

ANL-CEN-RSD-76-1

MASTER

PROPERTIES FOR

81-52

LMFBR SAFETY ANALYSIS

ARGONNE NATIONAL LABORATORY, ARGONNE, ILLINOIS

Prepared for the U. S. ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION under Contract W-31-109-Eng-38

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

The facilities of Argonne National Laboratory are owned by the United States Government. Under the terms of a contract (W-31-109-Eng-38) between the U. S. Energy Research and Development Administration, Argonne Universities Association and The University of Chicago, the University employs the staff and operates the Laboratory in accordance with policies and programs formulated, approved and reviewed by the Association.

MEMBERS OF ARGONNE UNIVERSITIES ASSOCIATION

The University of Arizona Carnegie-Mellon University Case Western Reserve University The University of Chicago University of Cincinnati Illinois Institute of Technology University of Illinois Indiana University Iowa State University The University of Iowa Kansas State University The University of Kansas Loyola University Marquette University Michigan State University The University of Michigan University of Minnesota University of Missouri Northwestern University University of Notre Dame The Ohio State University Ohio University The Pennsylvania State University Purdue University Saint Louis University Southern Illinois University The University of Texas at Austin Washington University Wayne State University The University of Wisconsin

-NOTICE-

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Energy Research and Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately-owned rights. Mention of commercial products, their manufacturers, or their suppliers in this publication does not imply or connote approval or disapproval of the product by Argonne National Laboratory or the U. S. Energy Research and Development Administration.

ANL-CEN-RSD-76-1 LMFBR Safety (UC-79p)

÷

ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue Argonne, Illinois 60439

PROPERTIES FOR LMFBR SAFETY ANALYSIS

This report was prepared as an account of work sponsored by the United States Government Neither the United States Government Neither theur employees, nor the United States Energy Research and Development Admunistration, nor any of theur employees, nor any of their contractors, subcontractors, or theur employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

March 1976

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

PREFACE

This handbook of properties for LMFBR Safety Analysis was prepared to bring together the most current data on thermodynamic, transport, and mechanical properties of reactor materials with primary emphasis on summarizing and selecting data of interest to reactor safety analysts. The working group which performed this task benefited from the efforts of the people who produced the Nuclear Systems Materials Handbook (NSMH) (TID-26666) (J. E. Irvin, Chairman). We have adopted the NSMH property code numbers and have used a similar format for a presentation and discussion of values. Moreover, we intend the data in this handbook, prepared for the convenience of reactor safety analysts, to agree with the data in the NSMH. Where, due to inadvertance, this may not be the case, corrections will be made in future revisions.

The present handbook will be extended, updated, and revised periodically and we welcome comments from users of this material, particularly on how its utility to them could be improved. In many cases, estimates of the uncertainties of the selected values have not been given. We will add such estimates in future revisions. Further, it is hoped, that a compilation of this kind, will reveal those areas in which added experimental and theoretical work is needed.

> L. Leibowitz (ANL) Chairman E. C. Chang (GE) M. G. Chasanov (ANL) R. L. Gibby (HEDL) C. Kim (ANL) A. C. Millunzi (ERDA) D. Stahl (ANL)

INTRODUCTION

Materials and their associated property values have been grouped in this handbook by function, viz: fuel, coolant, and structural material. At present, the number of materials included is sufficiently limited that no detailed index has been included and simple tabulation of the materials should suffice.

<u>Fuel</u> UO₂ (U,Pu)O₂

<u>Coolant</u> Sodium

<u>Structural Material</u> Stainless Steel (Type 304) Stainless Steel (Type 316)

The properties discussed for each material have further been arranged in the numerical order specified by the material property code numbers. There are, however, some exceptions to this ordering. In most cases for which a single number would constitute the entire entry (e.g. melting point of a pure substance) several property values have been grouped on a single page at the beginning of relevant material section. We have chosen this scheme for the present edition of the handbook subject to change as needed. PROPERTY CODE NUMBERS

- 2000 Mechanical Properties
 - 2100 Static, Short Term Properties
 - 2101 Ultimate Tensile Strength
 - 2102 Yield Strength
 - 2103 Proportional Elastic Limit
 - 2104 Shear Strength
 - 2105 Elongation
 - 2106 Reduction of Area
 - 2107 True Stress-Strain Curves/Equations
 - 2108 Engineering Stress-Strain Curves/Equations
 - 2109 Hardness
 - 2110 Poisson's Ratio
 - 2111 Young's Modulus (modulus of Elasticity)
 - 2112 Shear Modulus (Modulus of Rigidity)
 - 2113 Tangent Modulus
 - 2114 Bulk Modulus
 - 2115 Rupture Modulus
 - 2116 Compressive Strength
 - 2117 Bending Strength
 - 2118 Fracture Strength
 - 2119 Vicat Softening Point (P)
 - 2120 Taber Abrasion (P)
 - 2200 Static, Long Term Properties
 - 2201 Effects of Prior Creep on Residual Tensile Ductility
 - 2202 Stress for Rupture
 - 2203 Burst Pressure (biaxial)
 - 2204 Uniform △D/D (biaxial)
 - 2205 Isochronous Stress-Strain Curve
 - 2206 Creep
 - 2207 Relaxation
 - 2208 Strain at Fracture
 - 2300 Dynamic Short Term Properties
 - 2301 Strain Rate Effects
 - 2302 Impact Strength

Mechanical Properties (Continued)

- 2303 Brittle to Ductile Transition Temperature
- 2304 Thermal Shock Resistance
- 2305 Coefficient of Restitution
- 2306 Toughness for Tensile Instability
- 2400 Cyclic Loading Properties
 - 2401 2410 Strain-controlled fatigue
 - 2411 2420 Stress-controlled fatigue
 - 2421 2430 Properties of cyclically hardened material
 - 2421 Equivalent bilinear Yield Strength vs. Maximum Strain
 - 2422 Stress-strain for Cyclic Hardened Material -Parameters Ko and Ki
 - 2423 Stress-strain for Cyclic Hardened Material -Parameters C and Cm
 - 2431 2440 Fracture mechanics parameters
- 2500 Viscoelastic Properties
 - 2501 Flexural Strength (P)
 - 2502 Flexural Modulus (P)
 - Breaking Elongation (P) 2503
 - 2504 Deformation Under Load (P)
- 3000 **Physical Properties**
 - 3100 Thermal Properties
 - 3101 Maximum Service Temperature (P)
 - 3102 Healing Temperature
 - 3103 Melting Point
 - 3104 Heat of Fusion
 - 3105 Boiling Point
 - 3106 Heat of Vaporization
 - 3107 Flammability (P)
 - 3108 Specific Heat
 - 3109 Enthalpy
 - 3110 Thermal Diffusivity
 - 3111 Thermal Emissivity
 - 3112 Thermal Conductivity
 - 3113 Prandtl Number
 - 3114 Thermal Expansion

3000

Physical Properties (Continued)

- 3200 Electrical/Magnetic Properties
 - 3201 Electrical Resistivity
 - 3202 Dielectric Strength
 - 3203 Dielectric Coefficient
 - 3204 Dissipation Factor
 - 3205 Magnetic Permeability
 - 3206 Arc Resistance (P)
- 3300 Other Physical Properties
 - 3301 Viscosity
 - 3302 Surface Tension
 - 3303 Vapor Pressure
 - 3304 Density
 - 3305 Porosity
 - 3306 Speed of Sound
 - 3307 Isothermal Compressibility
 - 3308 Reflectance (coatings)
 - 3309 Water Vapor Permeability (P)
 - 3310 Water Absorption (P)
 - 3311 Gas Permeability (P)
- * From Nuclear Systems Materials Handbook TID-26666
- (P) Relates to plastics/elastomers

FUEL

		FUNCTION	MATERIAL	PROPERTY
Date:	3/76	Fuel	^{(U} .75 ^{Pu} .25 ⁾⁰ 2	2110 Poisson's Ratio 2112 Shear Modulus 2114 Bulk Modulus

Poisson's Ratio $\gamma = (3K - 2G)/2(3K + G)$ Shear Modulus $G = 76 [1 - (T/2760)^2] (1 - 2P)$ GPa $G = 11E6 [1 - (T/2760)^2] (1 - 2P)$ psi Bulk Modulus $K = 140 [1 - .5 (T/2760)^2] (1 - 2P)$ GPa $K = 20E6 [1 - .5 (T/2760)^2] (1 - 2P)$ psi

T = Temperature, K P = 1 - ρ ρ = Fraction of Theoretical Density

	FUNCTION	MATERIAL	PROPERTY
Date: 3/76	Fuel	^{(U} .75 ^{Pu} .25 ⁾⁰ 2	2110 Poisson's Ratio 2112 Shear Modulus 2114 Bulk Modulus

References

HEDL Unpublished Information, 1972.

FUNCTION

Fuel

Mixed Oxide

2118 Fracture Strength

Date: 3/76

Temperature dependence of brittle strength of UO_2 -20 wt % PuO₂.

Properties for LMFBR Safety Analysis

FUNCTION	MATERIAL	PROPERTY
 Fuel	Mixed Oxide	2118 Fracture Strength

Discussion

The brittle fracture strength of $(U,Pu)O_2$ may be expressed as a function of temperature T by

 $\sigma_f = 27.4 + 0.059T (°K)$

where the fracture strength $\sigma_{\rm f}$ is in MN/m². This relation is taken from reference (1) which found the fracture strength to be dependent on a largest flaw in the specimen rather than the average porosity,² grain size³ or impurity content.⁴ The brittle fracture strength was also found to be insensitive to loading rate.

FUNCTION	MATERIAL	PROPERTY		
 Fuel	Mixed Oxide	2118 Fracture Strength		

References

- J. T. A. Roberts, "Brittle Fracture of Oxide Nuclear Fuel," J. Nucl. Mater., 47(1), 125-128 (May 1973).
- J. T. A. Roberts and Y. Ueda, "Influence of Porosity on Deformation and Fracture of UO₂," J. Am. Ceram. Soc., <u>55(3)</u>, 117-124 (March 1972).
- J. T. A. Roberts and B. J. Wrona, "Deformation and Fracture of UO₂-20 wt % PuO₂, ANL-7945 (June 1972).
- A. A. Solomon, "Influence of Impurity Particles on the Fracture of UO₂," J. Am. Ceram. Soc., <u>55(12)</u>, 622-627 (December 1972).

Properties for LMFBR Safety Analysis

Deformation Map of 4-µm 96% TD UO₂-25 wt % PuO₂ Subjected to Fission Rate of 5 x 10^{13} fissions/cm³-sec.

Date:

	FUNCTION	MATERIAL	PROPERTY
	Fuel	Mixed Oxide	2206 Creep
2/7	r		

Discussion

The steady-state creep rate of mixed-oxide fuel may be expressed as the sum of several linearly additive terms

$$\dot{\dot{\epsilon}}_{\text{total}} = \dot{\dot{\epsilon}}_{\text{TL}} = \dot{\dot{\epsilon}}_{\text{TH}} + \dot{\dot{\epsilon}}_{\text{FT}} + \dot{\dot{\epsilon}}_{\text{FA}}$$
(1)

The values of parameters used in these terms are given for a specific fuel composition, impurity concentration, pore morphology and O/M ratio. The effect of plutonium concentration has been reported,¹ but is not included in the present report because the creep rate in the diffusion flow region varies only \sim 15% in the concentration range of 20-30 wt % PuO₂. Primary creep has not been considered in the above relation although contributions from this mechanism may be significant.

Viscous creep ($\dot{\epsilon}_{\rm TL}$) may be described by the relation

$$\dot{\varepsilon}_{\rm TL} = \frac{A}{d^2} [1 + 2.11 (97 - \zeta)] \sigma \exp(-Q_1/RT)$$
 (2)

where

$$\dot{\epsilon}_{TL}$$
 = steady-state creep due to diffusional flow (hr⁻¹)
A = 3.23 x 10⁹ (for UO₂-25 wt % PuO₂)
d = grain size (10-47 µm)
 ζ = density (88-95% TD)
 σ = stress (6.9-110 MN/m²)
Q₁ = 92500 cal/mole (0/M = 1.97)
R = gas constant (1.987 calories per °K per mole)
T = temperature (1573 - 1973°K
Properties for LMFBR Safety Analysis

FUNCTION	MATERIAL	PROPERTY
Fuel	Mixed Oxide	2206 Creep

Discussion (Contd.)

The effect of density is based on work reported in Ref. 1. These data are extrapolated to 97% TD and normalized to the same figure. The other experimental parameters were obtained from Ref. 2.

Power-law creep ($\dot{\epsilon}_{\rm TH}$) may be described by the relation

$$\dot{\epsilon}_{\rm TH} = B[1 + 0.22(97 - \zeta)] \sigma^{4.4} \exp(-Q_2/RT)$$
 (3)

where

$$\dot{\epsilon}_{\rm TH}$$
 = steady-state creep due to dislocation motion (hr⁻¹)
B = 3.24 x 10⁶ (for UO₂-25 wt % PuO₂)
Q₂ = 136,800 cal/mole

Other variables are the same as Eq. (2).

The density dependence is also based on Ref. 1 data which have been extrapolated and normalized to 97% TD. The remaining experimental parameters were taken from Ref. 3.

Radiation-enhanced thermal creep ($\dot{\epsilon}_{\rm FT}$) can be expressed as

$$\dot{\varepsilon}_{\rm FT} = C \sigma \dot{F} \exp \left(-Q_3/RT\right)$$
 (4)

where

ϵ_{FT} = fission enhanced thermal creep (hr⁻¹) for 95% TD, 4 µm grain size
U0₂-22 wt % Pu0₂
C = 2.84 x 10⁻¹⁷
F = fission-rate (fissions/cm³-sec)
Properties for LMFBR Safety Analysis

	FUNCTION	MATERIAL	PROPERTY
170	Fuel	Mixed Oxide	2206 Creep

Discussion (Contd.)

This relation describes Ref. 4 data within a factor of two. Radiation-induced creep ($\dot{\epsilon}_{FA}$) may be described as

$$\dot{\epsilon}_{FA} = D \dot{F} \sigma$$
 (5)

where

 $\dot{\epsilon}_{FA}$ = fission-induced creep D = 5.40 x 10⁻²¹ based on UO₂ for T < 600°K⁵

The following notes of caution should be observed in using these relations: (1) In general, the effect of fuel parameters such as composition, impurity concentration, pore morphology and O/M ratio have not been included; (2) Primary creep has not been considered; (3) No experimental data exists for $\sigma < 1000$ psi or T > 2000°K.

FUNCTION	MATERIAL	PROPERTY
Fuel	Mixed Oxide	2206 Creep

References

- 1. S. K. Evans, P. E. Bohaboy, and R. A. Laskiewicz, "Compressive Creep of Urania-Plutonia Fuels," GEAP-13732 (1971).
- J. L. Routbort, N. A. Javed, and J. C. Voglewede, "Compressive Creep of Mixed-oxide Fuel Pellets," J. Nucl. Mater. <u>44</u>(3), 247-259 (Sept 1972).
- J. L. Routbort and J. C. Voglewede, "Creep of Mixed-oxide Fuel Pellets at High Stress," J. Am. Ceram. Soc. <u>56(6)</u>, 330-333 (June 1973).
- 4. J. S. Perrin, "Effect of Irradiation on the Creep of UO₂-PuO₂," J.
 Nucl. Mater. <u>42</u>, 101-104 (1972).
- A. A. Solomon, "Radiation-Induced Creep of UO₂," J. Am. Ceram. Soc.
 <u>56(3)</u>, 164-171 (Mar 1973).

Properties for LMFBR Safety Analysis

Recovery of Strength in ${\rm UO}_2$ as a Function of Annealing Time and Temperature

Date: 3/76

FUNCTION	MATERIAL	PROPERTY
 Fuel	UO ₂	3102 Crack Healing

Discussion

The recovery in strength of thermally shocked UO₂ specimens has been studied as a function of time and isothermal annealing temperature.¹ The strength recovery is expressed as a fraction of the unshocked strength of the material.

$$\left[\sigma(t)/\sigma_{f}\right]^{2} - \left[\sigma_{o}/\sigma_{f}\right]^{2} + \left[At/\sigma_{f}^{2}\right] \exp(-Q/RT)$$

where

σ (t)	=	the time dependent fracture strength of thermally shocked UO2,
		kg/cm^2
$^{\sigma}$ f	=	fracture strength of unshocked UO_2^2 , kg/cm ²
σ 0	-	fracture strength of thermally shocked UO_2 (at t=0) equals
		%0.2 σ _f
A	=	$6.5 \pm 2.7 \times 10^{10} \text{ kg}^2 \text{ cm}^{-4} \text{ hr}^{-1}$
t	=	time (hrs)
Q	=	55000 cal/mole
R	=	gas constant (1.987 calories per °K per mole)
т	=	temperature °K

Properties for LMFBR Safety Analysis

FUNCTION

Fuel

.

MATERIAL

PROPERTY

Date: 3/76

UO2

3102 Crack Healing

References

.

 J. T. A. Roberts and B. J. Wrona, "Crack Healing in UO₂," J. Am. Cer. Soc., 56 (6), 297-299 (June 1973).

	FUNCTION	MATERIAL	PROPERTY	
	Fuel	U0 ₂	Vapor Pressure	(3303)
Date: 1/76				
		Vapor Pressure over UC	2	
	Т(К)		p(atm)	
	2000		9.29 x 10 ⁻⁸	
	2500		1.25 x 10 ⁻⁴	
	3000		1.52 x 10 ⁻²	
	3500		0.344	
	4000		2.45	
	4500		10.7	
	5000		33.1	
	5500		77.6	

6000

151

•

Date: 1/76

Properties for LMFBR Safety Analysis

FUNCTION	MATERIAL	PROPERTY	
Fuel	UO ₂	Vapor Pressure	(3303)

Date: 1/76

Data Source

The values of vapor pressure below the melting point of UO_2 (3123K) come from the experimental work of Tetenbaum and Hunt;¹ log P(atm) = (-31284/T) + 8.61; T is in K. The value at 3500K is based on the experimental work of Reedy and Chasanov;² log p(atm) = (-27426/T) + 7.373. The values at 4000K and above are based on the liquid UO_2 equation of state developed by Gillian.³

Discussion

There have been a large number of experimental determinations of the vapor pressure over UO_2 , notably the work of Ackermann et al.,⁴ Ohse,⁵ Tetenbaum and Hunt,¹ Pattoret et al.,⁶ and Reedy and Chasanov.² The last set of experiments extended in the liquid UO_2 temperature range. The experimental methods employed were Knudsen effusion, mass spectrometry, and transpiration. More recently several experiments above 4000K have employed laser pulse heating techniques; these include the work of Ohse et al.⁷ and that of Bober et al.⁸ A quite different approach using matrix isolation spectroscopic data to calculate pressures over UO_2 has been employed by Gabelnick.⁹ Breitung¹⁰ has used an oxygen potential theory method. There have been a number of purely calculational approaches based on employing corresponding states theory to extrapolate low temperature pressure data to the reactor accident temperature regime; notable among these efforts are the calculations of Booth¹¹ and Menzies.¹² A recent paper by Gillian³ employs Significant Structures theory to calculate the equation of state of liquid UO_2 .

To represent the pressures over solid UO_2 , we have chosen the values of Tetenbaum and Hunt.¹ These data are in reasonable agreement with the work of other experimenters in this temperature range and they agree well with the high temperature liquid UO_2 experiments of Reedy and Chasanov.³ For 4000K and above, there are many sets of calculated values to choose from; some of these are displayed in the following table.

		· · · · · · · · · · · · · · · · · · ·		<u> </u>		r
Т(К)	Gabelnick ⁹	0hse ⁷	Booth ¹¹	Menzies ¹²	Breitung ¹⁰	Gillian ³ *
4000	2.24	5.31	6.01	2.63	6.08	2.45
50 0 0	29.1	132	98.9	46.5	150	33.1
6000	171	1120	554	272	-	151

Calculated $\rho(atm)$

*Using Tetenbaum and Hunt data as basis for calculation.

Properties for LMFBR Safety Analysis

FUNCTION	MATERIAL	PROPERTY	
Fuel	UO_2	Vapor Pressure	(3303)

Date: 1/76

Discussion (cont'd.)

The relatively good agreement between Gabelnick's and Gillian's results (which were arrived at by very different calculational methods) resulted in the use of Gillian's values in the recommended vapor pressure table. It must be kept clearly in mind, however, that all these values are based on some kind of calculational scheme, and until reliable experimental data are obtained at these upper temperatures, the recommended values are probably uncertain by a factor of two or three.

References

- 1. M. Tetenbaum and P. D. Hunt, J. Nucl. Mater. 34, 86 (1970.
- 2. G. T. Reedy and M. G. Chasanov, J. Nucl. Mater. 42, 341 (1972).
- 3. M. J. Gillian, "Thermodynamics of Nuclear Materials 1974," Vol. I, p. 269, International Atomic Energy Agency, Vienna, 1975.
- 4. R. J. Ackermann, P. W. Gilles, and R. J. Thorne, J. Chem. Phys. <u>25</u>, 1089 (1956).
- 5. R. W. Ohse, J. Chem. Phys. 44, 1375 (1966).
- A. Pattoret, I. Drowart, and S. Smoes, "Thermodynamics of Nuclear Materials 1967," p. 613, International Atomic Energy Agency, Vienna, 1967.
- R. W. Ohse, P. G. Berrie, H. G. Bogensberger, and E. A. Fischer, "Thermodynamics of Nuclear Materials 1974," Vol. I, p. 307, International Atomic Energy Agency, Vienna, 1975.
- 8. M. Bober, H. V. Karow, and K. Schretzmann, Nuclear Technol. 26, 237 (1975).
- 9. M. G. Chasanov, D. F. Fischer, D. R. Fredrickson, S. D. Gabelnick, R. Kumar, L. Leibowitz, G. T. Reedy, F. A. Cafasso, and L. Burris, "Chemical Engineering Division Reactor Safety and Physical Properties Studies Annual Report, July 1973 - June 1974," ANL-8120, p. 60.
- 10. W. Breitung, "Calculation of Vapor Pressures of Oxide Fuels up to 5000K for Equilibrium and Nonequilibrium Evaporation," KFK2091, 1975.
- D. L. Booth, "The Thermodynamic Properties of UO₂ and Sodium," TRG Report 1871 (R/X), 1969.
- 12. D. C. Menzies, "The Equation of State of Uranium Dioxide at High Temperatures and Pressures," TRG Report 1119 (D).

Properties for LMFBR Safety Analysis

		FUNCTION	MATERIAL	PROPERTY	
		Fuel	(U _{0.8} Pu _{0.2})O _{1.96}	Vapor Pressure	(3303)
Date:	1/76				
		Vapor	Pressure over (U _{0.8} Pu _{0.2})	01.96	
		Т(К)		$\rho(atm)$	
		2000		1.2 x 10 ⁻⁷	
		2500		2.1 x 10 ⁻⁴	
		3000		3.6 x 10 ⁻²	
		3500		0.91	
		4000		9.1	

 5500
 500*

 6000
 1000*

4500 5000 49

170

*Extrapolated from values at lower temperatures

Properties for LMFBR Safety Analysis

FUNCTION	MATERIAL	PROPERTY	
Fuel	(U _{0.8} Pu _{0.2})0 _{1.96}	Vapor Pressure	(3303)

Date: 1/76

Data Source

The values of vapor pressure over $(U_{0.8}Pu_{0.2})O_{1.96}$ were taken from the calculated tables of values given by Breitung.¹ The values above 5000K were obtained by graphical extrapolation of his lower temperature results.

Discussion

While there are experimental data^{2,3} available for pressures over mixed oxide at temperatures up to \sim 2400K, above the melting point of fuel only the recent values of Ohse <u>et al.</u>⁴ are available. While the latter experiments extended to 7000K, there remain many questions relating to the interpretation of the results of these laser-evaporation experiments. The vapor pressure equation of Ohse <u>et al.</u>⁴ thus was not used for calculation of the above recommended values; however, this equation is presented here for those who may wish to consider its use:

$$\log p(atm) = 7.966 - \frac{28137}{T}$$
,

where T is in Kelvins.

Gabelnick⁵ calculated vapor pressures over mixed oxides using the same methods he employed for UO_2 (see UO_2 vapor pressures). However, the application of this method becomes more tenuous in the case of mixed oxides since Gabelnick had to estimate thermodynamic parameters for the plutonium-bearing vapor species as well as for the oxygen potentials. Because of these imponderable uncertainties, Gabelnick's estimated vapor pressures were also not used in this compilation. Breitung¹ has made thermodynamic calculations of mixed oxide vapor pressures using oxygen potential theory. His calculated values fall in between those of Gabelnick⁵ and Ohse <u>et al</u>.⁴ at the highest temperatures and Breitung's calculations have been chosen as the recommended values. A comparison of these different calculated vapor pressures is given below:

Calculated $\rho(atm)$				
Т(К)	Ohse <u>et</u> <u>al</u> . ⁴	Breitung ¹	Gabelnick ⁵	
4000	8.5	9.1	3.9	
5000	220	170	44	
6000	1900	1000	260	

Until more experimental work is completed on the vapor pressures of mixed oxides at high temperatures, especially greater clarification of the oxygen potentials over the non-stoichiometric fuels, these recommended mixed oxide vapor pressure values remain more uncertain than those for UO_2 (cf.).

FUNCTION	MATERIAL	PROPERTY	
Fuel	(U _{0.8} Pu _{0.2})O _{1.96}	Vapor Pressure	(3303)

Date: 1/76

References

- 1. W. Breitung, "Calculation of Vapor Pressure of Oxide Fuels up to 5000K for Equilibrium and Nonequilibrium Evaporation," KFK 2091, 1975.
- 2. J. E. Battles, W. A. Shinn, P. E. Blackburn, and R. K. Edwards in "Plutonium 1970" Nuclear Metallurgy, Vol. 17, Pt. II, p. 733 (1971).
- 3. R. W. Ohse and W. M. Olsen, ibid., p. 743.
- 4. R. W. Ohse, P. G. Berrie, H. G. Bogensberger, and E. A. Fischer, "Thermodynamics of Nuclear Materials 1974," Vol. I, p. 307, International Atomic Energy Agency, Vienna, 1975.
- M. G. Chasanov, D. F. Fischer, D. R. Fredrickson, S. D. Gabelnick, R. Kumar, L. Leibowitz, G. T. Reedy, F. A. Cafasso, and L. Burris, "Chemical Engineering Division, Reactor Safety and Physical Property Studies Annual Report, July 1973 - June 1974," ANL-8120.

Date: 3/76

Grain Growth in UO_2 Plotted as $ln(D^2-D_0^2)$ vs ln t.

Properties for LMFBR Safety Analysis

FUNCTION	MATERIAL	PROPERTY
Fuel	UO2	4201 Grain Growth

Discussion

Unpublished data of J. T. A. Roberts and B. J. Wrona of A.N.L. has been used to develop an expression for grain growth in UO_2 . In the undisturbed and equiaxed regions

$$D^{2} = D_{o}^{2} + K t^{n} \exp(-Q/RT)$$
(1)

where

D = time and temperature dependent grain size, μm D_o = initial grain size, μm K = 3 x 10⁷ t = time (hrs) n = 0.61 Q = 49400 kcal/mole R = gas constant (1.987 calories per °K per mole) T = temperature °K

For the columnar region,

 $\overline{D} = \sqrt{D_{b} \times R_{c}}$

this relation assumes that the columnar grain length equals the zone radius R_c and the grain width equals the equiaxed grain size D_b and is based on a formulation used by Ashby and Raj for asymmetric grains in diffusion creep theory.¹

Properties for LMFBR Safety Analysis

FUNCTIO	N MATERIAL	PROPERTY
Fuel	UO ₂	4201 Grain Growth

References

 M. F. Ashby and R. Raj, Tech. Rept. 2, Div. of Eng. and Appl. Phys. Harvard U, Cambridge, Mass. (June 1970). COOLANT
	FUNCTION	MATERIAL	PRO	PERTY
	Coolant	Sodium	Miscellaneo	us Properties
Date: 1/76				
Proper	ty	Value	Reference	Property Code
Melting Poin	it 3	370.98 K	1	3103
Heat of Fusi	on 6	521.8 cal/mol	1	3104
Boiling Poin	t	1154.6 K	1	3105
Heat of Vapo	orization 2	21.280 Kcal/mol	1	3106
Critical Tem	perature 2	2733K	2	
Critical Pre	essure 4	408.2 atm	2	
Critical Den	sity (0.1818 g/cm ³	2	

FUNCTION	MATERIAL	PROPERTY
Coolant	Sodium	Miscellaneous Properties

- 1. O. J. Foust, Editor, "Sodium-NaK Engineering Handbook Volume 1," Gordon and Breach, New York, 1972.
- 2. D. Miller, A. B. Cohen, and C. E. Dickerman, "Estimation of Vapor and Liquid Density and Heat of Vaporization of the Alkali Metals to the Critical Point," International Conference on the Safety of Fast Breeder Reactors, Aix-en-Provence, France, September 19-22, 1967.

		FUNCTION	MATERIAL	PROPERTY	
		Coolant	Sodium	Heat Capacity	(3108)
D	ate: 1/76				
	T(K)		C _p (cal/mol K)	C _v (c	al/mol K)
	400		7.53		6.73
	500		7.30		6.31
	600		7.12		5.95
	700		6.99		5.64
	800		6.92		5.39
	900		6.89		5.19
	1000		6.92		5.05
	1100		6.99		4.96
	1200		7.11		4.93
	1300		7.29		4.94
	1400		7.51		5.00
	1500		7.78		5.11
	1600		8.11		5.26
	1700		8.38		5.28
	1800		8.60		5.14
	1900		8.88		4.99
	2000		9.24		4.83
	2100		9.72		4.67
	2200		10.4		4.50
	2300		11.4		4.35
	2400		13.1		4.24
	2500		16.3		4.23
	2600		25.1		4.61
	2700		135		8.55

FUNCTION	MATERIAL	PROPERTY	
Coolant	Sodium	Heat Capacity	(3108)

Date: 1/76

HEAT CAPACITY FOR SATURATED SODIUM LIQUID

FUNCTION Coolant MATERIAL Sodium PROPERTY Heat Capacity (3108)

Date: 1/76

Data Source

The values for C_p and C_v came from Reference 1.

Discussion

 C_p and C_v came from Reference 1 and are based on values recommended by Golden and Tokar,² who in turn used Ginnings <u>et al.'s</u>³ experimental data (up to 900°C) as extended by Stone <u>et al.</u>⁴ Padilla (Ref. 1) extrapolated the values of Ref. 2 to obtain the results shown. The range of experimental specific heat data has since been extended to 1232°C by Fredrickson and Chasanov.⁵ These newer data should be included in revisions of Padilla's calculations. It must be kept in mind, however, that the extrapolation of the experimental data beyond the range of measurement involves a significant dependence on estimated critical parameters of sodium. This is clearly demonstrated by the work of Gabelnick,⁶ which shows the variations in C_p and C_v with choice of critical parameters. The curves shown in Reference 1 are based on Miller's estimates⁷ (T_c = 2733K, P_c = 408.2 atm, ρ_c = 0.1818 g/cm³). Above 1700°C, these specific heat values should be used with caution since current experiments at Columbia under Bonilla⁸ may result in markedly different critical parameters and in resultantly higher specific heats in the region between 1700°C and the critical temperature.

- 1. A. Padilla, "High Temperature Thermodynamic Properties of Sodium," ANL-8095, 1974.
- G. H. Golden and J. V. Tokar, "Thermophysical Properties of Sodium," ANL-7323, 1967.
- 3. D. C. Ginnings, T. B. Douglas, and A. F. Ball, J. Res. N.B.S.R.P. 2110 45, 23 (1950).
- 4. J. P. Stone, C. T. Ewing, J. R. Spann, E. W. Steinkuller, D. D. Williams, and R. R. Miller, "High Temperature Properties of Sodium," NRL Report 6241, September 24, 1965.
- 5. D. R. Fredrickson and M. G. Chasanov, J. Chem. Thermodynamics <u>6</u>, 629 (1974).
- M. G. Chasanov, D. F. Fischer, D. R. Fredrickson, S. D. Gabelnick, R. Kumar, L. Leibowitz, G. T. Reedy, F. A. Cafasso, and L. Burris, "Chemical Engineering Division, Reactor Safety and Physical Property Studies Annual Report, July 1973 - June 1974," ANL-8120.

FUNCTION	MATERIAL	PROPERTY	
Coolant	Sodium	Heat Capacity	(3108)

4

Date: 1/76

.

References

- D. Miller, A. B. Cohen, and C. E. Dickerman, "Estimation of Vapor and Liquid Density and Heat of Vaporization of the Alkali Metals to the Critical Point," International Conference on the Safety of Fast Breeder Reactors, Aix-en-Provence, France, September 19-22, 1967.
- 8. C. F. Bonilla, private communication.

.

	<u>_</u> F	UNCTION	MATERIAL	PROPERTY
	(Coolant	Sodium	Enthalpy (3109)
Date:	1/76		(relative to	the standard state at UK)
T(K)			^H liquid ^(Kcal/mol)	H _{vapor} (Kcal/mol)
400			2.898	27.58
500			3.639	28.03
600			4.359	28.40
700			5.065	28.68
800			5.760	28.90
900			6.450	29.08
1000			7.139	29.24
1100			7.834	29.41
1200			8.539	29.59
1300			9.260	29.78
1400			10.000	29.96
1500			10.766	30.12
1600			11.563	30.24
1700			12.392	30.35
1800			13.243	30.44
1900			14.119	30.51
2000			15.024	30.54
2100			15.964	30.54
2200			16.949	30.50
2300			17.994	30.39
2400			19.120	30.21
2500			20.373	29.89
2600			21.855	29.35
2700			24.004	28.14
2733	(critical temperatur	re)	26.229	26.229

Properties for LMFBR Safety Analysis

FUNCTION	MATERIAL	PROPERTY	
Coolant	Sodium	Enthalpy	(3109)

Data Source

The values for the enthalpy of saturated sodium came from Reference 1.

Discussion

Padilla in Reference 1 combined liquid enthalpies recommended by Golden and Tokar² with computed vapor enthalpies from the same source to obtain average enthalpy values. The average enthalpy was then extrapolated to the critical temperature assumed by Miller <u>et al.</u>³ (2733K) and extrapolated liquid and vapor enthalpies were obtained by the addition or subtraction of half the heat of vaporization. The heat of vaporization used for this calculation was based on that recommended by Miller <u>et al.</u>³ Padilla's values (Ref. 1) are represented by the equations:

where: $H_{avg}(J/g) = 3841.9 + 0.85563[T(k) - 1644.31]$ $\Delta H_{vap} = 5.050 \text{ RT}_{c}(1 - T/T_{c})^{0.4262}$ $T_{c} = \text{critical temperature}$ $= 2733K \text{ (estimate of Miller <u>et al.</u>³)$

The above enthalpies are relative to the standard state at 0° K. However, it is clear that the results of Reference 1 are quite dependent on the choice of the critical parameters; Gabelnick⁴ has shown the marked effect of variation of critical temperature on the enthalpy of the system above $\sim 1700^{\circ}$ C (see property code 3108 for a discussion of current experimental work in this area). Thus the user of these enthalpy values should be aware of these uncertainties; a quantitative estimate of them can be obtained by consulting Gabelnick's study.⁴

- 1. A. Padilla, "High Temperature Thermodynamic Properties of Sodium," ANL-8095, 1974.
- G. H. Golden and J. V. Tokar, "Thermophysical Properties of Sodium," ANL-7323, 1967.

FUNCTION	MATERIAL	PROPERTY	
Coolant	Sodium	Enthalpy	(3109)

- 3. D. Miller, A. B. Cohen, and C. E. Dickerman, "Estimation of Vapor and Liquid Density and Heat of Vaporization of the Alkali Metals to the Critical Point," International Conference on the Safety of Fast Breeder Reactors, Aix-en-Provence, France, September 19-22, 1967.
- M. G. Chasanov, D. F. Fischer, D. R. Fredrickson, S. D. Gabelnick, R. Kumar, L. Leibowitz, G. T. Reedy, F. A. Cafasso, and L. Burris, "Chemical Engineering Division Reactor Safety and Physical Property Studies Annual Report, July 1973 - June 1974," ANL-8120.

		FUNCTION	MATERIAL	PROPERTY	
	-	Coolant	Sodium	Liquid Thermal Conductivity	(3113)
Date:	1/76			·	
		Τ(Κ)		k(w/cm K)	
		400		0.858	
		500		0.804	
		600		0.753	
		700		0.703	
		800		0.656	
		900		0.612	
		1000		0.570	
		1100		0.530	
		1200		0.492	
		1300		0.457	
		1400		0.41	
		1500		0.38	
		1600		0.34	
		1700		0.31	
		1800		0.29	
		1900		0.26	
		2000		0.22	
		2100		0.20	
		2200		0.17	
		2300		0.14	
		2400		0.11	
		2500		0.078	
		2600		0.042	
		2700		0.013	

.

Date: 1/76

FUNCTION Coolant MATERIAL Sodium PROPERTY

Conductivity

Liquid Thermal

(3113)

Date: 1/76

Data Source

The values of thermal conductivity given for liquid sodium are based on the work of Golden and Tokar 1 and Grosse. 3

Discussion

Golden and Tokar¹ developed an equation for the thermal conductivity of liquid sodium based on their analysis of the experimental data. Their equation was proposed for the liquid range up to 1643K:

$$k(w/cm K) = 0.930 - 0.581 \times 10^{-3} (T - 273) + 1.173 \times 10^{-7} (T - 273)^2$$
.

Above the boiling point, Foust² recommends a semi-empirical method developed by Grosse³ for estimation of thermal conductivities. The values presented in the preceding table were obtained from the Golden and Tokar¹ equation up to 1300K; the values from 1400K were obtained by graphical interpolation of Grosse's³ calculated results. It should be borne in mind that Grosse's method depends strongly on the choice of critical temperature; he used a value of 2800K, slightly greater than the value recommended by Miller.⁴ In addition, Grosse's method is based on the Wiedemann-Franz-Lorenz law. In the absence of experimental data at the higher temperatures, Grosse's approach seems preferable to some of the other extrapolative methods (see Foust²).

- G. H. Golden and J. V. Tokar, "Thermophysical Properties of Sodium," ANL-7323 (1967).
- 2. O. J. Foust, Editor, "Sodium-NaK Engineering Handbook, Vol. 1," Gordon and Breach, New York, 1972.
- 3. A. V. Grosse, Rev. Hautes Temp. et Refract. <u>3</u>, 115 (1966).
- 4. D. Miller, A. B. Cohen, and C. E. Dickerman, "Estimation of Vapor and Liquid Density and Heat of Vaporization of the Alkali Metals to the Critical Point," International Conference on the Safety of Fast Breeder Reactors, Aix-en-Provence, France, September 19-22, 1967.

	FUNCTION	MATERIAL	PROPERTY	
	Coolant	Sodium	Thermal Expansivity (3114)
Date:	1/76			
	Т(К)		α _p (K ^{-]}) x 10 ⁴	
	400		2.533	
	500		2.616	
	600		2.719	
	700		2.814	
	800		2.912	
	900		3.012	
	1000		3.114	
	1100		3.220	
	1200		3.329	
	1300		3.444	
	1400		3.565	
	1500		3.694	
	1600		3.833	
	1700		4.090	
	1800		4.492	
	1900		4.993	
	2000		5.634	
	2100		6.486	
	2200		7.670	
	2300		9.430	
	2400		12.33	
	2500		18.00	
	2600		33.97	
	2700		250.6	

<u>FUNCTION</u> Coolant

MATERIAL

Sodium

PROPERTY

Thermal Expansivity (3114)

Date: 1/76

Data Source

The values for the volumetric coefficient of thermal expansion came from Reference 1.

Discussion

The volumetric thermal expansion coefficient along the saturation curve can be obtained directly from density data (see Property Code 3304 for density discussion). However, the thermodynamic volumetric coefficient of expansion differs from that along the saturation curve by the product of the isothermal compressibility and the thermal pressure coefficient along the saturation curve (see Ref. 2); this difference becomes significant at high temperatures. Thus, since Padilla in Ref. 1 required critical temperature and pressure data for extrapolation of vapor pressure, speed of sound, and density data to the high temperature regions near the critical point, there are compounded uncertainties in using the values he generated.

Gabelnick³ has shown the effect of different critical parameter choice on the expansion coefficient; Padilla's values are based on the Miller <u>et al</u>.⁴ critical parameters ($T_c = 2733K$, etc.). Fortunately, except at a few hundred degrees near the critical temperature, the thermal expansion coefficient remains relatively unchanged on a wide range of temperatures.

- 1. A. Padilla, "High Temperature Thermodynamic Properties of Sodium," ANL-8095, 1974.
- J. S. Rowlinson, "Liquids and Liquid Mixtures, 2nd Ed.," Plenum Press, New York, 1969.
- M. G. Chasanov, D. F. Fischer, D. R. Fredrickson, S. D. Gabelnick, R. Kumar, L. Leibowitz, G. T. Reedy, F. A. Cafasso, and L. Burris, "Chemical Engineering Division, Reactor Safety and Physical Property Studies Annual Report, July 1973 - June 1974," ANL-8120.
- 4. D. Miller, A. B. Cohen, and C. E. Dickerman, "Estimation of Vapor and Liquid Density and Heat of Vaporization of the Alkali Metals to the Critical Point," International Conference on the Safety of Fast Breeder Reactors, Aix-en-Provence, France, September 19-22, 1967.

		FUNCTION	MATERIAL	PROPERTY	
Dat	^{e:} 1/76	Coolant	Sodium	Saturated Vapor Pressure	(3303)
		Т(К)		p(atm)	
		800		0.01	
		900		0.05	
		1000		0.19	
		1100		0.59	
		1200		1.48	
		1300		3.20	
		1400		6.17	
		1500		10.9	
		1600		17.8	
		1700		27.4	
		1800		40.4	
		1900		57.2	
		2000		78.4	
		2100		105	
		2200		136	
		2300		173	
		2400		217	
		2500		266	
		2600		323	
		2700		386	
		2733 (critical		408	

temperature)

1

Properties for LMFBR Safety Analysis

FUNCTION MATERIAL

Sodium

PROPERTY

Saturated Vapor

Pressure

(3303)

Date: 1/76

Coolant

Data Source

The saturated vapor pressure values came from Reference 1.

Discussion

Golden and Tokar² made a critical analysis of experimental measurements and recommended the equation of Ditchburn and Gilmour³ below 1150K and that of Stone et al.⁴ up to 1370K. Padilla used an equation of the same form as Stone et al.⁴ to extrapolate vapor pressures to a critical temperature of 2733K and critical pressure of 408 atm (values of Miller et al.⁵) while insuring continuity with the lower temperature values. Padilla¹ gives the pertinent equations in English units; Foust⁶ has converted the equations of Refs. 3 and 4 to SI units. These are given below (T in K).

$$\log p(atm) = 6.354 - \frac{5567}{T} - 0.5 \log T$$
 (1)

Padilla's extrapolation equation¹ when converted to SI units, becomes:

$$\log p(atm) = 1.56182 - \frac{4543.48}{T} + 0.789 \log T$$
(3)
1370K < T

The effect of various estimates of the critical parameters on the vapor pressure extrapolations at high temperatures is shown by Gabelnick.⁷ Current work underway under Bonilla at Columbia University⁸ may provide experimental vapor pressure data up to the critical temperature.

References

- 1. A. Padilla, "High Temperature Thermodynamic Properties of Sodium," ANL-8095, 1974.
- G. H. Golden and J. V. Tokar, "Thermophysical Properties of Sodium," ANL-7323, 1967.
- 3. R. W. Ditchburn and J. C. Gilmour, Rev. Mod. Phys. 13, 310 (1941).
- J. P. Stone, C. T. Ewing, J. R. Spann, E. W. Steinkuller, D. D. Williams, and R. R. Miller, "High Temperature Properties of Sodium," NRL Report 6241, September 24, 1965.

Properties for LMFBR Safety Analysis

FUNCTION	MATERIAL	PROPERTY	
Coolant	Sodium	Saturated Vapor	(3303)
		Pressure	

- 5. D. Miller, A. B. Cohen, and C. E. Dickerman, "Estimation of Vapor and Liquid Density and Heat of Vaporization of the Alkali Metals to the Critical Point," International Conference on the Safety of Fast Breeder Reactors, Aix-en-Provence, France, September 19-22, 1967.
- 6. O. J. Foust, Editor, "Sodium-NaK Engineering Handbook Volume 1," Gordon and Breach, New York, 1972.
- M. G. Chasanov, D. F. Fischer, D. R. Fredrickson, S. D. Gabelnick, R. Kumar, L. Leibowitz, G. T. Reedy, F. A. Cafasso, and L. Burris, "Chemical Engineering Division, Reactor Safety and Physical Property Studies Annual Report, July 1973 - June 1974," ANL-8120.
- 8. C. F. Bonilla, private communication.

	FUNCTION	MATERIAL	PROPERTY
	Coolant	Sodium	Density (3304)
Date:	1/76		
T(K)		^p liquid ^(g/cm³)	^p vapor (g/cm³)
400		0.9207	0.00000
500		0.8973	0.00000
600		0.8736	0.00000
700		0.8474	0.00000
800		0.8258	0.00000
900		0.8017	0.00002
1000		0.7775	0.00006
1100		0.7533	0.00017
1200		0.7291	0.00039
1300		0.7048	0.00079
1400		0.6807	0.00145
1500		0.6566	0.00244
1600		0.6327	0.00387
1700		0.6087	0.00584
1800		0.5839	0.00850
1900		0.5579	0.01197
2000		0.5307	0.01642
2100		0.5018	0.02204
2200		0.4710	0.02909
2300		0.4377	0.03794
2400		0.4011	0.04914
2500		0.3595	0.06373
2600		0.3096	0.08402
2700		0.2381	0.1200
2733	(critical temperature)	0.1818	0.1818

.

FUNCTION	MATERIAL	PROPERTY	
Coolant	Sodium	Density	(3304)

Data Source

The values for density came from Reference 1.

Discussion

The density of liquid sodium up to 1643K is represented by the density equation of Stone <u>et al.</u>;² in metric units their equation is:³

$$\rho(g/cm^3) = 0.9501 - 2.2976 \times 10^{-4}(T - 273.15) - 1.460 \times 10^{-8}(T - 273.15)^2 + 5.638 \times 10^{-12}(T - 273.15)^3$$
(1)

where T is in K. Above these temperatures Padilla¹ used a form of equation recommended by Miller <u>et al</u>.⁴ to estimate liquid densities up to the critical point while insuring continuity with lower temperature data (T_c is critical temperature 2733K); T in Kelvin

$$\frac{\rho_{1iq}}{\rho_{c}} = 1 + 4.163 \left(1 - \frac{T}{T_{c}}\right)^{0.5885}$$
(2)

The vapor densities were obtained via the Clapeyron equation:

$$\rho_{vap} = \left(\frac{\Delta H_{vap}}{T\left(\frac{dP}{dT}\right)_{sat}} + \frac{1}{\rho_{liq}}\right)^{-1}$$
(3)

where the heat of vaporization (ΔH_{vap}), slope of the saturation line $\left(\frac{dP}{dT}\right)_{sat}$, and liquid density (ρ_{liq}) are those presented previously.

As would be expected, the choice of the critical parameters (Padilla¹ used Miller <u>et al.</u>⁴ values) has a marked effect on the calculated densities. Gabelnick⁵ has discussed this; until more experimental data become available, Padilla's¹ values should be used.

References

- 1. A. Padilla, "High Temperature Thermodynamic Properties of Sodium," ANL-8095, 1974.
- 2. J. P. Stone, C. T. Ewing, J. R. Spann, E. W. Steinkuller, D. D. Williams, and R. R. Miller, "High Temperature Properties of Sodium," NRL Report 6241, September 24, 1965.

Properties for LMFBR Safety Analysis

FUNCTION	MATERIAL	PROPERTY	
Coolant	Sodium	Density	(3304)

- 3. O. J. Foust, Editor, "Sodium-NaK Engineering Handbook, Volume 1," Gordon and Breach, 1972.
- 4. D. Miller, A. B. Cohen, and C. E. Dickerman, "Estimation of Vapor and Liquid Density and Heat of Vaporization of the Alkali Metals to the Critical Point," International Conference on the Safety of Fast Breeder Reactors, Aix-en-Provence, France, September 19-22, 1967.
- 5. M. G. Chasanov, D. F. Fischer, D. R. Fredrickson, S. D. Gabelnick, R. Kumar, L. Leibowitz, G. T. Reedy, F. A. Cafasso, and L. Burris, "Chemical Engineering Division, Reactor Safety and Physical Property Studies Annual Report, July 1973 - June 1974," ANL-8120.

	FUNCTION	MATERIAL	PROPERTY	
	Coolant	Sodium	Isothermal Compressibility	(3307)
Date: 1/76				
	Т(К)		$\beta_{T}(atm^{-1}) \times 10^{5}$	
	400		1.954	
	500		2.167	
	600		2.409	
	700		2.682	
	800		2.991	
	900		3.338	
	1000		3.726	
	1100		4.159	
	1200		4.643	
	1300		5.185	
	1400		5.795	
	1500		6.486	
	1600		7.277	
	1700		8.390	
	1800		9.991	
	1900		12.13	
	2000		15.09	
	2100		19.38	
	2200		25.95	
	2300		36.90	
	2400		57.41	
	2500		104.2	
	2600		263.0	
	2700		3128	

.

Properties for LMFBR Safety Analysis

FUNCTION	
Coolant	

MATERIAL Sodium <u>PROPERTY</u> Isothermal Compressibility

(3307)

Date: 1/76

Data Source

The values for the isothermal compressibility of saturated sodium came from Reference 1.

Discussion

In Reference 1, Padilla used the sonic velocity data of Chasanov <u>et al.</u>² and saturated liquid sodium density to calculate the adiabatic compressibility, β_s , to 1773K. He then used a method proposed by Grosse³ to extrapolate β_s to higher temperatures. Sonic velocity data, thermal expansion along the saturated-liquid line, saturated density, and the slope of the vapor pressure curve were then employed using an equation from Rowlinson⁴ to obtain the values of isothermal compressibility. This method produces some minor inconsistencies near the critical point and Padilla¹ recommends use of his values only up to within 100K of the critical point.

Of course, the values of isothermal compressibility so obtained are very dependent on estimates of the critical parameters; Gabelnick⁵ has discussed the effect of different choices of critical parameters on β_T . However, until more experimental data become available, the β_T values of Padilla are recommended.

- 1. A. Padilla, "High Temperature Thermodynamic Properties of Sodium," ANL-8095, 1974.
- M. G. Chasanov, L. Leibowitz, D. F. Fischer, and R. A. Blomquist, J. Appl. Phys. 43, 748 (1972).
- 3. A. V. Grosse, "Compressibility of Liquid Metals, Particularly Lead, from their Melting Points to their Critical Regions," GL-1970-14, Germantown Laboratories, 1970.
- 4. J. S. Rowlinson, "Liquids and Liquid Mixtures," 2nd Ed., Plenum Press, New York, 1969.
- M. G. Chasanov, D. F. Fischer, D. R. Fredrickson, S. D. Gabelnick, R. Kumar, L. Leibowitz, G. T. Reedy, F. A. Cafasso, and L. Burris, "Chemical Engineering Division, Reactor Safety and Physical Property Studies Annual Report, July 1973 - June 1974," ANL-8120.

STRUCTURAL MATERIAL

FUNCTION	MATERIAL	PROPERTY
Structural	Stainless Steel	See Below
Date: 1/1976	(1904)	

Melting Point (3103)	1700 K
Heat of Fusion (3104)	3540 cal/mol
Boiling Point (3105)	3080 K
Heat of Vaporization (3106)	98020 cal/mol

.

.

FUNCTION	MATERIAL	PROPERTY
Structural	Stainless Steel	Melting Point (3103)
/1976	(1992 304)	

Data Source

References 1 and 2, respectively, give melting ranges of 1673-1723 K and 1670-1730 K.

Data Analysis

Median of the melting range was taken as the melting point.

- A. D. Feith, R. A. Hein, C. P. Johnstone, and P. N. Flagella, "Thermophysical Properties of Low Carbon 304 Stainless Steel to 1350 C," GEMP-643, 1968.
- 2. T. S. Touloukian, "Recommended Values of the Thermophysical Properties of Eight Alloys, Major Constituents and Their Oxides," NASA-CR-71699, February 1966.

FUNCTION	MATERIAL	PROPERTY
Structural	Stainless Steel	Heat of Fusion (3104)
1/1976	(Type 304)	

Data Source

Heat of fusion data for the constituting elements were provided by Reference 1.

Data Analysis

The additivity rule was used in estimation.

Discussion

The use of the additivity rule was based on the ideal solution behavior of liquid Fe-Cr-Ni alloys (Reference 2). In estimating heat of fusion, 304 stainless steel was considered to be composed of 72% Fe, 19% Cr, and 9% Ni.

- 1. R. Hultgren, "Selected Values of Thermodynamic Properties of Metals and Alloys," John Wiley & Sons, N. Y., 1973.
- G. R. Belton and R. J. Fruehan, "Mass-spectrometric Determination of Activities in Fe-Cr and Fe-Cr-Ni Alloys," Met. Trans., Vol. 1, 781-787, April 1970.

	FUNCTION	MATERIAL	PROPERTY
	Structural	Stainless Steel	Boiling Point (3105)
Date	1/1976	(Type 304)	

Date: 1/19/6

Data Source

Boiling point was calculated from the vapor pressure data.

Data Analysis

None

Discussion

Temperature with vapor pressure 1 atm was taken as the boiling point.

•

FUNCTION Structura1

MATERIAL (Type 304)

PROPERTY Stainless Steel Heat of Vaporization (3106)

Date: 1/1976

Data Source

Heat of vaporization data for the constituting elements were provided by Reference 1.

Data Analysis

The additivity rule was used in estimation.

Discussion

The use of the additivity rule was based on the ideal solution behavior of liquid Fe-Cr-Ni alloys (Reference 2). In estimating heat of vaporization, 304 stainless steel was considered to be composed of 72% Fe, 19% Cr, and 9% Ni.

- 1. R. Hultgren, "Selected Values of Thermodynamic Properties of Metals and Alloys," John Wiley & Sons, N. Y., 1973.
- 2. G. R. Belton and R. J. Fruehan, "Mass-spectrometric Determination of Activities in Fe-Cr and Fe-Cr-Ni Alloys," Met. Trans., Vol. 1, 781-787, April 1970.

FUNCTION	
Structural	

Specific Heat (3108)

	-		~		
Date:	1.	/1	9	76	

ctural	Stainless S (Type 304	teel)	Specific	He
Temperature (K)	(T) Speci (ca	fic Hea l/mol•K	t (c°)	
300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1700(£) 1800 1900 2000 2100 2200 2300 2400 2500 2600 2500 2600 2700 2800 2900 3000		6.748 6.927 7.105 7.283 7.462 7.640 7.997 8.175 8.354 8.354 8.532 8.711 8.889 9.246 10.52 1		
c [°] _p = 6.213 + 1	.784х10 ⁻³ т	(sol	id regior	ı)
$c_{p}^{\circ} = 10.52$		(liq	uid regio	n)

Properties for LMFBR Safety Analysis

TEMPERATURE (K)

FUNCTION	MATERIAL	PROPERTY
Structura1	Stainless Steel	Specific Heat (3108)
1 /1070	(Type 304)	

Data Source

Specific heat values were calculated from the enthalpy data.

<u>Analysis</u>

None

Discussion

Specific heat values were obtained by differentiating enthalpy data with respect to temperature.

References

None
		FUNCTION	MATERIA	<u>AL</u>	PROPE	RTY
		Structural	Stainless	Steel	Enthalpy	(3109)
_	1 (1076		(Type 30)4)		• •
Date:	1/19/6					
		Temperatur	re (T) Er	ithalpy (H ₊	-H [°] 00)	
		(К)	([cal/mol) '	290	
		300		12.18		
		400		695.9		
		500		1398		
		600		2117		
		/00		2854		
		800		3609		
		900		4382		
		1000		51/4		
		1100		5982		
		1200		0000		
		1300		7052		
		1400		0305		
		1500		10200		
		1700		11210		
		1700 (a)	14750		
		1700(ž	•)	15800		
		1900		16850		
		2000		17910		
		2100		18960		
		2200		20010		
		2300		21060		
		2400		22110		
		2500		23170		
		2600		24220		
		2700		25270		
		2800		26320		
		2900		27370		
		3000		28430		
				1 2		
		$H_{T}^{\circ}-H_{200}^{\circ} = 6.213 T$	+ 8.920x10	⁻⁴ T ² - 193	2 (s	solid region)
		1 290			-	-
		$H_{-}^{\circ}-H_{000}^{\circ} = 10.52 \text{ T}$	- 3134		(*	liquid region)
		1 298			(i qui u region)

,

Properties for LMFBR Safety Analysis

FUNCTION	MATERIAL	PROPERTY
Structural	Stainless Steel	Enthalpy (3109)
1 12 0 7 0	(Type 304)	

<u>Data Source</u>

Reference 1 provided enthalpy values in the solid region. Enthalpy data used in the estimation of liquid enthalpy were taken from Reference 2.

Data Analysis

A smooth curve was drawn through the experimental data points and extrapolated to the melting point. Enthalpy in the liquid region was estimated by the additivity rule.

Discussion

The experimental data for enthalpy of 304L stainless steel were taken instead of those of 304 stainless steel. This is because the carbon content of the stainless steel used in the nuclear reactors is 0.05% or less, which is rather closer to that of 304L stainless steel. In estimating liquid enthalpy by the additivity rule, 304 stainless steel was considered to be composed of 72% Fe, 19% Cr, and 9% Ni. The use of the additivity rule was based on the ideal solution behavior of liquid Fe-Cr-Ni alloys reported in Reference 3.

- A. D. Feith, R. A. Hein, C. P. Johnstone, and P. N. Flagella, "Thermophysical Properties of Low Carbon 304 Stainless Steel to 1350 C," GEMP-643, 1968.
- 2. R. Hultgren, "Selected Values of Thermodynamic Properties of Metals and Alloys," John Wiley & Sons, N. Y., 1973.
- 3. G. R. Belton and R. J. Fruehan, "Mass-spectrometric Determination of Activities in Fe-Cr and Fe-Cr-Ni Alloys," Met. Trans., Vol. 1, 781-787, April 1970.

	FUNCTION	MATERIAL	PROPERTY	
Date: 1/1976	Structura]	Stainless Steel (Type 304)	Thermal Diffusivity (311	0)
	Tama and tama			
	(K)	(1) Inermal Dif x10 ² (cm	² /sec)	
	300	3.237		
	400	3.546		
	500	3.849 1 110		
	700	4.140		
	800	4.727		
	900	5.009		
•	1000	5.285		
	1100	5.555		
	1200	5.820		
	1300	6.080		
	1400	6.334		
	1500	0.582		
	1700	7 062		
	1700(2)	3.237		
	1800	3.323		
	1900	3.413		
	2000	3.508		
	2100	3.608		
	2200	3.713		
	2300	3.822		
	2400	3.936		
	2500	4.055		
	2000	4.1/9		
	2800	4.307		
	2900	4.579		
	3000	4.721		
	a = 2.276x10 ⁻² +	3.285х10 ⁻⁵ Т - 2.7	62x10 ⁻⁹ T ² (solid region)	

 $a = 2.514 \times 10^{-2} + 1.996 \times 10^{-7} T + 2.386 \times 10^{-9} T^2$ (liquid region)

FUNCTION	MATERIAL	PROPERTY
Structural	Stainless Steel	Thermal Diffusivity (3110)

(Type 304)

Date: 1/1976

Data Source

Thermal diffusivity values were calculated from the thermal conductivity, density, and specific heat data.

Data Analysis

None

Discusssion

Thermal diffusivity was calculated by its definition:

thermal diffusivity = $\frac{\text{thermal conductivity}}{\text{density x specific heat}}$

References

None

4

		FUNCTION	MATERIAL	<u> </u>	ROPERTY	
		Structural	Stainless Steel	Thermal	Conductivity	(3112)
Date:	1/1976		(Type 304)			

	Temperature (K)	(T) Thermal Cond x10 (watt	luctivity (k) :/cm•K)
	(K) 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 (£) 1800 1900 2000 2100 2200 2300 2400 2500 2600	x10 (watt x10 (watt 1.297 1.459 1.620 1.782 1.944 2.106 2.267 2.429 2.591 2.753 2.914 3.076 3.238 3.400 3.561 1.781 1.814 1.814 1.846 1.879 1.911 1.944 1.976 2.009 2.041 2.073	/cm·K)
	2700 2800 2900 3000	2.106 2.138 2.171 2.203	
k = 8	3000 ∴116x10 ⁻² + 1	2.203 .618x10 ⁻⁴ T	(solid region)
k = 1	$.229 \times 10^{-1} + 3$.248x10 ⁻⁵ T	(liquid region)

FUNCTION	MATERIAL	PROPERTY
Structural	Stainless Steel	Thermal Conductivity (3112)
1 (1076	(Type 304)	,

Data Source

Reference 1 provided the thermal conductivity data to 1600 K. The correlations from Reference 2 were used to estimate liquid thermal conductivity values.

Data Analysis

A straight line was passed through the experimental data points and extended to the melting point. At the melting point, the thermal conductivity of solid stainless steel wad divided by two to give the value for the liquid stainless steel. The thermal conductivities in the liquid region were calculated according to

$$k/k_{m}-1 = 0.31 (T/T_{m}-1)$$

where k = thermal conductivity at the temperature, T $k_m =$ thermal conductivity at the melting temperature, T_m.

Discussion

Thermal conductivity data for 304L stainless steel were taken since the carbon content of 304 stainless steels used in nuclear reactors is 0.05% or less and rather closer to that of 304L stainless steel. Derivation of the correlations used in the estimation of liquid thermal conductivity is given in detail in Reference 2.

- A. D. Feith, R. A. Hein, C. P. Johnstone, and P. N. Flagella, "Thermophysical Properties of Low Carbon 304 Stainless Steel to 1350 C," GEMP-643, 1968.
- C. Kim, "Thermophysical Properties of Stainless Steels," ANL-75-55, September 1975.

FUNCTION	MATERIAL	PROPERTY	
Structural	Stainless Steel (Type 304)	Thermal Expansivity (311	4)

(a) solid region

Temperature (T) (K)	Thermal Expansivity (B) x10 ⁵ (1/K)
400	1.469
500	1.524
600	1.581
700	1.638
800	1.693
900	1.759
1000	1.821
1100	1.885
1200	1.950
1300	2.017
1400	2.085
1500	2.154
1600	2.225
1700	2.298

$$B = 1.263 \times 10^{-5} + 4.854 \times 10^{-9} T + 7.238 \times 10^{-13} T^{2}$$

NOTE:

Thermal Expansivity = $\frac{\text{length at T} - \text{length at } 298.15 \text{ K}}{\text{length at } 298.15 \text{ K} (T-298.15 \text{ K})}$

	FUNCTION	MATERIAL	PROPERTY
Date: 1/1976	Structural	Stainless Steel (Type 304)	Thermal Expansivity (3114)

(b) liquid region

Temperature (T) (K)	Thermal Expansivity (B) x10 ⁵ (1/K)
1800	3.106
1900	3.207
2000	3.313
2100	3.424
2200	3.540
2300	3.662
2400	3.789
2500	3.921
2600	4.057
2700	4.200
2800	4.347
2900	4.499
3000	4.657

$$B = 2.168 \times 10^{-5} + 5.798 \times 10^{-10} T + 2.572 \times 10^{-12} T^2$$

NOTE:

Thermal Expansivity = $\frac{\text{length at T} - \text{length at 1700 K}}{\text{length at 1700 K}}$

FUNCTION	MATERIAL	PROPERTY
Structura1	Stainless Steel	Thermal Expansivity (3114)
1/1076	(Type 304)	

Data Source

Linear thermal expansion coefficients were calculated from the density data.

Data Analysis

None

Discussion

None

	FUNCTION	MATERIAL	PROPERTY
Date: 1/1976	Structural 5	Stainless Steel (Type 304)	Viscosity (3301)
	Temperatu (K)	nre (T) Viscosity (cP)	′(μ)
	1700 1800 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800	6.416 5.362 4.566 3.952 3.467 3.079 2.762 2.501 2.282 2.097 1.939 1.803	
	2900 3000	1.685	

$$\log_{10^{\mu}} = \frac{2385.2}{T} - 0.5958$$

.

FUNCTION	MATERIAL	PROPERTY
Structural	Stainless Steel	Viscosity (3301)
1/1076	(Type 304)	

Data Source

Reference 1 provided the viscosity data for iron to 2200 K.

Data Analysis

A smooth curve was drawn through the experimental data points and extrapolated to 3000 K by fitting those data into (log μ) vs. (l/T).

Discussion

These values may be used for the viscosity of stainless steel until the experimental viscosity data for stainless steel are available.

References

¢

1. Y. S. Touloukian, "Recommended Values of the Thermophysical Properties of Eight Alloys, Major Constituents and Their Oxides," NASA-CR-71699, February 1966.

	FUNCTION	MATERIAL	PROPERTY
	Structural	Stainless Steel	Vapor Pressure (3303)
Date: 1/1976	5	(Type 304)	
	Temperatur	e (T) Vapor Pr	essure (P)
	(K)	(at	m)
	1700	1.099x	10 ⁻⁵
	1800	4.535x	10 ⁻⁵
	1900	1.612x	10 ⁻⁴
	2000	5.047x	10 ⁻⁴
	2100	1.417x	10 ⁻³
	2200	3.624x	10 ⁻³
	2300	8.540x	10 ⁻³
	2400	1.874x	10 ⁻²
	2500	3.860x	10 ⁻²
	2600	7.523x	10 ⁻²
	2700	1.395x	10 ⁻¹
	2800	2.477x	10 ⁻¹
	2900	4.225x	10 ⁻¹
	3000	6.956x	10 ⁻¹
	3100	1.109	
	3200	1.717	

$$\log_{10}P = 6.1210 - \frac{18836}{T}$$

3300

2.589

	FUNCTION	MATERIAL	PROPERTY
: 1/1976	Structural	Stainless Steel (Type 304)	Vapor Pressure (3303)

Data Source

Vapor pressure data for the constituting elements were provided by Reference 1.

Data Analysis

The additivity rule was used in estimating the vapor pressure values.

Discussion

.

The use of additivity rule was based on the ideal solution model (Reference 2). In this estimation, Type 304 stainless steel was considered to be composed of 72% Fe, 19% Cr, and 9% Ni.

- 1. R. Hultgren, "Selected Values of Thermodynamic Properties of Metals and Alloys," John Wiley and Sons, N. Y., 1973.
- 2. G. R. Belton and R. J. Fruehan, "Mass-spectrometric Determination of Activities in Fe-Cr and Fe-Cr-Ni Alloys," Met. Trans., Vol. 1, 781-787, April 1970.

		FUNCTION	MATERIA	<u>L</u>	PROP	ERTY
ſ	Date:	Structural 1/1976	Stainless (Type 304	Steel)	Density	(3304)
			Temperature (T)	Density	(p)	
			((g/cm°)		
			300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 (£) 1800 1900 2000 2100 2200 2300 2400 2500 2600 2700	7.894 7.860 7.823 7.783 7.742 7.698 7.652 7.603 7.552 7.603 7.552 7.499 7.444 7.386 7.326 7.264 7.264 7.199 6.926 6.862 6.785 6.725 6.652 6.576 6.498 6.416 6.331 6.243 6.152		
			2800 2900 3000	6.058 5.961 5.861		
		ρ = 7.984 - 2.6	51x10 ⁻⁴ T - 1.158x	10 ⁻⁷ T ²	(solid	region)
		ρ = 7.551 - 1.1	17x10 ⁻⁴ T - 1.506x	10 ⁻⁷ T ²	(liqui	d region)

FUNCTION	
Structural	

<u>MATERIAL</u> Stainless Steel (Type 304) PROPERTY Density (3304)

Date: 1/1976

Data Source

Density data in the solid region were provided by Reference 1. Densities of the constituting elements used in the estimation of liquid density of 304 stainless steel were taken from Reference 2 and 3.

Data Analysis

A smooth curve was drawn through the experimental data and extrapolated to the melting point. In the estimation of liquid density, the following formula suggested by Reference 4 was used.

$$\rho = \frac{1}{\Sigma} \left(\frac{x_i}{\rho_i} \right)$$

where ρ = density of stainless steel x_i = weight fraction of the ith constituent ρ_i = density of the ith constituent

Discussion

In the estimation of liquid density, 304 stainless steel was considered to be composed of 72% Fe, 19% Cr, and 9% Ni.

- 1. D. L. Thornburg, E. Thall, and J. Brous, WADD TR-60-325, 1961.
- 2. Y. S. Touloukian, "Recommended Values of the Thermophysical Properties of Eight Alloys, Major Constituents and Their Oxides," NASA-CR-71699, February 1966.
- 3. Y. S. Touloukian, editor, "Thermophysical Properties of High Temperature Solid Materials," Vol. 1 Elements, 1967.
- 4. F. C. Hull, "Estimating Alloy Densities," Metal Progress, Vol. 96, No. 5, 139-140, November 1969.

	FUNCTION	MATERIAL	PROPERTY
	Structural	Stainless Steel	See Below
Date: 1/1076		(Type STO)	

٩

Melting Point (3103)	1700 K
Heat of Fusion (3104)	3610 cal/mol
Boiling Point (3105)	3090 K
Heat of Vaporization (3106)	99720 cal/mol

.

<u>FUNCTION</u> Structural <u>MATERIAL</u> Stainless Steel (Type 316)

<u>PROPERTY</u> Melting Point (3103)

Date: 1/1976

Data Source

Melting point of 304 stainless steel was taken.

Discussion

The melting points of 304 and 316 stainless steels were assumed same.

FUNCTION	MATERIAL	PROPERTY
Structural	Stainless Steel (Type 316)	Heat of Fusion (3104)

Data Source

Heat of fusion data for the constituting elements were provided by Reference 1.

Data Analysis

The additivity rule was used in estimation.

Discussion

The use of the additivity rule was based on the ideal solution behavior of liquid Fe-Cr-Ni alloys (Reference 2). In estimating heat of fusion, 316 stainless steel was considered to be composed of 69% Fe, 17% Cr, 12% Ni, and 2% Mo.

- 1. R. Hultgren, "Selected Values of Thermodynamic Properties of Metals and Alloys," John Wiley & Sons, N. Y., 1973.
- G. R. Belton and R. J. Fruehan, "Mass-spectrometric Determination of Activities in Fe-Cr and Fe-Cr-Ni Alloys," Met. Trans., Vol. 1, 781-787, April 1970.

<u>FUNCTION</u> Structural <u>MATERIAL</u> Stainless Steel (Type 316) PROPERTY Boiling Point (3105)

Date: 1/1976

Data Source

Boiling point was calculated from the vapor pressure data.

Data Analysis

None

Discussion

Temperature with vapor pressure 1 atm was taken as the boiling point.

FUNCTION	
Structural	

Data Source

Heat of vaporization data for the constituting elements were provided by Reference 1.

Data Analysis

The additivity rule was used in estimation.

Discussion

The use of the additivity rule was based on the ideal solution behavior of liquid Fe-Cr-Ni alloys (Reference 2). In estimating heat of vaporization, 316 stainless steel was con-sidered to be composed of 69% Fe, 17% Cr, 12% Ni, and 2% Mo.

- 1. R. Hultgren, "Selected Values of Thermodynamic Properties of Metals and Alloys," John Wiley & Sons, N. Y., 1973.
- 2. G. R. Belton and R. J. Fruehan, "Mass-spectrometric Determination of Activities in Fe-Cr and Fe-Cr-Ni Alloys," Met. Trans., Vol. 1, 781-787, April 1970.

	FUNCTION	MATERIAL	PRO	<u>PERTY</u>
	Structural	Stainless Steel	Specific H	eat (3108)
		(Type 316)		
Date: 1/1976				
	Temperature	(T) Specific	Heat (c°)	
	(K)	(cal/mo	(0, 0)	
	(,	(cu l) iic		
	300	6 71	7	
	400	6.80	96	
	500	7 07	75 75	
	600	7.25	54	
	700	7.43	33	
	800	7.61	1	
	900	7.79	90	
	1000	7.96	59	
	1100	8.14	18	
	1200	8.32	· · · · · · · · · · · · · · · · · · ·	
	1300	8,50	5	
	1400	8.68	34	
	1500	8,86	3	
	1600	9.04	.2	
	1700	9.22	- ']	
	1700(2)	10.3	7	
	1800	10.3	7	
	1900	10.3	7	
	2000	10.3	7	
	2100	10.3	.7 .7	
	2200	10.3	7	
	2300	10.3	7	
	2400	10.3	7	
	2500	10.3	7	
	2600	10.3	, 7	
	2700	10.3	7	
	2800	10.3	7	
	2900	10.0	7	
	3000	10.3	7	
	0000	10.5	,	
		-3		
	$c_n^{\circ} = 6.181 + 1.$	788x10 T (s	olid region)	
	۲		-	
	$c_{n}^{\circ} = 10.37$	(1	iquid region)	
	P			

`.

FU	NCTION	MATERIAL	PROPERTY
Str	uctural	Stainless Steel	Specific Heat (3108)
076		(Type Sto)	

Data Source

Specific heat values were calculated from the enthalpy data.

Data Analysis

None

Discussion

Specific heat values were obtained by differentiating enthalpy data with respect to temperature.

References

None

Date: 1/1976	<u>FUNCTION</u> Structural	<u>MATERIAL</u> Stainless Steel (Type 316)	<u>PROPERTY</u> Enthalpy (3109)
	Temperatur (K)	re (T) Enthalpy ((cal/mol)	^H [°] T ^{-H} [°] 298)
	300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1700 ($x1800190020002100220023002400250026002700280029003000$	11.76 692.4 1391 2107 2841 3594 4364 5152 5958 6782 7623 8483 9360 10260 11170) 14780 15820 16850 17890 18930 19970 21000 22040 23080 24110 25150 26190 27220 28260	
	H°-H° ₂₉₈ = 6.181 T	+ 8.940x10 ⁻⁴ T ² -	1923 (solid region)
	H [°] -H [°] 298 = 10.37 T	- 2849	(liquid region)

FUNCTION	MATERIAL	PROPERTY
Structura1	Stainless Steel	Enthalpy (3109)
	(Type 316)	

Data Source

Reference 1 provided enthalpy values in the solid region. Enthalpies of the constituting elements used in the estimation of liquid enthalpy were taken from Reference 2.

Data Analysis

A smooth curve was drawn through the experimental data and extrapolated to the melting point. Enthalpy in the liquid region was estimated by the additivity rule.

Discussion

The use of the additivity rule was based on the ideal solution behavior of liquid Fe-Cr-Ni alloys reported in Reference 3. In estimating liquid enthalpy, 316 stainless steel was considered to be composed of 69% Fe, 17% Cr, 12% Ni, and 2% Mo.

- T. B. Douglas and A. C. Victor, "Physical Properties of High Temperature Materials, Part II," WADC-TR-57-374, August 1957.
- 2. R. Hultgren, "Selected Values of Thermodynamic Properties of Metals and Alloys," John Wiley & Sons, N. Y., 1973.
- 3. G. R. Belton and R. J. Fruehan, "Mass-spectrometric Determination of Activities in Fe-Cr and Fe-Cr-Ni Alloys', Met. Trans., Vol. 1, 781-787, April 1970.

		FUNCTION	<u>M</u> A	TERIAL	-	PROPERTY	
		Structural	Stain	less Steel	Thermal	Diffusivity	(3110)
		~	(Ty	pe 316)			(2)
Date:	1/197	b		, ,			
		Temperature	(T)	Thermal Dif	fusivity	(a)	
		(К)		$x10^2$ (cm ²)	/sec)		
		300		3.529			
		400		3.834			
		500		4.132			
		600		4.424			
		700		4.710			
		800		4.989			
		900		5.262			
		1000		5.529			
		1100		5.790			
		1200		6.044			
		1300		0.292			
		1400		6 769			
		1600		6 999			
		1700		7.222			
		1700(2)		3.350			
		1800`´		3.435			
		1900		3.526			
		2000		3.622			
		2100		3.723			
		2200		3.829			
		2300		3.940			
		2400		4.05/			
		2500		4.178			
		2000		4.305			
		2800		4.437			
		2900		4 716			
		3000		4.864			
	a = 2.	.578x10 ⁻² + 3.265x1	о ⁻⁵ т-	3.138x10 ⁻⁹	T ² (s	olid region)	
	a = 2.	.686x10 ⁻² - 4.812x1	0 ⁻⁷ T +	2.580x10 ⁻⁹	T ² (1	iquid region)	

FUNCTION	MATERIAL	PROPERTY	
Structural	Stainless Steel	Thermal Diffusivity (3110)
1/1976	(Type 316)		

Data Source

Thermal diffusivity values were calculated from the thermal conductivity, density, and specific heat data.

Data Analysis

None

Discussion

Thermal diffusivity was calculated by its definition:

therma]	diffusivity		_ thermal	conductivity		
		-	density	Х	specific	heat

References

None

FUNCTION	MATERIAL	PROPERTY
Structura	Stainless Steel	Thermal Conductivity (3112)
2 /2020	(Type 316)	

Temperature (1 (K)	<pre>Thermal Conductivity</pre>	(k)
300	1.396	
400	1.553	
500	1.710	
600	1.868	
700	2.025	
800	2.182	
900	2.339	
1000	2.496	
1100	2.653	
1200	2.810	
1300	2.967	
1400	3.125	
1500	3.282	
1600	3.439	
1700	3.590	
1700(2)	1./90	
1000	1.001	
2000	1 897	
2100	1.037	
2200	1.962	
2300	1.995	
2400	2.028	
2500	2.061	
2600	2.094	
2700	2.126	
2800	2.159	
2900	2.192	
3000	2.225	
$k = 9.248 \times 10^{-2} +$	+ 1.571x10 ⁻⁴ T (so	lid region)
$k = 1.241 \times 10^{-1} +$	⊦ 3.279x10 ⁻⁵ T (1i	quid region)

•

FUNCTION	MATERIAL	PROPERTY
Structura1	Stainless Steel	Thermal Conductivity (3112)
	(Type 316)	

Data Source

Reference 1 provided the thermal conductivity data to 1600 K. The correlations from Reference 2 were used to estimate liquid thermal conductivity values.

Data Analysis

A straight line was passed through the experimental data points and extended to the melting point. At the melting point, the thermal conductivity of solid stainless steel was divided by two to give the value for the liquid stainless steel. The thermal conductivities in the liquid region were calculated according to

$$k/k_m - 1 = 0.31 (T/T_m - 1)$$

where k = thermal conductivity at the temperature, T

 k_m = thermal conductivity at the melting temperature, T_m

Discussion

Derivation of the correlations used in the estimation of liquid thermal conductivity values is given in Reference 2.

References

- J. Matolich, Jr., "Thermal Conductivity and Electrical Resistivity of Type 316 Stainless Steel from 0 to 1800 F," NASA-CR-54151, 1965.
- 2. C. Kim, "Thermophysical Properties of Stainless Steels," ANL-75-55, September 1975.

	FUNCTION	MATERIAL	PROPERTY
	Structural	Stainless Steel	Thermal Expansivity (3114)
Date: 1/197	6	(Type 316)	
	(a) solid region	
	Temperature ((K)	T) Thermal Expan x10 ⁵ (1)	nsivity (B) /K)
	400	1.89	90
	500	1.9	17
	60 0	1.94	14
	700	1.9	73
	800	2.00	01
	900	2.03	31
	1000	2.00	
	1200	2.03	
	1300	2.16	23 56
	1400	2.1	38
	1500	2.2	22
	1600	2.2	56
	1700	2.29	1

۰

$$B = 1.789 \times 10^{-5} + 2.398 \times 10^{-9} T + 3.269 \times 10^{-13} T^{2}$$

NOTE:

Thermal Expansivity = $\frac{\text{length at T} - \text{length at } 298.15 \text{ K}}{\text{length at } 298.15 \text{ K} \text{ (T-298.15 K)}}$

Date:	1/1976	<u>FUNCTION</u> Structural	<u>MATERIAL</u> Stainless Steel (Type 316)	Thermal	<u>PROPERTY</u> Expansivity	(3114)
			(b) liquid regior	I		
		Temperature (K)	(T) Thermal Exp x10 ⁵ (ansivity 1/K)	(B)	
		1800 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000	2. 2. 3. 3. 3. 3. 3. 4. 4. 4.	852 961 076 196 321 453 590 733 881 035 195 360 531		
	B = 1	.864x10 ⁻⁵ + 3.917x	10^{-10} T + 2.833x10	-12 _T 2		

~

.

FUNCTION	MATERIAL	PROPERTY
Structural	Stainless Steel	Thermal Expansivity (3114)
(1076	(Type 316)	

Data Source

Linear thermal expansion coefficients were calculated from the density data.

Data Analysis

None

Discussion

None

<u>_</u>	UNCTION	MATERIAL	PROPERTY
Str Date: 1/1976	ructural	Stainless Steel (Type 316)	Viscosity (3301)

Temperature (T) (K)	Viscosity (µ) (cP)
1700	6.416
1800	5.362
1900	4.566
2000	3.952
2100	3.467
2200	3.079
2300	2.762
2400	2.501
2500	2.282
2600	2.097
2700	1.939
2800	1.803
2900	1.685
3000	1.582

$$\log_{10^{\mu}} = \frac{2385.2}{T} - 0.5958$$

٠

I.

ł

ł

Properties for LMFBR Safety Analysis

FUNCTION	MATERIAL	PROPERTY
Structura1	Stainless Steel (Type 316)	Viscosity (3301)

Data Source

Reference 1 provided the viscosity data for iron to 2200 K.

Data Analysis

A smooth curve was drawn through the experimental data points and extrapolated to 3000 K by fitting those data into (log μ) vs. (1/T).

Discussion

These values may be used for the viscosity of stainless steel until the experimental viscosity data for stainless steel are available.

References

1

 Y. S. Touloukian, "Recommended Values of the Thermophysical Properties of Eight Alloys, Major Constituents and Their Oxides," NASA-CR-71699, February 1966.

		FUNCTION	MATERIAL	PROPERTY
		Structural	Stainless Steel	Vapor Pressure (3303)
Date:	1/1976		(Type 316)	
		Temperatur	e (T) Vapor Pr	essure (P)
		(K)	(atm)) _
		1700	1.032x	10 ⁻⁵
		1800	4.270x	10 ⁻⁵
		1900	1.521x	10 ⁻⁴
		2000	4.772×	10 ⁻⁴
		2100	1.343x	10 ⁻³
		2200	3.438x	10 ⁻³
		2300	8.114x	10 ⁻³
		2400	1.783x	10 ⁻²
		2500	3.677x	10 ⁻²
		2600	7.174x	10 ⁻²
		2700	1.332x	10-1
		2800	2.367x	10-1
		2900	4.041x	10 ⁻¹
		3000	6.658x	10 ⁻¹
		3100	1.062	
		3200	1.646	
		3300	2.484	
	10	$pg_{10}^{P} = 6.1127 - \frac{18}{2}$	<u>368</u> Г	

ţ.

Properties for LMFBR Safety Analysis

FUNC	TION	MATERIAL	PROPERTY
Struc	tural	Stainless Steel	Vapor Pressure (3303)
1076		(Type 316)	

Data Source

Vapor pressure data for the constituting elements were provided by Reference 1.

Data Analysis

The additivity rule was used in estimating the vapor pressure values.

Discussion

The use of additivity rule was based on the ideal solution model (Reference 2). In this estimation, 316 stainless steel was considered to be composed of 69% Fe, 17% Cr, 12% Ni, and 2% Mo.

References

- 1. R. Hultgren, "Selected Values of Thermodynamic Properites of Metals and Alloys," John Wiley & Sons, N. Y., 1973.
- G. R. Belton and R. J. Fruehan, "Mass-spectrometric Determination of Activities in Fe-Cr and Fe-Cr-Ni Alloys, "Met. Trans., Vol. 1, 781-787, April 1970.

.

Date: 1/1976	<u>FUNCTION</u> Structural	<u>MATERIAI</u> Stainless S (Type 316)	- teel	<u>PROPERTY</u> Density (3304)
		Temperature (T) (K)	Density (g/cm ³)	(p)
		300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 (l) 1800 1700 (l) 1800 1700 (l) 1800 2000 2100 2200 2300 2400 2500 2600 2500 2600 2700 2800 2900 3000	7.954 7.910 7.864 7.818 7.771 7.723 7.674 7.523 7.674 7.574 7.573 7.471 7.419 7.365 7.311 7.256 6.979 6.920 6.857 6.791 6.648 6.571 6.648 6.571 6.490 6.406 6.318 6.226 6.131 6.032 5.930	
p :	= 8.084 - 4.209	9x10 ⁻⁴ T - 3.894x10	-8 _T 2	(solid region)
ρ :	= 7.433 + 3.93	84x10 ⁻⁵ T - 1.801x10	-7 _T 2	(liquid region)

Properties for LMFBR Safety Analysis

FUNCTION	MATERIAL	PROPERTY
Structural	Stainless Steel	Density (3304)
76	(Type 316)	

Data Source

Density data in the solid region were provided by Reference 1. Densities of the constituting elements used in the estimation of liquid density of 316 stainless steel were taken from Reference 2 and 3.

Data Analysis

A smooth curve was drawn through the experimental data and extrapolated to the melting point. In the estimation of liquid density, the following formula suggested by Reference 4 was used.

$$\rho = \frac{1}{\Sigma} \left(\frac{x_i}{\rho_i} \right)$$

where ρ = density of stainless steel x_i = weight fraction of the ith constituent ρ_i = density of the ^{ith} constituent

Discussion

In the estimation of liquid density, 316 stainless steel was considered to be composed of 69% Fe, 17% Cr, 12% Ni, and 2% Mo.

References

- 1. I. B. Fieldhouse, J. C. Hedge, and J. I. Lang, "Measurements of Thermal Properties," WADC-TR-58-274, 1958.
- 2. Y. S. Touloukian, "Recommended Values of the Thermophysical Properties of Eight Alloys, Major Constituents and Their Oxides," NASA-CR-71699, February 1966.
- 3. Y. S. Touloukian, editor, "Thermophysical Properties of High Temperature Solid Materials," Vol. 1 Elements, 1967.
- 4. F. C. Hull, "Estimating Alloy Densities," Metal Progress, Vol. 96, No. 5, 139-140, November 1969.