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Abstract

This paper formulates the canonical theory of motion of a 

charged particle in a slowly varylr«, static electromagnetic

field. The paper Is not, however, concerned with the mathe

matically rigorous proof of adiabatic invariance, or of the 

convergence of the perturbation swthod, but with an attempt to 

write down explicitly the Hamiltonian In terms of the coordinates 

of the gyration and the drift.

The method of approach Is closely analogous to that of the 

canonical formal lain with subsidiary condition, as used in the 

theories of collective motion in many body systems, such as the

motion of the center of gravity. In the lowest order of the

perturbation It Is shown that the Hamiltonian for the motion of 

drift averaged over the phase of gyration Is given by adding to 

the original Hamiltonian of a particle, a potential term equal 

to the product of the magnetic moment and the magnetic field 

strength.
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The Canonical Theory of Motion of a Charged Particle

In a Slowly -Varying Electromagnet io Field

Introduction

are

the adiabatic Invariance of the magnetic moment of the gyrating

I
In hla theory,

In order to reduce the

subsidiary conditions.
I

We have, however, encountered a similar situation In various 

collective motions In many body problems, such as plasma oscilla
tions, the vibration of the nucleus, and the motion of the center

For Instance, we easily find the same difficulty ofof gravity.

I

t

of the coordinates of gyration and of the guiding center.

attempt one encounter# a difficulty that the degrees of freedom

of motion are increased due to the Introduction of new coordinates.

namely those of the guiding center.
apparent Increase of the degrees of freedom we are led to Introduce 

varlaDj.es and to write down explicitly the Hamiltonian In terms 
In this

The motion of a charged particle in a slowly varying electro

magnetic field has been Investigated by many authors (1), (2). 

As is well known, the characteristic features of this system 

parts, the drift and the gyration.

system has been established by Gardner (5J-
invariance Is proved to an arbitrarily high order in a slowness

The

particle and the fact that the motion can be separated into two 

The canonical theory of this

parameter, on the basis of the canonical transformation, 

present paper Is concerned with a different approach which attempts 

to introduce the coordinates of the guiding center as Independent 

H
M

M

varlaDj.es


In connection with

The method of solution established there was applied by the 

statically rigorous proof of the adiabatic invariance or with the 
existence of the solution.

In Section 1 we will introduce curvilinear coordinates,
axis of which is in the direction of the magnetic field.one

i and the vectorBThe representation of the magnetic field vector
in this system of coordinates will be given. Inpotential A

Section 2,

Hamiltonian will be given in a form separated into three parts, 
the did.ft part, the gyration part and the part expressing the 

i interaction between drift and gyration which is renormalized as 
a dri ft.

In the last section it will be shown that in the lowest
order of the perturbation the Hamiltonian for the motion of the

-5-

increased degrees of freedom if we attempt to Introduce as 
Independent variables the coordinates of the center of gravity 
of a many particle system and to write down the Hamiltonian in 
terms of these coordinates and the coordinates of the relative 
motion referred to at the center of gravity.
these problems the canonical theory with subsidiary conditions 
has been investigated extensively by many authors, [5], (6).

present author [4] to a special case of our system, namely one 
in which the magnetic field is in one direction and the motion 
of particles is in the plane perpendicular to the magnetic field.

The present paper is essentially an extension of the previous 
theory to the general case and does not deal with the mathe- 

the coordinates of the guiding center will be intro
duced in a way similar to that in the previous paper [4] and the



guiding center, averaged over the phaae of gyration la given in
by adding to the starting Hamiltonian a poten-the form obtained

n|B| .tial
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1. The Electromagnetic Field and the Curvilinear Coordinates.

The static electromagnetic field Is governed by the

equations,

div B = 0

* 
c *-(1-2) curl B =

(1.3) div E = 4-rrp 

(1.4) curl E = O

In which B Is the magnetic and E the electric field vector,

Is the current density andJ Is the charge density. AllP

these quantities are independent We assume throughoutof time.

this paper that B Eand are slowly-varying functions of

space variables.

are the charge and the mass of a particle,in which ande in

and are assumed to be given.

In the subsequent chapter we shall consider the motion of 

the particle In the electromagnetic field under consideration.

to the magnetic field will be designated by We then

will beA

7

I

e { B } 
me

The representative velocity component in a plane perpendicular

•

*
Hereafter the representative value of a quantity 
designated by ’A J .

(1-5)*

Let the representative magnitude of B be 

£b] , then we can introduce the representative cyclotron fre

quency, » given by the equation



{.Tb] - b'xH'M -(1.6)

(1.7)

(1.8)

(1-9) « 1.

(1-9) the substantial derivative dE/dt is used for theIn Eq.
I

particle.

guiding center is small, Eq. distance
period of gyration is small compared with the space

variation of the magnetic field. Let us assume that the space

(l.lOa)

(l.lOb) v

- 8

variation of the magnetic field experienced by the charged
Since, by virtue of Eq. (1.7), the variation of the

magnetic field due to the gyration around an instantaneous
(1.9) means that the drift

introduce the representative cyclotron radius

I{.tb]v-|b| I
|B|

|{yb|V.|e||

1E i
Kl/fajg?) dE/dt|

I B )

cm i vx< 
I < e(B J

'bJ '

variation of the electric and the magnetic fields are of the 
same order and denote them by then the conditions (1.7)-(l-9) 
are equivalent to the equations

and assume the following conditions among these quantities 
and the field strength:

over one

e - « 1



If the driftin which

respectively, differ greatly,and ^x

Rec Hing the well-known relationthe larger one.

E

we have from Eq. (1.10b) the conditions for {Ej,

{.sj(1.lOc)

We now discuss the representation of the magnetic field.

is given in terms ofIB

A,the vector potential as follows:

IB — curl A .

Another representatjon f the magnetic field is given by the

equation [5]

(1.12)

in which and

coordinates

(X°, X1, X2)(1.15a)

(Xc, X1, X2).(1.15b)

Using an appropriate gauge transformation for the vector

9

(uj is the representative drift velocity.

velocities parallel to and normal to the magnetic field,

1 
c

2 x x2

x1 1 X

X°

i X (B ] ,

x1

) u | denotes the order of

As is well known, the magnetic field

B = 7X1 X ?x2

are scalar functions of the cartesian 
p, and X ; namely they are given in a form,

2 x
, X1



potential we may always derive the following expressionA,
A (see [3]),for

(1-14) A =

which’ Is Independent of
arid we construct curvilinear coordi
nates Then an arbitrary displacement dr is

(1.15) dr =

in which the base vector is defined by1c

(1.16) (k = O, 1, 2).ak =

The adjoint base vector Is given by the equation

(1.17) etc.
I

in which is the determinant of the metric tensor giveng
by the equation

i
(1-18) glk k *i J

by the
equat on
*

10

I 
I

dr 
dx‘

dr
dx

I

Introducing a scalar function
2 x

X1

Hereafter,
Latin suffices assuming the values O,

glk

*1

- »ka*k -dxk

a°

x°

a°

glk

otherwise arbitrary, 
x1

the usual summation convention will be used for the 
1, and 2.

We can, alternatively. Introduce the tensor

I.-, 2 x 7x

x a^/g- ,

v° ^1X f X f SLKlCL X •

given by the equation*,



(1.19) g

We shall often use the identity

(1.2Oa)

(1.2Ob)

The contravariant or covariant component of a vector is defined
Since the gradient of a scalar functionin the usual manner.

J* Is given by the formula

have, from (1.14),we

(1.21a)
or
(1.21b)

2(1.22) S -
or we have

|B| 5 B = /goc/g(1.23)

andSince
we have

(1.24a) « 1

(1.24b) « 1 .

11

x1^Ak =

slk

ll52k ’

gKJ -

a1-a * *k

a1 x

a .1.2A u x a

Ik .1 _k - a -a

7x2S7X1

- -i- a
Vs °

are normal to the surfaces in which the
magnetic lines of force are embedded.

- &k

On the other hand Eq. (1.12) reduces to



or, equivalently, we Have

(1.25a) « 1

(1.25b) « 1.

la expressed by a scalar potentialEWhen the electric field
namely

E------ .

4 the similar relation.we have for

(1.26)
I

f
<The Canonical Transformations2.

We consider the motion of a charged particle, of mass
Letin the external field specified In Section 1.and charge e »

given by the equationLus begin with the Lagrangian

(2.1) L -

in which we refer to the curvilinear coordinates introduced in
From (2.1) we have the Hamiltonian H:Section 1.

(2-2)

12

e c<*k

I { V * slk *
p/g‘

lfrafo<glk

® —? glk x1^

lyxrn X

H . 1



-

X*’ 8are the canonical momenta conjugate to thewhere the

(2.3)

and theirLet us introduce the canonical variables

(k - 0, 1, 2).(2.*) - O,

We now introduce a canonical transformation through a generating

given by the equationfunction

(2.5)

The equations connecting the original variables and the trans

formed ones take the form:

”k "
(2-6)

*»k *

The subsidiary conditions (2.4) are transformed into 

(2.**)

13

I

3L 
dx

i

X1 ♦ 2. 
c

Q1 ’

< -
pr

*k

*k

The way of introduction of these redundant variables is the 
same as that of the collective coordinate in the theory of many 
body problems, such as the theory of the center of gravity in 
many particle systems, the theory of plasma oscillations, the 
theory of nuclear vibration and soon, (5]» [6J. In the following 
discussions, the variable 4* will be transformed so that It will 
be identified with the coordinates of the guiding center.

- p;

— xkk* x

- **

<•£ -

I*'

-

w
* x ’ plc

conjugate momenta (k - O, 1, 2), and assise the following

subsidiary conditions:*

Pk’8 

and are given by the formulae,



4Mmm

H,H*» equivalent to

1 c DAk^ “H' -(2.7)

•2
•c

XJ are defined by the equationsandIn which

’) .(2-Ba) - 8

)-(2.8b) x

are functions ofOn the other hand the

naaely

(2.9)e

D is given by the equationThe operator

(2.10) I

consequently we have

(2.11)

- 14

t

9

T1

e/3

.2'

e°e2

ilk

e2

e, c1

-Ik 
o»

fi - fid1

5lk•2
DA1

, and <2,

-ik 8

O * 
♦ X

• In the following discussions, the field quantities without the 
upper bar, such as and glk, etc., designate functions of the 

independent of x1 and should be distinguished from the 
quantities with upper bar, such as JC, and glk etc., defined by 
Eq. (2.8).

0 - x*'

e x1’

• x* *

Introducing the above relations (2.6) into (2.2) and 

using the condition (2.4«), we have the following new Hamiltonian

a -Ik 
Sc «

♦

^iPka

2' 
♦ X ,

s - Sc«°' <2) - •

-?^i>(p; -

♦ x1’ ▼ * »

“a1



4

Let us Introduce the second canonical transformation through

Cig, given by the equationa generating function

k’(2.12) • C

in which the 'a are functions of the

The canonical
variables and etc., are transformed into the new

pkvariables and k

1"(2.13) k "

k"* e

The subsidiary condition (2.M') becomes

(Uj^-x1")(2.1<) “ PCk

d- (e/c)

and

such as and etc., we have the following Hamiltonlam
H equivalent to H,

(2.15) (Atk ♦

•»

15

3
3t

3
3£

* -°k * F V*

(mUl + | Aj-x

xk"-

oecocae the coordinates of the guiding center.
• __ »

"k

k"

the functional

Ck's

I™

°2 " {pk

(At-x

— ifc) * e/5

Tk

♦ glk

etc., as follows.

-"k k’ x-Pa

using the relations (2.13) and the condition (2.1M) 

omitting all the double primes of the new canonical variables 
xk"

- ek’

t1 *8,Ok 

forms of which will be specified later, so that the

1‘).

8 - Ho



I

are given by the followingandin which Ikik
equations:

(2.16) ■ 8'

dA3U x^) +“ Ui<Pk *(2.17) ik

- f U1Uk “ “ U1Ak ,

dU
(2.18)

dC

subsequent discussions we shall show that theIn the
HHamiltonian

guiding center and the
of the particle in the system of coordinates moving with the
guiding center.

Isthat It then turns out that the distance
and that the quantities* of the order of can

(2.19)

(2.20) £> <■ + E0 ♦

2, .fore»
5.. . Introducing equa-n ■» 2forand

- 16

I

17

is modified further and the
1.

m5*

*=-lk

lk<Pl - > DA1)(pk - | DAk) ,

" UiVk

xJ

UlUk

«o

-'“Ul

-ik 8

in which we have that 
|Dn/5|/|Dn-1/5| - e ,

x-J - S- 
c dC

> Dglk

c 1VdC

ik - 8

Tb)
be expanded in power series in an increasing order of

|Dnglkl/l

| D2^ . . .

Ur's are determined 
appropriately so that the C'b become the coordinates of the 

x^s are identified with the coordinates

namely, we have

n - 1,

Ho’

dx1dxk
3

Let us assume this for the time being and note 
ds =/«ik' 

glk and

e
c



■

H

fl - H + 3(2.21) oo

etc. are given as follows:in which

(2.22)

1(2.25) Hol “

dU
(2.24) de

dp

(2.25) Ik

(2.26) HII -

(2.27)

dependsH,

CL’s

BE and

17

lk<Pi’ > DAi><Pk- c DAk>

ik(pi~ f- HA1)(pk- ® DAk)

J

. /dA

- Ha

Di<Pk- t D*x>xJ +

Hd

R “ (j- D2gik 4- . . . . )

* HII* HI

m dg

Hoo 
varying magnetic field.

dAt 
dP

+ Hol

oo

oo

Ik - K

As is obvious in the above expression of H, Hd 

on the P’s only and may be considered as the drift Hamiltonian; 

is a Hamiltonian of a particle gyrating around a slowly

It can be easily said that the remaining 

terms in (2.21) are zero and the Hamiltonian is separated 

completely in two parts, the gyration and the drift if

) + e(4

Ik
T- ^"k * c u

f D2/#

- F.xJ -

tlons (2.19) and (2.20) into H and using Eqs. (2.16)-(2.18), 

we have the final form of the Hamiltonian given by the equation,

dgik 
dP



However, the remaining terms give. In general,are constant. an
Interaction between these two systems and lead to a further drift.

, and rewrite In thewe introduce a vector
following form,

J(2.28) + R

and moreover Impose a subsidiary condition,

(2.29a) - O.

The above equation (2.29a) may also be-written in a vector form,

(2-29b) + C - 0- e

d/dt denotes the derivative.in which the symbol
will be determined as a function of the £The vector e

that the drift resulting from the Interaction between H00
Is cancelled out by «.

The adiabatic Invariance ox' the magnetic moment can be seen
On the

other hand, the condition (2.29), with 0 serves
as an equation for U, and the canonical equation of

(2.30)

shows that is the contravariant component of the drift
d/dt.velocity

I

18

d 
d* so

I

I

dH
3^

In order to renormalize the effect of this Interaction as a drift, 
®(£°, C1, £2) and rewrite H

easily from the form of the unperturbed Hamiltonian H^.
thus determined,

H,

and Hd

E + i [U X. B] 
c

(J. V W Uk 
k,s

* Hd

“ dt

u1

PJ

* Hol + HI1 + G

- U1

H - 00



t The Determination of the Vector C.5-
c,

However,

and v.
through

the following equationsI

(5.1a)

also have for /5,consequently we

(5-lb)

fl onlyH
we get theore

equations of. motion for the x

« 0,(5.2) S

and 2) ,(1 - O, 1,

andin which

8- e(Dg(5-5) gks

I
19I

e
D

S
i

V-, K1,

£^ 7)6 .“X5 -Dn

gJr

+ M. 4- i x m

- enDnglkDnglk

L1 M1

°1 * L1

vkvJvrv

scheme in Section 2 to determine 
x1

Ki

are given as follows:

. . i dA,!j’J +(e/»c)vv ♦ K±

Introducing Eqs. (5-1) Into (2.28) and retaining In 
the zero'th and the first order terms in 

k,s.

In order to perform the 
we now write down the canonical equation for 

exact Hamiltonian Is usedconsiderable effort is needed if the 
and so we apply a perturbation method in terms of 
To this end, we introduce a differential operator



(3-^)

+ e(D

, a •
- e(Dg )

b.a linear function ofwith

B(£) - B(<) + D^B + ..(3-5)

(€) + d5b11c * ••(5.6)

Is an operator given byin which

(3-7)

- t.Since

- 20

—-

d 
de

Mi - T?F-

glk

%

%

18 the component of the displacement of the 

t-t < l/a>, It Is

3sU 
d£r

;rs)
dgrk 
de1

(^) “ &ik

dgfk 
de1

dgfk 
de1

dgik
Li v j + el i

Jr)

UpvJ

^ks

Ukvr

+ e(Dg 
d€k

V8

de1

CJ ’ "J 

guiding center during the time Interval

t • t, refer to locally 
(<°(t), P(t), €2(t))»

^1
We now, at an arbitrary Instant

e(DgkJ)

ekrVSvJ ' e(fiskJ

orthogonal coordinates at the point

and investigate the motion during one period of gyration.
Denoting g1±(C) by g4(C) and eB(C)/mc by S>, we have 

for t < t + 1/cd,



through the equation,convenient to introduce an operator

(5.8)

(3.5) and (5-6) become the power series inThen Eqs.

(5-9)

(5-10) (£) = g +

Introducing Eq.(3-10) into the first term in Eq. (3-2), we get

1(5-11) ) + kl(€) + ml((-)6

+ - = o

andin which is llneai- with respect to and is

v1 + .(3.12)

and given by the equat ions

Eq.(3.11) can then be expressed in terms of these quantities, 

namely noting the relation

21

1_
2

xL

A = vD^ .

SL1

gik

/ L x =

v2D2

bL1

LL 
given by the equation

+ vMli5>1 +

ik(e?) + Astk

aL

B(<) = B(C) 4- vD^B + . . .

(511

x1

Bi2

v1

We now Introduce the quantities having the dimension of length, 
x^’s and ^^’s



I

B«) -

we have

(V** + ml<*>(5-13) ) +6

O.

Since

v,

(3.16a) - O i

(3-16b) - O

(3-16c) - O.

From (3.16c) we may put

(3.17) w O. I

The solutions or (3.16a, b) are given by

(3.18a)

(3.18b)

in which

As a result.
and

22

2°

1 
gr(£ )

9°

+ a>v1(62L

Q1

gl(^) 
we have

21

contains, at lowest, first order terms in e and 

from (3-13) the following zero-order equations:

is the absolute value of the velocity 

and fb is a constant phase.

goo

- *2 - CD VV1

92

v2 V(€) . sir <L( t-t ) +/)

12-6L1

- 9°

b11

+ w v1

— -V(£) cos | d>(t-€) +• fb J

d ~L 
dt

U)/g(C) = (g1(€)g2(€))'1

4°L<e> + -

V(t) 
(eM), ^(<)), 

22 become



—

21 -(3.19a)

(3-19b)

Introducing Eq.

and

at the lowest,

at the lowest,is,

can be neglected in comparison withHence

Since the drift

we

in such a way that the perturbation forces,determine

disappear when we Introduce the zero-order

Namely, we haveand

(3-20) 9

Since

(3.20), we obtain finallyterms with respect to v in Eq.

(3-21)

mV(€)2/B(f). Sincea

• - -uWJ.(3-22)

- 23 -

-

means the average over the phase 

and the first and the last term in Eq. (3-3)

1
7

. nn
CD

is the magnetic moment given by

<

CD

where

c

expressions for KL(£) 

of magnitude of

cancel with each other in average, neglecting the higher order

kl(C).
Now we are ready to determine

*2

KL(C)/i 

other hand, that of 

evV(C).

0,(1) JU
Independent ol 0

solutions (3-17)-(3.19) into KjJC)

<L (*)>L av

sin ^co(t-t) + )

tn which < >Bv

- O

cos ^co(t-t)

we can

0,(t).

should be Independent of the constant phase of gyration,

%(C) " **

oL(C) - - ™

is arbitrary we have, for any

Hl(^)

(3.18) and (3.19) and (3-17) into the

MjJS), we can see that the order 

a V(C)j on the 
e2V(€),

is ,



Eq. (5.21) becones a differential equation for U»

(>.25)

It

we

ux

(5.2<) )e m

la a quantity of order and J - O, thenc

the last term reduces to

(5.25)

Ln which
field and

% - e(U • oQ)2/2B.

In thia approximation. the equation along the magnetic lines of
force reduces to

(5.26) -u
■

in which

- 24 -

*0 is the unit vector in the direction of the magnetic 
Is given by

lines of force and

du_ 
■ *

)« M.B ♦ (S-JuB2* dU 3F ’

1'

is the infinitesimal are ler<th of the macnetic 
ua Is equal to dt,/dt.

*(eo^)eo(2c/e)uw eQ

If, moreover.

which determines completely the drift velocity. However, 
should be noted that Eq. (5.23) has to admit only solutions 
which vary slowly. For instance, from (2.52) and (3.23),
may express the drift velocity transverse to the magnetic field 

as follows:

7B ♦ (2£

3 ♦ | U x £ / + uVB - O,



In any cast, Introducing th* solutions of Bq. (3.2?) into 

we can get the explicit form of Haalltonlan, or of the

canonical equations of motion. As for the remaining canonical

variables instead of Integrating the canonical equation

We can, thus, obtain the complete solutions

of our dynamical system

the constant phase of gyration. is not determined from

initial conditions. Hence it seems to be worthwhile to consider

Xi.the motion averaged over phase Let an averaged quantity

then it satisfies the equation

if satisfies the equationq

f.

(3.2) that the <x*>*sHence it asm be seen from Bq. and the
obviously satisfy the foilowlr< equations:

- 23 -

dt

SB

H,

*ic
for them, we can determine them more easily from the subsidiary 
condition (2.1b).*

3T <q> - <~f> ,

_1. <v > ,d <xxVdt •

<q> • | q <W,
o

However, In most physical situations.

s..........    -.... ...... .... . ............................. ...
Of course, it can be shown that the differentiation of Bq. 

(2.1b) with respect to time gives the canonical equation for v^. 
This guarantees the consistency of the subsidiary condition.

<q> , be defined by



WiiWWl

1J

o.

la neglected.In which the higher order tern

Ll*and the property of

(3.27)

Introducing Bq. (>.27) Into Bq. (2.1*), we have

(3 28)

•yatea of the averaged variables and

the Hamilton lan.

(3.29)

Therefore the Hamiltonian for the averaged notion of the guiding

be noted
that the solutions of the canonical equation of notion have to 

be rwetrlotod to only those solutions which vary alowly.

If the drift In the direction perpendicular to the amgnetlc
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and it la easy to aee that thia a ya tea can be characterised by

d<vt>

" " UK *

however,

ll)

♦ <Lt> • O.

<M1> 

°i 
Therefore we obtain

<K> • («*> - ~ *lt)(<>|C>

la obvious from the definition of 
'«»> .io

♦ <’J> <Bia

Bqs. (3.27), (3.28) and (3.2?) determine ccapletely the canonical 

<Pv>.

- bJ26

center can be obtained by simply adding to the original Hamil
tonian (2.2) the potential u|B|.

- <pk> * °*

However, aa

It should.

♦ <Kt> ♦ i Oj ♦ <h> -

- c ♦ uB.

I
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field la negligible, Eq. (5.28) obviously gives an adiabatic 

Invariant quantity for a notion along the line of force.
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