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ABSTRACT

This paper investigates the possibility that ductile fracture occcurs
by the MeClintock-Barg mechanism of localizaticon of deformation within a
narrow shear band, owing to the prograssive softening of the material by
increasing porosity due to void growth., The ductility predicted for a
macroscopically homogensous sample of a voided material is shown to be
unrealistically large and hence an initial inhomogeneity of properties iz
considered, in the sensa of an analysis by Marciniak and Kueczynski in the
related problem of local necking in sheet metals. General conditions for
a localization bifurcation with an initizl inhomogensity (imperfection),
concentrating deformation to allow localization within it, are derived.
The initial imperfection iz taken in the form of a void-containing, thin
glice of 2 material and is assumed to have a void volume fractien slightly
larger than the outside of the imparfection. Elastic-plastic congtitutive
rate relations for void-containing materials proposed by Gurson are adopted
to the conditions for the lecalization bifurcation. The ecritical conditions
are analyzed numerically to discuss the sensitivity of localization
conditions to an initial imperfection, in consideration of the implications
for the theory of ductile fracture. The results sugpest that the existence
of an initial imperfection makes it pessible for localization to occur at
a reasonable strain, and the predictiong from this analysis seem broadly

consistent with reported experimental observations.




1, Intreduction

When a ductile metal is deformed inte plastic range a zone of localized
deformation sometimes appears in the form of a narrow shear band in highly
stressed regions. Hon-uniform deformation within it leads to ductile
fracture by growth and coalescence of voids [1,2,3]. Thesa voids generally
arise from cracking of second-phase particles such as inclusions, precipi-
tates and dispersions or from decohesion at particle-matrix interfaces
(1,5,6], although other processes may contribute in some cases. It remains
an cpen question {see, e.g., Rice [7]) whether the localization oecurs
because of the progressive softening of the material by ;oid growth [8,9)
or because some cother insztability of the plastic flow process first o¢curs.

In the present paper the first possibility is explored. WHe adopt the
slastic-plastic constitutive rate relations of Gurson [10,11] for void-
containing materials, and derive conditlions for a Yocalization bifurcation
To occur due to the prograssive scftening of the material by the porosity
increase due to void growth. Indeed, Rudnicki and Rice [12] have considered
& localization bifurcation of thig type for a clags of elastic-plastic
constitutive laws which is a simple generalization of the Prandtl-Reuss
equations. Their viewpoint is that the macroscopie constitutive relations
may permit the homegeneous deformation of an initially uniform material to
Bive way to am inecipient non-uniform deformation field, concentrated within
3 localized band {shear band) but uniform sutside it. Using these consider-
ations, Rudnicki and Rice [12] have discusszed conditions for the lecalization
bifurcation in plastically dilatant materials with pressure gensitive yielding
but, as is relevant to our present considerations, with no provision for
initial spatial non-uniformities of material properties (imperfections}.

Then, they have shown that materials seem to be unusually resistant to the
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localizétion bifurcation in the case of axially-symmetric extancion or
comprassion.,

In order to assess the effects of non-unifermities of properties,

Rice [7] has proposed a formulation in the spirit of the Harciniak and
Kuczynski [13] analysis of initial thickness non-uniformities in lecal
necking of thin metal shests. This idea can he explained in the sense that
a part of a material may have slightlvy different properties from the
remaining portion and that continuing concentrated deformation within this
johomegeneity (imperfaction) leads to failure at a strain smaller, zome-
Timas dramatically so, than a value required for a perfectly homogeneous
body .

Since the mode of the localization bifurcation has the form of a planar
barnd in which voida are cencentrated more than cutside it [1,3], we take the
imperfection in the form of 2 veld-containing, planar hard with a non-uniform
distribution of woids. Also, we assume the void volume fraction to be
slightly larger within the imperfection than outside it., This Imperfection
should appear within the material by the process of woid mucleation during
plastic deformetion [1,3], but we presume it as a pre-existing one (initial
imperfection),

Possible elastic-plastic constitutive rate relations for vold-containing
materials are derived from yield surface equations given by Gursen {10,111,
He has considered a simple cell model which has a single spherical void
centered in a spherical ecell. This model certainly doss mot reflect with
precision the response of actual materials with a random distribution of
voids. But the Gurson [10,11] constitutive model is zimple and enables an
estimate of the effect of progressively growing voids in leading to a

localization bifurcation.
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Thus, in this paper, conditiong for a localization bifur-catinn‘uith an
initial, finite imparfection will be studied by developing the localization
theory given by Rica [7)] in a general theoretical Framework for localization
of plastic deformation. S$pecifieally, the localization bifurcation presented
here is understood in the following sense. Before localization, the macro-
scopic constitutive relations allow hoemogeneous deformation within and cutside
an Imperfection, with finite discontinuities of the deformation fields
betucen them., Then, at the inception of localizaticn, the macroscopic
constitutive relations cause the deformation rate fields to be infinite within
the imperfection but to remain Ffinite outside it.

In the‘follcwing gsectiong, we first devalop the elastic-plastiec consti-
tutive rate relations to be adopted for veid-containing materials. Next,
localization conditions for the case with an initial imperfection are
devaloped in the sense described above, This is followed with the analyses
of the localizatien bifurcation with no imperfection, developed by spplying
the general results of Rudnicki and Rice [12], and with the specifie caleou-
lations for localization conditions with an initial imperfection ia the
cases of tensile extension under axially-symmetric and plane-strain conditions,
The sensitivity of localization conditions to an initial imperfsetion iz then
discussed in relation to implications of the work for the theory of ductile

fractura.
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2. ﬁﬂnsti%uti?e rate relations for void-centaining materials

In this section, we diszcuss a possible formulation of elastic-plastic
constitutive rate relations for void-centaining materials, based on studies
by Gurson [10,11], He modellsd a randomly voided material as a spherical
cell with a single spherical vocid centered in the cell. This model iz
cutlined here. Throughout the section, the adjective "macroscopic" refers
to average values of-physical quantities (stress, straln, etc.) which repre-
sent the behavior of the total voided agpresate, and "micrescopic” refers
to their peintwise values in the matrix surrounding the void, which is a
homogeneous, incompressible von Mises materizl.

1

Consider a body with veid wolums fraction £ . Let ﬁij be the

nacroscopic deviatroric true stress components defined as Gij - & P

15%%

where Uij are the macroscapic true strass components and & is the

i3
Kronecker delta, Alse, let Em be the microscopic equivalent tensile flow

strength., The Gurgon {10,111 approximation to the yield surface, based on

hiz cell model, is given by

1
o.. ¥, a
¢ =3 -lz-.-iil- + 2F cosh {5 =X] - e’y = 0 . (2.1)
i3 a
m m

We cbserve that thisz reduces to the Isotropically hardaning Hisss form when
there are no voids (Ff = 0) .

In Formulating the slastic-plastic congtitutive rate relations for
isotropically hardening materials with weids, we assune that the total
macroscopic rate of deformation may be written as the sum of the elastic
term Dij and plastic term D?j . When the spin-invariant Jaumann stress

rate, which is a stress rate cbserved in a reference system that rotates
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with the spin tensor ﬂij of the particle, is adopted, the elastic rate
of deformaticn - Jaumann stress rate relation for the macroscopic field

iz taken to be [12]

)
1

LY 11 1y, ¥
i m”“*a(ﬁ'“")ﬁij“ ’ (2.2)

1l 2G kk

where € and K are the elastic ghear and kulk moduli respectively.

s »
g.. = F.., = nikukj - aikgjk {2"3}

are the Jaumann stress rate components and aij are the trbue stress rate

components, Alsco, the expressions
. v,
i3 2 ij 3xi 1)

give the rate of deformation and spin tensor <¢omponents respectively, where

rd| =

(2,4}

e

ax, ax.
b i

v, are the velocity components.

Hext , the plastic rate of deformation-Jaumann stress rate yelation
for the macroscoplc field is obtained in the followipg way. The macro-

scopic dissipation during plastic deformation is defined as

v 5 def/dt
_omm m (2.5)
where ¥ is the volume of the total body, v is the wvolume of the matrix

in the body, and the time derivative term involves the microscopic plastic

equivalent strain Eﬁ . Eg. (2.5) gives the time derivative of the micro-




scopic equivalent temsile flow strenzth 2s [10]

. o, .0F,

& =h Iil;gé_ , (2.6)

m

whera hm = dEmdei is the miecroscople hardening modulus of the equivalent
tensile flow strength:plastic strain curve. The matrix is assumed to satisfy
the plastic incomprzasibility conditien but the macroscopic response of the
body doces not because of the existence of volds. Thus, the rate of change
of the total volume is related to the time derivative of the void volume -

fraction as [10]

F = I:l_f}DEk . {2-?}

r

This shows that the void volume fraction increases during plastic deformatioen.
How, normality of the plastic rate of deformation at a point of the

smooth yield surface requires

Po_ ad
Dij = A vl (2.8)
1]

where A s a function of stress, stress rate, deformation history and void

volume fraetion. Furthermere, as Berg (9] and Gurzon [10] have commented,

following an argument by Bishep and Hill {14], the validity of normality
locally within the matrix Implies macroscopic normality. Taking the time
derivative of the yield surface equation, Eg. (2.1}, gives the “"consistency

condition®,

s B9 . ad = 8 b
¢ - au‘* qij 1' pllin ﬂ'm + a f - G - {219}
1] m

Substituting Eq. (2.6} and Eq. (2.7) inte Eq. (2.9) and solving Eq. {2.9) for



A yields [10]

1 o9 - .
A== a . {2.10)

F 36, ki

whape
ha,.
r=-‘3f 1 2] aa: +¥-{1—f}a; .
27 {1-flo ij Trk
m m

By considering the gpin-invariant Jaumann stress rate, Eq. (2.8} can be

written with the use of Eq. {2.10) a=s

p 1(3 Giji a “kal
O, = &= —= 4+ af, . —_—— ¥
m m
whers

o
N N 6 "
o = Ef nh (2 z )
M

= [{1+f?] ~ 2F cosh {ﬂkkfﬂam}] is the square of the ratioc of the
(See the yield

Here,

macroscopic to microscopic equivalent flow strength in sheay.

syrface equation .}

Finally, the total macroscepic rate of deformation is obtained by adding
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the elastic tern of Eq. (2.2) to the plastic term of Eq. {(2.11). The

equations are

1 v
_G).s (2.12)

1 7
D,. =—0G_.., + ij Kk

i(i
i5 - 26 %i3 T T\
for alastirc loading or any unleading and

.17 171 _ 13,
D5 =35 935 + 7 (3% G) i‘;kk
(2.13)

L}
3 %44 3 %xe 7
"R ( 5 s N7 5 ke ) %ke
m

for loading at yield. The inverse form aof Eq. (2.13) is given by

v
o)

= 26D, . + (K - 2 G)5, .0, - 1ol
ij 13 7 996450 i
3

Dy
(2.14)
Rudnicki and Rice [12] have oroposed a simple generalization of the
Prandtl-Reuss egquations, in the same general form as Dg. (2.2) and Eq. {2.11),
to describe the elastic-plastic behavior of rock and soil masses under com-
pressive principal stresses. Taking B8 +to be the "dilatancy" factor and

H *ta be the "internal friciion" coefficient, they write the equation

analogous to Eq. (2,11) as

a.. v a, "'
po_if’ i B kg u v
Dij h( o V3N T T % /% (2.15)

t

Here, T = a/v¥3 = J{dij'uij‘]f? is the equivalent shear stress, while a
is the equivalent stress., h is the hardening modulus of the equivalent

shear stress-plastic shear strain curve. Egq. {2.15) gives the constitutive
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rate relations analogous to Eq. (2.14),

v
1)

- 2
15 7 2Gnij + (K 3 G}aijnkk

o 1

a ]
Gs~iiv—-+ Kﬁﬁi:) (s KL ¢ ks )
3 ] - ki

- Lt D, - £2.16)

h + 6+ Buk

Comparing Eq. (2.1%) with Eq. (2.16), we find the following relaticns.

Eq. {2.16) Eq. {2.14)

B e ———

=]

(2.17)

Qr

3

|
E
T

The dilatancy factor (or & in the present case)} depends on the void
volume fraction which changes by wold growth and on the ratio of the macro-
scepic hydrostatic stress to the microscopic equivalent tensile flow strength.
Especially, in the case of no voids (f=0} , the dilatancy factor becomes
zere and Eq. (2.13) and Eq. (2.14) reduce to the Prandtl-RBeuss elastic-plastic
constitutive rate relations which satisfy the plastic incompressibility
condition.

ifith the substitutions of Eqs. {(2.17), the expression for the critical
value of h for localization in an initially uniform body, as derived by
Rudnicki and Rice [12], may be applied directly to localization in the

presant case. Such results are referred to subsequently.



3. Conditions for a lecalization bifurcation with an initial imperfaction
In this section, we present the method for cbtaining deformation fields
within an imperfection in terms of the fields outside it and dlscuss condi-
tions for a localization bifurcation with an initial imperfection.
Consider a body with an initial, thin imperfection [7]} and aszume
that the material cutside it is subjected to uniform quasi-static deformation.
Assume that both the imperfection and the materizl surrcunding it are
homegenecus but that the imperfection has initilal properties which differ
slightly from those of the surrounding material [13]. We introduce
rectangular cartesian coordinate xi(i=l,2,3} s 50 that the Xy - axis
is normal tc the planar band of the imperfection as in Fig, 1. Take the
unit normal to the planar band to be r . BSince deformation fields of
the imperfecticn and surrounding materizl are homogenecus and the velocity
field is to be continucus throughout the body, the velocity can vary only
in the direction perpendicular to the band. Thus, the difference in

veleoity between the bhand layer and the surrounding material is given by

0-
v, = v, = fifnkxk) . 3.1}

where the superscripted quantities, (---)°, apply for the uniform fields
outsida the imperfection and fi is a function of X, Tha difference
in velocity gradient is given by vi,j - ug,j = njf;(nkxk} y whers
f;[nkxk} iz the derivative of fi(nkxk] . We choose f; te be zero
outside the imperfection and to hawve the spatially uniform valuas 9
within it. Therefore, the velocity pradients within and outside the

imperfection are related by the kinematical condition.

+ q.n or &v, . = q.n, , (3.2)

iy 1s] i)

where, hereafter, the non-superscripted quantities, (---), dencte the




wniforin fields within the Imparfection and A denotes the difference
between the uniform fields within and outszide the imperfection. Eq. (21.2)

gives the rate of deformation and spin tensors within the imperfection.

I
Dij = Dij + 5 {niqj + njqi} s {3.3)
a,. = 0% - X(n.q - n,a.) . (3.4}
15 Mi3 T 7MY T Y

From Eq. (3.3}, Eq. (3.4} and the relation between the true stress rate and
Jaumann stress pate given by Eg. (2.3), the trues stress rate tensor within
the imperfection is expressed in terms of the rates of deformation and spin

tensors outside it and the qt's .

> = o 0 0
%55 Tl T T %k T T

1
- E—(uik(njqk - nkqj) + akj(niqk - nkqu] ; (3.5)

where 2. iz the modulus tensor, evaluated as appropriate for the fields

ijkt
Wwithin the Imperfection, in the constitutive rate relations given by

v
935 % Lkl (3.6)

flso, from the assumption of homogensous deformation fields withinm and

outzide the imperfaction, the econtinuity condition in stress exists.

n.0.. =n.a., , or BAr.,. =0 . (3.7}
. |

Here, the uniform stress fields within and outside the imperfection satisfy
automatically the requirement that stress aquilibrium must continue to be
gatizfied., Taking the time derivative of Eq. (3.7} in consideration of

“i = nk{njnivk,£ - vklj} {see Appendix) and Eq. (3.7}, we can obtain the
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continuity condition in stress rate,

niﬂuij - nivi,kﬂukj =0 . {3.8)

By using the Jaumann stress rate, Eq. (3.8) becomes

¥

ns8955 F PiRiga™e e T MiVipdg 0 e (3.9)
whers
R = E*IU 8 + o, 4 . =-o .&8_.)
ijke T 7 Cii%e * %ie%k T e T ki

Substituting Eg. (3.2) and Eg. (3.8} into Eo. (3.9) yields the following

relation,

Pl sn ¥ By ?™a% T 0 ¥ ~gne? * 82100, - aa0y

Here, Lf the body has no initlal imperfection and if at the inception
of leoralization, all material properties are the same within and outside a
lacalization band in which non-uniform deformarion occurs on localizing, as
discusszed by Rudnicki and Rice [127, the right-hafd gide of Eq. (3.10) be-

comes zero. Then, Eq. (3.10) reduces to the relation cbtained by them,
03 (7 e ¥ Rigwad™% 2 Y o (3.11)

and the localization condition for a perfect system is met when this equation
First allous a non-zerc solution for the g 's.

If we express Eq. (3.10) in matrix representation, it can be written as

[ajk}[qk} = [bj] . {3.12}

f—

fu

v
]

= =n. i o
ik l{é?i]kl ¥ R:jktjni ’

-
(=
.
e
L]

o _ o
MU i T Fge? oo
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Since Eq. (3.12) is a set of linear, homogenecus squations in the qk's :
this has a solution if and anly if the daterminant of [ajk] is not zerno.
Then, the 4 'z are ohtained a=s

k

oy ] = Lagy 1750 (3.13)

whera

EA, ;]
=] _ i
[ajk] == > AED .,

Here, [Akj] is the cofactor of [ajk] and & is ths detepminant of
[ﬂjk] Fl

Mow, the condition is given for which the deformation rate fields
within the imperfection become infinite, corresponding to a localization

bifurcation. This condition is

A= det[ni[&‘ijm + Rij}cg.)“r,] =0 , 1 {3.'14}
Fq. (3.14) relates the hardening modulus st localization to the prevailing
stress state and to the constitutive parameters (G,K, ete.), Rudnicki
and Rice [12] have cbtained the hardening modulus h which just allows the
localization condition to be met on a surfacs with the normal Xy 4 and

their result i=

2 2
a_."' a,." o ! Gn |
h = _3-.__(5 22_, KB)(G ?2 + Ku) + G[( l? )+ ( 2.3.' ) ]- (C+Kpul
T T T T

o, "2 = ' fo 1
205 0 PN T S ke Fev 3 2 < B

The localization condition of Eq. (3.14) i=s the same as the one with
re initial imperfection, derived from Ea. (3.11) by Rudnicki and Rice (121,

but the following things are different.



In the case with no initial imperf-getinn, from the assumption that all
material properties remsin the same within and outside a localization band,
the rate of deformation and spin tensors within and outside the band
remain the same until the onset of localization. However, at the incep-
tion of loczlizaticn, soms of those tenscr components become infinite
to cause discontinuities in deformation rate within the band. On the
cther hand, in the case with an initizl imperfection, some of the rate of
deformation and spin tensor components within the imperfection continuously
increase {or decrease) by compariszon to those cutside the Imperfection by
the factors q - Then, at the inception of lecalization, rthe rates within
tha imperfaction become infinita, whereas those outside the imperfection

ramain fFinite,.
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4; Analyces and numerical results
In this section, with the use of the elastic-plastic constitutive
rate relations for void-containing materials, the localization conditions
with no imperfectinn, studied by Pudnicki and Ziece [12]), and with an
initial imperfection, studied in section 3, are analyzed numerically in
Tthe cazes of tensile sxtensicn under axially-symmetric and plane-strain
conditions. Then, the vesults of these numerical analyses are discussed
in connection with implications of the work for the theory of ductile
Fractunre,
k.1, Analysis for localization eonditions with wo imperfeation
Consider a wolid-containing body with void volume fraction £ . Suppose
the unit normal to the prospective band of lecalization is n . Rudnicki
and Rice [12] have shown that iIf the dilatancy factor (or e in the present
case) iz not large, the normal to the lecalization bahd becomes perpendicular
to the uII-dir‘ectinn under most stress states of oy 2 UIIEUIII + Hera,

¢ . and o are the principal true stress components. Thus, take

¢ II III

I°?
the reference coordinate system to be {xl, Kz, Ra}, corrasponding ta the
principal stress axes {uI, Orrs UIII} which are assumed to remain fixed
throughout the pre-localized deformaticn, so that the normal te the band

iy perpendicular to the Hg-directian as in Fig. 1. Then, the unit normal

tc the band hacomes

n, = casf n, = o ., n, ¥ - sing (u.1)

vhere g is the angle between the xl-axis and the nermal.
The microscopic hardening modulus hm , for void-contalining mateprials,

which just allows a localization hifurcation on a surface with the normal



L

¥, can be obtained from Egq. {3.15), in consideration of the relations of

2
Egqs. {2.17), as

gt \ L2 o o2
hm = --—--u—.—-.—---::"'.:]‘.;‘_f:1 3 m (G 32 + Kﬁ) + 3G ( }2 ) +( 23)
nl ]
(m + Lk c (K + 3 G) “m " m
n
ag. ! g a,. " g, '-u.
N 60 12 m  feC22 .} T2z "n
26+ o ~a,." - L 2
(%22 1) (T E-G) .
- 1 %kk
- (Bw + 3¥a2) + ﬂmfluf]n[cnsh (5 — - f] . {4.2)
J
m

Since all stress components, here referred to the (x,,x,,%,) in
Fig. 1, are functions of ©® and the principal stressas, this equation
gives the critical mizroscopic hardaning modulus, hmcp » 2t vhich tha

e

ongat of localization is first possible, as a functionof G , X, F , S,
and the principal stresses. The critical microscopic hardening modulus iz
obtained as the maximom of hm over all) angles O , because the valus

of hm is a decreasing funetion of the microscopic equivalent tengila
strain. The correspending angle © is the angle bhetwesen the xl-aﬁtis
and the normal to the band in Fig. 1. By considering Lgq. (4.1} and
follewing the detalls of Rudnicki and Rice [12] (Eq. {24) in their paper),

the critical microscoplie hardening modulus s given to the neglect of

the term (EmHGJE and smaller by

2
o 1

A . Sl -E{m}(¥ +3‘3-)

mer Ty 2 . 3
(w + — a)?
o .
+ g  (1-flz[cosh (i _Lk) - f]} s (%.3)

m 24
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where a..'
-(l-ﬂv}( EI )+ ufl;ul o
Iy
cos EGEP = = - .
( 1~ "1 )
a
m

Hare, uI' N qII. and ﬁIII' are the deviatoric principal true stress com-

ponents , Bcr is the critical angle which maximizes Hm . and v is Poisson's
ratio.

Whan analyzing problems of the lecalization bifureation, wa take the
relation betwsen true shear stress and total equivalent shear strain (elastic

plus plastic) for the material of the matrix surrounding the voids to be the

so-called power hardening law,

Y for G <u
T ¥
1 y {u.1)
T N )
¥ (I_) for T2 03 .
TY

where 1 = Effé' s Y = &/Y3 TY = ayffi and TF s 2{l+v}arffi « N is
a strain-hardening coefficient and ay and EY are the true stress and
strain at yield for a2 material with no volds in the uniaxial tensile test.
This relation is plotted in Fig. 2 for thrae sets of N = 0.05, 0.1 and 0.2.

From Eq. (#.4), the microscopic hardening modulus h = is calculated as

n y (4.5)

Thus, by seeking the point at which the value of h in Eq. (u.5) becomes

equal, with continuing plastic deformation, to that of hmcp in Eqg. (b.3),
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we can determine the cpritical strain which gives the fivrst bifuwrcation point
in ths hcﬂy-
In the special case of £ = 0 , the dilatancy factor becomss zerc and
the value of the critical microscopic hardening modulus becomes non-positive

to the neglect of tha term {Emfs}z amd smaller.

ey
11

“m

4]

h =0 . (4,63

maT

L]

a0
- T {1+v)

Thiz suggests that localization never occurs at & finite strain because the
value of the microscopic hardening modulus is expectad to be positive. How-
evar, in the case of axially-symmetric extension with F > 0 , localization
can he expected to occur in a homogensous body only at & very largs etrain,
gt least in the absence of significant stress triaxiality. Especially, in
the case of unianial extension, even if the value of f becomesz 0.1 ,
is approximately of the magnitude 0.01 while lﬁII'IEmI is about 2¢ times
larger than the value of o around realistic values of strain. Thus, for
a not large valus of the strain-hardening coefficient, hmcr becomes a
strongly negative value and localization is expected to oeccur at a tremen-
deusly large strain.

In the case of plane-strain extension with f > O , the value of the
critical hardening medulus can become positive for realistic values of F
and has the possibility of allowing localization at a finite strain. Tor
example, Fig. 3 shows curves of the ratio of critical strain in the tensile
direction to yield strain, Eirfzy . versug initial weid velume fraction fﬁ
for the case af uniaxial plane-strain extension with ¢, > &II(DII = 0)

I

I? &II and &III are the principal true stresss rates

> UIII = 0. Here, o
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and D is the principal rate of deformation in the X -direction, The

11 2
material modelled hag Peizgon's ratio of 0.3 and z? aof 0.003, Al=sg,
cueves of the critical angle Bcr verzus initial void volume fraztion fo
is shown in Fig. 4.

Tha eritical strain depends strongly on the strain-bardening ceefficlent
# and on the initial void volume fracticn fD s and it decreases with the
decrease of N or with the increase of fD . IF & material has a large
value of the initial veid velume fraction, or if a materizl has a very
small value of the strain-hardening coefficient like a non-hardening material,
localization may bhe expected to occur at a reasonably finite strain az an
incipient point of ductile fracture. However, if the initial vold volume
fraction is net large, even with a small value of M , or if the strain-
hardening coefficient is not small, even with a large value of fD s+ The
predicted strains to localization seem rather large.

Thue, the case with no initial imperZection does not necessarily seem
te allow localization at reasonable strains. This suggeste a possible
gignificance of initial imperfectionsz, which are considered next.
4.2, Analyeis for localization conditions with o initial imperfection

Consider a body with an initial, finite Iimperfaction with a sufficiently
thin s5lice, 50 that its strain does not affect the total strain. Assume the
initial imperfection to be a weid-containing material with void wvolume
fraction f and with the same elastic shear and bulk moduli as the material
surrounding the imperfecticn has, and supposs that material alsec to be 2
void-containing material with void velume Fraction £° which is different
from the value of f . Take the reference coordinate axes to be {xl,xz.xal .
o o

corresponding to the prineipal stress axes fd?, Oy EIII} which are

assumed to remain fixed throughout the pre-lccalized deformation. Also, for
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the same reason described in section 4.1, tzke the current cooprdinate axes

to be (xl, Xy KS} , 50 that the x_,~axis is normal to the planar band

2

of the imperfection and thsa ~axis coincides with the ¥ _-axis as in Fig. l.

x

3 2

If we choose the coordinate systems as in Fig, 1, we can take q; 1o be
zero. Then, with the use of the constitutive rate ralations given hy

Eq. (2.14), Eq. {2.13} can be expressed in terms of the rate of deformation

tenzor ocutside the imperfaetion as

o1 , N e L K= " -
q; = F{{dlﬁ }(1{ t38 o, vg amu)(GGkE + Kﬂmnakz)
p 2
I m 1 c' K - g
- {012}[;{: _&G (K + 3 G+ 022 + Eﬂmu. )
a
3Go.. + Ki_a)
+ L
_ 22 m ' ot - -0 D o' -0 0
195;2 (G{t:rz? ﬂﬂ} + K(umu 7 o })J (Gciu + Kumu 'Ski

- 2 1 '
a 6. -4 . _
- I_n.(.-..__m ) (1 ¢ =22 Ll)(sagz + Ku;u)

1 ‘ol G

m
(@ )

AG{or

12 ' G‘ - -3 O g' -2 0
+ fla.. -« £ Klga-ag?)
EEE:?___-( { 4% 22} { m 3 )] (qul + Kﬁmu ﬁkt




where
I = %-H + wG + 32k
H ={T[‘;'-EI:T W o+ %u - EEm(luf]“[COSh(%— -;-E) - f]} ’
: m m
' '
J ={[% IEm2(1 + #)- G{ulz}z] (K + %G}

1 1

a.. -0
- 22, e 5 a)? " Y2teo 5
(1 + )(Gﬂ?z + Kﬂmu] (q12] (6022 + Khmm}} .

The rate of deformation and zpin tensors within the imperfection are
given in terms of the rate of deformation tensecr outside it by Eq. (3.3),
£q. (3.4) and Eq. (4.7). These show that there are discontinuities between the
ingide and outaide of the imperfection in the rate of deformation compenents,

D and T 3 3 and in the spin tensor components, ﬂ12 and “21

1z ¢ D21 2

4lso, the true stress rate tensor within the imperfection is expreassed in
terns of the rate of deformation and =pin tenscors outside it by Eq. {3.5)
ﬂ.ﬂ.‘d Bq- (I'I'i?}i-

The rate of deformation and spin tensors cutside the Imperfection are

given by
G . w0 Yo
Pis *ike Y53 0 (4.8)
0 = ¢ = A 2 =
8y, Ry =8 ﬂij 0 (otherwise},
where
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for elastic leading or any unloading and
. tand I -0 g
0= (1+tanﬂi){iﬁ'(“1 - o1p’

a ot -& 0O
G, =
+ =32 ( I ﬂrIII:l [ nleg o' o' =o 2Hﬂ.-t';! (-u 0 a0 i]}
o

o Y 0 SRS SRS 0t 4 S 65 306 5 & SAARN TN N6 SRS § QAR §4:
™m

for loading at yield. Jéijkl is given in Bg. (2.13) and & is the angle
between the xz-axis and Hl-ﬂxis in Fig., 1. If the principal stress

. = 0 '
rate in the reference system (uI » I17 » 0111

mann stress rates in Bg. (4.8} and tha true stress rates outside the im-

a )} are spacified, the Jau-
perfection are expressed in terms of the principal stress rates in the
raferance system as

¥ =% - sinze (o] - o346 = %‘[{l-coszﬁ}&; * {4+ cos28)ap,,]

711 7 1
Yo _ o . o ¢ a1 0 - "0
Tpy = Ty, + 5in28 {nI - ”III}ﬁ =z [{1+cnsze}u1 + (1 cos?EJUIIIE >
Yo _ 0 = 5°
O33 " 933 ~ II
4.9}

Yo _ *n Q L] - S 0 ol® {
0y, = 05 = COS20 {UI “III}B ® 3 5in28 (g - GIII] :
gu - Eﬂ &n - &u

21 1z T 21 1zt
Yo _ Vo _ ¥o _ %o _ ooo_ "0 _ 3 _ "0 _
913 %93 323 O30 =0 » 013 =0y =09 =05,=0

Take the particular stress-strain relation for the material of the
matrix surrounding the voids to be the power hardening law given by Eq. {(4.4),
Then, the microscopic hardening modulus hm is obtained as Eq. (4.5},

Thus, if the initial angle B, » initial weid wolume fraction fﬁ
within the imperfection and fz outside the imperfaction, and principal
true stress increments (ﬂu? . ha;I > &Q;II] are specified, the increments

of deformaticn, spin and stress tensors outside and within the imperfection

can be calculated siep by step, following the given stress-strain relation.

S
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Then, & hifurcatinn point at which the imperfection 1s driven to a
localization bifurcation can be obtained by seeking a point which causes

tha deformatien rate fields within the imperfection ta be infinite. Here,
defins the localization strain as the value of gtrain which brinpgs te a
localization bifurcation an imperfect slice having the initial angle Eo -
Mz, the eritical strain, over all orientations of an initial imperfection
of givan amplitude, can be determined by seeking the minimum of localization
strains over all initisl angles Ea .

How, we analyze the localization conditions in two cases, axiali}a
aymmetric extension with &; » 5;1 = &;II + ¢ and plane-strain extension
with &? > &?I {D;I = 0} » &;II = 0 , The material properties are the
same as those with no imperfecticn. Fig. 5 shows an example for curves
of the ratio of a rate of deformation component within an imperfesction,

Dl2 s to ourside it, Dz

As the strain approaches a localizatieon point, the ratio increases

5 » Yersus true strain in the tensile dirﬂétiun,

EI.
rapidly and at the localization point, it goes to infinity. This means
that the onset of lecalizatien corresponds te the poaint at which snormous
growth of an imperfection starts to cause the deformation rate fields to
be infinite within the imperfection while the steady deformation continues
cutside it, Fig. 6 shows an example for curves eof the localization strain
Eiuc varsus initial angle Eﬁ . The minimum of the localization strains
givas the eritical strain at which the inception of localization is first

poesible. Curves of the ratio of critical strain to yield strain, E;rny ’

varsus difference of Initizl voeid volume fractions between the ingide and

f¢ - f: y are shown in Fig. 7 in the

case of M = 0.1 and 0.2 with fz = 0 and 0,01. Alsc, cucves of the

cutzide of an imperfection, &f
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critical angle Ecr versus difference of inltial veld volume fracticns,
ﬂfo y are shown in Fig, &,

In the case of uniaxial extension under axizlly-symmatric conditions,
a8 material with no initial imperfection can localize only at an unrealisti-
cally large strain, whereas a small initial imperfection allows localization
at a reasonably finite strain. Als=o, In the cage of uniaxial sutension
under plane-strain conditions, although lecalization is possible to oscur
at a finite strain in both cases, the strain at localization with an initial
fmperfection can be much smaller than with ne initial imperfection. For
example, the critical strains with f, = 0 , shown in Fig. 7, are twa
to five times smaller than those with no imperfection, shewn in Fig, 3,
Thus, the existence of an initial imperfection promotes a localization
bifurcation astrongly in comparison te the case with ne imperfection, and
makes it pessible to allow localization at a reasonable strain in both
uniaxial extension cases under axizlly-symmetric and plane-strain conditiens.

The critical strain with an initial imperfection depends on the initial
void volume fractions within and outside an Imperfection and on the strain-
hardening coefficient as showm in Fig. 7. These correlations are almost
analogous to those with no imperfection and furthermore, as the initial void
volume fraction cutside an imperfection, fz s Increases, locallization seems
to become more imperfection sensitive, The strain-hardening depéndence of
critical stralin is consiztent with the suggestion from the hole growth
analysis of McClintock [8] for ductile fracture that the increase in fracture
strain is expected from increased strain-hardening, and the veid velume fraec-
tion dependance is alse compatible with the experimental results of several

copper dispersion alloys tested by Edelsen and Baldwin [15].




Fig. 9 shows curves of the ratio of plane-ztrain critizal strain to
axially-symmetric critical strain, (Engplanef(Egr)axi s Versug reciprocal
of strain-hardening coefficient, 1/% . The ratie, (égr)planef(egfja“i .
decreases with the deacrease of M in 3l) cages presented there, and
the slope of their surves beccmes stesp with the increase of the difference
of initial void volume fractions, EEQ y under constant fz or with the
increase of the initial void velume fraction cutside an imperfection, f: N
under constant ﬁfﬁ + FRosenfimld and Hahn [16] bave investigated the
relation between the yield strength and the strain-hardening ccefficient
for plain carbon steels to show that the reciprocal of strain-hardeningI
coefficient is approximately proportional to the yield strength. In
consideration of thisz relation, the strain-hardening dependence of the
mtin,(z?’lla“el(eirlxi, seams to be consistent with the experimental results
reported by Clausing [17] that the ratio of plane-strain tension ductility
o axially-symmetric tension dvetility could vavy from 72 percent to
17 percent for a range of staelz, generally decreasing with increasing
yield strength level, However, as a whole, the values of its ratioc in Fig. @
look a little smaller than those obtained by Clausing [27]). This may be
dua to the following factors. First, the necking affect has been neglected.
Hecking , wh&nh will generally occur before localization, is known to induce
significant stress triaxiality to exert a strong influence on veid growth,
which is seen by the equations of Section 2. This is expected to reduce the
critical strain obtained in Fig. 7 more in the case of uniaxial extension
vpder axially-symmetric conditions than under plane-strain econditions.
Second, the imperfection has been assumed as an initial one in this analysis.

However, since voild nucleation occurs after some plastic deformation {3,5,18],

there is an incubation peried depending on the type of a material, stress




state and sc on until the initiation of veld nucleation. This would increase
the predicted strain levels in both uniaxial extension cases, and thus
increase somewhat the ratios shown in Fig., 9.

S50 far, we have analyzed conditions for a localization bifurcation
with an initial imperfection. This analysis is valid only for such a
single imperfection or parallel imparfections that allow the deformation
fields in the materizl suwrrounding imperfections to remain uniform. How-
aver, this analysis might be helpful to estimate an inciplent point of
ductile fracture in au actual material with a random distribution of
initial imperfections. Thus, by considering the necking effect in addition
to adequate choice of a strain-hardening coefficlent and Initial veld
volume fracticons within and outside an imperfectien, according to the type
of a material, it may be possible to exiplain experimental results more

sufficiently in the present context.
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5. Conclusion

Conditions for a localization bifureation with an initial imperfecticn
have baen derived from the viewpoint that at the inception of localization,
the macroscopic constitutive relations allow the deformation rate fislds to
Leceme unbounded within an imperfection but to remain Ffinite ocutside it.

The ecritical conditions bave been analyzed numerically with the use of the
constitutive rate relations for veoid-containing materials in the cases of
tensile extension under axially-symmetric and plane-strain coenditions to
compars with the case with no initial imperfecticn.

The critical strain with an initial imperfection depends on the initial
void velume fractions within and ocutside an Imperfection and on the strain-
hardening coefficient. It decreases with the decrease of ths strain-hardening
coefficient or with the increase of the initial void velume fraction within
an imperfection and also, localization becomes more imperfection sensitive
with the increase of the initial wvoid wolume fraction owtside an Imperfection.

The existence of an initial imperfection greatly reduces the strain to
localization In both cases. Especially, in the case of uniaxial extenszion
under arkially-symmetric conditions, its existence makes it possible to
cause localization At & reasonable strain, whereas a material with no
initial imperfection can loecalize eonly at an unrealistically large strain.
Alse, tha case with an initial imperfection makes it clear quantitatively
that the eritical strain ig smaller in the case eof plane-strain extension
than in the case of axially-symmetrie extension. This is censistent with
the experimental results that the tensile ductility iz smaller in the formar
case than in the latter casze. However, as necking seems to have a strong

influence on void growth, the effect of necking should be taken into account.
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Appendix: derivation of the time rate of the unit normal to the planar

band of an imperfection.

Let N and n be the unit normal vectors to the planar band of
an imperfection in the reference and current coordinate systems respectively.
n can be expressed in terms of N as follows [19].

-1
NF
nj L , (A.1)
R

whepe

kk]l
Taking the time derivative of Eg. (A.1l)} gives

Rn. + Rn. Hka] .

HF P -;Rnkvk’j *

Z - v .
an annknl K, &

{A.2)




-G~

REFEREMCES

E1] H.C. Rogers, Transactions of the Metallurgical Sceiety of AIME,
218 {1960} 498-506,

£2] C.D. Beachem, Transactions of American Scoiety for Hetals, 56
(1963) 318-326.

(3] J.I. Biuhm and R.J, Horrissey, Fracture in a Tensile Speeimen, in
Froc. of the First Int. Conference on Fracture, Sendai, Japan, 1965
(T. Yokobori et al., eds.), Vol. 3, p. 1739, Japanase Society for
Strangth and Fracture of Materials, Tokys, 1966G.

{43 K.E. Puttick, Philosophical Magazine, u {1959) 9gu-969,

[5]) J. Gurland and J. Plateau, Transaotions of Amariean Society for Matals,
56 (19£3) uL2.454,

[6]1 A.R. Rosenfield, Metals and Materials and Hetallurgical Reviewa, {1958)
29=40,

(7] J.R. Rice, The Localisation of Plastic Desformation, in Preec. of the
luth Int. Congress on Theoretical and Applied Hechanics, Delft, North-
Helland, 1976 (W.T, Koiter, ed.), ¥ol. 1, p. 207, Horth-Holland Pub-
lishing E’Qig 1976,

[8] F.A. MeClintock, Jourral of Applied Mechanies, 35 {1968) 363-371.

[9] ©.A., Berg, Plastic Dilation gmd Veid Inmtervaction in Inelastic Bshugior
of Solids, {M.F. Kanninen et al., eds.}, p. 171, HcGraw-Hill, Hew York,
1970,

[10] A.L. Gurson, Plastie Flow and Fracture Behavicr of Puctile Materials
Incorporating VYoid Nucleation, Crowth and Interection, Ph.D. Thesis,
Browvn University, 1%75.

[11] A.L. Gurson, dJourral of Engineering Materials and Technology, Trans-
actions of the ASME, 99 {1977} >=l5.

[12] J.¥. Rudnicki and J.R. Rice, Jowrnal of Mechanics and Physices of
Solids, 23 (1975) 371-39u,

[13) Z. HMarciniak and X. Xuczynski, Internaiional Journal of Mechanical
Sotences, 9 (1967) 609-620.

[14] J.F.W. Rishop and R. Hill, Philosophioal Magazine, 42 (1951) Wlh-u27,

f153 B.I. Edelson and W.M. Baldwin, Trarsaetions of American Society for
Metals, 55 {1962) 230-250.

[16] A.R. Rosenfield and G.T. Hahn, Fransactions of Amerisan Soeiety for

Matals, 59 (1966) 962-990,



-30- '

+ L L]
"
.

[17]) D.P. Clausing, International Jourral of Frasoture lNechanics, & {1970)
71 .85,

[18) D. Broek, Engincering Fracture Meohanies, § (1973) 5566.

[19) L.E. Halvern, fntroduction to the Mechanies of a Continuous Mediwm,
p. 169, Prentice-Hall, Inc., Mew Jersey, 1968,

sfm



Figure 1.

-31~

localization band or
imperfection band

Coordinate systems for the localization hand

or imperfection band. (Xi,x 333 ig the
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refaprence coordinate for the localization

band or imperfection band. {xl,x?,xal is
the current coordinate for the imperfection

band.
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