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ABSTRACT

Shiva, a neodymium doped glass laser system being built for the
Lawrence Livermore Laboratory's Laser Fusion Program, will pay an
important role in the effort to harness thermonuclear energy. The
system will irradiate a microscopic deuterium-tritium pellet w th 20
laser beams, all arriving simultaneously along 20 different axes. It
will contein 2,200 flashlamps.

This paper describes a statistical modeling technique used to
predict failure rates for highly stressed xenon flashlamps used to pump
neodymium glass lasers. Because the lamps are mounted in close proximity
to the glass laser disks, an exploding lamp can result in costly damage

to optical components. The failure data presented is representative of

the early period of large bore lamp development. Recent improvements in
manufacturing techniques and the implementation of a pulse jonized lamp
check (P.I.L.C.) have reduced lamp failure significantly. However, early
failure data was used to develop a mathematical method for estimating the
reliability of flashlamp units representative of any given design set.
Specifically, we estimated the probability that none of these lamps will

fail in the course of a given number of shots (say 50, 100, or 200),

. provided all Tamps have been tested for a given number of shots {say 100 & *
or 200). Estimating lamp reliability is complicated by two facts: first,

the available data are a mixture of flashlamps which failed (after a certain
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number of shots) and which did not fail (after some fixed number of shots);
and second, the usual models for failure rate do not hold. Therefore,
other techniques were developed. The problem is to determine the failure
rate of an individual flashlamp. Once this is done, the overall reliability
can be assessed. The likelihood function is used to select the "best"
model for the failure rate of a single flashlamp.

The methods described in this paper can be applied to other systems
with mixed data and for which the usual failure rate models are not

applicable.

Work performed under the auspices
of the U.S. Energy Research &
Development Administration under
contract No. W-7405-Eng-48.




1. INTRODUCTION

Shiva consists of 2,200 flashlamp units. We are interested in evaluating
the reliability of such units; more specifically, we want to estimate the
probability that none of the units will fail if they are to undergo a
certain number of shots (say 5G. 100 or 200} provided that all these units
have been tested for a given number of shots.

Section 2 describes the data used to develop the method. 1In Section 3
suitabie models for the failure rate of an individual unit are considered
and in Section 4 the parameters for these models are computed. In Section
5 the best model is selecte¢ and reliability estimates are made using the
limited data available. Finally, Section 6 summarizes the steps that were
taken to evaluate this estimate,

Two appendices with some technical considerations needed for Section
4 are included. If more data were available then the results of Appendix

A could also be used directly to calculate the failure rate of the units.

2. DESCRIPTION OF THE DATA

The original data consisted of 136 units which were assigned to undergo
a number of shots, namely: 80 units were assigned to be tested for 1,000 shots,
40 units were assigned to be tested for 10,000 shots and
16 units were assigned to be tested for 13,000 shots.
When a unit -— supposed to undergo, say, N shots — failed after, say, S shots,
it was replaced and the new unit was tested for N-S5 shots. None of the units,

replacing failed units, happen to fail. Since there were 6 failures, the total
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number of units that were tested was 142 (i.e. 136 + 6). Let n denote the
number of units tested and let m denote the number of failures. Let T],

. «» Ty be the failure times i.e. the shot numbers that caused failing of
a unit and let Tm+1' PR Tn be the scoppine times i.e. the number ¢f shots
that a non failing unit was supposed to undergo. HKith this notation the data
can be listed as:

Ty =, T2 = 35, T3 = 55, T, = 856, T = 943, T6 3,994

[

{i.e. these are the failing times) and

T7 * 12,989, T8 = 965, T9 = 945, Tm = 9,114, Tl? = 9,057, T]2 = 9,006,

T]3 LI T90 = 1,000, T9I = L., TTZB = 10,000, T129 LI T‘42 = 13,000.

The cluster of the three early failures clearly indicates that they are
of a different nature than the failures, say, after a 100 sho*s. Therefore, it
is not desirable to use the data before a 100 shots since they indicate scme
malfunction of the units and a different process is therefore occurring. Be-
sides that, all units will be tested for at least a 100 shots before being put
into operation. Thus, the relevant data in computing the reliability of Shiva
will be all of the previous data minus the first three failures. Let

t =T - 100, then the data in terms of t is

t = 756, t; = 843, ty = 3,894

(f.e. m = 3 failures) and
t, = 12,889, tg = 865, te © 845, t, = 9,014, tg 8,957, ty = 8,906,
tIO = ,,. = t87 = 900, t88 = ... = t125 = 9,900, t126 = ... F t]39 = 12,300.

3. A MODEL FOR THE FAILURE RATE OF A UNIT

As pointed out in the introduction, we are interested in evaluating
P(S.T), the probability of no failure on the first 7 shots civen that
the units have been tested for S shots. Let G(T) be the probability that a
unit will have a life time of T or longer, then G(S+T)/G(S) is the probability
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that a unit has no failures on the first T shots given that it has been

tested for S shots and hence

[ 2,200
P(S,T) = E.é%.}}l) _ M
'\

Let A(T) be the failure rate of a unit, i.e.

n

MT)

Tim %T' Probability that the unit fails between T
AT

and T+AT given that it survives up to

¥
time T,
4
s G(T) - G(T+AT G'(T
= lim = .
AT+0 6{T T
From this relation one can easily derive that
,T
=1 Mu)du
61 =e”® : (2)

In order to construct a model for the fajlure rate it is necessary to have
some more knowledge about this rate. From the physical properties of the
unit it has been established that tne failure rate curve looks like a "bath-

tub" (see the Figure below) i.e. the failure rate is very high for
MT)

Part ' Part 2 Part 2

_Figure 1.

Failure rate for one unit
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small values of T, it then decrezses, having a flat part (i.e. a part where

the unit operates well) aad finally it increases again as the lifetime of the
unit is reached. The data belongs to part 1, therefore it is reasonable

to use as a model a function such as A(T) = 3/(1+aT) or A(T) = A/(1+aT){1*B)
where A, o and B are parameters to be determined from the data. If more data
were available, one could also compute‘E(T), the empirical probability that a
unit will have a lifetime of T or longer. From EYT) an estimate of A{T), say,
X(T), can be obtained, or if necessary, a smoother version of it, say,zi(T).

As mentioned in Section 2, we shall work with the translated data (i.e. the t-
values). In this new system let y{t) be the failure rate, i.c. A{T) = y(T-100),
and let H(t) be the probability that a unit will have a lifetime of t or longer.
Note that

FSHT S+T-100
- A(u)du - y{u)du
$-100

U o> LY - HsT0n
G(S} H{5-100

In Appendix A we illustrate how R{t), ¥(t) and1$(t) can be obtained (i.e. an
empirical estimate of H(t), an estimate of v(t) and a smoothed estimate of
v(t) respectively}). Though there are not enough data available to explicitly
use these estimates, they will be h2lpful in Appendix B for establishing ini-

tial guesses for the parameters A, o and 8.

4. ESTIMATION OF THE PARAMETERS APPEARING IN THE FAILURE RATE

The maximum 1ikelihood method is used to estimate the parameters. Let

bo Tikeld .
L(t]. P, tm‘ tm+1' e e s tn) be the likelihood function, then we have

L(t1, ceer bt togs ot }

=)

m n n m
o< M H(t;) vits) T H{t) = T H(t,) X y(t;)
i=1 i=m+] i=1 i=1

i
i
i
|
!
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Hence

n m
=20 Lo ) r(t;) + 3o v(ty)
i=1 i=1
where

t
T(t) =Jf0 du y(u).

We first consider the two-parameter model 1i.e. A{t) = A/(1+at). For this

model T(t) = (AM/a) 2n(1+at) and thus

=

m
. . 3
fo< - = gn(1+at.) + m g0 A 1'; an(1+at,).

1

-
n

The maximum 1ikelihood solution, say, % and & of the parameters A and a

respectively is obtained by solving the system of equations g% = 0 and %é = 0.

The equation %% = 0 is equivalent to

3

_n(1+at). (3)

m_1
A a |

-
[}

Using %é = 0 ard (3) we get

n t.
- . f '|+<x]c].

n . =0. (4)
2. an(1+aty) =1
1=1

DingE

Y
T+at

RI3

i i

Once & is obtained by solving (4), we can immediately derive A from (3). Be-
cause of the complexity of the equation \4), it is necessary to obtain a good
initial guess for &, say 30. The initial guess for 30 is given by (B3) in

Appendix B. Using the 139 data points we cbtain

A =1.358 x 107° and & = 7.504 x 1074,
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If we use the three parameter model i.e. A(t) = )‘/(lmt)(“B) we get

T(t) = (Ma8) (1 - 1/(1+at}®) an¢

RS { 1 $
g~ -2 2 N -—-——,—)+m1nl- (148} >  (T+at)).
Bl (eaty)? DOTR
Let A. u. B be the solution of the 1ikelihood equatwns 3 = 0, aa =0

and ’§'§ = 0. The equation %X = 0 can be written as

2": 1.1 \ (5)

=14 (1+at] |

>3
&l"

Using -g—ﬁ = 0 and (5) we get

=

~{1+8
t;(1+at,) (1+8) mnoty
m8 - (148} Trot; = 0, (6}

s
13

RI3
)

n

< -8 iz 1

‘/;] ti('l-('|+ut,i) ]

Finally wsing % = 0 and {5) we get
& -8
L (Wt ) Pan(i+at,)
e ‘;' - ). an(i4aty) = 0. (7

| D-0%at) ) =

1=

In order to solve the system of equations {€) and (7} in « and B8, initial

3
guesses for o and B are needed, say u and e We use for &‘o = & and for

o
80 the expression (B4) of Appendix B. Once & and B are obtained, one can

N
directly compute > from (5). We obtained

=1.354 x 1075, & =7.501 x 107 and g = -2.783 x 107"
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5. CHOOSING THE BEST MODEL AND ESTIMATING THE RELIABILITY

Let L(X,a) and L(A,x,2) denote the likelihood functions when the two-
parameter model (i.e. v(t) = A/(1+at)) and the three-parameter model (i.e. v(t) =

x/(1+at)(1+6)) are used respectively. Then the three-parameter model will be

superior to the two-parameter model if

SOAN

LA0E) 5,
L(%,8)

3 a4 A A
From the data we obtain that L{X,a,R) .~ L{A,a) and therefore the three-parameter

model is no improvement over the two-parameter model. Therefore, the latter

model is adequate. A
For the model v(t) = A/(T+at) we have that H(t) = 1/(1+ut)® and therefore

A
a

G{S+T) _ H(S+T-100) . {_l+a(S-1n0}
G{S H{S-100 | 1+a{S+T-100

Thus

,200 X
13

2
_ [ 1+a(5-100
P(S,T) = (TiaféinuoéY]

and an estimate of this probability is given by
2

200 =

2,200 3

Bs,T) = ( 1+6(S-100)

1+3(S+T-100)

The numerical results of 3(S,T) for various values of S and T are given in

Table 1.

T TN
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i T- 50.00

S B(S.T)
160.00  2.317€-00
500.00  3.2326-01
1000.00  4.150E-01 !
¢ 2000.00  5.436E-01
é 3000.00 6.273E-01

T=  100.00
s F(s.T) :
100.00 5.654E-02 !
500.00  1.077€-01
1000.00  1.755E-01 !
2000.00  2.983€-01
3000.00  3.956E-01

200. 00
S F(s.m
100.00  3.881E-05
£00.00  1.307E-02
1000.00  3.315E-02
2000.00  9.219E-02
3000.00  1.599E-01

T

Jable 1.
?(S,T) for S = 100, 500, 1,000, 2,000, 3,000
and T = 50, 100, 200.

Note that P(S,T) is for fixed S a decreasing function of T and for fixed

T it is an increasing function of S. The figure below is self-explanatory.
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_Figure 2.
B(S,T): The estimated probability that all the units in Shiva will not fail

for T shots given that they have been tested for S shots.
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6. SUMMARY _
This technical memorandum evaluated P(S,T), the probability of no failure on

the first T shots of flashlamp units given that the units were tested for S shots.
Table 1 gives values of F(S,T), the estimate of P(S,T), for various values
of S and T. Figure 2 illustrates the behavior of P(S,T) as a function of S.
Since

(i) Shiva consists of 2,200 flashlamp units,

(i1) P(5.T) = (6(5+7)/6(5))%*2% where 6(T) is the probability

that a unit will have a 1ife of T or longer,

T 1
{i1i) G(T) = exp g- u[ A(u) du} where A{u) denotes the failure
{ 0

rate of a unit as a function of u,
it suffices to estimate A(u).
Because of the nature of the data it was necessary to work with the failure
rate v where A{T) = ¥(T-100). It was shown that y(t) = A/(T+at) was a suitable

model for the failure rate. Given this model, P(S,T) can be expressed as

A

P(S,T) = [(1+a(S-100))/(l+a(S+T-100))]2,200  and P(s,T) is the value of P(S,T)
obtained by replacing X and a by their estimates.

The technique used in this memorandum is fairly general, it can be employed
to evaluate the reliability of other devices.

No inferences should be drawn regarding the reliability of finalized flash-
lamp designs, full flashlamp circuits, or of the Shiva laser system itself.
The method described in this paper was developed using preliminary test data
which have since been superseded by more extensive data on much more reliable

flashlamps of more recent design and in improved circuits.
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APPENDIX A

Computations of the Empirical Probability that a Unit
will have a Lifetime of t or Longer and Computation
of the Estimated Failure Rate

In computing 'ﬁ(t), it will be helpful to consider first the case where
there are no stopping times (i.e. the data consists exclusively of the times

t], e ey tm. Since these times are ordered we have

~ - i+ R
H(t_i) =%1l , 1=, . . ., m,
and

H(0) = H{0) = 1.

For convenience, let tg = 0. The following table illustrates in detail how

H(t) is estimated.

Number of Units
~ Being Tested
k H(tk) Just Before Mass to be Removed
Shot # ty g
= 1 -1
k=0 1 m 1 x s il |
- oM mo 1
k=1 L iy m-1 X To-T)+1 - m+l
- mo_ 1 _m1 - m-1 1.1
k=2 s gl s gl m-2 T X w2yl -
- m-(i-2) _ 1 _ m-i+l _ m-i+1 1 _ 1
k=1 s I fhy m-1 Yy I (TR ¥ B
M- S0 .2 2 1. _ 1
k=m-1 s My | 1 ey M T e
- 2 1 .
kem oS By MY

o Table Al.
Detailed eva1.|_.|at1'_qnh qf‘H(t) when ;” units are tgs_f.gdy until failure.
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We now consider the case of interest i.e. m ordered failure times and

n-m stopping times. Let n, be the number of units being tested just before

shot # ty (i.e. n_i=n-# of failures before t_i-# of units stopped befcre t_i).

Then a Table similar to Table Al can be constructed.

T Number of Units |
I H Being Tested
k H(tk) | Just Before Mass to be Removed
. . Shot # tk+1
< , 3 -3
k=0 ! . " Tx n.|+1 n1+1
f i
o .M ; o I 1
=] ' 1 ~ﬁ-]T-|--n]+-| | n2 FFan2+ —H(tl) Xn2+-‘
= It 1
=2 H(t)) - H(ty) x o3 ] ng H(t,) x ey
n
=T 2 =
= H(t]) T H(tz)
- 1
~ n ; 1
k=1 H(t; ) 7y ! L H(t;) x 7=
i +1
n
—_ ~ m-1 1 1
k=m-1 H(tm-z) T " 3 H(tm_]) X ST
i
=m Wie ) =B
'm-1 Moel
Table A2.

Detailed evaluation of ﬁ(t) when all units are tested until failure time or

stopping time is reached.

oot r s st s
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Thus the emperical H(t) is given by

]
- ~ Ny |
H(ti) = H(ti-]) ‘n—’T-I' s 'I=], o . ey M > (A])
and :
H(0} = 1. J

There is a very natural interpretation for ﬁ(t). namely of the probability

li(t1 ]) remaining after t,_, a fraction ]+1 lies between t; ; and t, (based
on the principle that the n, failure t1mes, if they were all observed, would
divide the probability beyond t'i-l equally). Now we shall use ﬁ’(t) to obtain

an estimate, ¥(t), of the failure rate. Let A>0, then, since
At+A

W j v{u)du
A(t+aY -

we have for A small

on (W'}é%)zy(t)a. (A2)

Using (A1) we have

Mt N 1
n —H(t—)— lﬂ(] + —) Fl: , 1=1, . . . m. (A3)

Thus by combining (A2) and (A3), an estimate of y(t) is given by

il

it p)!

(Ln~

t.1¥) ) ) 1
2 n(tt]T”]""’m'
(R4}

B i
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From the data we obtain n; = 139, n, = 138, n3 = 57; the Y|—5 — »
/

i=1, . . ., m, are given in the table below.

t )
378 9.52 x 1076
799.5 8.33 x 107°
2,368.5 5.75 x 1076
Table A3.

Estimated failure rate.

Table A3 indicates that more smoothing is required. Using once more (A1) we

get

H(t; ) (g #1){n+1)

i=2, . . ., m
;) L e

and, if we call F{t) the smoothed failure rate: we get

Hit. )
n —:rl:g*}
Wty i LU
e ) = =g % .. m
il -ty 0

and thus
(‘Ln (ng.*) (ngn) |

N, 4N
~, i-1"4 ] .
ylt; )~ ——m—————— , =2, . . ., m
i-1 ti-tio

From the data the numerical values of'Y(ti_]), i=2, . . ., m are computed

and given below.



1 _E ',\':!t]
756 1.65 x 1072
843 1.07 x 107
Table Ad.

Smoothed estimated failure rate.
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APPENDIX B

a4
Initial Guess &0 for @ and Initiai Guess B, for 8

From (A4) we get

1

“i(ti-ti_])zm , =1, .. ., m,
)
and hence, since §(t) = X/(144t),
t. it
e
"i(ti'ti-1)== —-—_?f——_—_-’ i=l, . . ., M (B1)
This can be written as
<y =6?x1., i=1, . . ., m, (82}

where ¥; = A "i(ti'ti-l) -1, x5 = (ti-1+ti)/2 and < > is used to denote

Since (B2) is a typical regression model, a reasonable guess for

expectation. ;
& is
R :
L Xs¥s :
A o i=] 1 E
%0 m 2 ;
L% ¢
i=1

]

or, equivalently,
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"
But this guess depends on A. Since y(t) = A/{1+at) and y(0)=1, a reason-

t +t
able guess for 2 is, 90 = ?{ 02 1

= 1/(n1t1) because this is the estimated
failure rate at the smallest t-value available (See A4). Therefore, we

recommend as initial guess

2 1 i ot 2-t2 y-2 Tt |
Mty m i A LA

m
2
1.; (ti*ty)

.

(B3)

8‘0=

Next we discuss the initial guess EO for @. In this case the model is v(t) =
X/(1+ut)(1+8) and we have a relation analogous to (Bl), namely

' 2

)]+B

(] a{"i-]"ti}‘
| ‘e
"i(ti'ti-l):’___ , i=1, . . ., m.

Again, this can be written as

A
)(-.|+B

<> = , i=1, . . ., m

[ Bt

where y, = b "i(ti'ti-l) and x; = l+a | ———, which corresponds to a re-

gression model of the form

or




ey
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Taking logarithm we have

% €5

n y;~ (148) 20 x; + on (1 + —}TB)
Xes

1

or

n y; -+ (1+§) g xg + :+§ .
X
1

Thus we have a weighted least sgquares problem, namely

lnyi-znxizﬁlnxi*-si

2
where §; = ei/xiHB and var(di).:: Gz/yiz. Hence

&2
R i; y;"(n y; - 2n X;)en x;
By ©

m
2
{y: 2n x.)
1‘; ! 1

-~ a 2 .
Since 8y depends on a and A, an obvious guess for these parameters are
"

the maximum 1ikelihood solutions & and X obtained from using the model y(t) =

A (1+at). Thus we shall use for initial guess of &

i=1

m y (t, J+t.)] (t; ,+t;)
v . 2le0 1A - - g i1 7i7 q —i-1_"i7
LR ” (ti ti_l)) [ln .lx ni(ti tM) n 1+ 3 ’Jm(]m > }

g -
° s R :2
A ni (t‘i-ti-]) n T+ —

[, -

m
)

i=1

(84)
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The programming for obtaining the numerical solutions was done by

P.A. Renard. He also made numerous graphs which helped me in orienting the
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