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ABSTRACT

The dynamical assumptions ﬁﬁderlyiﬁg the Slater and RRK
classiéal—mechanical-theories of.uniﬁdleculér reaction rates
are investigated. The predictions éf these theories for several
nonlinear, triétdmic; harmonically-bonded molecular -models are
comparea with the results obtained from the inﬁegration of‘thé
ciéssiéal equations of motion; The accuracy of the.small-vibration
and weak-coupling éséﬁmpti&ns are found to break down at_énergies
above about one quérter of a,boqd dissbciatipn energy. Nonethéléés?
the small-vibration approximation prediéﬁs reaction frequencies in
good agreemeﬁt-with the exégt‘resqlts for thg médels.i The effects
of rotation én’intramoieculaf energy ekchange are examined and

found to be significant.

1. INTRODUCTION
W\/\NV\/\/VVV\;'\/\/\/\I

Some widely applied theories of thelrates of thermal unimolecular

decomposition and isomerization of polyatomic molecules!™ 6 rest upon the assump-

tion of noninteracting ha;ménic vibrations for.their'traétability.i In either a
Aclaséiéal or quahtum—hechanical formulation, this assumption leads to theAfamiliar7.
sepératioﬁ Qf:tﬁe total nuclear.Hamiltonian into avsum of mutually commuting
no;mal—que,-harmonic-oscillator-ﬁamiltoﬂians Qhose eigenvalues, the normal-~

mode enérgies, are constants of the motion. In ﬁréctice,.the normal-mode
frequencies required for an a priotiiﬁynamital attack on the;prdbled:of uni-
'molecular processes of energized moiecdles.are obta;ned dire;t}y from spectyo;

- scopic observation or by extrapolation from spectroscopic results for similar



mélecules. Since these data can be expected to describe the potential—ene;gy
surface best in .the immediaté‘vicinity of the minimum, it iS appropriate'to

ask tq what extent such a harmonic normal-mode trea;ment can describe thé dynamics
of a real, energized molecule at the éubstantially higher ehergieé usually

- requirgd for it to undergo dissdciaﬁién’or.isomerizatioﬁ.

Several'simple potential-energy expressions have beeﬁ used}to fit
spectroscopic data.8 . In this paper we employ the simplest of these'expressions,
namely, the "céntral force field" (hereinafter'désighated CFF) for its relative
ease of calculation. The harmonic CFF model for the potential energy is a
diagonalizeﬁ quadratic form intphe interatomic distancés for each pair of atoms,
whether these are "bonded" or "nonbondedﬁ in the usual valence sense. Although
harﬁonic-inAthe bbndAstretches; in the case of nonlinear molecules- the harmonic
CFF model leads to interactioﬁ térms when the energy isAexpaﬁded.in the normal
mode displacements. Thps;'aﬁ(iﬁportant result is thét in both the classical and

,qﬁantum—mechanical Harmonic,treafmenté oflmqlecuiar Qibration, the normal-mode
ene;gies‘are coﬁstaﬁts of the mo;ion only in the limit of infinitesimaildisplace—
ments of the atoms from't%eir equilibfium geometry; Sincé in one version of the
élaéer unimolecular réfe theoryg.itbis assumed that the normal—méde energies
are rigoroué.constant? of the motion even when vibration amplitudes approach
Yalues-characteristic of .the reaction thréshold, in Sections ?.l.l.—?.l.&. we
assesé the effécts of deviatidn.from.the small-vibration approximétion (SvA)

~thch»are included in the harmonic CFF model. :In the Slager treatmerit,9
reagtiéﬁ ocecurs wheﬁ'some-éritical coordinate (of‘cobrdinateslo) is strefched
or compressed to-a critical_uélue.- The reaction rate- depends in part'ubon the
frequency with which the eritical coordinate attains its critical value. In

Section 7.1.5. we determine the sensitivity of this reaction frequency to the



breakdownAof'the SVA. In Sectioﬂ 7.2, we investigate tﬁeAperturbing,effect
of rotation;

The Rice-Ramsberger-Kassel (RRK) theory2 of ﬁnimolecular‘decompositioﬁ
considers molecules to be sets of harmonic oséillato?s coupled together-étrongly
enough to allow energy to flow freely betwéen them But wéakly enough that the
totai vibration energy is given by the sum of the oscillator energieé.ll

'Recently; éxperimental evideﬁce'has been aécumula;ing which chéllenges
the validity of these aSsﬁmptions. _It‘incluaes the resﬁlts of vibronic‘level
fluorescence,lz crossed molecuiar beaﬁs,l3 mass spectrometryl4 and infra;ed,
-laser augmented decémpositioﬁs.lsb In the presént paper we make a direct,teét
of the dynamical assqmpﬁions just mentioned against classical trajectory calcﬁﬁ
lations of harmonic CFF .model molecules. The osciliétofs which form the basis
".for the originai'KaESel theqry,were defined merely as "harmonic degrees éf
freedon".1® The term "oscillator" cﬁuld conceivably apply to the interatomic
p&ndsAor to the normalAmodés;‘eagh of these intefpfetationé is examined here.

6

Marcus' extension” of RRK théorf is a purely phase-space theory dealing
with statisﬁicél enéembles of energized‘ﬁolecuiar systems. ItAmayjbe applied.

to reacting systeﬁ where either the energizing-process'or.the subéequgn;~uni;
‘molecular dynaﬁics (preferably both) populate the molecular states statisticéll&.
-Furthermore, the statiétical disﬁributioﬁ 6f states must be ﬁaintained even
under the perturbation of depopulation by reaction. Thﬁs'a sufficient condi~
tion for tﬁe maintainence of a statié;ical‘distribution is thg RRK aésumpti&n

of free flo& of energy among the molecule's osciliators. (This would become

a necessary condition,lif the ‘energizing process biased the reSultanﬁ.initial-
'molecular,étates.) This intfamoieculaf energy flow'should be more répid than

any reactive event in order to avoid non-RRKM behavior. The significance of

“this free flow will be examined in Section 7.



We limit oursélvés to;the simplest sysﬁeﬁ of intérest in unimolecular.
decomposition studies, naﬁely, the;triatpmic.mélecq1e., Althdugh“the equations
of motion of general three-body systems cannot be solved anaiytically in either
classical or quan;um—mechapiéal formulatioﬁs;lthey yield readiiy to numerical
solutioﬁ in the classical case, and progress hés been made in the solution of
the quantﬁm problém.l7» It should be noted that an abéu:ate quantum—mechanic#l

solution is not nécessary for the verifiéation of the comservation of dynamical
variablés. :For conservative systéms, the correspondence ﬁrinciple insures tﬁat
‘a dynamical variable is a qUantum—mechanical éonstant of the motion if, and only
if, it is a classical.constaﬁt of ‘the mofion as_well.lg‘ Thus, thetclassical
‘atomic trajecfory calculatibns Qe report here suffice to test the'cons;anéy of
normal-mode energies assumed in Slater's thedr&hand thé conétaﬁcy of ;he‘sum of
the energles assumed in the weak-coupling theories, even though interference
might lead to quantum effects in other dynamical éttriButesf.
We analyzé the zerd—point—enérgy dyﬁamics (Section 7.1.1;) of CFF.ﬁodels

of several non-linear molecules (sz, DZS, H,Se, NOé, S0, and FZO‘and ClNIBO)

as well as the higﬁ—éﬂergy-dynamics (Séctions 7.1.2.—7.1.4.) of two such models
to test the assumptions of the theories mentioned above. The first high-energy
"model molecule, désignated’A3,'is a somewhat'artificial one consisting'of thfee
point pafticles of gQual mass connected‘pairﬁise by thfee identical harmonic
“"bonds". -In their eduilibrium.geémetry, fhe mass points are thus located.at the
vertices of an equilateral triangie. (This D3h symmétfj forces the degenéracy'
_of A3's‘bends and asymmetric strefch vibration modes.) The use. of a dimeﬁsi;n—
.less form-forlthe equations of wotion enables one to interp;gt thelreéults in - -
térms.ofvan infinite.nqmber:pf sets‘of:model parameters. For simplicity,Awe
shall diécuss A3 in terms‘of‘only qné such set, wherein the ﬁaséés,éli corresppud
to 166,‘£he bond forcé constants and equilibfium,leﬁgtﬁs ali'éorrespond'ﬁo the

.19 : . - L .
' 0, molecule, and the dissociation energy, 2Dg, is taken to be twice that of



molecular oxygen. The.second-highFenergy harmonic CFF model is a more realistic

18
one for nitrosyl chloride, C1N O, wherein the experimemtal~moiecular,structurezo

(see Fig;’Z), har@ohic CFF force conétants,z1 and dissociation energy22 are

used. The model and molecular parameters of the molecules investigated in

greater detail are given in Table I.

" . 2. PREVIOUS CLASSICAL UMIMOLECULAR
'VVV)/V\/VVVV\:’VVV\;’V\;WV\;WV\/V\:'VW\:

TRAJECTORY STUDZIES
VANANANNNAANANAN

Thieie aﬁd'Wilsqn23 ﬁsed classical-mechanical trajectory calculationé

to indicateuthé impropriety of the.application of the SVA to in-line vibra;ions:
of iinear‘anhafmdnic moleculés. When chemicallyAinteresting energieé were
introduced infb én anharmonic model foF COZ’ the rig&rqu'solution of the equg_
tions of motion gave normal coordinates which were aperiodic functions:of,time.
'Normél—modé energieé were not repoFted, but the failure of the SVA can be -
.exﬁected_to have been reflected by their noncoﬁs;ancy. |

.In'the firét of his pabers ;hAthé classical-mechanica; calculatién of

24a

triatomic dissociation rates, Bunker investigated the kinetics of three

classical harﬁopiq molecular'models, two for linear N,0 and one for bent 0,.
His results indicate that these models apparently have metrically'dgcorﬁposable25
phasé,ééaceS‘associafed with non—ergodicAbehaviourl‘7 appear to be aimoét periodic
fuﬁc#ions'qf time, and many tfajeétories with energies in excess of that required
for dissociation failed to react_during the observation time (about 50 symmetric
stret;h pgriods)} This.ﬁoﬁ—ergodicity pérsisted,when rotation was incluaed in

24b 26 T agreed well with

‘the model. For these models the Slater frequency factor
k;, the high—pressure 1imit of the rate constant obtained from the Monte Carlo
tfajectory'gé1CUlations. This implies that the Slater treatment accurately

predicts the distribution of model lifetimes as fhey'become.arbitrérily short.



S,

' Hung.anaIWiieon27 inQestigated the eléssicel dyﬁamics of a rotafing
harmonic CFF model'for’COZ. “‘Since the model was constrained to linearity,
the nonrotating dynamics were-strictly harmonic (see See;ion'4;2.); that is;
they followed the SVA predictions ae all energies. Hung and Wileon found that
rotation did not alter the harmonic‘vibrétions'significaﬁtly. Such behavior
eppears to Qalidate the essumption implicit in the Slater and RﬁK theories‘

-that the dynamic efforts of v1brat10n—rotat10n interaction may be 1gnored

in Sec. 1,
however, as we shall see/'nonllnear harmonic CFF models do not follow SVA.
dynamics. The'importance of the vibration-rotation interactionAin the nonlineaf
models might thus be expected to be greater than that 1nAthe models constralned
to 1lqear v1brat;ons. In the same paper, Hung and Wllson27 found the effects
of rotation on an anhatmonic linear triatomic model were severe. Hung's
extensiovn uf thae_inveétigétiOn to z-atom linear models?8 confirm.thelsensi—
tivity of anhermonic Qiﬁretion dynamicé-to rotation.

'Bunker.ena coﬁofker524c-e have analyzed the thermal and hot-atom
umlmolecular 1seﬁeflzatlon and. decompostlon of 3- d anharmonnc CH NC, concludlng
that the v1brat10na11y—rotatlonally excited molecule is probably not RRKM. 6
In other words,:locallzed v1bratlonal energy does not redistribute itself among
all vibration mode$ rapidly cpmpared with react;on rates. The energies used
in those studies were weilAin excess of the isomerization (Cﬁ3NC_+ CHSCN)

: . -1
threshold of 38 kcal mol , and the time evolution of the model's normal-mode

24c that the

‘energies'or coordinetes were not reported. Whiie Bunker indicates
A hoteatoﬁfinﬂuced isomerization ié»controlied more by rotation than vibration,
still the feilure-of vibrational energies to circulate freely thfqughout this
highiy energized anharmenieAmodel euggests that its reactions are non—ergodic,
et least ohAa reaction'time.scaie. The dbservation24d df'RRKM—like decomposition
' (CH4NC H+CH2ﬁC) implies.that theAvibration moees uneogple& from the isomeriza-

tion ceordinate may well be exchanging energy among themselves rapidly as

required by the RRK? model.



3. CLASSICAL-MECHANICAL EQUATIONS OF MOTION

Let'mi and}% be the masses'and.position vectors of the nuclei of a
triatomic molecule with respect to its center. of mass. If }1 and’)‘<3 are taken

to be the coordinates, the kinetic energy for the system is given by

-3 o : o
vhere M =»Z:: m_and P, © are the momenta cionjugate29 to X (i = 1,3). The
i=1 1 ~i . ~i

potential energy fﬁnétion, in the harmonic model comnsidered in this paper, is

given by

‘ 3. . 2 ' - :
V =%), k( -1r®) , ' : - (2)
1 i - i=1 i i 1 .

o

VvV =

i

1

where k;‘are,the CFF constants, and r_ are the interatomic distances, (see Fig.1l).

i . i
The V are'functions.of thée coordinates but not the momenta. The Hamilton
l .
equations of motion are S
X, = [, +m)F, /m) - RI/M . o ‘ I €
X, = [(m1 + rllf,,_)}j3/m3 - P 1/M

and

, (3V/3t ) (3t /3% ).
i j=1 o J j- i

4. SMALL VIBRATION APPROXIMATION
AN ANANAVNAAANNANAAANAANANANNN

" The smail—vibration approximation (SVA) consists of the assumption
that when the many-body equations of motion corresponding to Eqs. (3) and (4)
Py

are expanded in the atomic displacement coordinates, Ki‘; x,eQ, terﬁs of higher

order than lineaf in these coordinates may be ignored. Under this assumption,



the normal-mode coordinates are related to the atomic displacement ones by

linear transformatiqns,which can‘befuééd to decouple the équa;ions of motion.
Iﬁ cén be shown>? ‘that in non-linear molecules the SVA ofteﬁ leads to a violation
of angular momentum conservation for'non~vanishing‘vibration amﬁlituaes; This
violation persists even in nonrotating molecules, but it.obviously becémes
-severe unless the equilibrium coordinates follow the molecule as it rotétes.

This is achievedlby attaching to the tfiatomiq system a body-fixed system of

.coordinates. Since this molecule is non-rigid, the choice of. such a coordinate

31

system is not unique.. One such choice is to utilize the instantaneous prin-

cipal axes of inertia of the molecule as coordinate axes. ‘In this paper we

will use the Eckart'rotéting coordinate system described below.32

4.1, ILckart Rotating Coordinate Syslem
VAV VLV Ve VW Vo WV VL Vo VAV Ve Va VL Vg VW Vi W Vi W Vo Vi Vi VAV W VA VA W Vo VL VAW

The position vector of the i étom‘in.the nonrotating, center-of-mass

th
e / . .
system, is denoted by &i. The same vector in the rotating Eckart center-of-mass
coordinate system (hereinaffer referred to simply as the Eckart system) is
denoted by &if The Euler angles33é Y, 8, ¢ of the‘Eckart system with respect

to the laboratory-fixed one, and the matrix g! which transforms the components

-of %i into those of X via

X, = LJ %-'= Lj' %g L)‘X;;‘ | ' | : A- o | o (5)

1% S | T~y

are determined by the Eckart condition33b

Lom G STxg)=0." | : (6)

~ m,
i=1 % *
The ﬁ.eq in Eq. (6) are the vectors, fixed in the Eckart system, which locate
1 . , . * -

the equilibrium positions of the nuclei. We require in addition that the vector
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glbé normal to the molecular plane. _ The angles. 6 and ¢ ére‘thenAﬁerely

- the spherical polar ‘angles .of the normal to the molecular plane in the laboratory-

fixed system of reference. If wé define an intermediate coordinate system in
which ) .
X1 = U_e ~U¢2\(,i’ 7

then from Eqs. (5), through (7) we obtain

arctan (n/d),'A : 4 - 4.(8)

y =
where
'§" eq eq A
- \ 3 < — e
n L:i mi(xi Yi Y Xi) 9)
and
: <31 e ‘e ’ '
o= q x- qvy-
d La mi(xi_ Xi f vy Yi)' , _ (10)
i=1
' o e . - . eq _eq
The proper quadrant for ¢ is ‘chosen to maximize the quantity x; * %X;° + x5 ° X3
thereby insuring that -the %iAlie_near and not opgosed to the ziq .

4.2. Normal Modes and Enep&%es

The details of the eigenvector-eigenvalue problem for the determination
" of molecular vibration frequencies and normal modes of motion are treated in

33c and other standard texts. 1Intramolecular vibration.

Wilson, Deciué, and Crosé
-potentials aré given in terms of a set of infefﬁal coordinates, Si' In the
present case{ the Si éfe_the three ;nteratomicfbond disp}acements, ri‘—.f:q
and according to Eq. 2, V.is a linear combination of. the squares of thesé.h

" quantities. The relation between the Si and the %_'is givén by
. 1 T

s, =[(xjf-x#)2.+ (&j_‘yk)Z]% _ [(x?ql_ XEQ)Z + z&;q _‘yﬁq)zl% = fi - riq '<1lj_
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 where i;.j,'k is a cyclic permutation of 1, 2, 3. 1In'the SVA, the linéar trans-~
formation lXj,-obtained fromIEq.Lll,which relates:the/atomic displacements
ki - xieq to the Si for infinitesimally small displacements from equilibrium

geometry is assumed to be valid for all molecular geometries. Thus, if S is
. . . 4"

‘a vector whose components aré the Si {i=1,2,3) and4R is a vector whose com-

ponents are the atomic dispiacements; X, - xleq, ¥y - yleqq and.x3'— x3?Q, the
‘relation
$ = M D (12)

is assumed to hold in the SVA for large displécements as wéll as small ones.

33 a linear. transformation Z_ may be found which relates the

Az

By the GF method,

internal coordinates to. the normal coordinates, Qi’ namely,

-1

Q = 5 am

L
.whgfe“g is the‘vector of normal coordinatés ‘éi,in terﬁs of.which, in the SVA,
'V.is still a iineaf combination of their sqﬁares and in addition T is a linear
combination of the squéresiof their time—derivaﬁives. - Solution of thelclassical

equations of motion for the.Qi gives
= 3 3 8 . 4
Qi(t) (Zei/li) cos (Ki t + 'i) B (14)

where €4 and 51 ére,the-normal—modé»energies and phase angles (both constants
of the motion in the SVA), t is time, and the eigenvalues Xi of the EE matrix

are related to the molecular frequencies.\)i by

EYRRLEOE | T 2

The normal-mode energies are :related to the Qi and Qi by

ei = % Ql + %AiQi, . ‘ c. P ' (16)
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and add up to-a total normal energy € which, in the SVA, is constant and equal
to the total‘vibration Enefgy E . Interatomic bond distances in nonlinear

molecules are quadratically related to the atomic displacements. The linear

relation [Eq. (12)) bet@eén‘the bond displacements and fhe actual atomic dis-
placerﬁents is in error at nonzero vibration amplitudes. This error causes the |
sum of the normal-mode energiés's'to differ from the total vibration energy E

in general. The -difference be;weén‘E and € will be.called the normai—mode

energy defect.

4.3, Reactive Excursion Frequencies
RV AVAY AV VWV Vo Ve W Ve VeV Ve P W VL Vo W Vo VL VAV VA VOV v VA VL VA VL VAV V)

" The frequency with which some chosen coordinate in a harmonic.molecule
‘attains a critical value is called the reactive excursion frequency (REF) for

that coordinate. This REF is Slater's "frequency of upzeroes'-'.1 In this paper,

eq
i

the‘critical coordina;es are takén to be the bond 1engths Si + r . There are
two sources of difference beCWegn bond distances calculated from an actual
internal motiqn'trajectoryAéﬁd from-the SVA via‘E§.14 and the inverse of Eq.12.
Both'are manifestétions‘of the same approxim;tion, and they cannot be discussed
éeparateiy with'rigor. First, therg is the &ariatioﬁ of the normal-mode energies
with time, w};ich résults in the ciivergence off-the sva trajectory from the correct one.
Sgcond,'as mentioned above, the SVA expfeéses bond displacemgnts as liﬁeér
éombinations of the componeﬁts‘of atomic displacements; The SVA rests upon this:
linear apbroximation té thé internuclea; distances. Without it, one cénnot make
the poteutial— and kinetic-energy functions be simultaneously sums of Square

terms of nofmél~mode coordinaﬁestand their time derivatives, respectively. As a f
freéult; the transformation sf theAequatiqns of motion into noncoupled,.normal—mode

equations .cannot be made.. Hence, the two effects mentioned are, in reality,

inseparable. However, for .comparison purposes, we consider these two sources-

~



13

of difference to be independent of one another. To achieve this separabiiity
we introduce the IVA model, whichumight*stand”forantermediate Vibration Approkif

mation (or, in view of the above discussion, the Inconsistent Vibration: Approxi-

‘mation). The IVA retains the linear relation'of the SVA between the’normai—ﬁode
and displacéﬁent coordinates; namely
-1 S . : o
D = M L Q ’ (17)
~ ~ , '
" but it uses the‘cérréét (honlineér) expression'(Eq.ll) tO'calculate the inter-
A.nuclear disténées. -Si from the R obtained from Eq.17 . 1In ghis way, we may
initiate a rigorous and an IVA trajectqry with equal normal-mode energies from
the same initial'molécular configuration.A The IVA makes the normal;mode potential-
energy_defect vanish initially. |
Bond-dis;aﬁces froﬁxthe'rigorous'trajectory and the correéponding SVA
and IVA approximéte trajectories are obtained a#»a:funﬁtidn of time. A counting
procedure determings the'frequencyAwitH wﬁich angiveﬁ bond distance achieves a’
criticél length, i.ef, the REF. 'In‘the limit of infinitesimalAvibration
émplitudes, the'rigorous, SVA, and IVA REF's are, of coufée, all equal..'fhe
REF's descriﬁed in Section 7.1.5 are ;btaiﬁed ffom long~time (rather thaniﬁﬁase)
averages over tﬁe rigbrqus ahd'approximate trajectories. - The "long" fime;
involved are no g?eate% thén 2-x lO”A12 seconds, a restrictidn dictated byvché
' aécuracy of . the numerical iﬁéegréfién ;sedg

5. MOLECULAR ENERGIES
IW'\/\M’\/\J'V\I'V\I%W\AJ'W aVaV)

It .is convenient to discuss molecular energies in terms of '"normal-mode .
energies", "Eckart energies', and "bond energies". The normal-mode energies

were defined and described in Section A.Z. The others are described below.
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5.1.. Eckart Energies

33d in terms

The total kinetic energy of the molecule canfbe expressed
of the coordinateé and velocities of the nuclei with respect to the Eckart.
axes and the éngdlar velocity w of these axes with respect to the laboratory-

fixed ones. This expression .is
T = T .+ T + T , . @8y

where T , T , and 'I‘vr are the kinetic energies of vibration, rotation, and
v 'r -

vibration-rotation interaction (i.e., Coriolis energy) respectively, given by

. ‘ = 1 X 4 . ' ’ '
Tv 4:§Z WXy wi’ ’ - ' (;9)

=1 4 v

. 3 ' L

= 1 : .

SR CUE e kw0
- T eq

and . T, = ow & m LGy - );X %1 o (21)

" In terms of the Euler angles ¥, 6, and ¢, the vector  has the Eckart system

" components -
W, ‘= 0 sin ¢ - ¢ sin. O cos Y
w, = 10 cos ¥ + ¢ sin 8 sin ¥ o (22)
w = $ cos 6 + @.
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The somewhat more complicatéd expressioné for the Euler angular velocities in
terms of atomic .positions and velocities follow straightforwarhly from differ-
entiation of the ‘expressions for the angles themselves given and implied in -

Section 4.l.

5.2 Bond Energies
VAV AV AV VWV W Vo VL VAV VA VPV VAT

A weak-coﬁpling treatment of unimolecular reactions, such aé RRK
theory;:requiréé'that the sum of oscillator energies be constant in time. If
the oscillagors.are taken to be.the normal modes, this amounts to assuming that

3 . : ,
Z:Z ei-is a good COnstant of the motion. However, the RRK oscillators- are

i=1 ' - ' :
_ 4'sometimeSll associated Withtthe.bonds of the molecule. Although the dynamiéal
concept of bond erergy inxpolyatomic molecules is fraught with_difficulties, we
 pursue ig hereﬁfo exaﬁine its possible ﬁtility in RRK or alternative. interacting
oscillator theories. We choose as an intuitive definiéion of the energy of

bond 1 the expression

B o= T 4V, o | (23)

where thevbond_popeﬁtial'enérgy is given in Eq. 2 and the bond kinetic ehergy’

Ti is given by.

R G L | (24).

in Eq. 24 , the indicesAi,'j, and k ére a cycliefpermutaﬁioh of 1,2,3, and 21

is a unit vector'aloﬁg the bond i from atom ‘ A(j) to A(k), and My is the
reduced maeg of the A03) A (k) pair:

Bi = mjmk/(m; +m (25)

i o
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Equatioﬁ 24 is'inQarianﬁ under rotations of the coordinate system.

The terms.V,i in Eq. 23 “are the pairwise ﬁotentials of our'models.
At all.tiﬁes, their sum is the total potenfiai‘energy of the molécuie. On the
other‘hand{ fhe bond kinetic energies do not necessarily sum to the total vibra-
tibnal kinetic enérgy, TV . Indeed, a decomposition of the atomic velocities
resulting from various normal-mode kinetic energies in A3 shows that.
3, . | o | »
%if -Ti will diffeg initially from‘Tv by +50%, +41%, -40%, and +13%, when the
initial epefgy is entirely in the form of kinetic energy and the modes excited
_afe symmetric stretch, bena, aéymmetric stretch, and equal amounts of all three,
respectiveiy. Thése relaéive.errors in Zzzi Ti are iﬁdepeﬁdent of the total
energy and do not vanish in the 1imi£ of small vibration amplitudes.> Thﬁs‘the»
sum of neither the bond energies nor the npfmal-mode energiés.will equal the

total vibration eﬁergy in general. From an exact solution to the dynamic problem,

3

: , : 3
one can determine whether 3 Ei cor T ] e, is the better constant of the

e
n
p—

motion.

6. NUMERICAL METHODS
AAANANAAAANANAAANAAN,

g&%&wmzzgiector Initialization
A'A"A"4Y; AVAAVAT VAV VaVAVAV VAV V)
In order to integrate the. equations of motion 3 and 4 one needs initial
values for the twelve components of the quantities X., X_, P, and P_ coores-
o 1T 37wl "3
ponding to-.desired initial properties. Initially, the Eckart and fixed axes
are taken, without loss of generality, to be coincident.. The initial orientation
of the equiiibrium<geometry (see Fig. 1) : is fixed by taking riq parallel
. E : : . N
to and in the same sense as the x unit vector, again without loss of generality.
n, - .

s _ -mode
In all the calculations to be reported here, the initial normal/kinetic
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energy is zero; that is, all trajectories are begun at a turning point for all
the oscillators. Thus, all vibrations are initially in phase; this requirement
represents a considerable loss of generality for the initial conditions. With the
exception of a very few special cases, however, the phase lock is quickly broken
by oscillator interaction during the trajectories. Thus, the dynamics of in-phase
inititated trajectories should not be qualitatively different from out-of-phase
initiated ones.

The initial rotational energy and axis of rotation are input parameters.
The magnitude of the initial angular velocity is obtained from the inverse of

Eq. 20.

£
I
e

-~ 1
2 L .
= m, (@ X x.)°/2T ]°. (26)

e

The initial atomic velocities are then determined through the relation

Z,i(O) =R gji(o)- G eRrC (27)

where the initial atomic positions are fixed by Eq. 17 and the choice oi‘initial

_

normal-mode (potential) energies.

6.2. Integration of Equations of Motion
ANNANNNN VAV VAVAV VAV A VA VA VA V)

i

The equations of motion are integrated by an Adams-~Moulton 5th Orde:

Predictor/6th Order Corrector routine?A’géams—Moulton coefficients for these‘;hd”

o

other orders are given in Section II. 4.1.1. of ref. 30. The table of past deriva-

tives required by this routine is filled initially by a 4th Order Runge-Kutta-

36

Gill~" operating at half the time step size. A typical step size is about

=¥6

4.2 x 10 seconds. Typical trajectories involve about 4000 such steps.
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Energy and angular momentum are conserved to better than 0.001% during
these trajectories. When an A3 trajectory is initiated from normal-mode (potential)
i ~12
energies of Esym = Easym w s ¥ 40 keal mol™t and integrated for 3.36 x 10

-1
seconds (molecule time) at a step size of 8.4 x 10 . seconds, momentum reversal

at the termination and further integration leads to recovery of 4 decimal digits

of the initial coordinates and momenta.

A SFRRARARRARERERRRAN

7.1. Vibration Dynamics
ANV VWA VAV V)

The Slater and RRK theories mentioned in the Introduction assume that
rotation has a negligible effect on the rates of intramolecular energy transfer
in unimolecular reactions. In Section 7.2, we investigate the validity of this
assumption. Here we report results of our study of the dynamics of molecules under-
going vibrations only. These studies suffice to check the validity of the small-
coupling and small-vibration approximations. |

The initialization of all trajectories to be discussed in the present
section is accomplished by giving the molecules varying amounts of normal-mode
potential energy. The momenta conjugate to the normal coordinates are initially

zero, and the vibrations begin in phase with each other.

7.1.1. Zero~Point Energy Dynamics

The zero-point vibrations of H,0 exemplify the characteristics of all
the C?v molecules we studied (D,S, H,Se, NO,, SO,, and F,0). The zero-point energy
of our H,0 model calculated from the normal mode frequencies is 13.32 kecal molfl.
When each normal mode of the molecule is given its zero-point potential energy, the
teotal vibrational energy is found to be 14.65 kcal molfl. This discrepancy was

discussed in Section 4.2.
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The O-H bond distances are given as functions of time in Fig. 3a for
vibrations in which each normal—node of the molecule is given initially its
zeroépoint potential energy. These distances appearitoAa certain eatent to
exchange amplitude with_one‘another{. In this respect, their behavior.is similar
’ 37 '

This analogy is reinforced in Fig. 3b.

Indeed, when one pendulum is started swinging while the other is at rest, the

pendulums.exchépge'their total‘energy, which is approximately. the case for the
OH bond energies._,The pendulum analogy also suggests the mechanism for this
exchange. When weakly coupled pendulums are swinging with energy in only one
of the normal—modes for that system, no energy transfer between the pendulums
takes place.j It is only when two normal—modes are excited that the pendulum
energy exchange occurs, and the exchange rate is related to the beat frequency
(i.e;, freyuency differenee) between the two modes.,

In the water molecule, the normal-modes which have the strongest effect

" on the valence bond lengths are the symmetric and asymmetric stretches. The

pendulum analogy predicts that those bonds should exchange energy with a

7.5 x 107 14 second period, which is assoc1ated with the symmetric—asymmctrlc
beat frequency of 1.33 x lO seconds"-1 for this model. This is precisely the
observed bond energy exchange period. The phenomenon persists evenjunder the

perturbation of the‘bending motion, as long as the symmetric and asymmetric

“modes energies are good constants of . the motion.

The vibrational klnetic energy of the molecule T shown in Fig .3c,
demonstrates the beat rather‘clearly.' When the energy of one of the O—H bonds

is zero, T oscillates with twice the frequency of the exc1ted bond. (The

factor two comes from the existence of two ‘turning points per bond oscillation. )'

As the other bond becomes excited, the O—H bonds oscillate ﬂ/2 out-of-phase with

one anothe'r, such that the sum of the nuclear kinetic energ1es is approxunately '
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constant. Since the O—H bonds acquire equal euetgy twice in_every beat cycle;<
the envelope of'Tv has. twice the beat frequency. |

The nonconservation of normal-mode energies is clearly seeuvin‘Fig{ 3d,
although for the.zero—point vibrations the fluctuatlous in ‘the normal-mode
energies are small (less than about *10%) relatiue to the total energy. There
appears to be no long~term exchange of energylamong the modes.‘AThe ordering
of uormalvmode energies is couservedj‘that is, .the sfmmetric stretch alwaye
hae the most energy, and the bending vibration has the 1east. The short-term

14

(107" " second) fluctuations are not large enough to obscure the bond—euergy

beat.
The bond energy beat phenomenon is‘common_to all the C2v triatomic‘
molecules studied, but it is not a result of theirgSymmetry. It follows

: instead from the propinquity of the symmetric and asymmetrlc molecular frequenc1cs

.in these molecules. The small frequency dlfferences insure beat frequencies much

lower than, and well separated from, the v1brat10n'fundamentals. On the other

" hand, the widely separated fundamental frequencies.in'Clleo give beats which

are lost in the fundamentals themselves. For this reason, the bond energies in

zero-point vibrating nitrosyl chloride in Fig. 4b do not show even roughlj the -

‘exchange periodicity observed in Fig. 3b'for water. The low frequency, high

amplitude bend in nitrosyl chloride renders the SVA a more severe approximation

. for that molecule than it was for H,0. The normal-mode energies of zero-point

vibrating‘ClNlBQ éhown in Fig.‘Ac eihibit greater relative variatiou than those
of H,0 given-in Tig. 3d. The very small amplitude vibrations (not sﬁown)
arlslng from an input of only 1/10 of the nltrosyl chloride zero—point energy
into the molecule results in normal-mode energles which fluctuate by only a
few percent durlng the ttajectory. | |

‘'For the set of molecules we studied, the normal-mode z'ero'point ‘energies

“are in the range of Q;S to 6.3 kcal/mole, and none of the normal-mode energies
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vary during a rrajectory by more than *1.5 kcal mol~ ). These results thus
define the degree to which the SVA furnishes aﬁ adequéte descriprion of‘zero—
point vibrations. Although the classical-defiations from SVA are small in
absolute magnitude for'grOund vibratioﬁal states, they.should manifest tﬂem—
selves in the quantum-mechanical treatment-as well, 18 and.therefore they can
be expected to play a. role in. the 1nterpretat10n of v1brat10na1 spectra.

The 1nconstancy of these normal-mode energies does not 1moly fallures
of either classical.mechanics or thecnumericel inregretion precedure, Neither
doee it suggest thatlﬁoleculesrdo'nOt have'stationary-vibrational-retational.
states. ‘The classification of these states in terms'bf sets of good quantum
'numbere can no longer be made in terms of the useal-normal mode quaﬁtum numbers.’
A generalization of this concept invoking curviiinear coordinates may however

be possible.38

A7.i,2.' Highly Energized Aj

°

To ieyestigate the dynamics of.moleeules at energies approaching‘those
necessary for reaction, the relatively rigid, symmerric A3, and the loose,
aeymmetric C1N180 ﬁoleceies are'given half their_respective'dissoeiation energies
id”fEEr.ways. First, all this energy is.put into one ﬁorﬁal—mode at a time;

\ : .
and the dynamlcs of an 1nit1a11y pure normal—mode vibration is determined. Then
the same amount of energy is partitioned equally among the.three normal modes.
This latter precedure will be called mixed mode'" initiation hereafter.

The "dissociation" of Aj requires the rupture of two 02 like bonds with

19 .

. the,expenditure of at,least‘119.43 kcal mol-1 for each bond.” In what follows,

half the dissociation energy of A3 will be demoted by D_ (= 119.43 keal mol ).
" From the D3h symmetry of Aj, it is clear that any energywinperfto the.

" molecule as pure symmetric stretch causes it to execute that normal-mode motion .-
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forever. The rigorous conservation of pure D, motion is of value in checking

3h
the accuracy of integration routines bht does not elucidate normal-mode coupling
phenomena. Not only the symmetry of the motion but also the symmetric norﬁal—
mode energy is conservgd.

When A3'S bend mode is.excited instead, fhe subsequent dynamics do not
" conserve the corresponding normal-mode energy which varies periodically with the
~ bend frequenp,y.30 At an initial excitation of Do’ the amplitude of this variatidn
is about 20 keal mol”} or about 15% of fhe total energy. The bend mode is g ﬁnotion
" hé.ving C,v symmetry which is conserved even though the bend normal-mode engfg;?s.
.About'3Z of:the total energy appears.in ;he symmetric‘stretch mode which period-
ically exchanges this small amount of energy with the bend mode. The remainder
of the variafion in bend normal-mode energy.appears directly as variatioh:in
~total normai—mode energy because there ié‘gg_exchange of energy between the bené-
and asymmétric strefch-modes. Initi&lly.pure bend motion does not excitg 
: ésymmetric stretch motion even though those two modes are degenerate in A3.:
‘They are dncoupled by the high symmgtry of the motion. -

Ip contrast, wheﬁ.the energy Do is put into asymmetric stretch, thé
resultant moleculaf”vibrations are not even approximatély confined to that mode

(see Fig. 5). The rocking of the Eckart axes under asymmetrically stretching

39

 Ag (see Section 4) prbduces small Coriclis forces. Since such forces on nucleus i

/ .
are directed along the vector kix o, they convert asymmetric stretch into the
. bending motion, and vice versa. The asymmetric-stretch normal-mode energy

cannot gd to zero by this mechanism because the C_ bend motion does not rock

2v
the Eckart axes. As the bending normal-mode energy rises to 0.7 Do’ the weakened
Coriolis forces begins to convert it back into asymmetric-stretch energy. Since

- half of this energy is exchanged in about 7.5 X 10~13 seconds, we infer (although

our integration did not extend far ‘enough to verify this) that the complete
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’

exchange period is about 1.5 X 10712 seconds. This period is about. two or&eré

40 between gas molecules

of magnitude smaller than those associated with collisions
.at standafd temperature and pressure (STP). Thus, one may assume that normal-
mode enérgies‘are~gonstant-betweén collisions for A3 molecules which are -

stretching asymmetrically .with half their dissociation energy only if the

) 1 .
product PT? of the pressure times the square root of the temperature is about

400 timés gfeater than at STP. Such experimental cbnditioﬁsfare very difficult.
tovobtain! | |

Thé energy e#chénge normal‘modeé betweén the degenerate bend and
"»asymmetrié sfretch evident in Fig. 5¢c appears to be periédic. Iﬁs frequency'
is about 22 cm:}‘ :Let,us‘assume that there exist two truly’non~in;efactihg-
vibration modes (not the-;sual'normal—modes) which are periodic and have
'frequencies'wl‘and wz.; Since these n;n—interactive modes and the nbrméllmodes
are not coincident, it follows that excitation of a single nqrmal—mode myst
excite. a mixture bf-nop—inﬁeracting modes. Hence, the pendulum anélogy leads
us to anticipate a normal-mode exchange frequency‘whichvié equalAto the beat

e o :

frequency of the nqn—interagting modgé, il.e., wy- wy = 22 cm™). ‘This beat
frequgnéy goes to zero with dgpreasing vibration amplitude because the normal
and non;inter;ctingAmodes coinciae at vanishing displacements, and the non- ,
interacting ﬁédes thus acquire the degenerac& of thé normal bend and asymmetric
'stretch modes.’ Cleérly;.those non—-interacting modes are noilonger dégenerate
ag a vibration energy of Do‘ Noté that the'vibfation frequencies in Fig. 5a
are the same‘for all the bondsAindicating that they are being‘”driveﬁ" by'aA A
single cyclic coordiqate.A However, they are not oscillétihg with thé‘1370 cm™ !
expected for w (see Table f.). “Inspection of the bond 3 curve in Fig. 5a

asym

reveals that it is initially in-phase (fully compressed) with the T. ) tic marks-
: : : , v asym

at the top of the figure. However, by the time 30 (normal-mode) asymmetric
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~periods have passed, bond 3 (and both the other bonds) is -180° out-of-phase

with Tasym marks. Hence the frequency of the bonds and a fortiori that of the
non~-interacting (asymmetric stretch-like) vibration mode, w; ~ (29.5/30) X‘wasyﬁ =
. _ l _ : . i
© 1347 em .~ wasym ~ 22 cm 1! By this and the beat frequency formula, the.other

non-interacting (bend—like)imode has a frequency Wy ~ W This result

_ asym = “bend”
might have been anticipated from the fact that bending vibrations do not produce
Coriolis forces since they do not rock the Eckart axes. Note that theifréquency
of the.non—interécting mode wy depends on the total energy.E. This ks ahharéonic
behavior from a rigorously harmonic model.

In neither pure bend nor (initiélly)vpure asymmetric stretch Vibratidn
is there any appreciable excitation of the highlfrequency symmetric stretch.

_The. symmetric normal mode energy is at all times very close to zero as indicated
by the lowest of the curves in figure 5¢ (which stays at all times very close
to the ébciséa axis). | |

: When éagh'of'the normal modés.;n A, are'excitéd an energy equai to D /3,
the bend and asymﬁetric—stre;gh modes‘(ndt §hown) are again weakly‘coupled gnd -
exchaﬁgeleneréy with a period.;f 1.6 X lOl_12 seconds. The detailed ndcleaf motions,
as well as thé'overall éxchange, are very nearly”periodic; This may be further
evidence of’the ngn—ergodiéity of harmonic phase spaces suggested by the results

of Bunkefzaa’b and of Nordhglm and Ricel7.'
It can be seen,(Figs. Sb and‘Sc) that the RRK oscillatof energies do
noé‘sum to the tot;I\;}ﬁr:;ional energy if the oscillators are assoéiated with
either the bonds or the anmal modes of the molecule. Thus, the high-energy
vibrations of;the'Aa molecuie rigorously satisfy‘ﬁeither:Slater's aésumbtion of
constant normal-mode energies nor the RRK assumption that the oscillators are 36
Weakly coupled<that‘their energies sum with §mall'efror tb the total vibrational .

energy of the molecule. It is unlikely-that'theée;éonclusions depend upon the

high symmetry of tbeAA3 molecule. ' In view of the artificiality of A and the
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apparent malice in the chqice of degenerate vibretioﬁs, the sfudy of a more
realistic hafmonic model is Qerranted; results of .such a‘stddy are~feported 4
‘in the next seetion.

It should be noted that the detailed nuclear ﬁotions in this study ere,
no doubt, quite sensitive to the.initial phases 6§, of the-norqel—mode vibration.
; Witﬁ the exception noted in Section 7.1.5., all the.trajectories in this study

used 6§, = 0 for all i in eqn.la. This means that the molecule is initially

i
in its most distorted geometry. With §i = +1/2 (equilibrium geometries), the
observed nofmal—mode energy scrambling might not heve been as severe (though
- separate calculations indicate that it does not'vani'sh). The corresponding
trajectories might allow the molecule to seeg_put distorted geometries more .
elosely approximatiﬁg those of the true independent vibrations associated -
with the excited nofmal—mgdes. This poésibility was not inveetigated. 'However,
if any setAof normal-mode initial phases yield trajectories with grossly in-
constant normal-mode energies, es long‘as this set is not highly nonérepresente-
tive ef typical‘trajectories, the utility of the small vibration approximetion

for the deScription of detailed molecular dynamics is called into questién.

7.1.3. Highly Fnergized cin!8g TS

41 of the N—Cl bond in nitrosyl cHloride'is'

The dissocietion energy
38. 4 kcal mol l,. For comperlson with the results of the precedlng sectlon,
we introduce only half this energy, or 19 2 kcal/mole, 1nto the normal modes
of the molecule. |

The. vibrational mode of higheet'frequency is essentiel1y the vibration
.of~the N=0 bond (Fig. 2a). Solution of the equations of motion shows fhat

19.2 kcal mo] 1 of energy in this normal mode 1is conserved to w1th1n 0. 7/ for

the 8.4 X 10 13 seconds over which we integrated the traJectory Symmetric
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.stretéhing of nitrosyl chlogide (diagfammeaiin Fig. 2c) is ﬁot-a'sfable mode -
ofAmotion.fFig. 6) for énergieé as high as 19.2 kcal mol™!. During the first

5 X'10f13*seconds of the trajectory, the symmetric-stretch normal-mode energy
is reasonably cénstant. However, a steady increase in ‘bending normal—mode
énergy givés rise fo bend émplitudes,large enough for the molecule to pass
through linearity at 7.é5 X 10713 seconds (Fig. 6a). As a result of fhié‘
gross distortion from equilibrium géométrﬁ,‘the nqrmal—mode energiés fluctuate
rathe; chaotically from about 7 to 10 X 10713 seconds after initiélization
(Fig. 6c). ‘The)normal—modg énergy defect in this:mode is insighificant compared
to the 150% and 100% defects observed in the bend amplitudes in those trajec-
tories result in erratic variation of all the norhalémode and bond energies.
The_sum of the oscillator eneréies’fluctuates b& more than half the totai

energy of the molecule in the case of mixed-mode initialization (see Fig. 7).

Thus, for large enough energies to be of interest for unimolecular reactions the
normal- . o S L

/1node energies in our harmonic model for Cc1N180 are not conserved over periods

of time sufficiently long to be used as constants of the motion between cdlli~

sions in the gas phase. Furthermore, coupling between RRK_dscillators (either -
normal-modes or bonds) is so strong that the sum of -their énergies can differ

from the total energy by as much as a factor of 2. This implies that as much

L
rms.

-as haif the energy of the molecule is‘tied up in oscillator interaction te
Alternately; a wide rangerf tota; oscillator energies contribute to the dynamics
of a molecule at a fixed internal eﬁergy. This behavior renderé meaningless

ghe &se-of sgch osci}latofs in'gither'dynémical-or statistical theories of
__unimoleéularvreaétions, for ghe.total energy becomes uncertaihvto.an‘intoler—
able degree even at,eneréigs well below reaction_thresholds. It éuggests that
A§nsiﬁiesAof states (required in.phasé—space theories like RRKM) predicated-

upon the independent oscillator assuwption may be in error even for figorously
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harﬁonic poteﬂtiélé. Thé é¥ror, ofAcoﬁrse; must Bécomé'afbitrafily small
as the dénsitf of stétes bécpmes arbitrarily‘largé. However, for 1ight}atom"
critical cerdinates, associated with relatively low state densities, the
effect may be significaht.

While the SVA descfiption of normal-mode vibration is fairly acchréte

at zero-point energies, it fails for dissociative engrgies. It is of interest
to determine more precisely in what energy rénge ;He SVA may be considered

vglid.

7.1.4. Intramolecular Energy Exchange in cin! 8o

.. One may-expéct fhat.the amount'of‘mixing of one mode intoAanothet
depends exponenﬁially upon the time, sincé small<per;urbétionsiprodﬁce small
admixpurés of mddes of different sfmmetries, whicﬁ, in turn, cause larger per-
‘furbations in an évef—accelerating growth, As we 5ave seen in the pfeceding
section, when 19.2 kcal/molé is put inEO'the symmetric stretching mddé of
CIN180, the bending mode bgcomes excited. When‘the lbgarithm of the rising
bend energy is plotted ag;inst timé, as in Fig. 8, thé fit to a straight(line
(exponeﬂtial growtﬁ) is seen tolbe good. This line may be taken to represent
an average exponential growth. The timé'it takes the bending-mode enefgy to
rise to théitotal enexrgy of the'molecule is a measure of the coupling between
the two modes. We take the inverse of this ;ime to repfeéent a coupling fre—i
quencyArelated to the period of gréwth'and decay oflbend energy observed in
Fig. éc. | | o

We plét é few such Symﬁetric—bend coupling 'frequencies" agaiﬁst total
energy in Fig. 9. It is apparent froh this figure that thé SVA, which predicts

that these coupling frequencies are zero, fails at energies greater than about.

10 kcal/mole in nitrosyl éhloride.' Thus the attempt to utilize the SVA in a.
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description of the dynamics of.this hérmdnié molecule must Be abandoned when
the vibrétional.energy of the-molegul¢~is greater than approximately one—foufth
tﬁe dissociation energy.' At_élightly greater_energiés, the intramolecular
_eﬁergy exchange rate is faster than the‘collisiog rate iﬁ gases even at

moderately high temperatures and pressures.-

7.1.5. Critical Coordinate Dissociation Frequencies

The,Sléter harmonic unimolecular theofyl reqﬁires-an expression for

.the frequency .of excursions of some critical coordinate pasf some critical con-
figﬁration in order;to predict dissociation or isomerization rate constants.
Slater's férmula cdmes from-an analjsis of the reactive exéursion frequencies
~of é sum of sinusoidally varyihg normal modes of constant energy;- Since.the'
eQuationé of motion of nonlihear'hérm;;igzmolecuies do not conéerve the ﬁormal—
mode energies, the reac;ive excursion'freqﬁencies-calculated»by Slater éhould
,ngt be‘expeéted to _agree with thosé téken direétly from trajeétofy calculations.
In this séction,4We deal witﬁ the reaction -excursion freQuenéieé (REF) of inter-
atomic boﬁds in A3 and CiNleo,

_Figure 10 shows the bond distances as'fpnctions of time for both accurate
an&'IVA (see Section 4.3) tfajectofies fér mixed modg éxcitatién of‘A3; The
SVA bond distances (not shpwn) afé within about 2%‘of:the IVA values 6§er the'l
course of the trajeétory. “The nuciear motions in the ‘IVA ;rajectories differ
clearly.ffoﬁ those in the accurate trajectory after about 3 X 10713 éecénds.
lNevertheléss; the SVA and'IVA REF's for Eond 1 (Fig. 11) are seen to be very
good aﬁproxiﬁations to ‘the Vrigdrous" REf's, expecially at large critical
distances. It is conceivable that thié might be an.accidental result'sﬁemming

from the high symmetry and concomitant degeneracy of the molecular frequencies

in A3.
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Since two of the vibration frequencies in 43.are equal, none of these

42 The

‘ﬁEF's is'comparable with Siater‘s phase-averaged excursion.frequenciés.
.REF'S4for in—phase‘mixéd-mode initiation are found to be very different from
~thos¢ fof'126° out;of—phase,mixed¥mode'initiatidn. ThiSAisAnot true in the
case of nitrosyl chioride; where it is found that the REF's are independent of
-the phase relatién.of the normal modes. It is significént in this regard; that
' the molecular frequgncies‘iﬁ nitrosyl chloride are highly non;commensurate

(in a phféiéal sense).

In the case 6f mixéd—mode excitation, the IVA trajectory for nitrosyl
‘chloride (Fig;‘lz) diverges more rapidiy frdm the rigorous éne than it does .
for Aj. .This relatively poor IVA (and SVA) representation is ﬁot reflected
| in'the REF{S‘ rEigufé_13 shows the REF'g for N—Cl,_the.bond most easily broken

.in a dissociation reacti§§i~ Once again, for large critical displacements, the
: ‘ 2

N

. SVA and iVA give reﬁarkaﬁly good descriptions of the actual REF's. The agree—
- ment iﬁpliés that, although the trajectories éf.nitrosyl chloride.are not
themselvés reérbduced well by either approximation, the molecular quantipies
of greateét significance‘to the ;éaction rate, namely th¢~reactiveﬁexcufsion
-frequencies, are predicted fairly accﬁrately by both the SVA and IVA. . These
éonclusi@ns apply tolour harmonic CFF models vibrating with only half their
"dissociaﬁiqn“ energy. There is little reason to sgspe¢t that "dissociative"
energ&Idynamics will alter these'conclﬁsions qualitatively.

§igcé‘theAsméil vibrat}on approximation fails, ﬁhe coeffiéients ari’

whi&h reiate thé normal cqordinates»to the critical coqrdiﬁatézG, aré in erfdrT
Thgs ifia¥j»='0 fdr #omg ndrmal coordiﬁate.j,'its contribution.td the Slater
rgaétion_rate vanishes. However, we have shqwn that.energy flows ﬁuite freely

between the normal-modes on a collision frequency time scale. Hence, energy’
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initially<deposited’in normal coordinate j is indeed'available to'the réaétibn
coordinéte eventually; Thus tﬁe normal-mode j should'influence the reaction
~dynamics. What is required to correct this feature of Slater's theory is
feither (a, use of the (as yet unkﬁown) true independent vibration modes and
‘their associated a ., or (b) a description of “lgaky" normal-modes wigh'
~ .something like an‘intramoiecular master equation.A ﬁirect inclusion of intra-

molecular energy transfer has appeared in many theories. 24P, 43

7.2, VIBRATION-ROTATION DYNAMICS
ANARANAAANAAARANVANAAANANANAAAAN

“The Slate:land RRK theories of unimolecular reaction ratés‘ignore
. the effectlof rotation. - Furthermore, the RRKM theory6 includes 'statistically
. tﬁe effects éf rotation in such a manner as to neglect vibration-rotation
interaction effect$~on thg density of sté;es. " The assumption implicitiip all

these theories is that rotation does not materially enhance intramolecular

/ 5

' . ;N _ S .
energy transfer.. In Slagé%'sitheory, nothing excites  intramolecular energy

ffansfer, while in RRK theory, oscillator energy is-alfead} flbwiﬁg,afv0scillgtion
frequencies, and the mole;ular energy scrambling-is thus saturated from Qibrétion
dynamics alone. In Sectién 7.1., we éﬁowed‘éhat intramolecular energy exchange-
is neither zero nor saturated uﬁder the influence of high energy vibrationAA
&ynamics; Hence the-assumption of the ignofébility of rotétion may be waﬁranted
in neither theor&. In this section; we tes£ this assumptipn for rotational
éﬁergies comparable to (a) tﬁose found in gases at mode;ate,temperatures and

"(b) dissociation energies.

7.2.1. Low Energy Rotations

By the method Ouﬁlined in Section 6.1, a rdtatiénal energy of 0.02 D6 =
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2.39 kcal mo‘J,'_1 is sﬁperiﬁpdsed on the vibrationally -excited moleculeé of
Sections 7;1;2_and_7.l,3. This ropafional,energy cqgresponds'to 3/2 kT,
where T = 800°K. At this,temperatute, gas phése_reaction‘rates are appreciabie..
For the symmetric top rigid—rétor A, this gné?gy44'is close to the level with
: quantum_numhgrs K =J = 33. The rotations to Be discusséd in this section
are all %n»plane; thaf,is, thé axié of rotation is perpéndicﬁlar to the
molecular p}ane. | | |

| The ben&ing~mode in non—rotéting_A3 is stable; that is, although the

bend energy is not conserved,. the vibrational C symmetry is; No asymmetric

2v
stretch is excited from pure bend motion. However, the modest 0.02 Do ih;plane
rotation causes these modes to mix étrqngly; All the vibration energy .(about
Do)‘is gxéhanged between bend and qsymmetfié stretcﬁ with a period of only ‘
4.4 x 10713 seconds. The bend symﬁetry is broken by thelrotational Coriolis
forces,]as aiéguSSed‘inTSgctiOn 7.1.21/(iﬁégg\férces aﬁgment those already-
.present in fhe'asymmgtrié stretch, and‘ﬁhen this mode has'Do,initial energy;
the 1.5 X 10712 second pure vibration coupling period is reduced to -3.7 X 10713
seconds fof:a rotating molecule. Thus; these>m6deraté molecular rotations more
thanAqﬁadruple the inﬁramqlecular energy transfer rate in this case. This is
not a minor perturbation. |
When A3z with mixed—mpdé excitation is given 0.02 Do in—pléng-rotétion,

the 1.6 x 10712 second coupling period observed in the absence of rotation is
reduced to. 3.2.x 10743 seconds; Here the intramolecular eﬁergy transfe? rate
Aincreases by a féctor of 5. . |

| The high-energy Vibfations of CIN!80 (Section 7.1:3) e#hiﬁit; in ;hé
main, intramolécular energy tfansfer rates which are of the order:of the

molecular frequencies. It is clear that rotation cannot increase these rates
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ty s0 dramatie a factor in a~moleeule that is nearly "scrambling saturated".
Initially pure 19.2 kcal/mole symmetric stretch energy (Fig. 6d) remains
approxinately constant for about 6 X iO_l? seconds. As seen in Fig. 14d, the
addition of 2 39 kcal/mole of in-plane rotation reduces this metastable life-

~13 seconds. The rotation has enhanced the growth of

time to about 3. 7 X 10
~ the bending mode by a factor of 1. 6-—non—negligib1e, but hardly as striking as
in the Az case. The rotation alters the character~of‘the vibrations efter the
rise.of the bend energy. In the nonrotating case, this.energy decays as if

the molecnle is going‘to exchange bend and symmetric—stretch energy periodically.
Figure 14_shows that rotation has erased this periodicity. If the near per-’
iodicitylof motion for the non—rotating case is a manifestation of the non-
ergodicity of harmonic phése-sPace,‘it appears as if rotation destroys this

24b that rotation

property. This-enpears to contradict Bunker's observation
does not release the . suffic1ent1y—energized but nondissoc1at1ng trajectorles
from their phase-space confines; however, Bunker's rotational energies nere
probably snailer tnan ;ho§6"¥é58rced here.

‘ﬁith regard to'the neglect of rotationel dynamic effects in the contem-
porary unimoiedular-reaction rete:theories, the following may be statedkwith
some-certainty for harmonic molecules. In relatively rigid complexes (i.e.,
dissociating species whose geometry isAnot‘much different from what it is at
low energies; rotational effeets.are exnected to be large, because vibration
alone is insufficient to saturate the energy scrambling rates. On the other
hand, rotation is likely to'alter more seriously the details'of the nuclear
trajectories than the rate of intramoleenlar-energy transfer in loose eomplexes)

where vibrations alone suffice to scramble molecular energies-freely.
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7.2.2. High Energy Rotations in A,

For_ealculations feported in this section, the rotational energy is taken
to be 38.2 kcal/mole, or about 1/3 D,- This corresponds to a rotational temper-
ature of about313,060°1(. Clearly,~we are sampling molecules in the far tail
of ordinary thermal rotational,energy distributions.. We use them not to Suggest
that they are reptesentetive but’ to examine the effects of ;ery rapid'rotation
on Vihrating systems. .For a symmetric-top, rﬁgid—rotor A4, this energy corre-
sponds closely tolthat of the K = j = 135 quantum level. |

High energy tumhling (i‘e.,'out~of—olane rotation about the x or y exes),
causes the asymmetric stretch in-A3 to~COup1e with.the,bend.node with a period

of 4.2 x 10713 seconds. The inefficiency of tumbling with resnect to enhance-

ment of energy scrambllng is now apparent, since. the low energy (2.4 kcal mol 1)

1n—plane rotation couples these modes w1th the shorter period of only 3.7 x 107 13
vseconds.' As anticipated, then _ig_ energy 1n—p1ane rotation couples these
vibration'nodes very strongl&. .The energy’ exchange perlod ‘drops to 4.3 x 107
'seconés. Since.the natural perlods QENEEEH bend and asymmetrlc stretch are
2.44 x 10714 seconds, this massive in-plane rotational excitation seems to
have almostfsatutated the normal-mode CQupling rate in this still moleculat
model, o |

-Being'separated from.them in frequency, the éymmetric stretch iﬁ A, does
not couple well with the other normal-modes. It eoupies to all the'totations,
however, since symmettic streteh produees lerge ehangeslin all three moments'
ofjinertia. Nevertheleos, no combination of vibratlons and/or rotations dlS—
cussed -thus far succeedc in exciting any appreciable energy in the symmetrlc

node. It is somewhat surprising, then, to find that with high-energy rotation

. about either the x or z axes, A, withninitial mixed-mode excitation exhibits

e e

LY By,
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evidence of coupling of its. symmetric stretch fé the other modes. This is
most clear in the case of in-plane rofapion (Fig;.ls), wherein the étrongly
coupled beﬂd and asymmetric stretch modes exchange energies rapidiy (0.8 x 10713
seconds) wifhin‘an energy gﬁvelope which appears to be coupled to the symmetric-
stretch energy. .The lattgr fluétuates slowly (about 1.2 X 10;12 seconds) o?er.
a range of about 1/2 D - | |

Thus, we conclude that rotational energies4on‘the order of dissogiaﬁiqn
energies are capable of produciﬁg intramolecular,energy scrambiing on time

scales- comparable to the molecular vibration periods even in very stiff harmonic

models. . o -
VII. SUMMARY
AN NN

We'h;ye shown that the Slater small-vibration approach to the classical
dynaﬁics of bent triatomic molecﬁles‘is inapplicable at_energiéé appfdaching
fhbse necessary fof dissociation. -Slatef's éssumﬁtion of constancy of the
normal-mode energies fails for the harmonic ClNlao:médel atAenefgies above 25%.
}of the molecule's dissociation energy.  Despite this, Slater's formulae for
reaction‘frequenciestare shown to give values in good agreement with the actual
-reaction frequencies in our harmonic models. - |

~ The assuhption of weak coupling between molecular harmonic oscillators, -

used in RRK theory, is shown to be a poor one at all energies, if the Qscillato:s.~

aré'téken-to be the iﬁteratomic}ﬁonds, If, instead, the RRK,dscillatopé afe
"assumed to be the mnormal modes, they-are'indeed weakly coupled'at enérgies:of
Athe ordef'of ze?orpoint levels. As fhe vibrational energy in the golécﬁle
approaches ﬁhat necessary for reécfion, howeﬁer, the oscillators couple strongly,

and not only théir individual enefgieé but also the sum of those energies fail
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Atd be constants of the motion by ﬁp to(lOO%. The differenée between this éum
Aaﬁd the.cqnsﬁant total enefgy,is the‘pstillacor‘éoupling~eﬁergy‘(inﬁthe absence
- of rotation), whicﬁ is not -negligible, ‘as assuméd‘in RRK theory.

Great cafe ﬁust be exercised in applying eithér the RRK or Slater theories
to interpret'the fesults of infrared 1aser'augmented decompositioné.IS |

None of .the theories mentioned treats the oftgn significant dynamic
effects of rétation on the inframolecglar energy trgnsfer rates. At roﬁational
enefgies corfespohding.tb 860°K; the energy scramblihé-rates in CIN180 vibratiné.
with half its dissotia;ion energy, are increased’by 60%. The enhancement is
larger in molecules more_riggézzhan_nitr0syl chloride. _Noﬁ—érqui;ity effects
observed in C1N!80 triangularly symmetric and-relatiyely rigid A3'are easily.

destroyed by relatively small;ampunts of rotaéion, and must be,inciuded in uni-

. molecular reaction rate theo:iés which invoke such non-ergodicity.

Thus,‘sgme basic aséumﬁgiqﬁé.gfgut the dynamics of molecules undergoing'“
ﬁnimolecular reaction areishéﬁﬁtté Be‘inédequate Qhen applied to the high-energy
’ vibratioﬁs and rotations”of the simpie harmonic modél-for fhe.sent triatomic
mﬁiecule. We hope that the results reported here Qill serve as a useful guide

for the construction of more realistic dynamical models for use in unimolecular

reaction-rate theory.
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TABLE I.

Model and molecular parameters.

: b ,
La eq eq : Leq eq . - :
Model® T r, r, 62 | k1 k2 k3 wsym wasym” wbend
o -]
“(A) (mdyn/A) (em-1)

HOH 0.957 1.514 0.957 . 104.5° 8.45 1.78 © 8.45 4376 3934 1380
Aq 1.207  1.207 1.207 60° 11.77 11.77. 11.77 1931 1370 1370
18nce  1.975 2.650 1.139 114° 1.92 " 0.98 13.97 592, 1750 329

2 See Fig. 1 for definitions of bond labels.

b Angle oppcsite bond 2.

1Y
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' FIGURE ‘CAPTIONS -

Instantaneous‘configuration of the triatomic molecule A(1) A(2)

‘A(3), G is the center of mass.of the system, x. are the pos1t10n

with respect to G, “i
vectors of the atoms A i / m1 are their masses and r the inter-

nuclear distances{ Gx and Gy are Eckart system coordinate axis

described in-section 4.1.

Equilibrium configuration and normal modes of CIN!80.(a) asymmetric

stretch, (b) bend, (c) symmetric stretch. Arpows,represént exagger-—

‘ated atomic displacements corresponding to a normal-mode energy

equal to eight times the N-Cl dissociation energy. The.lack of
an arrow in (a). associated with the C1 atom indicates the smallness -
of its displacement in this mode.

Zero-point energy of H,O0. Ts&m is the symmetric-stretch.vibration

period of 7.62 X 10”15 seconds for the model.

a. Bond lengths. OH, -~ - - OH, — — — HH.
b. Bond energies. Same convention'as in a. HH omi;ted for ciarity.

¢. Kinetic energy of vibration.

d. Normal-mode energies. symmetric stretch, - - - asymmetric
stretch, ——-j——‘bend.
'Zero—poiﬁt energy.&ibration’of-ClNlBO. T ., the asymmetric
asym

stretch period for the model, is 1.905 x 10 1% seconds.

a. Bond lengths. - - N18g, - - - 01180, — — — NC1.
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Fig. 6

‘Fig.-7'

-¢. Normal-mode energies.
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b. Bond energies. Same convention as in a. — — — —, sum of "

bond energies. Horizontal line represents the constant.total

.

energy.
c. . Normal mode energies. —- asymmetric stretch, - - - symmetric
- stretchy, — — — bend, — — -~ — sum of normal mode energies.

Horizontal line represents the total energy.

High-energy asymmetric stretch in Aj. . Initial aéymmetric stretch

" normal-mode potential energy equais Dd ~ 120 keal mol 1,

a. Bond lengths. bond 1, o o o o bond 2, — — — bond 3.
b. Bond energies. . ‘— bond 1, o o o ojbond‘Z;-f—-—-—— bond 3,
and —-—;-—-sum of bond energies.

symmetric .stretch, o o o o asymmetric

c. Normal mode energies,
stretch, — — bend, — — — — sum of normal mode energies. -

Hdrizontal.line represents the constant total eﬁergy.

High energy symmetric stretch in CciNl80, Initial symmeﬁricvstretch

potential energy = 19.2 kcal/mole.”
. " \\

8o, - - - 1180, — — — NCI, — — — — sum

a. - Bond lengths.

of the two smailest bonds, used as aAlinearity'qheck._i

b. Bond energies. - N180, - - - CllBOP — — -— NC1, and’

— — — — sum of bond energies. -

asymmetric stretch, — — - symmetric.

strétch, ——-;-——-bend, — — — — sum of normal mode energies.

Bond and Normal-mode energy -sums in.ClNIBO, Initial enérgy input 
of 6.4 kcal mol™! into each normal-mode. The horizontal lines

represent the total energy.
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equél 6.4 kcal/mole.
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‘Bepding'hormal-mode~ehergy as a fqnction'of time, by transfer

from pure symmetric stretch in c1n180, AInitial symmetric—stte;ch
poteential erergy i's 19.2 kcal/mole. Horizontal bar marks the total
energy. Straight line indicates exponential growth of bend energy.

Points lie on the trajectory-determined curve.

Coupling “frequencies for bending normal-mode as a function of

initial symmetric stretch energy in cinléo,

The three bond lengths in A3 as a function of time. . All initial

normal-mode poteéntial energies are equal to D0/3. accurate

trajectories, - - - corresponding IVA trajectories.

- Reactive excursion frequencies vs. assumed critical length for

bond .1 in Ag.‘.All initial ho:mal-mode popentiél enérgies equal .

D/3.

rigbrous.trajectory, - - = IVA, -o=o~ SVA.

Bond lengths in CIN!80 as a function of time. All initial normal-
mode potential energies equal 6.4 kcal/mole. - - - - rigorous

IVA.

trajectory,

o

' Reactive excursion frequencies vs. assumed critical length for the

. N—C1 bond in CIN!80.  All initial nofrha'l—mode potential energies -

actual trajectory, - - - = = IVA and SVA.

Vibrating, rotating C1N'80. " Initial symmetric-stretch normal-mode

. potential energy equals 19,2 kéal/mole. Initial in-plane rotafibnal~
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energy equals 2,39vkcai/mole. See also Fig. 6.

a.

tional energy equals 38.2 kcal/mole. E

Normal-mode energies.

Bond lengths. - N80, -~ - 1180, — — NC1, — — — —
sﬁm of ;wo smallesﬁ,bond lengths,lwhich becomés-tangentlto thg
C10 curve’for linear geometries. Horizontal lines represent
equilibfium bond lengths appropriate to the curveé'whiéh

oscillate about them.

Bond energies. Nl8g, - - - - c118, — ——'Nc1, and

— ~— — — sum of bond energies. -Horizontal line.reprE%Ents'

the total energy}

Eckart energies. - - - vibration kinetic, — — — rotation,

Coriolis or vibration-rotation interaction.

asymmetric stretch, — — —

syuuetrlic stretch, ;i— - - bend, —f—f;*-—w-sum of normal mode

energies. Horizontal line represents the,total‘energy.

" Normal modes in high-energy vibrating, rotating As."All initial.

" normal mode energies equal 39.8 kéal/mole. initial'in—plane rota<

symmetric stretch,

- - - - bend, — — — asymmetric stretch, — — — — sum of

‘normal-mode energies.
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