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ABSTRACT

An algorithm for the generation of feasible schedules and

the computation of the coaqpletion tines of the Job operations

of a feasible schedule is presented. using this algorithm.

the distribution of schedule times over the set of feasible

schedules - or a subset of feasible solutions - was determined

for technological orderings that could occur in a general machine

shop. These distributions are found to be approximately normal.

Biasing techniques corresponding to "first come first serve,"

random choice of Jobs ready at each machine and combinations of

these two extremes were used to compute distributions of schedule

times.

In all the experiments "first come first serve" appears the

best in the sense that convergence to the minimum is fastest and

the sample minimum is the smallest.
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Mt ALGORITHM FOR COM3TRUCTIMG FKA3IBLK

SCHRZXHJES AMD COKFOTIMG THZUt SCHKDULK TZMK8.

1.

on*

Thus our algorithm

graph.
In addition

to th* Intrinsic

corre-

minimum Inventory,
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In particular, numerical simulation experiments were performed

projrM*abl» for automatic computers, 

schedules restricted by a large elans ot sld* conditions, 

spending to ground rules, e.g. urgency regalreasmts, due date.

Introduction.
Lacking a practical algorithm to solve sequencing problems^1?, 

for example the probins of finding a minimum schedule for the 

processing of Job operations through a given set of machines, 

must rely heavily upon simulation and sampling techniques.

A scheduling problem can be stated as a problem in linear 

graph theory in terms of which the precedence relations of 

the schedule ar* depicted in a linear graph,
is based on properties of linear graphs, as opposed to the properties 
of Gantt diagraaas which motivate diffler and Ttirvapsnn^^. (tore 

specifically, our algorithm embodies a recursive method of condensing 

the graphs corresponding to technological orderings Into one feasible 

schedule-graph. Further, in the linear graph model of a schedule, 

the completion tiara becomes a recursive function defined on the 

Thus our algorithm gives a method to compute quite easily

the completion time as well as generate a schedule, 

ecurslvlty, which makes the schecra easily 

our algorithm can construct



using our method, In which feasible schedule* were constructed

I

F1*.1O].
that tentatively reported by Giffler

It 1* feasible to search for more optimal side

conditions or to solve practical problems using sampling techniques

In conjunction with the following algorithm.

2. Precedence Relations, Directed Linear Graphs, and Schedule Time.

of technological and schedule orderings ar* given by linear graph*

1 represents the return of Job J to machine
station The directed branches of these linear graphs will

Indicate the precedence relations of th* Jobs through th* amchlnes.

(211).first time. can only be started after Job 1 at machine

1
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The program for an IBM 70* can generate sample* 

at th* processing rat* of about a thousand J*»b operation node*

In the present discussion we will limit each machine atatlon to 
contain one machine.

Her*
.<n.

but took th* least number of samples to converge 
to thl* minimum.

Convenient pictorial representations of th* precedence relation*
(7]

machine shops and also In the recent 
discussion* of multlprograssalng^2 -

In all case* tried, 
pure flrst~com*-first-serve gave not only the smallest observed 

schedule time.

.) In these experiments, 

feasible schedule* were generated at random, with th* possibility 

of a variable flrst-com*-first-served bias

for technological orderings requiring many returns of a particular 

Job to a particular machine. (Schedules of this type arise 
classically In general^1]

per second for tne most complex technological orderings [£_•£.

Thl* time estimate is about half 
and Thospson^l

We will denote each nod* of these linear graphs by a trlole of integers
J 1) * U.w. 4 a 4 th

Thus, for example, in Figure 1 at machine station 2 for the 



and Job 1 at machinestation 1 for ths flrat time.

are completed.station J for the first time, We say

(311)>(111) la possibly hold up by andthat or.

Is severed byIn the terminology of graph theory.

andla covered by coversor

It is 'the coverings that determineUsing the above concept.

T(m J 1)If wo callfor the time.

of Job for the l.o. nodeJ at machine station time.

(■ J 1),(mJ 1), and If wo coll the processing time of nodet,

(■ J 1)the cocqpletion time of node is

(».l)

can be processed only after all nodes coveringbecause node

are completed and each node Is started as soon asnode

possible subject only to ordering constraints.

For a given technological ordering me can compute recursively

In technological ordering

(311)(111) do notFlcure 1, we observe that nodes and

Hence we give them a starting time of sero. Since

the first term on the right of (2.1), that using the max operator.

(mJ 1), the completion time ofIs the starting time of node

(Hl) (511)andnodes is

6 •
162 007

the coeg»letion time of each node (m J 1). 

cover any nodes.

the completion time 
.th

the starting time of a particular Job on a particular aschlno 
th

T(m Ji)- max
(m‘J’!•}—►(■ J 1)

T(m’J’l') ♦ tMjl,

(111).

(511).

(211)
(111) 

(Hl) 

(511) la covered by (211)j or (211) covers (111) 

(311)I or by introducing a natural notation: (111)—>(211) 

(311)-b(211).

(■ J 1)



(211) (111) and (911)The node wnose completion timescovers

We thus have from (2.1)are known.

7(211) max

And finally

7(112) - 7(211) * t112*

When wo have a schedule of a set of Jobs, we can compute

However, as is well

logical orderings. A schedule that is feasible is one whose schedule
graph S

and

and

s is

(2.2)

2

the coapletlon time a in the same manner.
known, every schedule will not be feasible^1J>

-
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are conalstent with those given in

In Figure 2 we exhibit one such graph, 

note that the order relations of the •circle" nodes 
the "square* nodoa (Job ^) 

Figure 1.

i. e. some orderings 

of the Jobs through each machine station stay violate the given techno-

has order relations consistent with the given technological 
order relations.

The schedule time for a given schedule graph

For the remainder of the paper all schedule graphs are assumed to 
be feasible unless explicitly stated otherwise.

T(3) - max T(n J 1). 
(- J 1)

T(511) - t511 .

T(lll) - t112

<T(111) }
(7(511) J * *211'



T(« J 1).The covering! In the graph are used to evaluate eachS

5- The Algorithm.
3y the tern algorithm we mean a formal aet of logical and 

numerical rules for the computation of some desired numerical 

schedule time of a feasible schedule, . .• The meaning of algorithm
IspliM that the pictorial representations of both linear graphs
and Gantt diagrams are not directly suitable for use in cosgiuter

we Introduce the notion of a "table ofTherefore,programs.
coverings," a list which contains the essential information about 
the precedence relations of the linear graph.

To describe the algorithm, let us first consider an example,
(Fig. 2) from the

technological orderings and Following this

the explicit rules.
To begin, we set up a table of coverings, such as Figure 5-

The columns have the following meaning:

node designation (m J i).column lx z-column 2x
column Jx

ordering
column Ax t(m J 1).
column 5x index of schedule order for node on machine
coluasn 6: working storage location for generating starting

time of node.
T(m J 1).column 7x finish time

- 8 -
009162

nodes covering given node in technological ordering 
number of nodes covered by node in technological

J* 
processing time

namely, the construction of schedule 
A

so 
$1 and (Plg. d.-

example illustrating the features of the algorithm, we will give

function, vis. the completion times of a feasible schedule, the 



Each line of the table corresponds to one node in the technological
orderings.

t(s JThe processing timescorresponding to machines 1, 2, and J.
Note that, by using the table of coverings.are purely arbitrary.

For, consider the firstwe can reconstruct the original graphs.
In column 2 It ie stated that

in the linear graph.
Continuing with each node we could reconstruct thein column 25.

Thus thelinear graphs of Figure 1 from the table of Figure 5.
table of coverings is in some sense equivalent to the linear graph.

It becomes our purpose thereby to construct a table corresponding
Certainly the covering table of a scheduleto a feasible schedule.

must contain all the entries in the table of coverings.
andfrom orderings

(«■ J 1) thus inserted into a row will have the same
in nn»n 1 of that rowj since one object of the algorithmm

is to find the scheduled ordering of nodes on machine
for each node we will generate,

etc., node
on machine

In addition, we must compute, for the augmented table, the
T(m J 1). To do so we shall first generate thecompletion times

in column 6 and then add to this(- J 1)starting time for node
Recalling that the startingquantity the processing time

I

when we construct a schedule such as
A-
But a triple

indicating that this is the first or second or third,
(3)

line, corresponding to node (111).
(211) covers (111), hence there is an arrow from (111) to (211) 

That there is no arrow to (111) is noted

Moreover,
Sq from orderings 

we are simply inserting other node triples Into column 2.

in column 5» integers 1, 2, 5...

For convenience, the nodes are divided into three groups

5 This is actually a choice of notation and is not actually necessary.
9 -

010
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(m J 1) T(m’J'i')tlM« Of is given by the Baxlmui of on the

(■•J* (- J 1).set of covered by we shall generate the

T(m» , we shall exaMine

<m"J»l")for all nodes entered in

(■"J*!")

T(m» J'i").finished, thus

Therefore If is less than wo must

T(m'J’l»).withreplace

ordering delay before processing In addition, we oust

also take Into consideration a possible delay from the schedule;

is occupied. This

procedure Is accomplished by comparing to

where

simultaneously scheduling nodes and computing their starting and

finishing times. We will make use of this principle: A node

have

(m«J !')->(■ J 1).covers

nodes (those with - O) cover no other nodes and therefore may

10 -
Oil

Note also that the number of such nodes Is given in 

To start the scheduling of the example, we observe that certain

must be at least equal to 

T(m"J«l"),

QgCm-J'i") 

We know node

will be called by the symbol 
1), T(m JI)- Qy(m J 1).

Ostm-J'!")

%(■*

^(■"J'i")
However, this procedure only accounts for technological

T(m Jolo) to QgCm J 1)

Is currently the last node scheduled on machine

Q5<« J 1).

we will refer many times to "the quantity in 
(m J 1) . ” This 

t(m J 1) .^(s J

(■ Jo1©)
The process to be described will therefore include rules for

may be scheduled if and only if all nodes 

been scheduled, where (m J 1) covers (m'J i').

4 In what follows 
column n for node 
%(« J 1). Also,

that is, in the case that the machine

starting time for many nodes simultaneously: that is, as soon 
has been determined)

iscannot be processed until



1.
say

O,
t

1.0,
to be stored in

The
where we also show

and
set

is now scheduled.(511)
we find

1

The remainder of zero
See Figure 5-

11 -

<5-
that as

Tmjl*

Since (ill) may be scheduled on machine 1,
Now that (111) is scheduled, we flag

-1. Note

Q5(211) 
which states that there is yet

we set

may compute the maximum of
06(211).

obtaining a remainder of 1,
node to be scheduled before we can schedule (211).

Q,(lll) with some convenient negative number, 
the starting time of (111) is O, its finish time is 

• 1.0> this number is stored in Q^(lll). 
know the node covered by (111) in the technological 

then we

T(lll) " c(lll) 
Since we now

one
updated table is now given in Figure 4, 
the current linear graph and Gantt diagram.

Now we have the possibility of scheduling one of the nodes
(521). Suppose we select (511)» machine 5

Q5(5H) - 1; set Q5(5H) - -1, for
Then, since (511) covers no nodes in

Again (211) is
06(211) by

the schedule, we find T(5H) - t(5U) “ 2.0. 
the only node covering (511)J thus we replace 
max(Q6(211), T(511)) « max(l.0,2.0) - 2.0. By subtracting 
from Q-j(211), we show that we have entered in the starting time 
expression another possible contribution, 
indicates that (211) may now be scheduled.

(221), (511), 
has not been used, so set

be scheduled. From these nodes: (11J), (221), (5^1), and (521) 
select^' node (111).

ordering, namely (211), cannot start before time 1.0, 
T(lll) and QgC211)' which is 
Also we subtract 1 from

5 one may use a rule involving any of the quantities Tmji» tmji* 
etc. The rule in this exasqple is, ’’Select nodes at random."



Thus we may now schedule one of the nodes (211)* (221)*
Let us select (221). After scheduling this node*

From
and we

with finishing time T’211) This node*- 5.0.on machine 2
and

andhave been reduced by

If we now schedule node (211)* we meet a new problem not yet
discussed: machine 2

is 1.
is

finally we adjust the entries
- 4.0. C.f. Figure 7.

The schedule time of is 7-0,
T(mji).

we see that the schedule is feasiblegraphs in Figures 1 and 2*
and preserves the initial technological orderings) moreover* we
have the correct starting and finishing times for all the nodes.

Summarizing, the steps of the algorithm are:
1.)

(mJ i), Q,(m J i) to theby setting, for all
number of nodes covered by in the technological

12
b2 013

06(522)
T(211).

5-
(m J 1)

S0’ 
the maximum of the entries

Q5(2J1) 
and one must set

order (121), (521), (112), (522), and (525), we will obtain
Figure 8* the finished form of the table corresponding to

Q5(121)
0^(522) have been reduced by 1| both 0^(121)
have been set to the maximum of their previous values and

Q5(221), Q5(221), 
know that (221) has now been scheduled first

S0
ffcr comparing the final Gantt diagram with the linear

and (521).
we obtain the table in Figure 6.

T(221) - t(221) + 06(221) - 4-0) 
for (112), finding Q5(112) - 0 and 06(112)

If we now continue* processing the remaining nodes in the

is now in use* as the lowest integer in
Hence (211) will be the second node scheduled* 
06(211) - max(06(2H), T(221) ), for (221) 

the node scheduled first on machine 2. Then, as before*

Initialise the table of coverings, in particular

however* is covered by two nodes: thus both



-1.Set

and

vii.) Repeat
-1.are

is the total schedule time.

nodes previously scheduled.
with no modifications.

15 -
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On the other extreme, we might point out that to generate a 
feasible graph one never has to consider the processing times at 

for feasibility is a combinatorial property of graphs and 
Simply employ

M" Jo11 
subtract

iv.)
V.)

vl.)

Let us conclude this section with a few general comments, 
in some applications.

in replace

all, 
the times are a function defined on the graph, 
the algorithm without using columns 4,6, and 7- Still from another point

Compute T(moJoio)
For each node (m JQi) in ^(“©J©!©)*

by saxfQ^s Jol)» T(moJoio))
1 from Qj(m JQi). If there are no such 

nodes, ignore this step.
ii.)...vi.) until all entries in column 5

The maxi nn of the numbers in column 7

We observe that the processing times may depend, 
upon the starting times and in general upon any function of all the 

Our algorithm can handle these cases

^(•o^o1©'

o-
set
set
bj

■OJ 1).
^(“o^O1©} "
Q^CWqUqIq) - k + 1 and replace 

■»* (%(■©.*O1©) • T<"oJ wher®

orderings and by setting
11.) Select one of the nodes

Q5(« JI) - %(» J 1) - 0.
(■oJo1o) wlth Q5<MoJo1o) - °-

k
 1

o*

o

a 
a

X

cr

1 o£

& J?I
x C

i



to that described In the algorithm.

[*]

In the following aectlon we discus* another possibility.

4. Numerical Experiments.

ordering*.

generated would have for the most part schedule tines near the
minimum schedule tine.

In any scheduling problem, we are attempting to

tfie minimum scheduleIf we call
time Is

T(m J 1)(♦.1) n

T(n J 1) is given by (2.1). IT we choose a subset ofwhere

- 14
ItiZ 015

Using the algorithm described In section 5, we have randomly 
sampled feasible schedules for various sets of technological

The purpose of our experiments was to see If a possible 
bias procedure could be determined so that the schedules randomly 

Finally, in many cases the rules for selecting nodes to be 
In fact.

Formally, 
find the minimum schedule time over the set of feasible schedules, 

the set of feasible schedules,

of view, if one wishes to evaluate some recursive function on 
an already existing linear graph he may use a very similar technique

processed are logical functions of the processing times.
It seems that one very promising field for further research is the 
discovery of rules which only allow a subset of all possible 
schedules to be generated, but In such a way that the chance of 
obtaining a minimal schedule is Increased. Giffler and Thompson 
have discovered one such rule In their concept of "left-shifting."



*

If» 1. •feasible schedules *

T(« J 1) £(*2)

where

3F • A biased procedure chooses some subsetschedules
It is desired that thia biased subsetfeasible schedules.

contains
when we

one node frosi

a) Choose a node at random. n

has probability
on which the startingb) PQLet

Then randomly choose a nodetime is a minimum.

Q-from
corresponds to a "first cosae, first(b.)Observe that rule

the abovex
(b.) with probabilitiesc) Use methods

respectively. Pand1-p P

the "bias factori" p - O

we could sampleP

- 15 -
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la the maximum schedule time over all feasible 

J of

S«Z (mjT)<S

3. 
n

be a subset of

P,

are about to perform step 
the set of nodes which now may be scheduled.

corresponds to purely random selection;

first serve."

(•-)
For convenience we shall call

nodes, select a node In such a way that each node 

of being chosen.)

served" type of rule.
Our biasing corresponds to a third case containing both of

"first come.

with a relatively high probability.

Suppose we define a bias In the following sannars 

11) of the algorithm, we saast select

p - 1 Implies a continual application of 

It was hoped that by a Judicious choice of

Let us consider two possible ways of making this choices 
(I.e., If P has



from a subset of schedules which would contain relatively many

minimum schedules.
2-Job

*-machine example the
Hoetrtr, thia example la extreme indoes not contain the ■Inlaua.

the sense that there are relatively Tew schedules not cf the "first

cone,
thefirst serve" schedule*come.

first com, firsttotal number of schedules giving the minimum

schedule value relative to the total number of feasible

schedules la very much smaller than the number of minimum "first

first serve" schedules relative to the total number of

"first coma, first serve schedules.

In our experiments wo have used biasings to determine the

schedules.
9* the corresponding processing

In Figure IO

distributions determined by the sample expected schedule time and

1,

schedule times » we see that the biasing of 1
m thisof the schedule tine emaller than tne other variances.

- 16 -
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coat,

probability distributions of the schedule times over the set of 

The technological orderings of one set of numerical

experiments are given In Figure 

times of each operation are given above each node 

we give the distributions of schedule times determined by random 

Since the processing times of each operation are Integers, 

the schedule times are integers> however, we have drawn the normal 

sample variance of the schedule time as continuous functions.

"first cease, first serve,"

serve"

first serve" type that are smaller than the minimum "first 
_ , 15)In the assembly line ca»el>J

Ve see that the biasing of 

gives an expected schedule time smeller than the other expected 

gives a variance

It is well known that a subset of schedules 
r 

may not contain the minimum schedule: in the Johnson1'"

"first come, first serve" subset of schedules



o-

example It Is better to sasqple from the bias of 1 set of schedules

greatest.

first serve* set gives the ■Intsa.cost,
case an explanation In probability has been given

We have also noticed that as the technological orderings

first serve* case converges

to the minimus ssnple In less trials.
It would

seem

018 - 17 -

For the assembly line
(5)

with bias p - 1 for the probability of finding a minimus; seems 

In all our experiments, we have noticed that the "first

become more complex, the "first cose,
(An example of a typical, 

complex technological ordering is given In Figure 13.)

that reversals of operations rarely (If at all) produce schedules

whose times are smaller than the "first cose, first serve" minimum.
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*

*ay bo generatedthenKsmsrk It
IBwith suitable rule

In

be thelot
la feasible.

O
is void orotherwise

la

any node

(- J 1) with

chosen.

then

IT
feasible g aph

6 C.f. footnote 5, p. 11. 019- 18 -

has a non-aero probability of being

Again, either
Thus we obtain a sequence of

O 
contains an Initial node

dlwen any feasible graph

11). Prooft As

l.e..

Q5(a J 1) - 0

If the nodes are selected In order

graphs Sx,..., 

obtained from

will be generated.
are a finite number of feasible graphs.

•o’
..... J,

•o

is a random rules

Jl*”” wn 
then the result of the process is s

•o
is feasible, either

(one which

•*♦1
Suppose rule 11)

»0

•o
Remark St

by renewing node (m^J^l^).

at any stage of the computation.

®0* 

•o 
empty or there aunt be an Initial node

cowers no other node),otherwise SQ has a loop, 

graph derlwed from SQ by remowlng node 

would not bo, either.

where S. Is wold and such that

times calculated are correct, 

graph theory. In partlculaur, those proofs bold for feasible 

(finite, transitive) graphs, and also for partially-ordered 

ays tens, since the latter can be reduced to the former by suitably 

redefining the non-cowsrlngs (of.ref. (?))• Proofs of the following 

-------- are Mrsly indicated > formal rigor may be obtained by those 

who wish to consult (?)•

Perhaps we may Indicate a few Justifications for the above 

process, to show all possible feasible schedules may bo generated 

[depending on the selection rule in step (11) ] and that the
The terminology la that of linear



Proof.

(- J 1).
which has been previouslyordering

had also been

(■ J i) on the ease machine. Thus

be feasible.
must occur inRamark Jh

if we resove the nodes from

has been scheduled.

)4 1 or *

is void.

Jv

*

(■ J 1)by
(■ J 1) does.directly before

19 -1«2 020

previously scheduled.

precede and follow

It la Impossible to generate a loop with the algorithm, 

for consider the stage of the process in which we select a node 

this node is not covered in any feasible technological

'■©J©1©)
could only have been scheduled after

there

by sone node

(■©J©*©) ' 
all of the nodes which it does cover in

Only when all the Jy

Thus all nodes in all technological orderings

*1 1
scheduled, for

J1 
Also, it is impossible that node

Proof* For, each 

initial elMMsnt

(■©J©*©) 
SQ must

*v 
process end. 

will have to be scheduled la SQ. 
Remark Thus the algorithm can generate all of the feasible 

schedules and only these schedules frost a sot of feasible technological 

ordorings. Proof» For, all the schedules can be generated by remark 1, 

and by rsmarks 2 and J, only feasible graphs that contain all nodes

can be generated.
nomark The processing times generated are those given by 

forasila (2.1). Proofi All contributions to the starting term, 

are entered into the maximum term for any (m’J’l') of the nodes 

over which the maximum of T(m»J»l') is taken is either covered 

in some technological ordering, or occupies machine m

Bach node in each graph must occur in Sq.

is feasible and therefore has at least one*v 
(0*4,10. Further, 

as they are scheduled, when (myJyly)

will be at least one more initial node (m 
are thus void will the
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5
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5
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6
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Figure 1.

picturing technological ordering*.Linear graphs

112121111 /

211221

323522511 521

constructed from the technological

022£G2

Figure 2.
A feasible schedule 
orderings of Figure 1.
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Initialised Table of Coverings

Tt

1.0o211111
1.01112

I5-01325121
1.02112211
J.oo121,322221

2.0O211311
1.0O322321
1.02323322
1.02323

Figure 3
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Node (111)After Scheduling

T%t
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(311)After Scheduling Node
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(221)Scheduling NodeAfter

T%t
1.011.0-1211111
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Figure 7
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a.for

T%

1.011.0-1211111

6.0 7.051.0-1112

6.02 5.0-1 5.0121

4.05-02-1 1.0112211

5.01-1 5.0121*322221

2.012.0-1211511

5.02.021.0-1

4.05.05-1 1.0

6.04 T.O1.0-1

table

12111■ 1

511■ 5
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