

Extraction of technical Metadata for longterm
preservation :

The work with JHOVE in the “kopal” project

by Matthias Neubauer,
Die Deutsche Bibliothek,

Software developer for project “kopal“
January 2006

2

Table of contents

Introduction ... 3
Some facts about JHOVE ... 4
What JHOVE is ... 5
What JHOVE is NOT .. 6
How JHOVE is used in koLibRI .. 7
Experiences with JHOVE in project “kopal” .. 9
Supported file formats and future plans .. 10
Conclusions .. 12

3

Introduction

The “kopal”1 project, founded by the BMBF2, has the goal to create a consistant
long term preservation system for digital informations. This system is based on the
gathering and creation of descriptive and technical metadata for the objects to
archive. The software koLibRI®3, which is a result of the work in project “kopal”,
integrated the JHOVE4 software to obtain the technical metadata.

1 Kooperativer Aufbau eines Langzeitarchivs digitaler Informationen -
http://kopal.langzeitarchivierung.de
2 Bundesministerium für Bildung und Forschung – http://www.bmbf.de
3 kopal Library for Retrieval and Ingest
4 http://hul.harvard.edu/jhove/

4

Some facts about JHOVE

JHOVE stands for JSTOR1 / Harvard Object Validation Environment and has been
developed from 2003 to 2005 by a collaboration of JSTOR and the Harvard
University Library (HUL). It was released to the public as an open source project
on may 26th, 2005. That release contains filetype specific modules for the following
formats:

- PDF
- TIFF
- JPEG
- JPEG2000
- GIF
- AIFF
- WAVE
- XML
- HTML
- UTF8
- ASCII
- BYTESTREAM

1 Journal Storage – The Scholarly Journal Archive – http://www.jstor.org

5

What JHOVE is

JHOVE itself is a skeleton, providing an environment for the filetype specific Java
modules that are doing the main work by parsing a given file for its specific
metadata.

It offers a great potentiality to extract technical metadata from all kinds of files in a
consistent output format (e.g. XML).

To do this, JHOVE provides an open module interface that allows everybody to
develop his own specific Java modules for a file format. Once developed, a
module can be used by anybody without additional customization.

JHOVE is Open Source Software and was released under the LGPL1. That means
it is

- freely extensible
- fixable by everybody, independent of the HUL
- and (independently of the LGPL) free of charge

1 GNU Lesser General Public Licence - http://www.gnu.org/copyleft/lesser.html

6

What JHOVE is NOT

Against many expectations, JHOVE is NOT a wondrous tool, that can recognize all
filetypes by instance. For each format that shall be recognized, a specific module
is needed, and as stated before, very few modules exist at the moment.

Initially, JHOVE was developed to match the Harvard University Library`s
requirements, and, as they can limit the formats in which contents are to be
submitted to them, they had only needs for the present modules.

To match wider requirements of many institutions and to provide a stable
environment for the validation of all kinds of objects, many modules will have to be
developed in the future.

It should be added that the HUL ist not developing JHOVE any further at the
moment. They support the current release and try to fix found bugs, but there are
no plans for new features in the next maintainance releases.

According to Stephen Abrams, JHOVE project leader, there are plans for a
JHOVE 2.0, but as resources are very limited (he alone is working on JHOVE now,
as the 2-year project has come to its end), that are plans for a distant future only.

7

How JHOVE is used in koLibRI®

Intentionally, JHOVE is used as a command line or Swing-based Java application.
In this way, JHOVE uses output handlers to present the created metadata on
screen, or to write it directly into a text or XML file.

We use a combination of the METS1 and LMER2 metadata concepts to describe
our assets. We encapsulate all available metadata into the METS container
format, and write it into a file called “mets.xml”, which is then stored within the
asset, together with the object relevant files.

For our ingest-software, we needed to access the created metadata before it is
written to an output handler, and we decided to integrate JHOVE directly into our
software. We included the Java JAR archive that is provided with the public
release of JHOVE, in our project.

The functionality of the “JhoveBase” class was replaced by one of our own classes
which implements our module interface. This way, we could optimize some
methods for our needs, and delete unnecessary code. In short, this class manages
the invocation of the JHOVE modules and the storage of the created metadata.

At the moment, our class works exactly like the original JHOVE strategy. That
means, it invokes all modules in row, until it can find a matching module to the
given file. We are planning to improve this method by checking the file extension
of the file, and explicitly invoking the module that should match the according
filetype. Only if the validation process fails for this chosen module, we are invoking
all modules in row again, to find the real matching type. That would also be a
workaround for a problem we found with invalid files of some types, e.g. TIFF
images. If a TIFF image is not completely valid, the according JHOVE module
rejects it, and JHOVE invokes all following modules again. This leads to a
recognition by the BYTESTREAM module, instead of a concrete error message by
the TIFF module. But as it is our intention to preserve only valid files, we would like
to recognize these invalid files, and report its failure to the user, who can then
correct the according file by hand.

This is also an issue if it comes to validation for a specific file. To truly validate the
file to its format, JHOVE has to be invoked with the according module explicitly.
Then it can tell if the given file is valid (assuming that the JHOVE module works
correctly according to the formats specification).

JHOVE does include a concept for a “signature match” method, so that the
modules should not try to identify a files format by themselves, but only rely on the
signature3 inside of the file. But sadly, this method is not well supported, and many
modules do not even implement the necessary Java method for this functionality.

To be able to grab the created metadata directly, and map it to our own internal
datastructure, we implemented our own output handler that inherits the

1 Metadata Encoding & Transmission Standard - http://www.loc.gov/standards/mets/
2 Long-term preservation Metadata for Electronic Resources -
http://www.ddb.de/eng/standards/lmer/lmer.htm
3 Also known as „Magic Number“

8

functionality of the XML output handler. This “LmerHandler” is registered to
JHOVE as the output handler in charge, and stores the created metadata into an
internal datastructure that can be easily accessed by the software parts which
create the “mets.xml” file later.

We have also improved the speed of processing a file by de-activating JHOVEs
internal checksum calculation. After all, we are just using the SHA-1 checksum, so
we calculate that in our own software. We also used a higher buffer for the
calculation, and had impressive performance boosts after these improvements.

JHOVE might create lots of metadata, depending on the format of the file, and the
used features of this format. In cases of assets with a high amount of included
files, the “mets.xml” metadata file can become really big (we had files up to 120
megabytes). Thus we implemented some options to our class, that allow us to
ignore some specific metadata sections. We do not use these options at the
moment, though, as the currently created assets do not contain such large
amounts of files.

The back side of customizing the JHOVE package is that upgrading to a newer
version could mean changes to the code of our own software. But this applies only
to a change in the architecture of JHOVE, and not to the expected maintainance
releases.

9

Experiences with JHOVE in project “kopal”

It should be said in advance, that the support from the HUL for JHOVE is
absolutely excellent. Reported bugs were fixed mostly within hours after sending
them to the JHOVE mailing list.

But on the other hand, there were many bugs, especially in the module for PDF
documents. Often, these bugs were related to the validation of the XML-output that
JHOVE created for a specific file. The XML-output contained characters which are
not allowed in XML, but were read in the PDF file itself. In one case, JHOVE
completely hung up on a PDF-file, which could be tracked back to the “Outlines”
section by debugging the Java sourcecode. In our fixed recompiled version of
JHOVE, this section has now been taken out completely, that means it is not
created by the module anymore. The eventuality that JHOVE could hang up our
whole system, was considered much more unconvenient than the temporary loss
of this section for some files. The solution for this problem is yet to be found, but
Stephen Abrams has promised to investigate on this problem.

As for invalid characters in the XML-output of the module for PDF files, there were
made some changes to the Java sourcecode by ourselves, for most of the time
with support from the HUL and the JHOVE mailing list. Checks for these
characters were added before writing it to the output, and if illegal characters
appear, they are simply ignored. That way, the output stays valid, and no
information is really lost, as these illegal characters would not have been readable
anyway.

Another problem that led to invalid XML-output, was the existence of empty
property-lists. The JHOVE XML schema insists, that a list of properties must at
least contain one property. Some modules did create lists for metadata sections,
before they even knew whether there would be something to fill the list with, or not.
As a result, the XML-output contained some empty property-lists. By checking the
content of these lists before writing it to the output, this problem could be
successfully solved in the XML and PDF modules, where this error occurred.

A third major problem was the creation of a “subMessage” tag within the output -
found in the HTML module for example – although this element was not defined in
the JHOVE XML schema. This problem has already been fixed by the HUL, by
adding the appropriate parts to the official JHOVE XML schema.

We also had (and still have) problems with wrong recognitions of file types. We
had several images that were recognized as BYTESTREAM, as well as HTML
files that where recognized as ASCII or UTF-8 files and vice versa. There would
be a workaround, as stated in the description on how we use JHOVE, but an
improvement of the modules file type recognition could also be useful.

Some of these problems may still exist at some other modules or sections, though,
as we could not test all aspects of each filetype. In fact, PDF files were the format
we have used most extensively with JHOVE yet, and so it must be considered that
there might be an unknown amount of yet undiscovered problems in the remaining
JHOVE modules.

10

Supported file formats and future plans

The “kopal” project uses the DIAS1 longtime preservation system developed by
IBM Netherlands. This system has its own set of filetype identifiers, which are
listed in the following table.

Matching the existing JHOVE
modules Unmatched
“Unknown File Type“ (Bytestream) Bitmap Image (BMP)
Adobe Acrobat Document (PDF) PNG Image
JPEG PKZIP File
GIF TAR File
TIFF Executable File
TXT File (ASCII) Postscript
Hypertext Document (HTML) Movie Clip (MPEG)
 Video Clip (Avi)
 PQI Image File

Cascading Style Sheet Document
(CSS)

 MS Word
 MS Excel
 MS PowerPoint
 MS Access

As it can easily be seen, there is a need of many more modules, than those
existent at the moment. In fact, the DIAS filetype list is also far from complete yet.
More needed file formats have to be added in the near future, to match the needs
of the long time preservation plans in Die Deutsche Bibliothek.

There are plans for development of some JHOVE modules in certain institutions.

Stephen Abrams told us that the HUL is planning to develop a module for ZIP files.
He did not say, though, if it will also cover other compression modes like GNU
TAR. Also, this development is in an early state and might not be released in the
near future.

Within project “kopal” we are planning to develop the most needed JHOVE
modules first. See the following list for a short overview over the filetypes, for
which we are planning to develop JHOVE modules in the near future.

- Disc Images according to ISO 9660
- Microsoft Office formats

o MS Word
o MS Excel
o MS Powerpoint

- Postscript
- MP3
- PNG

1 Digital Information Archiving System - http://www-5.ibm.com/nl/dias/

11

The module for ISO 9660 DISC IMAGES is already in development, and at a state
of approximately 80% of completion. The modules for MP3 FILES and PNG
IMAGES are going into development in early 2006.

We expect the development of a module for the MICROSOFT OFFICE FORMATS
to be somewhat difficult, as the detailed aspects of these formats are kept
corporate secrets by Microsoft. We are currently examining already existent open
source JAVA tools, that already work with Microsoft Office formats, to see if we
can use them to get an easier access into these formats.

The SUB Göttingen agreed on developing the POSTSCRIPT module, but did not
yet start the development.

Summarizing, it would be very helpful, if a bigger development community for
JHOVE modules would form. There are no other modules in development, nor
have any been made public currently. The concept of JHOVE stands and falls
with its modules, and all JHOVE users would benefit from sharing the
development of modules. That could make JHOVE the mighty tool that it was
made to be.

Another aspect to make JHOVE even mightier, would be the support for unique file
format identifiers. It is rather difficult to match two (or even more) different
identifiers for one single file format. In DIAS, for example, every file format is
identified by a URN1, so that a reference to this format cannot be mistaken for
another format. As JHOVE uses only names like “PDF” together with a version
number, e.g. “1.5”, these information easily can be misinterpreted. The lack of a
global list of unique format identifiers, makes it rather difficult to map two different
descriptions for one single format.

1 Uniform Resource Name - http://www.persistent-identifier.de/

12

Conclusions

Using JHOVE for the creation of technical metadata has spared us a lot of time
and work for developing a similar functionality by ourselves. In advance, an
environment used by many users is always better than an individual solution, as it
grows on its community. For JHOVE, that means especially development of new
filetype modules that can be used by all other users afterwards.

But it has to be considered that JHOVE is still a very young project which suffers
from undiscovered bugs, and not yet tested unexpectable circumstances.

If JHOVE is used in an every-day workflow, and one of these undiscovered bugs
appears, it can even cost a high amount of time (and thus money) to identify and
fix the problem, although the support from the HUL is very good, as stated before.

The solutions for the problems we found and fixed, will be included in the next
maintainance release of JHOVE, so that every user can take advantage of them.

At the moment, we are using a version of JHOVE in our software that has been
cleaned from the problems stated above, and will be replaced by the version from
the next maintainance release, after it is made public and has been tested by us.

	Introduction
	Some facts about JHOVE
	What JHOVE is
	What JHOVE is NOT
	How JHOVE is used in koLibRI®
	Experiences with JHOVE in project “kopal”
	Supported file formats and future plans
	Conclusions

