The Singularities of the Riemann Function

One of 5,854 items in the series: Atomic Energy Commission Reports available on this site.

PDF Version Also Available for Download.

Description

"This paper deals with the Riemann function for linear hyperbolic systems of first-order equations. the leading term in the singularity of the Riemann function is determined and interpreted. In addition to equations with distinct characteristics, certain equations with multiple characteristics are treated."

Physical Description

86 pages

Creation Information

Ludwig, Donald January 1, 1961.

Context

This report is part of the collection entitled: TRAIL Microcard Collection and was provided by the UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Audiences

We've identified this report as a primary source within our collections. Researchers, educators, and students may find this report useful in their work.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Titles

Description

"This paper deals with the Riemann function for linear hyperbolic systems of first-order equations. the leading term in the singularity of the Riemann function is determined and interpreted. In addition to equations with distinct characteristics, certain equations with multiple characteristics are treated."

Physical Description

86 pages

Notes

Digitized from microopaque cards (3).

Contract No. AT(30-1)-1480.

Includes bibliographical references (pages 85-86)

Subjects

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • OCLC: #
  • SuDoc Number: Y 3.At 7:22/NYO-9351
  • Report No.: NYO-9351
  • Accession or Local Control No: metadc1463584
  • Archival Resource Key: ark:/67531/metadc1463584

Collections

This report is part of the following collections of related materials.

TRAIL Microcard Collection

Imaged from microcard, these technical reports describe research performed for U.S. government agencies from the 1930s to the 1960s. The reports were provided by the Technical Report Archive and Image Library (TRAIL).

Technical Report Archive and Image Library

The Technical Report Archive & Image Library (TRAIL) identifies, acquires, catalogs, digitizes and provides unrestricted access to U.S. government agency technical reports. The mission of TRAIL is to ensure preservation, discoverability, and persistent open access to government technical publications regardless of form or format.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • January 1, 1961

Added to The UNT Digital Library

  • Sept. 2, 2021, 4:30 p.m.

Description Last Updated

  • June 22, 2023, 2:59 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 5

Where

Geographical information about where this report originated or about its content.

Place Name

Publication Place

Map Information

  • map marker Place Name coordinates. (May be approximate.)
  • Repositioning map may be required for optimal printing.

Mapped Locations

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Ludwig, Donald. The Singularities of the Riemann Function, report, January 1, 1961; Washington D.C.. (https://digital.library.unt.edu/ark:/67531/metadc1463584/: accessed October 13, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

Back to Top of Screen