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ELECTRONIC STRUCTURE OF METALS AND SEMICONDUCTORS:
BULK, SURFACE, AND INTERFACE PROPERTIES

Steven Gwon Sheng Louie
Materials and Molecular Research Division, Lawrence Berkeley Lgboratory

and Department of Physics, University of California
Berkeley, California 94720

ABSTRACT

A theoretical study of the electronic structure of various metals
and semiconductors is presented with the emphasis on understanding the
properties of these materials when they are subjected to extreme
conditions and in various different configurations.

Anong the bulk systems studied, the properties of cesiun under
high pressure are discussed in terms of the electronic structure
calculated at various cell volumes using the pseudopotential method.
Local fieldé or umklapp processes in semiconductors are studied within
the random phase approximation (RPA). Specifically the dieluvctric
response matrix sﬁﬁ.(gfo.u) is evaluated numerically to determine the
effects of local-field corrections in the optical spectrum of Si.

Also, some comments on the excitonic mechanism of superconductivity

are presenied and the role of Jocal fieldn in discussed,  The pseudo-
potential method is next extended to ealeulate the clectronic structure
of a transition metal Nb. The calculation is performed self-consistently
with the use of a non-local ionic potential determined from atonmic

spectra. Finally the theory of the superconducting transition
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cemperature T: is discusged in the strong-coupling formulation of the
BCS theory. The Eliashberg equations in the Matsubara represcntation
ave solved analyvtically and a general Tt equation 1s obtaincd.

In addition to the above study of bulk properties, a new method
is developed using pseudopotentizls in a self-cons{stent manter to
describe non-periodic systems. The method is applicable to localized
configurations such as molecules, surfaces, impurities, vacincies,
finitc chains of atoms, adsorbates, and solid interfaces. Spceific
applications to surfaces, metal-sermiconductor interfaces and vacancies
are presented here.

For surfaces, the new scheme is employed to calculace the e¢lectronic
structure of the $1(111) surface for three different structural swdels
(idesl, relaxed and reconstructed). Surface states are identified
and analyzed throughou: the two-dimensional Brillouin zone. Charge
densivies and electronic density of states are presented and discussed.
The effects of relaxation on the electronic structure of the Gaas (110)
surface are alse investigated. Sisilar studies are carried out for
metal surfaces vith the Al (111) surface and the Nb(00l) surface
considered as prototypes for the simple s-p metal and the transition
metal surfaces.

For metal=semicmuductor fnterfaees, tine s loctranie BEPur-iure of
o werien of four interfaees ol incecaning svmicondacior ionicliy s
studicd. The series consists of ifnterfaces of A) (modeled by a
jellium core potential) in contact with the (111) surface of Si and

the (110) surfaces of GaAs, ZnSe and ZnS. The different types of


http://structur.il

-vii~

statesexisting near the interfaces sre identified and analyzed in terms
of a local density of states and their individual charge densities. The
calculated Schottky barrier heights are in good agreement with
experiments. In additien, a.model involving metal-induced states in
the semiconductor band gaps near the interface is presented for the
ionicity-dependent behavior of the metal-semiconductor Schottky barrier
heights.

Finally. a8 an example of vacancies in semiconductors, the
clectronic structure of a neutral vacan.- in the Si crystal is cal-
culated for the ideal and two model reconstructed geometries. Vacancy

states are identified and their charge densities are presented.
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1. INTRODUCTION

We present a theoretical study on the electronic structure of
various metals and semiconductors. Particular emphasis is placed on
understanding the changes in the properties of these systems when they
are subjected tc extreme conditions and in various different configura-
tions. The pseudopotential method has been employed extensively tou
calculate the bulk, surface and interface electronic structurc nf the
systeps studied. Superconductivity is discussed both in the weak-
coupling and the strong-coupling formulation of the BCS theory.

We begin in Section II with the discussion of the bulk properties
of solids. The electronic structure of cesium under high pressure is
examined in Sec. IIA. The calculated results indicate that many of
the properties of Cs under pressure arise from the changes in the
characteristics of the conduction electrons which become increasely
d-like as the volume contracts. Local fields or umklapp processes in
semiconductors are discussed next in Sec. IIB. An expression for ‘e
dielectric response matrix EEE.(g,u) in the random phase approximation
(RPA) is derived via a diagrammatic approach. The matrix eﬁg.(ﬂ-O.m)
is then evaluated to study the effects of locral-field corrections in
the optical spectrum of 8i. Somc comments an the exeitonic mechanism
of superconductivity which involves a metal-semiconductor interface are
presented and the role of local fields is discussed. Section lIC is
on bulk Nb. We show that, with the inclusion of a non-local d-potential,

the pseudopotential method can be extended to calculate the electronic



structure of transition metals. The calculations were performed self~

consistently with the Nb+5 ionic core pseudopotential determined from
atomic spectra. In Sec. TID we explore the theory of the superconducting
transition temperature. The Eliashberg equations in the Matsubara
representation are solved analytically using a self-consisten:,
variational procedure. An expression for the superconducting transition
temperature Tc is derived. Unlike the McMillan equation, this Tc
equation is shown to b2 a valid solution of the Eliashberg equatioms for
all electron-phonon coupling strength and for different shapes of the
electron~phonon interation spectrum, nzF(w).

The remaining three sections are on non-periodic systems. In
Sec. IIIA a new method which extends the pseudopotential scheme to
localized configurations is presented. These calculations are done
self-consistently and the approach is applicable to problems such as
atomic and molecular states, solid surfaces, impurity and vacancy
states, finite chains, adsorbates, and solid interfaces. Our results
on the semiconductor surfaces are presented in Sec. IIIB. Specifically,
we have studied the electronic structure of the Si(111) surface using
three different structure models -~ the ideal structure, a relaxed
structure and a (2x1) reconstructed structure. The effects of relaxation
on the GaAs (110) surface are also stadied. Tn Sees TS we eximuioe
the wetal surlaces with the AL(HID) surface and the BB(ODL) nurlace
considered as prototypes for the simple s-p metal and the transition
metal surfaces. In all of the cases studied, surface states with

different characteristics are found to exist over a wide range of
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energies; and our results are in general agreement with available
experimental data when the appropriate restructuring of the surface
is included.

In Section IV we apply our method to study the metal-semiconductor
interfaces. The interfaces studied are interfaces of Al {mcdeled by a
jellium core potential) in contact with the (111) surface of Si and
the (110) surfaces of GaAs, ZnSe and ZnS. The elactronic structure
of the Al1/S51 interface is discussed in some detail in Sec. IVA and the
results for the metal-zinchlende semiconductor interfaces are presented
in Sec. IVB. Metal-semiconductor Schottky barrier heights in very
good agreement with experiments were obtained. Our results indicate
that, within the jellium~semiconductor model, intrimsic semiconductor
surface states do not play a dominant role in determining the Schoitky
barrier heights. In parcticular the intrinsic surface states which
existed in the fundamental gaps of the semiconductors for the "free"
surface case are found to be removed by the presence of the metal
(rs = 2.07) and new types of metal-induced gap states (MIGS) occur in
this energy range. In Sec. IVC the role of ionicity in metal-
semiconductor Schottky barriers is investigated. We show that the
variations in the experimental barrier heights for different metals in
contact wilh varjons semiconductors ean be anderstood quntitativeiy in
terms of a simple model involving the MIGS in the semiconductor band
83ap-

Finally, in Section V we study the electronic properties of

vacancies in covalent semiconductors. Specifically we have calculated
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the electronic structure of a neutral vacancy in the Si crystal using

the method discussed in Sec. IIIA. The energies of the localized

vacancy states and their corresponding charge density distributions

were odbtained. 1n additiom to the ideal structure, the effects of
structural reconstruction on the Si vacancy states were also investigated

through the use of two model reconstructed structures.



I1. BULK

A. Electronic Structure of Cesium under Pressure

In this section we present some calculations on the electronic
properties of cesium under high pressure. The calculations are based
on the pseudopotential method.1 We have calculated the band structure,
the density of states, and the charge density of the conduction
electrons at ceil volumes V equal to 0.5 Vo, 0.4 Vo and 0.3 Vo where
Vo is the cell volume at normal pressure. The conduction electron
density of states is further separated into contriburions from s-, p-
and d-like components. In addition, the topology of the Fermi surfaces
at the above volumes was determined.

The present calculations were performed to try to gain some informa-
tion about the many interesting properties of cesium under pressure.
Expo:ﬂ’il'nel'.tsz.5 show that cesium undergoes three phase transitions in
the pressure range of otie to fifty kilobars. At room temperature and
under hydr: static pressures, X-ray3 and neutron diffraction4 measure-
ments show that there are three discontinuities in the volume versus
pressure curve. The first discontinuity occurs at 23.7 kbar
(v/vu = 0.63). At this pressure cesium undergoes a transition from a
bee structure (Cs1) to a fec ' tructure (CsII) with a small reduction
in volume. The next discontinuity occurs at 42.2 kbar (Vlvo = 0.45).

The latter transition is a first order isostructural tranmsition. The
structure of the new phase, CsIII, is fcc as in CslII but the volume

drops by 9%2. The third transition, CsIII to CsIV, occurs at 42.7 kbars
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(V/Vo = 0.41) where the cell volume of cesium drops by 2.4%. The

structure of CsIV has not been determined.
The above transitions are also evident in resistivity versus
3,5,6

pressure measurements. The resistivity as a function of pressure

decreases initially, reaches a minimum at 8 kbar. It then increases
with increasing pressure with a discontinuous rise at 23.7 kbar where
bee CsI transforms to fcc CslI; it becomes anomalously larpe near 42 kbar.
Two spikes in the resistivity were observed at 42.2 kbar and 42.7 kbar;
thgy correspond to the CsII~III and the CsIII~IV transitions respectively.
The resistivity data are also interesting at higher pressures. The
resistance of cesium drops steadily after the 42.7 kbar transition, and
there is a second anomalous region near 120 kbar where the resistivity
rises steeply to a maximum.6

The bulk modulus of cesium also behaves anomalously at the higher
preSSures.7 Below the 42.7 kbar transition and above 120 kilobars,
the bulk modulus is a linearly incrgasing function of pressure. In
between, however, cesium becomes anomalously stiff; the bulk modulus
increases abruptly and reaches a value at 120 kbar which is two orders
of magnitude higher than its value at 43 kbar. Finally, cesium has
the interesting property that it becomes superconducting at low
Lemperature am! Biph pn-.t::;urc-.a The superconduacting tromsit ion
temperature is found to be 1.5°K at 120 kbar and the transition
temperature is a decreasing function of pressure.

The CsI-II transition at 23.7 kbar was first explained by

Bardeen9 and later confirmed by experiment_.3 The isostructure
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transition at 42.2 kbar (v/vo = 0.45) is more complicated. Previous
theoretjcal inves';igan:ionslo-'12 have attributed it to the change of the
character of the conduction electrons from 6s to 54, which occurs when
the lattice is compressed to critical volume. This idea was first
proposed by Sternheimer10 in 1950. However his model gives the mixing
of the s~ and d-waves at lower pressure than the observed value.

Recent calculation by Yamashita and Asano13 has shown that the
cesium d-bands are broader than those obtained by Sternheimer. Using
the APW method, Yamashita and Asanc have calculated the band structure
of cesium as a function of various cell volumes and they have examined

the Fermi surfaces at those volumes. Calculations of total energy

versus volumell"15

have also been done which show a first order
isostructural tramsition but at too low pressure.

As noted by HcHhan,a recent experimental and theoretical evidence
indicate a continuous s-d trausition rather than an abrupt one as
previously believed. The present calculation is the first attempt
using the pseudopotential method to look at the isostructural transi-
tion of cesium. A band structure is calculated throughout the Brillouin
2zone which yieids a detailed calculation of the density of states and
of the electronic charge density. The calculation is described below
in section 1, the results are given in section 2, and some discussion
of the results is presented in section 3.

). Methods of Calculation

a. Band structure. In applying the pseudopotential method to

obtain the electronic band structures, we have used the pseudopotential



Hamiltonian1

Heie 4+ v
> oN)

where Vp is a weak pseudopotential which is taken to be a superposition
of atomic pseudopotentials. Vp which is energy dependent can be

decomposed into a local and a non-local component
2
Vp = VL(E) + VNL(E) . (2)

However, for a limited energy range, the energy dependence may be
ignored.

In the case of cesium, for the local pseudopotential, we used
Animalu's16 screened model potential form factors. The form factors

are defined as

v =5 v (@ €L (3

e

where Va is the local atomic pseudopotential, G is a reciprocal lattice
vector, and Q is the primitive cell volume. To compute the energy bands
at high pressure, i.e. different primitive cell volume and different
g's, the form factors must be appropriately scaled. We scaled the

form factors in the following way. Let Q' and G' be the primitive cell
volume and the reciprocal lattice vector at a new pressure, then the

new form factors are given by

- .
Ve = qv [ V(0 ¥ Lo

Q '
=g V(€Y . 4



The atomic pseudopotential is weak because the repulsive potential
from the orthogonalization terms cancels the strong atomic potential.
However the cancellation is different for the different angular momentum
components of the conduction electron wavefunction. In using a local
pseudopotential one has assumed that the cancellation is the same for
each angular momentum component.

In cesivm the core has configuration
(192292 2p) 2 (39239 8 3 P as) 2 (4p) 8 (52 24y P (50 (5)

The cancellation for £=0 and 1 is expected to be good over the whole
core. For £=2 there is some cancellation arising from the 3d and 4d
core states, but it can only cancel the atomic potential up to the n=4
shell. It leaves the potential in the n=5 shell uncancelled and the
d-component of the conduction electrons will see a deeper attractive
potential.

At normal pressure the conduction electron wavefunction is mostly
s~like; the f-dependent effect will not be important. However, at
high pressures, there is a large s-d mixing. The L-dependent part of
the potential is then very important. To account for the incomplete
cancellation, we have added a non-local correction to the local form

factors of the form
L 2,2 17
V: (E) - Az exp (~r°/R )P2 . (&)

A, is the well depth, R is the well size, and P, is a projection

operator acting on the d-component of the wavefunction.
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Since there was no experimental information on the band structure
of cesium at high pressure, A2 and R were determined by adjusting them
to fit our band structure at V/Vo = 0.5 to the band structure calculated
by Yamashita and Asano13 at the same volume. With some further
adjustments of VL' we obtained a good fit for the values A, = -3.2
rydbergs and R = 1.275 A. The largest discrepancy is 0.5 eV at the
point L in the Brillouin zone. The scaled local form factors and the
d-potential for the various cell volumes are given in Table I. (G is
in units of 2m/a where a is the lattice constant.) We have not scaled
the size and the depth of the d-well since we assumed these are
properties of the atomic core and the d-well is very localized. Even
at VIVO = 0.15, the radius of the inscribed sphere is larger than R.
Thus the same d-well was used in the band structure calculation at
VIVO = 0.5, 0.4 and 0.3. The most important band structure effects

for V/Vo's come from the d-potential and the scaling of V. is not

L
critical.

b. Density of states. Once the band structure has been obtained,

the density of states N(E) may be calculated from

NE) = 2

K S 85,0 &)

1= 4

where N is the number of primitive cells and N(E) ix normalized wo the
nunber of states per atom. To calculate the s, p and d contributions
to the density of states, we define the R-character of a wavefunction

wnk(g) in the following quantity
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[ e (DIPu, (D)d
¢ gy = Lok b

T, ; (8)
P ACLAMOLE:

where the integrals are to be taken over the inscribed sphere. By
assuming that the fractional mixing of the various angular momentum
components of the wavefunction cutside of the inscribed sphere is the

same as those in the inside, the partial density of states may be

calculated and

N (E) = 3 l{( E Colnuk) S(E-E_(K)) 9
with N

N(E) = NS(E) + NP(E) + Nd(E) . (10)

This is a reasonable definition for the partial density of states
because the imscribed sphere contains 75% of the primitive cell volume.
Equations (7) and (9) were numerically evaluated using the Gilat-
Raubecheimer technique.18 At volume VIVo = 0.5, a grid of 125 points
in the fcc irreducible Brillouin zone was used in the calculation.
At volumes v/vo = 0.4 and v/vo = 0.3, a grid of 308 points was used.
The reason for the grid size variation is that 308 points were needed
for the charge density calculation at volumes VIVo = 0.4 and VI\'o = 0.3,
¢. Electronic charge dengity. From the density of states we

obtained the Fermi encrgy EF by the following normalization

Er
1= 7 N(E) <E . (11)
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The band charge density of the conduction electron in a given band, n,

may then be calculated from

o, (D) = 2e Z VD) Vg (O (12)
keBZ
En(K)<Ep

and the total charge density is
plr) = [ o (x) . (13)
n

To obtain sufficient convergence for the charge density calculation,
the wavefunctions wnk were expanded in a basis set of about 85 plane
waves. And because the Fermi surfaces at V/Vo = 0.4 and V/V0 = 0.3
are more distorted than the Fermi surface at V/V° = 0.5, to insure
good convergence, a grid three times the size of the grid at V/Vo = 0.5
was used.
2. Results

The scaled form factors, d-well parameters, and lattice constants
used in the calculations are listed in Table I. At all three volumes
v=0.5 vo. 0.4 V° and 0.3 Vo. the structure is assumed to be fcc.

a. Calculated band structures. The band structures of cesium at

VIVo = 0.5, 0.4 and 0.3 are shown in Fig. 1. They were calculated with

a matrix size determined by the cutoff energies19 El = 19.1, E, = 40.1;

2
the non-local d-well was not included in the Ldwdin perturbation
scheme.19 The values for the d components of the wavefunctions are

indicated along the symmetry directions. In all three cases the bottom

band is mostly s-like near I' and is mostly d-like near X and K in the
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Brillouin zone. There is approximately equal mixing of s- and d-
character near the point L. The second band is almost completely
d-like; it has a small amount of p-mixing near L2. which becomes
completely p~like at the L point.

Our calculated band structures for contracted volumes are in
qualitative agreement with those obtained by Yamashita and Asano.l3
The volume dependence of the band structure behaves in a reasonable
way in both calculations; i.e., the energies in the region nzar X for
the first two bands drop with decreasing voiume with respect to Tl.
The x3 state drops below the Fermi level at V/V° ~ 0.45. The Lz,-L1
gap increases as the volume decreases. The second band doubled its

widch when the volume changes from 0.5 V0 to 0.3 Vo.

b. Calculated densities of states. The densities of states and

the separate s, p and d components (as defined in section 1.b) are
shown in Figs. 2-4. The origin of the energy scale is taken to be at
E(Pl) = 0 for all three volumes V/V° = 0.5, 0.4 and 0.3.

As seen from Fig. 2, even at V/Vo = 0.5, there is a large d
component in the density of states below the Fermi level. The
contribution of the d-waves to the density of states
increases wirth decreasing volume for states below the Fermi level.
This is consistent with the s=d transition arguncents originaliy
propused by SLurnheimur.ln However, the transition appears to be
continuous rather than abrupt. To make this quantitative, we have
calculated the total number of states or the fractional amount of

charge distrihyted among the s, p and d states in the inscribed sphere
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by integrating the partial densities of states, i.e.

E"‘ .
Q = I Ny (E)GE . (14)

The results are presented in Table II. The d component of the total
charge, Qd' changes from 0.21 to 0.31 then to 0.54 as the volume changes
from V/\’o = 0.5 to 0.4 to 0.3. Here our vesults differ quantitatively
from those of Ref. 13 where a higher d-mixings was found at tne above
volumes. These authors find that the mixing ratio of the d-cemponent
changes from 0.47 to 0.70 as the volume decreases from V/V0 = 0.5 o
0.4. The differences may arise because of the different band structure
methods involved.

At the Fermi energy, both the density cf states and the contribu-
tion from the d-waves, N(EF) and Nd(EF)' increase with decreasing
volumes. N(EF) increases from 1.64 to 1.91 and Nd(EF) increases from
0.56 to 0.86 as the volume changes from V/\’o = 0,5 to 0.3. (The
density of states is in units of states/eV-atom.) This increase in the
density of states at the Fermi energy may be related to the fact that
Cs becomes superconducting at high pressures (and low temperatures).

c. Electronic charge densities in the (100) plane. The charge

densities of the conduction electrans in cesium are shown for the (100)
plane in Fipgs. 5-7. The separate charge densities for the two lowest
bands and the total chiarpe density are given.

At volume V/V° = 0.5, the Fermi level is below the second hand.
Hence the charge density of the bottom band 1s the total conduction

electron charge density. The charge density is shown in a contour plot
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in Fig. 5 in units of e/ where Q = a3/4 is the volume of the primitive
cell. Near the atomic site the charge density is spherically symmetric
about the cesium atom. It has a maximum of 1.81 at the atomic site and
decreases to a minimum of 0.65 half way along the lines connecting the
ator to the second nearest neighbors. This arises from the fact that
the occupied states are at the lower energies of band 1 and they are
therefore mostly s-like.

At volume V/Vo = 0.4, a portion of the second band around X3 is
below the Fermi level. Therefore the total charge density has
contributions from both band 1 and band 2. They are shown separately
in Fig. 6. As seen from Fig. 6(a), the charge density of the first
band is no longer spherically symmetric about the Cs atoms. The
distortion arises from the increase in d-mixing in band 1 near X which
comes from the lowering of band 2 in this region. The Xl wavefunctions
are mainly d3zz_r2 and the charge density is moved out from the atomic
sites consistent with the signature of the dSzz-rz symmetry which can
be scen from the shapes of the contours. The charge density of the
second band has the interesting feature that charges are concentrated
along the nearest meighbor direction with local maxima occurring
about halfway between the atoms. This is not toc surprising since the
charge density of band 2 arises from states in the region around x3
where the wavefunctions are principally dxy' At V/\'° = 0.4, the
contribution of band 2 to the total charge is very small (~2%) and the

total charge distribution is mainly that of the first band.
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More charge is moved away from the atomic sites as the volume
decreases. At V/Vo = 0.3, (see Fig. 7), the total charge density has
a uniform background density of ~0.7 with local maxima along the lines
connecting the nearest neighbor atoms. In the (100) plane the charge
density of band 1 is uniform except for the four lobes from the
d322—r2 states. Because of the further lowering of x3. the sacond band
now contributes 15% to the total charge. As seen from Fig. 7(b), tae
charge density of band 2 is almost completely dxy' This gives the
total charge density of cesium at V/Vo = 0.3 a strikingly covalent-
bonding-like character.

d. Fermi surfaces. We have examined the Fermi surface of cesium
at V/Vo = 0.5, 0.4 and 0.3. The resulting Fermi surfaces are less
distorted than those given in Ref. 13, but the qualitative behavior as
a function of volume is approximately the same. They are shown in
Figs. 8-10.

As seen from Fig. 8, the Fermi surface at V/V° = 0.5 differs
considerably from the characteristic spherical behavior usually seen
in the alkali metals. Sizable necks have formed around the points L
and X. Since a large portion of the UXW plane is below the Fermi level,
this plane conti\ing the region in the Brillouin zone where most of
the occupicd d-like states are concentrated. As the volume decrueases
to V/vo = 0,4, the occupied conduction electron states shift towards
the zone edge, i.e. towards states with larger k-values. Figure 9
shows that at VIV° = 0.4 a larger portion of the UXW plane is below

the Fermi level and contributions from the second band appears around X.
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However, we do not find the contribution near W and K which is found
in Ref. 13. A new sheet arises from the fact that X3 drops below the
Fermi level; it is almost completely d-like. As the volume decreases
to 0.3 Vo (the Fermi surface is shown in Fig. 10), E(XI). E(x3) and
E(Ll) are all lower than E(Fl); thus most of the occupied stgtes are

now concentrated around X and L instead of I'. & small pocket is
formed around K.
3. Discussion

In summary, our calculation is generally consistent with previous
calculations. The conduction electrons become more d-like as the
volume decreases (see Table II). From our band structure calculation,
Xz drops below the Fermi level at a volume V ~ 0.45 v, This may be
related to the first order isostructural transition of Cs at V/Vo = 0.45.
According to Lifshitz.zo as each band drops belbw EF there is a
discontinuity in the slope of the density of states as a function of
volume., This could lead to a first order isostructural transition, but
the quantitative aspects of this approach have not been determined.

At 8 volume V= 0.5 Vo. we get a charge density resembling that
expected of an alkali metal; i.e. the conduction electrons are s-like.
However, at volumes smaller than 0.4 Vo the picture is quite different.
Cesium becomes a transition metal, Covalent bonding charge begins to
build up aleng the line joining the nearest neighbor atoms and we would
expect a stiffening of the lattice. This change is consistent with the
anomalous behavior in the bulk wodulus. Hcthn7 noted that almost all

of the pretransition elements and many of the d- and f-transition
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elements near the beginning of each series have this tyﬁe of abrupt
increase in the bulk moduli. This behavior is associated with the
transfer of electrons from'bands of mainly s and p character to bands
of mainly d character.

It is interesting to compare our charge density of cesium at
V/Vo = 0.3 to thase of NkC and NbN. The charge densities of band 5
in KbC and NbN21 have the same type of covalent bonding character
along the Nb-Nb direction as in the charge density of cesium at very
high pressure. Both NbC and NbN have high superconduction transition
temperatures, Tc‘ which are associated with the occurrence of anomalies
in the phonon dispersion curves of these compounds.zz’23 These
anomalies have been attributed to interactions involving charge density
with dxy synnetry.za Thus it is conceivable that the mechanism which
caused high transition temperature in NbN and NbC is responsible for
Cs becoming superconducting under high pressure. The covalent nature
of the bonding appears to be intimately connected25 with the occurrence
of superconductivity.

We have also explored the pressure dependence of the Knight shift
in cesium. McWhan and Gossard26 have measured the Cs133 nuclear
resonance frequency shifts Av/v at 4.2°K at pressures up to 50 kbhar.
They found that the increase in Av/v with pressure observed in previous
experiment527 extends to higher pressure, with Av/v (30 kbar) 2 2Av/v
(1 kbar). At 50 kbar, however, 4v/v drops by 25% relative to the
30 kbar value, The Hamiltonian28 for the interaction of the jth

nuclear spin in a solid with the conduction electrons is
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(s.°r..)-s L.

= 2.5 (81 i S 5 . W
Henj YeYnh 1 i 3 E'is('{ij) + e 3 + 3 ) (15)

ij ij

where Ei) = ri-Rj and E is the position of the ith electronm, Bj is the
position of the jth nucleus, and Ye and Yn are the gyromagnetic ratios
of the electron and nucleus, respectively. One usually considers only

the hyperfine contact interaction and neglects core-polarization effects,

then the isotropic Knight shift is given by

k=2 z Iwk(o)lzﬁ(Ek-EF) (16)
where A is a constant in which the many body effects have been absorbed.
To make a rough estimate of the Knight shift as a function of

pressure in cesium, we calculated EIwE(O)IZG(EkaF) at various cell
volumes. Relative to its value at ;ne bar, Elwk(o)‘ZG(Ek ~E.)
increases to a maximum = 2 at v/V° = 0.4 (~40 kbar) and then decreases
slowly as the volume contracts further, This result shows the same
qualitative trend as observed in Ref. 26. The discrepancy in the rate
which K drops at high pressures may result from the. d core-polarization
effect since the d-electron paramagnetism produces negative frequency
shift terms through core polarization mechanism.

Further, following a suggestion by Heine,zg we have explored the
effects of screening on the crystal potential. As the volume decreascs
the screcning by the s and p electrons becomes less efficient. And,
as the potential gets stronger, the d-character of the conduction

electrons becomes more dominant. Iu turn since the d-electrons are less
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efficient in screening, the d-well deepens further. A "run-away"
situation can then occur resulting in a phase transition. In order
to examine this possibility we have calculated the electron-electron
interaction in the Hartree-Fock-Slater sense using the pseudocharge
density in the manner of Appelbaum and Hamann.30 We find at each
volume that the exchange term dominates. At high pressure, the
Hartree-Fock potential is positive and a maximum at the atomic site;
and is negative and a minimum at the “bonding" region. This lends
support to Heine's speculation which may be a possible scheme for

understanding the phase transition in the 42 kbar region.

B. Local Fields in Semiconductors

Recently much effort has been made to understand the rcle of
microscopic electric fields on various physical properties of
crystalline sol:lds.:‘u-['3 In this section we shall examine scme of the
effects -of local-field corrections in semiconductors. 1In particular
we will discuss the optical spectrum of S1i and the role of umklapp
processes in the proposed excitonic mechanism of superconductivity.

Within the linear response theory, a small perturbing electric
field of frequency w and wavevector g+G in a crystal will establish
responses with frequency w and wavevectors g+G', where 6 and ' are
reciprocal lattice vectors. The microscopic ficlds of wavevectors ﬂ*-g'
are generated from the applied perturbing field through umklapp
processes. 1In the case of cubic crystals, the dielectric responses of

the solid for longitudinal fields may be described by a matrix in G and

4
gt
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L e, c1(qwE(g+6",w) = E

Ze.c SR RPN an

pe

where E is the total field in the crystal and E e is the applied

pert
perturbing field. Microscopic-field effects (or local-field effects)

are traditionally ignored by assuming the off-diagonal elements of the
dielectric response matrix to be zero. However the off-diagonal elements
can be important when considering local~field corrections to optical

spectra, 1-33 plasmon dispersion in metals,ah‘35 valence-electron

37-41 . .
1 in semiconductors and insulators.

density,36 and lattice dynamics
An expression for the dielectric response matrix, EG,G'(E’m)’
has been derived, within the RPA, by Adler and Wiser.aa In section 1
below we present an alternate derivation of the dielectric matrix
using the diagramatic approach. The optical properties of Si and the
excitonic mechanism of superconductivity are discussed in sections 2

and 5 respectively.

1. The Dielectric Response Matrix

The unperturbed one-particle Green function for an electron in a

crystal is defined by

6, (1.2) = -i colriuvT o) o (18)

where T is the time erder operator,  is the cryvstal volume and Y(i)

the field operaror at space-time (Ei'ti) is given by

v = 3 6 (5,)C, (t)0
n,k =
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with ¢n k and Cn k 8re Bloch states and their corresponding destruction
113 ’

operators. Hence

* +
6,(1,2) = ~1 z:’:k ¢n,5('1)"”n',5'(52)‘°!T(°n.}§‘1)°n,k(‘z’

nl '}5!

16y @.

~

And since for Fermions

. + -—
-i ‘0“{‘:“,15“1)%' .k'(tzmm =
~-ie_, (t.-t.)
. nk'1 2
s -1(1—fnh)e ~ 6“5-“'5' for t > t,
~ie . ,(t,-t,)
nk 1 2
'-. ifn}s e 6“‘.5.-'-'1&' for ¢, < ¢t,

where fnk is the Fermi-Dirac distribution function, we have, in energy

-~

space,

icé

—e
EEE
€ et ing

*
6 (r;x,.€) = 0 nzk ¢n}£(51)¢n5(£2) .

where § + 40 and n“E >0 (<0) if 5“5 > E (< EF). Also since ¢n§ are

Bloch states, periodic translation symmetry implies that G° is a

matrix Gg G.(u.e) in momentum (Fourier) spdce with indexes G,G' being
117

reciprocal lattice vectors and g restricted in the first Brillouin

zone, i.e.
Go(-g-"' G, q+G', &) = GZ;.'E' (g.€)

i(g+G) x ~i(g+G')x ied
1 * 2L 2 e
~I = I¢n}5(£1)¢n_l£(£2)e e dr,dr, x T,

.(19)
nk € k

Cnk
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Similarly each interaction line in a periodic medium is a matrix in G

and G'. The Dyson equation for the interaction between two electrons

now becomes

<l
fl
<\
<
la-11)

+ VBV (20)

where V is the screened interaction with VGG.(g,m) = V(g+G, g+g&', w),
V is the bare Coulomb interaction with VGG'(i’m) = v(ﬂfg)ﬁcc, and P is
the irreducible polarizability.

From Eq. (20), the dielectric matrix is given by

EQ_E'(E'“) = 5-65' -G"-:" Vgg"pgng' = 5QG. - V(s+g) ng.(s.w) . (21)

~

Hence we only need to evaluate PGQ' to obtain the dielectric matrix.

The diagram for the irreducible polarization in the RPA is given in

Fig. 11. The physical interpretation of the diagram is the following:
At space-time 1, the electron gains g+G from the interaction. Between
1 and 2, the electron can loose or gain any G-vectors due to the lattice

background. Finally, at 2, the electron looses si-g' to the

interaction.

We may now evaluate pﬁﬁ' using the Feynman 1:u1esl.5

dp

. ) :

PEE.(CI.U) = 2i p%l:.. I—E GO(E"S'R*'!:,“'E' 'po)Go(Q-gﬂ._,E-gﬂt-g,po—m) 22)
A

where the factor of 2 is for the spin of the electron and K and L are

reciprocal lattice vectors. Let us first consider the p+K, p+L sum.

Defining B = p+K, Py = p+L then
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A= 3 G,(R)ipy+8 P )6, (R)=gs 2797Cs P -w)
PpRa

q+G) -x

-i(gte) -z
1 3 p 2
b (2147 [ Oy (ep)e

. 1(
= E I¢n|k| (Il)e
ﬂ'k.'

3
¢n|kt ([z)d rz
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Again, using periodic translation symmetry, we have k' equal to k+g+k
where K is a reciprocal lattice vector which brings k+g back to the
first Brillouin zone. Hence we have
i(g+Q)x -1(g+G') 'x
A=Y (n'k+gle |nk) (nkie In'k + g0
nn'
k

ip 8 ilp -w)
e e

x B
(v, - €t Mg’ (py-w- Eaktg nn'k*'s)

Performing the integral over Py We have

1p°5 i(p ~w)é

- M (p mEn 1n“]s)(p°-m-en.,y_8 + mn'k.*s)

ALY S Y

ﬁn'ltﬁ'.u - r'nk -w+ ib
and therefore )
. -i(g+C") x
> Uatieal Yntktale! OO L oy e > In'k+a
P, (q,w) =2 e - e
Ge' '~ 3 ‘n'kt_q ok ~ ¥ + i8

nn
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Substictuting Pcc. into Eq. (31), we¢ obtain the following express:lon“

for the diclectric matrix

€ors = 8., 2 —f.'ﬁL‘ﬁ.;&'L___
& £ QIQ*QIZ knn' cﬂ'k"‘s R Sl 14
i(geQ) & -i(g*g) ¢
x¢n'k+gle fok? ¢nkle In'ic+gq) . (23)

(NOTE: we have ser hs] in this section.)

2. Llocal-field Effects in the Optical Spectrum of Si

Two recent Physical Review Lel:tarsal'az have been published on local-
field corrections to the optical spectrum of diamond; however, the two
calcuiztions give quite different results. By inverting the dicliectric
response matrix, Van Vechten and l‘.:u'u.n.31 using the pseudopotential
mathod, and Hanke and Shnm.“‘2 using a linear combination of atomic
orbital {LCAO) method, have calculated the macroscopic dielectric
function for diamond in the random phase approximation (RPA).
van Vechten and Marctin find that local-field effects shift the streagth
of the imaginary part of the dielectric function, :z(m). to the energy
region just above the main optical peak. This behavior increases the
discrepancy between the calculated cz(w) and cxperiment. In an attempt
to improve agreement with experiment, Van Vechten and Martin included
the cffects of dynamical correlation in their calculation of cz(m) via
a onv-paramcter model. Hanke and Sham, on the other hand, find that
local-field effects weaken the strengeh of cz(w) in the cnergy region

from the main -zak (~ 12 eV) to 20 ¢V and that the positions of the
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prominent peaks in ez(m) are shifted in the opposite direction needed
to achieve good accord with experiment by approximately 0.5 eV. Hanke
and Sham then include exchange effects (beyond the RPA) into their
calculation of the macroscopic dielc tric function and are able to
achieve better agreement with experiment.

To gain some new insights into the effect of local-field corrections
to optical spectra of covalent solids, we present here a calculation
of the dielectric function of silicon with local-field effects included.
Using an extremely accurate band structure from the empirical pseudo-~
potential method, we have calculated the RPA dielectric response matrix,
SE.E.(SfD.m). for silicon and inverted it to obtain the macroscopic
frequency dependent dielectric function. We find that (1) local-field
corrections do not shift the prominent peak pesitions of Ez(w) and
that (2) local-field corrections do improve the calculated dielectric
function as compared to experiments at energies higher than the main
optical peak. In particular, agreement with measured energy-loss
spectra is significantly better when local-field effects are included.

In analyzing the optical spectrum, the incident 1light of frequency
 may be viewed as a perturbing field of vanishingly small wavevector.

The macroscopic dielectrie function is given byah

lim _ 1
-0

clw) = ————
s’ [E-l (Esw) ]Q Q

(28)

where 5'1 is the inverse -of the matrix sﬁ g We use here a symmetric

form of the dielectric response matrix
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et e? £olE,  Geg) 1-£, [E_(10)]
G.¢' =’ G,G' Qlﬂ"'gl ‘5*5'[ knn® En!(k.*'s)‘En(lS)*h“*ﬂ‘u

i(g+G)'r -i(g+G")
x (k}g,n'[e Jk.n) (k,nle |L+5.n') . (25)
where Q is the crystal volume, fo is the Fermi-Dirac distribution

function, and |k,n) and En(k) are eigenstates and eigenvalues
of the unperturbed Hamjltonian. EQ‘Q(g,w) is just the

usual Cohen-Ehrenreich dielectric function (no local-field et‘fects).l‘6
Equation (25) differs from Eq. (23) and from the definition of EQQ' in
Refs. 43 and 44 by a factor of '3}§|/l3+§'l. The difference arises from
whether the electric field or the potential is used in Eq. (17). Both
approaches lead to the same macroscopic dielectric function.

To evaluate the required matrix elements and eigenvalues in Eq. (25),
we have calculated a band structure for silicon using the empirical
pseudopotential method.1 The resulting band structure47 is in excellent
agreement with the optical gaps and photoemission experiments. Each
cﬁ'g.(q=0.m) was evaluated in emergy intervals of 0.125 eV up to 100 eV,
The summation over wavevector was performed by evaluating the wave-
functions and eigenvalues on a grid of 308 k-points in the irreducible
zone., The matrix size of the dielectric responsc matrix involved in the
inversion for Eq. (24) was chosen to be 59 %59, containing G-vectors
through the set (222). Symmetry can be invoked to reduce the number
of EE-Q' elements which need be calculated to 72. Convergence of the

macroscopic dielectric function was confirmed by inversion of ¢

c.¢'
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including sets of G-vectors through (111), {208), (220), (311), and (222)

respectively.
In order to establish the accuracy of the calculated CQ o We
(2
have tested our results using the sum rules as derived by Johnson.as

®
é w Im EQ.Q.(S.w)dw = % mpz [Qé%égll] €(g+C) -é(g+c") , (26)
where mpz = 6ﬁne2/m is the plasma frequency., pP(G) are the Fourier
transforms of the valence-electron density, and E(gfg) is a unit vector
in the g+G direction. In Table III we list our calculated results for
the specific cases = G' and { = 0, §' # 0. The integral appearing in
Eq. (26) was evaluated over a 100 eV range in intervals of 0.125 eV.

OQur results demonstréte good internal consistency except for the

diagonal elements for the higher G-vectors. This arises from the

fact that Im EE‘Q.(q=O,m) becomes more extended in frequency as |G|
increases and that the integrand in Eq. (26) is lincarly weighted with
frequency. Better results can be obtained if we extend our integrations
beyond the 100 eV range. As far as the optical properties are concerned,
this high energy behavior is unimportant, and our values for EE-E'
in the region considered should be very accuratc.

The calculated imaginary part of the macroscopic diclectric
function with (Adler-Wiscr) and without local-ficld (Cohern~Ehrenrcich)
corrections, cz(m) and Im EQ’Q(M) respectively, is given in Fig. 12
together with the experimental measurement of Philipp and Ehrenreich.49

From Fig. 12 we scc that local-field corrections do not alter the
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praminent peak positions, although they do alter the strength of the
dielectric function. Compared with the usual Im EQ'Q(N). cz(u) has
less strength at energies below the main optical peak, thus increasing
the discrepancy with experiment. At energies higher than the main
optical peak, the strength of cz(w) is reduced from that of Im eQ.g(‘“)
until approximately 7 eV. Beyond this point Ez(w) is larger than

Im EQ.Q(N): an event which must transpire if the well known sum rulesa“
are to be satisfied. This behavior results in an overall improvem:nt

in ez(u) at higher energies as compared with experiment, Excitonic
effects, particularly on the lower energy side of the main optical peak,
which are not included in our calculation, should further improve the
agreement between our sz(m) result and experiment in the low energy
region. The effect of these electron-hole interactions tends to
increase the oscillator strength, hence the strength of Ez(m), at the

lower energies.32'5o

Another improvement of £{w) arising from local-field effects at
higher energies is reflected in the calculated energy-loss spectrun of
silicon as indicated in Fig. 13. We note a drastic decrease in the
magnitude of the peak of Im (E%GT) through the inclusion of loacal-
field effects, and a shifting of the peak by approximately 1.2 eV to
lower energies.51 Both these effects’ result in significantly better
49,52

apgreement with experiments. However, effects other than local-

field corrections,53 might also be responsible for at least some of the

discrepancy between experiment and the calculated lm(llc‘Q Q(u)).
*
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In conclusion we remark that there are now three calculations on
the effect of lacal-field corrections to the optical spectra of covalent
solids using the RPA formalism. All three calculations give different
results indicating thar Covk remains to be done to establish firmly the

infiuences of local-field effects.

3. Some Comsents on the Excitonic Mechanism of Superconductivity

Allender, Bray and Bardeensa (ABB) have explored the possibility
of using electronic polarizability to induce Cooper pair formacion and
superconductivity in a system consisting of a thin metal layer on a
semiconductor surface, i.e. a Schottky barrier. The pruoesrs considered
involves the tunneling of metal electrons at the Fermi surface into the
semiconductor gap where they interact by exchanging "virtual excitons“.55

Shortly after ABB introduced their model, Inkson and Andersons6
(IA) used a dielectric function approach to estimate the pairing
interaction, and reported that the attractive interaction between
electron pairs was stronger in the metal sidez of the Schottky barrier
than in the semiconductor side. In reply ABBS7 gquestioned the detaiied
structure of the IA semiconductor dielectric function and its
appropriateness with respect to the ABB model.

In this section we deal mainly with the IA objection to ABB and
discusses the pairing interaction in gencral. 1t is shown that the
IA model for the metallic dielectric function does yield a more
attractive pairing interaction than their :nodel semiconductor
dielectric function; however, the pairing interactions differ

from those calculated here. It is also demonstrated that a
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semiconductor diclectric function based on a pseudopotential band
calculation does not yield an attractive interaction. It is proposed
that if an attractive interaction is possible via the exchange of
excitons, umklapp processes or local fields are necessary.

a. Calculation. Following ABB, the N(0)V parameter of BCS can be

written as

N(O) V = Aex -u (27}

where Aex is the attractive electron-electron coupling constant arising
from exciton exchange and u is the repulsive Coulomb-parameter.
In analogy with the phonon 1nduced25 eifective interaction ABB

arrive at the following expression

2
Buw
-N(O)V = u[} - _—:E——f =y -2 , (28)
ex
e(qw

2
where wp is the electron plasma frequency in the semiconductor, wg is
the average semiconductor gap, E(E) is a wavevector dependent dielectric
constant for a metal of equal electron density and P is a numerical
factor which accounts for the decay of the metallic electron wave
functions into the semiconductor and the fraction of time the metal
electruns spend in the semiconductor. ABB introduce a screening factor,

a, and the exciton coupling constant becomes
A _e=abtw 2/w 2 (29)
ex P B

In favorable cases, ABB estimate Aex ~ 0.2-0.5. These values would

give substantial increases in the superconducting transition temperatures
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of metal films.

1A approach the pairing interaction from a different point of view.
They argue that the total interaction, attractive exciton and repulsive
coulomb, can be treated using the wavevector and frequency dependent

-
dielectric function, Es(q.m). appropriate to the semiconductor. They

express the total interaction as

2

V@) = (30)
q € _(q,w)
s
The IA form for Es is
IA _ A
t:s-1+————-—--1+AB (31)
2 QF
where A=€_ -1, B = 1. e , € 1is the static electronic dielectric
o k2 2 o

constant, and k-l and wp are the screening length and plasmon energy

of an equivalent electron density metal.

If Eo + =, then it is expected that eIAs + EIAm =1+ B-l. a

dielectric function appropriate for a metallic system. Therefore
using the above expressions,
1_ .1 1

7N TR 32
] m

for ¢ >> 1., Equations (30) and (32) show that the total interaction
in the semiconductor is equal to the total interaction in a wmetal plus
an added repulsive term. IA therefore conclude that the semiconductor

. is less favorable than the metal for superconductivity.
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To obtain the N(O)V parameter or the frequency-dependent kernel of
the BCS equation, K(tS),58 it is necessary to do a Fermi surface average

of the wavevector dependent interaction, Vt.

K(8) ~ q Vt (q.6) dq (33

[k=k']

-+ -+
where 6 = hm/EF, and k and k' are the initial and scattered electron
-+ - -+
wavevector, i.e., k' = k + gq. It is K(8) which must have attractive
regions for the pairing interaction to be positive. It is not sufficient
to have negative regions of the wavevector dependent interactions, Vt.
To calculate K(G),59 we assume a metal-semiconductor interface

with electron densities appropriate to AL and Si, i.e. r_ ~ 2 and

€ ~ 10. We first evaluate K(8) for the IA model dielectric function.
EIAS and EIAm. In Fig. 14(a) the kernels appropriate to € and e, are
displayed. The IA metal kernal is more favorable for superconductivity
since it is less repulsive at low frequencies and the attractive region
is larger than the attractive region obtained using the IA semiconductor
dielectric function. This is in accord with the IA calculations.

However, a more relevent question is how good are the IA

approximations to begin with. The EIAm is constructed to approximate:
the frequency and wavevactor dependent dielectric function for a metal.

1A , 60 . . >
€ m coincides with the RPA or Lindhard djelectric function for ¢ = 0

. .
and for w =0, q K kF. A better approximation for the metal kernel

would be to use the Lindhard dielectric function in Vt. The results

(Fig. 1l4(b)} show that K(§) is reéulsive for all &. Thus the
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attractive regicn found using eIAm is u result of their model and is
not found in the more realistic Lindhard model.

It is also possible to do a more realistic calculation of K(§&)
using the numerical values for the E(;,w) of Ge. The calculation61 for
the Ge C(E,w) was based on a pseudopotential calculation of the energy
band structure and wavefunctions, and is therefore expected to be morc
realistic than EIAS. The results which appear in Fig. 14(c) indicate

that K(&) is repulsive for all frequencies.

b. Discussion and Conclusions

So we have explored the IA objection to the ABB model based on
eIAs and EIAm and we have shown that the kernel of the BCS equation,
K(8), (and therafore the BCS parameter N(O)V), is repulsive for all
frequencies if the total interaction used is based on a realistic
semiconductor dielectric funcrion. What does this imply about ABB?

In their reply to IA, ABB emphasized that the reason that IA did
not obtain a favorable result was that the pule of EIAS did not have
the proper ; dependence. However, as we have shown, the problems are
more serious than this and in fact CIAS is more favorable for super-
conductivity than the more realistic Ge calculation.

The essential point is that the peak in the dielectric function
will give a zero in K(8). A qualitative rcason for this is that the
peak in the diclectric function signals a transverse excitation (clectron-
hole or excitonic resonance) and in this approximation the electrons are
not c¢oupling to this mode. The strongest coupling comes near the zero

of the dielectric function i.e. plasmon exchange. A similar effect
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occurs in the electron-phonon interaction. Electrons interact only with
longitudinal modes unless umklapp processes are invoked. In the exciton
case the coupling could arise via local-field effects.

One method of including local-field effects in the dielectric
function is through the use of a dielectric tensor [%]E+.. TIA addressed
themselves to this problem and calculate the frequency dependence of
some off-diagonal terms in the dielectric tensor. They conclude that
the dielectric tensor still has a pole at w_ and that the coupling to
the excitons is still zero, i.e. the kernel will be zero at w_. Two
problems arise: (1) The formalism for using the dielectric tensor to
evaluate the kernel and pairing interaction is not adequately discussed.
For the phonon case, a generalized susceptibility will have a pole at
the transverse phonon frequencies, yet it is knowmn thét electrons couple
to transverse phonon modes (via umklapps). (2) It is not clear that
the approximate calculations for the IA dielectric tensor are sufficiently
accurate to rule out attractive pairing interactions.

The ABB approach circumvents (1) by computing Aex using Eq. (28).
We presume that ABB have assumed that local fields are included in this
expression. This coupling constant is large for small w_, but small
ug usually implies small local fields in covalent systems. ABB sugpest
PbTe which is partlally ionic to overcome this problem.

It would be useful in estimating the coupling to use a local-field
semiconductor dielectric function which was computed for a realistic
semiconductor for w and q. To our knowledge the only semiconductor

local field dielectric function62 in the literature is given as a
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function of w, but for E = 0. To show why this approach or some other
is desireable to obtain reliable values for Aex we can make estimates
assuming the ABB form to be correct for the interaction including local
fields.

If we take the Phillips - Van Vechten63 model for the dielectric

function and identify wg with the Phillips average gap, then

o 3 (30)

and assuming Eq. (29) to be valid, we obtain

Aex = abu(e° -1) . (35)

ABB estimate a ~ % to %-. b~0.2,u~ % to % and using e, "~ 5 to 30,
then Aex ~ .05 to 1.0. Leaving out phonons this would give estimates
of the transition temperature from zero (repulsive total N(O)V) to ex-
traordinarily large values. Estimates for b by ABB are consistent
with recent self-consistent Schottky barrier calculntionsGa for the
penetration of metallic electrons. The parameters a and u can be
evaluated more carefully, but it would still be more reassuring to use
a total local-field dielectric function and/or some other method to
estimate N(O)V for the exciton interactiom.

In conclusion, our calculation of the total semiconductor kernel
yields a repulsive interaction. This together with the IA arguments
would suggest that the ABB results should be reconsidered; however, ve
feel that the umklapp contribution should be included explicitly before

a firm conclusion is reached.
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C. Electronic Structure of Bulk Nb

We present in this section a self-consistent calculation of the
electronic structure of bulk niobium using the pseudopotential method.
Early non-self-consistent band structure calculations have been done for
Nb using the modified orthogonalized plane wave method (MOPH),65 the
augmented plane wave method (APW),66 aﬂd the empirical pseudopotential
method.6 All these calculations are in good agreement with each other
and with Fermi surface experiments.68 Using a Slater-Koster parametriza-
tion of the APW band structure,66 Pickett and Allen69 have recently
calculated a joint density of states for Nb which agrees reasonably well
with the imaginary part of the dielectric function sz(w) obtained from
experimental reflectivity data.70 A self-consistent APW calculation done
by Anderson et al.,71 however, gives results differing significantly
from the other calculacion particularly at the point H.

In the following we will first discuss our method of calculation
and then present our results on the band structure and density of
states of bulk Nb. The obtained results are consistent with experi-

68,70,72

ments and with previous non-self-consistent calculations. In

addition, we will present charge distributions for the total valence
clectrons and also for states in particular enerpy ranpes.

1. Methods of Calculation

The electronic structure of Nb was calculated from a pseudopotential

Hamiltonian

2

Hel +v +v +vV (36)
2m rs H X
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wvhere Vps is a weak pseudopotential taken to be a superposition of Nb'*'5

irmic pseudopotentials

s -
; ps X Bn) . (37)
hne 1]

And for the ionic potentials we have used a L-dependent non-local

pseudopotential of the form

. 2
ion .
Vps = gto v, (DP, (38)

where Pl are projection operators for the various angular womentum
components. The mon~local nature of the Nb+5 pseudopotential accounts
for the differences in the repulsive potentials that each angular
womentum component of the electron wavefunction sees as a result of
core orthogonalization.

The potentials Vs, VP and Vd were obtained by fitting the experi-
mental spectroscopic term values of the Nb+4 ion (i.e. the Nb+5 rlus
one electron system).73 In addition, we demanded that when Vi:n was
used to calculate the Nb neutral atom self-consistently, it would
reproduce the eigenvalues and the positions of the wavefunction
maxima calculated by Herman and Skillman.7a A comparison of our
results with those from experiment and Herman and Skillman is given
in Table IV. Fipure 15 is a plor of our VS. Vp and Vd ionic pseudo-
potentials. 1t can be seen that the d~electrons feel a much weaker

core orthogonalization repulsion than the s and p electrons.
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In our self-consistent scheme, the ionic pseudopotential is
screened with a Hartree-like screening potential VH and a local

exchange potential of the Slater type Vx obtained from the pseudocharge

density p(x) by

vsz(;) = ~4me0(x) (39)

and
1/3

v = -3’ &) o3 (40)

where a, the exchange parameter, is chosen to be 0.79. The iteration
process is started with approximating the Vps + VH +Vx term in the
Hamiltonian (Eq. 3%) by a potential constructed from a superposition of
the self-consistently screened atomic pseudopotentials. With this
starting Hamiltonian, the valence charge density is calculated and the
screening potentials VH and Vx are derived. The new VH and Vx are

then put back into the Hamiltonian. The process is repeated until self-
consistency in the screening potentials is reached.

In the present calculation, plane waves with a maximum reciprocal-
lattice vector corresponding to an energy of 10.2 Ry were used in the
basis set. This corresponds to about 80 plane waves in the expansion
of the eigenfunctions; another 60-80 planc waves were included by sccond-
order perturbation theory. In the iteration towards self-comsistency,
eigenvalues and eigenvectors were calculated for a grid of 8 special
points in the irreducible part (1/48) of the bec Brillouin zone 132 The

Fermi level EF was then determined by
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2 T ow

b 6(E. - E (k,)) = 2 {41)
ki n ki F n i

where z is the number of electrons per primitive cell, mj£ is the

appropriate weight for each special point and 8 is the He;viside step
function., Finally the valence charge density was determined from the
wavefunctions of the occupied states.

After self-consistency has been obtained, we further calculated
the energies and wavefunctions of 285 k~points in the irriducible zone.
With these results, we obtained the detailed band structure, density
of states, and valence charge density for bulk Nb. The charge distri-
butions for states under the various peaks in the density of states
curve were also examined.

2. Results

The calculated band structure En(k) for Nb plotted along the
symmetry directions of the bce Brillouin zone is shown in Fig. 16.
This result is in good agreement with previous band calculatinns.65-67
Table V compares some of the principal energy levels of the present
band structure with those of previous calculations. The main differences
are: the lowest Pl level for the present calculation is ~0.8 eV lower
than the previous results and the r12 - r25' gap is ~0.8 eV wider.

Figure 17 shows the calculated density of states (DOS) together
with the DOS from Matheiss' APW ca]culation.66 The two curves arce in
quite good agreement and are consistent with the photoemission data of
Eastman.72 Table VI gives the positions of the peaks in the DOS of

the present calculation in comparison with previous results and
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experiment. Also our calculated value for N(EF) is 1.1 states/eV-atonm
which is a very good agreement with the empirical value of 0.91 states/
eV-atom obtained by HcMillan.75

The valence charge density in the (110) and (100) planes are shown
in Fig. 18. The positions of the Nb atoms are indicated by the dots.
The charge density is 2ero at the atomic nuclei because of the highly
repulsive core. 1t then rises up sharply to form lobes around the
atoms showing a distinct d-like character. The distance of tle peaks
of the charge density from the atoms in the crystal agrees well with
the position of the peaks of the d-electrons in the isolated Nb atom.
In addition to the lobes, there is a uniform charge background distri-
buted in the space between the atoms.

Plotting the charge distributions for states under the various
peaks in the DOS reveal that they have quite different characters.
The charge distriburion for states under the lowest peak A with energies
from =-6.5 to -2.0 eV is shown in Fig. 19(a). The charge distribution

is mainly s-like with a small admixture of d 2 2 character. The
3z -r

charge distributions for peak B (~2.0 to ~0.75 eV) and peak C (~0.75 to
0.60 eV), shown in Fig. 19(b) and 19(c) respectively, are very similar
with the charge concentrated mainly in the bonding d-like lobes alonp

the line joining two neighboring atoms. The charge for the highest and

unocceupied peak D (0.6 to 5.85 oV) has a4 distinet d 2 2 and d ,
3z2%-r xT=y"
character around the atomic sites.

We have also determined the Fermi surface of Nb from the calculated

band structure. The calculated Fermi surface is in satisfactory
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agreement with previous calculations and with expeéimént e*ce;t fof one
point. The Fermi surface in the present cal%ulation does not cut ;cross
the = symmetry line (T - N) in contrast to Mattheiss'.resu1t66 aﬁd to

de Haas van Alphen experiments.68 It can be seen f*om our band
structure in Fig. 16 that, Along the direction,vthe third band just
miss cutting the Fermi level by ~0.1 eV. This discrepancy can be easily
resclved by a very slight change in the potential.

3. Conclusions

In conclusion we have present a calculation of the band structure
of Nb using a self-consistent pseudopotential method and obtain results
which are in good agreement with Matheiss' APW calculation and are

. . . 68,70,72 . e
consistent with experimental results. This demonstrates the
applicability of the self-consistent pseudopotential method in calculatirg

the electronic structure of transition metals. We shall use this same

Nb*s ionic pseudopotential later to study the surface properties of Nb.

D. Theory of the Superconducting Transition Temperature

There has heen recent interest and controversy coficerning the
theoretical formulation75-79 for calculating the superconducting
transition temperature, Tc. especially for strong electron-phenon
coupling. The most widely used approach was developed by HcMi]lan75
who, using the interaction spectrum uzF(m) for Nb as a model, numerically
solved the linearized gap equation in the strong-coupling formulntionao'81

of the BCS theorysl and obtained an interpolation formula for Tc.

However, Allen and Dynes79"have shown recently from their detailed
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numerical studies of the Eliashberg equations that the McMillan Tc
equation is not valid for large electron-phonon interaction parameter,
i.e. A > 2. More recently Leavens83 has questioned the large A
asymptotic form of the Allen-Dyne:s result and has stated that these
results are incorrect.

In this section the Eliashberg equations80 expressed in the
Matsubara representation are solved analytically using a self-
consistent, variaticnal procedure. An expression for TC is thus derived
from these equations and the results are compared with exact numerical
solutions. It is shown that our TC equation is valid for all ranges
of electron-phonon coupling strength and for different shapes of uzF(u).
Both ou; analytical and numerical results concur with the observation

made by Allen and Dynes79 on the asymptotic limit of TC for very strong

coupling i.e. TC ~ /X(wz) ,» where A and (w") are defined by

2
A= of 2EW 4, (42)

and

(W) = % ] 2r™t qw . (43)

As will be described later, our results indicate that the discrepancies
pointed out by Leavens were resulted from an imprecise definition of
the condition for the asymptotic limit by Allen and Dynes.

1. The Eliasberg Equations

In the Matsubara representation the gap equation is given in the

form76,79
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« , - > =
néo (l\m °(T)'smn) a o, (44)
where
m
Ko = Apen * Appey = 20 - 6 (2w 1A g2 gzl el s (45)
and
o 2
A =2 i dwo Flww (46)

0 W+ (2mm)?

Ao is just the electron-phonon parameter defined in Eq. 42, | is the

Coulomb parameter which is related to the better known u* by
T S z.,mem?‘» )N . )

and Zn is a modified gap parameter evaluated at the imaginary frequency
iw = i(20+1)7T. En becomes Anllwnl at T = T  where A has the meaning
of the usual gap parameter. In this formulation Tc is that value of
T for which the maximum eigenvalue of Eq. 44 is zero, i.e. pmax(Tc) = 0.

Allen and Dynes79 have calculated Tc using an iterative procedure
in which Tc’ ¥ and the shape of uzF(w) is held fixed and A is solved
so that pmax(rc) = 0. Alternately, an equivalent but perhaps more
appealing method is to fix uzF(w) (i.e. A“) and ¥ and study pmax(T)'
This is illustrated in Fig. 20 for the casc of Ph.

We now show that, in addition to the numerical results, a general
and relatively simple analytical expression for Tc can be obtained from

the Eliashberg equations.
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2. A General T _Equation
All the detailed information about the superconductivity wechanisms
is contained in ln and Y. On the other hand, we need only a few

moments of azF(w) to get an accurate approximation for An' Specifically,

they are A, (mz) and mlog which is defined by79
1i/n
lim, n 2 dw 2
Wyog = n0 (w? exp(y gm o & Flw fnw) . (48)

A gives the strength of the electron-phonon interaction and V?mz)
together with mlog provide information about the shape ot u?F(m). Ve
find that An can be approximated very accurately for the commonly studied

uzF(m) spectra (Pb, Hg, etc) by the expression

2
n

A=A 2 49)
n nz + 1.68 nn + nz

where B = (J(mz)/mlog) - 1 and n = v'(wz)/ 21T is the phonon cutoff
in units of 2nT. For the Einstein spectrum § is zero and Eq. (49) is
exact. B is 0.161 for Pb and 0.690 for Hg.

To obtain an expression for Tc, we construct the following trial

gap function

. 1 ) 1
Y a -b n<NKN
A s (1+2n-no (2n+1)1rTc (50)

0 n>N

vhere N = nome//(w2> and w, is the Coulomb cutoff, e.g- w, ~ band
width or electronic plasma frequency. The parameters n, and b (hence

Tc) are to be determined by the two linear equations
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N
z KOnZ\r « 0 (51)
n=0 ’
and
N
2 K'NnAn =0. (52}
n=0

The trial gap function An is a Fermi-like function which changes most
rapidly near the phonon cutoff and reduces to the two-square well nodel

in the limit of small TC, i.e. n, >> 1.

Since in gemeral w, >> /Cw?) , Eq. (52) yields

N-1 o

1 1 1
bA+2u § =) =2 0 (—— )¢
a=0 2n+l n=0 1+2" "o 2n+l

) (53)

and, for large N, we get

-]

1 1
2u nzo Syl

b(n)) = m . (54)
1+u Un (o £ ) +1.9635)

/(wz)

Using Eqs. (45), (49), (51) and (54), we finally obtain the following

relation for n,

% (1+ 1) = Fla_, B, W) (55)

vhere F is a simple series
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™ 2 2
. ) nO “O .
Fing:8:1) -_]+n-z=0{n2+1 6Bn otal | nl41.6Bn (mt1) + (n+1)2}
o N () o : o]
%l by (L oy L (56)
142 " 142" o 2n+l
and
) -1
B' =bln) (——-b) . (57)
° 1427

Equation (55) gives n, and hence is our new TC equation since

n = Kw?) / 2ﬂTC. F(no.B,u) is a very rapid convergent series for
parameters of interest and can be evaluated using a hand calculator.
The?efore. for given B8, U and A, one can readily solve for n, and hence
Tc from Eq. {55).

The transition temperatures obtained from Eq. (55) are in excellent.
agreement with the exact numerical solutions of Eq. (44). In Fig. 21
the calculated TC using the new Tc equation for 8=0.0, 0.161 and 0.690
(corresponding to the Einstein, Pb and Hg spectra) and u* = 0.1 are
shown. In this figure the exact results obtained by diagonalizing
matrices of the si;e of ~64x64 are indistinguishabie from the resulcs
obtained from Eq. (55). Also shown in Fig. 21 is the Tc from the
McMillan egquation and the two experimental data points for Pb and Hg.aa
As seen in Fig. 21, the McMillan equation has the spurious effect of
saturating at large A. In Fig. 22, the experimental ic for six
elemental superconductors with considerable different A and different

shapes of azF(m) are compared with the calculated values using Eq. (55)
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*
and the appropriate measured values of A, u and 8.84 The agreement

is rather remarkable considering the simple assumptions in our derivation
of the '1‘c equation. The parameters used and the calculated results are
presented in more details in Table VII. We have also computed TC for

the 23 alloys and amorphous metals given in Table I of reference 79;

the agreement between the calculated and measured values is comparable

to the results in Fig. 22,

We next examine the asymptotic limits of Tc using our model.

For simplicity we shall anly comsider the case of u =0 (i.e. b = 0).

F(no.B. u=0) is a monotonically increasing function of ng with

1.3140 n 2 for n +0
[ (o]
F(I‘IO.B-IFO) -

(58)
) oo + 0.9635 + c(8) for n, e

where c{B) is a constant for a fixed B. In the limit of weak and strong

coupling, we obtain: a) % >> 1 implies that F(no,B,u=0) is very large

and using Eq. (58) we have

142

T = 1.13 Aul) e * g (59)

where £(B) is a factor of order unity (for B = 0, £ = 1/V2).

b) 1/% << 1 implies that F(n ,8) is very small and again using Eq. (58).

we obtain

T_ = 1.824 VA twh . (60)
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Our expression for Tc therefore reduces to the familiar McMillan
exponential form for small ) and goes to an asymptotic form identical
to that obtained numerically by Allen and Dynes for very large A.

Returning to the questions raised by Leavens,83 we concur with the
conclusion that large A alone does not imply that the asymptotic regime
has been reacthed. We agree that the condition A > 10 given in Eq. (24)
of Allen and Dynes79 is not sufficient, however the main conclusions
of Allen and Dynes are not incorrect. The crucial point is that the
n dependence of An is essential in determining the asymptotic region.
This dzpends on the shape of otzl-'(w) and hence our f parameter. For
example, in the case ecited in Ref. 83, an interaction spectrum with
aZF(w) = 8(w - 0.2) + 108(w - 10) will have A = 12 and B = 9.64. 1In
our model, these values give a T  ~ 0.16 v(:?a which does not voilate
the inequality TC € 0.116) (w) discussed in Ref. 83 and is not in the
asymptotic limit.

In conclusion we have derived an Tc equation which has been
demonstrated to be valid for all ranges of coupling strength and for
different shapes of azF(w). In our model, Tc depends on (wz). A, u*
and 8. Information about these quantities can be obtained from uzF(w)
through tunneling measurements, the phonon spectrum F(w) for (wz) and
B, heat capacity measurements for A and isotope effect measurements
for u*. Conversely the measured Tc can be used tp obtain information
on A and u* via Eq. (55). For example, Eq. (55) will be useful for
studying the dependence of T, on the shape of uzF(w) (i.e. B) which

depends on phenomena such as phonon softening.
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ITII. SURFACE

A. Self-consistent Pseudopotential Method for
Non-periodic Systems

In view of their technological significance, non-periodic systems
such as solid surfaces, solid~solid interfaces and vacancies in solids
have been subjects of intensive investigations both experimentally and
theoretically in the past few years.85_87 However, the properties .
these systems are still far from being well understood.

In this section we introduce a powerful yet simple method for
calculating the electronic structure of non-periodic systems. The
method is an extension of the self-consistent pseudopotential procedure
discussed in Sec. IIC to localized configurations. This approach
is applicable to problems such as atomic and molecular states, solid
surfaces, localized impurity and vacancy states, finite chains or
layers, adsorbates, and interfaces between solids. The scheme has many
of the advantages of the standard pseudopotential calculations in that
it uses a simple plane wave expansion and the starting potential can be
obtained from bulk experimental data. We shall discuss the method in
general in this section and specific applications to surfaces. inter-
faces, and vacancies will be discussed in subsequent sections.

The method discussed here is straightforward and initially involves
putting the local configuration of interest into the structure factor.
In the pseudopotential formulation, the erystalline pseudopotential form
factors, V(G), are written in terms of atomic potential form factors,

Va(ﬁ) through the structure factor S(G).
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vg) = X SV, (©
T

a

s(g) = eif1a (61)

where { is a reciprocal lattice vector and Ia are the basis vectors to

the various atoms in a primitive ceil. The basic scheme is to include

in S(G) the essential features of the local configuration. 1In the case
of a molecule, the structure factor can be constructed to create a

cell with a molecule and sufficient empty space around the molecule to
provide isolation from the next molecule when the cell is repeated.

For a surface, usual pericdicity can be retained in two dimensio:is and
a slab of space can be inserted to provide a surface in the third
dimension. The impurity or vacancy problem requires a cluster of has:
atoms surrounding the site of interest. Ultimately the cell chosen is
repeated indefinitely to allow the use of the pseudopotential method.

A similar approach specifically designed for surfaces has becn used by
Kleinman et 31.88 to calculate some properties of Al and Li surfaces.
30,89

Self-consistency is essential in obtaining realistic solutions

since the calculations will start with potentials derived for bulk
calculations. 1t is necessary to allow the valence electrons to react
to the boundary conditions imposed by the local configuration and the
resulting readjustment and screening is a fundamental part of the
problem. Also, the self~consistent screening potential bhas to be
completely general and is not necessarily a superposition of atomic
potentials. Self-consistency is restricted to the valence electrons

since a fixed ion core pseudopotential is used. Changes in the core
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electrons due to feedback from valence electrons are neglected since
they are localized in a limited region around the ion cores and not
significant for determining the valence-electron and bonding properties
of the system.

. In the scheme described above, the configuration of atoms and
spaces can be as complex as desired. The ultimate limitation on the
number of atoms is the amount of computer time necessary to generate
the eigenvalues and eigenfunc;ions through solution of the secular
equation. The basis set is formed by Bloch waves expanded in terms
of free electron eigenfunctions.

The starting potential can be an ionic model potential fit to
atomic term values and screened appropriately or a potential obtained
from measurements on bulk solid state properties. 1ln both cases the
results are the same once self-consistency is reached. The problems
with the method come mainly via the artificial long-ranged symmetry
imposed, but most of the consequences can be dealt with. Some exarmples
are: the interaction between configurations; establishing a zero of
energy; the fact that the potential which should depend continuously on
wavevector, g, is approximated by form factors at g's equal to the G's
of the chosen lattice structurc; and the symmetry of the configuration
to some extent sugrests the choice of lattices. Most of the above
poteutial problems are e¢liminated or reduced by taking large enoupn
cells and cells of the appropriate structure or symmetry.

The steps in our self-consistent procedure are shown in Fip. 23.

The relf~consistent loop is iniriated with a starting potential which



is usually taken to be an empirical pseudopotential from a crystalline
calculation. From the resulting total valence charge density p(x), a

Hartree-like screening potential is derived via the Poisson equation,

2
V(@) = 41 R(8)

(62)
2
a_lgl
. 90
and an exchange potential of the Slater type
1/3
V@ = - D) el (63)

is calculated. The sum of VH and Vx is then the total screening
potential for thé valence electrons. This screening potential is
added to an ionic pseudopotential vion generated by the ionic cores of
the atoms to form a new tutal pseudopotential for the next iteration.
New screening potentials are derived and the process is repeated until
self-consistency is reached. The use of a statistical exchange of the
above form for aroms, molecules and solids has been discussed widely
in the litera:ure90 and been proven to yield satisfactory results.

We note that there are no adjustable parameters related to the
properties of the localized configurations in the calculations. The
only parameters went into the calculations are (1) the structure. i.e.
the position of the atoms, and (2) the ionic potentionals, vion' Vion
can be determined from atomic spectra as discussed in Sec. IIC.

As for the structure, one has to po to experiments for guidance. More
details on the method will be presented when we discuss the individual

applications in the following sections.
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B. Semiconductor Surfaces

1. Si(111) Surfaces: Unreconstructured (1x1) and Reconstructed (2x1)
Model Structures

In this section we present self-consistent pseudopotential cal-
culations on Si(111) surfaces. Three different surface models have been
studied and the resulting calculated density of states curves and
electronic charge density distributions have been examined to extract
the essential physical features of the various models. In each case
the calculations were carried to self-consistency following the procedure
presented in the preceding section. The requirement of self-consistency
proves to be absolutely necessary to account for the modified screening
in the surface region.

The three different models for the Si (111) surface studied are:

a) An unrelaxed, unreconstructed surface, in which all surface
atoms remain at their exact "bulk" positions,

b) A relaxed surface, in which the outermost atomic layer is
rigidly relaxed inwards by an amount of A = 0.33 A, These two models
have been studied by Appelbaum and iiamann91 in the only previously
existing self-consistent approach to the problem. and their results are
basically confirmed by our calculations. In addition we find new types
of surface stales and are able to present 6cnsiry of stater curves.

The third model we studicd is

¢) A (2x1) reconstructed surface, in which atoms of the outcrmost
atomic layer are alternatively moved inward and outward to form a (2x1)
planar unit cell. This model has been refined in a second step as

first proposed by Haneman92 by moving atoms of the second atomic layer
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slightly laterally, the effect of which was small compared to the
effect of the "buckling" at the first step. The predominant result of
this (2x1) reconstruction is the splitting of the "dangling-bond"
surface state in the gap into two separate peaks corresponding to two
separate surface bands one of which is occupied. Ihis essential
feature is in good agreement with experiment593 and is not obtained in
the other two models.

The method used to obtain the electronic surface structure in a
self-consistent fashion has been discussed in Sec. IIIA and will be
presented in some more detail in Sec. IVA when we discuss the metal-
semiconductor interfaces, therefore we only review the essential
features here.94 The local configuration in the present case is a
12-layer slab of Si, simulating two non-interacting surfaces. The slab
is placed in a periodic lattice spaced ~4 layers apart to prevent
interaction between the different slabs (or surfaces). This artifact
has the enormous advantage that the system can now in principle be
treated as any periodic crystal aund that the pseudopotential method
in its standard form can be applied. A self-consistent treatment,
houever. is necessary to achieve the correct screening of the atoms
in the neighborhood (=3 to 4 atomic layers) of the surfaces.

One problem which arises when simulating surfaces by finite slabs
of atoms periodically repeated, is spurious structure in the density
of states due to the “unreal™ periodicity of slabs perpendicular to the
surfaces. Spurious two-dimensional singularities occur. Their number

increases with the number of atomic layers per slah, For the "true"
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surface case these singularities become "dense" and disappear. For
finite slab calculations all structures in the density of states have
to be investigated in this spirit. Similar problems are encountered
when simulating an amorphous material by large unit cells periodically
repeated.95

As discussed in Sec. IIIA the calculations are initiated with an
empirical pseudopotential carried over from crystalline calculations.
From the resulting total charge density, screening and exchange
potentials are derived and added to an atomic Si+4 ion—potential.%'96
New screening and exchange potentials are derived and the process is
repeated until self-consistency (stability of the eigenvalues or stability
of the input versus output potentials within 0.1 eV) is reached. For
the ideal and relaxed structures, a density of states curve has been
computed frow 33¢ k-points in the two-dimensional Brillouin zone at
each iteration to guarantee a precise location of the Fermi level.
The total charge density could then be derived from all states with
energies below trhe Fermi level. Plane waves with a maximum reciprocal-
lattice vector corrasponding an energy of 2.7 Ry were used in the basis
set. This corresponds to about 180 plane waves for the twelve-layer
(1x1) structure. Anotner 340 plane waves up to an energy cutoff of 6 Ry
vere included by second-order perturbation theory. From the self-
consistent calculation an ionization potential of about ¢ = 4.0 eV was
obtained for the relaxed surface. We shall discuss the calculations

for the (2x1) structure in detail later.
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In Fig. 24 the crystal structure of Si is viewed in perspective
along the [110] direction. The [111] direction is vertical. A
horizontal (111) surface is obtained by cutting all vertical bonds in
a plane. An excellent overall impression of the behavior of the
electronic states at the Si (111) surface can be obtained by considering
the total, self-consistent valence charge distribution, as presented in
Fig. 25 for the unrelaxed surface model. The figure shows charge
density contours in a (110) plane cutting the (111) surface at right
angles (see Fig. 24). The plotting area starts midway between two
films and extends about 4 1/2 atomic layers into the bulk. The atomic
(unrelaxed) positions are indicated by dots. Moving deeper into the
crystal, the charge distribution closely resembles the Si bulk charge
densities; near the surface, it decays rapidly into the "vacuum". This
rapid decay assures the required "vacuum" and hence the decoupling of
the films. No surface states can be recognized on this plot, since
oaly a small number of them exists in a continuum of decaying bulk-like
states.

Figure 26 displays the two-dimensional band structure of a tuelve
layer S8i (111) film based on the self-consistent potential for the
relaxed surface wodel. The band structure is presented for surface
k-vectors k, between T¢(0,0). M(1/2,0), K(1/3,1/3) and T(0,0) in the
hexagonal Brillouin zone. The 24 valence bands can be rouphly divided
into 3 bulk groups, reprezsenting the 6 low-lying s-like bands, 6 bands
of mixed s- and p-character, 11 p-like bands and one separate p-like

dangling-bond band in the fundamental gap. The three groups of bands,
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would with increasing film thickness approach continua separated by
several gaps in which most of the surface states appear.

Let us first discuss the dangling bond bands in the fundamental gap.
Suppose a Si bulk crystal is cut every 12 layers parallel to the (111)
plane and the pieces are gradually separated from each other. With
increasing distance one state each would split away from both the
valence-bands and the conduction bands to meet about at half-gap to
form the two fold degenerate dangling bond surface band corresponding
to the broken bonds on either side of the Si films. 1n Fig. 26 thu
two bands are not exactly degenerate corresponding to some weak
interaction (~0.2 eV) still present between opposite surfaces of the
12 layer films. If the surfaces are unrelaxed and unreconstructed
the two dangling bond bands show almost no dispersion parallel to the
surface, i.e. they would appear extremely flat in the band structure
plot. If the outermost atomic layer is relaxed inward, the dangling
bond band shows an increased dispersion parailel to the surface
together with a slight overall shift of the bands (see Fig. 27).

In contrast to the dangling bond surface band which exists through-
out the two-dimensional Brillouin 2one independent of relaxation. other
surface states show up only in parts of the twn-dimensional Brillouin
zone and some depend on relaxatiuon. They are indicated at the high
symmetry points ', K and M by dots in Fig. 26. A region of particular
interest is around the point K. Strongly localized surface states
exist in the gap between -7 eV and -9 eV independent of surface

relaxation. These states merge into the continuws at M and becouwe
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strong surface resonances. A similar behavior is found around K between
-2 eV and -4 eV. Even though the existence of these surface states
does not depend upon relaxation, their exact energy position is a
function of relaxation. Other surface states appear only after
relaxation like the splitting away of the lowest valence band pair
between ~-9.5 eV and -12.5 eV throughout the zone. All these Eiﬁdings
have qualitatively alsc been obtained in a recent analytical model
calculation by Yndurain and Falicov?7

Density of states curves for the self-consi#tent results for the
unrelaxed and relaxed surface models are presented in Fig. 27. Since
these curves represent the total density of states for a 12 layer sliab,
their overall features strongly resemble those of the Si bulk density of
states. The results for the (2x1) reconstructed surface (insert) are
obtained for a 6 layer slab. They shall be discussed later tegether with
12 layer (2x1) reconstructed surface calculations. To locate structures
associated with surface states (no distinction is made in the present
case between bona fide surface states and strong surface resonances),
we investigated the charge density distributions for small energy
intervals scanning the entire width of the valence bands. As already
mentioned, because of the existence of artificial two-dimensional
singularities not all sharp structures in the deﬁsity of states cor-
respond to surface states. The locations of surface states and strong
surface resonances (for the relaxed case) are indicated by arrows in
Fig. 27. Their labelling corresponds to the regions around high

symmetry k-points in the two-dimensional Brillouin zone, from which
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they originate (see dots and labelling in Fig. 26). The surface state
energies are given in Table VIII énd compared to experimental data
obtained from UPS measurements on (2X1) and (7%7) reconstructed
surfaces. Also indicated in Table VIII are the results of the self-
consistent pseudopotential calculation of Appelbaum and Hamann (AB)91
and of the empirical tight-binding calculation of Pandey and Phillips
(PP)98 on unreconstructed relaxed Si(111) surfaces.

We now examine some of the individual surface states. 1In particular
we investigate the points T'(center) and K(corner) of the two-dimensional
hexagonal Brillouin zone. Model calcula’.ions97 indicate that K rather
than M (edge midpoint) is a point of special interest to study surface
states.

We first discuss the results at I'. Below the enmergy zero which
was chosen to coincide with the bulk valence band edge Ev we find (in
agreement with Appelbaum and Hamann91 and Pandey and Phillipsgs) three
surface states. Two of them are degenerate and close to Ev representing
the transverse back bonds with charge localized between the first and
second atomic layer. The third state is localized at the bottom of
the valence bands and is predominantly s-like around the outermost
atoms. With the "dangling bond" state above Ev. which we shall discuss
later, there are four surface states at T which agrees with the
classical tight binding concept.98 The situation, however is different
at K. We find only one "pure" tramsverse back bond Ktb’ the remaining
states Klb and Rlb' having more longitudinal or s-like character.

The interesting feature is that some states Klb' (at =-2.0 eV and -9.7 eV)
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have most of their charge localized between the second and third layer
in contrast tc the state xlb (at -8.5 eV) which is a mixture of s-like

and p-like states at the outermost atoms giving rise to a charge

distribution between the first and second layer. In Fig. 28 we show
a contour map of the charge of the state Klb‘ at -2.0 eV. We would
like to stress the fact that surface states apparently can “penetrate"
into the secund longitudinal bond which puts a limitation on the
position of a “matching plane"gl separating the surface region from the
bulk. The appearance of surface states ;t K in the second longitudinal
bond increases the number of surface states from four to five wbich
has been predicted by model calculations97 but which is in contrast
to the findings of Pandey and Phillips.98 At the point M the situation
is similar but less pronounced with some of the surface states merging
into the bulk continuum.97

Let us now examine the surface states in the energy gap above Ev.
As shown in Fig. 27 we find for the unrelaxed, unreconstructed surface
one very flat surface band about mid gap. This almost dispersionless
band is half occupied, placing the Fermi level right at the peak.
The charge distribution of these (either occupied or empty) mid gap
surface states is very much "dangling bond"-like exhibiting a pronounced
p-like charge centered at the outermost atoms. When the last atomic
layer is relaxed inward, the back bonds get stronger resulting in a
wixing of the "dangling bond"” states with lower lying back bond states.
This increases the interaction between the individual “dangling bonds"

via the second atomiec layer and the dispersion of the surface band
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increases. In fact, the resulting density of states exhibits the
asymuetric shape of crirical points expected for a planar triangular
network of s- or m-like orbitals. The critical points are labelled
Kd and Fd in Fig. 27 indicating their origin in k-space. A charge
density plot for the states K& is shown in Fig. 29. It exhibits the
very pronounced “dangling bond” character. The unoccupied states Td
show a stronger mixing with back bonds. As for the unrelaxed case
there is only one surface band which is half occupied. This changes
qualitatively when we consider the {2x1) reconstructed surface.

We have used the Haneman model92 in calculating the electronic
structure of the metastable (2x1) phase of the Si (111) surface. The
structural parameters entering our (2x1) reconstructed surface model
are the following: alternating rows of atoms have been raised by 0.18 A
and lowered by 0.11 A, and second layer atoms have been shifted
laterally as indicated by the arrows in Fig. 30 such as to approximately
preserve the length of the back bonds. This choice of parameters may
not represent an optimum choice. In particular, since these parameters
represent an overall outward relaxation of the outermost atomic layer,
some surface states which depend on inward relaxation like the states
rlb at the bottom of the valence bands will become delocalized. Our
main interest in this study however is the behavior of the electronic
states in the vicinity of the gap and their dependence on the character
of the reconstruction (buckling with preserving the length of back
bonds). The planar unit cell now contains 4 atoms. First preliminary

calculations have been done on six-layer slabs separated by 3 bond
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lengths of empty space. The corresponding density of states in the
vicinity of the valence band edge, obtained from 72 k-points in the
two~dimensional Brillouin zone 1s showm as an insert in Fig. 27. As
expected, qualitative changes compared to the unreconstructed (1x1)

case occur. Doubling the real space unit cell in one dimension
corresponds to folding back the Brillouin zone in certain directionms.
Thus two surface bands appear separated by a gap resulting from the
potential perturbation of the reconstruction. This behavior is reflected
by the density of states in Fig. 27 showing two peaks which now cor-
respond to two different bands. In Fig. 27 the density of states does
not vanish between the two peaks, thus leaving the surface semi-metallic.
In fact the gap between the two surface bands is comparable or smaller
than their dispersion. We believe that this behavior is an artifact

of only including 6 layers per slab. The surface states on opposite
surfaces of the slab show too much interaction, conseguently causing

the semimetallic behavior.

To obtain more quantitative results (2x1) calculations with 12
layers per slab have been performed. Because of the large matrix size
(about 320 plane waves were included to obtain the same convergence as
for the unreconstructed cases), the self-consistent calculations were
based on a two-point scheme {(0,0)T and (1/2,1/2)K'). For the final
self-consistent petential several kﬂ-points along high symmetry
directions have also been included. A band structure showing the
bands in the vicinity of the fundamental gap is presented in Fig. 31.

The two dangling bond surface bands are split by a gap of @ 0.27 eV
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throughout the zone. They show some dispersion of only about 0.2 eV.
The Fermi-level falls between the two bands, thus creating a semi-
conducting surface. To obtain a density of states curve for these
bands a four term Fourier expansion for the band energy E(§l) has been
fitted to the calculated band structure at the four gl-points r, M, M
and K', and subsequently evaluated over a fine grid of Hl-points of the
two-dimensional Brillouin zone. The results are shown in Fig. 32
(bottom). Two structuras are found separated by about 0.4 eV
corresponding to the two surface bands. The lower surface band which
overlaps with states arising from bulk and other surface bands is
centered at about E = Ev = 0. Experimental photoemission data93 show
structure at somewhat lower energy (E = -0.5 eV). Further lowering

of the calculate surface band and better agreement with experiment

can probably be obtained by using a different choice of atomic
displacement parameters. Our results, however, show the definite trend
of splitting the dangling bond surface bands combined with an overzll
lowering because of the buckling structure.

Also indicated in Fig. 32 (top) is a joint density of states (JDS)
for optical tramsitions between the lower and the upper surface bands.
Matrix-element effects have not been considered in this plot. The JDS
curve can be gqualitatively compared to infrared absorption measurement599
(broken line). A quantitative comparison is not reasonable because of
the ad hoc choice of atomic displacement parameters and because of
probable strong excitonic effects. It is also instructive to calculate

the charge density distributions for states inside the two peaks in
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the density of states of Fig. 32 (bottom). The corresponding charge

(or hypothetical charge for the unoccupied upper band) is displayed
in Fig. 33 in a (210) plane intersecting the surface at right angle.
This plane corresponds to the (110) plane of the unreconstructed surface.
The buckling raises the surface atom on the left hand side and lowers
the surface atom on the right hand side. Due to lateral shifts the
second layer atoms are slightly moved out of the (210) plane. The
states show very interesting real space behavior. Electrons in states
originating from the lower peak iabelled dout are located predominantly
on those atoms which have been raised and avoid those atoms which have
been lowered. Conversely the wavefunctions for unoccupied states of the
peak labelled din are concentrated around those atoms which have been
lowered. The surface thus exhibits a (2x1) patteru of nearly two-fold
occupied dangling bond states centered at every second row of atoms.
Roughly speaking the unpaired dangling electron of every second surface
atom (in) is transferred to its neighboring atom (out) where it pairs
up with another electron, thus creating an ionic semi-conducting surface.
This result thus provides an explanation to the absence of electron
spin vesonance signal from a cleén si (111) surface.loo

In summary, we have applied the self-consistent pseudopotential
method for local "non-periodic” configurations discussed in Sec. ITIA
to several S5i (111) surface models. Three diiferenﬁ surface models
have been studied including unreconstructed, relaxed and unrelaxed
(1x1) surfaces which also have been investigated by Appelbaum and

Hamanngl in the only previously existing self-consistent calculation.
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Their results are basically consistent with our calculations. In addition
new types of surface states corresponding to the longitudinal back bonds
between the second and third atomic layer are found and complete density
of states curves are presented. A buckled (2x1) surface model such as
proposed by Haneman (with preserved back bond lengths) has been used

to study the (2x1) reconstructed surface. The salient experimental
results on (2x1) Si (111) surfaces can be understood on the basis cf
this model. Upon reconstruction the dangling bond band is split and
lowerad considerably in energy. The surface is found to be semiconduc-
ting thus producing an infrared absorption peak at low energies and
eliminating the electron spin resonance signals from the surface.

2. Relaxation Effects on the (110) Surface of GaAs

We continue our study of semiconductor surfaces in this section
with the (110) surface of GaAs. Numerous theoretical calc;ulat:'.onsml_105
have been performed for the ideal (110) surface of GaAs. Employing a
variety of techniques these calculations provide a consistént picture
of the intrinsic surface states occurring near the Fermi level.
Occupied anion derived states are found to exist mear the valence
band maximum and empty cation derived states exist in the semiconductor
band gap. Although early experimental “ork93(a).105-108 seemed to
lend support for this interpretation more receant work has yielded

contrary evidence.

With respect to the empty cation states, Eastman and FreeOufm6

have made partial yield photoemission measurements on a series of

zincblende (110) surfaces. They observed a correlation between the
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position of the empty cation states, measured to lie within the band gap,
and Schottky barriers. Based upon suggestions first put faorth by
Batdeen.m9 they asserted that the empty cation states play a prominent
role in the determination of the Schottky barrier height. However,

recent theoretical studiesllo have shown that semiconductor surface

states are not present at the metal-semiconductor interface in the
energy range of the band gap, and ir is the metal induced gap states

(MIGS) that are related to the properties of Schottky barriers.

In addirion, recent studies on GaSblll and GaAsllZ have suggested

that there exist no empty surface states within the band gap. Evidence
for a higher placement of empty cation states comes from a model for
(110) surface relaxation as proposed by Rowe and cowotkers.113 In

order to account for the insensitivity of the cation surface states to

metal overlayersm6'113 and oxygen adsorbates.los’llh they proposed

that the surface cations must relax inward. This type of relaxation

is expected to move the cation states to higher energy relative to the

bulk valence band maximum.l06

Early experimental evidencega(a) for filled anion states occurring

near the valence band maximum has also been questioned.los‘115‘116 The
theoretical calculations indicate a strong and narrow surface band

near the valence band maximum; however, recent photoemission is in
poor agreement with this result.116 The photoemission work sugge- .=
that only a rather broad surface feature, possibly obscured by bulX

valence band states, is compatible with the experimental data.
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Thus, to assess the effects of relaxation on the GaAs (110) surface
we have considered a model similar to the one proposed by Rowe, et al.l13
In this model we allow the cations to relax inward to form an sp2
configuration and the anions to relax outward such that the bond lengths
are preserved. A very similar madel has been used in the previous

section to account for the reconstruction occurring for the (111) Si

92 .
surface. 117 We find that the empty cation states are moved to

higher energies; however, the leading edge of these states still lies
within the band gap. In addition, the character of the cation states
is dramatically changed. The charge density is not localized owlwzrd
along the cation dangling bonds as for the ideal surface, but inward
between the first and second surface layers. This could account for
the insensitivity of these states to metal overlayers and gas adsorbates.
With respect to the filled states the unrelaxed As dangling bond states
move to lower energies and become obscured by bulk states in agreement
with the recent photoemission uork.116

To calculate the electronic structure for the proposed model, we
consider an eleven layer slab of GaAs with the (110) surface exposed
to vacuum on both sides. The slab is repeated in a super-lattice and
the electronic structure is calculated following the self-consistent
procedure described in Sec. IIIA. The ionic pseudopotentials (deter-
mined by model calculations and bulk considerations) used are the same
as those given in Ref. 104.

In Fig. 34 a local density of states (LDOS) is presented for the

relaxed surface. The histogram density of states was prepared by
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weighting each eigenvalue contribution to a given energy interval by
the corresponding charge density localized within the specified

64,104

layer. The first layer corresponds to the surface layer; the

fifth layer deep within the bulk. The result for the first layer for

an ideal surface is'also displayed in Fig. 34. The local density of
states for a given layer has the physical significance of giving the
probability of finding an electron of a given energy E in that specified
layer. Prominent peaks arise from surface states on the GaAs (110)
surface are shown in Fig. 34 as shaded areas in the LDOS.

In contrast to Si surface calculations,gl’gl"g"98 the lower surface
states on GaAs are not significantly altered by relaxation. However,
this is not the case for the anion and cation dangling bond surface
states occurring near the band gap. These states are signific;ntly
altered in both in energy position and charge localization. The filled

- anion states are lowered in energy by nearly 1 eV as compared to the
ideal case. Since strong bulk contributions occur within the same
region, this result could account for the absence of filled surface
state contributions in the recent photoemission Hork.116 The lowered
energy position for the filled states is a natural outcome of the bond
angle deviations occurring at the surface anion site. Within our mndel
relaxation, the sp3 anion bonding configuration is wmade more s-like,
hence, lowering the enerpgy of the states. This hehavior is analogous
to the buckled Si reconstruction as suggested by Haneman.92‘117

As expected the empty cation states show the opposite trend; they

move to higher energies with the sp2 configuration.u3 A detailed
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density of states for the cation derived empty surface states for both
the ideal and relaxed surface is given in Fig. 35. This density of
states was constructed by a Fourier interpolation scheme between 20
k-points in the surface Brillouin zone. The band gap in GaAs is

1.4 eV, thus the center of mass of the empty surface band density of
states has moved above the conduction band minimum. However, the
threshold of the calculated surface band remains in the band gap. The
minimum of this band occurs along the (001) bulk direction and is a
result of significant mixing betvieen anion and cation states along this
direction. Our results are only compatible with the Eastman and
Freeouflo6 data provided either the center of mass is exciton shifted
downward in energy or the threshold of the surface band is exciton
enhanced.

It is possible that a relaxation model could be constructed in
which the threshold is raised, but it appears within the limits of our
calculation that this would require an unphysical stretching of the
anion-cation bonds along the surface layer. This conjecture is based
upon the result that the threshold appears to be insensitive to changes
in the bond lengths as calculated by relaxing the cation but not
altering the positions of the surface anions.

Finally, in Fig. 36 we display the pseudocharge demsity for the
cation surface states. For the ideal surfaceloa these states protrude
into the vacuum region and would be expected to interact strongly with
surface adsorbates. In the relaxed case we would not expect this to

occur as the states are localized inward between the first and second
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surface layers. These states are predominantly p~like at the cation
site with considerable s-like admixture. The strengthening of the back
lobe of the p-like orbital by inward relaxation is to be expected by
analogous behavior calculated for relaxed Si surface states.91

In summary we have seif—consistently determined the electronic
structure of a model relaxed GaAs (110) surface. We final that this
model can account for the insensitivity of the empty cation derived
surface states to metal overlayers, and the lack of eviéenée for occupied
anjion surface states in recent photoemission measurements. Also with
relaxation of the surface, the empty cation derived surface band becomes
more dispersive. The center of mass lies above the conduction band

minimum: however, the threshold of the surface band remains within the

bulk band gap.

C. Metal Surfaces

Theoretical progress in the understanding of the electronic
properties of metal surfaces has lagged considerably behind that of
semiconductor surfaces in recent years. Simple s-p metal surfaces lack
the weslth of interesting experimental data which have attracted the
theorists to work on semiconductor surfaces. Cn the other hand,
although transition wetal surfaces are of great interest because of
their possible technolopical applications, the complexity of. the
d-electrons lias made realistic calculations on these surfaces
prohibitively difficult. Thus far, the only self-consistent calculations
on simple metal surfaces are those on the jellium uu:u.'leln8 and on

119,120

monovalent metals which do mot have occupied surface states



~72~

hence preclude them from participating in the self-consistent screening;
and, as of yet, there are no fully self-consistent calculation for the
electronic structure of transition metal surfaces.

As an attempt to improve the above situation, we have performed
self-consistent calculations on the electronic structure of a polyvalent
s-p metal surface (the A2(111) surface) and that of a transition metal
surface (the Nb(001) surface). Because of the greater interest in
transition metal surfaces, emphasis will be placed on the Nb(001)
surface in the discussions.

1. Af (111) Surface

We followed the procedure discussed in Sec. IIIA to calculate,
using self-consistent pseudopotentials, the electronic structure of
a (111) surface of aluminum. The local configuration in the present
case consisted of a twelve layer AL slab with a vacuum region of three
interlayer distances for each surface over which the wavefunctions of
the slab are allowed to decay. As in the semiconductor surface
calculations, the A£+3 jonic pseudopotential used is a Heipe-Animalu

121

core potential which has been fitted to a 4=-parameter curve in

Fourier space

4
a,q

a
o § 4
Vion(q) qz (cos(azq) + aj)e (64)
with parameters a = -0.7758, a, = 1.0468, a = -0.13389, and
a, = -0.02944. The units are such that if q is entered in atomic

units, V(q) is given in Ry. The potential has been normalized to an

atomic volume of 112.36 (a.u.)3.
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At each iteration in the self-consistent process, the required
screening potential and the Fermi level, EF' were determined by cal-
culating the eigenvalues and eigenvectors over a grid of 294 points
in the two diwensional Brillouin zone. The final calculated value
for EF was 0.85 Ry above the conduction band minimum in good accord
with the bulk value of 0.86 Ry. The obtained value for the work
function ¢ is 0.38 Ry, which unfortunately cannot be compared directly
to the experimental value of 0.31 available for polycrystalline A2.122'123

Let us now discuss the surface states on the AL (111) surface.

To determine the existence of surface states we hive examined the

charge density for all eigenvalues below EF at high symmetry points

in the two dimensional zone. Our results indicate the existence of

surface states below EF at T and at K in agreement with the results of

previous non-self-consistent calculations by Caruthers, Kleinman and
125

Alldredge.124 but not with that of Boudreaux. At T one surface

state occurs at 0.33 Ry below EF and at K we find two surface states

at 0.15 Ry and 0.07 Ry below EF'

Among the three surface states; the most localized (in real space)
state is the upper state at K at 0.07 Ry. . The charge density distribu-
tion for this state is shown in Fig. 37. The top figure shows the
charge density averaged parallel to the surface and plotted as a function
into the bulk. The bottom figure is a contour plst for the charge in
the (110) plane. This state occurs in a rather large energy gap in

124

the projected band structure and its decay is more rapid than the

other state at K at 0.15 Ry or the surface state at T. As seen from
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Fig. 37, the charge density of this state is localized in a "cavity"
near the surface formed by the first and second atomic layers. Since
this state occurs quite néar EF and is localized strongly near the
surface, it is expected to be chemically active.l24
Thé surface state at 0.15 Ry at K is not as localized as the upper

state disqussed in the previous paragraph, and is quite sensitive to
‘the surface potential. As with the 0.07 Ry state at K it has charge
localized in the cavity regions, but peaks furthef from the surface.
Finally, the surface state at T', which occur in the bulk band gap at L
in the three dimensional zone, decays very slowly falling only by 10%
from the peak value at the surface to the mid-point of the slab.

2, Nb(001) Surface

We would like to discuss in some detail in this section the

electronic structure of a transition metal surface. A self-consistent
pseudopotential calculation is presented for the (001) ideal surface
~of Nb. To our knowledge, this is the first fully self-consistent
calculation for a transition metal surface. The band structure and
real space distribution of the electrons near the surface are deter-
mined. Surface states of different angular momentum character are
found to exist over a wide range of energies and over different portiens
of the two~dimensional Brillouin zone. Our calcuiations predict strong

surface features in the density of states in the range of 0-2 eV above

the Fermi energy.

Previous calculationses’IZG_lzg on transition metal qurfaces can

7
be roughly divided into three groups: (1) Greens-function calculationsl2
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of the density of states of semi-infinite erystals using a d-function
tight-binding Hamiltonian (i.e. neglecting the effects of sp-d
hybridization), (2} band calculations on semi-infinite crystals hy
matching wavefunctions across a potential barrier constructea to

128

represent the surface, and (3) band calculations on thin films using

multiple-scattering, tight-binding or OPW methods.129

Although the above calculations have provided useful information
about band narrowing and some properties of surface states, their
limitations have motivated us to attempt the present calgulation; Some
of the limitations of these calculations are: Nonz of these calculations
are fully self-consistent; tight-binding calculations usually invelve
a limited basis set and some important effects of dehybridization at
the surface are neglected; and Greens-function calculations provide
only information about the surface density of states without giving
surface bapds and their k-space distribution. Pseudopotential calcula-
tions when carried out in a self-consistent fashion (Sec. IIIA) will
avoid most of these shortcomings. v B »

The yemainder of this section is orgSnized.as follows: 1In section
a the wethods of calculation are discussed. In section b the results
for the electronic structure of the Nb(001) surface arevpfesented
together with the projected band structure of bulk Nb on the (001)
surface. And in the final section ¢ a summary and some discussion
are presented.

a. Calculstions. Let us first discuss the calculation on the
projected band structure (PBS). Since bona-fide surface states can

only occur in the paps of the projected bulk part of the two-dimensional



-76-

(2D) band structure,130 a knowledge of the projected band structure of
the three-dimensional (3D) bulk crystal on a erystal face will be
extremely helpful in analyzing surface states on that surface. For
this reason we have projected the bulk band structure of Nb on the
(001) surface using a method similar to that discribed in Ref. 131
by Caructhers and Kleinman.

For the (001) face of the becc lattice, the surface lattice vectors

are g = a 8, b = a §, where a_ is the bcc cubic lattice constant znd
c c c

<)

%X, ¥, £ are the usual cubic unit vectors. The 2D Brillouin zone (BZ)
for this surface unit cell is then a square (Fig. 38 top) with primitive
reciprocal lattice vectors ZWIacﬁ and Ky = Zﬂ/acf. To obtain the
PBS, we construct the smallest 3D unit cell f the bcc lattice which
is compatible with the 2D surface unit cell and determine the 3D band
structure of Nb according to this new unit cell. The allow energies
at a point hl = (kx, ky) in the 2D BZ are then the energy eigenvalues
at all the points (k. kz) such that -Kz/2 < k, < K/, vhere K_ is the
primitive reciprocal lattice vector along the 2-direction for the new
3D unit cell. 1In the preseat case, the new unit cell is just the bcc
cubic cell and the new BZ is a cube inseribed in the standard BZ

{Fig. 38 bottom). ' Also the band structure En(k) for the new cell can
be e¢asily obtained by folding back the eigenvalues in the standard BZ
into the ncw zonc. For this purpose we have used the band structure
calculated in Sec. 11C. The PBS for the (001) surface of Nb were
obtained from the eigenvalues of 285 k-points in the irreducible part

(1/48) of the standard BZ.
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In calculating the surface electronic structure, we employed the
self-consistent method developed in Sec. ITIA. A nine-layer slab of
Nb with the (001) surfaces exposed to both sides is used to simulate
tvo noninteracting surfaces. The slab is placed in a periodic super-
lattice with the slabs separated by a distance equivalent to 6 atomic
layers of Nb. Screening is achieved using a Hartree potential derived
via Poisson's equation and a Slater-type exchange potential. The only
input to the calculation consists of the structure (i.e. the atomic
positions) and a fixed ionic pseudopotential for the Nb+5 ion cores.

5

The Nb+ ionic potential used here is the same potential used in

Sec. IIC which is a f£-dependent nonlocal pseudopotential of the form
2

ve § wp (65)
oo B2

vhere Pg are projection operators for the various angular components

of the electron wavefunction. The po\:entials VB. Vp. v g vere obtained
by fitting the spectroscopic term values of the Nb“ ion (i.e. the Nb+5
plus one electron system) and they are depicted in Fig. 15. When

used in self-consistent atomic and bulk band structure calculations,
this Nb"'s ionic pseudopotential has proven to yield results agree well
with experiment and other calculations. (See Sec. IIC.)

In the present calculation we have used the same convergente
criteria as in the bulk calculation (Sec. IIC). The electronic wave-
functions were expanded in a basis set consisting of approximately
1000 plane waves; an additional 1000 plane waves were treated by

second-order perturbation fechniques. Using symmetry, the Hamiltonian
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matrix was reduced to two ~ 500x500 matrices since the central plane of
the slab is a reflection plane. Because of the large matrix size, the
self-consistent calculations were based on a three special-point
scheme.1 However, for the final self-consistent potential, a total
of 15 k-points in the irreducible part (1/8) of the 2D square Brillouin
zone has been included.

With the results at the 15 k-points, we obtained the self-
consistent valence charge density, the local density of states for the
electrons near the surface.64 and the charge densities for the various
surface states. The surface states were identified by examining the
charge density for all eigenvalues below the vacuum level at thke 15
k-points.

b. Results. The PBS for the Nb(001) surface is shown in Fig. 239.
We have scanned the entire irreducible part cf the square zone by
exanining k-points along lines parallel to the Z line (T to M) in equal
intervals. Each small figure in Fig. 39 shows the PBS along one of
such lines. For example, Fig. 39(a) is the PBS along the Z line
whereas Fig. 39(i) corresponds to the one point X. 4s seen from the
figures there are a mumber of absolute gaps in the PBS. Symmetry gaps
which we will discuss later are not shown in these figures. We note
that the absolute gaps tend to be located well far away from the zone
center T and tend to be the widest at off high-symmetry points.

From the PBS one therefore expects most of the surface states to
occur away from the zone center and have energies in the wider gaps.

Our surface results indeed show that most of the prominent surface
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states occur in the big gap, Gl, positioned just above to Fermi level
EF between 0 and 3 eV and in the smaller gap, G2, positioned between ~2
and -1 eV. The k-space extension of these two major gaps in the PBS

is shown in Fig. 40.

Let us now proceed to the surface results. Figure 41 shows the
total, self-consistent valence charge density for the Kb (001) surface.
The charge density distribution on the (110) plane is plotted in
Fig. 41(a) and that on the (100) plane is plotted in Fig. 41(b). We
find that, afcer only a few layers into the bulk, the charge density
is virtual identical to the bulk charge dencity presented in Fig. 18
in Sec. IIC. Some of the noticable changes in the charge distribution
near the surface are that the atoms on the second layer have a slightly
higher charge density which can be understood in terms of the Friedel
oscillations and that the charge density at the surface atoms become
less directional and more s-like.

The local density of states (LDOS) curvesloa are presented in
Fig. 42. The first layer corresponds to the surface layer; the fifth
layer at the center of the slab. As stated in section (a), fifteen
k-points in the irreducible part of the 2DBZ were used to calculate
the LDOS. In addition, to ascertain the surface features, a difference
curve obtained by subtracting the LDOS at the center of the slab from
the LDOS at the surface is present in Fig. 43.

Away from the surface in layer 5, the LDOS strongly resembles the
bulk Nb spectrum given in Fig. 17; slipht differences arise becausc
of the use of a smaller number of k-points and nlsn'because of some

influence of the surfaces. The observed changes at the surface layer
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are mwostly due to surface states and partly due to distortions of the
bulk-state wavefunctions at the surface. (In this section we shall
make no distinction between bona fide surface states and strong surface
resonances.) Narrowing of the rms width of the LDOS is observed for
the surface layer. The regions A, B, C and D shown in Figs. 42 and 43
indicate the regions where some of the prominent surface bands are
found.

The increase in the density of states at the surface layer in the
energy range of O to 2 eV arises mainly from tha contributions of
three surface bands (Tl, T2 and T3). These three surface bands occur
in the absolute energy gap Gl located just above the Fermi level in the
two-dimensional projected band structure (PBS). As seen from Fig. 40
the Gl gap encompasses nearly 70Z of the irreducible zone extending
from M to over 2/3 of the way to T along the £ direction and similarly
to nearly touching X along the ¥ direction. The existence of these
surface bands in the above gap is mot very sensitive to the potential
used. Their dispersion is ~ 2.5 eV for two of the bands (T2 and T3)
and ~ 0.4 fqr the other (Tl). The increase in the density of states
at the surface layer in the energy region D, on the other hand, arises
from_occupied surface states in the smaller gap G2.

Figure 44 shows the various calculated surface bands along the
high symmetry lines together with the PBS., Also indicated in Fig. 44
are some of the symmetry gaps along the symmetry lines. (Symmetry gaps
are gaps at high symmetry points or along symmetry lines in the PBS
in which bulk states of a given symmetry are forbidden but where states

of other symmetry may exist.) In Fig. 44 vertical crosshatching is used
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to show the extend of bulk states with 31. 71.2 and £ symmetry;
horizontal crosshatching is used to show the extent of bulk states
with 32 and 32 symnetry; and the dash curves are the surface (bona-fide
or strong resonance) bands.

Let us first discuss the surface states in the Gl gap. There are
four surface bands in this gap. Three of them are the Tl, T2 and T3
surface bands. As discussed earlier the Tl band is very flat in
k-space, where as the T2 and T3 bands are relatively dispersive. The
extent of these states encompasses a large fraction of k-space.

The fourth band of surface states is found at ~ 3.0 eV in a small
region near M.

The T2 and T3 surface states yield similar charge distributions.
These two bands follow each other closely in k-space with a typical
energy separation of ~0.5 eV which vanishes near M. 'The character133
of the two bands is for the most part dzx.zy vith admixtures of dxy
and de—yZ depending on the value of k. For example along £ the T2
band is of 21 symmetry (see Table IX). Its character is therefore

mainly of dz(x+y) with admixture of dxy' The T3 band along this

direction is however of 32 symmetry and its character is therefore

mostly of d

2(x-y) with admixture of dxz_yz. At the point M the two

bands merge to a two-fold degenerate state with mainly dzx zy chavracter.
1]

The band T1, on the other hand, is almost solely of d, 2 > character

throughout k=-space. Finally the upper, fourth band existed only ncar

M is mostly of de-yZ character. In terms of spectral weights, the
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T2 and T3 states are mainly concentrated in energy regions B and C
vhereas the Tl states are concentrated in region A.

A natural, but perhaps over-simplified interpretation of the above
surface bands is that the T2 and T3 surface stétes are states principally
derived from the two bonding orbitals dzx and dz of the surface atoms
which are broken by the formation of the surface. They split off as
two surface bands into the above discussed band gap from the bonding
and anti-bonding part of the spectrum. Similarly the Tl surface states
are d322-r2 orbitals which split off from the anti-bonding part of the
spectrum and move down into the band gap to form one surface band.

There are other surface states near the Fermi level. For example,
at f, a surface state of d3z2-r2 character is found in a Tl symmetry
gap at 0.2 eV. Also found near EF is an unoccupied surface band in a
51 symmetry gap in the PBS along the B direction and, just below this
Al gap, an occupied band of strong surface resonances. The two bands
merge and become weak surface resorances at T. Since the state at T
and those in the above two bands are well defined surface states only
at their respective symmetry points, they do not contribute much to the
LDOS.

In Fig. 45, the charge densities of the states in regions A, B
and C are presented. These include both bulk and surface states. We
note that the charge for all three regions are highly localized on
the first layer indicating that these regions are essentially composed
of surface states. Since Tl states are dominant in region A, the

charge density plot for this region (Fig. 45(a)) shows a strong charge
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lobe protruding out into the vacuum region along the z-directio~n
perpendicular to the (001) surface. Although it cannot be secen from
the plot, the charge density 1s completely symmetric about the z-axis
giving the charge distribution a striking d322-r2 character. 1In
contrast, the charge densities for regions B and C have their maxima
protruding out into the vacuum region ar a 45° angle with respect to
the normal; they are nearly symmetric with respect to the 2-axis.

Therefore they are mostly of dzx character with some admixture of

2y
dxy and dxz-yz character. From Fig. 45, one can also see the reason
for che rather large dispersion for the T2 and T3 states. The charge
densities for these states overlap quite strongly between neighboring
surface atoms where as there are virtually no overlap of charges for
the Tl states.

Other prominent surface states found are two occupied surface
bands in the energy region D. Similar to the Tl, T2 and T3 states, they
appear in an absolute gap, the G2 gap, in the PBS (Fig. 44). But,
unlike the former states, they are not dangling-bond-like. The k-space
extension of this lower gap (Fig. 40) consists of a strip extending
from midway along the £ line to the point X. The surface charge distri-
butions for the states in the upper band T4 are primarily dxy-like.
vhercar the states in the lower band T5 are primarily dxz_yz—liko.
However, the charge distributions for these states do change significantly
over different parts of k-space. In some regions charge is shifted

from the first layer to the second layer.
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To illustrate some of the characteristics of the individual surface
states, we have plotted the charge density distributions for the five
surface states at the point k = (3/8,1/4) Zn/ac. This k-point was chosen
for the reasons that all five surface bands T1-T5 extend to this point
and that it is a general point in the 2DBZ. Figure 46 shows the charge
density distribution for the Tl state at E = 1.6 eV. The charge distri-
bution on the surface atom is d322—r2- like and has virtually no
overlap with the charge from nearby surface atoms. Figure 47 shows the
charge density distribution for the T2 state at E = 0.8 eV. Comparing
the charge distribution on the (110) plane (Fig. 47(a)) with that on
the (100) plane (Fig. 47(b)), we see that the charge distribution on
the surface atom is of dzx.zy character with an admixture of dxy
character. Overlap of charges along the (010) direction is considerable
which is consistent with the large dispersion of the TZ band. Figure 48
shous the charge density distribution for the 13 state at E = 0.4 eV,
The charge distribution i{s again dzx‘zy-like. But unlike the T2 state,
it has an admixture of dxz-yz charge distribution. Again the overlap
of charges along the (010) direction is appreciable. Figure 49 rhows
the charge density distribution for the occupied T4 state at E = ~1.7 eV.
The charge density for this state is not as highly localized on the
surface atoms as the states in the Gl gap. The charge extends into
the second layer and is mostly of dxy-chnracter with a small admixture
of dxz.zy character. Finally, the charge density distribution for
the state TS5 at E = =2.0 eV {s presented in Fig. 50. The charge is

localized on the second-layer atoms, but extends quite far into the slabh.
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Analysis of the T5 band show that this band changes character as it move

towards to point X. At X the charge density distribution is dxz_y2~1ike

and localized on the outermost Nb atoms.

c. Summari and Conclusions. In summary we have calculated the

electronic structure of the (001) ideal surface of niobium using a self-
consistent pseudopotential method. Surface states are identified

and analyzed throughout the two-dimensional Brillouin zone. When
compared to the semiconductor surface states, the surface states on

the Nb(001) surface are much more complex both in their extent in
k-space and in their charge density distributions.

Our tesults also show that most prominent surface bands appear in
gaps of the PBS which are located well away from the zone certer. Since
we do not expect the positions of the gaps in the PBS for the (001)
surface of most transition metals to change by much, this situation
will likely to occur on other transition metal surfaces and therefore
it is not adequate to zanalyze the surface properties of transition
metals by just examining the T point.

Finally, to our knowledge there is no published experimental data
on the (001) surface of Nb; measurementslaa'las havé been done on the
(001) surfaces of Mo and W. A rigid-band interpretation of our results
can be made for Mo and W pravided that screening at the surface does

not significantly alter the energies of the surface states. We also

note that spin-orbit interactions are not necessary for the existence

of the surface states dis:ussed.136
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IV, METAL-SEMICONDUCTOR INTERFACE

In this section we study the electronic structure of metal-
semiconductor interfaces.

Experimentally the behavior of the Schottky barrier height ¢b for
metal-semiconductor (m/s) interfaces as a function of the metal
electronegativity is found to be dramatically different depending on
whether the semiconductor is covalent or iunic.137 For covalent semi-
conductors ¢b is approximately constant for all metals, whereas for
ionic semiconductors, ¢b is strongly dependent on the metal contact.
Furthermore the transition from covalent behavior to ionic behavior
appears to be a rather sharp transition which occurs at a critical
ionicity.

While there have been a number of theories and speculationslog’lzs-IAI
and various mechanisms have been proposed to explain these properties
of the barriers, a definitive explanation has yet to emerge because
of the lack of detajled information on the microscopic nature of m/s
interfaces. A necessary step toward understanding the properties of
Schottky barriers should therefore involve a systematic study of the
electronic structure of a series of m/s interfaces as a function of
increasing semiconductor ionicity. Our present work is motivated by
these considerations.

The inverfaces studied in this section are interfaces of Al
(modeled by a jellium core potential with r. = 2.07) in contact with

the ideal (111) surface of Si and the ideal (110) surfaces of GaAs,
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ZnSe and 2nS. We find that, within the jellium-semiconductor model,
the electronic structure of the four interfaces under investigation

is qualitatively similar. Moreover we find that the experimentally

observed variation in ¢b for different metals in contact with semi-

conductors of different ionicity can be understood quantitatively in
terms of a simple model involving metal~induced states in the semi-

conductor band gap. .

The remainder of the section ié organized as follows: In Section A
the methods of calculation and the electronic structure of the metal-Si
interface are discussed in some detail. In Section B the results for
the electrenic structure of the metal—zihcblende semiconductor
interfaces are preseﬂted. In Section C.tﬁe ionicity—dependént behavior
of the Schottky barrier height is examined. And in the final Section D

some discussion and conclusions are presented.
A. Al/Si Interface

In this section we present self-consistent pseudopotential cal-
culations on the electronic structure of a metal-Si interface. The
calculations model an Al-Si interface with a jellium pctential
representing the aluminum fon potential in contact with the Si (111)
surface. This model describes an ideal or intimate interface, i.e.
there i{s no oxide layer between the two materials. A local density
of states (LDDOS) which displays the density of states as a function of
distance away from the interface has been calculated for this Al-Si
junction. Various states which exist near the interface are identified

and discussed in terms of the LDOS and their charge densities. Our
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calculated interface barrier height is found to be in excellent agree-
ment with recent experimental reSults.laz To our knowledge, this is

the first realistic self -consistent caiculation for a metal-semiconductor
interface.

Metal-semiconductor interfaces are of great importance because of
their rectifying properties which are crucial to the operation of many
electronic devices. Much experimental efforts have been devoted to
the study of their properties. With the advent of recent ultra-high
vacuum techniques, ideal interfaces can now be fabricated and studied

systematically.lhz-lbs and the detailed electronic structure at the

interface can be probed using modern photoemission I:et:hniques.ll'l'-ll66
On the theoretical side, metal-semiconductor interfaces have been the
subject of much discussions and slzoeculal:ions.109’138-1['1'1“-1"9

Many models have been proposed to explain the interface properties.
However, regretably, past theoretical investigations into their
electronic structure have been mostly qualitative or semi-quantitative.
A clear picture of the electronic structure at a metal-semiconductor
interface has yet to emerge.

Experimentally, the electrical barrier height.¢gj(5chottky barrier)
at a metal-semiconductor interface can be accurately détermined using
many different methods (I-V, C-V, photoelectric, etc.). To avoid
confusion over n- and p-type semiconductors, we measure here the
barrier height from the Fermi level EF to the semiconductor conduction

band. For covalent semiconductors such as Si and Ge, the barrier

height is found to be virtually independent of the metal contact and
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137,142,149 1

.of the doping in the semiconductor. Bardeen 09 attributed

this behavior of the barrier height to a high density of surface states
in the semiconductor band gap; i.e. the filling or emptying of these
surface states pins the Fermi level to a nearly constant value.
Heine.138 on the other hand, pointed out that semiconductor surface
states cannot exist in the semiconductor gap if this energy range is
inside the metallic band. He suggested that the pinning of the Fermi
level is due to states of a different type in the semiconductor gap.
These states are composed of the states from tﬁé tails of the metallic
wavefunctions decaying into the semiconductor side.

139,141 )

Theories which do not explicitly involve extra states in

the semiconduétor gap have also been proposed to explain the barrier
height behavior. Inkson.139 using a model dielectric function
formulation, proposed that the pinning of the Fermi level is due to the
narrowing of the semicondcutor gap at the interface. According to
Inkson, the screening of the valence and conduction bands of the
semicondﬁétar is different near the interface. This causes the
valence band to-hen& up>and the conduction band to bend down and
eventually the bands merge together at the interface for a covalent
semiconductor. In additionm, Phillips141 claimed that polarizability
effects play the dominant role at the metal-semiconductor interface.

He sugpested that it is the elementary excitations and chemical bonding
at the interface which determine the behavior of the Schottky barrier.

The purpose of the present work is to study the electromnic

structure of a metal-covalent semiconductor interface in detail using
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the Al-Si junction as a prototype and to gain some insights into the
nature of metal-semiconductor Schottky barriers. The model and methods
of calculazion presént here can be applied to general metal-semiconductor
contacts. The main features of this calculation which are absent in
previous work are (1) a realistic interface is constructed through a
jellium-semiconductor model and (2) the calculation is self-consistent.
It is noted that, as in all previously existing seif-consistent surface
calculations, self-consistency in the present context means self-
consistency in the electronic responses to a given structural model.

In the remainder of this section we shall first discuss in section 1
in some detail the model for the interface and the steps in the self-
consistent calculafions. In section 2 the results for the electronic
structure of the Al-Si interface are presented. And in the final
section 3 some discussion and conclusions are presented.

1. Calculations

Our model for an ideal metal-semiconductor interface consists of
jellium in contact with a semiconductor described in the pseudopotential
formalism. Present experimental and theoretical methods do not allow
a detailed determination of the geometry at the metal-semiconductor
interface; however, we believe that the important properties of the
interface are dominated by the properties of the free electrons
residing next to the semiconductor surface. The present model is
expected to contain all of the essential features of a metal-semicounductor

interface.
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The method we have employed to calculate the electronic structure
of the Al-Si interface is similar to the method which we have used in
Sec. II1 for the surface calculations. The main difficulties in
calculating the electronic structure of solid interfaces are:

(1) Periodicity along the direction perpendicular to the interface
is absent. Therefore the established methods for bulk calculstions
which depend on the periodicity of crystalline solid cannot be used.

(2) Self-consistency is essential in obtaining realistic solutioms.
It is necessary to allow the electrons to react to the boundary con-~-
ditions imposed by the interface and the resulting readjustment and
screening is a fundamental part of the problem.

The essence of our method is to retain (artificial) periodicity perpendi-
cular to the interface and thus'allou the use of well established tools
in pseudopotential crystal calculations to calculate the interface
electronic structure. In addition, the method goes beyond the usual
pseudopotential approach through the requirement of seif-consistency.

For the present calculation, we consider a unit cell consi;ting of
a slab of Si with the (111) surfaces exposed to a jellium of Al density
on both sides. This cell is then repeated and the electronic structure
of the system is calculated self-consistently. The basic idea comsists
of considering periodic interfaces which are separated by large
distances, and then ohtaining the essential features of a single
interface by calculating the electronic structure of this periodic
system. The unit cell used consists of 12 layers of Si plus an equi-~

valent distance of jellium. It is spanned in two dimensions by the
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shortest lattice vectors parallel to the Si (111) surface i.e. hexagonal
lattice vectors with the length of 7.26 a.u. and by a long c-axis of
length ¢ = 71.1 a.u. The volume of the cell is equal to 3241 (a.u.)a.

With the above geometry, the jellium edge is one-half of a Si-Si
bond length away from the atoms on the Si (111) surface. This is a
physically reasonable choice since the length of a Al-Si bond is
approximately the same as a Si-Si bond. To simulate non-interacting
interfaces, the Si and the Al slab sizes have to be chosen such that
(a) the bulk properties of the materials are adequately reproduced and
(b) the surfaces from opposite side of the same slab do not interact
appreciably. Calculations on the Si (111) surfacegk and various test
calcualtions on jellium slabs of Al density showed that the assumcd
slab thickness which is equivalent to 12 layers of Si satisfies the
above requirements well.

The electronic structure of this "periodic” system can now be
solved in a self-consistent manner using pseudopotentials. The steps
leading to a self-consistent solution are shown in Fig. 23. We expand
the electron wavefunctions in plane waves with reciprocal lattice

vectors, G:

+G) *
D = X 3 yel (8 T (66)
This leads to a matrix eigenvalue equation of the usual kind

1 e oo - B8, g2 € =0 (67)
Q »
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which is solved by standard lae:hods.1 Here, the Hamiltonian matrix

elements are of the form
b e o T gl o+ VGG (68)
6,6 2m G.L'  ps

vhere V?S(E-E') are the pseudopotential matrix elements. In general
the pseudopotentials arc non-local and energy dependent.l However, for
bulk Si and Si surfaces, local pseudopotentisls are known to yicld
satisfactory results. Therefore local pseudopotentials will be uscd

throughout for the present calculation.

The self-consistent cycle is initiaced by the following potential

Si 1
Vorare(® = @V gD + VAL @ . (69)

The first term is the starting potential for the Si slab and the

second term is the starting potential for the Al slab. The S5i structure
factor
-16-1,
e (70)
i

s =1

E s -

describes the positions of the Si atoms in the unit cell. V::pllﬁl)

are Si atomic pseudopotential form factors derived from empirical bulk
cnlrnlﬂtions.b7 Since cmplrical form factors arc only known for
discrete § vectors and the £ vectors are differvnt for different crvstal
structurcs, a continuous extrapolation is performed to obtain the fuorm

factors corresponding to the new £ vectors in the interface problem.

We fitted a curve of the form
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al(qz-az)

v(g) = (7

explaJ(qz-a“)l+l
to the 3 fors factors for bulk $i V{111) = -0,2341 Ry, V{200) = 0.055} Ry,
V{311) = 0.0724 Ry and renormalized it for the different unit cell

volune, The four parameters a, in Eq. (71) are g.ven in Table X. The
potential is normalized to an atomic volume of 270 (a.u.)] and the

units are in Ry if g is entered in a.u.

A starcing potential for the Al slab is less obvious. We assumed
that in zernth order, the Al electronic charge is uniform and confincd
completely inside the Al slab. Then the Harcree pare of che clectron
screenfng will cancel the positive jellium backpround and the scarcing
porential for the Al slab can be raken to contain only an exchange ters

1 33 (3adyl/? g2 o213 ,
Virart @  -aigh) nH ¥ olhe (72)

vhere o = 0.79 and o;:f(ﬁ) are the Fourier components of the jellium

density to the one-third power. Here we have replaced the non-local
Hartree~Fock exchange putential, vx(r.r‘). by the statistical exchange

model of 51.‘.r_90.150

The choice of a = 0.79 will be discussed later.
In principle, for a sc)f-conristent calculation, the siarting patentials
ghould be unimportant. However, in practice., a gand starting potential
reduces the numher of itcerations needed vnormourly.

From Eq. (67) we obtain the band structure En(k) and the preudo-

wvave functions whk(l)' To perform the next step in the self-consistent
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loop, the total ‘zalence charge density

®
plx) =2 '2‘ E ""nls(‘)”nk.(‘) (713)

E () <,

has to be accurately determined. This requires ;o2 convergence in the
electron wavefunctions and a precise location of the Fermi level. To
assure good convzrgence, the electronic wavefunction were expanded in
a basis ser consisted of approximately 270 plane waves. This expansion
corresponds to a kinetic energy cutofs® E, = ‘melz =2.7Ry. In
addition, another 300 plane waves were included via Lovdin's perturba-
tion scheu.l The total valence charge density was evaluated at 21
k~points in the irreducible part (1/12) of the two-dimensional
hexagonal Brillouin zone with the Fermi level determined by demanding
charge neutrality in the unit cell. That is, the Fermi level is
determined by filling the eigan levels in the Brillouin zone until the
nusber of occupied levels correspond to the number of electrons in the
unit cell required by charge neucralicy.

We note that, for our “periodic" system, we should in principle
evaluste the total charge over cthe whole 3-dimensional Brillouin zone.
However, for a large elongated cell as in the present case, the encrgies
and wavefunctions are quite independent of the k~vectors alung the
e-direction. As we shall sce later, the final charge density away
from the interface is in good accord with bulk calculations thus

indicating that our sampling in k-space is sufficiently fine and the
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wavefunctions are converged.

Once the valence charge demnsity p{r) is known in terms of its
Fourier components p(G), the Y-rtree-Fock type screening potentials
VH and Vx can be evaluated easily. VH' the so~called Hartree screening
potential, is the repulsive Coulomb potential seen by an electron and
is generated by all the valence electrons. It is related to the

valence charge density by Poisson's equation

Vv, (0 = -treo() (7%)

and can be written as a Fourier series

- i¢-x
¢ é Vy(@e (75)
with

2
4ne )
VH(E) - 4ne p(G)

. (76)
(5

Physically overall charge neutrality in the solid requires that

V“(Q-O) = -vion(Q-O) wvhere vion is the ionic potential generated by

the positive Si“' ion cores and by the positive jellium slab. Therefore,
for the present calculations, we can arbitrarily set V“(Q-O) =

an(ﬁ-O) =0, Numerically. however, tho divergent character of

v“(g) and vio I,|(£-,) for small L-values causcs somc problem with the
stability of the sclf-consistency process. This is discussed in

detail in Ref. 94. The Hartree-Fock exchange potential was approximated
using the Slater exchange model, as we have done for the Al starting

potential. In G-space, the exchange potential then has the form
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v (@ = -ach a7 3 an

vhere a = 0.79 and 91/3(5) are Fourier components of 91’3(;). The
justification for the present value for a is that thie choice of a
will bring Slater's exchange in an approximate agreement with Higner'5151
interpolation formula at the average valence charge density of Al and Si.

Thus, from the total charge density, the electronic screening potential

VecplD) = E V(0 + v, (©)e¥'E (78)

is obtained at each iteration in the self-consistent loop.
After the screening potential is determined, the self-consistent
process is continued by adding VSCR to an ionic potential Vion to form

a potential for the next iteration. The ionic potential comsists of

two terms

ion

si 1
Vion(® = SE@VE @ + VAL (© (79)

where the first term is generated by the Si+k ionic cores and the
second term is generated by the Al slab. S(G) is the Si structure
factor as defined in Eq. (70).

First let us discuss ngn. This is just the Coulombic potential
generated by repeated slabs of uniform positive charge. For an origin

at the center of a metallic slab, V::n has the form

2
AL -8rne n, sin GzaIZ

©) = 3 cho chD (80)

ion cG
z
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wvhere a is the width of the jellium slab, C is the length of the unit
celi along the direction (z) perpendicular to the interface and n, is
the positive background density.

For the Si ion core potential, we have used an atonic model
potential which was fitted to atomic term values by Abarenkov and
Heine.96 The repulsive cores of the ionic model potentials as given
by Abarenkov and Heine are icnlocal (i.e. f-dependent). For the present

calculation, a local, "cn the Fermi sphere" approximation1 has been

made and the Fourier tramnsform of the resulting local potential was

fitted to a 4-parameter curve
b, 4
ion(q, = 2 [cos(bzq) + ba,exp(bbq ) . (81)

The values of the bi's are given in Table X. The normalization and the
units for Eq. (81) are the same as those for Eq. (71). Using the
parameters given in Table X, this ionic core potential has proven to
yield excellent results in bulk and surface self-consistent calcula-

tions.gb

With the above vion; the first two cycles of the self-consistent

loop were performed using

(1)
VIN (L) = vstnrt(L)
(2)(1) -V, (0 + vgg'x) } (82

However, due to the divergent character of VH and vion ment {oned

earlier, an input potential VIN which deviates from the truly
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self-consistent potential will lead to an output potential which
“overshoots" and is further away from the true potential. Therefore
further iterations based on a straightforward extension of Eq. (82)
would not yield a converging potential. This unstable behavior of the
screening potential especially for very small G-vectors is commonly
found in surface calculations.94'118'120 The procedure to deal with
these instabilitjes is to compute adjusted input potentials vgg)(g)
for n > 2 from preceding input and output potentials. This can be
done by cbtaining the input potential of the nth iteratijon from a
linear combination of input and output potentials of the (n-1)th
iteration or from inspecting VOUT versus VIN graphs separately for
each swmall G. A detailed discussion of this problem and the procedures
to overcome it are given in Ref. 94. The criterioa for self-consistency
is now the stability of the adjusted input screening potential as
compared to the output screening potential calculated from Eq. (78).
In the present calculation, the final self-consistent potential is
stable to within 0.01 Ry.

After self-consistency has been reached, the electronic structure
of the interface can then be analyzed in terms of charge demsities.
For this purpose, charge densities have been calculated as a function
of different energy intervals and different k-points in the Brillouin
zone. In addition, we performed a local density of states (LDOS)
calculation for the Al-S{ interface. This LDOS which displays the
density of states in real space, facilitates the identification and

illustrates the characteristics of the various kinds of states at the
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interface. Analogous to the projected density of states in tight binding

calculations, the LDOS for a given region in real space is given by

N® = T @1 & slEE ay)) (83)
o 8y A

where hl is the wavevector parallel to the interface, n is the band
index, iﬁﬁl’" is the electronic wavefunction and ﬂi is the volume of the
chosen region. Physically “i(E) can be interpreted as the probability
that an electron with energy, E, is found in the region i.
2. Results

In this section our results for theg Al-5i interface are discussed.
We find that four different types of states can exist near the Al-Si
interface. Aside from the usual states which are bulk-like in both
materials, there are states with energy below the Al conduction band
which are bulk-like in the Si side but decay rapidly in the Al side.
Also, In the two-dimensional Brillouin zone, we find extra metal
induced gap states (MIGS) in the semiconductor energy gar s whenever
the range of the gap is inside the metallic band. They are somewhat
similar to the states suggested by Heine, i.e. they are bulk-like in
Al and decay rapidly in Si. However, at the Si surface, these MIGS
retain the characteristics of the "free-surface" Si surface states
which existed in the absence of the metal. It is these states which
pin the Fermi level and dominate the properties of the Al-Si junction.
In addition, we find truly localized interface states which decay in
both directions away from the interface. These appear in the Si energy

gaps in the energy range below tne Al conduction band.
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Firgt let us examine the total, self-consister valence charge
density. The total charge density is a good indicator of the quality
of the present work. For the present calculations to adequately
represent non-interacting interfaces, the charge densities away from the
interface should resemble the bulk densities of the two materials.
Figure 51 displays the total valence charge density in a (110) plane
along with the funcrion atotal(Z) which is the total charge densitv
averaged parallel to the interface with 2 being the direction perpendi-
cular to the interface. For the purpose of discussing the charge
densities and the local density of states, we have also divided the
uniz cell into 12 equal reglons (slices) as shown partially in Fig. 51(b).
The jellium edge is indicated by the double dashed line. Only the
charge within a few angstroms from the interface is significantly
perturbed from the bulk values. The charge densities in region 1 and
1I and vegions V and VI are in good accord with bulk densities.”‘ls2
The slight diiferences between the present Si charges away from the
interface and those calculated in Refs. 47 and 152 are due to the
difference in the cutoff energy El'

From Fig. 51(b) one sees the well known Fridel oscillations in the
Al charge density and there is a net transfer of charge from aluminum
to silicon. On the Al mide, regions I and Tl cach contain 7.9% of
the total charge in the unit cell where as region TIl contains only
7.6%. On the Si side, regions V and VI each contain 8.8% of the total
charge but region IV contains 9.1X. Thus approximately 0.3% of the

total charge in the unit cell has been transferred from region 111
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to region IV. A dipole potential with an electric field pointing toward
the Si side is hence set up at the interface. This is a consequence

of equalizing the Fermi levels in the two materials. As seen from

Fig. 51(a), the Al charge is spilling into the empty 'channels"” in the
S8i charge density and into the dangling bond sites. The charge density
at the dangiing bond sites in the present case is significantly higher
than a sum of the jellium electron charge density and the Si charge
density from the free surface calculations. This indicates the
formation of a metallic-covalent like bond between Si and a jellium

of Al density.

Figure 52 displays the self-consistent pseudopotential VsC in a
(110) plane along with vsé(z) which is V_c averaged parallel to the
interface. The total charge density discussed earlier is the self-
consistent response to this potential. The potential on the Al side
is flat and does not show pronounced Fri&el oscillations. Similar
behaviors have been found in self-consistent calculations on the Al
surface using the jellium model.118 In the course of self-consistency,
the Si potentials on the first two layers are made slightly deeper
than the Si potentials further away from the interface. As expected,
the perturbation to the Si potentials Fue to the presence of the metal
appears to be much less than the perturbation due to the free surface.ga

Now let us discuss the local density of states (LDOS) as defined
in Eq. (83). We have calculated the LDOS for the six regions indicated
in Fig. 51 by using twenty-one points in the irreducible part of the

two~dimensional zone. The Histograms of the LDOS for the six regions
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are shown in Fig. 53. To facilitate comparisons, the density of states
of bulk Si from Ref. 47 is superimposed on the LDOS of regions IV to

V1 and a free electron density of states (i.e. N(E) ~ VE) is super-
imposed on the LDOS of regions 1 to III. The Fermi level is indicated
by the dashed line. Most of the interesting features appear in the
LDOS c® reglon IV. To investigate the energy positions of the extra
states and their origins, we subtracted the LDOS of region VI from the
LDOS of region IV to obtain a difference local density of states (DLDOS).
The result is presented in Fig. 54. The positive portion of the
histogram indicates an additicn of states in that particular energy
range in repion IV and the negative portion of the histogram shows a
depreciation of states.

The LDOS reveals much information about the electronic structure
of the interface, From the position of the Fermi level and the position
of the conduction band edge of the semiconductor, one can calculate
the barrier height at the interface. We obtained a barrier height of
0.6 * 0.1 eV for the Al-Si interface which is in excellent agreement
with the recent experimental result of 0.61 eV. There are other
experimental values for the Al~Si barrier height ranging from
~0.55 eV to ~0.70 eV. (See for example Ref. 149) However, we believe
that the value from Ref. 142 is the best for an ideal Al-Si interface
because of the ultra-high vacuum conditions used in this particular
experiment.

The various types of states which appear mear the interface can

be seen from the LDDS. States with energy below =11.1 eV (i.e. below
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the onset of the Al conduction band) are bulk-like in Si and do not
penetrate into the bulk of Al. Of course there are states with higher
energy which can behave similarly. For example, at the k-point K,
states with energy up to -6.5 eV are below the Al conduction band.

To illustrate this type of states, the éharge density for all states
with eﬁergy below -11.5 eV is presented in Fig. 55. On the Si side,
the charge density contours strongly resemble the charge density
contours for the bottom band of bulk Sih7 whereas the charge on the

Al side is completely zero. The slightly higher charge density at the
first two layers is most likely due to Friedel oscillations.

From the LDOS of region IV (Fig. 53) or the DLDOS (Fig. 54), we
see that the dips in the bulk Si density of states which are due to
gaps in the Si band structure are being filled up by either interface
states or MIGS at the interface. The extra states centered at ~-8.2 eV
are partially interface states and partially MIGS whereas the states
centered at ~~5.0 eV and states in the optical gap are MIGS.

The MIGS in the optical gap are of particular importance because
the density of these states sensitively influences the position of the
Fermi level with respect to the semiconductor band edges. These states
have a charge density which is metallic in the Al slab, becomes
dangling~bond-like at the Si surface, and decay rapidly to zero in
the 5i slab. The charge density for these states in the thermal gap.
i.e. states with energy between 0 and 1.2 eV, is plotted in Fig. 56
along with p(z) which is the same charge density averaéed parallel to

the interface. The dangling bond surface states which exist at these
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energies for the free surface case have been matched to the continuum
of metallic states. Thus, as seen from Fig. 56(a), the charge is quite
uniform in the Al slab but retains the dangling bond character at the
S1 surface. We note that the charge density displayed in Fig. 56 is
for all states with energy in the thermal gap. The decaying rates are
different for states at different energies. The charge for states
near midgap decays most rapidly into the Si side.

An examination of che LDOS of region IV from -1.0 to 2.0 eV
indicates that there is an apparent asymmetry in the distribution of
extra states about the optical gap. A plausible physical explanation
is the following: The states in the optical gap are derived from the
valence band and the conduction band. Note the large depreciatiom
of states near ~1.8 eV and near +4.0 eV. {(See Fig. 54) Since these
MIGS are dangling~bond~like (i.e. pz-like) in region IV and the top
of the Si valence band is p-like whereas the bottom of the conduction
band is s-like, bulk states from the top of the valence band will be
“robbed" to form the MIGS while only states higher in the conduction
band will be strongly affected by the formation of the MIGS. Therefore
the depreciation of bulk state densities will be larger at the top
of the Si valence band than at the bottom of the conduction band.

This results in the apparent asymmetry.

The interface states centered at =8.5 eV, labelled SK in Fig. 53,
appear near the point K in the two-dimepsional hexagonal Brillouin zone.
At first sight, localized states should not appear becausé there are

aluminum states in this epergy range. This appearance of interface
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states is a band structure effect. Near the point K in k-space, the

Si two-dimensional band structure hzs a gap between -7.2 eV and ~9.5 eV
which is below the Al conduction band. 1In Fig. 57 we show a schematic
diagram of the projected band structure of the bottom two bands of Si
together with the projected band structure of Al. The Fermi levels of
the two materials have been set equal. The lowest gap at K is the gap
that we are discussing. Silicon surface states existing in this gap
cannot be matched with any Al states because there are no Al states
with the same energies and k-vectors. A contour map of the charge
density of the interface states at K at -8.5 eV is shown in Fig. 58.
The charge demsity is s-like and highly localized on the outermost Si
atoms. The charge is almost completely confined in region IV. Similar
states with the same energy and character have been found in Si surface
calculations. However the charge for states found in surface calcula-
tions are less localized.

3. Summary and Discussions

We have studied the electronic structure of ; metal-covalent
semiconductor interface using an Al~Si system as a prototype. A
jellium-semiconductor model has been constructed for the Al-Si
interface. The electronic structure of the interface was then calculated
using a method involving self-consistent pseudopotentials. The model
and methods of calculation used in the present scction have wider
application than just the Al-S5i system; these techniques can be
extended straightforwardly to calculate the electronic structure of

other metal-semiconductor interfaces.
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Four different types of states are found to exist near the
interface. The characteristics of these states have been analyzed
in details in terms of their charge densities. Our local density of
states results indicate a high density of MIGS in the Si thermal gap
near the Al-Si interface. This implies a pinning of the Fermi level
by these MIGS which is consistent with experimental results., It is
important to note that, in the present calculation, we have used a
statistical exchange model for the exchange potential. Hence both
the valence bands and conduction bands see the same screening potential.
Also, from examining the structure of the local density of states, there
does not seem to be a merging of the valence band with the conduction
band near the interface. Therefore, the pinning of the Fermi level
can be explained without invoking Inkson's argument of merging of the
bands due to difference in the screening of the valence band and the
conduction band at the interface. Furthermore, it is not very meaning-
ful to talk sbout a band picture as a function of distance away from
the interface on such a microscopic scale.

The present calculation is for a high density metal, Al, in
contact with Si. For metals with a low density of s-p electrors,
interface states can coexist with MIGS in the enerpgy range of the Si
optical gap such ar in the ~7.2 to =9.5 eV gap in the present ealcula-
tion. Under such conditions, one expeetr that an even higher densicy
of extra states will appear nenr midgap and the Fermi level is agoin
pinned in the thermal gap. This may be an explanscion of why surface

states contiaue to exist in the GaAs gap when an overlayer of c:“s‘l“
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or Pdlaa is placed on GaAs. Both Cs and Pd are metals of low s-p

electron densities.

B. Metal-Zincblende Semiconductor Interfaces

In this section we extend the analysis in Sec. IVA to the metal-
zincblende semiconductor interfaces. The interfaces studied are
interfaces of Al (modeled by a jellium core potential) in contact with
the ideal (110) surfaces of GaAs, ZnSe and 2ZnS.

1. Calculations

As in Sec. IVA we are considering intimate m/s interfaces and
approximate the system by replacing the metal with a jellium model and
describing the semiconductor in the pseudopotential formalism. Since
the methods of calculation have discussed at length in Sec. IVA, we
shall only briefly describe some of the essenctial features of the
method and will be mainly concerned with the parameters needed in the
calculations.

The calculations were carried out by constructing an elongated
unit cell which, in two dimensions, is spanned by the shortest lattice
vectors parallel to the appropriate semiconductor surface and, in the
third dimension, by a long c axis extending over M atomic layers of the
semiconductor and N layers of equivalent thickness of jellium metal.
(Here the thickness of one layer is the interatomic distance between
planes of semiconductor atoms parallel to the interface; and, the
length of the c axis is therefore equal to M + N interplane distances.)
The numbers used were M = 11 and N = 7 for m/GaAs and w/ZnSe and M = 11

and N = 9 for m/ZnS.
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There are no adjustable parameters in the calculations. The only
input consists of the structure (i.e., the geometry of the interface)
and the ionic pseudopotentials of the semiconductor ion cores which
are determined from atomic spectra. Since we use a jellium-semiconductor
model, the structure is determined by the crystal structure of the semi-
conductors except for the placement of the edge of the positive jellium
core. This edge has been taken to be at a distance of one-half of an
interlayer distance away from the outermost semiconductor atoms. The
ion core potentials Vion used are local pseudopotentials whose Fourier
transforms are of the form given in Eq. (81) with the parameters, bi‘
fitted to a Heine-Abarenkov core potentia1.104 In addition to the
ionic core potentials, a starting potential is needed to initiate the
self-consistent loop (Fig. 23). For this purpose we have used the
empirical pseudopotentials Vemp obtained from bulk calculations with
Fouriler traunsforms expressed in a &4-parameter curve given by Eq. (71).
The parameters bi and a; for the various semiconductors used in the
calculations are listed in Table XI and XII respectively.

Using the same convergence criteria as im Sec IVA, a basis set
of approximately 500 plane waves was employed in expanding the wave-
functions in the calculations. An additional ~1200 plane waves were
also included via Lowdin's perturbation schemc.] The total valence
charpe density p(r) needed for each iteration was determined by a five
point sampling over the irreducible part of the rectangular zone. The
points included the symmetry points I', X, X' and M and one general

153

point in the center of the irreducible zone. This set of points
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yields an accurate charge density and, at the same time, allows the
use of symmetrized plane waves to reduce the sizes of the Hamiltonian
matrices and hence the computation time for diagonalization.

2. Results

In this section, the electronic structure of the three metal-
zincblende semiconductor interfaces is presented.

We have chosen the interfaces m/Si, m/GaAs, m/ZnSe, and m/ZnS to
study because the semiconductors composing this series are of the same
crystal structure and of increasing lonicity. Within our model, we
find that the calculated electronic structure of the four m/s interfaces
is qualitacively very similar. 1In all four cases, as found in Sec. IVA,
the intrinsic surface states which existed in the fundamental gaps
of these semiconductorslon are removed by the presence of the metal
and nevw types of states occur in this energy range. These metal-
induced gap states (MIGS) are bulk~like in the metal and decay rapidly
into the semiconductor with some of the characteristics of the
semiconductor-vacuum surface states (which exist in the absence of the
metal) weakly retained at the semiconductor surface. In addition,
truly localized interface states which have charge densities decaying
in both directions away from the interface are found for enerpies near
the lower part of the semiconductor valence band.

Before we discuss the individual states, let us examine the self-
consistent, valence charge densities for the three metal-zincblende
semiconductor interfaces. They are shown in Figs. 59 to 61. In each

figure the total valence charge density is displayed in two different
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planes containing the two types of semiconductor surface atoms. The
units are normalized to one electron per unit cell. Several interesting
features are seen from the figures: (1) Charge densities in the bulk
configuration are essentially the same as those found in the third
layer into the semiconductor showing that the significant influence

of the interface is quite short range (i.e. in the ordér of 2 to 3 atom
layers). (2) Owing to the stronger potential of the anions, charge

is increasingly localized on the anions as the ionicity of the semi-
conductor increases. And (3), for all three interfaces, the charges

on the outermost semiconductor atoms are slightly higher than the
charges on the atoms deeper in the slab. This probably results from
the presence of the metal which lowers the potential of the surface
atoms.

In Fig. 62 the local density of states for the m/GaAs system is
displayed for four regions. Each region contains one atomic layer.
Region D is at the center of the semiconductor slab. Regioﬁ C is the
layer containing the outermost semiconductor atoms. Region B is
adjacent to region C on the metallic side. The boundary between C and
B defines the interface. And fimally region A is at the center of the
metallic slab. The LDOS was evaluated according to Eq. (83) with
5 k~points in the irreducible zone to calculate the histngrams.lsa
The LDOS for the w/ZnSe and m/2nS interfaces are calculated in the samc
manner; thesc are shown in Figs. 63 and 64 vespectively. Although the
number of k-points used is too small to reproduce a nice vE curve for

the free-electron-gas density of states on the wetallic side, ir ylelds



-112-

most of the prominent features of interest. A LDOS curve of much finer
quality for the m/Si interface was obtained in Sec. IVA with the use of
2] k-~points in the irreducible zone.

The region of most physical interest is region C whose LDOS
essentially describes the energy spectrum of the electrons on the
semiconductor surface. The darkly shaded areas in Fips. 62 to 64
indicate the MIGS in the semiconductor thermal gaps. Also indicated
(by the lighter shaded areas) are the energies of the localized inter-
face states. The MIGS in the thermal gaps have, as we shall show in
the next section, a large influence on the Fermi level EF and thus
play a dominant role in determining the behavior of the m/s Schottky
barriers.

Figure 65 displays the charge profiles p(2)/0(0) of the penetrating
tails of the MIGS in the thermal gap for the four m/s interfaces
studied as a function of distance z into the semiconductor. Here p(z)
is the charge density for the MIGS averaged over the states in the
thermal gap and averaged parallel to the interface with z = 0 at the
interface. We note that the overall behavior of the charge profiles
for Si and GaAs is quite similar and that the average penetration
distances are considerably shorter than previously beiieved. The
differences in the shore ranpge oscillations in the charpe profiles
mostly arisc from the difference in the atomic arrangement hetween the
tvo types of semiconductor surfaces (Si (111) and GaAs (110)).

We shall only discuss and illustrate the interface states at the

m/ZnS interface to avoid redundancy. The characteristics of the
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interface states for the other tuwo systems are qualitatively similar.
The lowest lying interface states at the m/ZnS interface (see Fig. 64)
are localized strongly on the outermost sulfur atoms and have s-like
character in their charpe distribution. These states split off from
the bottom valence band of ZnS and form a narrow interface band

extending over the whole Brillouin zone. The corresponding charge

density glven in Fig. 66 is extremely localized on the sulfur surface
atoms with practically zero charge on the zinc atoms. A surface band,
very similar to this s~like interface band, has been found in ealcul~
ations on the (110) surface of zincblende semiconductors.155 The
surface stzles are, however, located at higher energies in the anti-
symnetric gap instead of at the bottom of the spectrum. These s-like
interface state are therefore intrinsic to the semiconductor surface
with energies shifted because of the presence of the metal.

Two additional interface bands are found at ~-5 eV below the ZnS
valence band maximum. Unlike the previously discussed states, these
interface states exist over a rather small region in k-space at the
sgone edge around the point M. The charge diatribution differs from
the s-like state since it is p-like sround the outermost sulfur atoms.
The charge density for a atate at M in the lower of the two interface
bands is given in Fig. 67. Figure 67(a) shows the charge density
ccatours in s (110) plane containing the surface Zn atams. Figure h7(b)
ashows the charge density contours in a (110) plane parallel to the
interface containing both types of semiconductor surface atoms. As

seen from the figure, the charge is highly localized on the ocutermost
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semiconductor layer with the maxima of the p-like lobes lying in the
(110) plane. The other interface state at M belonging to the higher of

the two bands has a very different charge distribution which is displayed

S

in Fig. 68. The charge is again p~like around the S atom. However,

the charge lobes for this state are pointing along the back-bond
direction between the first layer $ atoms and the second layer Zn atoms.
Surface states somewhat similar to these states are also found in

surface calculations.155

Our results are consistent with recent experiments on metal
overlayers which have provided information on the electronic structure

of m/s interfaces in the energy range of the semiconductor band gap.

Rowe et al.113 have found that the intrinsic surface states on the

(111) and (100) semiconductor surfaces are removed by metallic overlayers
and extrinsic metal-induced states are found within the band gap.

Their findings on the Ge (110) surface is however somewhat ambiguous.
Similar extrinsic metal-induced states are found but they are weaker

and the intrinsic surface states appear not to completely removed by

the thin metallic overlayers.

C. Ilonicity and the Theory of Schottky Barriers

In this section some of the properties of m/s Schottky barriers
and their relation to the calculated electronic structure are examined.

The calculated barrier heights for the four m/s interfaces studied
are presented in Table XI11 together with the measured ¢b‘1h2,149 The
calculated values were obtained by determining the position of the

conduction band minimum of the bulk semiconductor relative to the
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Fermi level E_ via the local density of states.

F Considering the sizes

of the thermal gaps of the more ionic crystals, the agreement obtained

between theory and experiment is quite good.

Empirically the barrier height ¢b(m.s) obeys the relation137
¢b(m,s) = S(s)xm + ¢0(s) (84)

where xm is the Pauling-Gordy electronegativityls6 of the metal and S
and ¢D are constants depending on the semiconductor. As an example,
the experimental barrier height5142'149 for our four semiconductors
are pr2sented in Fig. 69 as a function of the xm of various metals.
Moreover ' the slope or "index of interface behavior" § is found to be
a smooth function of AX = A?xB’ the electfonegativity difference of
the anions and cations in the semiconductor. Since AX provides a
measure of the ionicity of the semiconductor, S is also a function of
the semiconductor ionicity. For ¢b ekpressed in units of electron
volts, S is small ~0.1 for semiconductors with AX < 0.5 but § is ~1.0
for semiconductor with AX > 0.9. 1In addition, there is a well defined
and rather sharp transition in the value of S at &X ~0.7 to 0.8 (see
Fig. 70).

As we have discussed earlier, the standard explanation for S
relies on the Bardeen model which attributes this behavior of ¢b Lo
the density of surface states existing in the semiconductor band gap.

However arguments had been presented by Heine138

which showed that
semiconductor surface states do not exist in the fundamental gap for most

m/s interfaces and many alternate thearies have since been proposed.las‘lbl
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Physically the barrier height is determined by the requirement that
in equilibrium the Fermi levels of two materials in contact are equal.
This is achieved by creating an electric dipole potential A at the
interface. Hence, in the one-electron theory, the density of the MIGS
in the semiconductor thermal gap and their penetration into the semi-
conductor will strongly influence the behavior of ¢b. The extent of
their penetration can be measured by a penetration depth 6 defined
by p(8)/0(0) = 1/e. From Fig. 65 § is equal to ~3.0 A and ~2.8 A for
Si and GaAs respectively. As the ionicity of the semiconductor
increases. § however rapidly reduces to ~1.9 A for ZnSe and to ~0.9 A
for ZnS.

The other quantity which is relevent to the behavior of ¢b and
related to the MIGS is the surface density of states DS(E). For
energies in the semiconductor thermal gap, we define

D.(E) = & [ [ N(E,)deda, O<ES E, . (85)

A0

where A is the interface area, N(E,r) is the LDOS as defined in Eq. (83)
and the integral over z is to be evaluated from the interface to deep
into the bulk of the semiconductor. Thus -eDs(E) gives the density
of localized surface charge per unit energy on the semiconductor
surface. The calculated Ds(E) are depicted in Fip. 71. The averaped
Ds near the center of the gap for 5i and GaAs which both have about the
same S is approximately the same. Two trends which can be observed
from Fig. 14 are that DS(E) decreases for more ionic semiconductors

and DS(B) has a relatively flat minimum over the center region of the
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gap. The Ds for m/ZnSe is essentially identical to that of m/ZnS
except its magnitude is ~30Z higher. Hence it is omitted from Fig. 71.

From an electrostatic point of view, the fact that both § and Ds
decrease for more ionic semiconductor crystals implies that the change
in 8 with respect to a change in EF will be small for ionic semiconductors
and larger for covalent semiconductors. Therefore we eipect from the
calculated § and Ds that S will be large for ionic crystals and small
for covalent crystals.

To estimate the influence of &§ and Ds on the barrier height, we
use the following simple model to calculate S(s). Cowley and Sze157
had used a somewhat similar approach to obtain the interface density
of states in terms of the experimentally determined S. In this model,
§ and Ds are assumed to be qQuantities intrinsic to the semiconductor
(i.e. they are independent of the metal contacts) and also Ds is taken
to be approximately constant over the central portion of the thermal
gap. Calculations on metal-Si interfaces using surface Green function

methods have shoun that Ds is approximately constant for a wide range

140,158

of metals. In this model, we have also made use of the

empirical relation that the metal work function ¢m is linear in xm,

i.e. ¢m = Axm + B with A = 2.27 and B = 0.34 for ¢m expressed in

electron volts.156'159

For a semiconductor of electron affinity Xg in contact with a

metal, the electric dipole potential established at the interface is

A=xs+¢b-Axm-B. (86)
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7he change in A for a metal of slightly different xm in contact with

the same semiconductor is therefore

dA = d¢b - Ade . - (87)

Using simple electrostatic arguments, another expression for dA is

2
dA = -4 e Ds Geff d¢b (88)

where deff is the effective distance between the center of mass of the
negative charge transferred to the semiconductor due to the change in
¢, and the center of mass of the positive charge left behind in the
metal. This distance is the true distance divided by the appropriate
dielectric screening function €, i.e. Geff = (I:m/Em + tsles). We may
approximate ts by our calculated ¢ and tm/Em by the typical screening
length in a metal which is ~0.5 A. Equations (4), (7) and (8) then

yield the following 5160

2.3

S = 3
1+4Te Ds(0.5+6/es)

. (89)

The dielectric screening for potential fluctuations in the distance
of the order of 8 has been found to be =2 by Walter and Cohen161 for
our four semiconductors. Hence we may evaluate S using the calculated
values of 8 and Ds and £g = 2. They are presented in Table X1I1 -
together with the experimentally determined §. The apreement between

theory and experiment is surprisingly good for this very simple model.
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Although our results are for intrinsic semiconductors at zero
temperature, the calculated ¢b and S will be essentially the same as
those for doped semiconductors at finite temperature. The argument
is as follows, for typical doping density of n < 10V’ cm-3, a small
charge accumulation of *1012 electronslcm2 at the semiconductor surface
will result in band bending on the order of volts. Hence, with
Ds ~ 101A/eV-cm2, only a slight change (~0.01 eV) in EF at the inter-
face is needed to account for the bénd bendings caused by impurities
or thermally excited electrons.

We have also examined the sensitivity of our results to the only
uncertain parameter in the calculations, i.e. the placement of the
jellium core edge.. Our results appear to be quite insensitive to this
parameter. In the case of the m/Si interface, a change of 25% in this
parameter left ¢b and § essentially unchanged and only changed Ds by
a few percent. A similar observation has been made by Louis et al.lAO'IGO
They have performed non-self-consistent calculations on m/s 1ntérfaces

using a Green function method.
D. Discussion and Conclusions

Using a self-consistent pseudopotential method, we have studied
the electfonic structure of a series of m/s interfaces of increasing
semiconductor ionicity. Our results are consistent with recent
experiments on wmetal overlayersl13 which indicated that the intrinsic -
surface states on the semiconductor surfaces are removed by metallic
overlayers and extrinsic metal-induced states are found within the

energy range of the band gap. Hence, contrary to the Bardeen model
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and the recent speculations made by Eastman and Freeouf.106 intrinsic
semiconductor surface states do not appear to play a dominant role in
determining ¢b. Detailed experimental information on the electronic
structure of these m/s is however not available at present for comparison.
We have also examined the question of isnicity in the behavior of
Schottky barrier heights. A simple model irvolving the MIGS has been
constructed to estimate S. We find that both ¢b and S can be satisfac-
torily determined using the self-consistent pseudopotential results for
the more covalent semiconductors and somewhat less accurately for the
more ionic semiconductors. Our results suggest that the important
properties of Schottky barriers are mostly incorporated in the one~
electron, jellium-semiconductor type of model. Other effects not
included in the present calculations such as many~body effects and
bonding between metal and semiconductor atoms are most likely necessary
before complzte agreement between theory and experiments for the more

ionic semiconductors can be achieved.
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V. VACANCIES IN SEMICONDUCTORS: A Si NEUTRAL VACANCY

Despite nuacrous theoretical investigations, the detailed
electronic structure of deep defect states in semiconductors vezains
essentially an unsolved proble-.“z The main difficulties arise from
the fact that deep levels in the semiconcuctor gap imply a strongly
localized defect potentinl often combined with structural reconstruction
in the vicinity of the defcer. Consider the case of an isolated
ncutral vacancy (V*) in Si. Several different methods of calculation
have been esployed leading to quite different results. Among them
defact molecule calculntious“s'l“ have provided only qualitative
information about the Si vacancy levels; as of yet no connaeccion with
the band structure has been established. Results from one-electron
sethods using clusters of Si atoms such as the Extended Hiickel Merhod
strongly depend on the size of the cluster, the basis functions used,
and the boundary condirions luposed.“s‘“h Finally, studies considering

the vacancy as a perturbation on the perfect 5i crystal give results

ranging from having only resonant vacsncy states in the Si conduction

167

band to having localized states anywhere in the forbidden gap

depending on an arbitrary scaling of the perturbing vacancy pseudo-

potential. 168

Experimentally the energy levels for the neutral vacancy (V°) in
Si are not well determined. MNHowever, they are helieved to be deep
(at least a few tenths of an eV) in the forbidden gap.“"‘"o Moreover,

from electron paramagnetic Ieasuremeﬂts.169 it is found that both the
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singly positive (V+) and negative (V) charged states of the Si vacancy
undergo a structural reconstruction. For the V+ state, a tetragonal
Jahn-Teller distortion is observed; and for the V state, a mixed
tetragonal and trigonal distortion is fornd. A similar type of
reconstruction is expected for the v° state.

In this section the electronic structure of a neutral vacancy in
Si is studied using the self-consistent pseudopotential method
developed in Sec. I1TIA. To study the effect of local reconstruction
we have considered three different structural models for the Si vacancy:
the ideal undisturbed structure and two differently reconstructed
strurtures. Self-consistency in the present context means the self-
consistent electronic response to a given structural model. Among the
above mentioned methods for calculating the electronic properties of
a semiconductor vacancy, only the defect molecule calculations are
self-consistent in this spirit. To our knowledge, the present work
is the first calculation of a Si vacancy in which bulk band structure
effects are included and which at the same time is self-consistent.

In the present calculations, the lattice vacancles are repeated
periodically to form a superlattice of vacancies embedded in the
infinite Si crystal and the electronic structure of this periodic
system is calculated self-consistently. Hence the vacancy levels are
spread into bands with dispersion in k-space. The amount of dispersion
provides a measure of the localization of the vacancy states. It is
found that localized vacancy states in the gap and strong resonance

states in the valence band existed for the three structural models.
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The characteristics of these states have been studied by analyzing their
charge densities. 1In addition, a tight-binding model has been fitted
to the vacancy bands for the ideal case. From the fitted tight-binding
parameters, the "dispersionless" energles of vacancy levels which
correspond to isolated vacancies can be extracted.

The remainder of this section is organized as follows: In
Section A the steps in the self-consistent calculations and the tight~
binding model are discussed. In Section B the results for the
electronic structure of the Si neutral vacancy for three structural
models are presented and discussed. In the final Section C some

conclusions are presented.
A. Calculations

In this section a description is given of the self-consistent
calculations, carried out for the three structural models of the
neutral Si vacancy. In addition a tight-binding model used to fit
the vacancy bands for the ideal vacancy is presented.

1. Self-consistent Pseudopotential Calculations

As discussed in Sec. IIIA, the method employed here for the
calculation of a local configuration consists of periodically repeating
the particular local configuration to form a superlattice. Self-
consistent pscudopotentials are then used to compute the electronic
structure. The steps leading to a self-consistent solution to the
vacancy problem are schematically shown in Fig. 23. The method has
been applied successfully to the calculation of a Si diatomic molecule172

and to the calculations of crystalline surfaces (Sec. III) and solid
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interfaces (Sec. IV). A detailed discussion of the method has been
given in Sec. TIIA and Sec. IVA; it therefore will only be briefly
described below.

Two essential features of the method are: (1) Self-consistency
in the potential is required to allow for the correct electronic
screening around the vacancy site and (2) periodicity is retained
artificially which permits the use of standard pseudopotential
techniques.

For the present case of a Si vacancy, the infinite Si crystal is
divided into large fcc unit cells each containing 54 atoms. Neutral
vacancies are simulated by removing an identical atom from each cell.
The different structural models involve different reconstructions
for the positions of the atoms surrounding the vacancy site. Test
runs with various cell sizes indicated that at least 54-atom unit cells
are needed to quantitatively provide the essential physics of the
system. In the 54-atom unit cell neighboring vacancies are separated
by six Si-Si bonds. The self-consistent loop (see Fig. 23) is initiated
with an empirical pseudopotential carried over from crystalline
calculations. From the resulting total charge density, a Hartree
screening potential and an exchange potential of the Slater type are
derived and added to an atomic Si+k ion-pseudopotential to form a new
total pseudopotential for the newxt iteration. New screening and
exchange potentials are derived and the process is repeated until
self-consistency (stability of input vs. output potentials within

0.005 Ry) is reached.
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The self-consistent cycle is initiated using the followng starcing

potential

1
Vorare @ = S@VZL (IGD (90)

vhere C are reciprocal lattice vectors and the 5i struccure factor

M -iG-T
() -;1,- ] e 3 (51)
T

i
describes the positions of the atoms in the large 54-atom unir cell.
v:;p(lgl) are the 51 atomic pseudopotential form factors fitted to

empirical bulk calculations.47 They are derived from a continuous
extrapolation of the form

2
al(q -az)

Si
vcmp(q)

3 {(92)
expla,(q”-a;) J+1

where the four parameters a, are given in Table XIV. The potential

vSi

emp(q) is normalized to an atomic volume of 137.6 (a.u.)3 with units

in Ry if q 1s entered in a.u. Using this starting potrential, the band
structure En(h) and the wavefunctions w“k(:) can then be calculated
using standard methods.1 i.e. expanding the electron wavefunction in
plane waves with reciprocal lattice vecto;s and diagonalizing the
Hamiltonian matrix to obtain electronic energy En(h) and the electronic
wavefunction wﬂk'

To perform the next step in the self-consistent loop, the total

valence charge density
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o = J e =277 b, @} (93)
k & kn %

has to be evaluated. There are 106 occupied bands irn the band structure
scheme (no spin-orbit interaction). For reasonable convergence of the
wavefunctions, a matrix size of the order of 750 by 750 is needed when
the Hamiltonian is expanded in plane waves. This corresponds to a
kinetic energy cutoff’ E, = 1€, | = 2.7 By. 1In addition, another
~B800 plane waves were included via Lowdin's perturbatien schemel to
further improve the accuracy of the eigen-energies. To avefd 3 full
Brillouin zone evaluation of the total charge density at each iteration
of the self-consistent process, the total charge density p(x) is
approximated by the charge density evaluated at one point k = . The
point T was chosen because, among the high symmetry points, pr(;)
provides a good representation of p(r) for crystalline Si. At the bond
and atomic sites, pr([) of bulk Si is within 10% of the charge density
given by a full zone calculation. The choice of high symmetry points
is necessary because the Hamiltonian matrix can then be reduced by
using symmetrized plane waves.

Once p(r) is known, the Hartree screening potential V,, and the

L]
Hartree-Fock-Slater exchange potential Vx are evaluated using

2
v, (0) = 5“—"—‘%‘-’— (94)
Icl
and

v (© = —ah) rd) 2 (g @5)
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where 6 = 0,79 and p(g) and plla(ﬁ) are the Fourier components of p(r)
and 91/3(:) respectively. Justificatfon for the use of the Slater
exchange potential and the choice of o are discussed in detail in

Ref. 94. V“ and Vx together {orm the electronic screening potential

of the system. 7They are then added to an lonic potential
v, (@ = s(avi (g (96)
ion ion

to form an input potential for the next iteration. For Viin. we have
used a local approximation of a Abarenkov-Heine atomic model potentia196

which is fitted te the following 4-parameter potential

Viin(q) = E% [cos(bzq)+b3] exp(bhqé) . 97
The values of the bi's are given in Table XIV. The normalization and
the units for Eq. (97) are the same as those for Eq. (92).

The calculation is continued by repeating the whole cycle.
However, due to the divergent character of VH and Vion for small G's,
self-consistency cannot be achieved straightforwardly by using the
output screening potential from one iteration as the input screening
potential for the next iteration. An alternative procedure to the one
suggested in Ref. 94 is used in the present calculations. The input
screening potential of the nth iteration is taken to be a weiphted
linear combinacion of the input and output screening potentials of
the n—lth iteration. The criterion for self-consistency is the

stability of the subsequent output screening potentials. 1n the present
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calculations, the final self-consistent potentials are stable to within

0.005 Ry.

2. Tight-binding Model

In this subsection a tight-binding model173 for interacting p-like

atomic states in a fcc lattice is described. This model will be used
later to aaalyze the vacancy levels of the Si vacancy in the ideal
crystal structure. We consider a2 fcc array of atoms which have 3-{old

degenerate p-like atomic levels (Px,P .Pz). Then Bloch functions of

4
the form
1 kR,
Y === Je P_(z-R)
1 o o % Rl'l
k'R
1
Y, (k) = — e P (r-R)
2 N E y n
ik-
bW <L T mr gy (98)
AN n

are constructed and the band structure En(k) is given by diagonalizing

Y, |ujyp-E AL (o, lulwy
ty, Inlyp EALIEAE (v, njy (99)
g lHyp Yy lH ]y, TRITAR:

where k is the wavevector, En are the lattice positions and H is the
crystal Hamiltonian. Assuming only nearest neighbor interactions,
the Hamiltonian matrix can be expressed in terms of three parameters:

(1) u, the energy of the isclated atomic states, (2) 0, the interaction
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energy between parallel orbitals centered at meighboring atoms which
point along the line connecting the Qtoms. and (3) 7, the interaction
energy between pai‘allel orbitals centered at neighboring atoms which
are perpendicular to the line connecting the atoms. Denoting ‘
k= (51.52.53) with E:L in units of 2m/a where a is the lattice constant

of the fcc superlattice, the matrix elements are given by:

(WIIH]WI) = M(U-Hr)(cos‘rr(£1+€2)+cos1r(£1~52)+cosﬂ(61-53)

+

cosn( El+€3) l+21f[cosﬂ(52+i3)+cosﬂ(52-53) ]

v, |uw2) = wh(04n) [cosn(€z+53)+véosﬂ(Ez—Es)ﬂ:os'ﬂ(Ez-El)
+ cosT(E+E, ) +2mcosm(E+E, J+eosT(E4-E )]
Chalulvy) = ur(o+m) [cosT(Eg+E) JeosT(Ey-E, +eosT(E4-E,)
+ cosT(E4+E,) ]+21'r[cosﬂ(El+Ez)+cosTl(€1-€2)]
('J!zilillbl) = (1-0) [cosm(§)-E,) - cosT(E +E,)]
(\vslnlwl) = (1-0)lcosT(§,~E4) - cosT(E +E,)]
(UylHlep = (r-0)leosm(E,~Ey) ~ cosmEFEN] - (100)

For some high symmetry k-points, the eigenvalues can be obtained
easily without dfagomalizing the 3%3 matrix, Eq. (99). At k = (0,0,0),
“"1‘“'“’1’ = u + 40 + 87 and ‘"’1'““’:;’ = 0 for 4 # j. Therefore, the

energies for the three bands are degenerate at T and have the cnergy

E(k=I) = u + 40 + 8u . ' 101)
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At k = X = (1,0,0) one has (wllﬂlwz) = u-4o, (wZIHIwZ) = u-47,
<¢3|n|w3) = u-47 and (wi|H|wj) =0 for i # j. Thus two energy

eigenvalues exist at X: one is singly degenerate

El(k=x) e u~4g (102)
the other is doubly degenerate

EZ(EFX) = u-47 (103)

B. Results and Discussions

1. 1ldeal Structure

The first structural model used to study the electronic Structure
of a neutral Si lattice vacancy is the "ideal" structure. In this
structure, the atoms surrounding the vacancy site remain in their
cyrstalline positions after the vacancy is created. A portion of the
Si crystal structure is shown in Fig. 72(a). Every Si atom is
tetranedrally coordinated and the valence electrons form covalent bonds
linking the neighboring atoms. As a results of creating a vacancy,
four bonds are broken (see Fig. 72(b)). The electrons which previously
participated in the broken bonds will tend to localize around the
vacancy site and localized vacancy levels are expected to appear among
the energy eigenvalues of bulk Si. In the present calculations, we
have found both vacancy states deep in the Si thermal gap and strong
resonant states embedded in the bulk bands.

Before discussing the individual vacancy states, first the total,

self-consistent valence charge density as given by the approximations



-131~

discussed in Sec. A shall be examined. A necessary condition for the
present calculations to represent non-interacting Si vacancies is that
the charge density away from the vacancy site should closely resemble
the charge density of bulk Si. Figure 73 displays the total valence
charge density in a (110) plane for the ideal structure. The vacancy
site is located at the center of the unit cell (open circle) and the
atoms are indicated by full dots. Note that, for the center chain
of atoms, both an atom and the associated covalent. bonds are missing.
The top and bottom chains are complete. Their charge densities are in
good accord with densities obtained from bulk f:alculal::lcms"7 (which
illustrates the local nature of the lattice perturbation).

As mentioned earlier, vacancy levels which are dispersionless
in k~space for an isolated vacancy will appear as bands in the present
periodic model. For the ideal structure, three vacancy bands in the
Si thermal gap and one strong resonant band in the energy range of the
valence bands are found. More weak resonant states corresponding to
perturbed back bonds may exist in the valence bands. Figure 74 shows
the energieé of the vacancy bands at k = I'. The top figure depicts
the positions of the k=0 vacancy states with respect to the Si bulk
density of states.b7 The three states in the gap are degenerate in
energy at T. In the bottom figure, the energy levels at T' for several
runs in the self-consistent procedure are shown. The first row shows
the energy levels of bulk Si in the S4-atom unit cell structure. The
empirical pseudopotential from Ref. 47 is used. There are 108 occupied

valence bands separated from the conduction bands by the Si thermal
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gap (shaded area in Fig. 74). The second row shows the energy levels
for the 53-atom unit cell (i.e. 53 Si atoms plus one vacancy) calculated
using the empirical pseudopotential. The last row shows the energy
levels for the 53-atom unit cell using the final self-consistent
potential. The vacancy states are indicated by the arrows. Note that
the final self-consistent vacancy levels appear significantly deeper
in the forbidden gap than those calculated from the empirical pseudo-
potential. However, the energy of the resonant state at E ~ -8.2 eV
is pinned in energy by the minimum of the density of states and changes
only slightly in the course of achieving self-consistency.

In Fig. 75(a) the charge density contour map for the vacancy
states in the gap is displayed. The plotting plane is the same as
in + .g. 73 ((110) plane) and the plotting area is enclosed by the two
horizontal dashed lines in Fig. 73. As expected from the fact that
these states appear deep in the gap, their charge density is fairly
localized around the atoms surrounding the vacancy site. There is
practically no charge built up on tﬁe atoms of neighboring chains,
however, some charge overlap between vacancy states within the same
chain is present. The charge distributions are dangling-bond-like,
i.e. mostly p-like with a small mixture of s character. Figure 75(b)
shows the charge density contour plot for the resonant state in the
valence band. Again the chafgc density is highly localized on the
atoms surrounding the vacancy site. However, for this state. the
charge distribution is mostly s~like around the atoms. Although these

plots are calculated for states at ', they are representative for the



~133-

vacancy states, since it ig found that the charge distributions of the
vaéancy states are virtually identical for all k-points in the fce
Brillouin zone.

The origin of the vacancy states can be understood using a simple
molecular orbital picture.ln In this model, one assumes that in
first order only the electrons in the broken bonds are significantly
perturbed and that the wavefunctions of the vacancy states can be
represented by a combination of atomic orbitals. Specifically, each
wolecular orbital (a single-electron vacancy state) is expressed as
a linear combination of the dangling bond orbitals (a,b,c,d) of the
four atoms next to the vacancy site. Because of the symmetry of a
S1i vacancy in the ideal structure, the molecular orbitals must trans-
form under the operation of the group T d according to irreducible
representations of that group. Suitable single-electron wavefunctions

thus are

vea+b+c+d a

1
tx=a+b-c-d
ty-a-b-c+d tz
tzﬂa-b+c-d (104)

The resonant vacancy state at E ~ -8.2 eV has the syametry of the
state a5, whereas the three states in the Si gap can be associated
with the above ty states. This simple picture which correctly
describes the symmetry of the vacancy states found, does not of course
account for the dehybridization of sp3 hybrids around the vacancy.

The dehybridization into s~like and p-like states is, however
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appraciable as seen from Fig. 75. Moreover the simple model does not
include possible resonant state due to perturbed back bonds.

The dispersions of the vacancy states in k-space which in a tight-
binding picture are caused by the interactions between vacancies in.
the superlattice shall now be examined. The dispersion for the
resonant vacancy state at E ~ -8.2 eV is found to be verv small
(~0.1 eV). This is confirmed by Fig. 75(b) in which virtually no
overlap between orbitals centered at neighboring vacancy sites is
found. However, the dispersion of the three vacancy states in the gap
is appreciable which can be seen by the presence of charge between
neighboring vacancy sites (see Fig. 75(a)). This result indicates
that the S54-atom unit cell chos;n is not large enough to completely
decouple the individual vacancies. In Fig. 76 symmetries and dispersions
of the states in the gap along the A direction from ' to X are shoum
schematically. In the ideal structure the three states are degenerate
in energy at T with E = 0.9 eV. Along A, they split into one non-
degenerate band (A3) and one two-fold degenerate band (AS)‘ At X the
energy valuer are Ez(x) = 0.7 eV for the two-fold degenerate states
and El(x) = -0.3 eV for the non-degenerate state (all energies are
given with respect to the valence band maxiwum).

An estimation of the position of the energy levels for a single
non~interacting vaéancy is obtained using the tight-binding model
described in Sec. A.2. Assuming that the dispersions of fhe vacancy
bands in the Si pap are completely due to nearest neighbor interactions

among the "p-like" single~electron vacancy states, the energy levels
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u for an isolated vacancy can be obtained by solving Eq. (101), (102),

and (103) simultaneously. This yields the following expression for u:
u= [E(T) + El(X) + ZEZ(X)]/4 . (105)

Using the calculated values for E(T), El(x) and Ez(x). the energy for
the three-fold degenerate vacancy state in the gap for an isolated
vacancy is u = 0.5 eV. At present no experimental data are available
which allow com;arison of this calculated value.

The radial dependence of the various one-electron potentials of
interest for the ideal neutral 5i lattice vacancy are displayed in
Fig. 77. Non-spherical contributions to the potentials are negligibly
small in the ideal structure. As described in the previous section
the self-consistent calculations are based on a lattice of Sih+ ionic
potentials vion with one vacant lattice site (solid curve). The long
range Coulomb tail of this missing Sia+ ion is completely screened
by the Hartree-exchange potential VHx of four defect electrons (dashed
line) as calculated from the total, self-consistent valence charge
distribution. The resulting vacancy potential Vec (dotted line) is
of short range similar to the empirical Si pseudopotential vemp (dashed
dashed dotted dotted line) as used in crystal calculations. Compared
to vemp' however, Vsc shows a more repulsive core and a deecper well
around 1A, A similar difference has been ohtained in recent self-
consistent surface calculations.94 Also shown for comparison is the
self-consistent pseudopotential Vsc (atom) obtrained for an isolated

atom by a calculation based on the same ionic Si4+ potential vion
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(dashed dotted curve). Even though the vacancy and the atomic
potentials show comparable amplitudes for the repulsive core and the
attractive bonding region, the self-consistent atomic potential is

of considerably longer range and extends up to about 4 A. This
difference is due to the presence of covalent bonds in the crystalline
case or dangling bonds in the vacancy case which lead to an increased
electron density between 1 and 2 A and thus to a stronger screening
decfeasing the effective range of the potential.

2. Reconstructed Structures

Results presented in the previous subsection indicated that, in
the ideal structure, there are three vacancy states in the Si thermal
gap which are degenerate in energy. For a neutral vacancy, only one
of the three states (neglecting spin) is occupied. This situation
is unstable with respect to Jahn-Teller distortionsl75 which lead to
structural changes. Indeed, as discussed earlier, the charged V+ and
V™ states for the Si vacancy are observed to undergo Jahn-Teller
distortions which produce an uniaxial asymmetry in the electronic
wavefunction along the cubic [100] direction. Although there exists
no experimental data on the detailed structu?e of a neutral vacancy
at present, it is generally believed that a similar type of dJistortion
takes place for the neqtral vacancy.

To study the effects of Jahn-Teller distortions on the vacancy
levels, the electronic structure of a neutral vacancy is calculated

for two differently reconstructed structural models. The first

reconstructed structure is obtained by shortening the distance between
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atoms d and g and between atoms e and f in Fig. 72(b) by an amount equal
to § = 0.48 d0 where d, is the crystalline value of the Si-Si bond
length. This is done by symmetrically moving the atoms toward each
other along the connecting line. This type of distortion produces an
asymmetry along the cubic [100] direction. The estimated value for &
is chosen to be in approximate agreement with the displacement found
by Swalin176 in his study of vacancy formation using Morse potentials.
This value does not present an optimum choice, it merely represents a
trial value. Figure 78 shows the total self-consistent charge density
for this reconstructed structure (Rec I). As for the ideal case the
charge density away from the vacancy is very much bulk-like.

However the charge density near the vacancy site differs significantly
from that obtained for the ideal structure. There appears bond like
charge between the two atoms which have been moved closer to each other
whereas the stretched back bonds bec&me considerably weaker.

The effects of Rec T on the resonant vacancy level are small; its
energy Temains at ~-8.0 eV. The effects of the distortion on the
vacan;y states in the gap, on the other hand, are significant. They
are shown schematically in the center portion of Fig. 76. The three-
fold degeneracy at I' is lifted by the uniaxial distortion. The lower
band (labelled A3) remains in the pap, whereas the two-fold degenerate
band (labelled AS) merges with the conduction band structure. The
highest fully occupied band is now A3, separated by a finite gap from
unoccupied states indicating that no further symmetry reduction

(i.e. Jahn-Teller distortion) is needed to stabilize the system. 1In
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addition, a new (empty) vacancy band, labelled Al' appears in the gap.
This state is induced by the chosen vacancy reconstruction and has its
wavefunction localized at the vacancy site. Rec I has the net effect
of moving the four atoms surrounding the vacancy site closer towards
the vacancy site. This distortion stretches and weakens the back bonds.
Some back bonding charge as a consequence is spread out and transferred
to the second nearest back bonds, which causes an increased vacancy-
vacancy interaction in the present model. This effect is also
recognizable from the increased dispersion of the A3 vacancy band
between T and X (see Fig. 76, middle). In analogy to the Si (111)
surface, Rec I corresponds to an outward relaxation and therefore seems
unlikely to occur.177

To study the effects of an opposite movement of atoms, another
reconstructed structure, Reconstruction I1 (Rec II) is considered.
The type and symmetry of distortions for this structural model is
identical as for Rec I except for 6§ = -0.48 dO‘ which corresponds to
a contraction of back bonds and a net relaxation away from the vacancy
site. Figure 79 shows the total, self-consistent charge density for
Rec II. As compared to Fig. 78, charge has been removed from the
immediate vacancy region and has been transferred into the hack bonds.

As for Rec I, the distortion does not significantly affect the
resonant vacancy level at about =8.0 eV. The behavior of the vacancy
bands in the gap is shown on the right portion of Fig. 76. For Rec 1I,
only one vacancy band (A3) exists in the Si thermal gap. This band

is fully occupied and separated by a finite gap from empty states.
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Thus, the type of distortion of Rec II which lowers cubic symmetry
leads to a Jahn-Teller stable situatfon. The strengthening of back
bonds localizes the vacancy induced charge fluctruations which results
in a decrease of dispersion of the vacancy bands along A (see Fig. 76).
In contrast to Rec I, no empty vacancy state is found in the gap of Si.
The A5 vacancy levels become resonant levels with the conduction bands.
While the exact atomic positions of the reconstructed vacancy
environment are still unknown, Rec II-type relaxations are expected
to occur most likely. Analogies to the Si (111) surface relaxation177
support this model. More experimental, spectroscopic information

about the neutral Si vacancy is needed to clarify the situation.

C. Conclusions

The neutral lattice vacancy in Si has been studied embedded in a
large 54—-atom super cell using a self-consistent pseudopotential
formalism. The method allows us to talculate self-consistently the
response of valence electrons to an arbitrary arrangement of ionic
cores. Thus three different structural models of the atoms surrounding
the vacancy have been investigated. These models are: the ideal
undistorted Si structure, (Rec I) a uniaxial [100) distortion of the
four atoms closest to the vacancy with a net relaxation towards the
vacancy site and (Rec 11) a uniaxial [100]) distortion with a net
relaxation away from the vacancy site.

In each model one strong resonant, virtually dispersionless band
is found around -8.0 eV in the valence band region. Its character is

predominantly s-like on the four atoms surrounding the wvacancy. In
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addition vacancy bands appear in the fundamental gap, strongly influenced
by the structural model used. In the ideal undistorted Si structure
a threefold degenerate vacancy band is found with an estimated energy
center of 0.5 eV above the valence band edge. This level is onefold
(rcplecting spin) occupied which causes Jahn-Teller instabilities.
Spin-resonant experiments on charged V+ and V vacancies indicate the
existence of a uniaxial [100]) Jahn-Teller type distortion, which can
be assumed to also exist for the neutral vacancy. Both reconstruction
models Rec I and Rec II result in a uniaxial [109] distortion. In
both cases (inward and outward relaxation) one vacancy level is split
away to lower energies resulting in a Jahn-Teller stable situation.
Analogous considerations to the Si (111) surface relaxations favor
model Rec I in which the four atoms surrounding the vacancy are
relaxed avay from the vacancy site, resulting in an increase in
strength of back bonds. The studies presented have about the type

of vacancy reconstruction existing in 51 do not allow conclusive

results and call for more experimental, spectroscopic information.
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FIGURE CAPTIONS

Calculated band structure at three volumes for fec Cs along
several axes of high symmetry in the Brillouin zone. The
energy is given in eV and the energy origin is taken to be at
Pl. The valges for the volumes were (a) V/v° = 0.5,

(b) V/V° = 0.5, (¢) V/V° = 0.35. The numbers along the bands
indicate the d-character of the wavefunction.

Density of states for Cs at V/V° = 0.5 in units of states/eV
atom. s, p, and d denote the components of the density of
states from the three angular momentum states.

Density of states for Cs at VIV° = 0.4. See Fig. 2.

Density of states for Cs at V/Vb = 0.3. See Fig. 2.
Electronic charge density for the occupied states of Cs at
VIV° = 0.5 in the (100) plane. The charge density is in units
of e/S! where £ is the primitive cell volume.

Electronic cherge densities for the occupied states of Cs at
VIVo = 0.4 in the (100) plane. (a) Band 1, (b) Band 2,

(c) Sum of band 1 and band 2.

Electronic charge densities for the occupied states of Cs at
VIV° = 0.3 in the (100) plane. (a) Band 1, (b) Band 2,

(c) Sum of band 1 and band 2.

A section of the Fermi surface of Cs at V/V° = 0.5. The

hatched region represents the occupied states.



Fig. 9.

Fig. 10.

Fig. 11.

Fig. 12.

Fig. 13.

Flg. 14.
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A section of the Fermi surface of Cs at V/Vo = 0.4. The
hatched region represents the occupied states. The cross
hatched region vepresents the component of the Fermi surface
coming from band 2.

A section of the Fermi surface of Cs at V/V° = 0.3. See
Fig. 9.

The irreducible polarization propagator in the RPA for
periodic systems.

Calculated ez(u) for Si, with (dashed curve) and without
(dotted curve) local-field effects, compared with experiment
(solid curve) from Ref. 49.

Calculated energy-loss spectra for Si, with (dashed curve)
and without (dotted curve) local-field effects, compared
with experiment (solid curve) from Ref. 49.

The frequency dependent kernel K(&) (N(0)V paramcrer) for a
screened Coulomb interaction using the semiconductor and
metallic dielectric function model of Inkson and Anderson.
Parameters appropriate for AL and Si were used. (b) The
frequency dependent kernel K(§) (N(0)V parameter) for a
screened Coulomb interaction using the Lindhard dielectric
function (parameters are appropriatc for AL). (c) The
frequency dependent kernel K(8) (R{(D)V paramcter) for a
screened Coulomb interaction using a dielectric function

calculated from a pseudopotential band structure for Ge.
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Nb+5 ionic pseudopotentials. Vs. Vp and V

& plotted as a

function of r.

Electronic band structure of Nb. Energy scale is zeroed at Eg.
Density of states for bulk Nb. (a) Present calculation and
(b) Mattheiss' calculation from Ref. 66.

Contour plots of total valence charge distribution of bulk

Nb in the (a) (110) plane and (b) (100) plane. The charge
density is normalized to 1 electron per unit cell.

Partial charge densities for states in the energy ranges

(a) -6.5 to ~2.0 eV, (b) =-2.0 to -0.75 eV (c) -0.75 vo 0.60 ev
and (d) 0.60 eV to 5.85 eV. The charge density for each
energy range is normalized to 1 electron per unit cell and is
plotted on the (110) plane.

The pair-breaking parameter Py as a function of temperature
from the solutions of the gap equation, Eq. (44).

Tclﬁ:;i; plotted versus A. The solid curves are results
calculated using the new Tc eguation (Eq. 55) for various
shapes of uzF. The same curves also represent the exact
solutions of the Eliashberg eguations (see text) since the

two results are indistinguishable on the scale of the plot.

The dash curve is the McMillan equation using the prefactor

/() /&.ZO instead of ODII.GS. The experimental points are
taken from tunneling data.aﬁ

Calculated T, from Eq. (55) plotted versus experimental T, for
six elemental superconductors. The experimental values are

taken from tunneling data.sa




rig. 23.

Fig. 24.

Fig. 25.

Fig. 26.

Fig. 27.
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Steps in the self-consistent procedure for the calculation
of the electronic structure of localized configurations.
Perspective view of the Si crystal structure projected on a
{110) plane. The [111] direction is vertical. The (111)
surface is obtained Wy cutting the vertical bonds in a
horizontal plane.

Total valence chargz distribution for an unrelaxed Si (111)
surfzce. The charge is plotted as coﬁtours in a (110) plane
1atersecting the (111) surface at right angles. The plotting
area starts in the vacuum and extends about 4-1/2 atomic
layers into the crystal. The atomic positions and bond
directions are indicated by dots and heavy lines respectively.
The contours are normalized to electrons per Si bulk umnit

a
cell volume ﬂo = 5,

4
Two-dimensional band structure of a twelve layer Si (111)
f1lm (relaxed surface model). The energy is plotted as a
function of hl in the two-dimensional hexagonal Brillouin
zone. The various surface states or s:rbng surface resonances
at high symmetry points are indicated by dots and labelled
according to the description in the text.
Density of states curves for the self-consistent results on
twelve layer films for the relaxed (brokem line) and
unrelaxed (solid line) suvface geometry. Surface states are

indicated by arrows and labelled according to Fig. 26.

Inserted is the density of states in the vicinity of the



Fig. 28.

Fig. 29.

Fig. 30.

Fig. 31.

* Fig. 32.

Fig. 33.
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fundamental gap for a six layer (2x1) reconstructed surface
model.

Charge deasity contours in a (110) plane cutting the relaxed
(111) surface of the longitudinal back bond state Klb"
Charge density contours of the occupied part Kd of the
dangling bond states for the relaxed surface model.

Schematic representation of the ideal and (2x1) reconstructed
$i (111) surface. The tTeconstruction is done according to
Haneman's model92 and leaves the surface buckled as indicated
by arrows. The slight lateral shifts of second layer atoms
are also indicated by arrows.

Two-dimensional band structure around the fundamental gap

for a (2x1) reconstructed Si (111) twelve layer film. The
folded back Brillouin zone is indicated in the insert.
Calculated joint density of states curve for low energy
transitions between dangling bond bands of (2x1) Si (111)
(top). Also indicated is the experimental absorption ez(m)
as obtained in Ref. 99. The bottom figure shows the regular
density fo states for the two dangling bond bands (din and
dout) of (2x1) Si (111).

Charge density contour plots for the danpling bond states
dout(tOP) and din (bottom) of (2x1) Si (111). The charpe is
plotted in a (210) plane of (2x1) Si which corresponds to the
(110) plane of (1x1) Si. The raised and lowered atoms are

marked by arrows.
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Fig. 34. Local density of states in arbitrary units for a relaxed (110)
surface of GaAs. The local density of states at the surface
layer for the ideal case is also displayed.

Fig. 35. Density of states (in arbitrary units) of the empty cation
derived surface band for both the ideal and relaxed cases.

Fig. 36. Pseudocharge density of the cation surface states for a relaxed
surface. The charge density contour map is normalized to one
electron per unit cell, Qc = 812 A3.

Fig, 37. The top figure shows the charge density averaged parallel
to the surface and plotted as a function into the bulk for the
surface state at K at 0.07 Ry. The bottom figure shows the
charge density for this state in the (110) plane. The charge
density is normalized to 1 electron per unit cell.

Fig. 38. Brillouin zone for the 2-dimensional square lattice and the
3-dimensional bee lattice.

Fig. 39. Projected bulk band structure for the (001) surface of Nb.
(see text)

Fig. 40. Extents of the two major absolute gaps in the projected
band structure of the Nb (001) surface.

Fig. 41. Total valence charge density of the Nh (0N1) surface plotted
on (a) the (110) plane and (b) cthe (100) plane. The charpge
density is normalized to one electron per unit cell.

Fig. 42. Calculated local density of states curves for the Nb (001)

surface.



Fig. 43.

Fig. 44.

Fig. 45.

Fig. 46.

Fig. 47.

Fig. 48.

Fig. 49.

Fig. 50.
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Difference curve for the local density of states at the Nb
(001) surface. (See text)

Surface bands (dashed curves) and the projected band structure
for the Nb (001) surface.

Charge~density contour plots for the three energy regions
(a) region A, (b) region B, (c) region C. (see text) The
charge density for each region is normalized to 1 electron
per unit cell and is plotted for a (100) plane cutting the
Nb (001) surface.

Charge density distribution of a Tl surface state at

k = (3/8, 1/4) 21r/ac at E = 1.6 eV plotted on (a) the (110)
plane and (b) the (100) plane. The charée density is
normalized to 1 electron per unit cell.

Chargerensity contour plot of a T2 surface state at

k= (3/8,1/4)21r/ac at E = 0.8 eV. Plotting planes and
normalization are the same as in Fig. 46.

Charge-density contour plot of a T3 surface state at

k= (3/8.1/6)21T/ac at E = 0.4 eV. See Fig. 46 for plotting
planes and normalization.

Charge-density contour plot of a T4 surface state at

k = (3/8.1/4)2n/a_ at E = -1.7 eV. See Fig. 46 for plotting
planes and normalization.

Charge density distribution of a TS5 surface state at

k= (3/8.1/4)217/3c at E = =2.0 eV plotted on the (110)
plane. The charge density is normalized to one electron per

unit cell.
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(a) Total valence charge density contours in a (110) plane.
The Si atoms are indicated by dots. (b) Total valence charge
density averaged parallel to the interface and plotted along
the direction perpendicular to the interface. The charge
densities are normalized to one electron per unit cell.

(a) Contour plot of the final self-consistent potential vsc
in a (110} plane. (b) Final self-consistent potential averaged
parallel to the interface and plotted along the direction
perpendicular to the interface. The potential values are in
rydbergs.

Local density of states in arbitrary units as defined by

Eq. (83). The regions are as shown in Fig. 51(b).

Difference local density of states (DLDOS) obtained by
subtracting the LDOS of region VI from that of region IV.

The units are the sawe as in Fig. 53.

Charge density contours for states with energy below -11.5 eV
in the same plane and normalization as in Fig. 51(a).

(a) Charge density contours for MIGS with energy between 0 and
1.2 eV in the same plane and normalization as in Fig. 51(a).
(b) Charge demsity in (a) averaged parallel to the interface
and plotted along the direction perpendicular to the
interface.

Schematic diagram of the bottom two bands of the Si band
structure (horizontally hatched) projected to the two-

¥
dimensional Brillouin 2zone. Superimposed on it s the
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projected Al conduction band (vertically hatched). Sx
denotes the interface states discussed in the text.
Charge density contours for the interface states at K in the

same plane and normalization as in Fig. 51(a).

Total valence charge density for the m/GaAs interface plotted

in the (110) plane containing the (a) Ga surface atom and

(b) As surface atom. The charge density has been normalized
to one electron per unit cell.

Total valence charge density for the w/ZnSe interface plotted
in the (110) plane containing the (a) Zn surface atom and

(b) Se surface atom. Normalizatiom is as in Fig. 59.

Total valence charge density for the m/ZnS interface plotted
in the (110) plane containing the (a) Zn surface atom and

(b) S surface atom. Normalization is as in Fig. 59.

Local density of states for the m/GaAs interface in arbitrary
units as defined by Eq. (83).

Local density of states for the m/ZnSe interface.

Local density of states for the m/ZnS interface.

Charge distributions of the penetrating tails of the MIGS in
the semiconductor thermal gép. B(z) is the total charge
density for these states averapced parallel to the interface
with 2z = 0 at the edge of the jellium core.

Charpe density of the s-like sulfur interface states in the
same plane as Fig. 61(b). The charge density is apain

normalized to one clectron per unit cell.
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Fig. 67. Charge density of an interface state at M at ~5.1 eV.
(See text.)

Fig. 68. Charge density of an interface state ot M at -4.6 eV.
(See text.)

Fig. 69. Experimental values of the barrier heights for four semi-
conductors in contact with various metals. Xm is the
electronegativity of the metal in the Pauling-Gordy scale.
Data were taken from Ref. 142 (Si) and Ref. 149 (GaAs, ZnSe,
ZnS).

Fig. 70. The index of interface behavior S from Ref. 137.

Fig. 71. Surface density of states as defined in Eq. (85).

Fig. 72. Structure of cubic Si (a) and an undistorted Si lattice
vacancy (b).

Fig. 73. Total, self-consistent valence charge density displayed in a
(110) plane for a neutral $i vacancy in an ideal, unrecon-
structed structure. The charge values are normalized to one
electron per unit cell which extends over 53 atoms and one
vacancy.

Fig. 74. (top) Crystalline density of states for $i with the position
of strong resonant and vacancy levels at I'. (bottom) Energies
at T for the perfect S4-atom unit cell erystal using an
empirical psceudopotential, for the ideal vacancy using th-
saﬁe empirical pseudopotential and for the §deal vacancy
using the final self-consistent pseudopotential are given.

Note the lowering of the vacancy level in the funcamental gap.



Fig. 75.

Fig. 76.

Fig. 77.

Fig. 78.

Fig. 79.
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Charge density plots in a (110) plaue (area enclosed by
dashed lines in Fig. 73) of (a) the vacancy states in the
fundamental gap and (b) the strong resonance around -8.2 eV.
Schematic energy diagram of dispersion between T' and X and
order of the Si vacancy levels in the fundamental gap as a
function of different reconstruction models. For Rec I and
Rec II, X is along the distorted [100] direction.

Radial dependence of various Si atomic and vacancy potentials.
Total self-consistent valence charge density for a neutral
Si vacancy in a reconstructed environment (Rec I). The
distances between the four atoms surrounding the vacancy are
pair wise decreased, resulting in a [100] uniaxial distortion
and a net relaxation towards the vacancy. Units are as in
Fig. 73.

Total self-consistent valence charge density for a neutral

S§i vacancy in a reconstructed environment (Rec II). The
distances between the four atoms surrounding the vacancy

are pair wise increased, resulting in a [100] uniaxial

distortion and a net relaxation away from the vacancy.

Units are as in Fig. 73.
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Table I. Parameters used in the Cs calculations. Form factors (in Ry),

d-well depth (in Ry), d-well radius (in A), and lattice
constants (in A).

V/Vo v(3) v(4) v(8) vy Az R a
9.5 -0.0276 -0.0205 0.0011 0.0001 =-3.2 1.275 6.175
0.4 -0.0314 -0.0165 0.0010 0.0000 -3.2 1.275 5.732

0.3 ~0.0292 ~0.0084 -0.00046 0.0000 -3.2 1.275 5.208
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Table II. Cs. Calculated Fermi energies (in eV), density of states
and partial densities of states at Ep, and the amount of
charge distributed to s—-, p- and d-states as defined in text.
(The density of states is in units of states/eV-atom.)

v/vo 0.5 0.4 0.3
Eg 1.28 1.10 0.56
N(EF) 1.64 1.90 1.91
NS(EF) 0.90 0.94 0.89
NP(EF) 0.18 0.19 0.16
Nd(EF) 0.56 0.77 0.86
Q 0.70 0.62 0.41
Qp 0.09 0.07 0.05

Qd 0.21 0.31 0.54
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Table III. Sum rules from Eq. (26) for € and €. ., in units of (ev)2
2.6 £.8

in the limit ¢*0 along the k-direction.

GP& Gog' Jo Tmeg du %wf 9—%}—&;—) &(g+e) -8(g+G")
(000) (000) 415.6 433.5
(111) (111) 431.6 433.5
(200) (200) 430.1 433.5
(220) (220) 403.2 433.5
(311) (311) 311.8 433.5
(222) (222) 278.4 433.5
(000) (111) -50.9 -54.7
(000) (200) 0.0 0.0
(000) (220 11.5 10.3
(000) (311) 21.6 20.2
(000) (131) 1.2 6.7

(000) (222) 15.5 15.0
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Table IV. (a) Comparison of the calculated ionic energy levels with
experimental data from spectroscupy.73 (b) Self-consistent

Nb atom: A comparison of our results with.those of Herman
and Skillman.

(a) Nh+a
Level Calculated Experimental
Energy (Ry) Energy (Ry)
4d -3.657 ~3.63
35 ~-2.953 ~2.95
5p ~2.448 ~2.45
5d -1.725 ~-1.71
6s -1.635 -1.56
(b) Self-consistent Nb atom
Energies (Ry) Herman and Skillman
Present Calculation
4d 0.354 0.45
5s 0.340 0.40

Postions of Maximum of rR(r) (in a.u.)

Present calculation Herman and Skillman

4g 1.48 1.41
5s 3.00 3.12
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Table V. Comparison of energy levels between the present calculation

of the Nb band structure and previous calculated results.
(Energies are in eV with E_ =0.)

F
Iy Ty Ty By Ty Ny
Predominant
Character § d d d d P
Present
‘Calculation  -6.06  0.15  3.07  -3.22  5.83  2.32
apw®® -5.30  0.41  2.80  -3.81  5.17  2.33
M’ -5.20 0.51  2.59 =3.70  5.68  2.18
Self-consisted ~5.24 0.55 3.25 -4.24 5.97 2.25

APW/1
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Table VI. Principal peak positions in the calculated Nb density of
states are compared with peaks in photoemission
data and previous calculations.

Experiment Theory
(Photoemission) 66 67 Present
APW EPM Calculation
-2.3 ~2.4 -2.6 -2.5
=-1.1 ~1.4 -1.4 -1.4
-0.4 =-0.2 ~0.4 0.4
- : 2.5 - 2.6
- 3.0 - 3.2
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Table VII. Experimental parameters for six elemental superconductors.sh
T. (Calc.) is calculated using Eq. (55).

Maerials (k) (K NG (°K)
Wog KWD 8 A W T (Expr) T (Calc.)

Pb 56 65 .161 1.55 0.105 7.20 7.15

In 68 89 .309 6.805 0.097 3.40 3.22

Sn 99 121 222 0.72 0.092 3.75 3.88

Hg 29 49 0.690 1.62 0.098 4.19 4.07

T1 52 64 0.231 0.795 0.111 2.36 2.20

Ta 132 148 0.121 0.69 0.093 4.48 4.69
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Table VIII. Calculated energies of surface states and strong surface
resonances of the relaxed Si (111) surface at‘T (center),
K (corner) and M (edge midpoint) of the two-dimensional
Brillouin zone. Also indicated are experimental (UPS)
results for (2x1) and (7x7) reconstructed surfaces. The
energy zero is taken at the bulk valence band edge Ev.

scuct A ref experiment
(1x1) relaxed surface (2x1) (7x7)
r 1.2 ry 0.88 1.04 '
-1.520 T, | -1.95(2%) .00 | ~1.08  -a15®
-12.7 Ty | -12.87 -12.9 -11.7° -12.3°
-0.52
K 0.5 Ky 0.11 -0.45P 0.1?
—O_GC
-2.0 Kpp s
<4.2 K, ~5.65
-8.5 Ky -8.35 -7.52
-9.8 Ky -9.6
M 0.5 M, 0.04 0.17
-2.6 My
-3.1 M, -3.55 -3.78 -3.62
-8.1
-3.7‘ "
-10.7 Mo

a) ref. 93(c); b) ref. 93(a); c) ref. 93(b); d) ref. 93(d): e) vef. 91;
f) ref. 98; p) this work.
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Table IX. Character tables and transformation of d functions in the
2-dimension square Brillouin zone.

5 E My

= 2 2

21 1 1 3z27-r, xy, 3(x+y)
iz 1 -1 xz-yz. 2(x~y)

A E M

Zl 1 1 322-1'2. xz—yz, zZX
Zz 1 -1 Xy, 2y

¥ E M
—_— ¥

3 2

Yl 1 1 3zz-r2. b3 -yz. zy
¥ 1 =1 XY, 2X
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Table X. Parameters entering Eqs. (71) and (81) teo define the
empirical and ionic Si pseudopotentials.

Si S1

vemp v1on
a 0.17459 b1 -0.57315
a, 2.22)44 b2 0.79065
ay 0.86334 b3 -0.35201
a, 1.5365? ba -0.01807




Table XI. The ionic core potential parameters, b

~254-

;+ The potentials are
normalized to an atomic volume of 152.5 (a.u.)”’. The form

of the potential is given by Eq. (8l). The units for v(g)

are Ry if q is given in a.u. (The Ga potential is valid
only for q < 3 a.u.)

Ga As Zn Se S
b1 -0.3384 =0.7057 -0.3056 -2.3258 =5.4101
bz 1.3305 1.0448 1.3412 0.5283 0.3275
b3 0.4466 0.1662 0.0802 -0.5740 -0.8169
ba 0.0071 -0.0151 =0.0086 -0.0321 -0.0250
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Table XII. The empirical starting potential parameters,

a,.
Normalization and units are as in Table XI. Tﬁe form of
the potential is given by Eq. (71).

Ga As Zn Se S
ay 1.2214 0.3474 6.7008 0.2334 0.2361
a3, 2.4495 2.6203 1.4983 3.3858 3.3630
ay 0.5445 0.9335 0.6696 0.7266 0.7243

a, ~2.7148 1.5677 -4.7128 2.2012 2.1500
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Table XII1. Theoretical and experimental values for the Schottky
barrier height ¢}, (eV) and the index of interface behavior S.
Dg in units of 1014 gtates/eV-cm? is the surface density
of states used to obtain the calculated S.

ax? ¢b(ca1) ¢bn(expt) Ds S{cal) S(expt)d
Al-Si 0 0.6 ¢ 0.1 0.6° 45 0.1 0.1
Al-GaAs 0.4 0.8 ¢ 0.2 0.8° 5.0 0.1 0.1
Al-ZnSe 0.8 0.2 ¢ 0.2 - 2.0 0.4 0.5
Al-ZnS 0.9 0.5t 0.2 0.8° 1.4 0.7 1.0
a) Ref. 156
b) Ref. 142
c) Ref. 149

d) Ref. 137
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Table XIV. Form factor parameters for the empirical Si pseudopotential

Vemp (Eg. 92) and for the ionic 5i4* pseudopotential V
(Eq. 97). ton

vemp vion
a " 0.34270 bl = ~1.12507
a, = 2.22144 b, = 0.79065
ay = 0.86334 b3 = -0.35201
a, = 1.53457 b, = -0.01897
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