UNCLASSIPIED

AEC Computing and Applied Mathematios Center Institute of Mathematical Sciences New York University

```
TIP-4500
15th DA.
NYO-9488
PHYsIcs
AN ALGORITHM FOR CONSTRUCTINO FEASIELE SCHEDULES AND CONIPUTING THEIR SCHEDULE TINES. by
Jack Heller and George Logemann
November 15, 1960
```

- 2 -

162002
UNCLASSIPIED

Abstract

An algorithe for the genoration of feasible scheduies and the computation of the completion times of the job operations of a feasible schedule is presented. Using this algorithm, the distribution of schedule times over the set of feasible schedules - or a subset of reasible solutions - was determined for technologioal orderinge thet could oceur in a general machine shop. These distributions are found to be approximately noxmal. Biasing techniques corresponding to "rirat come firat serve," random choice of jobs ready at each machine and combinations of these two extremes were used to compute distributions of schedule times.

In all the experimenta "rirat come rirat serve" appears the best in the sense that convergence to the minimum is fastest and the sample minimum is the amallest.

NYO-9488

TABLE OF CONTENTS

Page
Abatract. 2
Section

1. Introduction. 4
2. Precedence Relations, Directed Linear Graphs, and Schedule Time 5
3. The Algorithm 8
4. Numerical Experiments 14
Append1x. 18
Bibllography 20

AN AIGORITHM FOR CONSTRUCTING PEASIBLE

 SCHEDULES AND CONPUTING THETR SCHEDULE TMES.1. Introduction.

Lacking a practical algorithm to solve sequencing problems [1], for example the problem of finding a Minimun schedule for the processing or job operations through a given set of machines, one muat rely heavily upon almalation and aampling techniques.

A scheduling problem ean be stated as a problem in innear graph theory ${ }^{[7]}$, in termes of which the precedence relations of the schedule are depieted in a linear graph. Thus our algorithm is based on properties of linear graphs, ta opposed to the properties or dantt diagrams which motivate aiffler and Thompson ${ }^{\text {[4] }] . ~ N o r e ~}$ apecifically, our algorithn embodien a recursive method of condensing the graphs corresponding to technological orderinge into one reasible schedule-graph. Further, in the linear graph model of a schedule, the completion time becomes a recur*ive function defined on the graph. Thus our algorithm gives a method to oompute quite ensily the completion time as well as generate a schedule. In addition to the intrinsic -ecuraivity, which maices the acheme easily programmable for automatie computers, our algorithm can construct schedules reatricted by a large claas of ilde conditions, corresponding to ground rules, e.g. urgency requirements, due date, minimum inventory,

In particular, numerical simulation experimenta were performed

- 4 -
using our method, in which feasible schedules were constructed for technological orderings requiring many returns of a particular Job to a particular machine. (Schedules of this type arise classically in general ${ }^{[2]}$ machine shoph and also in the recent diacussions of multiprogramming ${ }^{[2]}$.) In these experiments, feasible schedules were generated at random, with the possibility of a variable first-come-first-served blas. In all cases tried, pure firat-come-firat-serve gave not only the smallest observed sohedule time, but took the least number of samples to converge to this minimum. The program for an IBM 70% can generate samples at the processing rate of about a thousand job operation nodes per second for the most complex technological orderings [a-r. Fig.10]. This time eatimate is about half that tentatively reported by oirfler and Thompson ${ }^{[4]}$. It is feasible to search for more optimal side conditions or to solve practical problems using sarpling techniques in conjunction with the following algorithm.

2. Precedence Relations, Directed LInear Graphs, and Schedule Time. Convenient plotorial representations of the precedence relations of technological and sohedule orderings are given by linear grapha[7]. We will denote each node of these linear graphs by a triple of integers (im 1): Here 1 reprasents the 1 th return of job j to machine station $\mathrm{m}^{(1)}$. The directed branches of these linear graphs will Indicate the precedence relations of the jobs through the machines. Thus, for example, in Figure 1 at machine station 2 for the first time, (211), can only be started arter job 1 at machine
[^0]- 5 -

462006
station 1 for the firat time, (111), and job 1 at machine station 3 for the first time, (311), are completed. We say that (211) is possibly held up by (111) and (311)s or, In the terminology of graph theory, (111) is covered by (211) and (311) is covered by (211)s or (211) oovers (111) and (311)s or by introducing a natural notation $(111) \rightarrow(211)$ and (311) \rightarrow (211) .

Using the above concept, it is the coverings that determine the starting time of a partioular job on a partioular machine for the 1 th time. If we call $T(m J i)$ the completion time of job j at machine atation m for the 1 th time, i.6. node (m J 1), and if we cell $t_{\text {mj1 }}$ the processing time of node (m j 1), the completion time or node (m j1) is

because node (m j 1) can be processed only arter all nodes covering node (m J 1) are completed and each node is started as soon as possible subject only to ordering constraints.

For a given technologieal ordering we can compute rooursively the completion time of each node (m J 1). In technological ordering Q1, Figure 1, we observe that nodes (111) and (311) do not cover rany nodes. Hence we give them a starting time of zero. Since the firat term on the right of (2.1), that using the max operator, is the starting time of node (m I 1), the completion time of nodes (111) and (311) is

$$
\begin{aligned}
& T(111)=t_{111} \\
& T(311)=t_{311}
\end{aligned}
$$

The node (211) covers (111) and (311) wnose completion times are known. We thus have from (2.1)

$$
T(211)=\max \left\{\begin{array}{l}
T(111) \\
T(311)
\end{array}\right\}+t_{211}
$$

And IInally

$$
T(112)=T(211)+t_{112}
$$

When we have a schedule of a set of jobs, we oan compute the completion timea in the aame manner. However, as is well known, every schedule will not be feasible ${ }^{[1,7]}$, i.e. some orderings of the jobs through each machine atation may violate the given technological orderings. A schedule that is reasible is one whose schedule graph S has order relations consistent with the given technological order relations. In Figure 2 we exhibit one such graph, S_{0}, and note that the order relations of the "circie" nodes (job L_{2}) and the "aquare" nodes (Job O_{2}) are consistent with those given in P1gure 1.

The achedule time for a given schedule graph ${ }^{(2)} S$ is
(2.2) $T(S)=\max _{(\min 1)} T(\operatorname{m} 1)$.

2 For the remainder of the paper all schedule graphs are assumed to be reasible unless explicitiy atated otherwiae.

- 7 -

462008

The coverings in the graph S are used to evaluate each $T(m$ j 1).

3. The Algorithm.

By the term algorithm we mean a formal set of logical and numerical rules for the computation of some desired-numerical function, viz. the completion times of a feasible schedule, the schedule time of a feasible schedule, ... The meaning of algorithm implies that the pictorial representations of both linear graphs and Gantt diagrams are not directly suitable for use in computer programs. Therefore, we introduce the notion of a "table of coverings," a list which contains the essential information about the precedence relations of the linear graph.

To describe the algorithm, let us first consider an example, namely, the construction of schedule S_{o} (Fig. 2) from the technological orderings δ_{1} and Z_{2} (Fig. 1). Following this example illustrating the features of the algorithm, we will give the explicit rules.

To begin, we set up a table of coverings, such as pigure 3 . The columns have the following meaning:
column 1: node designation (m \mathbf{j}):
column 2: nodes covering given node in technological ordering of .
column 3: number of nodes covered by node in technological ordering f_{j}.
column 4: processing time $t(m$ j 1).
column 5 : index of schedule order for node on machine m.
column 6: working storage location for generating starting time of node.
columin 7: finish time $T($ in 1).

Each line of the table corresponds to one node in the technological orderings. For convenience, the nodes are divided into three groups corresponding to machines 1,2 , and 3 . The processing times $t(m j i)$ are purely arbicrary. Note that, by using the table of coverings, we can reconstruct the original graphs. For, consider the first line, corresponding to node (111). In column 2 it is stated that (211) covers (111), hence there is an arrow from (111) to (211) In the inear graph. That there is no arrow to (111) is noted In column 3. Continuing with each node we could reconstruct the Iinear graphs of Figure 1 from the table of Figure 3. Thus the table of coverings is in some sense equivalent to the linear graph.

It becomes our purpose thereby to construct a table corresponaling to a feasible schedule. Certainly the covering table of a schedule must contain all the entries in the table of coverings. Moreover, when we construct a schedule such as S_{o} from orderings O_{1} and R, we are simply inserting other node triples into column 2 .
But a triple (m j i) thus inserted into a row will have the same m as in column 1 of that row; since one object of the algorithm is to find the scheduled ordering of nodes on machine m, for each node we will generate, in column 5, integers 1, 2, 3... indicating that this is the first or second or third, etc., node on machine $m^{(3)}$.

In addition, we must compute, for the augmented table, the completion times $T(m$ j 1). To do so we shall first generate the starting time for node (m ji) in column 6 ard then add to this quantity the processing time $t(m j 1)$. Recalling that the starting

3 This is actually a choice of notation and is not actually necessary.
time of (m j 1) is given by the maximum of $T\left(m^{\prime} j^{\prime} 1^{\prime}\right)$ on the set of ($\mathrm{m}^{\prime} \mathrm{j}^{\prime} \mathrm{I}^{\prime}$) covered by ($\mathrm{m} \mathbf{j} 1$), we shall generate the starting time for many nodes simultaneously: that is, as soon as $T\left(m^{\prime} j^{\prime} 1^{\prime}\right)$ has been determined ${ }^{(4)}$, we shall examine $Q_{6}\left(m^{\prime \prime} j^{\prime} 1^{\prime \prime}\right)$ for all nodes ($\left.m^{\prime \prime} j^{\prime} 1^{\prime \prime}\right)$ entered in $Q_{2}\left(m^{\prime} j^{\prime} 1^{\prime \prime}\right)$. We know node ($\mathrm{m}^{\prime \prime} \mathrm{j}^{\prime \prime} \mathrm{I}^{\prime \prime}$) cannot be processed until (m'j'1') is Pinished, thus $Q_{6}\left(m^{\prime \prime} j^{\prime} 1^{\prime \prime}\right)$ must be at leant equal to $T\left(m^{\prime} j^{\prime \prime} 1^{\prime \prime}\right)$. Therefore if $Q_{6}\left(m^{\prime} j^{\prime} 1^{\prime \prime}\right)$ is less than $T\left(m^{\prime \prime} j^{\prime \prime \prime}\right)$, we must replace $\theta_{6}\left(m^{\prime \prime} \mathrm{j}^{\prime} 1^{\prime \prime}\right)$ with $T\left(m^{\prime} \mathrm{J}^{\prime \prime} 1^{\prime \prime}\right)$.

However, this procedure only accounts for technological ordering delay before processing (in j 1). In addition, we must also take into consideration a possible delay from the schedule; that is, in the case that the machine m is occupied. This procedure is accomplished by comparing $T\left(m J_{0} 0_{0}\right)$ to $Q_{6}(m$ J 1$)$ where ($m \mathrm{~J}_{0} \mathrm{O}_{0}$) is currently the last node scheduled on machine m.

The process to be described will therefore include rules for simultaneously scheduling nodes and computing their starting and finishing times. We will make use of this principle: A node (m j i) may be scheduled if and only if all nodes ($\mathrm{m}^{\prime} \mathrm{j}$ i') have $^{\prime}$) he been scheduled, where (m j i) covers (m'j $1^{\prime \prime}$), ($\left.m^{\prime \prime} \mathrm{j} 1^{\prime \prime}\right) \rightarrow(m$ j 1$)$. Note also that the number of such nodes is given in $Q_{3}(m, j 1)$.

To start the scheduling of the example, we observe that certain nodes (those with $Q_{3}=0$) cover no other nodes and therefore may 4 In what follows we will refer many times to "the quantity in columan n for node (m j 1)." This will be called by the symbol $Q_{n}(m \mathrm{~m} 1)$. Also, $t(m \mid 1)=Q_{4}(m \mid 1), T(m \mid 1)=Q_{7}(m j 1)$.
be scheduled. From these nodes: (111), (221), (311), and (321) select (5) node (111). Since (111) may be scheduled on machine 1 , we set $Q_{5}(11 i)=1$. Now that (111) is scheduled, we flag Q_{3} (111) with some convenlent negative number, say -1 . Note that as the starting time of (111) is 0 , its finish time is $T_{(111)}=t_{(111)}=1.0 ;$ this number is stored in $Q_{6}(111)$. Since we now know the node covered by (121) in the technological ordering, namely (21i), cannot start before time 1.0 , then we may compute the maximum of $T(111)$ and. $Q_{6}(211)$, which is 1.0 , to be stored in $Q_{6}(211)$. Also we subtract 1 from $Q_{3}(211)$ obtaining a remainder of 1 , which states that there is yet one node to be scheduled before we can schedule (211). The updated table is now given in Figure 4, where we also show the current linear graph and Gantt diagram.

Now we have the possibility of scheduling one of the nodes (221), (311), and (321). Suppose we select (311); machine 3 has not been used, so set $Q_{5}(311)=1$; set $Q_{3}(311)=-1$, for (311) is now scheduled. Then, since (311) covers no nodes in the schedule, we find $T(311)=t(311)=2.0$. Again (211) $1 s$ the only node covering (311); thus we replace $0_{6}(211)$ by $\max \left(Q_{6}(211), T(311)\right)=\max (1.0,2.0)=2.0$. By subtracting 1 from $Q_{3}(211)$, we show that we have entered in the starting time expression another possible contribution. The remainder of zero indicates that (211) may now be scheduled. See Figure 5 .

5 One may use a mule involving any of the quantities $T_{m j i}, t_{m j 1}$, etc. The rule in this example is, "Select nodes at random."

Thus we may now schedule one of the nodes (211), (221), and (321). Let us select (221). After scheduling this node, we obtain the table in Figure 6. From $Q_{3}(221), Q_{5}(221)$, and $Q_{7}(221)$ we know that (221) has now been scheduled first on machine 2 with finishing time $T(211)=3.0$. This node, however, is covered by two nodes: thus both $Q_{3}(121)$ and $Q_{3}(322)$ have been reduced by $1 ;$ both $Q_{6}(121)$ and $Q_{6}(322)$ have been set to the maximum of their previous values and $T(211)$. If we now schedule node (211), we meet a new problem not yet discussed: machine 2 is now in use, as the lowest integer in Q_{5} (2j1) is 1 . Hence (211) will be the second node scheduled, and one must set $Q_{6}(211)=\max \left(Q_{6}(211), T(221)\right)$, for (221) is the node scheduled first on machine 2 . Then, as before, $T(221)=t(221)+\theta_{6}(221)=4.03$ finally we adjust the entries for (112), finding $Q_{5}(112)=0$ and $Q_{6}(112)=4.0$. C.․․ Figure 7 . If we now continue, processing the remaining nodes in the order (121), (321), (112), (322), and (323), we will obtain Figure 8, the finished form of the table corresponding to S_{0}. The schedule time of S_{0} is 7.0 , the maximum of the entries $T(m j 1)$. By comparing the final Gantt diagram with the ilnear graphs in Figures 1 and 2, we see that the schedule is feasible and preserves the initial technological orderings; moreover, we have the correct starting and finishing times for all the nodes. Summarizing, the steps of the algorithm are:
> 1.) Initialize the table of coverings, in particular by setting, for all (m j 1), $Q_{3}(m \mathrm{j}$ 1) to the number of nodes coversd by (m j 1) in the technological
orderings and by setting $Q_{5}\left(\begin{array}{lll}\mathrm{m} & j & 1\end{array}\right)=Q_{6}\left(\begin{array}{lll}\mathrm{m} & j & 1\end{array}\right)=0$.
11.) Select one of the nodes ($m_{0}^{J} o_{0}^{1} 0$ with $Q_{3}\left(m_{0} j_{0}^{1} 0\right)=0$. Let $k=\max _{(j, 1)} Q_{5}\left(\mathrm{~m}_{0}{ }^{J} 1\right)$.
a.) If $k=0$, set $Q_{5}\left(m_{0} o_{0}^{1} 0\right)=1$.
b.) If $k \neq 0$, set $Q_{5}\left(m_{0} u_{0}{ }_{0}\right)=k+1$ and replace $Q_{6}\left(m_{0} 0_{0} 0_{0}\right)$ by $\max \left(Q_{6}\left(m_{0} 0^{1} 0_{0}\right), T\left(m_{0^{j}} 1\right)\right)$ where $Q_{5}\left(\mathrm{~m}_{0}{ }^{1}\right)=k$.
iv.) Set $Q_{5}\left(m_{0} 0_{0}^{1} 0\right)=-1$.

vi.) For each node ($m J_{0}{ }^{1}$) in $Q_{2}\left(m_{0} J_{0} O_{0}\right)$, replace $Q_{6}\left(m J_{0^{1}}\right)$ by $\max \left(Q_{6}\left(m J_{0}\right), T\left(m_{0} 0_{0} o_{0}\right)\right)$ and subtract 1 from $Q_{3}\left(m J_{0}\right)$. If there are no such nodes, ignore this step.
vil.) Repeat 11.)...vi.) until all entries in column 3 are -1 . The maximum of the numbers in column 7 is the total schedule time.
Let va conclude this section with a few general comments.
We observe that the processing times may depend, in some applications, upon the starting times and in general upon any function of all the nodes previously scheduled. Our algorithm can handle these cases with no modifications.

On the other extreme, we might point out that to generate a feasible graph one never has to consider the processing times at all, for feasibility is a corabinatorial property of graphs and the times are a function defined on the graph. Simply employ the algorithm without using columns 4,6, and 7. Still from another point
of view, if one wishes to evaluate some recuraive function on an already existing linear graph he may use a very similar technique to that described in the algorithm.

Finally, in many cases the rules for selecting nodes to be processed are logical functions of the processing times. In fact, it seems that one very promising field for further research is the discovery of rules which only allow a waset of all possible schedulies to be generated, but in such a way that the chance of obtaining a minimal schedule is increased. Giffier and Thompson [4] have discovered one such rule in their concept of "ieft-shifting." In the following section we discuss another possibility.
4. Numerical Experiments.

Using the algorithm described in section 3, we have randomly sampled feasible schedules for various sets of technological orderings. The purpose of our experiments was to see if a poasible blas procedure could be determined so that the schedules randomiy generated would have for the most part schedule times near the minimum schedule time.

Formally, in any scheduling problem, we are attempting to find the minimum schedule time over the set of feasible schedules. If we call of the set of feasible schedules, the minimum schedule time is

$$
\begin{equation*}
T_{m i n}=\min _{S \in \mathcal{S}}^{\max }(m j) \in S T(m j 1) \tag{4.1}
\end{equation*}
$$

where $T(m \mathrm{~m}$) is given by (2.1). If we choose a aubset of
feasible schedules \&, 1.e. if sc,
(4.2) $T_{\min } \leq \min _{S \in S(m j 1)<S}^{\max } T(m j 1) \leq T_{\max }$.
where $T_{\text {max }}$ is the maximum schedule time over all feasible schedules \mathcal{F}. A biased procedure chooses some subset \& of feasible schedules. It is desired that this biased subset \& contains $T_{m i n}$ with a relatively high probability.

Suppose we define a bias in the following manner: when we are about to perform step 11) of the algoritinm, we must select one node from P, the set of nodes which now may be scheduled. Let us consider two possible ways of making this choice:
a) Choose a node at random. (I.e., if P has n nodes, select a node in such a way that each node has probability $\frac{1}{n}$ or being chosen.)
b) Let Q be a subset or P on which the starting time is a minimum. Then randomly choose a node from Q.
Observe that rule (b.) corresponds to a "first come, flat served" type of rule.

Our biasing corresponds to a third case containing both of the above:
c) Use methods (a.) and (b.) with probabilities 1-p and p respectively. For convenience we shall call p the "bias factor;" $p=0$ corresponds to purely random selection; $p=1$ implies a continual application of "first come, first serve." It was hoped that by a judicious choice of p we could ample

- 15 -
from a subset of schedules which mould contain relatively many minsmum sohedules. It is well known that a subset of schedules may not contain the minimum schedule: in the Johnson ${ }^{[3]}$ 2-job 4 -mach1ne example the "rirst come, rirat serve" subset or schedules does not contain the minimum. However, this example is extreme in the sense that there are relatively fem schedules not of the "firat come, firat serve" type that are amalier than the minimum "firat come, firat serve" schedule. In the asaembly line case ${ }^{[5]}$ the total number of schedules giving the minimum "rirst come, firat serve" schedule value relative to the total number of reasible schedules is very much smaller than the number of minimum "first come, firat serve" schedules relative to the total number of "rirat come, first serve" schedules.

In our experimenta we heve used biasings to determine the probability distributions of the schedule times over the set of sohedules. The technological orderinga of one set of numerical experimenta are given in Figure 9 i the corresponding processing times of each operation are given above each node. In pigure 10 We give the distributions of scheduie times determined by random sampling. Since the processing times of each operation are integers, the schedule timea are integers; however, we have drawn the nomal distributions determined by the ample expected schedule time and sample variance of the schedule time as continuous functions.

We see that the blasing of 1 ; "rirat come, first serve," gives an expected schedule time ameller than the other expected achedule timess we aee that the biaaing of 1 gives a variance of the schedule time smaller than the other variances. In this
example it is better to sample from the bias of 1 set of schedules with blas $p=1$ for the probability of finding a minimur seems greatest. In all our experimenta, we have noticed that the "firat come, firat serve" set gives the minimum. For the assembly inne case an explanation in probability has been given ${ }^{[5]}$.

We have also noticed that as the technological orderings become more complex, the "rirst come, first serve" case converges to the minimum ample in lesa trials. (An example of a typleal, complex technological ordering is given in pigure 13.) It would seem that reversals or operations rarely (if at all) produce schedules whose timea are amaller than the "rirat come, first serve" minimum.

APPENDIX

Perhaps we may indicate a few justifications for the above process, to show all possible feasible schedules may be generated [depending on the selection rule in atep (ii) (6)] and that the times calculated are correct. The terminology is that of anear graph theory. In particular, these proofs hold for feasible (finite, transitive) graphs, and also for partially-ordered systems, since the latter can be reduced to the former by suitably redefining the non-coverings (or.ref. [7]). Proofs of the following romarics are merely indicated formal rigor may be obtained by those who wish to consult [7].
Remark I^{2} Given any feasible graph S_{0}, then S_{0} may be generated with suitable rule 11). Proof $:$ As S_{0} is feasible, either S_{0} is empty or there must be an initial node $\left(m_{1} j_{1} i_{2}\right)$ in s_{0} (one which covers no other node), otherwise s_{0} has a loop. Let s_{1} be the graph derived from s_{0} by removing node $\left(m_{1} J_{1} \mathcal{I}_{1}\right)$. s_{1} is feasible, otherwise S_{o} would not be, either. Again, either S_{1} is void or contains an Initial node $\left(\mathrm{E}_{2}{ }_{2}{ }^{2} 2\right)$. Thus we obtain a sequence of graphs $s_{1}, \ldots, s_{k c}$ where $s_{k c}$ is void and such that s_{v+1} is obtained from S_{v} by removing node ($\left.\mathrm{m}_{v^{3}} v^{1} v\right)$. Suppose rule 11) is a random rules 1.e., at any stage of the computation, any node ($m \mathrm{j}$ 1) with $Q_{3}(m \mathrm{~m}$) $=0$ has a non-zero probability of being chosen. If the nodes are selected in order $\left(m_{1} J_{1}{ }_{1}\right), \ldots,\left(m_{k} j_{k}{ }_{k}\right)$, then $S_{0} w 111$ be generated.
Remark 2: If J_{1}, \ldots, J_{n} are a finite number of feasible graphs, then the result of the process is a feasible graph S_{0}.
${ }^{6}$ C.f. footnote 5, p. 11.

Proof. It is impossible to generate a loop with the algorithm, for consider the stage of the process in which we select a node (m J i). This node is not covered in any feasible technological ordering J_{1} by some node ($\mathrm{m}_{0} o_{0} o_{0}$) which has been previously scheduled, for ($\mathrm{m}_{\mathrm{o}}{ }^{j} \mathrm{o}_{0} \mathrm{o}$) could only have been scheduled after all of the nodes which it does cover in J_{2} had also been previously scheduled. Also, it is impossible that node ($\mathrm{m}_{\mathrm{o}}{ }^{j} \mathrm{O}_{\mathrm{O}}{ }_{0}$) precede and follow (m j 1) on the same machine. Thus S_{0} must be feasible.
Remaric 3: Each node in each graph J_{1} must occur in $S_{0}{ }^{\circ}$ Proof: For, each J_{ν} is feasible and therefore has at least one initial element $\left(\mathrm{m}_{\mathrm{w}}{ }^{j} v^{1} v\right)$. Further, if we remove the nodes from J_{v} as they are scheduled, when ($\mathrm{m}_{\nu^{j}} \nu^{1}{ }_{v}$) has been scheduled, there will be at least one more initial node $\left(m_{v^{\prime}} J_{v} i^{1} v^{\prime}\right)$ or else J_{y} is void. Only when all the J_{v} are thus void will the process end. Thus all nodes in all technological orderings J_{v} will have to be scheduled in S_{o}.
Remaric 4: Thus the algorithm can generate all of the feasible schedules and only these schedules from a set of feasible technological orderings. Proof: For, all the schedules can be generated by remark 1 , and by remarics 2 and 3 , only feasible graphs that contain all nodes can be generated.
Remark 5: The processing times generated are those given by formula (2.1). Proof: All contributions to the starting term, are entered into the maximum terms for any ($m^{\prime} j^{\prime \prime} 1^{\prime \prime}$) of the nodes over which the maximum of $T\left(m^{\prime} j^{\prime} 1^{\prime}\right)$ is taken $1 s$ either covered by (m j i) in some technological ordering, or occupies machine m directly before (\mathbf{m} j 1) does.

$$
462020 \quad-19-
$$

[1] Churchman, C. W., Ackoff, R. I. and Arnoff, E. L., Introduction to Operations Research, John Wiley and Sons, Inc. (1957).
[2] Codd E. F., "MAltiprogram Scheduling" Comm. ACM v. 3, pp. 347-350 and 413-418 (1960).
[3] Johnson, S. M., "Optimal two- and three-stage production schedules with set up time included," Naval Research Logiatios Quarterly, v. 1, (1954).
[4] Giffler, B. and Thompson, G., "Algorithms for solving productionscheduling problems, J . Opers. Res. Am., v. 8, no. 4, pp.487-503 (1960).
[5] Heller, J., "Combinatorial, probabilistic and statistical aspects of an $M \times J$ scheduling problem," A.E.C. Research and Development Report NYO-2540 (1959).
[6] Heller, J., "Some numerical experiments for an $\mathrm{N} x \mathrm{~J}$ flow shop and its decision theoretic aspects," J. Opers. Res. Am., v. 8, no. 2, pp. 178-184 (1960).
[7] Heller, J., "Some problems in IInear graph theory that arise In the anaiysis of the sequencing of jobs through machines." A.E.C. Research and Development Report wro-9487 (2960).

Figure 1.

Linear graphs picturing technological orderings.

Figure 2.
A feasible schedule S_{0} constructed from the technological orderings of Figure 1.

- 21 -

462022

Initialized Table of Coverings

Q_{1}	Q_{2}	Q_{3}	t	Q_{5}
121	211	0	1.0	
112		1	1.0	
121	323	1	3.0	
211	112	2	1.0	
221	121,322	0	3.0	
311	211	0	2.0	
321	322	0	1.0	
322	323	2	1.0	
323		2	1.0	

Figure 3

After Scheduling Node (111)

a. table

b. linear graph
$\xrightarrow{111}$
c. Gait diagram

Figure 4

After Scheduling Node (311)

Q_{1}	Q_{2}	Q_{3}	t	Q_{5}	Q_{6}	T
111	211	-1	1.0	1	1.0	
112		1	1.0			
121	323	1	3.0			
211	112	0	1.0			
221	121.322	0	3.0			
311	211	-1	2.0	2		
321	322	0	1.0			

a. table

b. In ear graph

c. ant diagram

Figure 5
$-24-$
462025

After Scheduling Node (221)

a. table
b. linear graph
e. ant diagram

$$
\begin{gathered}
\text { Figure } 6 \\
-25-
\end{gathered}
$$

Arter Scheduling (211)

a. table
b. IInear graph
$\xrightarrow{111}$

$\xrightarrow{311}$
c. Gantt diagram

P1gure 7

- 26 - 162027

Figure 10

An example of a technological ordering in which the job can divide on and return to some of the machines.

- 30 -

462
031

[^0]: 1 In the present discussion we will limlt each machine station to contain one machine.

