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ABSTRACT

A finite difference approximation to a non-linear 

set of parabolic differential equations artsine In shallow

These difference equations were water theory is given.

used to determine the shape and rate of propagation of a

hump of fluid down a channel of constant depth.
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case in the usual shallow water theory.

The hump

of fluid was found to spread Instead of steepen, as is the 
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Ka la well known the shallow water equations
i

Sone years ago.

theory which la obtained by taking greater account of the vertl-

Xn thia Improvement, Bouaalneaqoal component of the velocity.

arrived at the following system of non-hyporbollo equationa to 

describe the flow of fluid In a channels

(conservation)0(1.1)

& (nomentun) .O(1.2)

Wo take.

to be the gravitational constant. tn be thethe fluid. x&

distance downstream and co bo the time.t

Pig. 1
h

■>

Thia study waa suggested by Professor J. J. Stoker who was

Interested In determining whether the equations (1.1) yield

The authorsa realistic description of the breaking of a wave.

Ourencouragement In carrying out this Investigation.

calculations Indicate that no waves break under (1.1) In contrast 

to the shallow water theory (see (5J) In which all waves break.
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f

theory suffers from the defect that any hump of fluid traveling 

down a channel will eventually fall over because the top of the 

d (J*h)

1. Introduction.

for the flow of fluid down a channel la hyperbolic (5J and the

hump moves relatively faster than the trough.

Bouaalneaq (1) suggested an ImprovesMnt of the shallow water

u tr - b

are Indebted to Professor J. J. Stoker for his advice and

d (?*h) + h d3(Vh) . 
o* 3 ^2c

as usual, to bo the height of the fluid aeaaursd from

the undisturbed level h , u to be the horizontal velocity of



The con»erT«tlon equation (1.1) la Identical with the

conierratlon equation of the shallow water theory [1] but

Recently, equations with a thirdderivative of

Because of the Interest In equations of

linear equations It la desirable to develop a numerical

technique for the solution of such equations.

In this paper we discuss an implicit numerical achene for

the solution of equations of the type (1.1-2). After trans-

variables and recombine the equations In a manner that would

lead to the characteristic form If the third derivative term

The initial andwere not present In the momentum equation.

boundary conditions aaauaed to be appropriate for this system

are those required by the shallow water theory.

Kxperiments which were performed on an IBM 7QU digital

computer for an initial boundary-value problem Indicated that

numerical errors grew from the left boundary, but that the

Is stable away from the boundary. In order to over-s che me

this Instability we modified the difference equation atcosae

the boundary using the conservation equation to correct the

i.e. at the advanced time step.height In an implicit fashion.

The Instability from the left boundary then occurred one 

point to the rlfrht i.e. by using the conservation m««s

- 5GG

hydrodynamics ( 3 ) • 

this "typo* and the lack of analytic solutions of these non-

the sosantus equation has an added term involving a third 

derivative tons have appeared In problems of magneto-

f arming the equations into di me ns ionless form, wo change the



We then used the Implicitly

The start of the instabilityadjacent to the left boundary.

We finally eliminatedmoved correspondingly to the right.

the instability by using this conservation equation for all

of the points.

estimate with an implicit scheme.

With this method some numerical solutions of the 

for a similar problem.

in "characteristic" form.The Equations2.

If the third derivative term were missing from the

Since the third derivativesystem of shallow water theory.

term arises from an attesipt to make a small correction to the

shallow water theory, and since the characterlstic form is very

useful in the

will cast the equations (1.1-2) into a form which would be

term was notthe characterlstic form if the third derivative

present.
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perturbation to the right.

differenced conservation of mass equation at several points

the hump of fluid does not steepen but apreada in a manner 

found in an analytic approximation by Gardner and Morikawa [3J 

propagation of a hump of fluid into a channel of constant depth 

were obtained on the IBM 7QU. These solutions Indicate that 

First let us transform to dimensionless variables by the

ague t< on at the loft boundary wo had moved the cause of the 

momentum equation (1.2), we would have the usual hyperbolic

That is, we used an explicit scheme to get a 

discussion of the shallow water theory, we

first estimate of the unknown, but then we corrected this 



following transformatIona

(2.1)

1(2.2) u u

(2.3)

t —— > t(2.U)

With these transformations equations (1.1-2) become

0(2.5)

du + dH(Jx Jx 0(2.6)

third derivative term to

Involving only one time differentiation.

We. now let

h(2.7)
and obtain from (2.5-6) a form KlnJlar to the characteristic

form L5J

(u+2c) O(2.8)

(u—2c) O(2.9)

Bven though the third derivative term may physically give 

a small correction to the usual shallow water equations, a

- 7
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V/gH 
1 

\/3

1 
h

x 
h

_ f)3(uc2) _
dx2 d*

e2

By using the conservation equation (2.5)

- d1^2 , a third derivative term

+ dV 
dxtft

_ d 3(uc2) 
d*2 Jt

we can change the

* <—> hj

+ <u-e)

(^r+h) —» h



possible stable difference approximation will have to treat

the third derivative term as not being small.

will have

the unknown quantities at the advanced time step.

Since both variables appear naturally combined in the

third derivative term.

(2.10) q = u

(2.11) = 0

<1=0(2.12) 2c)c d*
we would haveIf the third derivative term were absent, 

to prescribe the appropriate initial conditions for a solution

in the form

q(x,0) = given ;(I.C.)(2.13) = given ,

we wouldO < x '•< oo

need only specify one of the two unknowns on the boundary

x = O u-c

at x =O cf. [ 5)) .
I discharge at x = 0

q(O,t) = given(2.1U) (B.C)

8

09. 1 7

QX 
d3

We then havepassing a given point per unit of time) .

* c> ♦ 2c) -

- <7! - c>

we define

c2

< o

and hence we

and if we had a semi-infinite channel.

called the discharge (q is a measure of the volume of water

(under normal circumstances in which u*c > O ,

Since we hare a third derivative term we might need

to use the third derivative term in solving for

We find it convenient to prescribe the



foxTi given by (2.11-12) theIn theadditional conditions.

spatial derivative is raised by one order

while the time derivative is still of firstshallow water theory,

This observation suggests that only an extra boundaryorder.

reasonable to take theIt seemscondition might be required.

We will be interested inextra boundary condition at x = oo .

x = 0 and in observing the motioncreating a wave motion at 

We will not wish any disturbancestowardsof the wave x oo .

and hence we will assume that for fixedto arise from x oo

t > 0 ,

(B.C.) 0) ,(2.15) and 0 .

The Finite Difference Scheme3.

We will now consider a finite difference approximation to

the "characteristic type n equations (2.11-12) which needs only

the Initial and boundary conditions given by (2.13-15)• Two

considerations motivate our choice of difference approximation:

(i) the

known s table

approximation to the shallow water theory equations.

(11) the third derivative teitn should be used appropriately to

advance the Q .

We consider a mesh such that the spatial and time mesh points

= O, 1, 2, . .. wi thn

= 0 as the initial time.as

c(x,t)t) and

written with capitals and subscripts:

9

11m q (x, t) = q ( oo , 
x—*-oo

t n
O*0 =

at the mesh points will be

J = 0,1,2,...,XJ *
the left boundary and*0 

The unknowns

lim q (x,t) = 
x—*oo

over that of the usual

are designated as

difference approximation should be a

if the tnird derivative term were not present,



(3.D

(3.2)

Tn order to have the difference approximations of (2.11-12)

shallow water difference approximations when thereduce to the

differences for the

term in (2.12)• This

[2 J).tc be stable (since cf . To treat the

third derivative term, we difference it forward in time and in

obtain from

(2.11-12)

+(3.3) 2 C

n+ C Jn

n+1 + 2 C

Qn )- C

2 Qjn+1

H1 /

Fx

1 
t

Qj+ln *

10 -

Q 
(-H 
C‘

1 
0 x)2A t (Qj+l n+1 "

<Qj+l n+1 ’

Qj+ln

(3.4) 2ST

C< n+1

* Qj-1 n+1

jn; Ax + 2 G 

Jn

+ 2 “

= QJn

2 QJn -

2 %n+l

<l(xj’tn)

+ Qj-1 n+1

Jn^

Jn}

%-ln> = 0 •

c(xrtn) = Cjn

%-m* = 0 •

a centered fashion in the spatial direction.

Cj-ln

Q
2 Cj n+1 -

ri

CJn

* 2 CJn
Jn

1
Mx)24t

CJn

2 CJ+ln

r + 2c)

h ■2o)
difference approximation for the shallow water equations is known

2 cj-m)

Qj

CJn
+ (^

CJn

third derivative term is absent we will take backward space

space differences for the

term in (2.11) and forward

Q
n+1 ;

CJ=

+ln

Following out this difference approximation, we

u+c >■ O , u-c < 0)

n
C

n
C

Q 
(-+ 
CJ+ln



We will hold 4 xAt = tand

Zltand The equations

(3.3-U) hold for all J > 1 Forand all n > 0 . n = 0 we

from the initial conditions (2.I3).know and For

from the boundary condition (2.1U),J = o and

)for J we

know

(the length of the channel increases as the calculation proceeds).

Upon subtracting (3«U) from (3«3)» we easily solve for

in the form:

n n(3.5) c J n+1

C J-l,n

+ CJn * O
J+ln

By adding (3-3-U), find after some rearranging,we

(3-6) QJ+1 n+1 +

Q Q Q

Jn

(Q♦ J + ln "

the equations for In equations (3.6) the unknowns

- 11
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1

J n+1

Q10 

we know

QJ n+1 •

5 QJ n*l *

1 
(Ax)

QJ n 
**max 

approximate the infinite channel by a suitably long channel

\j-ln 
gT” 

Jn

■]

. * C Jn

QJ-1 n+1

J-ln}

2%n

Q
2 —

C‘

* %-ln’ -

Q
2 -1 

C4

Jn

j-ln*

1 
(4x)2

At
- S7

Jn

J “

(717)^

* CJn

~2) + 2(C-2C J + ln 
J-ln

_n
CJn

CJ n+1

cjo

%n
taking on its maximum value

+ 2kCJ^n-2C

>-2<CJ«-ln-C 
J-ln

CJn * G3x

CJ-ln

2(CJ*l,n *

L J*ln

+ C .Jn

( —
C

-
J + ln

■
L J + ln

“'max
Tha t is, we

where ^x. = x1+1 - xj and At = tn^ - t^ . 

constant during a given calculation.

from the boundax*y condition (2.1$).

n
C
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-D)(for appear In triplets at the

formulae.

We need one more equation to complete the difference scheme:

an equation to determine for we have assumed that only

for J - 1,21
In order to determine we

to find

1/2
(3.7)

equations (3.5-7) as follows:

(1) (J > 1, n > O) (which

are presumably known at the previous tlM dlnce the

right boundary Is at Infinity, we solve for for J
Cincreasing until

and define J .
(11) (3-7) to obtain

The boundary conditions on the left and right are Just

For

that point for which to within the accuracy of

- 12 -
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” qOn^j

(•
We recapitulate our algorithm for solving the difference

%n+l 
(3-5) can be solved for the unknowns

Jn*l “ 
to be this last value of

2 _ _t_
On

Qjn+1 ’ 
enough for the solution of the coupled equations (3.6). 

the seml-lnfinite channel the right boundary Is considered to be

^max

•^max 
We use

QJ n+1 
advanced time

J — 2, . • . , ( J^,M y

The solution of this trldlagonal system

<*ln

€n*l *
can be easily given by well-known and well-conditioned rscuralon

CO n*l
(2.5) vith the notation (2.7) and take a one sided apace difference.

COn*l *
(111) We solve the coupled system of equations (J.6) for

C0 n+1 *

COn+l

Is given on the left boundary and the difference equation

C Jn*l 
can be done since all the quantities on the right side of (3.5)

CJnCjn+1 “

CJn

v • 

Cjn*l 

to within some preset tolerance

CJ n+1 

use the conservation equation

We use (3.5) to obtain



the calculation.

Numerical calculations for large discharges at the left

boundary Indicated an instability near the left boundary and no

instability away from the left boundary. Since the instability

with negligible effect on we were ledshowed up in

type correction'^alculation for the

We accomplish the desired implicitness by differencingstep.

the conservation equation (2.5) as follows:

1/2t(3.8) ♦ Q - QQJ-l n*l J* In

<Qln*l ~ %n*l * Qln(3.9)

(1) wo solvo for and

as before from (3.5-7); (ii) wo correct

Wo correct roach the right boundary

or until C to within the accuracy of the calculation.

was carried out far to the right because

that value of which was the last corrected

When the correction was

no Instability appeared.to the right.

U. Some Numerical hosults.

A series of numerical calculations wore performed on an

- 13
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I

I

^/x- Po -
Our procedure is as follows:

(QJ*1 n*l ’

%n » 

The implicit

obtained by using (3.8).

-f=a
c Jn

For the boundary we take a one sided space difference:

COn*l

using (3.0) until woCJn*l

Jn*l
The correction to

Cjn^l 

using

c''Jn*!
carried far

Qjn^x as before from (3.5-7); (ii) wo correct 

(3.0-9) which requires the discharge at the advanced timostop.

Ci« 

values of the discharge at both the advanced and present tls»

CJn * 

that wo employ uses

CJn 

to a further implicit typo correction for

C Jn*l

CJn

J0*1 
numerical experiments showed that an instability appeared at

- 1/2



IBM 7OU using the difference scheme described above. In these

calculations fluid was introduced on the left hand boundary

while the initial flow of fluid was constant. The discharge

on the left hand boundary was of ths fora

- tt - cos (iMUt)(U.10) n <

*n i

the Initial conditions were

(U.2)

and

(U.3) 1

to see if fluid

break.

In

After the

- lb -
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I

and its de velo paeon t 

tx-T2’- 1 • 

As the wave of fluid traveled down stream It spread,

wave developed, the half way point between the maximum height

< 1 
— “dt

Jo 
and

1

and the right boundary was taken at infinity.

It was the Intention of these calculations

So

introduced on the left boundary with a sufficiently large dis

charge would cause a wave to travel down the channel and

CJO-

In all our calculations we did not find any evidence of 

breaking} even when the free stream discharge was negative (l.e. 

fluid traveling toward the left) wo did not obtain breaking,

each of the cases breaking would have occurred long before our 

calculations were completed according to the usual shallow 

water theory (c.f. Stoker (1 J. pp. 352-357).

In Figure 2 we see the build up of C 

in time for the case in which ♦ 1ST •» 1.5
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and the free stream height traveled at a constant speed

The computed spaed

pp. 121-323] for a1.propagation

bore with height equal to the maximum height In back and Tree

Xn Figure 3 we have plotted the wavestream height In front. •

These profiles show a decidedprofiles against x - <rt .

for their equation; l.e. ) - Mo solutions of

Xn Figure U we show the profiles for a wave arising from

a large discharge at the left. Again no breaking was

observed.

Xn Figure 5 »*• show the profiles for a wave arising from a

largo Inflow discharge at the loft when the free stream

condition corresponds to fluid flowing to the left. Wo

observed no breaking and the wave continued to grow In height.

- 15 -
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spread very similar to that found by Gardner and Horikawa [3] 

c(’.t) • f 
tx/J

this type have boon found analytically for equations (2.5-6).

•
agreed very closely with the speed of 

<r given by Stoker [of. Ref.
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