SUBASSEMBLY BOWING EXPERIENCE IN EBR-II

J. H. Bottcher and G. L. Hofman

Prepared for

4th SMERT Conference
San Francisco, CA
August 15-19, 1977

This report was prepared as an account of work
conducted for the United States Government. Nothing
in this report may be cited as evidence of any
United States governmental approval of opinion,
recommendation, or any other form of evaluation,
judgment, or statement of fact or opinion of any
individual, group, or organization.

ARGONNE NATIONAL LABORATORY, ARGONNE, ILLINOIS
operated under contract W-31-109-Eng-38 for the
U. S. ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION
The facilities of Argonne National Laboratory are owned by the United States Government. Under the terms of a contract (W-31-109-Eng-38) between the U. S. Energy Research and Development Administration, Argonne Universities Association and The University of Chicago, the University employs the staff and operates the Laboratory in accordance with policies and programs formulated, approved and reviewed by the Association.

MEMBERS OF ARGONNE UNIVERSITIES ASSOCIATION

The University of Arizona Kansas State University The Ohio State University
Carnegie-Mellon University The University of Kansas Ohio University
Case Western Reserve University Loyola University The Pennsylvania State University
The University of Chicago Marquette University Purdue University
University of Cincinnati Michigan State University Saint Louis University
Illinois Institute of Technology The University of Michigan Southern Illinois University
University of Illinois University of Minnesota The University of Texas at Austin
Indiana University University of Missouri Washington University
Iowa State University Northwestern University Wayne State University
The University of Iowa University of Notre Dame The University of Wisconsin

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Energy Research and Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately-owned rights. Mention of commercial products, their manufacturers, or their suppliers in this publication does not imply or connote approval or disapproval of the product by Argonne National Laboratory or the U. S. Energy Research and Development Administration.
SUBASSEMBLY BOWING EXPERIENCE IN EBR-II*

J. H. Bottcher and G. L. Hofman

Argonne National Laboratory
Argonne, Illinois 60439
USA

March 1977

*By acceptance of this article, the publisher or recipient acknowledges the U.S. Government's right to retain a nonexclusive, royalty-free license in and to any copyright covering the article.
1.0 Introduction

Subassembly bowing large enough to cause minor handling problems were first observed at EBR-II shortly after its conversion to an irradiation facility in 1965. Several designs of subassembly were then used to accommodate different types of fueled and structural experiments. This variability in design caused, and still causes a rather heterogeneous core with respect to subassembly stiffness and temperature gradients. Post-irradiation bow on subassemblies has always been greater than any lack of straightness before irradiation. Subassembly bow measured after irradiation is the product of a complex combination of temperature and neutron dose gradients in-reactor, as well as the result of the subassembly design and inter-subassembly mechanical interactions (which control the dynamic effects of swelling and radiation-enhanced creep). Unfortunately, none of the computer codes developed to model bowing in large clusters or uniform LMFBR cores can be applied with confidence to the EBR-II core, because of its unique and varying mixture of different subassemblies. For this reason, each bowed subassembly has been considered separately in an attempt to determine what factors dominate in causing bow.

1.0 Bowing Experience

Difficulty in discharging an irradiated subassembly at EBR-II is often the first indication that it has bowed in-reactor. Operators experience difficulty either in locating the handling tool onto the top of a subassembly or in having to apply greater than normal forces to insert or remove it from the core and storage basket. The following paragraphs describe five of the bowed subassemblies and the handling problems they caused. Throughout, bow is defined as the maximum deflection of the axis of a hexagonal subassembly duct from a line connecting the top and bottom of the duct. For clarity, Fig. 1 shows the major components of a typical EBR-II subassembly. Table I lists the moment of inertia (I), the section modulus (Z), the irradiation dose in dpa, and the measured and calculated bow for the five subassemblies.

The first major difficulty was encountered with an experimental subassembly that contained a 52-mm diameter nickel-200 solid rod in a standard duct. This row 7 subassembly exhibited some signs of bowing when removed from the core, but in order to remove it from the storage basket the load limit of the handling mechanism had to be overidden. The bow was 1 mm, which according to calculated clearances, should not have caused a major problem with interference in the storage basket. The primary difference between this subassembly and a standard one was its high rigidity, however, which would create a higher removal distance if interference occurred. The cause of bow was from differential swelling in the nickel rod. (1)

Two Type 304 stainless steel reflector subassemblies (from row 8 and row 10) showed more than normal core and storage basket handling loads but less than the limit; they were 1.8 mm and 5.1 mm respectively (see Table I and Figure 2). These subassemblies were equipped with standard hardware but contained stacked hexagonal blocks of stainless steel.
were then used to accommodate different types of fueled and structural elements. This variability in design caused, and still causes a rather heterogeneous feat with respect to subassembly stiffness and temperature gradients. Post-irradiation bow in subassemblies has always been greater than any lack of straightness before irradiation.

Subassembly bow measured after irradiation is the product of a complex combination of temperature and neutron dose gradients in-reactor, as well as the result of the subassembly design and inter-subassembly mechanical interactions (which control the dynamic effects of swelling and radiation-enhanced creep). Unfortunately, none of the computer codes developed to model bowing in large clusters or uniform LMFBR cores can be applied with confidence to the EBR-II core, because of its unique and varying mixture of different subassemblies. For this reason, each bowed subassembly has been considered separately in an attempt to determine which factors dominate in causing bow.

0 Bowing Experience

Difficulty in discharging an irradiated subassembly at EBR-II is often the first indication that it has bowed in-reactor. Operators experience difficulty either in locating the handling tool onto the top of a subassembly or in having to apply greater than normal force to insert or remove it from the core and storage basket. The following paragraphs describe five of the bowed subassemblies and the handling problems they caused. Throughout, bow is defined as the maximum deflection of the axis of a hexagonal subassembly duct from a line connecting the top and bottom of the duct. For clarity, Fig. 1 shows the major components of a typical EBR-II subassembly. Table I lists the moment of inertia (I), the flexion modulus (Z), the irradiation dose in dpa, and the measured and calculated bow for the five subassemblies.

The first major difficulty was encountered with an experimental subassembly that contained a 52-mm diameter nickel-200 solid rod in a standard duct. This row 7 subassembly exhibited some signs of bowing when removed from the core, but in order to remove it from the storage basket the load limit of the handling mechanism had to be overridden. The bow was 3 mm, which according to calculated clearances, should not have caused a major problem through interference in the storage basket. The primary difference between this subassembly and a standard one was its high rigidity, however, which would create a higher removal resistance if interference occurred. The cause of bow was from differential swelling in the nickel rod.

Two Type 304 stainless steel reflector subassemblies (from row 8 and row 10) showed less than normal core and storage basket handling loads but less than the limit; they were 1.8 mm and 5.1 mm respectively (see Table I and Figure 2). These subassemblies were designed with standard hardware but contained stacked hexagonal blocks of stainless steel. The reflector blocks were 0.24 m long with rounded ends and with 1.3 mm radial clearance, it allowed for considerable freedom of movement. Postirradiation examination indicated the reflector blocks did not influence bowing. Another subassembly, which was designed with a pressure pulse, contained a thick-walled tube welded into a standard duct. This subassembly caused a core interference problem while attempting to insert a new.
control rod thimble in an adjacent position. Postirradiation examination indicated a 1.9 mm bow. This bow was not large by comparison to some subassemblies, but was twice that of other subassemblies with the same design (see Table I for parameters).

In only one case has the bowing of a subassembly, in this instance a source-storage thimble in row 8 of the reactor, been severe enough that its removal from the core required overriding the design load limit (2.2 KN). Based in part on the assumption that radiation-enhanced creep would appreciably relax the thermal and swelling-induced bow while at power, permanent bow was calculated to be about 5 mm. The method of calculation is given in the next section. It was further estimated that the required removal load could be as high as 3.7 KN. The thimble was removed with a special removal adapter at a 3.1 KN load. Because of its known stiffness (I = 6.66 x 10^5 mm^4) the thimble was not inserted in the storage basket.

The important fact about these bowed subassemblies was that the residual bow appeared to be independent of design. However, the design stiffness plays a major role in the degree that it affects reactor operations.

3.0 Analysis

Two assumptions were made in separately analyzing the permanent bow of the four Type 304 stainless steel in Table I; first, that residual bow was the response of the subassembly duct to the temperature environment at full power; second, that the subassemblies were bound by semi-rigid neighbors, i.e. radial movement was limited to the design clearance (0.6 mm) at full power. The second assumption is somewhat debatable but probably reasonable because near neighbors are inherently more rigid due to their second neighbor support.

One of the major problems in bow analysis is establishing the core environment with confidence. In EBB-II the flux gradient is established before and after each reactor run at four section points for each subassembly; temperature gradients are not as well characterized. For this analysis a thermal hydraulics code, "CLUSTER", (2) was specially used to calculate temperatures at sixty radial locations for each of nineteen axial locations along a subassembly duct. This code assesses the subassembly and its six immediate neighbors as to radial heat transfer. One or more of the six neighbors to a particular subassembly are often exchanged with another subassembly having a different operating temperature; this substitution can increase uncertainty in bowing analysis. The subassemblies considered here had no or very few neighbor change-outs during their life. Figure 3 illustrates the thermal and flux gradient for the four Type 304 stainless steel subassemblies analyzed. Also included in this figure are the gradient and bowing directions with respect to each other.

With the thermal gradient established the resultant stress conditions were determined from elementary beam theory. The gradient was assumed to increase linearly over the axial length of the core. Table I lists the calculated full beam deflections due to this temperature (AT) for four Type 304 stainless steel subassemblies. Note, the similar magnitude
In one case has the bowing of a subassembly, in this instance a source-storage box in row 8 of the reactor, been severe enough that its removal from the core required overriding the design load limit (2.2 KN). Based in part on the assumption that radiation-enhanced creep would appreciably relax the thermal and swelling-induced bow while at power, permanent bow was calculated to be about 5 mm. The method of calculation is given in the next section. It was further estimated that the required removal load could be as high as 3.7 KN. The thimble was removed with a special removal adapter at a 3.1 KN load. Because of its known stiffness ($I = 6.66 \times 10^5$ mm4) the thimble was not inserted in the storage basket.

The important fact about these bowed subassemblies was that the residual bow appeared to be independent of design. However, the design stiffness plays a major role in the fact that it affects reactor operations.

3.0 Analysis

Two assumptions were made in separately analyzing the permanent bow of the four 304 stainless steel in Table I; first, that residual bow was the response of the subassembly duct to the temperature environment at full power; second, that the subassemblies were bound by semi-rigid neighbors, i.e. radial movement was limited to the design clearance (0.6 mm) at full power. The second assumption is somewhat debatable but probably reasonable because near neighbors are inherently more rigid due to their second neighbor support.

One of the major problems in bow analysis is establishing the core environment with confidence. In EBR-II the flux gradient is established before and after each reactor run at four section points for each subassembly; temperature gradients are not as well characterized. For this analysis a thermal hydraulics code, "CLUSTER", was specially used to calculate temperatures at sixty radial locations for each of nineteen axial locations along a subassembly duct. This code assesses the subassembly and its six immediate neighbors as to radial heat transfer. One or more of the six neighbors to a particular subassembly are often exchanged with another subassembly having a different operating temperature; this substitution can increase uncertainty in bowing analysis. The subassemblies considered here had no or very few neighbor change-outs during their life. Figure 3 illustrates the thermal and flux gradient for the four Type 304 stainless steel subassemblies analyzed. Also, included in this figure are the gradient and bowing directions with respect to each other.

With the thermal gradient established the resultant stress conditions were determined from elementary beam theory. The gradient was assumed to increase linearly over the axial length of the core. Table I lists the calculated full beam deflections due to this temperature rise (AT) for four Type 304 stainless steel subassemblies. Note, the similar magnitude of the residual bow. By applying to radial movement limit assumption the peak outer fiber stresses ranged from 15 to 70 MPa for a 0.5 and 2.5 mm bow respectively. These stresses are expected to be the driving force for irradiation enhanced creep strain.

The swelling (AS) contribution to bowing is a function of the dose, temperature and stress state. In order to assess the maximum effect of swelling on bow, the relationship for isotropic differential swelling was used.
\[\Delta S = S_1 - S_2, \]
\[S_1 = 1.76 \left(f_1 - 3.4 \tanh \frac{f_1}{3.4} \right) \exp^{-a(T_1 - 480)^2}, \]

where \(\Delta S \) is in the differential swelling, \(f_1 \) is fluence in units of \(10^{22} \text{ cm}^{-2} \) \((\text{dpa} \leq 5 \times 10^{-22} \text{cm}^{-2})\), \(a = 1.60 \times 10^{-4} \text{ C}^{-2} \) and \(T_1 \) is temperature. The potential swelling contribution is listed in Table I in the \(\Delta S \) column. In the two cases where 30 and 40 mm bow was predicted the effect of swelling clearly did not materialize – either due to the effect of stress on swelling; or, more likely, due to the relief of differential swelling by irradiation-enhanced creep. Even when comparing the calculated and measured values of residual bow (see Table I) the amount of bow clearly correlates well if the subassemblies are assumed to be stress relieved at full power, residual bow being representative of the negative thermal gradient.

A creep-strain \((\epsilon)\) relationship developed from stressed specimens of Type 304 stainless steel irradiated at 400°C is \(^{(4)}\)

\[\epsilon = B f + D f \]

where \(\epsilon \) is the stress \((\text{Pa})\), \(f \) is the dose \((\text{dpa})\), \(B = 1.43 \times 10^{-12} \text{Pa}^{-1} \text{dpa}^{-1} \) and \(D = 1.80 \times 10^{-9} \text{Pa}^{-1} \). The residence (dose) required to achieve the strain necessary to relax the stress due to thermal and swelling gradients was calculated and found to be much less than their respective end of life dose. Figure 4 illustrates the creep strain that can be achieved as a function of stress for two different dose levels, 5 and 15 dpa.

4.0 Conclusions

In-reactor bowing of subassemblies has caused some handling difficulties at EBR-II, the extent of the problem increasing with the subassembly stiffness. Analysis of four particular bowed subassemblies with respect to their core environment and structural design has indicated that residual bow is primarily the result of radiation-enhanced creep during irradiation.

References

<table>
<thead>
<tr>
<th></th>
<th>L, mm</th>
<th>Z, mm</th>
<th>DOSE, dpa</th>
<th>Bow, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 8 Reflector</td>
<td>9.13 x 10^4</td>
<td>3.14 x 10^3</td>
<td>11.6</td>
<td>+1.8</td>
</tr>
<tr>
<td>Row 10 Reflector</td>
<td>9.07 x 10^4</td>
<td>2.70 x 10^3</td>
<td>9.7</td>
<td>+5.1</td>
</tr>
<tr>
<td>Experimental Reflector</td>
<td>4.50 x 10^5</td>
<td>1.68 x 10^4</td>
<td>7.0</td>
<td>+3.3</td>
</tr>
<tr>
<td>Source Thimble</td>
<td>6.66 x 10^5</td>
<td>1.97 x 10^4</td>
<td>31.0</td>
<td>-5.7</td>
</tr>
<tr>
<td>Experimental Subassembly</td>
<td>1.11 x 10^5</td>
<td>7.2 x 10^3</td>
<td>37.4</td>
<td>-1.9</td>
</tr>
</tbody>
</table>

* + = Bowed toward core center.
Figure 1. Schematic of an EBR-II Subassembly.

Figure 2. Measured Hex-duct Bow of Two 304 Stainless Steel Reflector Subassemblies.

Figure 3. Radial Temperature and Flux Gradients and Relative Directions of Gradients and Bow of Four 304 Stainless Steel Subassemblies.

Figure 4. Irradiation-enhanced Creep Strain Versus Stress for 304 Stainless Steel at 400°C.
TOP END FIXTURE

HEX-DUCT-304SS
(1.68 m long x 58.4 mm dia x 1.0 mm wall)

CORE (0.34 m)

LOWER ADAPTER