The College of Science provides students with the high-demand skills and knowledge to succeed as researchers and professionals. The College includes four departments: Biology, Chemistry, Math, and Physics, and is also home to a number of interdisciplinary programs, centers, institutes, intercollegiate programs, labs, and services.
This editorial discusses sixteen manuscripts which address the physiology and molecular biology of plant-hemipteran interactions at different levels.
Physical Description
4 p.
Notes
Abstract: Hemipterans (e.g., aphids, whiteflies, stinkbugs, leafhoppers, and planthoppers) encompass a large group of insects with mouthparts specially modified for piercing and consuming fluids from the host (Capinera, 2008). Many hemipterans are important pests of plants and vector viral and bacterial diseases. Plant defenses against hemipterans include mechanisms that physically hinder insect feeding, as well as mechanisms that interfere with insect physiology and behavior (Painter, 1951; Kogan and Ortman, 1978; Smith, 2005). In some cases plants can alter their physiology to tolerate infestation without any detrimental effect on growth and development. Endosymbionts and phytopathogens present in the hemiptera impose an additional layer of organismal complexity to plant-hemipteran interactions. Considering the multiple organismal interactions involved, planthemipteran interaction studies have been conducted at different levels. This Research Topic brings together 16 manuscripts, which include a blend of reviews and research papers that address the physiology and molecular biology of plant-hemipteran interactions at these different levels.
This article is part of the following collection of related materials.
UNT Scholarly Works
Materials from the UNT community's research, creative, and scholarly activities and UNT's Open Access Repository. Access to some items in this collection may be restricted.