvenents for tractor trailer type vehicles over several years on 35 representative highway 3/ sections in 11 stater. The relative frequencies of the accident types vere conpared by meana of a chi square test, and the result, shown in Table 3.2, indicates that there are no significant differences among the two sets of aceident data.
In Tabie 3.2, che accidents reported in the B.P.R. study are further classifled according to the kind of highway on which they ociurred, a distinction being made between two and four lane highwaye, with a further dietinction between the two lane roadis having an average, dally traffic (ADT) of more or less than 5000 . The chil square comparisons indicate considerable differences exist in the relative frequency of non-colilston and collision type acctdents for these roads. The proportion of non-collision accidenks cends to decrease
If Department of Heaith, Education, and Welfare, "Uniform Definitions of Notor Vehicie Accidents," Weshington, D. C. . 1956.
2/ Interstate Comerce Comaission," Notor Carriers of Property, Accident Data for Fourti Quarter, 1959, " September 16,1960 , Wawhington, D. C.
$3 /$ "The Federal tole in Higliway Safecy," 86th Congress, Iet Session, House Document No. 93, U.S. Gov't Printing Office, Pp. 71-84. 1959

| Source or Location of Accidents | Cozileion Accidenks |  | Non-Collision Accidents | A11 <br> Accident: |
| :---: | :---: | :---: | :---: | :---: |
|  | Moter <br> Vehicle Other | Total |  |  |
| B.P.R. Highway Study, 1956-59 |  |  |  |  |
| 2 lanes under 5000 vehw/day | 133 | 163 | 60 | 223 |
| 2 lanes over 5000 vehs/day | 210 42 | 252 | 45 | 297 |
| 4 lanes, divided roade | 215 | 268 | 14 | 282 |
| Total for B. P.R. Study | 558125 | 683 | 119 | 802 |
| I.C.C. Carriers, 4 th Quarter. 1959. Intercity Travel |  |  |  |  |
|  | 58971141 | 7038 | 1151. | 8189 |
| Comparison of Accident Ty | Chi Square | d. f. | 53 Critical | Value |
| Between I.C.C. and B.P.R. Total | 12.342 | 2 | 5.99 |  |
| Among Highwaye in B.P.R. Scudy |  |  |  |  |
| Between motor vehicle and other collisione | 0.766 | 2 | 5.99 |  |
| Between collision and non-collision | 47.636 | 2 | 5.99 |  |

as traffic density and/or highway control decreasea. However, no differences were found betweer the two types of collision, i.e. motor vehicle vs. other objects, for the different roads.

A more detailed analysis of motor vehtcle collifions was made of the two-vehicie aceidents reported in the B. P.R. study, in which the vehicle struck and the direction of impact were identified. The data are shom in Table 3.3 for each of the three types of highways. Chi square teats were used to compare the marginal frequencies of vehicle struck and direction of impact for the road types, i.e. road interaction with each characteristic. In addition the interaction of vehicle struck with direction was tested within each road type.

The results indicate that the vehicie struck is independent of both the road type and the direction of impact. ${ }^{-1 /}$ However, the direction of impact is dependent on whether the highway is a two or four lane (divided) road; in particular, head-on collistons are rarely experienced on diwided highways. The traffic density doen not appear to have a *ignificant influence on the types of accidents occurring on the two lane roads.

The more detailed classification of accidente reported by t.C.C. carriers is shown in Table 3.4 for both the fourth quarter of 1959 and the flrat quarter of 1960. (More recent data vere not avallable at this time.) The two quarters are not exactly comparable, since the I.C.G. wade aid change in the beginning of 1960 , which relieved carriers

[^3]Table 3.3. Vehicle Strucic and Direction of Impact in Two Vehicle Collisions of the B.P.R. Study

from reporting those accident which result in property damage only between $\$ 100$ and $\$ 250$. The chi square testy, shown in Table 3.4 , indicate that significant differences exist in the accident proportions both among the three major groupings and within the motor vehicle collision group. Attributing these differences to the procedural change would indicate that the largest proportion of the minor damage accidents omitted are with automobiles. The tests also show that there are no significant differences in the proportions within the other collision and non-collision groups.

Approximately $60 \%$ of the non-collision accidents reported by the I.C.C. occur when the truck "ran off roadway." In order to obtain some estimate of the secondary, damage-producing events in such accidents, additional data were obtained from the National Safety Council's directional analyses of motor vehicle accidents which appeared in the Council's annual reports for the years 1955-58. . $^{1 /}$ Vehicles leaving the roadway, subsequent $1 y$ overturned $52.8 \%, 62.5 \%, 59.9 \%$ and $59.1 \%$ of the time in the respective ycars. The average of $58.6 \%$ overturns appears to be a representative estimate. The remaining $4 \%, 4 \%$ of the off-roadway accidents terminated in collisions with fixed objects.

The above results were used to estimate the frequency of accidents by manner of accident and direction of impact for tractor trailer type vehicles operating on various types of intercity highways. For want of evidence to the contrary unidentified accidents in any one group

[^4]
were distributed proportionaliy among the identitied acitidenta of the group. These est imate\# ere developed in Table 3.5.

Table 3.5. Estimnted Frequency of Accidents by Manner of Collision and Direction of Inpact


Motor Vehicle Collisions

3.3. Farther Analysis of Motor Vehicie Accidents by Type and Wel ght of Vehicte Struck and the Occurience of Fire.

A further amalysis was made of the type and welght of the vehicies struck by tractor trailers in motor vehicle collisions. The percentage distribution of travel by vehicie types on main rural roads of the United States in the Sumser of 1955 is shown in Table 3.6 from a study by Dimmick. ${ }^{1 /}$ The estimated percentage of automobite travel, 0.7 , compares favorabiy with the estimated frequency of automobile accidents, 0.783
 motor vehicie colilsions - the remaining breakdown of comsercial vehicle travel provides as estimate of the types of vehictes and their frequency of occurrence in motor vehicie cotlisions.

In the study cited, Dimaick reports on the weight characterimtics of approximately 135,000 trucks ebserved at weighing stations in 44 states. 21
These findings are shown in Tabie 3.7. In another study . Samson reporte on the registration wesght of trucks throughout the United States. The distribution of registered weight by velaicle type is shown in Table 3.8. Aiso shown in this table is a composite weight distribution for "large" trucks, i.e. Erucks with two axles and six tires or wore than two axles. The frequencies for the included vehicles were weighted according to theit pectentage of travel (rable 3.6), and sumed.

The weight distributions are plotted in Figure 3. 1 with logarithaicprobability coordinates. The straight-iine approxination to the piotted data correspond to lognormal distribution functions.

17 I. 3. Dimeick, Traffte and Travel Trends. 1955, " Public Roads. Vol. 29, No. 5, December 1956.
2 E. Samson, "State Highway User Takes," Tublic Roads. Vol. 29. No. 12, February 1958.


FIG. 3.1. THE DISTRIBUTION OF GROSS VEHICLE WEIGHT BASED ON
TRUCK RECISTRATIONS AND OBSERVA-IONS AT TRUCK WEIGHING STATIONS

The lognormal parameters were escimated by evalueting two standardized normal deviaten, $x_{1}$ and $n_{2}$, which correspond to the wbserved cumalative frequency for weights $w_{1}$ and $w_{2}$ at each ond of the weight range. The relationships.

$$
\text { (3.1) } x_{i}=\left(\operatorname{tog} x_{i}-=_{\log }\right) / c_{\log } \quad 1-1,2
$$

can be soived almitaneounly for eanimators of the mean mog and standard deviation $\sigma_{\text {log }}$, namely :
(3.2) $\mathrm{m}_{\log }=\log {w_{1}}-x_{4} c_{\log } \quad i=1,2$

$$
\left.\sigma_{\log }=\left(\log x_{2}-\log v_{1}\right) / \theta_{2}-\varepsilon_{1}\right)
$$

With values for $\mathrm{m}_{\text {log }}$ and $\mathrm{o}_{\text {log }}{ }^{+}$estimaces can be made for the parameters of the skewed, weight distribution free the following relationships: -
(3.3) Mean ( $\omega$ ) $=\exp \left(\mathrm{m}_{\text {log }}+1 / 2 \sigma_{\text {Log }}^{2}\right)$

$$
\text { Median }(w)-\exp \left(\omega_{\log }\right)
$$

$$
\text { Mode }(w)=\exp \left(m_{\log }-\sigma_{\log }^{2}\right)
$$

$$
\text { variance }(w)-\exp \left(2 \mathrm{~m}_{\log }+20_{\log }^{2}\right)-\operatorname{Mean}^{2}(w)
$$

In Tabie 3.8 the estimated parameters are shown for the various veight distributions. It is interesting to note that the mean registration weight is less than the average weight for the loaded trucks in Table 3.7.

Among recent changes in the reporting of accidients by the i.c.c. was the identification of the number of accidents in which fire occura. In Tabie 3.9. the percentage of accidenta resalting in fire is shown for the major types of accidents in the fourth quarter of 1959, and the first and second quarters of 1960 . A comparison of these percentages was made with likelihood ratio tests for samples from a Poisson disIf J. Aitcheson and J. A. C. Brovn, "The Lognormal Distribution," Cambridge University Press, 1957.

Table 3.6. Percentage Diatribution of Travel on U. S. Rural Roads, 1955.

| Vehicle Type | Eastern U. S. | Central | Mountain | Pacifie | 0. S. Average |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Passenger Cars | .793 | . 771 | . 758 | . 839 | . 785 |
| Buses | . 007 | . 006 | . 006 | . 009 | . 007 |
| 2-axle, 4 tire | .083 | . 079 | . 115 | . 077 | . 083 |
| 2-axle, 6 tire | . 055 | . 059 | . 061 | . 019 | .053 |
| 3-axte, su | . 007 | . 004 | . 006 | . 006 | .005 |
| Combiaation | . 055 | . 081 | . 054 | . 050 | . 067 |
| Total | 1.000 | 1. 000 | 1.000 | 1.000 | 1.000 |

Table 3.7. Observed Truck Weights on U. S. Rural Roads, 1955

| Observed Weight Characteristies | Single Unit Trucks |  |  |  | A11 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $2 \text { axle }$ | $\begin{aligned} & 2 \text { axle } \\ & 6 \text {-tire } \end{aligned}$ | $3 \text { axie }$ | Truck Combinations | Truck <br> Types |
| Percentage Less than: |  |  |  |  |  |
| 15 tons | 1. 000 | 0.994 | 0.688 | 0.391 | 0.795 |
| 20 tons |  | 1.000 | 0.898 | 0.581 | 0.872 |
| 25 tons |  |  | 0.990 | 0.751 | 0.925 |

Mean Weight (tons)

| Loaded Trucks | 2.71 | 7.34 | 15.24 | 22.9 | 12.17 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Empty Trucks | 2.09 | 4.29 | 7.38 | 10.9 | 4.71 |
| A11 Trucks | 2.32 | 6.15 | 12.10 | 18.54 | 8.80 |

## Parcentage

| Loaded | 0.375 | 0.612 | 0.601 | 0.682 | 0.682 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Empty | 0.625 | 0.388 | 0.389 | 0.318 | 0.318 |

Table 3.8. Cumulative Distribution of Registered Truck Gross Weights.


Estimated Lognormal Parameters for Registered Truck Weights

| Lognormal <br> Parameters | Single Unit Trucks |  |  | Truck <br> Combination | Heavy Vehicles |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & 2 \text { axle, } \\ & 4 \text { tire } \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { 2-axie, } \\ & 6 \text {-tixe } \\ & \hline \end{aligned}$ | -3-ax1e |  |  |
| Mean ( $\log w)$ | 0.278 | 0.783 | 1. 114 | 1. 266 | 1.062 |
| Var. ( $\log \mathrm{w})$ | 0.039 | 0.039 | 0.028 | 0.057 | 0.269 |
| Mean (w) tons | 1. 98 | . 7.99 | 13.45 | 19.72 | 27.7 |
| Median (w) tons | 1.90 | 6.07 | 12.99 | 18.45 | 11.5 |
| Mode (w) tons | 1. 74 | 5.55 | 12. 17 | 16.17 | 6.2 |
| Var. (w) | 0.37 | 5.94 | 12. 26 | 54.95 | 21.24 |

73. 

Table 3.9. The Occurrence of Fire in Major Types of Accidents Accident Type 4 th Quarter, 1959 Lst Quarter, 1960 2nd Quarter, 1960 Acc. Fires Pct. Acc. Fires Pct. Acc. Fires Pct. Collision with

| Auto | 4564 | 42 | .0092 | 3604 | 35 | .0097 | 2526 | 18 | .0071 |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Truck | 1215 | 15 | .0123 | 1206 | 19 | .0158 | 787 | 16 | .0203 |
| Fixed Object | 819 | 9 | .0110 | 663 | 6 | .0090 | 482 | 4 | .0083 |
| Collision Total | 6598 | 66 | .0100 | 5473 | 60 | .0110 | 3795 | 38 | .0100 |
| Non collision | 1151 | $\underline{75}$ | $\underline{.0652}$ | $\underline{1437}$ | $\underline{98}$ | $\underline{.0682}$ | $\underline{883}$ | $\underline{98}$ | .1110 |
| Accident Total | 7749 | 141 | .0182 | 6910 | 158 | .0229 | 4678 | 136 | .0291 |


| omparisons | Chi Square | d.f. | Critical Value |
| :---: | :---: | :---: | :---: |
|  |  |  | (5\% Risk) |
| Among Collision Accidents |  |  |  |
| for: 4th Quarter, 1959 | 0.921 | 2 | 5.991 |
| 1st Quarter, 1960 | 2.549 | 2 | 5.991 |
| 2nd Quarter, 1960 | 8.836 | 2 | 5.991 |
| Total | 12.306 | 6 | 12.592 |
| Among Quarters for Total Collisions Only |  |  |  |
| Collisions Only | 0.872 | 2 | 5.991 |
| Between Collision and Non |  |  |  |
| Collision for: 4 th Quarter, 1959 | 56.180 | 1 | 3.841 |
| 1st Quarter, 1960 | 62.953 | 1 | 3.841 |
| 2nd Quarter, 1960 | 90.612 | 1 | 3.841 |
|  | 209.745 | 3 | 7.815 |
| Among Quarters for NonCollision Accidents Only | 7.227 | 2 | 5.991 |

tribution, under the assumptions that the small probability of fire permits a Poisson approximation and that the likelihood ratio is distributed approximately as a chi square variate. The results shown in Table 3.9 indicated that there is no significant difference in the frequency of fires for collision accidents, but a considerable difference between non-collision and collision accidents.

The data for the second quarter of 1960 appear to differ from those of the other two quarters. However, this is probably due to the change in the I.C.C.'s reporting procedures which occurzed at the beginning of 1960. At that time, carriers were relieved of the responsibility of reporting accidents resulting in property damages only between $\$ 100$ and $\$ 250$. The reduction in the number of accidents reported under the new rule is apparent in Table 3.9. That there is a greater reduction in the second quarter than in the first quarter may indicate a time lag in this change over, although a seasonal reduction in accidents is to be expected for this period.

For the purpose of the present study, accident frequencies based on the $\$ 100$ limit have been used, and thercfore the probability of fire in such accidents is best estimated from the data of the fourth quarter of 1959 , in which $1 \%$ of the collision accidents and $6.5 \%$ of the noncollision accidencs resulted in fires. In addition to overturns, the latter class of accidents also includes such incidents as tire and cargo fires without priar collision or overturn.

In the fourth quarter of 1959 , the I.C.C. reported 3 fires for 149 overturning accidents on the roadway, or a frequency of 0.020 . In the first two quarters of 1960 , the 8 fires in 285 overturns raised

```
the frequency to 0.0281, which may be due to the change in reporting
procedures. An estimate of 0.02 for fires in overturns appears to be
reasonable for accidents of $100 damage or more. This is twice the
fire rate experienced in collision accidents.
```

3.4. Estimated Vehicie Speeds in Highway Accidents.
The estimated speed of vehicies invoived in accidents was included
in the study of vehicie characteristics made by the Bureau of Public
$1 /$
Roads. Provision was made for both the prior travel speed and the
impact speed, but in most cases the impaci speed was unknown or reported
to be che same as the travel speed. The reported travel speeds in
various accidents are shown in Table 3.10 for 705 tractor trailer type
vehicles and 390 autonobiles involved in tractor trailer accidents, as
well as the speed for ali automobile involvements. The resulting speed
distributions appear to follow a bell-shaped pattern in the upper speed
range; but because of the large and unequal intervals used, no ciearly
discernable pattern is apparent for the vehicles with accident speeds
less than 32 mph . There appear to be considerable differences in the
proportions of slow speed vehicles for the different types of accident.
In analyzing the accident speed distritutions of Table 3.10, the
observations in the upper range were treated as a truncated sample froa
a normal population. Maximum likelihood estimates of the mean and
variance for each accident type were obtained, using the methods of
21
A. C. Cohen; and these were compared by use of the maximum likelifhood
ratio. The ratio $L_{0} / L_{1}$, where $L_{0}$ is the sample likelihood with common

```
I/ "Although reasonably accurate estinates of vehicle speed just prior
 to an accident can be made by experienced investigators, it was
 recognized that not all accidents used in the study were investigated
 and that involved drivers, especially those at fault, often under-
 estimate their speed." Secretary of Commerce. "Federal Role in
 Highway Safety." p. 73, House Document 93, 86th Congress, U. S.
 Government Printing Office, Washington, D. C.
2f Cohen, A. C., Jr., "Estimating the mean and variance of mormal,
 populations from singly cruncated and doubly truncated samples,"*
 Ann. Math. Statist., Vol. 21 (1950). PP. 557-69.
```

mean and variance and $L_{1}$ is the likelihood with different means and variances, for truncated maples from a normal population, is given -by:

$$
\begin{equation*}
\frac{L_{0}}{L_{1}}=\frac{\left(f_{0} s_{q}\right)^{-N} \exp \sum_{i}^{k} \sum_{i j}^{k} \sum_{1}^{k}\left(f_{i} s_{i}\right)^{-n_{i}} \exp \sum_{i}^{n_{1}}-\left(x_{i j}-m_{0}\right)^{2} / 2 s_{0}^{2}}{\sum_{1} \sum_{1}-\left(x_{i j}-m_{i}\right)^{2} / 2 s_{i}^{2}} \tag{3.4}
\end{equation*}
$$

This yields the test statistic:
(3.5) $-2 \log L_{0} / L_{1}=N\left(2\right.$ log $\left.f_{0} s_{0}-b_{0} / s_{1}^{2}+1\right)$

$$
-\sum_{i=1}^{k} n_{i}\left(2 \log f_{i} s_{i}-b_{i} / s_{i}^{2}+1\right)
$$

which is approximately a ch. square variate with 2 K - 2 degrees of freedoms. Here, the following notation is used:
$x_{i, 1}=$ speed observation $1=1,2, \ldots, n_{i}$ for accident type :
$x_{t}=$ point of truncation, and $x_{i j}$ is greater chan $x_{t}$
$\mathrm{N}=\mathrm{n}_{\mathrm{k}}+\mathrm{n}_{2}+\ldots+\mathrm{n}_{\mathrm{k}}$ - total number of observations
$f_{i}=$ estimated probability that $x_{i}$ exceeds $x_{t}$
$\mathrm{m}_{1}$ - estimate of mean for accident class i
$s_{1}^{2}$ = estimate of variance
$b_{i}-\left(\bar{x}_{1}-x_{t}\right)^{2} e_{i}\left(1-\theta_{i}\right), \theta_{i}-\left(x_{i}-m_{i}\right) /\left(\bar{x}_{i}-x_{t}\right)$
$f_{o}, m_{0}, s_{0}, b_{o}=$ estimates for common population
Estimates of the mean and variance of the higher speeds, when assumed norma 1, are shown in Table 3.11 for the sample data truncated at various points. The hypothesis that the distributions are the same in all truck accident samples was tested with the likelihood ratio test, and the value $-2 \log L_{1} / L_{0}$ was found to be well within the $5 \%$
eritical value for a chi square wariate with 10 degrees of freedom, which supports the hypothesis.

In sesrehing for a suitable distributional form to include all speeds greatar than zero. the estimated normal component wan subtracted from the sample, and the remaining distriburion suggented a simple rectangular pattern. Therefore it was postulated that the data had the following compound form:

```
(3.6) \(f(x)=p / b+(1-p) g\left(x ; m, \sigma^{2}\right)\)
 \(E(x)=p b / 2+(1-p) w\)
```

where $p$ is the proportion having a rectangular distribution in the range 0 to $b \mathrm{mph}$, and $(1-p)$ is the proportion in the normal component with mean mand wariance $\sigma^{2}$ estimated as (44.06, 30.785) and (50.33. 101.59) for trucks and autos respectively.

Usirag the "method of moments" to estimate b, the sample means were set equal to the expected walues in equation (3.6) with the estimater for $m$ and $\sigma^{2}$ from the truncated samples and the observed values $\mathrm{f} \boldsymbol{r} \mathrm{F} \mathrm{p}$. In solving for b , it was found co be very close to f in evert sample; i.e. the upper limit of the rectangular component is the me in of the mormal component. Thus equation (3.6) rediuces to: (3.7) $f(x)=p / m+(1-p) g\left(x ; m, \sigma^{2}\right)$

$$
E(x)=p m / 2+(1-p) m-m-p m / 2
$$

Again using the estimates for $m$ and $\sigma^{2}$ from the truncated data, the proportion $p$ can now be estimated by the method of moments, setting the axpectation in (3.7) equal to the sample mean, which yields (3.8) $p=2(m-\bar{x}) / m$

The sesulking natimateo are shoun in Table 3. 11.

The estimated frequencies for each accident type were computed and are shown in Table 3.10. These were compared with the reported frequencies by use of the chi square test for goodnes of fit. Since the parameters and o were estimated in common for trucks and autos, the comparison should be made on the basis of all aceldents for each vehicle type rather than for each accident type independentiy. The total chi square for each vehicle type is within the 57 critical value. The largest deviations of observed from expected frequencies occurred In the angle accidents at low speeds and particularly with automobiles, where the unusually large number of vehicle speeds less than 23 mph made it necessary to dele this interval from the estimation and comparison of the theoretical distribution.

Considerable effort was expended in trying to improve and verify the form and dimensions of the speed distributions estimated above. The speed data used are admittedly questionable since, usually, the only observers are those involved and this is likely to bias the data. However, the size of the samples is quite large and the error effects may be selif-cancelling in part. Unfortunately, it was not possible to obtain additional data. Furthermore, a search of the literature failed to uncover any analytic studies of the freguency distributions of aceident speeds. Some empirical data on the distribution of vehicie travel speeds have been published and were compared with the results obtained above.

[^5]

1/ Bureau of Puolic Roads, "Traffic Speed Trends," Department of Commerce, March 1959, Washington, D. C.
2/ H. C. Scinemder, "Vehicie Operating Characteriskics on the Mest Virginia Turnpike and Alternate Routes," Vol. 36. p. 539, Highway Research Board Proceedinge, 1957, Washington, D. C.


TG. 3.2. COMPARTSON OE ORSERVED SPEED MEASUREMENTS FOR FREE-FLOWING FIG. 3.2. COMPARISON OF TRAFFIC AND ESTIMATED ACCIDENT SPEED FOR SIMILAR VEHICLES

*Plate On Truck To The Effect That The 5th Gear Low Ronge is Not To Be Used.
FIG. 3.3. Percent of Trip Time Spent in Various Gears for a Tractor Serni-Trailer on the W. Va TFrnpike and Parallel Highways pike and Alternate Routes, " Proc. Highway Research Board. Vol. 36, 1957, p. 557)

| distributions provide an explanation for the compound speed distribut |
| :---: |
| observed in accidents, in that speed in each gear ratio may follow |
| unimodal patterns about the mean speed for that ratio. Thus, the overall |
| speed density is a limear combination of the densities in each ratio |
| weight ad with the relative frequencies of Figure 3.3. In the lower |
| speed range this would generate a pattern approaching a rounded, |
| rectangular form, while in the upper range the high proportion of travel |
| in the low gear ratios produces a prominent bell shaped pattern. |
| In the Schwender study the observed speed distributions for the |
| truck are not shown; however, the speed distributions for an automobile |
| over 30 miles of turnpike and 38 miles of an alternate road are unimodal |
| with a prominent low speed tail. Similar distributions for an instrument 1/ |
| ed astomobile operating in city traffic are reported by Stonex, with |
| notable difference in a second mode in the lowest speed interval |
| wever, since zero speed observations are included in this interval |
| hey may be the cause of this phenomenon. |

I/ K. A. Stonex, "Survey of Los Angeles Traffic Characteristics," Vol. 36, p. 509, Highway Research Board Proceedings, 1957, Washington, D. C.

Table 3.10a. Reported and Estimated Speeds of Tractor Trailers in Track Accidents


## 3. 10b. Reported and Estimated Speeds of Automobiles in Accidents with Tractor Trailers

| Reported <br> Vehicle <br> Speed | Rearend Collision | Meadon Collision | $\begin{gathered} \text { Angle } \\ \text { Collision } \end{gathered}$ | Total | A11 <br> Auto <br> Accidents |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 122 mph | $\begin{gathered} 52 \\ (47.54 \end{gathered}$ | $\begin{gathered} 8 \\ (7.87) \end{gathered}$ | $\begin{gathered} 27 \\ \text { (oait) } \end{gathered}$ | 86 | 1129 |
| 23-32 | $\begin{gathered} 28 \\ (24.70) \end{gathered}$ | $\begin{gathered} 4 \\ (5.81) \end{gathered}$ | $\begin{gathered} 2 \\ (1.44) \end{gathered}$ | 34 | 396 |
| 33-37 | $\stackrel{21}{(17.18)}$ | $\begin{gathered} 3 \\ (6.03) \end{gathered}$ | $\begin{gathered} 1 \\ (1.87) \end{gathered}$ | 25 | 423 |
| $38-152$ | $\begin{gathered} 22 \\ (22.34) \end{gathered}$ | $(9.37)$ | $\begin{gathered} 2 \\ (3.12) \end{gathered}$ | 35 | 662 |
| 43-4.7 | $\begin{gathered} 23 \\ (29.42) \end{gathered}$ | $\stackrel{15}{(13.96)}$ | $\begin{gathered} 5 \\ (4.82) \end{gathered}$ | 43 | 8444 |
| 48-52 | $\begin{gathered} 24 \\ (26.92) \end{gathered}$ | $\stackrel{15}{(14.56)}$ | $\frac{5}{(5.20)}$ | 44 | 1319 |
| 53-57 | $\begin{gathered} 19 \\ (19.83) \end{gathered}$ | $\stackrel{18}{(12.19)}$ | $\stackrel{6}{(4.53)}$ | 43 | 1049 |
| 58-62 | $\begin{gathered} 13 \\ (13.25) \end{gathered}$ | $\begin{gathered} 10 \\ (8.88) \end{gathered}$ | $\stackrel{2}{(3.29)}$ | 25 | 658 |
| 63-72 | 8 | 2 | 2 | 12 | 457 |
| 72-over | $\begin{array}{r} 3 \\ (11.82) \\ \hline \end{array}$ | $\begin{gathered} 0 \\ (7.65) \\ \hline \end{gathered}$ | $\begin{gathered} 2 \\ (2.83) \\ \hline \end{gathered}$ | 5 | 135 |
| Total | 212 | 86 | 54 | 352 | 7062 |
| Chi Square | 3.33 | 9.65 | 2.45 | $\begin{aligned} & 15.43 \\ & (18 \mathrm{~d} . \mathrm{f} \end{aligned}$ |  |

Table 3.11. Estimated Parameters for Compound Speed Distributions


Tractor Trallers:

| Rearend, 2 Lane | 26 | . 165 | 132 | 35.15 | . 409 | . .591 | 32 | 43.35 | 6.50 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | 37 | 44.49 | 5.74 |
| Rearend, 4 Lane | 12 | . 077 | 144 | 36.09 | .366 | .635 | 32 | 42.05 | 7.12 |
|  |  |  |  |  |  |  | 37 | 43.93 | 5.03 |
| Headon Collision | 2 | . 021 | 93 | 37.53 | . 299 | $\therefore 701$ | 32 | 42.38 | 4.62 |
|  |  |  |  |  |  |  | 37 | 42.33 | 4. 56 |
| Angle Collision | 2 | . 031 | 62 | 29.48 | . 669 | .331 | 32 | 43.55 | 5.54 |
|  |  |  |  |  |  |  | 37 | 44.80 | 4.55 |
| Other Collision | 0 | 0 | 92 | 4.153 | . 116 | . 884 | 32 | 44.62 | 5.51 |
|  |  |  |  |  |  |  | 37 | 45.28 | 4.95 |
| Non Collision | 0 | - | 98 | 41.36 | . 124 | . 876 | $32$ | $43.71$ | 6.42 |
|  |  |  |  |  |  |  | 37 | 46.65 | 6.83 |
|  | -- | - | - |  |  |  |  |  |  |
| Total | 42 | .063 | 621 | 37.13 | . 315 | .685 | 32 | 43.26 | 6.11 |
|  |  |  |  |  |  |  | 37 | 44.06 | 5.55 |
|  |  |  |  |  |  |  | 42 | 44.79 | 5.20 |

Aut onobiles with Tractor Treilers:

| Rearend | 34 | .138 | 217 | 36.79 | .500 | .500 | 32 | 44.27 | 12.96 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Headon | 2 | .023 | 86 | 45.30 | .200 | -800 | 32 | 49.63 | 7.85 |
| Angle | $\underline{2}$ | .036 | $\underline{54}$ | 31.36 | .754 | .246 | 32 | 52.01 | 11.43 |
| Total | 38 | .097 | 352 | 37.90 | .277 | .723 | 32 | 47.48 | 11.07 |

Automobiles in All Accidents:
$\left.\begin{array}{llllllllll}\text { Total } & 546 & .072 & 7062 & 44.88 & .185 & .815 & 32 & 50.33 & 10.08 \\ & & & & & & & 37 & 50.30 & 10.29 \\ & & & & & & & & 52 & 50.35\end{array}\right) 10.24$
3.5. Analysis of the Impact Velocities in Accidents.

The impact velocity in a collision is a function of the speeds of the colliding vehicles and their direction of impact. The sum of speeds for both vehicles in a headon collision and the difference in speeds for a rearend collision may be taken as equivalent to the speed of a moving vehicle striking a stationary one. The probability distribution of speed sums and differences is a function of the joint distribution of the two speeds. This is the prodact of the marginal speed distributions of the two vehicles when their speeds are independent.

In Table 3. 12 the joint speed distribution is shown for the tractor trailer accidentis reported In the Bureau of Public Roads Study and in which the speeds of both vehicies were given. A chil square test for independence was made by comparing the observed frequency in each cell with that given by the product of the two marginal frequencies for that celi. The rewulting chi square measure is within the $5 \%$ critical value and supports the hypothesis that the apeeds are fadependent.

The marginal density $f_{i}\left(x_{1}\right)$ of speed $x$ for the ith vehicle is given by the compound distribution of equation (3.7), and the joint density is given by their product. i.e. (3.9) $f\left(x_{1}, x_{2}\right)-f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right)=\left[P_{1} f m_{1}+\left(1-p_{1}\right) g_{1-1}\left[P_{2} f m_{2}+\left(1-P_{2}\right) g_{2}\right]\right.$

$$
\begin{aligned}
= & p_{1} p_{2} / m_{1} m_{2}+p_{1}\left(1-p_{2}\right) g_{2} / m_{2}+p_{2}\left(1-p_{1}\right) s_{1} / m_{2} \\
& +\left(1-p_{1}\right)\left(1-p_{2}\right) s_{1} s_{2}
\end{aligned}
$$

where $g_{i}$ is the normal density function with mean $m_{i}$ and variance $0_{1}^{2}$. $\left(1-p_{1}\right)$ is the proportion of speeds in the normal component $g_{1}$. and $P_{i}$ is the proportion in the rectangular component with density $1 / \mathrm{m}_{\mathrm{i}}$.

## Table 3.12. Joint Speeds in Two Vehicie Accidents

| Speed of Other Vehicie | 1-22 | 23-37 | 38-42 | $43-47$ | Over 47 mph | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1-22 mph | $\stackrel{7}{\left(22^{7} \cdot 16\right)}$ | $(i 2.63)$ | $\left(10^{7}-99\right)$ | $\begin{gathered} 18 \\ (14.03) \end{gathered}$ | $\begin{gathered} 8 \\ (8.19) \end{gathered}$ | 58 |
| 22-37 | $\begin{gathered} 8 \\ (7.34) \end{gathered}$ | $(7.52)$ | $\begin{gathered} 10 \\ (6,63) \end{gathered}$ | $(8.47)$ | $\begin{gathered} 7 \\ (4.96) \end{gathered}$ | 35 |
| 3847 | $\begin{gathered} 12 \\ (10.90) \end{gathered}$ | $\frac{13}{(11,32)}$ | $(9.86)$ | $\begin{gathered} 10 \\ (12.58) \end{gathered}$ | $\left(7^{21} \cdot 34\right)$ | 52 |
| 48-57 | $\stackrel{15}{(14,-68)}$ | $\begin{gathered} 14 \\ (15.24) \end{gathered}$ | $\frac{13}{(13.27)}$ | $\begin{gathered} 22 \\ (16.94) \end{gathered}$ | $(9.88)$ | 70 |
| Over 57 | $\begin{gathered} 10 \\ (6.92) \\ \hline \end{gathered}$ | (7.19) | $(6.25)$ | $\begin{gathered} 6 \\ (7.98) \\ \hline \end{gathered}$ | $\begin{gathered} 3 \\ (4.66) \\ \hline \end{gathered}$ | 33 |
| Total | 52 | 54 | 47 | 60 | 35 | 248 |
| Test for Indep | ndence |  |  | Chi St | are d.f. | $\qquad$ Critical Value |
| Exc luding accidents wich standing vehicles |  |  |  |  |  |  |
| Iacluding standing velaicle accidents (Not shown in above table) |  |  |  | 20.76 |  | 76.3 |

The joint density is a linear combination of four bivariate terms: a bivariate rectangular, a bivariate normal, and two bivariate normalrectangular terms. In deriving the distribution of the sum or difference of the cwo speeds. the densities of the sum or difference in each term was evaluated individualiy and combined using the weighting factor for the terms. For the bivariate normal term, the sum or difference is normal with mean $m_{1} \pm m_{2}$ and variance $\sigma_{1}^{2}+\sigma_{2}^{2}$, and the veight is $\left(1-p_{1}\right)\left(1-p_{2}\right)$.

The diatribution of the sum $5=x_{1}+x_{2}$ of two rectangular variates * is discontinuous over its range $\left(0, m_{2}+m_{2}\right)$ at $\mathrm{S}=0, \mathrm{~m}_{1}, \mathrm{~m}_{2}$. and $m_{1}+m_{2}$. When $s$ is evaluated in the intervals ( $0, m_{1}$ ), ( $m_{1}, m_{2}$ ), and ( $m_{2}, m_{1}+m_{2}$ ), the following reaulis are obtained:
(3. 10) $F(s)=s^{2} / 2 m_{2} m_{2}, f(s)-s / m_{2} m_{2},\left(0<s<m_{1}<m_{2}\right)$
$F(s)=\left(2 s-m_{1}\right) / 2 m_{2}, f(s)=1 / m_{2} \cdot\left(m_{1}-s<m_{2}\right)$
$F(s)-1-\left(m_{1}+m_{2}-s\right)^{2} / 2 m_{1} m_{2} . f(s)-\left(m_{1}+m_{2}-s\right) / m_{1} m_{2}$.

$$
\left(m_{2}-5-m_{1}+m_{2}\right)
$$

In che event that $\mathrm{m}_{1}-\mathrm{m}_{2}$, equations (3.10) describe a triangular distribution; and if they are not equal, the distribution is trapezoidal. The distribution of the difference, $D=x_{2}-x_{1}$, has the same form aw the sum with $F(D) * F\left(s-\mathrm{B}_{1}\right)$.

The probability density functions for the sum and differmnce of a rectangulariy and a normally diwtributed speed vere evaluated numerically rather than analytically. Using the midpoint valuen for 5 mph intervals the frequency distributions vere convoluted to give epproximate intarval frequencles for the sub and differeace of the

```
two marginel nidpoint values. The frequencies for the same midpoint
values in S mph intervals were evaluated for botin che bivariate mormal
and the bivariate rectangular components; and che weighted sum of the
irequencies was obtained in the manner of equation (3.9). In this way.
the distributions of equivalent velocities were obtained for headon
and rearend collisions between two moving tractor trailers and a tractor
crailer and autonobile. The estimatied distributions are shown in
Tables 3.13 and 3.14.
 In rearend mccidents the range of the distribution of the
difference in vehicle speeds includes both negative and powitive values,
where megacive difierences occur when the vehicle of interest i* struck
from behind. This type of collision is expected to occur in S0% of the
rearend accidunts for two tractor traillers and in Epproximately S4%
of che truck-auto rearend accidents. F-rchermore, simce a considerable
number of rearend accidents occur between a moving vehicie and at
standing tractor trailer, they shonald be included wichy chils class of
accidents. Of the 262 idencified rearend imvolvements for tractor
trailers in the BPR study, the distribution betweren moving and standing
accidents is as follows:
\begin{tabular}{|c|c|c|c|c|}
\hline Rearend Collision with: & Truck & Auto & Total & 2 \\
\hline Tractor crailer standing & 5 & B & 13 & . 0496 \\
\hline Other vehicie standing & 9 & 16 & 25 & .0954 \\
\hline Both vehicles moving & 83 & 141 & 224 & . 8550 \\
\hline Aceident total & 97 & 165 & 262 & 1.0000 \\
\hline
\end{tabular}
The chi square value is only 0.02 with 2 degrees of freedoes for a teat
of difference in frequency between vehicle type and acidident type.
```

Table 3.13. Estimated Distribution of the Sum of Speeds in Headon Collisions

| Speed mph | Tro Tractor Trailers |  |  |  |  | Tractor Trailer and Automobile |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\underline{x_{t}{ }^{\text {r }} \text { c }}$ | $2 r_{t}{ }^{\text {n }}$ | ${ }^{n}{ }^{\text {n }} \mathrm{t}$ | Total | Cum. | $\underline{r_{t}{ }^{\text {r }} \text { a }}$ | $\mathrm{r}_{\mathrm{t}^{\text {n }} \mathrm{a}}$ | ${ }^{n_{4} n_{t}}$ | ${ }^{\mathrm{c}^{\mathrm{n}_{a}}}$ | Total | Cum. |
| 2.5 | 14 | (x.10 ${ }^{-5}$ | ) | 14 | 14 | 8 | ( $\times 10$ | -5) |  | 8 |  |
| 7.5 | 111 |  |  | 111 | 125 | 67 |  |  |  | 67 | 75 |
| 12.5 | 222 |  |  | 222 | 347 | 133 |  |  |  | 133 | 208 |
| 17.5 | 333 |  |  | 333 | 680 | 200 |  |  |  | 205 | 408 |
| 22.5 | 444 |  |  | 444 | 1124 | 267 | 1 |  |  | 268 | 676 |
| 27.5 | 556 | 1 |  | 557 | 1681 | 333 | 3 | 1 |  | 337 | 1013 |
| 32.5 | 667 | 25 |  | 692 | 2373 | 400 | 16 | 7 |  | 423 | 1436 |
| 37.5 | 778 | 231 |  | 1009 | 3382 | 467 | 58 | 69 |  | 594 | 2030 |
| 42.5 | 889 | 1071 |  | 1960 | 5342 | 533 | 171 | 321 |  | 1025 | 3055 |
| 47.5 | 972 | 2648 |  | 3620 | 8962 | 592 | 407 | 795 |  | 1794 | 4849 |
| 52.5 | 889 | 4013 |  | 4902 | 13864 | 592 | 805 | 1204 | 6 | 2607 | 7456 |
| 57.5 | 778 | 4558 |  | 5336 | 19200 | 592 | 1298 | 1367 | 34 | 3232 | 10688 |
| 62.5 | 667 | 4658 | 25 | 5350 | 24550 | 592 | 1809 | 1397 | 112 | 3785 | 14473 |
| 67.5 | 556 | 4666 | 172 | 5394 | 29944 | 533 | 2116 | 1400 | 386 | 4402 | 18875 |
| 72.5 | 444 | 4665 | 897 | 6006 | 35950 | 467 | 2469 | 1400 | 1047 | 5249 | 24124 |
| 77.5 | 333 | 4642 | 3126 | 8101 | 44051 | 400 | 2582 | 1400 | 2447 | 6696 | 30820 |
| 82.5 | 222 | 4436 | 7286 | 11944 | 55995 | 333 | 2589 | 1393 | 4390 | 8572 | 39392 |
| 87.5 | 111 | 3595 | 11432 | 15138 | 71133 | 267 | 2491 | 1331 | 6933 | 10888 | 50280 |
| 92.5 | 14 | 2018 | 12020 | 14052 | 85185 | 200 | 2259 | 1079 | 8971 | 12376 | 62656 |
| 97.5 |  | 654 | 8462 | 9116 | 94301 | 133 | 1862 | 606 | 9654 | 12130 | 74786 |
| 102.5 |  | 109 | 4003 | 4112 | 98413 | 67 | 1368 | 196 | 8579 | 10143 | 84929 |
| 107.5 | - | 9 | 1264 | 1273 | 99686 | 8 | 858 | 33 | 6345 | 7236 | 92165 |
| 112.5 |  |  | 274 | 274 | 99960 |  | 450 | 3 | 3892 | 4345 | 96510 |
| 117.5 |  |  | 34 | 34 | 99994 |  | 194 |  | 1966 | 2160 | 98670 |
| 122.5 |  |  | 1 | 1 | 99995 |  | 68 |  | 840 | 908 | 99578 |
| 127.5 |  |  |  |  |  |  | 20 |  | 286 | 306 | 99884 |
| 132.5 |  |  |  |  |  |  | 4 |  | 90 | 94 | 99978 |
| 137.5 |  |  |  |  |  |  | 1 |  | 17 | 18 | 99996 |
| Total | . 09 | . 42 | . 49 | 1.00 |  | . 06 | .24 | . 14 | . 56 | 1.00 |  |

Table 3.14. Estimated Distribution of the Difference In Speeds for Rearend Collisions


Therefore the common estimates can be used for both auto and truck accidents. Tractor trailers apparently strike standing vehicles in the rear twice as often as they are struck in the rear. The discributions of the speed difference when tractor trailers are struck in the rear by autos and trucks are estimated in Table 3.16 by combining the negative speed densities of Table 3.14 with the speed densities for standing accidents in the proportions estimated above.

In angle collisions, as in the rearend accidents, the tractor trailer is assumed to be the slower of the two vehicles in approximately $50 \%$ of the truck accidents and $54 \%$ of the automobile accidents. By designating the faster vehicle as the striking vehicle and the slower one as that struck in the side, the fraction of such impacts and the speed of the striking vehicle can be estimated as shown in Table $3.15^{\frac{1}{2}}$.

Because of their similarity in the point of impact, the following accidents were combined into a single class of front end impacts: all headon coilisions and those rearend and angle accidents when the tractor trailer is the faster of the two vehicles. The weights used in combining their frequencies were obtained by first taking the estimated frequency of each accident type from Table 3.5 and then distributing them among the impact categories in the proportions shown in Table 3.15. The meighted distributions of velociry are summed for each impact category as shown in Tables 3.16 and 3.17 , to furnish an estimate of
i/ Although there is insufficient evidence to specify the true speed measure in angle accidents, che resultant speed vector, $\left(x^{2}+x_{2}^{2}\right)^{1 / 2}$, is a logical alternative. However, it is difficult to estimate the distribution of this function.
the distribution of velocity among the various types of impacts a tractor semi-trailer is subjected to in an accident. In Table 3.1 the marginal distributions of impact velocities are evaluated for auto, truck, fixed object, and overturn accidents. These are also shown in Figure 3.4.


| Velocity | Different Types of Front End Impacts |  |  |  |  |  | mong |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Impact | Front with Automobile |  |  | $\frac{\text { Impact }}{\text { Headon }}$ | in Front | with Truck |  |
| (midpoint) | Headon | Rearend | Angle | Total |  | Rearend | Ang le | Total |
| $\times 10^{-5}$ |  |  |  |  |  |  |  |  |
| 2.5 mph | 1 | 1451 | 134 | 1586 | 1 | 689 | 42 | 732 |
| 7.5 | 7 | 2868 | 268 | 3143 | 3 | 1189 | 85 | 1777 |
| 12.5 | 15 | 2504 | 268 | 2787 | 7 | 824 | 85 | 916 |
| 17.5 | 22 | 2044 | 269 | 2335 | 10 | 542 | 85 | 637 |
| 22.5 | 29 | 1653 | 271 | 1953 | 14 | 410 | 85 | 509 |
| 27.5 | 37 | 1333 | 276 | 1646 | 17 | 360 | 85 | 462 |
| 32.5 | 47 | 1105 | 292 | 1444 | 21 | 335 | 90 | 446 |
| 37.5 | 65 | 961 | 325 | 1351 | 31 | 316 | 120 | 467 |
| 42.5 | 113 | 855 | 374 | 13/42 | 61 | 277 | 181 | 519 |
| 47.5 | 197 | 74.2 | 422 | 1361 | 112 | 174 | 149 | 435 |
| 52.5 | 287 | 576 | 328 | 1191 | 152 | 69 | 72 | 293 |
| 57.5 | 356 | 413 | 159 | 928 | 165 | 15 | 20 | 200 |
| 62.5 | 416 | 265 | 112 | 793 | 166 | 1 | 2 | 169 |
| 67.5 | 484 | 141 | 63 | 688 | 167 |  |  | 167 |
| 72.5 | 577 | 61 | 27 | 665 | 186 |  |  | 186 |
| 77.5 | 737 | 21 | 9 | 767 | 251 |  |  | 251 |
| 82.5 | 943 | 6 | 3 | 932 | 370 |  |  | 370 |
| 87.5 | 1198 | 2 | 1 | 1201 | 469 |  |  | 469 |
| 92.5 | 1361 |  |  | 1361 | 436 |  |  | 436 |
| 97.5 | 1334 |  |  | 1334 | 283 |  |  | 283 |
| 102.5 | 1116 |  |  | 1116 | 127 |  |  | 127 |
| 107.5 | 796 |  |  | 796 | 39 |  |  | 39 |
| 112.5 | 478 |  |  | 478 | 8 |  |  | 8 |
| 117.5 | 238 |  |  | 238 | 1 |  |  | 1 |
| 122.5 | 100 |  |  | 100 |  |  |  |  |
| 127.5 | 34 |  |  | 34. |  |  |  |  |
| 132.5 | 10 |  |  | 10 |  |  |  |  |
| 137.5 | 2 |  |  | 2 |  |  |  |  |
| Total | 11000 | 17001 | 3601 | 31602 | 3097 | 5201 | 1101 | 9399 |
|  |  |  |  |  | $\times 10^{-5}$ |  |  |  |

Teble 3.17. Estimated Distribution of Velocity amons the tmpact Categories of Accidents



FIG. 3.4. ESTIMATED DISTRIBUTION OF THE NET IMPACT VELOGITY FOR VARIOUS COLLISIONS INVOLVING LARGE TRUGKS

## 111. ANALYSIS OF THE SEVERITY OF TRUCK ACCIDEATS IN TEROAS OF THEIR VEHTCLE AND CARCO DAMAGES.

1.0. Int roduction.

In order to discuss analytically the severity of truck accidente, a quantitative measure, or "response," yielding information directiy related to the degree of severity of a tractor-semitrailer aceident involvement was required. Consistent with measuring the severity of highway accidents over a meaningful continuum is the notion of conaiderIng the extent of damages sustained in accidents. The conversion of hazard consequences into damages leads directly to the contemplation of the economic costs of damages evaluated as a dirent result of an accident.

The desirability of equating severity to dollar costs has been manifesked by the Bureau of Public Roads in the following context:

Placing a dollar value on losses resuleing from traffic
accidents in no way minimizes the personal tragedy of
efther traffic fatilities or serious injuries; it is
Bimply a means of identifying and measuring financici
losses that in turn can be used as a tool in the planning
of both highvay safety and highway improvement programs.
Total dollar damages sustained'by the tractor and semitrailer as well as economic costs of damages to certain types of cargos supplied the required quantitative responses, wo that the investigation

[^6]```
considered highway accident severity in terme of velicle damage and
cargo damage costs.
    The primary purpose of the analysis wise to generate statistical
models describing the costs of tractor-semitrailer highuay accidents
In terme of frequency of occurrence and in reiation to different accident
sharacteristics. In order to understand the mechanism through which
accident costs arise statiscical techniques including distribution
theory, regrension and variance analysis were employed. The procedure
consisted in gathering meaningful damage cost data and deriving
probabilicy distributions of damages for different accident types in
an attempt to describe che expected frequencies of certain amounts of
damage. Attention then centered on explaining the variability in
costs or degree of severity as a function of particular characteristica
relating to the objects involved in the coliision. Variables such
as vehicle speeds, weights, object struck, direction of impact and
the energy released in impact were related to damage costs in an
attempt to account for cost variation.
    The specific form that the analysis took can be stated in an
outline of the mathematical expressions that were deirved. Thus, 'the
development was conducted in the manner described belos.
    A. Vehicle Damage Analysis
    1. Derivation of probability distribution of the form:
prob. |}g(C)>g(\mp@subsup{C}{0}{})]=1[g(C),\mp@subsup{0}{i-}{[}
    0 - parameters associated with the specific density function.
where: g(C) = a transformed variate of the oribinal cost.
    0 - parameters associated with the specific density function.
```

```
    2. Relationship of damagen and accident variables:
    g(C) = f(A,
where: }\mp@subsup{A}{2}{}=\mathrm{ accident variables.
    3. Tents for significant effects of accident
    chmracteristica on costs.
    B. Curgo Damages
    1. Derivation of probability distributions of the form:
    prob [h(d) >h(d}0)]-k[g(d):\mp@subsup{\lambda}{i-}{}
wheres h(d) = some function of observed cargo damage
    \lambda1 - paratseters to be estimated.
    2. Relationship of cargo damages, vehicle damages and
        aceident variables:
        h(d) = m-g(c); Ai]
        3. Return period approach to cargo damage:
        t[h(d)]=\frac{1}{1-k[h(d):\mp@subsup{\lambda}{1}{}]}=\mathrm{ return period.}
    The development of the aforementioned models suggeated the
estimation of threshold probabilities for cargo dameges: The
probabilistic approach to the point at which damage to a shipment
originates led to inferences as to the probability of occurrence
of container damage in shipments of radioactive materials.
```


1.1. Definitions.

```
The analysis of the severity of truck highway accidents was confined to accident experience of tractor semitrailers. The data employed were results of samplem of reports of accidents, involving a tractor semitrailer, prepared by and for the Interstate Conmerce Commssion. Thus, all reported responses refer to a particular tractor semitrailer involved in a certain type of accident. The accidents were motor vehicle traffic accidents which are defined as any accident involving a motor vehicle in motion occurring on a trafficway and resulting in death, injury or property damage. The population of accident reports included allaccidents resulting in damages to all vehicles and cargos involved equalling and exceeding \$100.
Damage costs are defined as the money value of damages to the vehicie and cargo involved in che accident. Thus, vehicle costs are the dollar damages sustained by the tractor and semitrailer and cargo damage costs are the dollar damages or losses sustained by the truck's cargo.
The accident type was classified by the object struck and the direction of impact ascertained from the I.C.C. accident report and complied with the manual on "uniform Definitions of Motor Vehicle 2/ Accidenta." Thus, the involvements were categorized into automobile, truck, fixed object and non collision accidents indicating that the responding tractor semitrailer was involved in the particular kind
Uaiform Definitions of Motor Vehicle Accadents, U. S. Dept. of Healch, Education, and Welfare, U. S. Gov't Printing Office, 1956. \(2 /\) Ibid.
```

of accident. Fixed objects referred to any stationary object, not a motor vehicle, such as bridge railings, utility poles, buildings, etc. Non-collision accidents were primarily characterized by the truck overturning, on or off the roadway, without striking another vehicle or fixed object. The direction of impact was determined by the manner in which the vehicle collided and classified as head-on, angle and rear-end accidents.

The weight of the tractor semitrailer, representing one of the mass components contributing to accident severity, was defined as the gross vehicle weight consisting of the vehicle and cargo weights. Velocities were defined as the reported estimates of vehicle speeds prior to impact.

The foregoing definitions pertain to those more general components of the analyses of cargo and vehicle damages in tractor semitrailer aceidents. Other relevant definitions arising in specific areas are presented in their context.

2.0. Analysis of Vehicle Damage

2.1. Theoretical Distribution of Vehicle Damage Costs in Accidents.

In attempting to measure and describe accident severity as a component of the expected hazards involved in transportation, it is necessary to consider the frequency with which the severity measure assumes different values. Thus total costs sustained by the vehicle in an accident may be treated as a random variable, taking on different values which possess an inherent order in their nature, for different events. If the probability of the variable taking on values between any given values along the entire possible range of numbers is known, then the probability distribution of the random variable is also known. Thus, if the probability distribution for total dollar damages were known, it would be possible to completely describe the total cost severity measure in terms of its distributional form.

When working with probability distributions, it is usually desirable to classify or describe them by means of statistical measures characterizing the location, variability and degree of symmetry. It is well known that many distributions encountered in the collection of statistical data in many diverse fields tend to form skewed or asymmetric distributions. Indeed, probability distribution arising in such fields, as biology, psychology and economics are frequently skewed. The observed distributions of vehicle damages for all types of objects struck exhibited high positively skewed tendencies. Fig. 2.1.1 shows the histograms of total venicle costs for a tractorsemitrailer striking automobiles, trucks, fixed objects and non-collision

aceidents. The data are resuits of a random sample of 200 vehicle demage producing aceidents taken trom the filen of the Interstate Commerce Commission. The accidents occurred over the two year period $1758-1959$ and the number selected for each acexdent type was determined by the total accident popelacton's distribution of awtombile, tractorsemitrailier, fixed object and non-collision aceidents.

The retionale for constdering the iogaritimile normal distribucion as the underlyims probability distribution for the total coste of wehicle damages was actually two-fold. The first reason was that in statiatical analysis of quantitative information it is often deatrable and at times neceseary to consider the normal or Gausaian dietribution an characterizing a variable. Thus, ability to transform a skewed diserituction into a narmalized form is highly desirable. One such transformation is where the logarithe of the variable is considered, and if it is nomaliy diezributed, the origiani variable in said to pozsess - logarithmie normal distribution. It has been stated that the usefulnese of lognonmal theory lies ta the fact that with its aid a numerous class of skewed distributions in a number of fields are brought within the domain of normal test statistics. ${ }^{1 /}$ The second important reason for int roducing log mormal theory, vas not in considering a transformed distribetion in order to satisfy certain prerequisites for applied statiatical analysis, but the fact that the physical interpretation of the theory offered a suggeation as to generalizing about the degree

1/ Aitehison, J., and Brown, J. A. C.. "The Lognormal Distribution, Cambridge, Cambridge University Press. 1957.

```
of accident severity. This approach arose since the lognormal distri-
bution may also be derived by considering the position of a result or
event in the range of the associared variable. If the position is
affected by a number of independent influences, not acting additively
aa in the normal case, but dependent upon the importance or strength
of the influence, according to the central limit theorem the variable
should be lognormally distributed as the number of factors increases.
Thus, if total damage costs were co follow a lognorital distribution.
the phenomena could be explained as arisimg from a multitude of causen
operating simultaneousiy in determining the amount of damages. Further-
more, it is not implausible to suppose that total damages in any one
colilision might be determined by the product racher than the sum of a
great many different random factors.
                    Mathematically, it can be said chat if the logarithm of a
variable, log }x\mathrm{ is normally distributed with mean mand variance g}\mp@subsup{0}{}{2}\mathrm{ .
then the probabilit ty density function of x is
(2.1) f(x;mio) * }\frac{1}{x/\sqrt{}{2\pi}}\mp@subsup{e}{}{-1/2(\frac{\operatorname{log}x-m}{0}\mp@subsup{)}{}{2}}\mathrm{ , for x}>0\mathrm{ .
The positive skewness of the distribution is emphesised by che positions
of the mode, median and mean of *, slnce
    mode = 的m-\mp@subsup{e}{}{2}
and the greater the varlance the greater is the skewness.
```

2/Cremer, H. . Nathemacical Methods of Stakistics, Princeton, 1946.

Table 2.1.1. Distributiona of Vehicle Danages for 200 Accidenta by object Struck

Upper Limit of Vehicle Damages	$\begin{aligned} & \text { Collisions } \\ & \text { with } \\ & \text { Automobiles } \end{aligned}$	Upper Limit of Vehicle Damages	$\begin{gathered} \text { Colllations } \\ \text { with } \\ \text { Trucks } \\ \hline \end{gathered}$	Upper Limit of Vehicie Danages	Collisions with Fixed Objects and Non-Collision
\$ -100	42	\$ -100	6	\$ -100	3
-200	16	-500	16	-500	15
-300	7	-1,000	5	-1,000	7
-400	8	-2,000	4	-2,000	12
-500	8	-5,000	3	-5,000	15
-1,000	12	-10,000	1	-10,000	3
-2,000	5		35	20,000	1
-3,000	6				56
-5,000	5				
	103				

FIG. 2.1.2. LOG PROBABILITY PLOTS OF VEHICLE DAMAGES FOR AUTO, TRUCK, FIXED OBJECT AND NON-COLLISION ACCIDENTS

One of the inherent advantages in using the logaormal distribution is that it allows for the subjection of data to a simple graphical analysis as a preliminary to more detailed work. By plotting the cumulative frequencies on logarithuic probability paper the tenacity of the lognormal assumption can be quickly and easily observed. The tendency of the points to form a straight line provides an approximation to judging the feasibility of the underlying lognormal population. An obvious advantage of the graphical approach is that no transformation of the values is necessary. The data of Table 2.1 .1 are shown plotted on a logarithmic probability scale in Figure 2.1.2. The lognormal nature of the population of cotal costs to the trector-semitrailers involved in automobile, truck and fixed object collision and non-collision appeared to be reflacted in the sample observations. Before actually fitting theoretical distribution to the observations, tests of significance were performed on the sample means and variances. It was hoped that a common variance could be applied to the groups, which would reflect, as might be expected, a coumon degree of skewness associated with t^{2} a distributions. It was also desired to justify combining the fixed object and non-collision accidents, based on a priori reasons as well as to defer applying theoretical frequencies to only sixteen on-collision aceidents

Sartlett's test for homogencity of variances ${ }^{1 /}$ was made on the variances of the four accident type distributions. Assuming the logaritims to be normally distributed, the sample variances of the

1/ Bartlett, S., "Properties of Sufficiency and Statistical Tests,"

Proceedings of Royal Society of London, A. 160 (1937).
111.
distributions of the logarithm, in common log terms, were computed and the hypothesis of equal variances was tested. Table 2.1 .2 shows the necessary information to apply the test.

Table 2.1.2. Test of Homogenefty of Variances of Log Cost Distribution Four.Accident Types.

Collision with:	Sums of Squares \qquad	Degrees of Freedom n-1	s_{i}^{2}
Automobile	54.6317	108	. 5012
Truck	12.1515	34	. 3500
Fixed Object	8. 7687	39	. 2192
Non-Collision	6.6655	15	.4166

$$
L=3.1041 \quad x_{.05}^{2}=7.83
$$

The test statistic is
(2.2) $\left.L=\frac{2.3026}{C} \Gamma_{i} \log s_{i}^{2} \sum_{i=1}^{4}\left(n_{i}-1\right) \sum_{i}^{4}\left(n_{i}-1\right) \log s_{i}^{2} \right\rvert\,$,
where:

$$
s^{2}=\frac{\sum_{i}^{2}\left(\frac{\left.\sum_{i} x_{i}^{2}\right)}{\sum_{i=1}^{l o g}\left(n_{i}-1\right)}\right. \text {, which is an unbiased estimate of the }}{4026} \text {, }
$$

common σ^{2} if the variances are equal.

$$
c=2+\left[\sum_{i-1} \frac{1}{\sum_{i}-1} \frac{1}{\left(n_{i}-1\right)}\right], 3\left(\sum_{i}-1\right)
$$

Under the hypothesis of equal variances, L is distributed as X^{2} with $K-1$ degrees of freedom, where $K=4$ groups. The computad value of L was found to be 3.1041 , which does not reject the hypothesis of equal variances among accident types. Thus, the common variance of .42 may be considered as representative for the four distributions.

Anvlysis of variance methods were employed in testing for the significance of the sample means of vehicle damage costs. The model under consideration was of the form
(2.3) $x_{i j}=m+\theta_{j}+e_{i j} \quad i=1,2, \ldots n_{i} ; j=1,2, \ldots 4$
where: $x_{i j}$ - logarithm of total vahicle costs
$m=$ common mean value
$\theta_{j}=$ effect of accident classification
$e_{i j}$ random error; assumed normally. distributed with mean zero
and variance C_{e}^{2}.
The hypotiesis to be tested was that the mean costs for the different accident types were equal. The analysis of variance in Table 2.1 .3 showed significant differences among totai vehicle damages.

Table 2.1.3. Analysis of Variance of Logarithms of Vehicle Damages for Automobile, Tractor-Semitrailer, Fixed Object, and Non-Coliision Accidents.

Collision with	Mean of Log
Auto	2.2846
Truck	2.6295
Fixed Object	3.0366
Non-Collision	3.0463

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	F
Object Struck	k 22.7229	3	7.5743	18.38
Residual	82.2174	196	. 4195	
Total	104.9403		$(3.196)=$	

The significant F racio suggests that the cost sustained by a tractor semitrailer involved in a collision varies for different objects struck. Accident severity for the tractor semitrailer appeared to be greater in fixed object and non-collision aceidents and descending from truck accidents co automobile accidents.

In order to determine significant differences, if they existed, within the mass classificetion, individual comparisons were made. The three interesting comparisons, one for each degree of freedom, were between automobiles and trucks, fixed objects and non-collisions, and autos and trucks versus fixed objects and non-collisions. Generally, when the number of responses in each group is equal, the subdivision of the sum of squares yielding as many planned orthogonal comparisons as there are degrees of freedom, proceeds simply since the necessary orthogonal coefficients are usually obvious. However, certain
114.
adjustment mast be made when the samples are of unequal size. in order to account for the unbalanced nature of the data. The comparisonit made. among the sums of the logarithms of vehicle damage, wert set up so chat the following relationships were satisfied.

1. $C_{i}=\sum_{i, 1}, S_{j}$ is a comparison if $\sum_{n, 1},{ }_{i}=0,1=1,2, \ldots 4$, $1=1,2,3$
2. $\frac{c_{i}^{2}}{\sum_{n_{j}} 1_{1}^{2}}$ sum of squares for the comparison
3. C_{1} and C_{2} are two orthogonal comparisons if $\sum_{i, 1} \mathbf{n}_{1} 1_{2}$, 0 . where 1_{y} * orthogonal coefficients
S_{j} sums making ap the comparisons
Thus, the coefficients found to satisfy the restrictions were set up in the following form:

If Snedecor, G. W. "Statistical Methods . " Iowa State, 1956

Table 2.1.4. Comparisons between Costs of Damages for Different objects Struck.

Source of Variation	$\begin{aligned} & \text { Sum } \\ & \text { of Squares } \\ & \hline \end{aligned}$	Degrees of Freedom	Hean Squares	F
Auto va. Truek	4.6754	1	4.6754	11.1452
Mon-Collision we. Fixed Object	. 0011	1	.0011	. 0026
Auto, Truck ve. NonColliaion* Flxed Object	18.0464	1	18.0464	43.0188
Total	22.7229	3		
Residual	82.2174	196	. 4195	

The only comparison showing no signifleant difference was between fixed object and non-collision aceidents. Significant differences vere evidenced for damages sustained in auto and truck aceidenta as well as for aceidontb between other vehieles and aceidents oniy involving the responding vehicle, i.e. fixed object colliaions and nom-collisions. Logarithmic normal distributions, with two paraneters, were fitted to the observed diatributions for the four aceident types, combining fixed object and non-colliaions on the assumption of equal means and variances. Figure 2.1.3 shows the theoretical diatributions. compared with che actual data, of the logarithms of costa while Figure 2.1 .4 presents the lognormal diatributions on a \log probability scale. The method of fitting consinted of fitting normal distributions to the diakribution of logerithms. Table 2.1.5 illuatrates the method, with automobile accidents. Since a one to one relationship exiate in the logarithmic transformation, goodness of fit tepts were applied to the normal distributions. The x^{2} values failed to disprowe the

FIG. 2.1.3. OBSERVED AND THEORETICAL DISTRIBUTIONS OF LOG VEHICLE DAMAGES FOR DIFFERENT OBJECTS STRUCK

FIG. 2.1.4. THEORETICAL LOGNORMAL DISTRIBUTIONS OF VEHICLE DAMAGES FOR DIFFERENT OBJECTS STRUCK

phenomena have been explained by the law of proportionate effect, so might accident costs. Thus, the model could be interpreted as suggesting that the distribution of damage costs arises from a multitude of causes operating simultaneously. Hence, the number of causes generating different costs in a collision take the form of speeds, directions of impact, road conditions, weather conditions, driver characteristics and most probably an infinity of other causes. Thus, the plausibility of lognormal theory being applied to accident costs can not only be justified by the goodness of fit of the empirical results, but also from a general consideration of what is happening in a colilsion to generate such cost distrioutions. It shall be shown at e later point that this concept may be applied to disasters in general as well as. to direct costs of all sutomobile accidents.

2.2. Analysis of Vehicle Damages with Respect to Accident Types.

The qualitative accident characteristics directly related to the collision are the direction of impact and the object struck. In the preceding section attention was cencered on the object struck, while the present analysis invastigates costs with respect to both the object struck and the type of impact. Table 2.2 .1 represents the average costs sustained by the tractor-semitrailer and the average common logarithms for all cominations of direction and object struck, utilizing the random sample of 200 accidents discussed previously.

Table 2.2.1. Average Costs and Logarithms of Costs to Vehicle for Direction and Object Struck in 200 Accidents.

*Non-Collision and Fixed Object accidents were considered as Headon accidents.

The logarithmically transformed costs were used to test for significant differences between objects struck and direction as well as for any interaction effect among the two characteristics. Since object
differences were explored previously, fixed object and non-collision involvements were not treated, as both only occurred in headon type accidents. Essentially then the information analyzed constituted a four by two matrix as in Table 2.2.2.
$\frac{\text { Table 2.2.2. Means of Logarithms of Vehicle Damages for }}{\text { Collisions with Other Vehicles and Directions. }}$
Collision with

Direction of Impact	Truck		Auto		${ }^{n} \mathrm{~T}+\mathrm{A}$
	n_{T}	$\underline{\log \operatorname{Cost}}$	${ }^{n}$ A	$\underline{\text { Log Cost }}$	
Stelking in Rear	10	2.808	47	2.014	57
Struck in Rear	18	2.456	22	2. 121	40
A.agle	2	1.898	17	2.237	19
Headon	5	3.190	23	3.029	28
n	35		109		144

It is to be noted that the number of replicates in each cell not only differed from cell to cell, but was also disproportionate to the totals for each effect. This necessitated altering the uaual analysis of variance procedures for testing the effects, in order to account for the inherent non-orthogonality of the date due to disproportionate subclasses. The method of weighted squares of means furnished an exact test for interaction as well as an exact test for main effects. The hypothesis was represenced by the model,

$$
\begin{aligned}
\log \operatorname{Cost} \\
i j k
\end{aligned}=m+d_{i}+o_{j}+e_{i j k} \quad \begin{aligned}
i & =1, \ldots 4, \\
j & =1,2, \\
k & =1, \ldots, n_{i j}
\end{aligned}
$$

[^7]where:
$\mathrm{m}=$ overall mean
d_{i} effect of the ith direction
0_{j} - effect of the jth object
$e_{i j k}=$ random error; assumed normally distributed with mean zero arad variance σ^{2}.

The exact test for the assumption of negligible interaction is prowided by weighing the squared differences between means for each direction by the ratio $n_{T} n_{A} /\left(n_{T}+n_{A}\right)$. The interaction term proved not to be significant and the completed analysis of variance was performed in Table 2.2.3.

Table 2.2.3. Analysis of Variance on Logrithmic Costs of Vehicle Damages for Object and Direction.

Source of Variation	Unadjusted Sum of Squares	Adjusted Sum of Squares*	Degrees of Freedom	Mean Squares	${ }^{F} .05$	$\begin{gathered} \text { Cricical } \\ \text { F.05 } \\ \hline \end{gathered}$
Vehicles	3.1496	4.0903	1	4.0903	11.989	3.9
Direction	16.8611	17.8018	3	5.9339	17.381	2.7
Vehicle 6 Direction	2.5347	2.5347	3	. 8449	2.475	2.7
Error	46.4315	46.4315	136	. 3414		
*Correction for Disproportionality $=-.9407$, applied to main effect sum of squares.						
The analysis rejected the hypothesis of no difference in						
costs when striking autos and trucks and also showed differences						
to exist for direction of impact. Thus, while cost differentials						
betweent ob	jects struck	and direc	ion exis	ted, they	were co	-

124.

2.3. Analysis of Costa with Respect to Quantitative Accident Characteristics.

Thus far, the relationship between veticie damage costs, impact direction and object struck has been investigated. Generaily, bighway involvements are discussed in terms of severity characteristics such as 1 vehicle weight and vehicie age . Accident types are also considered. The present section atteppts to relace certain quantitative accident characteristics to the severity response. It was hoped that the variables, vehicle weight and speeds of the involved vehiches prior to impact, might aid in explaining the variations of the severity of tractor semitralier accidents.

Primarily, actention was centered upon speeds and existing accident ranords were searched in ar effort to atcain speed information. The data employed in the previous analyses, contained speed inforanation of questionable merit due to the reporting method invoived, simee speed data were not specifically asked for and was only volunteered by the reporting party if he so desired. Thus, resort was made to another area of the Incerstate Conmerce Commission*s motor vehicie acitwities. The study was based on specific accidents investigated by the rCC. These investigable accidents are selected from the entire accident population by che ICC on the bases of degree of damage involved, amount of personal injury sustaiaed, andfor evidence of negilgence. From this substantial group of accident reports a selective sample of 108 accidents was caken. Essentially che felection criceria wert comprehensiveness of report, and specificaliy reliable estimates THRCWartiy, J. F., "We Econonic Cost of Traffic Accidents in Relation to the Vehicle, " Public Roads, Vol. 31, No. 2, June 1960.
of speeds and weights. It should be moted that reliability is mentioned not in the statistical terminology, but refers to the adequacy of the report itself as determined by the source. Accidents where fires or explosions occurred were not included in the sample. These investigated accidents were the only source where adequate speed information coupled with a competent accident severity response could be discovered. Thus, in order co arrive at meaningful conclusions over a range of cost with a sufficient number of cases for each variable, a selective tample was necessary. The above observation does not mean to imply a limit to the generalizations from the de:ived models, since the purpose was to study the interrelationalifpo of the variables and not necessarily to predict che cost response in futare involvements.

The cypical ICC investigated report contains the following information relating to the accident; date, location, carrier, type of impact, type of highway, time of day, veather conditions, description of tractor and trailer (make, type, axle arramgement), description of vehicle or object struck, cargo description, vehicle welghts (tractor, traller, cargo). speeds of both vehicles, description of accident and subs-iquent movements, dollar damages to the vehicle and cargo, injury extent, and fire or explosive incidence.

The objective of the analysis was to atudy the matual relationships between vehicle damage costs and the accident characteriatica by deriving a series of functional equations. Regression and variance technifques were employed in an effort to explain accident coste.

Throughout the regression analysis six independent or causation variables vere analyzed as to their degree of association with accident costs. The variables are presented below:

1. Welght of responding vehicle $\left(H_{1}\right)$: Gross vehicle weight, composed of the tractor, trailer and cargo; measured in tons.
2. Object atruck $\left(K_{2}\right)$: Qualitatively defined (as prewiousiy used) as comercial motor vehicle, automobile, fixed object, and non-collision.
3. Direction of impact (D): Qualitatively defined (as previousiy used) as headon, angle, responding vehtcie struck in rear (reflecting damage to the trailer), responding vehicie atruck wecond vehicle in rear (reflecting eractor damages).
4. Speed of responding vehicle $\left(\mathrm{V}_{1}\right)$: Speed prior to impact, measured in M. P.H.
5. Speed of struck vehicle $\left(V_{2}\right)$: Speed prior to impart, measured in M. F.H.
6. Combined speeds of two vehicies $\left(\mathrm{V}_{1} \pm \mathrm{V}_{2}\right)$: Speeds were combined in the following eanner: headon collision: $\mathrm{v}_{1}+\mathrm{v}_{2}$
rearend collision: ${ }^{\circ} \mathrm{V}_{1}-\mathrm{V}_{2}$ or $\mathrm{V}_{2}-\mathrm{V}_{1}$, depending upon
the larger speed angle collision: $1 / 2\left(v_{1}+v_{2}\right)^{\frac{1 /}{1 /}}$

The reports were initially classified by object struck and direction as in Table 2.3.1, where che Fepresientative notation for I/ Since the angle of impack was unknown, che average combined speed was ucilized.

Abstract

each factor is shown as well as the number of observations in the sample. As an illustration of the notation to be employed, Ah designatea velificle 1 or the responding tractor semitrailer colliding headon with an automplile.

Table 2.3.1. Number of Investigated Aceidente by Object Struck and Direction of Tmpact.

Object Struck (H_{2})	Direction (D)	n
Comercial Motor Vehicle (T)	Headon (h)	20
-	Striking in kear (ra_{1})	15
	Struck in rear (r_{2})	14
	Angle (a)	2

Total 51
*Automobile (A)
Headon (h) 24
struck in rear (r_{2}) 6
Angle (a) E
Total 38
Fixed Objects (F) Headon (h) 12
Mon-Collision (w) Headon (h) 7
Tokal Aceldents \quad 108
Wo rearend accidents were observed where vehicle 1 struck autos in the rear.

A cursory survey of the average vehicle damage conce for the nine combinations of object and direction revealed increasing cost and dispersion, indicated by the range of danages, as aceident type varied from auko-angle to cruck-headon as in Figure 2.3.2.

The regression analyain consisced in a progression of analytic

FIG. 2.3.1. MEAN COSTS AND RANGES FOR ACCIDENT TYPES
models attempting to explain more and more of the variability in vehicle damage costs by directiy fitcing successive equation to the observations. Since the logarithe of dollar damages was saen co be a normally distributed randon variable. the dependent variable waw transformed from actual damages to the logarithe of damages. The transformation also facilitated Che regression analysis by reducing the absolute range of the dependent variable. In general, the regression models were of the form:
\log (Cost) $=a+b_{i} \mathrm{f}\left(\mathrm{x}_{1}\right)$
where: a and the b_{i} 's are parameters to be cetimated and the x_{4} are the independent variables with the functional notation accounting for higher order polynomials in x_{1}. (a) represents the mean log cost value corresponding to equating the independent variables to zero, while b_{i} represents the change in log costs per unit change in $f\left(x_{1}\right)$.

The initial model mas:
Model I: Log (Cont) $=a+b_{1}\left(v_{1}\right)+b_{2}\left(v_{2}\right)+b_{3}\left(W_{1}\right)$ where: V_{1} and v_{2} are the speeds of the vehicies and w_{1} is the weight of the repponding vehicle.

In attempting to develop the most meaningful relationships, seven equations were derived by combiaing certain classet of observacions. Thus, within aukomobile collisions the eight angle aceidents and the bix rearend involvements were combined in order to increase the number of observations empioyed. Fixed object and non-coliision accidents were alwo combined on the basis of che previous analyais of the two
groups. Table 2.3.2. records the regression equations, coefficients of multiple correlations (R) and the standard errors of estimate, for the various struck objects and directions. The values of R^{2}, representing the amount of variatien in log cost explained by the two speeds and veight, are also included.

Table 2.3.2. Regression Equations of Mode 1 I

*2 accidents where the tractor trailer struck slow moving railioad trains were classified as fixed oiject involvements.
to b_{3}, i.e. it was negative in four equations. The w_{1} coefficient was found to be significantly greater than zero only in equations (2) and (5), both rearend accidents. A control chart analysis was performed on the mean weights among the groups. Essentially, the mean weights for the seven equations were used to determine whether or not the deviations in mean weights were due to non-random variation. As is generally done in industrial analysis to control current processes, the mean, represented by the control line in Fig. 2.3.2, was determined from an external source. The means were compared to the mean loaded weight of a study by Dimanick ${ }^{1 /}$. in which 135,000 trucks were observed at ${ }^{*}$. weighing stations in 44 states. An estimate of the expected variance in truck weights was obtained from Sampson's report on gross weight of trucks. ${ }^{2 /}$ Figure 2.3 .2 shows the observed means and the upper and lower control limits for each accident group. Since each mean was based on a different sample size, the limits, calculated from:

$$
\begin{aligned}
& \text { UCL }-\bar{w}_{1}^{\prime}+3 \frac{\sigma^{\prime}}{\sqrt{n}}, \\
& \text { LCL }-\bar{w}_{1}^{\prime}-\frac{30^{\prime}}{\sqrt{n}}, \text { where: } \quad \bar{w}_{1}^{\prime}=\text { expected mean }
\end{aligned}
$$

$$
\sigma^{\prime}=\text { expected standard deviation }
$$

varied for each group. No evidence appeared to suggest that the means were out of statistical control. The above analyses supported the hypothesis that variability in weights was not a significant contributor to the variability in vehicle damages and that changing sign of b_{3} I/ Dinsick, T. B.. Traific and Travel Trends, 1955," Public Roads, Vol. 29, No. 5, December 1956.
2/ Sampson, E., "State Highway User Taxes." Public Roads, Vol. 29,
No. 12, February 1958 .

FIG. 2.3.2. CONTROL CHART FOR MEAN LOADED WEIGHTS FOR ACCIDENT TYPES: $\widehat{W}_{i}^{\prime}=22.90, \sigma_{w_{1}}^{*}=7.41$
in the equacions was merely a chance occurrence.
The signs of b_{1} and b_{2} seemed to offer more meaning than the weight coefficient. The signe of the speed coefficients ient insight for investigating the bypotheses that a) apeeds may be added in headon secivents, i.e. $\mathrm{v}_{1}+\mathrm{v}_{2}$ and b) lower speedn may be aubtracted is wearend accidents, i.e. $\mathrm{v}_{2}-\mathrm{v}_{1}$ or $\mathrm{v}_{1}-\mathrm{v}_{2}$. All of the headon colliwione nhoved ponitive signs for both coefficients, *upporting the Idea of an additive combined toped for this type of aceident. Equarion (2) vieve V_{1} is the greater speed ta che rearend accident and equation ($\$$), where V_{2} is the larger speed, the theory of subtraction weened to be aubstantiated. Onty in wquation (3) where a negative sign was expected for γ_{1} 'a coefficient was there disparity. However, the coefficient was found not to be significantly greater than zero, implying that the sign might be efther negative or positive.

Nodel 11, of the form: $\log ($ Cost $)=a+b\left(v_{1} \pm v_{2}\right)$, onitted the weight of the responding velatele and concentrated on aimple limear regressions of tog cost versus the two speeds, combined according to the prior assumption. As only two wariabien were considered in order to simplify the model, the original clawafications were ased wince the number of observacions was considered sufficieat for the simpler regreswion model. Table 2.3 .3 presents equations relating combined mpeads to log costs for truck-headon and boch forms of rearend aceidents: automobille-hemdons, rearend and angle; fixed objects and non-colliction involvements.

```
            Log(Cost) =a+b(v, m vi
                        [y=\operatorname{log}(\mathrm{ Cost )]}
```

$\frac{n_{2}}{t}+$
Regression Equations \qquad
 $x+x^{2}$ -std
(b) $y=3.655_{-} .0026\left(v_{1}+v_{2}\right) \quad .22$.05 161
(9) $y=2.71+.0264\left(v_{1}-v_{2}\right) \quad .73$. 53 . 293
(10) $y=3.06+.0006\left(v_{2}-v_{1}\right) \quad .00 \quad .00 \quad .127$

- r_{2}
(11) $+2.33+.0$
$.35 \quad .30$
(12) $y=2.06+.0200\left[1 / 2\left(v_{1}+v_{2}\right)\right] .34 \quad .15 \quad .452$
(13) $y=2.02+.0159\left(v_{2}-v_{1}\right)$.85 .72 .250

F \quad b
(16) $y=3.12+.0101\left(v_{1}+v_{2}\right) \quad .32 \quad .10 \quad: 311$
if (15) $y=3.38-.0037\left(v_{1}+v_{2}\right) \quad-.10$.01
.353
In order to learn if the linear regressions of combined speed on log cost was the sump for trucks, automobiles and fixed object e in header accidents and also for trucks and autos in reared accidents. analyses of covariance were performed. The primary purpose was to ascertain if the linear regression of equations (8), (11), (14) were the same for the three objects struck. Equal slopes with elevation differentials would support the concept of different mass levels, representing the type of object struck, contributing to accident severity differences. Figure 2.3.3 shows graphs of the three linear equations. The covariance model was of the form:

FIG. 2.3.3. LINEAR AND COMMON REGRESSION OF LOG COST ON
$\log ($ Cost $)=m+w_{2 j}+B x_{i j}+e_{i j} ; i-1,2, \ldots n_{j}, j=1,2,3$ where: $m=$ overall mean
$w_{2_{j}}=$ effect of the three levels of $w_{2} ; \sum_{w_{2}}=0$
B = assumed common regression slope
$x_{i j}=$ deviation of any $\left(v_{1}+v_{2}\right)$ from the total mean, $\left(\overline{v_{1}+v_{2}}\right)=68.4$
$e_{i j}=$ random orror; assumed normally distributed with mean zero and variance \boldsymbol{r}^{2}.
Table 2.3 .4 illustrates a typical analysis of covariance arrangement. As seen from the graphs of the equations, the assumplion of statistically equal slopes is not obvious so that an F teat comparing the mean square for regression coefficients to the mean square within objects struck was performed. The result
$F=\frac{\text { MS Regression }}{\text { MS within }}=\frac{.090}{.089}=$
of slope equality so that a common slope was indicated. When the mean square for adjusted means was compared to the common mean square a significant F ratio was found, implying that although the regressions had a conmon slope, the equations differed in elevation levels which was partly ascribed to differences in the type of object struck. Furthermore, the common regression was found to be significant, when the hypothesis that $B=0$ was refected. The conclusion from the analysis ight be alternatively stated that mean cost levels in headon accidents would be equal if the mean effect were constant wisen different types of objects were struck by a tractor semitrailer.

Source of Variation	Sums of Squares of Deviations				Regression Coefficient	d.f.	Deviations frow Regression	
	Degrees of Freedon	x^{2}	xy	y^{2}			e^{2}	Mean Squares
Fixed objecta	11	1072.69	10.78	1.07	. 0101	10	.97	. 097
Trucks	19	3693.75	9.46	. 49	. 0026	18	. 47	. 026
Automobiles	23	11483.20	121.08	4.30	. 0105	22	3.02	. 137
within w_{2}						so	4.46	. 089
Reg. Confficlent		-				2	. 18	. 090
Common Regression	53	16249.84	141.32	5.86	.0087	52	4.63	. 089
Adjusted Means						2	5.50	2.750
Total	55	36155.03	109.15	10.46		54	10.13	

A similar analysis was conducted for rear-end accidents where the responding vehicle struck autos and trucks in the rear, ${ }^{\text {1/ }}$ i.e. equations (10) and (13). The analysis of covariance found slopes as well as cost elevation levels to differ significantly, most probably due to the wide scatter of the truck observations, manifested by the zero correlation coefficient. As will be shown later, when these types of accidents are grouped within their respective classification of object struch, they seemed to represent the lower cost level of damages withia a mass category

The data seemed to reveal that dollar damages received by a tractor semitrailer, and hence, accident severity, approaches an upper ifmit dependent upon the object struck and combined speeds. It was felt that the introduction of curvature to the regression model would not marely explain more of the variability in damages, but would also lead to an analytic inference as to the area of the upper inmit. Emphasis was lent to the above argumeat, particularly the curvilinear aspect, when combined speeds were plotted for all directions within a given object struck level. Figure 2.3.4, showing all of the observed points for truck aceidents, offers empirical reasoning for the introduction of curvature, and the necessity for combining all aceidents for a particular object struck. In the framework of response surface language, in two-dimensional space, i.e. log costis and combined speeds. when attention is relegated to a particular region of interest a inear fit is often acknowledged. Previously, the regions of interest associated with rearend and headon accidents for a particular object I/ There were no rit type accidents reported for truck semitrail ler auto collisions

FIG. 2.3.4. OBSERVATIONS OF LOG COST AND COMBINED SPEEDS
vere considered and ifnear approximations were found adequate. However, when the entive region of operability is considered, a curve of higher degree is usualiy required in order to satisfactorily reprosent the surface. Indeed, curvative appears to oscur in Figure 2.3.4 when the range of comblned speeds, including lieadon aceidents accurring at greater speeds, are incorporated with the lower speed rearend accidenta. Thus, aside froe improving the goadners of fit and explaining more varlability the the dependent variable through curvature as well as offering the upper ilmit area, an mplivical rationale for curvature was developed
since some headon aceidents themselves occurred at low speeds. curvilinear equations of the second degzee were fitted to headon aceidente as well as all accidents for a given casa level, in Table 2.3.5, where Model III was of the form: $\log \left(\log (\operatorname{Cos} t)=a+b\left(v_{1} \pm v_{2}\right)+c\left(v_{1} \pm v_{2}\right)^{2}\right.$ The consistent ly high correlation indexes, I in Table 2.3.5 reflect che high degrees of association between combined speeds and dollaz damages for all typea of callisions given a specific object struck. In other words, the grouping of direction components increased the ability of combined speeds to explain variability in damage cost\%. In order to ascertain the appropriateness of parabolice curves to describe the cost response ingificance tents wart performed between inear regressions and the curvilinear regressions for the groups. Figurea 2.3.5-2.3.7 and Table 2.3.6 potat out the lack of a significance difference between any of the curvilinear and linear regresaions.

Table 2.3.5. Regression Equations for Model 111

$y=\log ($ Cost $)$

Direction	ObjectSt ruck	x^{2} and I^{2} Values for Linear and Curvilinear Regressions: All Types of Accidents.	
		$\underline{\text { Linear }\left(\mathrm{r}^{2}\right)}$	Curvilinear (I^{2})
All	Truck	. 42	. 43
All	Auto	. 47	. 47
Headon	Auto	. 30	. 30
Headon	Fixed obj		
All	Tzuck	. 38	. 39

Significance tests similar to that in Table 2.3.7 were performed and a straight line was found to be as applicable as a second degree curve Table 2.3.7. Test of Significance of Curvilinear Regressions:

Source of Variation \quad| Degrees |
| :--- |
| of Freed |

Curvilinearity of Regression

 of Freedom Sum of088 . 088
Deviations from Curv. Regression
5.458
.119
Deviations from linear Regression
47
5.546
$F=\frac{.088}{.119}=.739$, not significant
A covariance analysis was performed on the linear equations
shown in Figures 2.3.5-2.3.7, in order to determine the effectiveness of a single equation depicting the relationship between costs and speeds for all aceidents. The model under consideration was: $\log ($ Cost $)=m+W_{2}+B x_{i j}+e_{i j} ; i=1_{1} \ldots n_{j}, j=1,2,3$ where: m=overall mean
$W_{2_{j}}=$ effect of j th object struck

$$
\mathrm{j}=1 \text {, all truck accidents }
$$

144.

FIG. 2.3.5. LINEAR AND CURVILINEAR REGRESSION OF LOG COST
ON COMBINED SPEEDS FOR ALL TRUCK ACCIDENTS

FIG. 2.3.6. LINEAR AND CURVILINEAR REGRESSION OF LOG COST
ON COMBINED SPEEDS FOR ALL AUTO ACCIDENTS

FIG. 2.3.7. LINEAR AND CURVILINEAR REGRESSION OF LOG COSTS
ON COMBINED SPEEDS FOR ALL HEAD ON ACCIDENTS

$$
\begin{gathered}
1=2, \text { all automobile accident } \\
1=3 \text {, all fixed object accident } \\
x_{i j}=\text { deviarion of any }\left(v_{1} \pm v_{2}\right) \text { from the overall } \\
\text { mean, }\left(\overline{v_{1} \pm v_{2}}\right)=52.9 \\
e_{i j}=\text { random error; assumed normally distributed } \\
\text { with mean zero and variance } \theta^{2} .
\end{gathered}
$$

Table 2.3.8 ahow the analyais of covariance cable.
The results showed the chree equations

$$
\begin{aligned}
& s=1, \log (\operatorname{Cost})=2.94+.0119\left(v_{1} \pm v_{2}\right) \\
& y=2, \log (\operatorname{Cost})=2.28+.0113\left(v_{1} \pm v_{2}\right) \\
& y=3, \log (\operatorname{Cos} k)=3.12+.0101\left(v_{1} \pm v_{2}\right)
\end{aligned}
$$

did not have different slopes, so that a common regression coefficient could be applied to a representative equation for all accidents. The resulting common equation vas: $\log ($ Cosct $)=2.70+.0115\left(v_{1} \geq v_{2}\right)$. However, the high variance racio for the adjusted mean indicated differential elements in coat elevation, after adjusting for different objecta struck. Thus, although a common slope could be introduced, there remained significant discrepancies in the cost levels, ascribed to the type of object struck. Figure 2.3 .8 transforms the common equation in log costs to the exponential form of actual dollar damages sustained by the cractor semitsaller as a funcilion of combined speeds.

The parabolic, curves, though not significantly different from Inneality in describing the cost-speed relationship, offered, for each aceident group, a maximum cost area that a particular comblned speed might generate. Table 2.3 .9 shows the upper cost lewels, obtained by

FIG. 2. 3. 8. ACTUAL DAMAGE COSTS AND COMBINED SPEEDS; TRANSFORMATION OF COMMON EQUATION

equating the first derivative of the second degree polynomial to zero, and solving for $\mathbf{v}_{1} \pm \mathbf{v}_{\mathbf{2}}$.

Table 2.3.9. Upper Cost Levels for All Accident Groups

Object Struck	$\underline{\text { Log(Doilars) }}$	Actual Dollars	$\underline{\text { Required }\left(\mathrm{v}_{1} \pm \mathrm{v}_{2}\right)}$
Truck	4.01	10,200	115
Automobile	3.85	7.080	205
$\begin{aligned} & \text { Fixed Object } \\ & \text { Non-Collision) } \end{aligned}$	3.43	2,700	40

The value of combined speed represented the point where the maximum cost level míght be expected to occur, as a result of a certain level of speeds. The figures in Table 2.3 .9 indicated, for all tractor-semitrailer involvements with other trucks, a combined speed of 115 miles per hour was necessary before dollar damages to the veliicle reached $\$ 10,200$. In contrast, automobile involvements require speeds exceeding $200 \mathrm{~m} \cdot \mathrm{p} \cdot \mathrm{h}$. before a level of $\$ 7,000$, less than that for trucks, was reached. Similarly, fixed object and non-collision accidents, essentially including only the speed of the responding vehicle, required a speed of $40 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. to reach a relatively low cost level of $\$ 2,700$. The reason for this last conclusion probably arises from the confounding of fixed objects such as trees, utility poles and fences with objects with considerably greater mass such as bridges, buildings and railroad trains, while non-collision accidents may run the gamut from a slight damageproducing skid to a zevere overturn as a result of jackknifing.

2.4. Vehicle Damage and Mechanical Energy

Whereas the foregoing analysis attempted empirically to derive theoretical models relating the vehicle damage cost of a collision to accident characteristics, the subsequent analysis utilizes the concepts of energy and momentua, commonly studied in connection with impact problems. A theoretical model representing the mechanical energy of the system was developed and the resultiag energy equation was then considered as a dependent variable in fitting enpirical equations for damage costs. This mechanism yielded a general equation for all types of accidents relating dollar damages to the concept of energy released or considered available for damage.

The general model represents the conditions of two bodies approaching one another, coliiding, and at some instant after impact, separating. Because of the laws of conservation of energy, the total energy remains constant throughout the impact. From the principle of the conservation of momentum, the total taomentum of the colliding bodies is also unaltered by the collision. Assuming perfect inelasticity, where the colliding bodies remain together after the collision and move with the same velocities, the maximum work done under impact can be determined. Generally, for only an instant do the bodies have equal velocity before separation occurs.

If a collision between two bodies is perfectly inelastic, che equations
(2.4) $1 / 2 m_{1} v_{1}^{2}+1 / 2 m_{2} v_{2}^{2}=1 / 2\left(m_{1}+m_{2}\right) v_{c}^{2}+E$
and $(2.5) m_{1} v_{1}+m_{2} v_{2}-\left(m_{1}+m_{2}\right) v_{c}$
mast be satisfied. Equation (2.4) represents the conservation ef eurgy and (2.5) the conservation of momentum, where: v_{1} and v_{2} are the velocities of the colliding bodies before impact, m_{1} and m_{2} are the respective masses, $v_{c} * v_{1} \geq v_{2}$, is the common velocity after impact and E in the maximum mmount of energy available for damage. Solving the two equations sinultaneously yields
(2.6) $E=1 / 2 \frac{m_{1} m_{2}}{m_{1}+m_{2}}\left(v_{1} \pm v_{2}\right)^{2}$.

Combining the unite of the terms of (2.6) reveals the dimensions of E. Since m_{1} and m_{2} are in $\mathrm{lb} \cdot \mathrm{mec}^{2} / f t$. and v_{1} and v_{2} are in ft/sec. the dimensional analysis yielded

$$
\frac{\left(1 \mathrm{~b} \cdot \mathrm{sec}^{2} / \mathrm{ft}\right)^{2}}{1 \mathrm{~b} \cdot \sec ^{2} / \mathrm{ft}} \cdot \mathrm{ft}^{2} / \mathrm{sec}^{2}=\mathrm{ft} \cdot 1 \mathrm{~b} \text {, as the unit of }
$$

available energy. Equarion (2.6) readily becomes

$$
(2.7) E=1 / 2 \mathrm{mv}^{2}=1 / 2 \frac{\mathrm{w}}{\mathrm{E}} \mathrm{v}^{2}
$$

where: $\frac{w}{k}=m=m_{1} m_{2} /\left(\mathrm{m}_{1}+m_{2}\right), v=v_{1} \pm w_{2}$ and g in the acceleration of gravity ($32.17\left(\mathrm{f} / \mathrm{sec}^{2}\right.$). (2.7) represents the theoretical model for the maximum energy available for damage due to an impact of two colliding vehicien.

Anticipating the following section where energy was considered as a dependent variable, it became necessary to correct for the fact that velocicy was recorded in mile per hour (V) and weight in cons (U). Thus. if $E=W V^{2}$, a dimennfonal cramsformation yields
$x=\frac{1}{64.34 \mathrm{ft} / \mathrm{sec}^{2}} \times \frac{2000 \text { Ib }}{\operatorname{con}} \frac{(5280)^{2} \mathrm{fe}^{2} / \mathrm{min}^{2}}{(3600)^{2} \mathrm{sec}^{2} / \mathrm{hr}^{2}}$
or $\mathrm{K}=66.89 \frac{1 \mathrm{~b}}{\operatorname{con}} \times \frac{\mathrm{hr}^{2}}{\mathrm{~min}} \times \mathrm{ft}$. Therefore, the working model for energy was (2.8) E $-66.89 \mathrm{wv}^{2}$ in foot-pounds.

The previoua regreasion models actually derived equations for the logarithm of costs resulting from a collision as a function of the energy components, masn, velocity and direction (reflected in the manner of combining speeds). These equation enabled skatistical analysis to be performed in amalyzing the components. Thus, it remained to fit a generalized equation to log, costa and energy as theoretically derived. The pointe of Figure 2.4.1 indicated that a hyperbolic function of the fore:
(2.9) \log (Cose) $=\frac{E}{a+b E}$
-ight beat deacribe the relationship between damage and energy. The two branches of the hyperbola are asymptotic to the lines $E=\frac{-a}{b}$ and \log Cost $-\frac{1}{b}$

By algebraic mantpulation, (2.9) is easily transferred into the form of a atraighe line for a specific function of log cost and energy. Thwe.
(2.10) $\frac{E}{10 g \text { Cost }}=a+b E$, which is equivalent to (2.9)
is Linear in E and E/LOg Cost. To Facilitate the eatimation of the two parametcrs, a and b, the data were growped in a bivariate frequency table, as presented in Table 2.4.1. The resuleting equation:
$\log \operatorname{Cose}-\frac{E}{(.02) \cdot 10^{6}+.242 \mathrm{E}}$
yielded a flexible curve to describe energy and damage-

FIG. 2,4.1. RELATION BETWEEN MECHANICAL ENERGY AND VEHICLE DAMAGE

Table 2.4.1. Bivariace Frequency Table of Energy/Log Cost and Energ:


```
        The upper asymptote emphasized the approach of a maximum
cost level as a function of erergy available for damage as a result of
impact between two vehicles. Indeed, if the upper asymptote of the
curve is considered to represent the point at which total loss of the
vehicie occurs, total lass probabilitiess may be derived from the probabi-
lity distribution of vehicle damages. By inferring that total loss of
the vehicle occurs at the spper asymptotic level of log cost, the
probability of a cractor-semitrailer sustafining this level of damage in
an accident may be obtaimed by considering the normally diatributed
variable.
```

```
\(=-\frac{T-C}{3}\)
wherez \(z=\) etandard mormal deviate
    \(T=\operatorname{cotal}\) loss level. \(1 / b\) in \(\frac{E}{a+b E}\)
    C m mean of logarithm of cost, from cost distribution
                                    in 2.1
    \(S=s t a n d a r d\) deviation of distribution of \(\log\) cost.
```

Table 2.4 .2 summarizes the results and yeilds the probability of totai loss when different types of objects are struck.

> Table 2.4.2. Deviation of Total Loss Probabilities for Objects Struck, Total Loss Level -4.1322 (T).

Object Struck	Mean Log Cost (C)	Standard Deviation (S)	$\frac{T-C}{S^{n}}=z$	Probability of $\underline{\text { Log Cost }} \geq \mathbf{T}$
Auto	2.28	.71	2.61	.0045
Truek	2.63	. 59	2.55	. 0054
Fixed, Non-Coll'sion	3.04	. 52	2.09	. 0188

It is evident that the probability of vehicle total loss occuring increases, as the general mass of the object struck increases. Thus, the probability of a total loss is greatest when fixed objects or noncollision accidents occur and least when autonobiles are involved. Figure 2.4 .2 exhibits the rate at which the total loss level is approached for different object struck. The three curves indicate the concept that as the total loss level decreases, the probabilities of attaining total loss showed greater differences among accident groups. Whereas the differences in probabilities are small at the high level derived from the energy curve, a reduction in this level would indicate sharp contrast in attaining total loss for different mass levels of objects struck.

Returning to the cost-energy relationship, the function subatantiated the feeling that beyond a certain level of damage producing energy, dollar damage increases in smaller and smaller amount as total loss is approached. Alternatively, there is a rapid rise in damages generated by the initially released energy, until a point is reached where energy can no longer contribute significantly to the damage sustained by the vehicie.

FIG. 2.4.2. MANNER IN WHICH TOTAL LOSS IS APPROACHED IN ACCIDENT TYPES
3.0. Analysis of Cargo Damages Resulting from Accidents.

In order to understand and meaningfully describe the manner in which tractor-semitrailers, loaded with commercial freight, sustain damages to cargo, different types of cargos must be properly distinguished and identified. Since a multitude of cargos are transported by our transportation system, the general analysis of cargo damages has to be partitioned into sets of individual analyses pertinent to a specific cargo. So that inferences analogous to those for vehicle damages might be drawn, it was necessary to gather information about a sufficient number of accidents involving cargo damages for a homogeneous load of freight. Furthermore, in order to investigate the accident characteristic effects, those damages resulting from extraneous effects, such as fires, had to be eliminated.

At the present time, this somewhat Hexculean task of collecting cargo damage data has been satisfactorily performed for only one cargo, new automoinles. The three predominant reasons for fruitless searches elsewhere have been lack of sufficient cargo damage records, inadequate systems of recording information, and the predominance of non-homogeneous cargo shipments.

The following discussion presents the analysis performed on the automobile carrier accident experience and suggests the type of analysis that might be employed on other forms of cargo.
3.1. Damages Sustained by New Automobile Carriers.

Prior experience suggested that automobile carriers travelled a relatively large number of vehicle miles and were involved in a sizeable number of accidents. This assumption was substantiated by
the Interstate Conmerce. Commission report of property-accident data for the fourth quarter of 1958 , which showed wotor vehicle carriers travelling 264,524 thousand vehicle miles (12% of all carriers), ranking third behind general freight and miscellaneous commodity carriere. The same relative position was held for total number of accidents reported (13\% of all accidents). Automobiles certainly satisfied the homogeneity criterion and new automobile damage could be evaluated fairly easily at the occurrence of an accident, tivereby easing the reporting of cargo damages in the ICC report form.

A list of ICC licensed auto carriers was procured and a random sample of the ICG accident files for the years 1958 and 1959 was selected. Only those accidents resulting in both vehicie damage and cargo damage were included in the sample. A total of 189 observations was gathered. Table 3.1.1 shows the breakdown by type of accident, i.e. object struck.
$\frac{\text { Table 3.1.1. Sample of Accidents of New Automobile Carriers }}{\text { by Object Struck }, \frac{1959-1960}{}}$

Object Struck
Automobile Commercial Vehicle

Fixed Object
Number in Sample 435029

Non-Collision*
Non-Collision* 67
*Most non-collision accidents were characterized by the tractor-semitrailer jacknifing and overturning.

Abstract

Since tive carriers included in the sample were carrying from one to five new passenger cars at the time of collision, the percentage of total cargo that was damaged was comsidered as the measure dencripeive of cargo damage. In order co approximate the original cargo walue, the average wholesale value of paspenger cars for the years involved, as 1 reported by kue Automobile Manufacturern* Association , was employei. This \&igure of $\$ 1,880$ for boch 1958 and 1959 was used as the average value of the trandported autonrabile. The average value, multiplied by the number of cars being carried, afforded a base upon which the percentage of cargo damaged was computed. Table 3.1.2 presents the poisitively skewed irequency distributions of percentage of cargo damaged and type of object ntruck.

It seemed obvious that the distribution of cargo damages would differ signtficantiy between coliision and non rollision type accidentin. However, withtn colilision type bceidents differences were not obvious. A chi-square test was performed for che homogeneity of the distributions of percentage cargo damaged for auto, truck, and fixed ubject aceidenti. The test for homogeneity if presented in Table 3.1.3. The conputed value of chi-square was 10.96 . less than the 0.05 critical value of 18. 34 with 10 degrees of freedon. This indicates that the distributions of percencage of cargo damaged for autcmobile cargos did mot differ among objects struck in coliksion accidants.

[^8]| | and Object Struck, Automobile Carriers. | | | |
| :---: | :---: | :---: | :---: | :---: |
| Z of Eargo Damaged | Object Struck | | | Mon-Colliaion |
| | Trucke | Autos | -Fixed-Objects | |
| -10.0 | 35 | 34 | 19 | 7 |
| $10.1-20.0$ | 7 | 5 | 5 | 14 |
| $20.1-30.0$ | 3 | 1 | 1 | 12 |
| $30.1-40.0$ | 1 | 1 | 1 | 10 |
| $40.1-50.0$ | 1 | 0 | 1 | 10 |
| $50.1-60.0$ | 1 | 1 | 1 | 4 |
| $60.1-70.0$ | 1 | 0 | 0 | 5 |
| $70.1-80.0$ | 0 | 0 | 0 | 3 |
| $80.1-90.0$ | 1 | 0 | 0 | 1 |
| $90.1-100.6$ | 0 | 1 | 1 | 1 |
| Total | 50 | 43 | 29 | 67 |
| Mean 7 Damage | 12.80 | 10.58 | 14.66 | 34.25 |
| Varlance of 3 Damage | 2.77 | 2.57 | 3.90 | 4.64 |

Table 3.1.3. Observed and Theoretical Frequencles of Percentage Cargo Damaged for Collision-Type Accidenta.

z of Cargo Dameged	Collision wich:			1oter
	Autos	Trucks	Fixed Obiecte	
- 1.00	$\stackrel{12}{(9.87)}$	$\frac{12}{(11.48)}$	(6.65)	28
$1.01-5.00$	$\stackrel{19}{(16.57)}$	$\begin{gathered} 20 \\ (19.26) \end{gathered}$	$\stackrel{8}{(11,17)}$	47
$5.01-10.00$	$\stackrel{3}{(4.58)}$	$\left(5^{3} .33\right)$	$\stackrel{7}{(3.09)}$	13
10.01 - 20.00	${ }_{(5.99)}^{5}$	$\stackrel{7}{(6.97)}$	(4.04)	17
20.01 - 40.00	$\stackrel{2}{(2.82)}$	(3.28)	$\stackrel{2}{(1.90)}$	8
Greater than 40.00	$\stackrel{2}{(3.17)}$	(3.69)	$\stackrel{3}{(2,14)}$	9
Total	43	50	29	122
Chi -Square	2.20	1.26	7.50	10.96
*			Chi-Square ${ }_{0.05}$	(10) 18.34

Theoretical probability functioan were derived for percentage of cargo danaged for collialon and non-collision kype acefdents. Since the varlable, percent damage, was reatricted to the powitive range between sero and one, a cheoretical distribution was fitted wheh satiefied this restraint and was of a fore thoughe te be dewcriptive of the obswrved diatribution. The density function

$$
f(p ; a, b)=\frac{(a+b+1)!}{a!b!} p^{*}(1-p)^{b}, 0 \leq p \leq 1, a, b>-1
$$

known ae the beta or Pearson type I dietribution was considered. The method of moments provided estimates of the two parasetert, a and b. Sy sifmitaneously solving the two equations representing the expected value, $E(p)$ and variance, $\operatorname{Var}(p)$, the dietribution wae epecifled. Thue,

$$
\begin{aligned}
& \bar{P}=E(p) \frac{a+b}{a+b+2} \\
& \operatorname{Var}(p)=\frac{(a+1)(b+1)}{(a+b+2)^{2}(a+b+3)}
\end{aligned}
$$

yields

$$
a=\frac{\bar{P}(b+2)-1}{1-\bar{p}} \text { and } b=\frac{\left.\bar{P}(1+\bar{p})^{2}+\operatorname{Var}(p)\right]-2 \operatorname{Var}(p)}{\operatorname{Var}(p)}
$$

Table 3.1.4 summarizes the results of fitting beta distributions to the percentage of cargo damaged for pooled colliaton and for mon-colitaton aceidents, as well an the x^{2} test for goodnest of fit. The diatributions were found to adequately describe the frequencies with which cargo damages occurred. Figure 3.1.1 shows 'graphs of the theoretical distributions and served to indicate the flexibility of the type I curve, Hince the exponential forn for colitsion acctdents artses when $-1<a<0$ and $b>0$. The more general form is that for non-colifaion aceidente.

Proportion of Cargo Davaged	Based on Beta Distifibution Assumptions, for Percentage of Autonobile Cargos Danaged in Colileion and Non-Colilision Accidents.					
	Collision			Non-Collisien		
	$\frac{\text { Observed }}{\left(f_{o}\right)}$	$\frac{\text { Theoretical }}{\left(f_{\mathrm{t}}\right)}$	$\frac{\left(f_{0}-f_{t}\right)^{2}}{\left(f_{t}\right)}$	$\frac{\text { Obsprued }}{\left(I_{0}\right)}$	$\frac{\text { Theoretica }}{\left(f_{t}\right)}$ (f_{t})	$\frac{\left(f_{0}-f_{t}\right)^{2}}{\left(f_{t}\right)}$
- . 10	88	78.7	1.099	7	9.6	. 610
. 11 - . 20	17	16.3	. 030	14	11.7	.451
. 21 - . 30	5	9.8	2.351	12	11.3	.063
. 31 - . 40	3	6.2	1.651	10	11.1	. 109
.41 - . 50	2	4.4	2.309	10	8. 5	.265
. 51 - . 60	3	3.0	0.000	4	6.7	1.088
. 61 - . 70	1	1.9	0.426	5	4.8	.008
. 71 - . 80	0 -	1.1		3	$2.9)$	
. 61 - . 90	1	. 5	0.994	1	. 3	. 876
.91-1.00	2	. 1		1	. 1)	
	122	x^{2}	7.656	67	x^{2}	3.450
		$\mathrm{x}_{.05}(5)$	1.82		$x^{2} \cdot \cos ^{(3)}$	12.07
$\bar{p}=12$				F $=$		
Var(p)	- . 03			Var (p)	- - .0s	
a - -				a $=$.		
b $=1$.	. 32			$b=1$. 53	
$*(p)=\frac{(1.65)!}{(-.67)!(1.32)!} \quad p^{-.67}(1-p)^{1.32}$						
$f(p)=\frac{(2.85)!}{(.32)!(1.53)!} p^{.32}(1-p)^{1.53}$						

*The factoriale vere evaluated from Davis, H. T., "Tables of the Higher Mathematical Functions," Vol. I, Colorado Springs. Col.. 1933.

The apparent differences between the two curves indicated a greater degree of cargo damiage in non-collision accidents, which might have been anticipated especially for carriers of a product as exposed and susceptible to damages as automobiles.

Another method of viewing the distributions of per cent damage is the return period, discussed by Gumbel ${ }^{\underline{1}}$, and commonly employed in the analysis of floods. Under the assumption of an underlying beta distribution, the theoretical cumulative distribution, $F(p)$, can be determined. $1-F(p)$ represents the probability of p equalling or exceeding a certain value of p. The reciprocal of $1-F(p)$ denoted by

$$
T(p)=\frac{1}{1-F(p)}
$$

is called the return period. $T(p)$ represents the number of accidents such that, on the average, there is one observation equalling or exceeding p. Thus, the return period of the distribution function indicates the number of accidents buch that a certain amount of cargo damage might be expected to occur. The return period distribution corresponding to the cumulative distribution function of the densities of Figure 3.1.1 are shown ith Figure 3.1.2, plotted on a logarithmic ale and return periods for specific values of p are shown in Table 3.1.5.

The obvious differences between the two return period distributions mphasize the severity differences between collision and non-collision accidents. Thus, on the average, twenty non-collision accidents are 1/ Gumbel, E. J., Statistics of Extremes, Columbia University Press, New York, 1958

CUMULATIVE PROBABILITY

170.
3.2. Cargo Damages and Vehicle Damages.

observation, Figure 3.2.1 presents two hypothetical curves depieting cargo damages versus vehicle damages.
c(Cargo
Damage)

(Vehicle Damage)
Figure 3.2.1. Hypothetical Curves of Cargo Damage

Curve A reflects a nearly indestructible cargo, whereas curve B shows a cargo that is easily damaged at a relatively lower level of vehicle damage.

Ia order to observe and measure the important relationship between cargo demages, as a proportion of cotal cargo value, and vehicle damage, sets of regression equations were devised. When percent cargo damage was plotied againat the logarithm of vehicie damage the exponential tenclency was exhibited as describing the grouth of damage to cargo. The regreasion model was of the form:
\% Cargo Danage $a+b+\log$ Vehlele Damage $+c(\log \text { Fehicle Damage })^{2}$.
Table 3.2.1 shous, the derived equations for non-colifsion, fixed object, truck and auto aceidents, along with the correlation indexes.

Table 3.2.1. Regression Equations of Z Cargo Damage (y) Log Vehicle Damage (x). Automobile Cargo

Though no evidence was found in the previous analysis to indicate significant differences between objecte struck in colitsion acefdents when the distributional fors was considered, per cent cargo damage as a function of vehicle damage sectaed to behave differentiy within the group, as in Figure 3.2.2. The ability of the functional relationship to elucidate small differences suggested different rates of approaching total cargo loss, with truck and fixed object aceidents resuiting in higher cargo damages at fixed levels of vehicle damage.

With respect to non-collision accidents, the wide scattering of points called attention to the lack of a clear relationship between cargo and vehicle damage, most probably due to the nature of the cargo and the great range that damages can assume when the tractor-trailer overturns.

In general, the curves, with the solid portion emanating from the minimum, suggested a form of exponential growth of percentage cargo damaged, approaching total loss, asymptotic to the maximum possible vehicle damage.

FIG. 3.2.2. REGRESSIONS OF PERCENTAGE OF CARGO DAMAGED AND LOG VEFICLE DAMAGE IN TRUCK, AUTO, FIXED OBJECT AND

In addition to the automobile carriers' reports procured from the Interstate Commerce Commission, some data were made available by a large transporter of petroleum products. Collision type accidents involving the oil carrier and automobiles and other trucks from 1955-1959 were studied and the cargo damage and vehicle damage relation for this type of cargo derived. Figures 3.2.3 and 3.2.4 present the scatter diagram and the curves for both types of objects struck. The potential development of a family of cargo damage curves as a function of vehicle damage is exhibited in Figures 3.2 .5 and 3.2 .6 where the curves for auto carriers and oil carriexs are shown for involvements with trucks and automobiles. In accidents involving automobiles and other trucks, the levels of the curves for oil and auto carriers indicated displacements due to the cargo carried. Hence, it might be inferred that automobiles have a lower damage susceptibility than petroleum and have a smaller degree of potential destruction than the liquid cargo. . This, of course, might be due to oil leakage from a puncture in the trailer which can easily occur in accidents. However, of particular interest is the fact that given a certain level of vehicle damage, differences in the expected amount of cargo damage may be evaluated for different types of eargo.

FIG. 3.2.3. REGRESSION OF PERCENTAGE OF CARGQ DAMAGED AND LOG VEHICLE DAMAGE IN TRUCK ACCIDENTS; OIL CARGO

FIG. 3,2.4. REGRESSION OF PERCENTAGE OF CARGO DAMAGED AND LOG VEHICLE DAMAGE IN AUTO ACCIDENTS: OIL CARGO

FIG. 3.2.5. PERCENTAGE OF CARGO DAMAGED IN AUTOMOBILE ACCIDENTS; NEW AUTOMOBILE CARGO AND OIL CARGO

FIG. 3.2.6. PERCENTAGE OF CARGO DAMAGED IN TRUCK ACCIDENTS; NEW AUTOMOBILE CARGO AND OIL CARGO
3.3. Cargo Damage, Vehicle Damage and Mechanical Energy.

In equation (2.9) and in Figure 2.4.1, vehicle damage was found to be related to the energy released in a collision and available for damage by

```
(3.1) }\operatorname{log}v=\frac{E}{a+bE
where: v = Vehicle damage
    E = Energy availlable for damage
    a=.02 }\times1\mp@subsup{0}{}{6
    b = . 24.
```

A general paraboifc relation hae also been applied to vehicle damage and cargo damage, taking the form
$p=a_{0}+b_{1} \log v+b_{2}(\log v)^{2}$
where: $p=$ Proportion of total cargo damaged
a_{0}, b_{1}, b_{2}. Functions of cargo type and object struck.
Equations (3.1) and (3.2) adequately described the respective relationships in the regions where observation from accident reports occurred. As mentioned prevまously, it was impossible to observe directly a scatter diagran for cargo damages and energy, due to the lack of speed information in the reporting system when cargo damages occurred. However, since indications were obtained of vehicle damages as a function of energy and cargo damage as a function of vehi=le damage, it was possible to infer the functional form relating cargo sumages and mechanical energy.

$$
\text { Substituting } \log v=\frac{E}{a+b E} \text { in (3.2) yields }
$$

(3.3) $p-a_{0}+b_{1} E /(a+b E)+b_{2} E^{2} /(a+b E)^{2}$, which by algebraic manipulation becomes

$$
\text { (3.4) } \begin{aligned}
p & =\frac{k_{0}+k_{1} E+k_{2} E^{2}}{k_{3}+k_{4} E+k_{5} E^{2}} \\
\text { where: } & k_{0}=a^{2} a_{0} \\
k_{1} & =a\left(2 a_{0} b+b_{1}\right) \\
k_{2} & =b\left(a_{0} b+b_{1}\right)+b_{2} \\
k_{3} & =a^{2} \\
k_{4} & =2 a b \\
k_{5} & =b^{2}
\end{aligned}
$$

Thus, p equals the ratio of two quadratic equations in \mathbb{E}.
When (3.4) was plotted for the damage relationships for automobile cargos over the positive energy region, the curves of Figure 3.3.1 resulted for auto and truck collisions. The graph, which is read as a nomograph starting in the first quadrant. indicates the manner in which energy released from impact may generate damages to the tractorsemitrailer's cargo, similar to the form taken by vehicle danages. Similarly, relative potential destructability of cargos may be considered as a function of the velocitiec and direction of impact as well as mass reflected in the energy variable and it is hoped that a continuum of potential cargo destruction in collistons might be developed.

As a matter of fact, extensive efforts were made in attempting to gather pertinent cargo damage information for numerous types of cargo. Except for the two cargos discussed, these efforts have proven 179.

FIG. 3.3.1. DERIVED THEORETICAL RELATIONS BETWEEN VEHICLE DAMAGE, CARGO DAMAGE AND ENERGY AVAILABLE FOR DAMAGE
fruitiess. Discusaions with shippers as well as searches of company records emphanized the lack of adequate information with respect to monetary lowses of cargo in highway aceidenta. At the present time a survey of large private truek-fleet owners is under consideration. Unfortunately, extenaating circumstances have so far prevented the mitiation of the study. Hovever, it is belleved that the availability of adequate cargo danage information of the form discussed would yleld the resulte necessary to describe sufficiently a severtty continuum of cargo damages.
3.4. Thresholds of Cargo Damages.

The concept of a threshold for cargo damages may be defined In terms of the probability of cargo damages occurring in an aceident. By utilizing the equations relating cargo and vehicle damage and probability distributions of vehicie damages, the probability of damage to cargo can be determined.

The curves relating cargo and vehicle damages, for carriers of new automobiles, in accidents involving autos, trucks, fixed objects and non-collisions were:

$$
\begin{aligned}
& \text { Trucks: } \\
& \text { Autos: } \\
& \text { Fixed Objects: } p=1.06-1.08 x+.27 x^{2} \\
& \text { Non-Collisions: } p=1.04-1.00 x+.24 \%^{2} \\
& \text { where: } p=-.23+.18 x+.01 x^{2} \\
& x=\text { percentage of cargo damaged } \\
& x=\text { logarithm of vehicle damages. }
\end{aligned}
$$

Equating p to zero in each relationship and solving for x yields the value of \log vehicle damage where cargo damages may be expected to originate. From the lognormal density functions of vehicle damages, the probability was determined of log vehicle damage being less than the value of X satisfying the equation at $p=0$. As an illustration, If the tryck equation for cargo damage is set equal to zero, $x_{0}=2.167$. The amount of vehicle damages corresponding to $X_{0}=2.167$ is $\$ 187$; this implies that no cargo damage will result unless vehicle damage exceeds $\$ 187$ in truck collisions. Siuce log vehicle damage in truck accidents is distributed mormal (mean $=2.63$, variance * .35), the probability of vehicle damage being less than
$\$ 187$ is .27 . Thus, the inference is that in twenty-seven percent of all truck accidents, no cargo damage will occur. Table 3.4 .1 summarizes the threshold probabilities for different accident types.

Table 3.4.1. Probabilities of Cargo Damage Occurrence for New Automobile Carriers.

Accident	Minimum Vehicle	Probability of
Types	Damage Necessary	No Cargo Damage

Truck
Auto
Fixed-Object
Non-Collision

187
338
147
16
0.27
0.63
0.05
0.00

The probabilities of Table 3.4 . 1 may be interpreted as conditional probabilities denoting the probability of no cargo damage given a certain accident type, and subtracting each from one yields the probability of cargo damage occurring. Of particular interest is the probability of the simultaneous occurrence of the two events, accident type and cargo damages. In probabilistic notation, this probability is defined as:

$$
\left.P\left[C A_{i}\right]=P\left[A_{i}\right] P P_{i} C \mid A_{i}\right]
$$

where: C * Cargo damage
and

$$
\begin{gathered}
A_{i}=\text { accident type; i truck, auto, fixed object, non-collision } \\
P\left[C A_{i}\right] \text { probability of cargo damage and a particular } \\
\text { accident type occurring }
\end{gathered}
$$

 \(P\left[A_{i}\right]\) - probability of a particular accident type occurring;
 \(\sum_{P}\left[A_{i}\right]=1\)
 \(p\left[c \mid f_{i}\right]=\begin{aligned} & \text { conditional probability of cargo damage occurrence } \\ & \text { given a particular accident type. }\end{aligned}\)
 given a particular accident type.
 From the analysis of impact characteristics of truck accidents discussed in section three, the probabilities of the four accident types were derived. Thus, the total event space was described as in Table 3.4.2.

Table 3.4.2. Probabilities of Cargo Damage and Accident Type.

Trucks
Autos
Fixed Objects
Non-Collision

.157
.563
.190
.090
1.000
$P\left[C \mid A_{i}\right]$
.73
.37
.95
1.00
.090
.594

The last column of Table 3.4 .2 indicates the probability of cargo damage and a specific accident type occurring, while the sum yields the probability of cargo damages occurring in ail types of accidents.

The relevance of this analysis to carriers of radioactive materials is that it offers pessimistic conditional threshold probabilities and total event probabilities for expected cargo damage. Since the container and cargo in shipments of radioactive materials may be considered less susceptible to damage in accidents than are new automobiles, the resulting probabilities would be high or pessimistic for these shippers. In order to reduce picif, i.e. the probability of some container damage and a particuíar accident type's occurrence, it is only necessary to reduce the threshold probabilities. The threshold probabilities can be reduced by design of containers such that a greater amount of vehicle demage is required before cargo damage results. Thus, if controls are applied to increase the threshold vehicle damage in

```
non-collision accidents, the most severe type for automobile cargo
damage, and if it may be assumed further that if cargo can better with-
stand a certain increase in vehicle damage for these more severe accident
types, it will be able to withstand at least the same percentage
increment in other accident types, then a reduction in the overall
probability of cargo damage in all accidents may be realized.
As an illustration, consider the minimum amount of vehicle damage required in non-collision accidents before damages to new automobiles are expected to occur. It was seen that only sixteen dollars of vehicle damage was, required and that virtually all non-collision accidents would generate this much damage and hence cargo damage was almost certain to result. If design were such that it would take five times this amount, or eighty dollars of vehicle damage to generate container damage in non-collision accidents, due to the lognormal vehicle damage distributions the probability of exceeding this amount, or of container damage resulting, would be .985 or a \(1.5 \%\) reduction in the threshold prebability. However, assuming that the required vehicle damage level in the other accident types increased at least five times that for auto carriers, the resulting threshold probabilities would be reduced by \(61.0 \%, 75.7 \%\) and \(61.5 \%\) for fixed-object, automobile, and truck collisions respectively, due to skewness of the vehicle damage probability distributions. The assumption is equivalent to a constant shift in the log vehicle damage and percentage cargo damage curves. Table 3.4 .3 sumarizes the results of increasing the resistance of cargo damage, by a factor of five, in non-collision accidents. The probabilities may now be considered
```

more optimistic than the original threshrlds. Furthermore, the overall probability of cargo damage in all accident types has been reduced from .594 to .304 , or by 48.8%

Thus, the container damage threshold represents the first stage of the accident mechanism approaching release of radioactive cargo The threshuld protability refers to the probability of container darage, a prerequisite for release, analog us to exceeding the injury threshold related to fatality occurrence of "hman cargo."

Table 3.4.3. Probdilitities of Cargo Damage and Accident Types.
Based on Siew Automobile Carrier Thresholds
and a Design Frector of Five.

[^0]: 1/ A. J. Duncen, "Quality Control and Industrial Statistics," Chapters XXIX and XXX, Homewood, I11inois, R. D. Irwin, 1959.
 $2 f$ M. G. Kendali, "The Advanced Theory of Statistics," Vol. II, 1946, Griffin, London, p. 404.

[^1]: 1/ D. A. S. Fraser, "Statistics, An Introduction," p. 125, John Willey \& Sons, New York, 1958.

[^2]: If M. S. Raff, "The Interntate Highway Aceioent Study," Rublic Roads, 27, 170-186, 1953.

[^3]: If A comparison of the vehicie struck in the I.C.C. 4th Quarter 1959 data with the B.P.R. data showed that there were no significant differences.

[^4]: I/ National Safety Council, "Accident Facts," 1956-1959 editions, Chicago, Illinois. These data apparently represent both auto and truck accidents. Similar data for large trucks only were not available.

[^5]: If It is of interest co note that the I.C.C. relieved carriers from reporting speeds on their accident forms, because of the questionableness of this data.

[^6]: $1 /$ "A Symposium on Traffic Accident Costs," Public Roads. Vol. 31, No. 2, June 1960, p. 33.

[^7]: 1/ Gates, F., "The Analysis of Muitiple Glassifications with Unequal Numbers in the Different Classes," J.A.S.A., Vol. 29, No. 185, 1934.

[^8]: If "Automobile Facts and Figures," Automobile Manufacturers Aswo. . 1959-1960,

